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ABSTRACT

Discrete response models are of high interest in economics as they encompass treatment effects, social

interaction and peer effect models, and discrete games. We study the impact of the structure of information

sets of economic agents on the Fisher information of (strategic) interaction parameters in such models. While

in complete information models the information sets of participating economic agents coincide, in incomplete

information models each agent has a type, which we model as a payoff shock, that is not observed by other

agents. We allow for the presence of a payoff component that is common knowledge to economic agents

but is not observed by the econometrician (representing unobserved heterogeneity) and have the agents’

payoffs in the incomplete information model approach their payoffs in the complete information model as

the heterogeneity term approaches 0. We find that in complete information models the Fisher information for

interaction parameters is zero, implying that estimation and inference become nonstandard. In contrast, in

incomplete information models with any non-zero variance of player types the Fisher information is positive.

For those we also find the semiparametric efficiency bound when the distribution of agents’ types is unknown.

The contrast in Fisher information is illustrated in two important cases: treatment effect models, which we

model as a triangular system of equations, and static game models. In static game models we show this

result is not due to equilibrium refinement with an increase in incomplete information, as our model has

a fixed equilibrium selection mechanism. We find that the key factor in these models is the relative tail

behavior of the distribution of unobserved components in the economic agents’ payoffs and the distribution

of covariates.
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1 Introduction

Endogenous regressors are frequently encountered in econometric models, and failure to cor-

rect for endogeneity can result in incorrect inference. With the availability of appropriate

instruments, two-stage least squares (2SLS) yields consistent estimates in linear models with-

out the need for making parametric assumptions on the error disturbances. Unfortunately,

it is not theoretically appropriate to apply 2SLS to non-linear models, as the consistency of

2SLS depends critically upon the orthogonality conditions that arise in the linear-regression

context.

Until recently, the standard approach for handling endogeneity in certain non-linear mod-

els has required parametric specification of the error disturbances (see, e.g.,Heckman (1978),

Blundell and Smith (1989), and Rivers and Vuong (1988)). A more recent literature in

econometrics has developed methods that do not require parametric distributional assump-

tions, which is more in line with the 2SLS approach in linear models. In the context of the

model considered in this paper, existing approaches depend critically upon the form of the

endogenous regressor(s).1

For continuous endogenous regressors, a “control-function approach” has been proposed

by Blundell and Powell (2004) for many nonlinear models, and, without linear-index and

separability restrictions, Imbens and Newey (2009). With these approaches, often a linear

model specifies a relationship between the continuous endogenous regressors and the full set of

exogenous covariates (including the instruments). The first-stage estimation yields estimates

of the residuals from this model, which are then plugged into a second-stage estimation

procedure to appropriately “control” for the endogenous regressors. The control-function

approach, however, requires the endogenous regressors to be continuously distributed.

Consequently, these approaches are inapplicable to the models we study in this paper,

which focuses on simultaneous discrete response models with discrete endogenous variables.

Identification and inference in these models becomes much more complicated than in the

continuous case, as illustrated in the important work in Chesher (2003), Chesher (2007),

and Chesher (2010), who considers general classes of nonlinear, nonseparable models. He

finds that the discrete model is not point identified under endogeneity and adopts a partial

identification approach. It turns out, that with more support points the endogenous variable

one can construct tighter bounds for the parameter of interest.

1Several papers have considered estimation in the presence of endogeneity under additional assumptions.

These include Lewbel (1998), Hong and Tamer (2003)
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The class of models we consider will include many important special cases that have

received a great deal of attention in both theoretical and empirical work. Important examples

include treatment effect models, models of social interactions, and game theory models. In

these models the parameter of interest will be the coefficient on the discrete endogenous

variables. In one class of models we consider, where the system of equations is triangular

this parameter is directly related to the average treatment effect (ATE). In the other class we

study, which nests social interaction and static game models, this parameter is often referred

to as the “interaction” term.

In this paper we interested in identification of these parameters and their Fisher infor-

mation. Fischer information of such parameter is an important indicator of the “quality” of

identification. We find a fundamental relationship between the choice-theoretic information

sets of the agents (reflecting their knowledge regarding the types of their opponents) and

Fisher information for the strategic interaction parameters. To demonstrate our finding, we

consider a complete information model where the agents have perfect knowledge regarding

payoffs and then we consider a incomplete information model by introducing the types of

economic agents as additive random shocks to their payoffs. The payoff shocks in this set-

ting are private information (types) of the agents. In this setting the incomplete information

model embeds2 the complete information model, given that the payoffs of agents in the in-

complete information model converge to their payoffs in the complete information model as

the variance of their types approaches zero.

In the incomplete information setting private information of economic agents can be

treated as an additional source of unobserved heterogeneity in the model. The presence of

private information adds the term that is not observable by both the competing economic

agents and the econometrician. As we show, parameter of interest (i.e. treatment effect or

strategic interaction parameter) has a positive Fisher information in the incomplete infor-

mation model, whereas in the complete information model with zero variance of player types

Fischer information is zero.

Recent econometrics work on inference in static game models (see, for instance, Ba-

jari, Hong, Krainer, and Nekipelov (2010b), Aradillas-Lopez (2010) and de Paula and Tang

(2011)) demonstrates that identification of strategic interaction parameters can be easier

in games with incomplete information because one can find regions of the support of state

variables where a unique equilibrium exists. However, in this paper we argue that the pos-

itive Fischer information in the incomplete information model is not due to equilibrium

2In the terminology of Fudenberg, Kreps, and Levine (1988), Tirole (1988), Kajii and Morris (1997)
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refinement. This fundamental point is demonstrated in two ways.

First, we consider a triangular system of discrete response models, which is often to model

treatment effects in policy evaluation programs. These models, which are generally coher-

ent, do not suffer from multiple equilibria. Nonetheless, we find a stark contrast in cases of

complete and incomplete information. For the complete information model, which has been

studied in many papers, including Vytlacil and Yildiz (2007), Klein, Shan, and Vella (2011),

Abrevaya, Hausman, and Khan (2011), Jun, Pinkse, and Xu (2011), we establish 0 informa-

tion for the treatment effect parameter. This implies that inference becomes nonstandard

and difficult for the treatment effect. In that sense we can say that this parameter is weakly

identified similarly to the parameter in the model introduced in Lewbel (1998), which also

has 0 information as shown in Khan and Tamer (2010). Therefore, for the triangular system

we can approach to analysis of optimal estimators in terms of optimal rates of convergence

(as opposed to efficiency). This approach to analysis of optimal estimators is often used

for nonstandard models such as those in Stone (1982), Horowitz (1993), and more recently,

Menzel and Morgantini (2009) and Linton, Komarova, and Srisuma (2011). As we show,

the optimal rates will be directly related to the relative tail behavior of unobservable and

observable variables.

In the treatment effect model incomplete information structure involves an additional

random payoff shock. This is a new model, and can illustrate the situation where the

agent decides to comply or not with the treatment before the treatment is assigned. The

treatment assignment remains uncertain to the agent until after he or she makes the decision

to comply. As a result, the additional noise plays a loosely analogous role to what a “placebo”

usually plays in the natural sciences in aiding with inference on treatment effects.3 In the

game-theoretic terms, this model can be described as a game between the two players,

the case player one is the treated individual and player 2 is the one assigning treatment.

However, the “type” of player 2 is not known to player 1. Then the decision problem

of player 1 can be considered in the same Bayesian framework as in the standard static

game of incomplete information. Our main finding is that the treatment effect parameter

has a positive Fischer information, and we derive the semiparametric efficiency bound for

this parameter. Modeling the incomplete information model this way, clearly demonstrates

that the complete information model can be viewed as a limiting case of the incomplete

information model, where the variance of the random private shock converges to 0. We

3With a big difference that we do not need unconfoundedness that is frequently required in randomized

studies with a placebo.
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demonstrate this by showing that the Fisher information of the incomplete information

model, when expressed as a function of this variance, converges to 0 as the variance of

random shock decreases towards zero.

Consideration of the triangular model allows us to build a case for the strategic interac-

tion models, which are represented by the nontriangular systems, and argue that our result

regarding Fisher information for strategic interaction parameters is not an artifact of equi-

librium refinement. These interaction models, which include static game theory models as

a leading case, (see, e.g. Bjorn and Vuong (1985), Bresnahan and Reiss (1990), Bresnahan

and Reiss (1991b), Bresnahan and Reiss (1991a), Tamer (2003), Andrews, Berry, and Jia

(2004), Berry and Tamer (2006), Pakes, Ostrovsky, and Berry (2007), Ciliberto and Tamer

(2009), Bajari, Hong, and Ryan (2010), Beresteanu, Molchanov, and Molinari (2011)), are

well known to suffer from problems of incoherency and multiple equilibria.

Fundamental work in game theory, for instance, in Fudenberg, Kreps, and Levine (1988),

Dekel and Fudenberg (1990), Kajii and Morris (1997) has focused on behavior of equilibria

in the game of incomplete information as the variance of private shocks of the players (player

types) converges to zero. In the limiting case with zero variance of private shocks, the model

becomes the game of complete information. It was established that only particular equilibria

in the complete information game will be robust to adding noise to the players’ payoffs.4 As

a result, introduction of incomplete information may result in equilibrium refinement.

However, we find that, while strategic interaction parameters have 0 Fisher informa-

tion in the complete information model and positive Fischer information in the incomplete

information model, this is not because of equilibrium refinement. We do so by assuming

the simplest equilibrium selection rule, so that the model is coherent with point identified

strategic interaction parameters in both the complete and incomplete information models. A

striking fact is that the zero Fischer information result is driven by the relative tail behaivior

of unobserved payoff components and payoff-relevant covariates rather than the structure of

the equilibrium set. This finding complements the important result in Bajari, Hahn, Hong,

and Ridder (2010) who show that an increase in cardinality of the set of equilibria in the

game can also lead to zero information for the estimated payoff parameters.5 We make one

4Kajii and Morris (1997), for instance, find that the so-called p-dominant equilibria where mixed strategies

select actions with a probability exceeding a certain threshold, are robust to adding noise to payoffs.
5As a result, if the equilibrium selection mechanism is unknown, one can rely on the finding in Bajari,

Hahn, Hong, and Ridder (2010) to state that the information for the payoff parameters is zero. However, our

result states that even if the equilibrium selection mechanism is known, the Fischer information for strategic

interaction parameters is still zero. This means that those parameters are irregularly identified even in
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step further and, after establishing the zero information result, we derive the optimal con-

vergence rate for estimation of strategic interaction parameters. This rate can be used to

evaluate optimality of estimators for strategic interaction parameters in the complete infor-

mation game.6 In the incomplete information game model we can use the semiparametric

efficiency bound for such an evaluation given that in the latter case the Fischer information

for the strategic interaction parameters is positive. Furthermore, we show that the Fisher

information in the complete information model can be viewed as the limiting case of the

Fisher information in the incomplete information models. We recognize that this result does

not imply the convergence of equilibria in the incomplete information game to those in the

incomplete information games.

The rest of the paper is organized as follows. In the following section we introduce a

basic binary choice model with a binary endogenous variable determined by a reduced-form

model. We find that the coefficient for the endogenous variable has zero Fischer information,

which is a result similar to that in Khan and Tamer (2010) for the binary choice model with

endogeneity in Lewbel (1998), and related to that in Chamberlain (1986) and Chen and

Khan (1999) for heteroskedastic binary choice models (see also Graham and Powell (2009)

for an example in panel data models). As this result implies the difficulties with inference for

the parameter of interest, we further explore possible asymptotic properties for conducting

inference in this model. We then consider the triangular system with incomplete information,

which is the strategic behavior model with the agent playing against nature where nature

has a type that is not observed by the agent. For the incomplete information framework we

show in Section 3 that the Fisher information for the parameter of interest is positive, and as

such inference becomes more standard. So we derive the semiparametric efficiency bound for

the interaction parameter. In Section 4 we explore nontriangular systems using the example

of a two-player simultaneous move game, where the incoherency (multiplicity of equilibria) is

resolved via an equilibrium selection rule. Nonetheless, we show this “simplified” model has

0 information for parameters of interest. As with the triangular system, inference becomes

complicated, even though the strategic interaction parameters are point identified, so we

explore this issue further by finding their optimal convergence rates. Then in Section 5

we consider the model where each player has a type, represented by a random shock to

complete information oligopolistic competition models that assume simple equilbrium selection mechanisms

such as an incumbent firm’s advantage or risk dominance.
6Another alternative in this case is not even consider identifying the strategic interaction parameters and

instead identify some non-smooth function of those parameters such as their signs. Such an alternative has

been offered by de Paula and Tang (2011).
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her payoff. Players cannot observe the types of their opponents, which characterizes the

game of incomplete information. This incomplete information game embeds the complete

information game in Section 4 provided that types of players are represented by additive

shocks to the payoffs of players in the incomplete information game. The presence of random

payoff perturbations does not completely resolve the problem of multiple equilibria, but by

introducing an equilibrium selection mechanism (as we did for the complete information

game), we can now attain positive information for the strategic interaction parameters. The

contrast illustrates that positive information is not a result of equilibrium refinement, as

neither of the models are endowed with an equilibrium selection rule. Finally, Section 6

concludes the paper by summarizing and suggesting areas for future research. An appendix

collects all the proofs of the theorems and additional results regarding the optimal rates and

estimators attaining optimal rates.

2 Discrete response model

2.1 Information in discrete response model

Let y1 denote the dependent variable of interest, which is assumed to depend upon a vector

of covariates z1 and a single endogenous variable y2.

For the binary choice model with with a binary endogenous regressor in linear-index form

with an additively separable endogenous variable, the specification is given by

y1 = 1{z′1β0 + α0y2 − u > 0}. (2.1)

Turning to the model for the endogenous regressor, the binary endogenous variable y2 is

assumed to be determined by the following reduced-form model:

y2 = 1{z′δ0 − v > 0}, (2.2)

where z ≡ (z1, z2) is the vector of “instruments” and (u, v) is an error disturbance. The z2

subcomponent of z provides the exclusion restrictions in the model. z2 will only required to be

nondegenerate conditional on z′1β0. We assume that (u, v) is independent of z. Endogeneity

of y2 in (2.1) arises when u and v are not independent of each other. Estimation of the

model in (2.2) is standard. When dealing with a binary endogenous regressor, we will use

the common terminology “treatment effect” rather then referring to the “causal effect of
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y2 on y1.” Thus, for example, a positive treatment effect would correspond to the case of

equation (2.1) where y2 can take on only two values.

This type of model fits into the class of models considered in Vytlacil and Yildiz (2007).

In this paper we are interested in parameter α0 which is related to a treatment effect. Thus,

to simplify exposition, we will assume the parameters δ0 and β0 are known. What this

paper will focus on is the information for α0 – see, e.g. Ibragimov and Has’minskii (1981),

Chamberlain (1986), Newey (1990) for the relevant definitions. Our first result is that there

is 0 information for α0 which we state in the following theorem:

Theorem 2.1 Suppose the model is characterized by the two equations above, and suppose

that w.l.o.g., z has full support on Rk, then Fisher information associated with parameter α0

is zero.

Thus we can see, that under our conditions the parameter α0 cannot be estimated at the

parametric rate. This result is analogous to impossibility theorems in Chamberlain (1986).

Remark 2.1 This result, first shown in Khan and Nekipelov (2010), was alluded to in Abre-

vaya, Hausman, and Khan (2011), where they conducted inference on the sign of α0, and

indicated why the positive information found in Vytlacil and Yildiz (2007) was due to a

relative support condition on unknown parameters that they imposed. The delicacy of point

identification was also made apparent in Shaikh and Vytlacil (2011), who partially identi-

fied this parameter. As we will see later in this paper, this zero information result can be

overturned by introducing a little more uncertainty in the model, by reducing the information

available to the treated agent (Player 1 in the game) regarding the treatment.

