The following question requires you to write MATLAB (not pseudo) code. Assume a momentary objective function of the form

$$
U\left(k, k^{\prime}\right)=\ln \left(k^{\alpha}+(1-\delta) k-k^{\prime}\right)
$$

Write out the computer code using MATLAB syntax for solving the dynamic programming problem

$$
V(k)=\max _{k^{\prime} \in\left[k_{1}, k_{n}\right]}\left\{U\left(k, k^{\prime}\right)+\beta V\left(k^{\prime}\right)\right\} .
$$

In the above dynamic programming problem (to be solved on the computer), the choice variable, k^{\prime}, is to formulated as continuous variable, not discrete one. The value function $V(k)$ is to be approximated by piecewise linear functions on the grid $\mathfrak{K}=\left\{k_{1}, \cdots, k_{n}\right\}$; i.e., between any two grid points, say k_{j} and k_{j+1}, the function V is approximated by a linear function on the interval $\left[k_{j}, k_{j+1}\right]$. Assume $\alpha=0.3, \delta=0.1, \beta=0.96$. Assume that the grid spans 10,001 points centered on the steady-state value for capital, k^{*}, spanning the interval $\left[k^{*}-\right.$ $\left..5 k^{*}, k^{*}+.5 k^{*}\right]$.

Hint 1: Suppose one has the values for a function V on the grid \mathfrak{K}. Code up the piecewise linear approximation to V.

Hint 2: The following information in MATLAB may help:
FMINBND: finds the minimum of a function of one variable within a fixed interval.
$\mathrm{x}=$ fminbnd(fun, $\mathrm{x} 1, \mathrm{x} 2)$ returns a value x that is a local minimizer of the function that is described in fun in the interval $\mathrm{x} 1<\mathrm{x}<\mathrm{x} 2$. fun is a function_handle.

