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Abstract

I quantify the contribution of sectoral shocks to business cycle fluctuations in ag-

gregate output. I develop a multi-industry general equilibrium model in which each

industry employs the material and capital goods produced by other sectors, and then

estimate this model using data on U.S. industries’ sales, output prices, and input

choices. Maximum likelihood estimates indicate that industry-specific shocks account

for nearly two-thirds of the volatility of aggregate output, substantially larger than pre-

viously assessed. Identification of the relative importance of industry-specific shocks

comes primarily from data on industries’intermediate input purchases, data that ear-

lier estimations of multi-industry models have ignored.

1 Introduction

What are the origins of business cycle fluctuations? Do idiosyncratic micro shocks–

disturbances at individual firms or industries– have an important role in explaining short-run

macroeconomic fluctuations? Or are shocks that prevail on all industries the predominant

source?

I address these questions by constructing and estimating a multi-industry dynamic

general equilibrium model in which both aggregate and industry-specific shocks have the

potential to contribute to aggregate output volatility. I find that sectoral shocks are impor-

tant: They account for more than three-fifths of the variation in aggregate output growth.
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I am indebted to Fernando Alvarez, Thomas Chaney, Thorsten Drautzburg, Xavier Gabaix, Ali Hortaçsu,
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have been reviewed to ensure that no confidential information is disclosed. Updated versions of the paper
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This figure is substantially larger than in previous evaluations of multi-industry general

equilibrium models.

The primary challenge in identifying the relative importance of industry-specific

shocks is that, because of input-output linkages, both aggregate and industry-specific shocks

have similar implications for data on industries’sales. To see why, consider the following

two scenarios. In the first, some underlying event (e.g., a surprise increase in the target

federal funds rate) reduces the demand faced by all industries, including the auto parts

manufacturing, steel manufacturing (a supplier of auto parts), and auto assembly industries.

In the second scenario, a strike occurs in the auto parts manufacturing industry, which

temporarily reduces the demand faced by sheet-metal manufacturers, and increases the cost

of establishments engaged in auto assembly. Even if industry-specific shocks are independent

of one another, input-output linkages will induce co-movements in these industries’output

and employment growth rates, just as in the first scenario. So, distinguishing between

aggregate and industry-specific shocks is a complicated task.

Second, the importance of sectoral shocks depends on assumptions regarding the

extent to which industries can substitute across their inputs. In particular, the estimated

importance of industry-specific shocks hinges on a parameter, which I call εQ, that measures

how elastically each industry can substitute between its intermediate inputs and other inputs

(namely, capital and labor). In general, shocks alter the relative prices of each good and,

as long as εQ 6= 1, cause each industry’s intermediate input cost share to vary. Estimates

of the relative importance of industry-specific shocks depend on the covariance structure

of industries’intermediate input cost shares in an intuitive manner: Volatile intermediate

input cost shares are a sign either of prominent industry-specific or aggregate shocks. At

the same time, movements in industries’intermediate input cost shares that are uncorrelated

with one another indicate that industry-specific, not aggregate, shocks are predominant. If

εQ is restricted to be equal to 1 (as in previous analyses of multi-industry models), the model

cannot possibly fit movements in industries’intermediate input cost shares no matter how

volatile the productivity or preference shocks are. Data on intermediate input cost shares are

not allowed to speak to the relative importance of industry-specific shocks. The challenge,

when identifying the relative importance of sectoral shocks, emerges from the paucity of

reliable, precise estimates of this key elasticity of substitution.1

I confront these two challenges by jointly estimating, via maximum likelihood, the

preference and production elasticities of substitution in conjunction with the aggregate

and industry-specific components of the exogeneous preference and productivity stochas-

1Bruno (1984) and Rotemberg and Woodford (1996) are two attempts to estimate εQ; see Section 4.2 for
a discussion.
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tic processes. The estimation procedure employs a dataset that tracks industries’ sales,

prices, and intermediate input purchases across the entire U.S. economy from 1960 to 2005.

In the data, industries’intermediate input cost shares are both volatile and positively

correlated to the industry-specific intermediate input prices. As a result, the estimation

procedure assigns a relatively low value of εQ: The maximum likelihood estimates of εQ
range between 0 and 0.15, depending on the specification, and are always significantly less

than 1. In other words, intermediate input and other inputs are highly complementary to

one another.

Also in the data, the cross-industry correlation of industries’intermediate input cost

shares is low. This empirical pattern, in combination with the low estimate of εQ, implies

that industry-specific shocks account for a large fraction of aggregate volatility. I provide a

variance decomposition, computing the fraction of the variation in aggregate output growth

that can be explained by industry-specific (versus aggregate) shocks. I find that 63% of the

variation in aggregate output growth is attributable to the industry-specific components of

the preference and productivity shocks. In contrast, Foerster, Sarte, and Watson (2011)

compute that less than half of the variation in output growth is due to industry-specific

shocks. When I impose unitary elasticities of substitution on my model, I estimate a similar

number for the aggregate importance of industry-specific shocks.2 In sum, these results

indicate that sectoral shocks are more important than previously thought, and that the

difference is largely due to past papers’ imposition of a unitary elasticity of substitution

between intermediate inputs and capital/labor. These results are robust to time period,

industry classification schemes, treatment of trends, and (for the most part) countries.