The fact that the information associated with the “interaction” parameter is zero, does

not mean that the parameter cannot be estimated consistently. Now we will describe the set

of results regarding rates of the semiparametric estimator for α0.

2.2 Optimal rate for estimation of the interaction parameter

In the subsequent discussion we will not be interested in estimating parameters of linear

indices δ0 and β0. To simplify the notation, we introduce the notation for the single indices

x1 = z′1β0 and x = z′δ0. Then the discrete response model can be written in the simplified
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form as

y1 = 1{x1 + α0y2 − u ≥ 0},

y2 = 1{x− v ≥ 0}.

We take a constructive approach to establish the optimal rate result for the estimator for α0.

We begin with a definition of the optimal rate following Ibragimov and Has’minskii (1978).

Let G characterize a class of joint densities of error terms (u, v). First, we recall that for the

class of distributions G, we define the maximal risk as

R(α̂, rn, L) = sup
G
PG (rn|α̂− α0| ≥ L) .

Using this notion of the risk, we introduce the definition of the convergence rates for the

estimator of the parameter of interest.

Definition 2.1 (i) We call the positive sequence rn the lower rate of convergence for the

class of densities G if there exists L > 0 such that

lim inf
n→∞

inf
α̂
R(α̂, rn, L) ≥ p0 > 0.

(ii) We call the positive sequence rn the upper rate of convergence if there exists an esti-

mator α̂n such that

lim
L→∞

lim sup
n→∞

R(α̂n, rn, L) = 0.

(iii) Then rn is the minimax (or optimal) rate if it is both a lower and an upper rate.

We derive the upper convergence rate using the constructive approach by providing an

estimator with risk satisfying the property in Definition 2.1(ii). The convergence rate of the

resulting estimator relies on the tail behavior of the joint density of the error distribution. To

be more specific regarding the class of considered error densities, we formulate assumptions

that restrict the “thickness” of tails of the error distribution and the smoothness of the

density in the mean-square norm.

Our leading assumption highlights the class of densities that has “appropriate” tail be-

havior. As we demonstrate in Appendix C, this class includes many commonly used error

distributions such as normal and logistic.

Assumption 1 Denote the joint cdf of unobserved payoff components u and v as G(·, ·)
and the joint density of single indices f(·, ·). Then assume that the following conditions are

satisfied for these distributions.
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(i) There exists a non-decreasing function ν(·) such that for any |t| <∞

lim
c→∞

1

ν(c)

c∫
−c

c∫
−c

[
G(x1 + t, x)−1 + (1−G(x1 + t, x))−1] f(x1, x) dx1dx <∞

(ii) There exists a non-increasing function β(·) such that for any |t| <∞

lim
c→∞

1

β(c)

∫
|x1|>c

∫
|x|>c

[log G(x1 + t, x) + log (1−G(x1 + t, x))] f(x1, x) dx1dx <∞

This assumption allows the inverse joint cumulative distribution function to be non-integrable

in the R2 plane (its improper integral diverges). However, it is integrable on any square with

finite edge and its integral can be expressed as a function of the length of the edge. A rough

evaluation for such a function ν(·), can come from evaluating the highest value attained by

the inverse cumulative distribution of errors on [−c, c]× [−c, c]. If the distribution of single

indices decays sufficiently fast at the tails, this evaluation, obviously can be improved.

Assumption 1(ii) requires the population likelihood function of the model to be finite

(provided that β(·) is a non-increasing function). In addition, if the support of the indices x1

and x is restricted to a square with the edge of some large length c, the resulting restricted

likelihood will be sufficiently close to the true population likelihood.

In the next assumption we impose restrictions on the joint density of errors. First, we

require the density to be sufficiently smooth in the L2 norm. Second, we require the density

to have an approximation in a relatively simple Hilbert space. Both these will assure that the

estimator for the non-parametric element of the model (the cdf of the joint distribution of the

errors) has a sufficiently high convergence rate that will not interfere with the asymptotic

properties of the interaction parameter. Following Kim and Pollard (1990), we refer to

the class of densities satisfying our assumptions uniformly manageable. We give the formal

definition of this class in Appendix A.2.

The class of uniformly manageable densities of errors satisfying Assumption 1 character-

izes the class of error distributions that we will consider in our analysis. This is a large class

of functions admitting irregularities such as discontinuities in the density and the covariate

supports can be “large” relative to the tails of the error distributions. We use a constructive

approach to derive the optimal rates and first propose the estimator that attains the upper

convergence rate.

We consider the following procedure to estimate α0 which is formalized in Appendix

B.0.1. First, we look at the probability of the outcome (0, 0) conditional on linear indices x1
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and x. This probability does not depend on the interaction parameter and its derivative with

respect to linear indices will be equal to the joint error density. For instance, we estimate the

joint probability of the outcome (0, 0) and then differentiate it with respect to the arguments.

Second, when the density of errors is estimated, it can be substituted into the expression

for the probabilities of outcomes (1, 1) and (0, 1) which also depend on the interaction param-

eter. Then we can form the trimmed quasi-likelihood using the trimming sequence cn. We

need to trim the sample likelihood to avoid the divergence its Hessian when covariates take

large values. Then we define the estimator as the maximizer of the trimmed quasi-likelihood

α̂∗0,n = argmaxα
1

n

n∑
i=1

l (α; y1i, y2i, x1i, xi) . (2.3)

It turns out that for an appropriately selected trimming sequence, the maximizer of the

constructed quasi-likelihood function will converge to the interaction parameter α0 at an

optimal rate. Next we establish the result regarding the convergence rate of the constructed

estimator, where K is the number of terms in the orthogonal polynomial expansion of the

density and K−r is the order of the polynomial approximation error.7

Theorem 2.2 Suppose that sequence cn is selected such that ν(cn)/n → 0, Kr/ν(cn) → 0,

ν(cn)K2/n → ∞. Then for any sequence α̂n with the function l̂(α) corresponding to the

maximant of (2.3) such that l̂(α̂0,n) ≥ sup
α
l̂(α)− op

(√
ν(cn)
n

)
we have

√
n

ν(cn)
|α̂0,n − α0| = Op(1).

This theorem shows that the majorant ν(·) for the expectation of the inverse cumulative

distribution of errors plays the role of the pivotizing sequence. Similar to the construction

of the t-statistics where the de-meaned estimator is normalized by the standard deviation,

we normalize the estimator by the function of trimming sequence.

The obtained estimator α̂∗0,n based on the optimal trimming of the distribution tails of

error terms u and v delivers the upper convergence rate for estimation of α0. We formalize

this result in the following theorem.

Theorem 2.3 Suppose that cn →∞ is a sequence such that nβ2(cn)
ν(cn)

= O(1) with n/ν(cn)→
∞. Then for this sequence

√
n

ν(cn)
is the upper rate for the estimator for α0

7The expressions for the orders of approximation errors for various classes of approximating sieves,

wavelets and orthogonal polynomials is given, for instance in Chen (2007).
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Remark 2.2 We note that the stated conditions on cn in the statement of the theorem

resemble the usual bias- variance tradeoff in nonparametric estimation. For the problem at

hand, cn converging to infinity will ensure the bias shrinks to 0, but unfortunately this can

also cause the variance to explode. So, as in nonparametric estimation, there will be an

optimal rate of cn that balances this tradeoff to minimize mean squared error.

Having established the upper convergence rate, we need to find the lower rate in order

to determine whether our procedure delivers the optimal convergence rate for α0. To derive

the lower rate of convergence rate we use the result from Koroselev and Tsybakov (1993).

Denote the likelihood ratio Λ(P1,P2) =
dPnP1
dPnP2

. Then the following lemma is the result given

in Koroselev and Tsybakov (1993).

Lemma 2.1 Suppose that α1
0 = α(P1) and α2

0 = α(P1), and λ > 0 be such that

PP2 (Λ(P1,P2) > exp (−λ)) ≥ p > 0,

and |α1
0 − α2

0| ≥ 2sn. Then for any estimator α̂0,n we have max
P1,P2

P (|α̂0,n − α0| > sn) ≥
p exp(−λ/2).

We can now use this lemma to derive the following result regarding the lower rate for the

estimator of interest.

Theorem 2.4 Suppose that cn →∞ is a sequence such that nβ2(cn)
ν(cn)

= O(1) with n/ν(cn)→
∞. Then for this sequence

√
n

ν(cn)
is the lower rate for the estimator for α0

Both upper and lower rates result from balancing the bias introduced by trimming and the

degree of “explosiveness” of the inverse cdf of the errors at the tails. Using the results of

Theorems 2.3 and 2.4 by definition we write the following corollary.

Corollary 2.1 Suppose that cn →∞ is a sequence such that nβ2(cn)
ν(cn)

= O(1) with n/ν(cn)→
∞. Then for this sequence

√
n

ν(cn)
is the optimal rate for the estimator for α0.

The above result helps illustrate how widely the rates can vary, depending on the tail

propeties of both the observed indexes, and Appendix C illustrates this by considering widely

used parametric distributions such as the normal and logistic distributions.
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3 Triangular model with incomplete information

3.1 Identification and information of the model

In the previous section we considered a classical triangular discrete response model and

demonstrated that, in general, that model has zero Fisher information for interaction pa-

rameter α0. Our results suggested that the optimal convergence rate for the estimator of

the interaction parameter will be sub-parametric and its convergence rate depends on the

relative tail behavior of the error terms (u, v). In this section we set up the model which can

be arbitrarily “close” to the classical triangular model but have positive information.8 We

construct this model by adding small noise to the second equation in the triangular system.

It turns out that adding arbitrarily small but positive noise to that equation discontinuously

changes the optimal rate to the standard parametric rate. The motivation for this approach

could be adding artificial noise to the treatment assignment in a controlled experiment. In

that case the experimental subjects do not know the specific realizations of the experimental

noise but know its distribution. As a result, they will be responding to the expected treat-

ment instead of the actual treatment. Incorporating expectations as explanatory models is

similar in spirit to work considered in Ahn and Manski (1993). In this way, we were able

to place the triangular binary model into the framework of modeling responses of economic

agents to their expectations such as in Manski (1991), Manski (1993) and Manski (2000).

Consider the model where the endogenous variable is defined by

y2 = 1[x− v − ση > 0].

We assume that η is strictly orthogonal to u, v, x1 and x and comes from a known distribution

with a cumulative distribution function Φ(·). Variable y1 reflects the response of agent who

does not observe the realization of noise η but observes the error term v. As a result, the

response in the first equation can be characterized as:

y1 = 1[x1 + α0Eη[y2|x, v]− u > 0]

as before the parameter of interest is α0 for which we wish to derive the information. 9

8An alternative approach to address the zero information issue is to change the object of interest to some

non-invertible function of the interaction parameter as in Abrevaya, Hausman, and Khan (2011),where they

were interested in the sign of the treatment effect.
9 We note that here α0 denotes a different treatment parameter than before- specifically now it relates to

the response to probability of treatment, as opposed to treatment itself. But we argue that it is still a useful
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Therefore we can express the conditional expectation in the above term as Eη[y2|x, v] =

Φ((x− v)/σ). Thus, the constructed discrete response model can be written as

y1 = 1{x1 − u+ α0E[y2|x, v] > 0},

y2 = 1{x− v + ση > 0}.
(3.1)

This model has features of the continuous treatment model considered in Hirano and Imbens

(2004), Florens, Heckman, Meghir, and Vytlacil (2008) and Imbens and Wooldridge (2009).

However, while in the latter the economic agent responds to an intrinsically continuous quan-

tity (such as dosage), in our case the continuity of treatment is associated with uncertainty

of the agent regarding the treatment. Notably, even the triangular model in the previous

has discrete response interpretation, characterizing the optimal choice of an economic agent.

This approach has been proven useful in the modern treatment effect literature such as

Abadie, Angrist, and Imbens (2002), Heckman and Navarro (2004), Carneiro, Heckman, and

Vytlacil (2010). Outside of the treatment effect setting, analysis of binary choice models

with a continuous endogenous variable was also studied in Blundell and Powell (2004), who

demonstrated the attainability of positive information for the coefficient on the endogenous

variable.

We can illustrate the structure of the model using Figure 1. Panel (a) in Figure 1

corresponds to the classic binary triangular system and panes (b)-(d) correspond to the

triangular system with incomplete information. Panels show the areas of joint support of

u and v corresponding to the observable outcomes y1 and y2. When there is no noise in

the second equation of the triangular system, the error terms u and v completely determine

the outcome. On the other hand, when the noise with unbounded support is added to the

second equation, one can only determine the probability that the second indicator is equal

to zero or one. Figures 1.b-1.d show the area where for given quantile q, the probability of

y2 equal zero or one exceeds 1 − q. With a decrease in the variance of noise in the second

equation, for given q panels b to c will approaching to the figure on panel a.

parameter to conduct inference on, for two reasons. First, if the amount of noise becomes arbitrarily small,

then as the probability of treatment becomes arbitrarily close to the standard treatment status indicator, so

the new parameter can be close to the standard parameter. (We are more mathematically) precise on this

statement, later in this section.) Second, even if the amount of noise, quantified by σ, is not small, the new

parameter is of use in the sense as it will have the same sign as the old one.
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Figure 1.a Figure 1.b

Figure 1.c Figure 1.d

This discrete response model is related to the game theory models with random payoff

perturbations. If we associate discrete variable y1 with a discrete response, then the linear

index in the first equation corresponds to the economic agent’s payoff. As a result, this model

is not payoff perturbation, but treatment perturbation model. Treatment perturbation can

be considered in the experimental settings where the subjects are exposed to the placebo

treatment with some fixed probability, but they do not observe whether they get placebo

or not. In that case they will respond to the expected treatment. The error terms u and v

in this setup can be interpreted as unobserved heterogeneity of the economic agent and the

endogenous covariate.

Given that this is a new model, we will need to establish first that the model is iden-

tified from the data. The following theorem considers the identification of the interaction

parameter α0 along with the density of error terms g(·, ·).
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Theorem 3.1 Suppose that the joint density of error terms (u, v) has a characteristic func-

tion that is non-vanishing on its support, the error term η has a known distribution with

absolutely continuous density and the probability of at least one pair of outcomes y1 and y2

conditional on the indices x1 and x, has Fourier transformation that is non-zero on some

compact set. Then the interaction parameter α0 is identified.

One more notable thing is that there is a tradeoff between identification of the marginal

distribution of the error term v and the distribution of noise η. The observable conditional

probability of the indicator of the second equation equal to one can be written as

P1(x) =

∫
Φ

(
x− v
σ

)
gv(v) dv, (3.2)

where gv(·) is the marginal density of v. This expression represents a convolution of the

marginal density and function Φ(·) which is the cdf of the noise distribution. Given that

the Fourier transform of the convolution is equal to the product of Fourier transforms, the

transform of the (observable) left-hand side is equal to the product of the Fourier transform

of the cdf of noise and the marginal characteristic function of the distribution of v. If the

distribution of v is known, then the cdf of noise is identified via its Fourier transform. On

the other hand, if the cdf of noise is fixed, then we can identify the marginal distribution of

v.

Our identification argument for the fixed cdf of noise η is based on transforming the

observed joint probabilities of indicators in both equations and the marginal probability of the

indicator in the second equation. So, in addition to equation (3.2) we construct conditional

probabilities P11(x1, x) = P (y1 = y2 = 1 | x1, x) and P01(x1, x) = P (1− y1 = y2 = 1 | x1, x)

determined by the distribution of treatment noise η and the unobserved components u and v.

Then if Fij(t1, t2) is the two-dimensional Fourier transform of the corresponding conditional

probability and F1(t2) is the Fourier transform of the probability P1(x) in equation (3.2),

then we can explicitly express the interaction parameter α0 as

α0 =
F11(0, t2)−F01(0, t2)

F1(t2)

∫
e−iσt2xΦ(x) dx∫
e−iσt2xΦ(x)2 dx

(3.3)

We will further use this expression to derive the efficiency bound for the interaction param-

eter.

After establishing the identification of the model, we analyze its Fisher information. We

summarize our result in the following theorem. It turns out that for any finite variance

of noise η (which can be arbitrarily small) the information in the model of the incomplete

information triangular model is strictly positive.
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Theorem 3.2 Suppose that the distribution of errors (u, v) has a characteristic function that

is non-vanishing on its support and the conditional probability of at least one of the pairs of

observable outcomes has a non-vanishing Fourier transformation. Then for any σ > 0 the

information in the triangular model of incomplete information (3.1) is strictly positive.

The last result of of this section demonstrates that from the inference viewpoint the incom-

plete information model has the information approaching zero when the variance of noise

shrinks to zero. In other words, the less the informational asymmetry the economic agents

have, the smaller the Fisher information corresponding to the interaction parameter α0.

Theorem 3.3 Suppose that the distribution of errors (u, v) has a characteristic function

that is non-vanishing on its support and the conditional probability of at least one of the

pairs of observable outcomes has a non-vanishing Fourier transformation. Then as σ → 0

the information in the triangular model of incomplete information (3.1) converges to zero.

3.2 Efficiency and convergence rate for the interaction parameter

We proved that the triangular model with incomplete information has positive Fisher infor-

mation for any amount of noise added to the second equation. Now we consider derivation

of the semiparametric efficiency bound for estimation of α0. The calculations are partially

based on the result for the semiparametric efficiency bound in conditional moment systems

provided in (Ai and Chen 2003).

Theorem 3.4 Denote

a(t2) =

(∫
e−iσt2xΦ(x)2 dx

)−1 ∫
e−iσt2xΦ(x) dx,

Ω(x1, x) =

(
P11(1−P11) 0

0 P10(1−P10)

)
, and T =

(
1 −1

1 1

)
.

Finally, let

ζ(x1, x) =

(
f(x1, x)−1E

[
P1(X)ρ(X)

∫
eit2(X−x)a(t2) dt2

]
,

ρ(x)

∫
eit2xa(t2) (F11(0, t2)−F01(0, t2)) dt2

)
.

Then the semiparametric efficiency bound for estimation of α0 can be expressed as

Σ = E

(
min
ρ(·)

ζ(x1, x)′T−1Ω(x1, x)−1T−1ζ(x1, x)

)−1
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Our efficiency result provides the semiparametric efficiency bound for the new discrete re-

sponse model. In this model we allow agent-specific and treatment specific unobserved

heterogeneity components to be fully nonparametric at a cost of parametrizing the noise

distribution.

Our final result is related to the optimal convergence rate for the interaction parameter.

Given that the information of the model is positive, the optimal convergence rate will be

parametric. We formalize this in the following theorem which is a direct corollary of Theorem

3.4 and Theorem IV.1.1 in Ibragimov and Has’minskii (1981).

Theorem 3.5 Under conditions of Theorem 3.4 for any sub-convex loss function w(·) and

standard Gaussian element G:

lim inf
n→∞

inf
α̂0,n

sup
f,g

Ef,g
[
w
(√

n(α̂0,n − α0(f, g))
)]
≥ E[w

(
Σ1/2G

)
],

where g(·, ·) is the distribution of errors u and v and f(·, ·) is the distribution of covariates.

This theorem establishes the parametric optimal convergence rate for the estimates of inter-

action parameters in the incomplete information game model.

4 Nontriangular Systems: A Static game of complete

information

4.1 Information in the complete information game

In this section we consider information of parameters of interest in a simultaneous discrete

system of equations where we no longer impose the triangular structure as the previous

section. A leading example of this type of system is a 2-player discrete game with complete

information. See, e.g. the seminal papers in Bjorn and Vuong (1985), and Tamer (2003).

We will later extend this model to one with incomplete information, in a way analogous to

what we did for the triangular system.

A simple binary game of complete information is characterized by the players’ determin-

istic payoffs, strategic interaction coefficients and the random payoff components u and v.

Then the payoff of player 1 from choosing action y1 = 1 can be characterized as a function

of action of player 2

y∗1 = z′1β0 + α1y2 − u,
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and the payoff of player 2 is characterized as

y∗2 = z′2δ0 + α2y1 − v.

Further, for convenience of analysis we change notation to x1 = z′1β0 and x2 = z′2δ0. We

normalize the payoff from action yi = 0 to zero. We make the following assumption regarding

the information structure in the game.

Assumption 2 The random payoff components (u, v) are mutually dependent with a dis-

tribution that has an absolutely continuous density with a full support. They are commonly

observed by the players but not observed by the econometrician and (u, v) ⊥ (x1, x2).

Under this information structure the pure strategy of each player is the mapping from the

observable variables into actions: (u, v, x1, x2) 7→ 0, 1. A pair of pure strategies constitute a

Nash equilibrium if they reflect the best responses to the rival’s equilibrium actions. As a

result, we can characterize the equilibrium by a pair of binary equations:

y1 = 1[x1 + α1y2 − u > 0],

y2 = 1[x2 + α2y1 − v > 0],
(4.1)

assuming that the errors u and v are correlated with each other with unknown distribution.

In particular, we are interested in determining under which conditions those two parameters

α1, α2 can be estimated at the parametric rate, and in situations where they cannot be, and

which functions of the parameters can be.

As noted in Tamer (2003), this system of simultaneous discrete response equations has

a fundamental problem of indeterminacy. To resolve this problem we impose the following

additional assumption which is similar to the assumption of the existence of an equilibrium

selection mechanism in game theory.

Assumption 3 Denote S1 = [α1 + x1, x1]× [α2 + x2, x2], S2 = [x1, α1 + x1]× [x2, α2 + x2],

.S3 = [α1 + x1, x1] × [x2, x2 + α2], and S4 = [x1, x1 + α1] × [α2 + x2, x2] Note S1 = ∅ iff

α1 > 0, α2 > 0, and S2 = ∅ iff α1 < 0, α2 < 0.

(i) If S1 6= ∅ or S2 6= ∅ then Pr (y1 = y2 = 1|(u, v) ∈ Sk) ≡ 1
2

for k = 1, 2.

(ii) If S3 6= ∅ or S3 6= ∅ then Pr (y1 = (1− y2) = 1|(u, v) ∈ Sk) ≡ 1
2

for k = 3, 4.
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Assumption 3 suggests that when the system of binary responses has multiple solutions, then

the realization of a particular solution is resolved over a symmetric coin flip. We select this

simple setup to emphasize our finding that the complete information has zero information

holds even where there is no incoherency issue and equilibrium selection is fixed. In principle,

one can generalize this condition to the cases where the distribution over multiple outcomes

depends on some additional covariates. However, given that the structure of results with

that extension remains the same, we will not consider it in this paper.

First of all, we provide the result of identification of strategic interaction parameters,

to argue that the zero information result is not a consequence of poor identifiability. Our

identification result, generally speaking, is new. We leave the distribution of unobserved

payoff components to be fully non-parametric (and non-independent, unlike Bajari, Hong,

and Ryan (2010), who assume independence and normality of unobserved components u and

v) while imposing a linear index structure on the payoffs.10

Theorem 4.1 Suppose that the characteristic function of the unobserved payoff components

is non-vanishing on its support, linear indices x1 and x2 have full support, and Assumptions

2 and 3 are satisfied. Then the interaction parameters α1 and α2 are identified.

Having established the identifiability of the parameters of interest, we now study the

information associated with the strategic interaction parameters. The following result es-

tablishes that the information associated with the interaction parameters in the static game

of complete information is zero. The important note here is that in the light of identification

result in Theorem 4.1, this result is not related to the incoherency of the static game and is

a reflection of discontinuity of equilibrium strategies.

Theorem 4.2 Suppose that the characteristic function of the unobserved payoff components

is non-vanishing on its support, linear indices x1 and x2 have full support, and Assumptions

2 and 3 are satisfied. Then Fisher information associated with parameters α1 and α2 is zero.

This fully illustrates why the 0 Fischer information of the interaction parameter is a problem

not related to multiplicity of equilibria. We have explicitly completed the model in an ad-

hoc way so that it is coherent, yet we still cannot attain positive information. Therefore,

even for the simplified model, estimation and inference of the interaction parameters are

nonstandard, which is analogous to what we found for the triangular system in the previous

10The proof of identification can be found the companion paper “Information Bounds and Impossibility

Theorems for Simultaneous Discrete Response Models”.

19



section. This suggests alternative inference methods or different(less informative) parameters

to be estimated. Here we aim to address the optimality for estimators of the interaction

parameters, by attaining optimal rates as in our previous analysis. As we show in the next

subsection, provided that identification in this case relies on the full support of linear indices,

the optimal rate of convergence for the estimator of the interaction parameters will be sub-

parametric and reflect the relative tail behavior of the distribution of the unobserved payoff

components.

4.2 Optimal rate for estimation of strategic interaction parame-

ters

To analyze the optimal rates of convergence for the strategic interaction parameters we need

to modify Assumption 1 to account for the presence of the interaction between both discrete

response equations.

Assumption 4 Denote the joint cdf of unobserved payoff components u and v as G(·, ·)
and the joint density of single indices f(·, ·). Then assume that the following conditions are

satisfied for these distributions.

(i) There exists a non-decreasing function ν(·) such that for any |t| <∞ and |s| <∞

lim
c→∞

1

ν(c)

c∫
−c

c∫
−c

[
G(x1 + t, x2 + s)−1 + (1−G(x1 + t, x2 + s))−1] f(x1, x2) dx1dx2 <∞

(ii) There exists a non-increasing function β(·) such that for any given |t| <∞ and |s| <∞

lim
c→∞

1

β(c)

∫
|x1|>c

∫
|x2|>c

[
log G(x1 + t, x2 + s)

+ log (1−G(x1 + t, x2 + s))

]
f(x1, x2) dx1dx2 <∞

In principle, we can consider a generalized version of Assumption 4 where we allow different

behavior of the distribution tails in the strategic responses of different players. In that case

we will need to select the trimming sequences differently for each equation. This will come

at a cost of more tedious algebra. However, the conceptual result will be very similar.

We will use the assumption regarding the class of unobserved payoff components u and

v with minimal modifications and we will not reproduce it from Section 1. As in that
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assumption we require the density of errors to be sufficiently smooth in the L2 sense. Thus, we

require that density to belong to “uniformly manageable” class of functions (as per definition

in Kim and Pollard (1990)). In our case this boils down to the function being representable

in relatively simple Hilbert space with the approximation error having a polynomial decay in

the number of used basis functions. Assumption 4 and “uniform manageability” characterize

distributions of errors that we will consider in our model. The error distributions used in

empirical analysis of games such as normal and logistic satisfy these assumptions.

As in the case of triangular model, we propose a constructive approach to analyzing the

optimal rate for the estimators of the interaction parameters. The idea behind the estimation

procedure in the case of triangular system was to use the case where both indicators are

equal to zero which allows one to directly observe the cumulative distribution of errors. This

approach will not be immediately available in case of the complete information game. The

outcome probability

P00(x1, x2;α1, α2) =

+∞∫
x1

+∞∫
x2

g(u, v) du dv − 1

2

x1+α1∫
x1

x2+α2∫
x2

g(u, v) du dv,

depends on the unknown parameters α1 and α2. We modify the estimator by substituting the

two-step procedure by the iterated procedure where one can “profile out” the the unknown

density of errors at each step of maximizing the likelihood with respect to the interaction

parameter. Defining the sample log-likelihood

l̂p(α1, α2) = sup
a11,...,aKK

1

n

n∑
i=1

l (α1, α2; y1i, y2i, x1i, x2i) ,

where K is the number of terms in the orthogonal expansion for the density of u and v, we

obtain the estimator as the maximizer of the profile log-likelihood:

(α̂∗1n, α̂
∗
2n) = argmaxα1,α2

l̂p(α1, α2). (4.2)

We provide the formal discussion of this estimator in Appendix B.0.2

Next we establish the result regarding the convergence rate of the constructed estimator.

Theorem 4.3 Suppose that sequence cn is selected such that ν(cn)/n → 0, Kr/ν(cn) → 0,

ν(cn)K2/n → ∞. Then for any sequence α̂n with the function l̂(α) corresponding to the

maximant of (4.2) such that l̂p(α̂n) ≥ sup
α
l̂p(α)− op

(√
ν(cn)
n

)
we have√

n

ν(cn)
|α̂∗1n − α1,0| = Op(1), and

√
n

ν(cn)
|α̂∗2n − α2,0| = Op(1).
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This obtained result is analogous to the result regarding the rate of the semiparametric

two-stage estimator that we propose for the case of triangular system. Provided that we

assumed identical tail behavior for both error terms, the resulting rates for the interaction

parameters are the same. As we discussed previously, if the tails of the error distributions

were differently, the rate result can established by choosing different trimming sequences for

x1 and x2.

Using the same arguments as in triangular system case, we can prove that the iterative

estimator (α̂∗1n, α̂
∗
2n) attains the optimal rate. We given this result in the following theorem

which replicates Theorem 2.3 for the case of complete information game.

Theorem 4.4 Suppose that cn →∞ is a sequence such that nβ2(cn)
ν(cn)

= O(1) with n/ν(cn)→
∞. Then for this sequence

√
n

ν(cn)
is the upper rate for the estimator for (α1,0, α2,0)

Using the technique proposed in Koroselev and Tsybakov (1993) we can further prove that

the derived rate also corresponds to the lower rate of convergence for the strategic interaction

parameters. We conclude the argument by formulating the following theorem, which we give

without proof which is completely analogous to the case of the triangular system.

Theorem 4.5 Consider the model of the game of complete information in which the error

distribution satisfies Assumptions 4 and 6. Suppose that cn → ∞ is a sequence such that
nβ2(cn)
ν(cn)

= O(1) with n/ν(cn)→∞. Then for this sequence
√

n
ν(cn)

is the optimal rate for the

estimator for strategic interaction parameters α1 and α2.

One of the important takeaways from this result is that the optimal rate for estimating

strategic interaction parameters is, generally speaking, sub-parametric and depends on the

tail behavior of the error terms even in cases with a fixed equilibrium selection mechanism.

5 Static game of incomplete information

5.1 Information in the game of incomplete information

Our triangular model with treatment uncertainty can be considered as a special case of a

familiar model of a static game of incomplete information. Theoretical results demonstrate

that introduction of payoff perturbations leads to reduction in the number of equilibria.11

11Multiplicity of equilibria can still be an important issue in games of incomplete information as noted in

Sweeting (2009) and de Paula and Tang (2011). Alternative approaches to estimation of games of incomplete
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Here we attain regular identification for the interaction parameter as well, but our argument

is not one of equilibrium refinement. That is because, as with the complete information

game, we assume the simplest equilibrium selection rule, but in contrast, we now are able to

attain positive information for the interaction parameter.

In this case we interpret binary variables y1 and y2 as actions of player 1 and player 2.