This paper resolves the hypothesis, first advanced in Long and Plosser (1983),

that independent industry-specific shocks generate patterns characteristic of modern business

cycles. Models of business cycles typically portray fluctuations as the result of economy-wide,

aggregate disturbances to production technologies and preferences. These disturbances,

however, are diffi cult to justify independently, and may simply represent "a measure of our

ignorance."3 Given the results of the current paper, future research on the sources of business

cycle fluctuations would benefit from moving beyond the predominant one-sector framework.

2See Section 4.2 for a discussion of why the numbers reported in Foerster, Sarte, and Watson (2011) may
differ from the estimates I provide here.

3This phrase was coined by Abramovitz (1956), when discussing the sources of long-run growth, but
applies to our understanding of short-run aggregate fluctuations, as well. More recently, Summers (1986)
and Cochrane (1994) have argued that it is a priori implausible that aggregate shocks can exist at the scale
needed to engender the business cycle fluctuations that we observe.
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1.1 Literature Review and Outline

The current paper falls within the literature on multi-industry real business cycle models,

first introduced in Long and Plosser (1983). Long and Plosser present a model in which the

economy is comprised of a collection of perfectly competitive industries. Each industry

produces its output by employing a combination of capital, labor, and intermediate inputs.

The capital and intermediate input bundles of each industry are, in turn, combinations of

goods that are purchased from other industries. Long and Plosser (1983) and others in

this literature (e.g., Horvath 1998, 2000, Dupor 1999, Acemoğlu et al. 2012, and Acemoğlu,

Özdağlar, and Tahbaz-Salehi 2013) use this framework to argue that idiosyncratic shocks to

industries productivities, by themselves, have the potential to generate substantial aggregate

fluctuations.4 These papers, however, do not allow for aggregate shocks; they are not

attempting to assess the relative importance of industry-specific and aggregate shocks.5

With an appreciation of this issue, Foerster, Sarte, and Watson (2011) present a

methodology that allows them to recover the underlying productivity shocks from data

on industries’ output growth. The authors perform a factor analysis on the recovered

productivity shocks. They find that aggregate productivity shocks– the first two common

factors from the factor analysis– represent most of the variation in the first part of their

sample (1972 to 1983), and decline in volatility during the Great Moderation (1984 to 2007).

As a result, industry-specific shocks account for 20% and 50% of the variation in industrial

production during the two parts of their sample.

Compared to the Long and Plosser literature in general– and Foerster, Sarte, and

Watson (2011) in particular– the current paper makes three advances, all of which are nec-

essary to properly gauge the contribution of sectoral shocks to aggregate volatility. First,

I examine the implications of industry-specific and aggregate shocks on other observable

variables– industry level output prices and intermediate input purchases– that have up to

now been ignored. To be able to compare data on prices and intermediate input purchases

to their theoretical counterparts, I include non-technology shocks (namely, shocks to the

preferences of the representative consumer over the industries’outputs). In the context of

one-sector models, preference shocks account for a large portion of business cycle fluctuations,

and thus should also be included in a multi-industry analysis.6 Second, I allow for flexible

4Within this literature, Dupor (1999) is somewhat unique: Instead of arguing that industry-specific shocks
have the potential to produce business cycle fluctuations he does the converse: He provides conditions on
the input-output matrix under which industry-specific shocks are irrelevant.

5Horvath (2000) includes aggregate shocks in his analysis, but does not attempt to estimate the relative
magnitudes of the aggregate and sectoral shocks.

6Although there is some contention on this point, technology shocks alone cannot explain most of the
business cycle variation of aggregate activity (see, for example, Galí and Rabanal 2004 and Smets and
Wouters 2007 for two analyses of one-sector economies).
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substitution patterns in consumers’preferences and industries’production technologies. In

particular, Foerster, Sarte, and Watson (2011) and earlier papers impose unitary elasticities

of substitution in consumers’preferences (across the goods produced by each industry) and

in industries’production functions (across inputs).7 In contrast, I estimate these elasticities.