Each player is characterized by deterministic payoff (corresponding to linear indices x1 and

x2), interaction parameter, “unobserved heterogeneity” element, corresponding to errors u

and v, and the payoff perturbations η1 and η2. The payoff of player 1 from action y1 = 1 can

be represented as y∗1 = x1 +α1 y2−u−ση1, while the payoff from action y1 = 0 is normalized

to 0. We impose the following informational assumptions.

Assumption 5 (i) Suppose that the error terms u and v are commonly observed by the

players, but not observed by the econometrician, along with linear indices x1 and x2

which are observed both by the players and the econometrician. We assume that (u, v) ⊥
(x1, x2). However u and v are mutually dependent.

(ii) The payoff perturbations are private information of each player, such that player 1

observes η1 but not η2 and player 2 observes η2 but not η1. Private information as-

sumption means that η1 ⊥ η2 and both perturbations are independent from linear indices

and error terms u and v.

(iii) Finally, we assume that η1 and η2 have the same distribution with continuous density

having full support with cdf Φ(·) which is fixed and known both to the players and to

the econometrician.

This model is a generalization of the incomplete information model usually considered in

empirical applications because we allow for the presence of unobserved heterogeneity com-

ponents u and v. This is an empirically relevant assumption if one considers the case where

the same players participate in repeated realizations of the static game. In that case if

initially the unobserved utility components of players are correlated, then after sufficiently

many replications of the game the players can learn about the structure of component of

the payoff shock that is correlated with their shock. The remaining element that cannot be

learned from the replications of the game is the remaining noise components η1 and η2 whose

distribution is normalized.

information with multiple equilibria have been proposed in Lewbel and Tang (2011) and Sweeting (2009).
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An alternative interpretation for this information structure is the that the payoff com-

ponents u and v are a priori known to the players, but not to the econonometrician. The

interaction of the players is considered in the experimental settings where the payoff noise

(η1, η2) is introduced artificially by the experiment designer. For this reason its distribution

is known both to the players and to the econometrician.

Assumption 5 lays the groundwork for the coherent characterization of the structure

of equilibrium in this game of incomplete information. First, the strategy of player i is a

mapping from the observable variables into actions: (x1, x2, u, v, ηi) 7→ {0, 1}. Second, player

i forms the beliefs regarding the action of the rival. Provided that η1 and η2 are independent,

the beliefs will only be functions of u, v and linear indices. Thus, if Pi(x1, x2, u, v) are beliefs

regarding actions of players 1 and 2 correspondingly, then the strategy, for instance, of player

1 can be characterized as

y1 = 1{E [y∗1 | x1, x2, u, v, η1] > 0}

= 1{x1 − u+ α1P2(x1, x2, u, v)− ση1 > 0}.
(5.1)

Similarly, the strategy of player 2 can be written as

y2 = 1{x2 − v + α2P1(x1, x2, u, v)− ση2 > 0}. (5.2)

We note the resemblence of equations (5.1) and (5.2) with the first equation of the triangular

system with treatment uncertainty.

To characterize the Bayes-Nash equilibrium in the considered simultaneous game of in-

complete information we consider a pair of strategies defined by (5.1) and (5.2). Moreover,

the beliefs of players have to be consistent with their action probabilities conditional on the

information set of the rival. In other words

P1 (x1, x2, u, v) = E [1{x1 − u+ α1P2(x1, x2, u, v)− ση1 > 0} |x1, x2, u, v] , and

P2 (x1, x2, u, v) = E [1{x2 − v + α2P1(x1, x2, u, v)− ση2 > 0} |x1, x2, u, v] .

Taking into consideration independence of the noise terms η and the fact that their cdf is

known, we can characterize the pair of equilibrium beliefs as a solution of the system of

nonlinear equations:

σΦ−1(P1) = x1 − u+ α1P2

σΦ−1(P2) = x2 − v + α2P1.
(5.3)

Our informational assumption regarding the independence of the unobserved heterogeneity

components u and v from payoff perturbations η1 and η2 was crucial to define a game with
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a coherent equilibrium structure. If we allow the correlation between the payoff-relevant

unobservable variables of two players, then their actions should reflect such correlation and

the equilibrium beliefs should also be functions of noise components. This would not allow

for an elegant form of the equilibrium correspondence (5.3). On the other hand, given that

the unobserved heterogeneity components u and v are correlated, the econometrician will

observe the individual actions to be correlated. In other words, we consider the structure of

the game where actions of players are correlated without having to analyze a complicated

equilibrium structure due to correlated unobserved types of players.

System of equations (5.3) can have multiple solutions.12 To resolve the uncertainty

over equilibria and maintain the symmetry with our discussion of the games of complete

information, we assume that uncertainty over multiple possible equilibrium beliefs is resolved

over the independent coin flips.

We note that the incomplete information model that we constructed embeds the com-

plete information model in the previous section. When σ approaches 0, the payoffs in the

incomplete information model are identical to those in the complete information model and

are observable by both players. We illustrate the transition from the complete to the in-

complete information environment on Figure 2.When σ = 0, the actions of the players will

be determined by u and v only. Figure 2.a. shows the regions with four possible pairs of

actions. There is a region in the middle where both pairs of actions are optimal, leading

to multiple equilibria. Then, with the introduction of uncertainty, we can only plot the

probabilistic picture of actions of players (integrating over the payoff noise η1 and η2). Then

we can represent the areas where specific action pairs are chosen with probability exceeding

certain quantile 1− q. A decrease in the variance of payoff noise leads to the convergence of

quantiles to the areas in the illustration of the complete information game on Figure 2.a.

12Sweeting (2009) considers a 2 × 2 game of incomplete information and shows examples of multiple

equilibria in that game. Bajari, Hong, Krainer, and Nekipelov (2010a) develop a class of alorithms for

efficient computation of all equilibria in the incomplete information games with logistically distributed noise

components.
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Figure 2.a Figure 2.b

Figure 2.c Figure 2.d

First, we establish the fact that the strategic interaction parameters α1 and α2 are identi-

fied in the given model along with the distribution of errors (u, v). Note that x1, x2, u and v

enter the system of equations of interest in a special form. This means that the equilibrium

beliefs will be functions of x1 − u and x2 − v. We note that conditional on x1, x2, u and

v the choices of two players are independent. On the other hand, given that the errors u

and v are not observable to the econometrician conditional on x1 and x2 the choice will be

correlated. As a result we define the object of interest as probabilities of observed pairs

of outcomes y1 = y2 = 1 as well as y1 = 1 − y2. Denote P11(x1, x2) = E[y1y2 | x1, x2],

P10(x1, x2) = E[y1(1 − y2) | x1, x2], and P01(x1, x2) = E[(1 − y1)y2 | x1, x2]. We note that

the moments depend on the unknown function g(·, ·), which, along with the distribution of

covariates, is the infinite-dimensional parameter of the model.

We can show that this model is identified in a constructive way. Our approach will be
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to eliminate the unknown density by “inverting” one of three observable expectations to get

g(·, ·). To perform such an “inversion” we realize that the observed choice probabilities are

represented by convolutions of the error density with the equilibrium beliefs. Recalling that

Fourier transforms of convolutions are equal to the products of Fourier transforms of their

components, we can recover the characteristic function of errors. Once the distribution of

u and v is known, identification of the strategic interaction coefficients reduces to solving a

standard parametric conditional moment-based problem.

Suppose that F11(t1, t2) is a two-dimensional Fourier transform of the product of equi-

librium beliefs P1(x1 − u, x2 − v)P2(x1 − u, x2 − v). Then we note that the right-hand side

of observable conditional probability

E [y1y2 |x1, x2] =

∫
P1(x1 − u, x2 − v)P2(x1 − u, x2 − v)g(u, v) du dv

is a convolution of the joint error density and the choice probabilities. Performing standard

deconvolution, can express the joint density of the unobserved heterogeneity components:

ḡ(u, v) =

∫ ∫
E

[
ei(t1(u−x1)+t2(v−x2)) P11(x1, x2)

f(x1, x2)F11(t1, t2)

]
dt1 dt2,

where we use ḡ(·, ·) to emphasize that this is the error density recovered from the observed

conditional expectation.

We used the first conditional moment equation to identify the density of errors in terms

of the equilibrium choice probabilities and observed joint probability of the outcome (1,1).

Now we use the remaining equation with the recovered joint error density to identify the

interaction parameters of interest. The system of identifying equations can then be written

as

P10(x1, x2) =

∫
P1(x1 − u, x2 − v) (1− P2(x1 − u, x2 − v)) ḡ(u, v) du dv,

P01(x1, x2) =

∫
(1− P1(x1 − u, x2 − v))P2(x1 − u, x2 − v)ḡ(u, v) du dv.

(5.4)

Note that as the recovered density ḡ(·, ·) is computed also using the equilibrium choice

probability, it will also depend on α.

In the following theorem we summarize our identification result.

Theorem 5.1 Suppose that the distribution of errors (u, v) has a characteristic function

that is non-vanishing on its support. Moreover, at least one outcome pair y1 and y2 with

Pr (y1 = i, y2 = j | q1 = x1 − u, q2 = x2 − v) has a Fourier transform that is not equal to zero
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in some compact set. Then strategic interaction terms α1 and α2 along with the joint density

of error terms (u, v) are identified.

Given that parameters of interest are identified (along with the unobserved distribution

of error terms), we can proceed with establishing the result regarding the information of

the incomplete information game model. It turns out that for any finite variance of noise η

(which can be arbitrarily small) the information in the model of the incomplete information

game is not zero.

Theorem 5.2 Suppose that the distribution of errors (u, v) has a characteristic function that

is non-vanishing on its support and the conditional probability of at least one of the pairs

of observable outcomes has a non-vanishing Fourier transformation. Then for any σ > 0

the information in the model of incomplete information game defined by (5.1) and (5.2) is

strictly positive.

The system of equilibrium choice probabilities can have multiple solutions. We can

approach those cases by resolving the uncertainty regarding the equilibria via coin flips.

Provided that the system of identifying equations is linear in the choice probabilities, in case

of multiple equilibria the equilibrium choice probability has to be substituted by the mixture

of possible equilibrium choice probabilities. The rest of the argument will remain unchanged.

New we provide the result that shows the behavior of Fisher information for the strategic

interaction parameters as the variance of privately observed payoff shocks of players ap-

proaches zero. As in the case of incomplete information triangular model, in this case Fisher

information of those parameters will approach to zero.

Theorem 5.3 Suppose that the distribution of errors (u, v) has a characteristic function that

is non-vanishing on its support and the conditional probability of at least one of the pairs of

observable outcomes has a non-vanishing Fourier transformation. Then for as σ → 0 the

Fisher information in the model of incomplete information game defined by (5.1) and (5.2)

approaches zero.

5.2 Efficiency and convergence rate in the incomplete information

game

Now we analyze the efficiency bound for the considered strategic interaction model. Provided

that this is a semiparametric conditional moment model (with strategic interaction parame-
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ters and unknown distribution of unobserved heterogeneity and covariates), the freamework

of Ai and Chen (2003) directly applies here.

Theorem 5.4 Let J(·, ·) correspond to the Jacobi matrix of the system of conditional mo-

ments (5.4), and Ω(x1, x2) = diag (P10(1−P10), P01(1−P01), P11(1−P11)). Introduce a

two-dimensional ρ(x1, x2) and denote

ζρ(x1, x2) = (ρ(x1, x2), E [ρ(X1, X2)ϕ(x1 −X1, x2 −X2)])

with

ϕ(x1 −X1, x2 −X2) =
∫
ei(t1(x1−X1)+t2(x2−X2))

(
F1(t)−F11(t1,t2)
F11(t1,t2)

, F2(t)−F11(t1,t2)
F11(t1,t2)

)
dt1dt2

Then, the semiparametric efficiency bound for strategic interaction parameters can be ex-

pressed as

Σ =

(
min
ρ∈H

E
[
J(X1, X2)′ζρ(X1, X2)′Ω(X1, X2)−1ζρ(X1, X2)J(X1, X2)

])−1

.

Our efficiency result provides the semiparametric efficiency bound for the generalization of

the class of static games of incomplete information in Bajari, Hong, Krainer, and Nekipelov

(2010b) as well as (Haile, Hortaçsu, and Kosenok 2008) for games with quantal response

equilibria considered in (Palfrey 1985). In addition to idiosyncratic errors η1 and η2 we allow

for player-specific unobserved heterogeneity represented by u and v. Efficiency bound for a

static two-payer game of incomplete information has been analyzed in Aradillas-Lopez (2010)

without allowing for player-specific unobserved heterogeneity that is commonly observed

by the players. Notably Grieco (2010) allows for the individual-specific heterogeneity, but

assumes a specific parametric form for both the payoff noise distribution and the distribution

of unobserved heterogeneity. This structure allows us to analyze the game without additional

assumptions regarding the formation of equilibria (except the assumption on equilibrium

selection).

We conclude the analysis by the following theorem which is a direct corollary of Theorem

5.4 and Theorem IV.1.1 in Ibragimov and Has’minskii (1981).

Theorem 5.5 Under conditions of Theorem 5.4 for any sub-convex loss function w(·) and

standard Gaussian element G:

lim inf
n→∞

inf
α̂n1 ,α̂

n
2

sup
f,g

Ef,g
[
w
(√

n(α̂− α(f, g))
)]
≥ E[w

(
Σ1/2G

)
],

where g(·) is the distribution of errors u and v and f(·) is the distribution of covariates.
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This theorem establishes the parametric optimal convergence rate for the estimates of inter-

action parameters in the incomplete information game model.

6 Conclusions

This paper considers identification and inference in simultaneous equation models with dis-

crete endogenous variables. We analyze triangular systems where the parameter of interest

is the coefficient of a discrete endogenous variable, related to the treatment effect in certain

settings. We also study nontriangular systems with the focus on of simultaneous discrete

games, where we are interested in the strategic interaction parameters. We then consider the

incomplete information setup where there is an additive random payoff disturbance which is

only privatly observable by the players. Our main findings are that the complete informa-

tion models have 0 information under our conditions, whereras the incomplete information

models can have positive information. Our findings have important implications for both the

triangular and nontriangular systems. In the triangular case, both the 0 information and the

optimal rates we attain indicate little, if any advantage of estimating the parameter in this

model when compared to estimating the simpler model proposed in Lewbel (1998). In the

nontriangular case our 0 Fischer information means that the difficulty in identification of the

strategic interaction parameters is not due to incoherency (presence of multiple equilibria),

as we find this result even after introducing an arbitrary equilibrium selection rule. In the

incomplete information models the support of the endogenous variable is convexifyed by the

additional payoff uncertainty which leads to the positive Fischer information.

The work here suggests many areas for future research. For one, in the incomplete

information models, where positive information was found, it would be useful consider more

general equilibrium selection rules, and still attain positive information. Furthermore, in the

games setting, we restricted our attention to static games in this paper, and would be useful

to explore information levels in both complete information and incomplete information in

dynamic games. We leave these topics for future research.
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Appendix

A Proofs

A.1 Proof of Theorem 2.1

To simplify our arguments, we will assumed the regression coefficients β0 and δ0 are known. Con-

sequently we will refer to the indexs in each equation as x1, x respectively. We follow the approach

in, e.g. Chamberlain (1986) by projecting the score with respect to the parameter of interest α0 on

the score with respect to a finite dimensional parameter in a path- i.e. a parameterized arc passing

through the infinite dimensional parameter, in this case the bivariate density function of ε and η.

We begin by characterizing the space of functions that the unknown bivariate density function,

denoted here by g is assumed to lie in:
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Definition A.1 Let Γ consist of all densities g with respect to Lebesgue measure on R2 such that

1. g : R2 → R is a positive, bounded continuously differentiable function.

2.
∫ ∫

g(u, v)dudv = 1. For each v ∈ R, there is a function q : R→ R such that g(u, s) ≤ q(u)

for s in a neighborhood of v and
∫
q(u)du <∞.

3.
∫
|∂g(u, v)/∂u|dudv <∞

Having defined the space of unctions we next define the set of paths we will work with:

Definition A.2 Λ consists of the paths:

λ(δ1, δ2) = g0[1 + (δ1 − δ10)h1][1 + (δ2 − δ20)h2] (A.1)

where g0 is the “true” density function, assumed to lie in Γ and h1, h2 are each :R1 → R, contin-

uously differentiable function that equal 0 outside some compact set and∫ ∫
g0(u, v)h1(u)h2(v)dudv = 0 (A.2)

With these definitions it will follow that λ(δ1, δ2) will lie in Γ for δ1, δ2 in neighborhoods of δ10, δ20,

respectively- see Chamberlain (1986). We proceed by expressing the likelihood function, noting the

bivariate dependent variable can be one of four categories, (1,1),(1,0),(0,1)(0,0). We will denote each

of those out comes by the the indicators dij , i, j = 0, 1. So, for example d11 denotes I[y1 = 1, y2 = 1].

We let Pij i, j = 0, 1 denote the conditional probabilities of out comes as functions of parameters

and indexes, so for example P11(α, δ1, δ2) =
∫ ∫

I[u < x1 + α]I[v < x]g(u, v)dudv. Note that this

probability depends on δ1, δ2 because of our definition of λ(δ1, δ2). Thus for a single observation

our log likelihood can be expressed as∑
i,j=0,1

dij logPij(α, δ1, δ2) (A.3)

We can then take the derivative of the above term with respect to α, evaluated at α = α0 and

δ1 = δ10, δ2 = δ20. To begin we first do this for one term in the summation, corresponding to

i = j = 1. Conditioning on the indexes x1, x this derivative can be expressed as

d11P11(α0, δ10, δ20)−1

∫ ∫
δ(u− x1 − α0)I[v < x]dudv (A.4)

where δ(·) above denotes the Dirac delta function. The derivative with respect to δ1 evaluated at

α0, δ10, δ20 is of the form

d11P11(α0, δ10)−1

∫ ∫
I[u < x1 + α0]I[v < x]g0(u, v)h1(u)dudv (A.5)
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We next take the conditional expectation of the squared difference of the above two terms, which

is of the form:

P11(α0, δ0)−1

(∫ ∫
δ(u− x1 − α0)I[v < x]g0(u, v)dudv

−
∫ ∫

I[u < x1 + α0]I[v < x]g0(u, v)h1(u)dudv

)2

(A.6)

To show our impossibility result we need to find an h∗1(u) that sets (A.6) to 0. Informally, this can

be accomplished by setting

h∗1(u) = δ(u− x1 − α0) (A.7)

However, this would violate the smoothness conditions in Λ. Nonetheless, a smoothed version of

h∗1(u) can make (A.6) arbitrarily small, but positive, and still satisfy the smoothness conditions in

the definition of Λ. For example, one could replace the delta function in h∗1(u) with a nascent

delta function. Typically a nascent delta function can be constructed in the following manner.

Let φ be any continuously differentiable density function with support on the real line- e.g. that

of the standard normal distribution. Then one would define the nascent delta function as: δε(x) =

φ(x/ε)/ε. Note that limε→0 δε(x) = δ(x). Thus we can take a mean value expansion of δε(x), around

ε = 0.This yields (using that φ(x) = −xφ(x)):

δε(x) = δ(x) + φ(x/ε∗)/(ε∗)4(x2 + 1) · ε

where ε∗ denotes an intermediate value between 0 and ε. Thus this remainder can be made as

small as desirable for ε small enough. Therefore one could set h∗ε1 (u) = δε(u−x1−α0). This would

make (A.6) positive but arbitrarily small and not violate our smoothness conditions. Note we have

established this result without even considering the score with respect to δ2. This because we can

effectively set h∗2(v) = 0.

So to make the squared distance 0, we set h∗1(u) = δ(u − x1 − α0), h∗2(v) = 0. But to

complete the proof we need to show these choices of h
(
1u), h∗2(v) can also be used to the other

two choice probabilities. We next turn attention to outcome y2 = y1 = 0. Here we have[
P00(α, δ1, δ2) =

∫ ∫
I[u > x1 + α]I[v > x]g(u, v)dudv

]
where as before the terms δ1, δ2 are in the

definition of g(u, v).

Conditioning on the indexes x1, x this derivative now with respect to α at α = α0, δ1 = δ10 can

be expressed as

d11P11(α0, δ10, δ20)−1

∫ ∫
−δ(u− x1 − α0)I[v > x]dudv (A.8)

where δ(·) again denotes the Dirac delta function. The score with respect to δ1 at δ1 = δ10, δ2 =

δ20, α = α0 is

d11P11(α0, δ10)−1

∫ ∫
I[u > x1 + α0]I[v > x]g0(u, v)h1(u)dudv (A.9)
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So as we see again we can set h∗1(u) = −δε(u− x1 − α0). The same arguments can be used to deal

with the outcome y1 = 0.y2 = 1.

Q.E.D.

A.2 Proof of Theorem 2.2

We start with the formal definition of the uniformly manageable class of densities.

Assumption 6 (i) The joint density of errors is continous almost everywhere in the L2 norm

(ii) Functions P11(x1+t, x) =
∫ x1+t
−∞

∫ x
−∞ g(u, v) du dv and P01(x1+t, x) =

∫ −∞
x1+t

∫ x
−∞ g(u, v) du dv

are differentiable in mean square in t with the mean-square derivative Ṗk1, k = 0, 1 such that

E
[
|Ṗk1|2

]
<∞.

(iii) There exists a Hilbert space H with the basis {hl}∞0 such that

(a) For any sufficiently large K and HK = {hl}K0 and the orthogonal projection of the

density proj (g |HK) = O(K−α), for α > 0

(b) |hl(·)| ≤ C and
∫ (·) |hl(z)|2 dz ≤ C

(c) For any finite K the closure of the linear space based on HK with coefficients in the ball

of radius ε has uniform entropy that is linear in ε and at most linear in K.

We introduce the “uncensored” objective function

q (α; y1, y2, x1, x) =y1y2 log P̂11
n (x1 + α, x)

+ (1− y1)y2 log P̂01
n (x1 + α, x),

with

Q(α) = E [q (α; y1, y2, x1, x)] .

Denote

l̂ (α) =
1

n

n∑
i=1

l (α; y1i, y2i, x1i, xi) .

Also denote

` (α; y1, y2, x1, x) =y1y2ωn(x1 + α)ωn(x) log P11(x1 + α, x)

+ (1− y1)y2ωn(x1 + α)ωn(x) log P01(x1 + α, x),

and

ˆ̀(α) =
1

n

n∑
i=1

` (α; y1i, y2i, x1i, xi) .
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Now consider the following decomposition of the objective function:

l̂(α)− ˆ̀(α0) = R1 +R2 +R3 +R4 +R5 +R6,

where

R1 = l̂(α)− ˆ̀(α)− E
[
l̂(α)

]
+ E

[
ˆ̀(α)

]
,

R2 = ˆ̀(α)− ˆ̀(α0)− E
[
ˆ̀(α)

]
+ E

[
ˆ̀(α0)

]
,

R3 = E
[
l̂(α)

]
− E

[
ˆ̀(α)

]
,

R4 = E
[
ˆ̀(α)

]
−Q(α),

R5 = −E
[
ˆ̀(α0)

]
+Q(α0),

R6 = Q(α)−Q(α0).

Term R1

For convenience, we introduce new notation denoting

pKk(z) = ωn(x1)ωn(x) [Hl1(cn)−Hl1(x1)] [Hl2(cn)−Hl2(x)]

and introduce vectors pK(z) =
(
pK1(z), . . . , pKK

2
(z)
)′

. Also let d00
i = (1 − y1i)(1 − y2i) and

d00 =
(
d00

1 , . . . , d
00
n

)′
. Let ∆(z) = E[d00|z] and ∆ = (∆(z1), . . . ,∆(zn))′. We can project this

function of z on K basis vectors of the sieve space. Let β be the vector of coefficients of this

projection. As demonstrated in Newey (1997), for P =
(
pK(z1), . . . , pK(zn)

)′
and Q̂ = P ′P/n

‖Q̂−Q‖ = Op

(√
K

n

)
, where his ζ0 (K) = C,

and Q is non-singular by our assumption with the smallest eigenvalue bounded from below by some

constant λ > 0. Hence the smallest eigenvalue of Q̂ will converge to λ > 0. Following Newey (1997)

we use the indicator 1n to indicate the cases where the smallest eigenvalue of Q̂ is above 1
2 to avoid

singularities. We also introduce

mKk(z) = ωn(x1)ωn(x) [Hl1(x1)−Hl1(−cn)] [Hl2(x)−Hl2(−cn)] .

Then we can write the estimate

P̂11(x1, x) = mK(z)′Q̂−1P
(
d00 −∆

)
Note that

mK′(z)
(
β̂ − β

)
= mK′(z)

(
Q̂−1 P ′

(
d00 −∆

)
/n+ Q̂−1 P ′ (∆− Pβ) /n

)
. (A.10)
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For the first term in (A.10), we can use the result that smallest eigenvalue of Q̂ is converging to

λ > 0. Then application of the Cauchy-Schwartz inequality leads to∣∣∣∣mK′(z)Q̂−1P ′
(
d00 −∆

) ∣∣∣∣ ≤ ∥∥Q−1mK(z)
∥∥∥∥P ′ (d00 −∆

)∥∥ .
Then

∥∥∥Q̂−1mK(z)
∥∥∥ ≤ C

λ

√
K , and

∥∥P ′ (d00 −∆
)∥∥ =

√√√√ K∑
k=1

(
n∑
i=1

pKk(zi)
(
d00
i −∆(zi)

))2

≤
√
K max

k

∣∣∣∣∣
n∑
i=1

pKk(zi)
(
d00
i −∆(zi)

)∣∣∣∣∣
Thus, ∣∣∣∣mK′(z)Q̂−1P ′

(
d00 −∆

) ∣∣∣∣ ≤ CK

λ
max
k

∣∣∣∣∣ 1n
n∑
i=1

pKk(zi)
(
d00
i −∆(zi)

)∣∣∣∣∣ .
Denote µn = µ nδ/2√

nK
= γn/K for any δ ∈ (0, 1]. Next we adapt the arguments for proving Theorem

37 in Pollard (1984) to provide the bound for P

(
sup
z

1
n‖m

K′(z)Q̂−1P ′
(
d00 −∆

)
‖ > Kµn

)
. For

K non-negative random variables Yi we note that

P

(
max
i
Yi > Kc

)
≤

K∑
i=1

P (Yi > c) .

Using this observation, we can find that

P

(
sup
z

1

n
‖mK′(z)Q̂−1P ′

(
d00 −∆

)
‖ > Kµn

)
≤

K∑
k=1

P

(∥∥∥∥ 1

n

n∑
i=1

pKk(zi)
(
d00
i −∆(zi)

)∥∥∥∥ > γn

)
This inequality allows us to substitute the tail bound for the class of functions P11

n (·, ·) by a tail

bound for fixed functions

Pn,k = {pKk(·)
(
d00 −∆(·)

)
}.

Then we can apply the Hoeffding exponential inequality to obtain

P

(
1

n

∥∥∥∥ n∑
i=1

pKk(zi)
(
d00
i −∆(zi)

)∥∥∥∥ > γn

)
≤ 2 exp

(
−2nγ2

n

C2

)
.

As a result, we find that

P

(
sup
z

1

n
‖mK′(z)Q̂−1P ′

(
d00 −∆

)
‖ > Kµn

)
≤ 2K exp

(
−2nγ2

n

C2

)
.

Then, provided that n/ log K →∞, we prove that the right-hand side of this inequality converges

to zero. Application of the delta-method allows us to conclude that for any given δ > 0 and

n/ log K →∞

sup
α
|l̂(α)− ˆ̀(α)− E

[
l̂(α)

]
+ E

[
ˆ̀(α)

]
| = op

(
n−(1−δ)/2

)
.
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Term R3

Consider the approximation bias term. Note that we can express

E
[
l̂(α)

]
= E

[
ωn(x1 + α)ωn(x)

(
P11(x1 + α, x) log P̂11

n (x1 + α, x)

+ P01(x1 + α, x) log P̂01
n (x1 + α, x)

)]
.

Similarly, we can express

E
[
ˆ̀(α)

]
= E

[
ωn(x1 + α)ωn(x)

(
P11(x1 + α, x) logP11(x1 + α, x)

+ P01(x1 + α, x) logP01(x1 + α, x)

)]
.

Noting that one can attain a uniform rate

sup
x1,x

∥∥∥P̂11
n (x1, x)− P11(x1 + α, x)

∥∥∥ = Op

(√
K

n
+K−(d+1)/2

)
,

given the quality of approximation by Hermite polynomials and d mean square derivatives of the

density of interest. We can then evaluate the entire term

|R3| = O

(√
K

n
+K−(d+1)/2

)
.

Terms R4 and R5

Consider term R4. We can evaluate this term as

|E
[
ˆ̀(α)

]
−Q(α)| ≤ 4

∫ cn

−∞

∫ cn

−∞
P11(x1 + α, x) logP11(x1 + α, x)f(x1, x) dx1dx.

We can then apply the Cauchy-Schwartz inequality and continue evaluation as

|E
[
ˆ̀(α)

]
−Q(α)| ≤ 4E [y1y2]

∫ cn

−∞

∫ cn

−∞
logP11(x1 + α, x)f(x1, x) dx1

≤ C β(cn).

from Assumption 1.

Term R2

We use the following assumption regarding the population likelihood function.

Assumption 7 The population likelihood function Q(·) is twice continuously differentiable and

uniquely maximized at α0 with a negative definite Hessian.
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Consider the class of functions indexed by α ∈ A such that given

`(α, y1, y2, x1, x) =
[
y1y2 log P11(x1 + α, x) + (1− y1)y2 log P01(x1 + α, x)

]
ωn(x1 + α)ωn(x)

Fn,δ = {f = `(α, ·)− `(α0, ·), |α− α0| ≤ δ}

Provided that the density of errors is twice differentiable in mean square with bounded mean

square derivatives, there exist bounded functions Ṗ11 and Ṗ01 such that functions in class Fn,δ
have envelope

Fn,δ = 1{|x1 + α0| ≤ cn + δ}ωn(x)

×

[
y1y2Ṗ11

P11
+

(1− y1)y2Ṗ01

P01

]
δ.

Then, by Assumption 1, we can evaluate(
P F 2

n,δ

)1/2
= O

(
ν(cn)1/2δ

)
.

Consider the re-parametrization of the model α = α0 + h
rn

for a sequence rn →∞. Take h ∈ [0, ηrn]

for some large η and split the interval [0, η] into “shells” Sn,j = {h : 2j−1 < |h| < 2j}. Suppose

that ĥ is the maximizer for l̂(α0 + h
rn

). Then if |ĥ| > 2M for some M then ĥ belongs to Sn,j with

j ≥M . As a result

P
(
|ĥ| > 2M

)
≤

∑
j≥M,2j<ηrn

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0

)
.

We now can use the results on the evaluation of the terms R1, R3 −R5, taking into consideration

that

Q(α)−Q(α0) ≤ −H|α− α0|2,

for some H > 0 due to differentiability of Q(·) and the restriction on its Hessian at α0 in Assumption

7. Then we can evaluate

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0

)

≤ P

(
sup
h∈Sn,j

|R2| ≥ |R1|+ |R3|+ |R4|+ |R5|+ |R6|

)

= P

(
sup
h∈Sn,j

|R2| ≥
22j−2

r2
n

+O

(√
K

n
+K−(d+1)/2 + β(cn)−1

))
.
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Then we use the Markov inequality to obtain that

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0

)

≤
E

[
sup
h∈Sn,j

∣∣∣ˆ̀(α0 + h
rn

)− ˆ̀(α0)− E
[
ˆ̀(α0 + h

rn
)
]

+ E
[
ˆ̀(α0)

]∣∣∣]
22j−2

r2n
+O

(√
K
n +K−(d+1)/2 + β(cn)−1

)
Provided the finiteness of the covering integral of the class Fn,δ, we can use the maximum inequality

to evaluate

E

[
sup
h∈Sn,j

√
n

∣∣∣∣ˆ̀(α0 +
h

rn
)− ˆ̀(α0)− E

[
ˆ̀(α0 +

h

rn
)

]
+ E

[
ˆ̀(α0)

] ∣∣∣∣]
≤ J(1, Fn,h/rn)E

[
F 2
n,h/rn

]1/2
= O

(
ν(cn)1/2 2j

rn

)
.

Now assuming that rnβ(cn)−1 = o(1), rn
√
K/n = o(1) and rnK

−(d+1)/2 → 0, then

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0

)
≤ O

(
2−j+2rn

√
ν(cn)

n

)
.

This means that

P
(
|ĥ| > 2M

)
≤ O

(
2−M+3rn

√
ν(cn)

n

)

The right-hand side converges to zero for M →∞ if rn =
√

n
ν(cn) .

Q.E.D.

A.3 Proof of Theorem 2.3

First, consider evaluation from the proof of Theorem 2.2

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0

)

≤
E

[
sup
h∈Sn,j

∣∣∣ˆ̀(α0 + h
rn

)− ˆ̀(α0)− E
[
ˆ̀(α0 + h

rn
)
]

+ E
[
ˆ̀(α0)

]∣∣∣]
22j−2

r2n
+O

(√
K
n +K−(d+1)/2 + β(cn)−1

)
Using the maximum inequality as before we can conclude that the ratio can be evaluated as

P

(
sup
h∈Sn,j

(
l̂(α0 +

h

rn
)− l̂(α0)

)
≥ 0

)
≤ O

(
2−j+1 ν(cn)1/2rn√

n

)
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We note that evaluation here is different, because, unlike Theorem 2.2 we allow rnβ(cn) = O(1).

This allows us to obtain

P
(
|ĥ| > 2M

)
≤ O

(
2−M+2rn

√
ν(cn)

n

)
.

Thus, if L = 2M then

P

(√
n

ν(cn)
|ĥ| > L

)
≤ O

(
4

L
rn

√
ν(cn)

n

)
.

Provided that we choose rn

√
ν(cn)
n = 1, we assure that for the maximal risk

lim
L→∞

lim sup
n→∞

R

(
α0 +

ĥ

rn
, rn, L

)
= 0.

This means that rn is the upper rate.

Q.E.D.

A.4 Proof of Theorem 2.4

The log-likelihood function of the model is

nL̂(α) = nˆ̀(α) + nê(α)

with

ê(α) =
1

n

n∑
i=1

{y1i logP11(x1i + α, xi) + (1− y1i) logP01(x1i + α, xi)}

y2i1{|x1i| > cn, |xi| > cn}

We note that we use the same distribution of covariates x1 and x. Then for cn →∞ pick

P2(·, ·) = P(·, ·), and P1(·, ·) = P(·, ·)ωn(·)ωn(·).

As it follows from our previous analysis for such choices of P1(·) and P2(·), the corresponding

likelihood maximizers

|α1 − α2| = O(β(cn)).

We can then express Therefore

Λ(P1,P2) = exp
(
nL̂1(α1)− nL̂2(α2)

)
= exp

(
nˆ̀(α1)− nˆ̀(α2)− nê(α2)

)
= exp

(
n
[
ˆ̀(α1)− ˆ̀(α2)− `(α1) + `(α2)

]
− nê(α2)− n (`(α2)− `(α1))

)
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Then log Λ(P1,P2) is bounded from below as n approaches infinity if and only if n (`(α2)− `(α1))

is bounded. We note that α1 maximizes `(α1). This means that

`(α2)− `(α1) = −1

2
H(cn)(α2 − α1)2 + o(|α2 − α1|).

Then, invoking the Cauchy-Schwartz inequality, we can evaluate H(cn) = O(ν(cn)−1). As a result,

we can find that

n [`(α2)− `(α1)] = O

(
nβ(cn)2

ν(cn)

)
.

This means that nβ(cn)2

ν(cn) = O(1) suggests that for large n there exists a lower bound on the likelihood

ratio. Invoking Lemma 2.1 we obtain the desired result.

Q.E.D.

A.5 Proof of Theorem 3.1

Denote Pij(x1, x) = P (y1 = i, y2 = j | x1, x) and assume that P11(·, ·) is the probability satisfying

the conditions of the Theorem. Then write this probability

P11(x1, x) =

∫
1{x1 − u+ α0Φ

(
x− v
σ

)
> 0}Φ

(
x− v
σ

)
g(u, v) du dv.

We note that the right-hand side of this expression is a convolution of the error density with

the product of indicator and cdf of the noise in treatment. First, find the Fourier transform of

conditional choice probability∫
e−i(t1x1+t2x)1{x1 + α0Φ

(x
σ

)
> 0}Φ

(x
σ

)
dx1 dx

=
σ

2

(
δ(t1) +

1

it1

)∫
eiα0t1Φ(x)−iσt2xΦ(x) dx.

Denote Fij(t) the Fourier transform of the corresponding observable conditional probability. Then,

the property of the Fourier transform of the convolution and denoting th cahracteristic funciton of

the joint error distribution, we find that

F11(t)−F01(t) =
σχ(t)

it1

∫
eiα0t1Φ(x)−iσt2xΦ(x) dx

Note that given that Φ(·) is known

ζα0(t1, t2) =

∫
eiα0t1Φ(x)−it2xΦ(x) dx

is also known. Therefore, we can express the joint characteristic function as

χ(t) = it1
F11(t)−F01(t)

σζ(t1, σt2)
.
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This means that if χv(·) is the characteristic function of the marginal distribution of v, it can be

expressed as

χv(t2) = lim
t1→0

it1
F11(t)−F01(t)

σζ(t1, σt2)
.

Applying the L’Hôpital’s rule we find the limit as

χv(t2) =
F11(0, t2)−F01(0, t2)

σα0

∫
e−iσt2xΦ(x)2 dx

.

Now consider the marginal probability

P1(x) = P (y2 = 1 | x) =

∫
Φ

(
x− v
σ

)
g(u, v) du dv,

which is a convolution of the marginal density gv(·) with the known function Φ(·). Therefore the

Fourier transform of the marginal probability can be expressed as

F1(t2) = σ

∫
e−iσt2xΦ(x) dxχv(t2).

This allows us to express the parameter of interest as

α0 =
F11(0, t2)−F01(0, t2)

F1(t2)

∫
e−iσt2xΦ(x) dx∫
e−iσt2xΦ(x)2 dx

Q.E.D.

A.6 Proof of Theorem 3.2

To determine the information in this model we proceed as we did before, defining the space of

bivariate density functions and paths the same way.

As before, we will focus on the case where y2 = y1 = 1.

The conditional probability of this outcome is of the form:∫
Φ((x− v)/σ)Fu|v(x1 + α0Φ(x− v))fv(v)dv ≡ P11 (A.11)

so the derivative with respect to α at α = α0 is of the form:

∫
Φ((x− v)/σ)fu|v(x1 + α0Φ((x− v)/σ))Φ((x− v)/σ)fv(v)dv ≡ sα,11 (A.12)

Similarly, the derivative with respect to δ2 at δ2 = δ20 is

∫
Φ((x− v)σ)Fu|v(x1 + α0Φ((x− v)σ))h2(v)fv(v)dv ≡ sδ2,11 (A.13)
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Thus now we can set h∗2(v) to be

h∗2(x, x1, v) =
fu|v(x1 + α0Φ((x− v))/σ)Φ((x− v)σ)

Fu|v(x1 + α0Φ((x− v)σ))
(A.14)

However, to show positive information, we can turn to the outcome where y2 = 1, y1 = 0.

Carrying through with the same arguments as above, we get

h∗2(x, x1, v) =
S′u|v(x1 + α0Φ((x− v)σ))Φ((x− v))/σ

Su|v(x1 + α0Φ((x− v)σ))
(A.15)

where Su|v(·) denotes the conditional survival function of u given v. This is distinct from the

previous value of h∗1(x, x1, v) in the y1 = y2 = 1 case; therefore we cannot choose a function h2(v)

to set the information for α0 equal to 0, as we did in the complete information model.

Given that we have proven that there is positive information for this incomplete information

model, the next step is to derive what the level of the information is. For this we need to turn

attention to the choice probabilities of all the outcomes. When considering the problem at hand,

this involves choosing functions h1, h2 to minimize:

Ex,x1

[
P−1

11

(
(sα,11 − sδ1,11h1 − sδ2,11h2)2

)
+ P−1

00

(
(sα,00 − sδ1,00h1 − sδ2,00h2)2

)
+ P−1

01

(
(sα,01 − sδ1,01h1 − sδ2,01h2)2

)
+ P−1

10

(
(sα,10 − sδ1,10h1 − sδ2,10h2)2

) ]
(A.16)

where here sα,11 denotes the derivative of probability y1 = y2 = 1, with respect to α, evaluated

at α = α0, δ1 = δ10, δ2 = δ20. sδ1,11, sδ2,11 denote the derivatives with with respect to δ1, δ2,

respectively, evaluated at α = α0, δ1 = δ10, δ2 = δ20. Note we evaluated these functions in the

y1 = y2 = 1 previously in our proof of positive information. Note also the above objective function

depends on σ. Interestingly, we can take the limit of the above objective function as σ → 0; we

can see that h1, h2 can now be chosen to set the objective function to be arbitrarily small, bringing

us back to the results obtained with the complete information setting. Note the objective function

in (A.16) involves integrals with respect to u, v, and can be viewed as a weighted least squares

objective function, with weights corresponding to the inverse of the outcome probabilities. and

dependent variable values corresponding to sα11, sα01, sα00, sα10.

Therefore, the optimal functions h∗ = (h∗1, h
∗
2)′ are

h∗ =

(
4∑
i=1

w2
i xix

′
i

)−1 4∑
i=1

w2
i xii (A.17)
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where the summations are across the 4 “observations” corresponding to the outcomes y1 = y2 =

1, y1 = y2 = 0, y1 = 0, y2 = 1; wi denotes the weights, xi denotes the two dimensional vector

of “regressors”, corresponding to scores with respect to the two perturbation parameters, and i

denotes the “dependent variables” in the regression, in this case the scores with respect to the

parameter of interest.

Specifically, we find that w1 = P−1
11 , w2 = P−1

00 , w3 = P−1
01 , w4 = P−1

10 , x1 = sδ1,11, sδ2,11,

x2 = sδ1,00, sδ2,00, x3 = sδ1,01, sδ2,01, x4 = sδ1,10, sδ2,10, 2 = 0, 4 = 0, and

1 =

∫
Φ(x− v)fu|v(x1 + α0Φ(x− v))Φ(x− v)fv(v)dv

3 =

∫
Φ(x− v)fu|v(x1 + α0S(x− v))Φ(x− v)fv(v)dv,

where S(·) above denotes (1− Φ(·)).

Decompose xi = (x1i, x2i), then

h∗1 =

∑
w2
i ix1i

∑
w2
i x

2
2i −

∑
w2
i ix2i

∑
w2
i x1ix2i∑

w2
i x

2
1i

∑
w2
i x

2
2i −

(∑
w2
i x1ix2i

)2
h∗2 =

∑
w2
i ix2i

∑
w2
i x

2
1i −

∑
w2
i ix1i

∑
w2
i x1ix2i∑

w2
i x

2
1i

∑
w2
i x

2
2i −

(∑
w2
i x1ix2i

)2
Finally, the values of h∗ can be used in (A.16) to obtain the information for α0 in this model.

Q.E.D.

A.7 Proof of Theorem 3.3

Consider the vector ζ(·) from the proof of Theorem 3.4. This vector depends on a(t) =
∫
eiσtxΦ(x) dx/

∫
eiσtxΦ(x)2 dx.

We note that given that both integrals do not exist at σ = 0 provided that Φ(·) has support on the

real line. We note that given that Φ(x) =
∫ x
∞ φ(t) dt, then if the characteristic function of φ(·) is

χφ(·), then∫
eiσtxΦ(x) dx = −1

2
χφ(−σt)(−δ(−σt) +

i

πσt
)

Then provided that∫
e−itxΦ(x)2 dx =

∫ +∞

−∞

1

4
χφ(t− u)χφ(u)(δ(u) +

i

πu
)(δ(t− u) +

i

π(t− u)
) du

=
2i

πt
χφ(t)− 1

π2

∫
χφ(u)χφ(t− u)

u(t− u)
du.

Then ∫
eσitxΦ(x)2 dx = − 2i

πσt
χφ(t) +

1

σ2π2

∫
χφ(u)χφ(−t− u)

u(t+ u)
du.
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As a result, we can see that lim
σ→0

a(t) = 0. This means that ζ(·) → 0 pointwise. By dominated

convergence theorem, we conclude that Σ−1 → 0, which means that the information of the model

converges to zero.

Q.E.D.

A.8 Proof of Theorem 3.4

Our model contains the unknown interaction parameter and the unknown distributions. Consider

a parametric sub-model parametrized by scalar parameter θ. Note that the likelihood of the model

can be written as

fθ(y1, y2, x1, x) =
1∏

ij=0

Pij,θ(x1, x)1{y1=i,y2=j}fθ(x1, x)

Then we can express the score of the model as

Sθ(y1, y2, x1, x2) = P00y1y2−P11(1−y1)(1−y2)
P00P11

Ṗ11

+ (P00y1−P10(1−y1))(1−y2)
P00P10

Ṗ10

(P00y2−P01(1−y2))(1−y1)
P00P01

Ṗ01 + sθ(x1, x)

where sθ is the score of the distribution of covariates. Then we can express the tangent set of the

model as

T =

{
ξ1(x1, x)(P00y1y2 −P11(1− y1)(1− y2))

+ξ2(x1, x)(P00y1 −P10(1− y1))(1− y2)

+ξ3(x1, x)(P00y2 −P01(1− y2))(1− y1) + t(x1, x)

}
,

where ξi(·) for i = 1, 2, 3 are square integrable functions, and E[t(x1, x)] = 0. Denote α(θ) =

(α1(θ), α2(θ))′ and find the derivative of this vector along the parametrization path. To do that we

use the moment system and the system of equilibrium probabilities. Consider equation (3.3) and

denote

a(t2) =

∫
e−iσt2xΦ(x) dx∫
e−iσt2xΦ(x)2 dx

.

Given that P1(x) = P11(x1, x) + P01(x1, x), we can write the expression for the interaction param-

eter

α0 = P1(x)−1

∫
eit2xa(t2) (F11(0, t2)−F01(0, t2)) dt2.

Suppose that at least one of the Fourier transforms has a non-vanishing support and for simplicity

assume that the support is on the entire real line. Let µ(·) be a non-negative weight function that

integrates to 1. Then we can express parameter α0 as

E[µ(X)]α0 = E

[
µ(X)

P1(X)

∫
eit2Xa(t2) (F11(0, t2)−F01(0, t2)) dt2

]
.
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Then we compute the directional derivative of both sides of this equation with respect to the

parametrization path θ. Combining the terms, we can represent the derivative as

∂α(θ)

∂θ
= E[µ(X)]−1

∫ (
Ṗ11 − Ṗ10

)
E

[
µ(X)

P1(X)

∫
eit2(X−x)a(t2) dt2

]
dx1 dx

− E

µ(X)
(
Ṗ11 + Ṗ10

)
P2

1(X)

∫
eit2xa(t2) (F11(0, t2)−F01(0, t2)) dt2


Next we find function Ψ(y1, y2, x1, x) from the tangent set such that

∂α(θ)

∂θ
= E [ΨSθ] .

We can express such function as

Ψ(y1, y2, x1, x) = a(x1, x) (y1y2 −P11(x1, x)) + b(x1, x) ((1− y1)y2 −P01(x1, x)) ,

where

a(x1, x) =f(x1, x)−1E

[
µ(X)

P1(X)

∫
eit2(X−x)a(t2) dt2

]
− µ(x)

P1(x)2

∫
eit2xa(t2) (F11(0, t2)−F01(0, t2)) dt2,

and

b(x1, x) =− f(x1, x)−1E

[
µ(X)

P1(X)

∫
eit2(X−x)a(t2) dt2

]
− µ(x)

P1(x)2

∫
eit2xa(t2) (F11(0, t2)−F01(0, t2)) dt2,

Then the variance of the influence function can be expressed as

Var(Ψ) = E

[
P11(1−P11)a2(X1, X) + P10(1−P10)b2(X1, X)

]
Then the efficiency bound can be expressed as a minimum

Σ = min
µ(·)

E[µ(X)]−1E

[
P11(1−P11)

(
f(x1, x)−1E

[
µ(X)

P1(X)

∫
eit2(X−x)a(t2) dt2

]
− µ(x)

P1(x)2

∫
eit2xa(t2) (F11(0, t2)−F01(0, t2)) dt2

)2

+ P10(1−P10)

(
f(x1, x)−1E

[
µ(X)

P1(X)

∫
eit2(X−x)a(t2) dt2

]
+

µ(x)

P1(x)2

∫
eit2xa(t2) (F11(0, t2)−F01(0, t2)) dt2

)2]
E[µ(X)]−1′

which exists with a minimum attained in the basis of Hermite polynomials, which are eigenfunctions

of the Fourier transform. We can represent µ(x) = P1(x)2ρ(x), denote

Ω(x1, x) = diag (P11(1−P11), P10(1−P10)) ,
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and

T =

(
1 −1

1 1

)

Finally, let

ζ(x1, x) =

(
f(x1, x)−1E

[
P1(X)ρ(X)

∫
eit2(X−x)a(t2) dt2

]
,

ρ(x)

∫
eit2xa(t2) (F11(0, t2)−F01(0, t2)) dt2

)
.

Then we follow the argument in (Ai and Chen 2003), and find ρ∗(·) solving

min
ρ∈H

E
(
ζ(x1, x)′T−1Ω(x1, x)−1T−1ζ(x1, x)

)
Then the semiparametric efficiency bound can be expressed as

Σ = E
(
ζ(x1, x)∗′T−1Ω(x1, x)−1T−1ζ(x1, x)∗

)−1

Q.E.D.

A.9 Proof of Theorem 4.2

Thus we can see, that under our conditions the parameter α0 cannot be estimated at the parametric

rate. This result is analogous to impossibility theorems in Chamberlain (1986).

To establish the information of the parameters α1, α2, we will proceed as before; in this case

the likelihood function conditional on the indexes is of the form

P (y1 = y2 = 1|x1, x2) = P (y1 = y2 = 1|x1, x2, (ε, η) ∈ S1)

(P ((ε, η) ∈ S1|x1, x2) + P (y1 = y2 = 1|x1, x2, (ε, η) 6∈ S1)

(P ((ε, η) 6∈ S1|x1, x2)

=
1

2
(P ((ε, η) ∈ S1|x1, x2) + P (y1 = y2 = 1|x1, x2, (ε, η) 6∈ S1)

(P ((ε, η) 6∈ S1|x1, x2)

Thus, we can express this conditional probability as

1

2

∫
I[α1 + x1 < u < x1]I[x2 < v < α2 + x2]g0(u, v)dudv (A.18)

+

∫
(I[x1 < u < x1 + α1]I[v < x2] + I[u < x1]I[v < x2 + α2])g0(u, v)dudv (A.19)
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As before, we will only focus on the probability of this outcome, for similar reasons. We will

show here that there is 0 information for α1, noting that by the symmetry of the problem, identical

arguments can be used to show zero information for α2.

The method to show this will be similar- we take the derivative of the above probability with

respect to α1 (or, more precisely, take the derivative with respect to α evaluated at α = α1. This

derivative is of the form

1

2

∫
−δ[α1+x1−u]I[x2 < v < α2+x2]g0(u, v)dudv+

∫
δ[−u+x1+α1]I[v < x2]g0(u, v)dudv (A.20)

where again δ denotes the dirac function.

Also we can take the derivative with respect to to the parameter perturbing the joint density

of the disturbances u, v.

This is of the form:

1

2

∫
I[α1 + x1 < u < x1]I[x2 < v < α2 + x2]g0(u, v)h1(u)dudv (A.21)

+

∫
(I[x1 < u < x1 + α1]I[v < x2] + I[u < x1]I[v < x2 + α2])g0(u, v)h1(u)dudv (A.22)

As before we need to find a function h1(u) that makes these two integrals as close as possible.

For the problem at hand, we can set

h∗1(u) = −δ[α0 − x1 − u] (A.23)

Q.E.D.

A.10 Proof of Theorem 5.1

To prove the theorem we stablish the fact that the rank and order conditions of the system of

conditional moments are satisfied for some subset of the covariate values. We compute the Jacobi

matrix of system (??) with respect to α and show that it is non-zero at least for some subset of

covariate values. Define P (x1 − u, x2 − v) = (P (y1 = i, y2 = j|x1 − u, x2 − v), i, j ∈ 0, 1, i 6= j)′,

and P(x1, x2) = (Pij(x1, x2), i, j ∈ 0, 1, i 6= j)′. Then system (5.4) can be written in a simplified

form

P(x1, x2)−
∫
P (x1 − u, x2 − v)ḡ(u, v) du dv = 0.
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We now compute the Jacobi matrix of this system which will correspond to the derivative of the

second term with respect to vector α = (α1, α2). For convenience we also pick a specific path

θ and take the derivative of parameters along this path. Differentiating the system defining the

Bayes-Nash equilibrium we can express

σ φ(P1)
Φ(P1) Ṗ1θ = ∂α1(θ)

∂θ P2 + α1Ṗ2θ,

σ φ(P2)
Φ(P2) Ṗ2θ = ∂α2(θ)

∂θ P1 + α2Ṗ1θ.

Therefore, we can express(
Ṗ1θ

Ṗ2θ

)
=

 −α2 σ φ(P2)
Φ(P2)

σ φ(P1)
Φ(P1) −α1

−1(
0 P1

P2 0

)(
∂α1(θ)
∂θ

∂α1(θ)
∂θ

)

Denote

Ω(x1, x2) =

(
α1α2 − σ2 φ(P1)φ(P2)

Φ(P1)Φ(P2)

)−1
 σ φ(P2)

Φ(P2)P2 −α1P1

−α2P2 σ φ(P1)
Φ(P1)P1


Next, we compute the directional derivative of the vector

Ṗ (x1, x2) =

(
1− P2 −P1

−P2 1− P1

)(
Ṗ1θ

Ṗ2θ

)
= M(x1, x2)

(
Ṗ1θ

Ṗ2θ

)
.

Therefore, we can express

Ṗ (x1, x2) = M(x1, x2)Ω(x1, x2)
∂α(θ)

∂θ
.

Then we can differentiate ḡ(·, ·) along the parametrization path. Consider the vector

ϕ11(t) =

∫ ∫
e−i(t1q1+t2q2) (P2(q1, q2), P1(q1, q2)) Ω(q1, q2) dq1 dq2

∂ḡ(u, v)

∂θ
=

∫ ∫
E

[
ei(t1(u−x1)+t2(v−x2)) Ṗ11(X1, X2)

f(X1, X2)F11(t1, t2)

]
dt1 dt2

+

(∫ ∫
E

[
ei(t1(u−X1)+t2(v−X2)) P11(X1, X2)ϕ11(t1, t2)

f(X1, X2)F2
11(t1, t2)

]
dt1 dt2

)
∂α

∂θ

Then the Jacobi matrix can be expressed as the matrix pre-multiplying the derivative ∂α(θ)
∂θ in∫

∂

∂θ
P (x1 − u, x2 − v)ḡ(u, v) du dv +

∫
P (x1 − u, x2 − v)

∂

∂θ
ḡ(u, v) du dv

We start the analysis with the second element which can be written as∫
P (x1 − u, x2 − v)

(∫ ∫
E

[
ei(t1(u−X1)+t2(v−X2)) P11(X1, X2)ϕ11(t)

f(X1, X2)F2
11(t)

]
dt1 dt2

)
du dv.
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Provided that Fubbini theorem applies, we can transform this expression using the change of

variables into

E

[
P11(X1, X2)

f(X1, X2)

∫ (∫
e−i(q1t1+q2t2)P (q1, q2) dq1 dq2

)
ei(t1(x1−X1)+t2(x2−X2))ϕ11(t)

F2
11(t)

]
We then note that∫

e−i(q1t1+q2t2)P (q1, q2) dq1 dq2 =

(
F1(t)−F11(t)

F2(t)−F11(t)

)
.

Therefore, we can define the 2× 2 matrix of inverse Fourier transforms

F (x1 −X1, x2 −X2) =

∫
ei(t1(x1−X1)+t2(x2−X2))

 (F1(t)−F11(t))ϕ11(t)
F2

11(t)
(F2(t)−F11(t))ϕ11(t)

F2
11(t)

 dt1 dt2,

which is not equal to zero at some compact subset of x1 and x2. Then we can express the object

under consideration as

E

[
P11(X1, X2)

f(X1, X2)
F (x1 −X1, x2 −X2)

]
.

Going back to the expression for the Jacobi matrix, we can express its first term as∫
M(x1 − u, x2 − v)Ω(x1 − u, x2 − v)ḡ(u, v) du dv.

Denoting

Q(t) =

∫
e−i(t1q1+t2q2)M(q1, q2)Ω(q1, q2) dq1 dq2,

we can define the inverse Fourier transformation

R(x1 −X1, x2 −X2) =

∫
ei(t1(x1−X1)+t2(x2−X2))F11(t)−1Q(t) dt1 dt2.

Then the Jacobi matrix can be written as

J(x1, x2) = E

[
P11(X1, X2)

f(X1, X2)
[F (x1 −X1, x2 −X2) +R(x1 −X1, x2 −X2)]

]
.

We note that

F (x1 −X1, x2 −X2) +R(x1 −X1, x2 −X2)

=

∫
ei(t1(x1−X1)+t2(x2−X2))F11(t)−1

×
∫
e−i(q1t1+q2t2)

( (F1(t)−F11(t))
F11(t)

(F2(t)−F11(t))
F11(t)

 (P2(q1), P1(q1)) +M(q1, q2)

)
Ω(q1, q2) dq1 dq2

Given that |det (Ω(q1, q2)) | = 1, we conclude that the Jacobi matrix is non-singular where the

Fourier transform of the probability P11(x1, x2) is non-vanishing.

Q.E.D.
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A.11 Proof of Theorem 5.2

Nonetheless, we express the likelihood function as follows; w.l.o.g., we start with the conditional

probability that y1 = y2 = 1, where at first we condition on u, v, x1, x2; note that given our

assumption of η1, η2 being mutually independent, this joint conditional probability is the product

of marginal conditional probabilities; so we have

P (y1 = y2 = 1|x1, x2, u, v) = P (y1 = 1|x1, x2, u, v)P (y2 = 1|x1, x2, u, v) (A.24)

= Φ

(
x1 + α1P2 − u

σ

)
Φ

(
x2 + α2P1 − v

σ

)
(A.25)

Thus we can attain the conditional probability of this outcome, conditioning now only on

x1, x2 by integrating this term with respect to the joint density of u, v. To ease our notation,

let P1(u, v, α1, α2) denote the above conditional probability of y = 1, where have suppressed the

dependence on x1, x2, and adopt the analogous notation for y2 = 1; then the probability of the

y1 = y2 = 1 outcome is∫
P1(u, v, α1, α2)P2(u, v, α1, α2)g(u, v)dudv (A.26)

Now we can proceed as before; we take the partial derivative of the above probability with

respect to α1;

this is of the form:

∫
∂P1(u, v, α1, α2)

∂α1
P2(u, v, α1, α2) + P1(u, v, α1, α2)

∂P2(u, v, α1, α2)

∂α1
g(u, v)dudv (A.27)

Which to ease notation we will express as

∫
(P1P2)′(u, v)g(u, v)duduv (A.28)

We can express the above integral with with respect to the marginal density of u:

∫
µ(u)g(u)du (A.29)

where µ(u) denotes the conditional expectation E[(P1P2)′(u, v)|u] and g(u) denotes the marginal

density of u..
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Now we turn attention to the score with respect to density perturbation parameter:∫
P1(u, v)P2(u, v)g(u, v)h1(u)dudv (A.30)

which we can express as∫
µ2(u)g(u)h1(u)du (A.31)

Thus we can set

h∗1(u) = µ(u)/µ2(u) to make the integrals equal to each other; Thus to show information if

positive. we can apply the same h∗1(u) in the outcome where y1 = y2 = 0.

In this case the score with respect to α1 can be expressed as∫ (
−E[P ′1|u]− E[P ′2|u] + µ(u)

)
g(u)du (A.32)

where P ′1 denotes ∂P1(u,v)
∂α1

, P ′2 denotes ∂P2(u,v)
∂α1

.

The score with respect to δ1 is of the form

1−
∫

(E[P1|u]− E[P2|u])h1(u)g(u)du+

∫
µ2(u)h1(u)g(u)du (A.33)

where P1 above denotes P1(u, v);

For our choice of h∗1(u), the last term above equates to the last term of the score with respect

to α1. But for h∗1(u), it will generally not be the case that:∫ (
−E[P ′1|u]− E[P ′2|u]

)
g(u)du = 1−

∫
(E[P1|u]− E[P2|u])h∗1(u)g(u)du (A.34)

; Therefore, the information cannot be 0 for this model.

Q.E.D.

A.12 Proof of Theorem 5.3

Consider the Jacobi matrix. Consider the term

F (x1 −X1, x2 −X2) +R(x1 −X1, x2 −X2)

=

∫
ei(t1(x1−X1)+t2(x2−X2))F11(t)−1

×
∫
e−i(q1t1+q2t2)

( (F1(t)−F11(t))
F11(t)

(F2(t)−F11(t))
F11(t)

 (P2(q1), P1(q1)) +M(q1, q2)

)
Ω(q1, q2) dq1 dq2
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from the proof of Theorem 5.1. Then noting that in the limit

Ω(x1, x2) =

(
0 −P1

α2

−P2
α1

0

)
,

we notice that J(x1, x2) → 0 with a proper limit equal to zero. As a result, we conclude that

Σ−1 → 0 due to the dominated convergence theorem.

Q.E.D.

A.13 Proof of Theorem 5.4

We reduce the dimensionality of the problem and consider a particular parametrization path θ.

Then we compute the directional derivative of the moment equation along th eparametrization

path. We note that the likelihood of the model can be written as

fθ(y1, y2, x1, x2) =
1∏

ij=0

Pij(x1, x2)1(y1=i,y2=j)ϕ (x1, x2)

Then we can express the score of the model as

Sθ(y1, y2, x1, x2) = P00y1y2−P11(1−y1)(1−y2)
P00P11

Ṗ11

+ (P00y1−P10(1−y1))(1−y2)
P00P10

Ṗ10

(P00y2−P01(1−y2))(1−y1)
P00P01

Ṗ01

where sg,θ is the score of the distribution of errors and sθ is the score of the distribution of covariates.

Then we can express the tangent set of the model as

T =

{
ξ1(x1, x2)(P00y1y2 −P11(1− y1)(1− y2))

+ξ2(x1, x2)(P00y1 −P10(1− y1))(1− y2)

+ξ3(x1, x2)(P00y2 −P01(1− y2))(1− y1) + t(x1, x2)

}
,

where ξi(·) for i = 1, 2, 3 are square integrable functions, and E[t(x1, x2)] = 0. Denote α(θ) =

(α1(θ), α2(θ))′ and find the derivative of this vector along the parametrization path. To do that we

use the moment system and the system of equilibrium probabilities.

Then we can express the directional derivative of the moment function as

E
[
A(X1, X2) Ṗ(X1, X2)

]
− E [A(X1, X2) J(X1, X2)]

∂α

∂θ

−
∫
A(x1, x2)

∫
P (x1 − u, x2 − v)

× E

[
Ṗ11(X1, X2)

f(X1, X2)

∫
ei(t1(u−X1)+t2(v−X2))

F11(t1, t2)
dt1dt2

]
f(x1, x2) du dv dx1 dx2 = 0.
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From the proof of Theorem 5.1 we recall that∫
e−i(q1t1+q2t2)P (q1, q2) dq1 dq2 =

(
F1(t)−F11(t)

F2(t)−F11(t)

)
.

Thus, application of the Fubbini theorem allows us to represent the last term as∫
A(x1, x2)E

[
Ṗ11(X1, X2)

f(X1, X2)∫
ei(t1(x1−X1)+t2(x2−X2))

 F1(t)
F11(t1,t2) − 1
F2(t)

F11(t1,t2) − 1

 dt1dt2

]
f(x1, x2) dx1 dx2

= E

[
Ṗ11(X1, X2)

f(X1, X2)

∫
e−i(t1X1+t2X2)A(−t)

 F1(t)−F11(t1,t2)
F11(t1,t2)

F2(t)−F11(t1,t2)
F11(t1,t2)

′ dt1dt2],
where

A(t) = E
[
e−i(t1X1+t2X2)A(X1, X2)

]
.

Next, considering

K(X1, X2) =

∫
e−i(t1X1+t2X2)A(−t)

 F1(t)−F11(t1,t2)
F11(t1,t2)

F2(t)−F11(t1,t2)
F11(t1,t2)

′ dt1dt2,
We can equivalently expess

K(x1, x2) = E

[
A(X1, X2)

∫
ei(t1(x1−X1)+t2(x2−X2))

(
F1(t)−F11(t1, t2)

F11(t1, t2)
, ,
F2(t)−F11(t1, t2)

F11(t1, t2)

)
dt1dt2

]
,

we can express the directional derivative of the parameter vector as

E [A(X1, X2) J(X1, X2)]
∂α

∂θ
= E

[
A(X1, X2) Ṗ(X1, X2)−K(X1, X2)

Ṗ11(X1, X2)

f(X1, X2)

]

Next, we search for the function Ψ(y1, y2, x2, x2) such that

E [A(X1, X2) J(X1, X2)]
∂α

∂θ
= E [Ψ(Y1, Y2, X2, X2)Sθ(Y1, Y2, X2, X2)] .

Then we search for the influence function in the form

Ψ(y1, y2, x2, x2) = a(x1, x2)(P00y1y2 −P11(1− y1)(1− y2))

+ b(x1, x2)(P00y1 −P10(1− y1))(1− y2)

+ c(x1, x2)(P00y2 −P01(1− y2))(1− y1),

where a(·), b(·) and c(·) are 2× 1 vectors. Then consider projection

E [ΨSθ] = −E
[
Ṗ10(a+ c) + Ṗ01(a+ b) + Ṗ11(b+ c)

]
.
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Equating the corresponding coefficients with the expression for the directional derivative and de-

noting A1(·) and A2(·) the first and the second columns of matrix A(·), we obtain

a(x1, x2) = −1

2

[
A(x1, x2)e− K(x1, x2)

f(x1, x2)

]
,

b(x1, x2) = −1

2

[
A(x1, x2)e1 +

K(x1, x2)

f(x1, x2)

]
,

c(x1, x2) = −1

2

[
−A(x1, x2)e1 +

K(x1, x2)

f(x1, x2)

]
,

where e = (1, 1)′ and e1 = (1,−1)′. Combining the terms, we can write the influence function as

Ψ(y1, y2, x2, x2) =
[
A(x1, x2), −f(x1, x2)−1K(x1, x2)

]
y1(1− y2)−P10(x1, x2)

(1− y1)y2 −P01(x1, x2)

y1y2 −P11(x1, x2)


Next we find the variance of the efficient influence function as

Σ = J−1E

[ [
A(X1, X2), −K(X1, X2)

f(X1, X2)

]
diag (P10(1−P10), P01(1−P01), P11(1−P11))[

A(X1, X2), −K(X1, X2)

f(X1, X2)

]′ ]
J−1′,

with J = E [A(X1, X2) J(X1, X2)]. Denote

Ω(x1, x2) = diag (P10(1−P10), P01(1−P01), P11(1−P11)) .

Introduce a two-dimensional ρ(x1, x2) and denote

ζρ(x1, x2) =

 ρ(x1, x2)

E
[
ρ(X1, X2)

∫
ei(t1(x1−X1)+t2(x2−X2))

(
F1(t)−F11(t1,t2)
F11(t1,t2) , , F2(t)−F11(t1,t2)

F11(t1,t2)

)
dt1dt2

] 
Then, following Ai and Chen (2003) we can express the semiparametric efficiency bound as

Σ = E
[
J(X1, X2)′ζρ∗(X1, X2)′Ω(X1, X2)−1ζρ∗(X1, X2)J(X1, X2)

]−1
,

where

ρ(·, ·)∗ = argminρ{E
[
J(X1, X2)′ζρ(X1, X2)′Ω(X1, X2)−1ζρ(X1, X2)J(X1, X2)

]
}

Q.E.D.

B Estimators with optimal rate

B.0.1 Triangular model: Two-step estimator

Step 1. Consider the family of normalized Hermite polynomials and denote hl(x) = (
√

2πl!)−1/2e−
x2

4 Hl(x),

where Hl(·) is the l-th degree Hermite polynomial. Also denote Hl(x) =
∫ x
−∞ hl(z) dz. We note
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that this sequence is orthonormal for the inner product defined as 〈f, g〉 =
∫∞
−∞ f(x)g(x) dx. We

take the sequence cn → ∞, function ωn(x) = 1{|x| ≤ cn} and estimate the probability of both

indicators equal to zero y1 = y2 = 0 as

P̂00
n (x1, x) =

K(n)∑
l1,l2=1

al1l2ωn(x1) [Hl1(cn)−Hl1(x1)]ωn(x) [Hl1(cn)−Hl1(x)]

The estimates can be obtained via a regression of ωn(x1) [Hl1(cn)−Hl1(x1)]ωn(x) [Hl2(cn)−Hl2(x)]

on the indicators (1−y1)(1−y2). Then the estimator for the joint density of errors can be obtained

from the regression coefficients as

ĝn(u, v) =

K(n)∑
l1,l2=1

âl1l2ωn(x1)hl1(x1)ωn(x)hl2(x).

Step 2. Using the estimator for the density, we compute the fitted values for conditional

probabilities of y1 = y2 = 1 and y1 = 0 with y2 = 1 as

P̂11
n (x1 + α, x) =

K(n)∑
l1,l2=1

âl1l2ωn(x1 + α) [Hl1(x1 + α)−Hl1(−cn)]ωn(x) [Hl1(x)−Hl1(−cn)] ,

and

P̂01
n (x1 + α, x) =

K(n)∑
l1,l2=1

âl1l2ωn(x1 + α) [Hl1(cn)−Hl1(x1 + α)]ωn(x) [Hl1(x)−Hl1(−cn)] .

Using these fitted probabilities we can form the conditional log-likelihood function

l (α; y1, y2, x1, x) =y1y2ωn(x1 + α)ωn(x) log P̂11
n (x1 + α, x)

+ (1− y1)y2ωn(x1 + α)ωn(x) log P̂01
n (x1 + α, x).

Then we can express the empirical score as

s (α; y1, y2, x1, x) =

[
y1y2

P̂11
n (x1 + α, x)

− (1− y1)y2

P̂01
n (x1 + α, x)

]
∂P̂11

n (x1 + α, x)

∂α
ωn(x1 + α)ωn(x)

This expression can be rewritten as

s (α; y1, y2, x1, x) =
ωn(x1 + α)ωn(x)y2

P̂11
n (cn, x)

y1 − P̂
11
n (x1+α,x)

P̂11
n (cn,x)(

1− P̂
11
n (x1+α,x)

P̂11
n (cn,x)

)
P̂11
n (x1+α,x)

P̂11
n (cn,x)

∂P̂11
n (x1 + α, x)

∂α
.

Setting the empirical score equal to zero, we obtain the estimator for α0 as

α̂∗n = argmaxα
1

n

n∑
i=1

l (α; y1i, y2i, x1i, xi) . (B.1)
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B.0.2 Iterative estimator

As in the case of triangular binary system we approximate the error density using the normalized

Hermite polynomials. We take the sequence cn →∞, function ωn(x) = 1{|x| ≤ cn}. We introduce

function

∆(x1, x2;α1, α2) =

K(n)∑
l1,l2=1

al1l2ωn(x1) [Hl1(x1 + α1)−Hl1(x1)]ωn(x2) [Hl2(x2 + α2)−Hl2(x2)] .

Then we approximate the probabilties of indicators taking values y1 = y2 = 0 as

P̂00
n (x1, x2) =

K(n)∑
l1,l2=1

al1l2ωn(x1) [Hl1(cn)−Hl1(x1)]ωn(x2) [Hl1(cn)−Hl1(x2)]

− 1

2
∆(x1, x2;α1, α2).

Similarly, we approximate the remaining probabilities

P̂11
n (x1, x2) =

K(n)∑
l1,l2=1

âl1l2ωn(x1 + α1) [Hl1(x1 + α1)−Hl1(−cn)]ωn(x2) [Hl1(x2 + α2)−Hl1(−cn)]

− 1

2
∆(x1, x2;α1, α2)

and

P̂01
n (x1, x2) =

K(n)∑
l1,l2=1

âl1l2ωn(x1 + α1) [Hl1(cn)−Hl1(x1 + α1)]ωn(x2) [Hl1(x2)−Hl1(−cn)] .

Using these approximation to the joint probabilities for binary indicators we can form the

conditional log-likelihood function

l (α1, α2; y1, y2, x1, x2) =y1y2ωn(x1)ωn(x2) log P̂11
n (x1, x2)

+ (1− y1)y2ωn(x1)ωn(x2) log P̂01
n (x1, x2)

+y1(1− y2)ωn(x1)ωn(x2) log P̂10
n (x1, x2)

+(1− y1)(1− y2)ωn(x1)ωn(x2) log P̂00
n (x1, x2).

Then we consider profile sample log-likelihood

l̂p(α1, α2) = sup
a11,...,aKK

1

n

n∑
i=1

l (α1, α2; y1i, y2i, x1i, x2i)

Then the parameter estimates can be obtained as maximizers of the profile log-likelihood:

(α̂∗1n, α̂
∗
2n) = argmaxα1,α2

l̂p(α1, α2). (B.2)
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C Examples of convergence rates for common classes

of distributions

Logistic errors with logistic covariates

To evaluate function ν(·) we consider one dimensional case. Let F (·) be the cdf of interest and φ(·)
be the pdf of covariates. Then we can evaluate the term of interest as∫ c

0

φ(x)

1− F (x)
dx =

∫ c

0

ex

1 + ex
dx

Change of variables z = ex allows us to re-write the expression as∫ ec

1

dz

1 + z
= O(c)

Thus, we can select ν(c) = c2 given that we have a two-dimensional distribution. Next, we evaluate

function β(·), whose leading term can be represented as∫ ∞
c

log((1 + ex)−1)
ex

(1 + ex)2
dx = O(e−c).

Therefore, we can select β(c) = e−c. Thus, the optimal rate will be
√
n/c2

n with cne
cn/n = O(1).

We can select, for instance cn = δ
√

log n for some 0 < δ < 1 delivering convergence rate
√
n/log n

Logistic errors with normal covariates

Using the same notations as before, we evaluate the leading term for ν(·) as∫ c

0

φ(x)

1− F (x)
dx =

1√
2π

∫ c

0
(1 + ex)e−x

2/2 dx = O(1)

Then we can express the order of the bias term via evaluation

β(c) =
1√
2π

∫ ∞
c

log(1 + ex)e−x
2/2 dx = O(e−c

2/2).

As a result, we can use ν(c) ≡ 1 and the bias will vanish. This gives the parametric optimal rate
√
n.

Normal errors with logistic covariates

We will use the same approach as before and try to evaluate the function ν(·) using the leading

term of the representation of integral∫ c

0

φ(x)

1− F (x)
dx

62



First of all note, that one can find the asymptotic evaluation for the normal cdf via a change of

variable t = 1/z and subsequent Taylor expansion

1− Φ(x) =

∫ ∞
x

1√
2π
e−z

2/2 dz =
1√
2π

∫ 1/x

0

e−1/(2t2)

t2
dt = O

(
e−x

2/2

x

)

Then we can note that

φ(x)

1− F (x)
= O(xex

2/2−x),

for sufficiently large x. This means that the leading term for the integral is O(ec
2/2). As a result,

we find that ν(c) = ec
2
. Then we evaluate the leading component of the bias term as∫ ∞

c
log

(
e−x

2/2

x

)
ex

(1 + ex)2
dx = O

(
c2e−c

)
.

Therefore, we can select β(c) = c2e−c. Thus we can determine the optimal trimming sequence by

solving

nc4
ne
−c2n = O(1).

The convergence rate will correspond to
√
ne−c2n . This means that, for instance, selection if cn =

log n1/2 delivers the convergence rate n1/4.

Normal errors with normal covariates

Using our previous evaluation of the normal cdf, we can provide the representation for the lead

term of the ratio

φ(x)

1− F (x)
= O(x).

Therefore, we can evaluate ν(c) = c4. Then we evaluate the bias term as∫ ∞
c

log

(
e−x

2/2

x

)
e−x

2/2 dx = O(ce−c
2/2)

Then the optimal rate has expression
√
n/c2

n with cn solving c2
ne
−c2n/n = O(1).
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Table 1: Elements of the optimal rate for various distributions

Covariate distribution

Error distribution Logistic Normal

Logistic ν(c) = c2, β(c) = e−c ν(c) = 1, β(c) = e−c
2

Rate ∼
√
n/log n Rate ∼

√
n

Normal ν(c) = ec
2
, β(c) = c2e−c ν(c) = c4, β(c) = ce−c

2

Rate ∼ n1/4 Rate ∼
√
n/log n
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