Allowing for a non-unitary elasticity of substitution between intermediate inputs and other

inputs turns out to be critical: With the unit elasticity assumption, the model substantially

understates the relative importance of industry-specific shocks. Finally, I make a sequence

of smaller advances: I allow for consumption good durability, consider a dataset that covers

the entire economy,8 and examine data from several developed economies.9

The model is delineated in Section 2. Section 3 introduces the three main datasets–

the Bureau of Economic Analysis (BEA) Input-Output Table, the BEA Capital Flows Table,

and Dale Jorgenson’s 35-industry KLEMS dataset– and discusses two patterns in the data

which will guide the estimation. Section 4 describes the estimation procedure, the main

empirical results, and a sensitivity analysis of the benchmark results. Section 5 contains

a simple example, which provides intuition as to how the parameters are identified and

why allowing εQ to be freely estimated yields higher estimates of the relative importance of

sectoral shocks. Section 6 concludes.10

7Horvath (2000) accommodates non-unitary elasticities of substitution in consumers’preferences (across
goods) and in the production of the intermediate input bundle (across inputs purchased from upstream
industries), but imposes a unitary elasticity of substitution among labor, capital, and the intermediate input
bundle. As I argue in this paper, this last parameter is the most important. Another difference between the
current paper and Horvath (2000) is that the earlier paper does not attempt to estimate the values of these
elasticities of substitution. Instead, he performs a sensitivity analysis of his results around his benchmark
specification (in which all of the aforementioned elasticities of substitution are equal to 1); see Section 5.2
of that paper.

8Foerster, Sarte, and Watson (2011) is unique in its application of the Federal Reserve Board’s dataset
on industrial production, a dataset that spans only the goods-producing sectors of the U.S. economy. Other
papers (e.g., Long and Plosser 1983 and Horvath 2000), employ a dataset that covers the entire economy.

9Another line of research attempts to gauge the relative importance of industry-specific shocks by esti-
mating vector autoregressions (see Long and Plosser 1987, Stockman 1988, Shea 2002, or Holly and Petrella
2012).
There are other explanations, in addition to the input-output-channel explanation, for the relevance of

micro shocks. Gabaix (2011) demonstrates that individual firms, because of their size, engender substantial
aggregate fluctuations. Along these lines, Carvalho and Gabaix (2013) show that certain industries, those
with particularly volatile productivities, account for an outsize fraction of aggregate volatility.
10Additional robustness checks related to Section 4’s results (Appendix A), details on the dataset (Appen-

dices B and C), and ancillary calculations (Appendices D and E) are all contained in the Appendix. Finally,
in Appendix F, I exploit micro-data from selected manufacturing industries to provide an alternative, cor-
roboratory estimate of the elasticity of substitution between industries’ intermediate input purchases and
their purchases of capital/labor.
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2 Model

In this section, I present a multi-industry general equilibrium model, along the lines of

Long and Plosser (1983) and Foerster, Sarte, and Watson (2011). This is the simplest model

that can be used to compare the importance of industry-specific and aggregate disturbances

and to estimate the elasticities of substitution in preferences and production. The model

is populated by a representative consumer and N perfectly competitive industries. I first

describe the representative consumer’s preferences, then the production technology of each

industry, and finally the evolution of the exogeneous variables.

2.1 Preferences

The consumer has balanced-growth-consistent preferences over leisure and the services

provided by the N different consumption goods.

The preferences of the consumer are given by the following utility function:

U =
∞∑
t=0

βt

Dt,Agg ·
(

N∑
J=1

ξJ ·DtJ

)
· log

( N∑
J=1

(ξJ ·DtJ)
1
εD · (δCJ · CtJ)

εD−1
εD

) εD
εD−1


− εLS
εLS + 1

·
(

N∑
J=1

LtJ

) εLS+1

εLS

 . (1)

The demand parameters, ξJ , reflect the time-invariant differences in the importance

of industries’goods in the consumer’s preferences. Preferences over each industry’s con-

sumption good evolve stochastically, with an aggregate (Dt,Agg) and an industry-specific

component (DtJ). The aggregate component affects each industry symmetrically, while the

industry-specific component affects individual industries independently. CtJ equals the stock

of durable goods when J is a durable-good-producing industry and equals the expenditures

on good/service J otherwise. For durable goods, J , the evolution of the stock of each

consumption good, CtJ , is given by

CtJ = Ct−1,J · (1− δCJ ) + C̃tJ , (2)

where C̃tJ equals the consumer’s new purchases on good J at time t and δCJ parameterizes

the depreciation rate of good J . The elasticities of substitution parameterize how easily the

representative consumer substitutes across the different consumption goods (εD) and how
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responsive the consumer’s desired labor supply is to the prevailing wage (εLS).11

To see more clearly how the preference shocks operate, suppose for a moment that

there are no durable goods so that δCJ = 1 for all industries. Let PtJ denote the Lagrange

multiplier on the period t goods market clearing condition for good J (see Equation 8 below),

and let Pt denote the ideal price index at time t.12 Take the first-order condition with respect

to consumption of good J at date t:

PtJ = Dt,Agg ·
(

N∑
I=1

ξI ·DtI

)
· (ξJ ·DtJ)

1
εD · (CtJ)

− 1
εD∑N

I=1 (ξI ·DtI)
1
εD · (CtI)

εD−1
εD

.

After some manipulation, one can show that the utility function given in Equation 1

implies that the representative consumer has the following demand function for good J at

date t:

CtJ = ξJ ·DtJ ·Dt,Agg ·
(
PtJ
Pt

)−εD
· 1

Pt
.

The Ds thus act to shift the demand curve for good J at time t. The industry-specific

component (DtJ) shifts only the demand for good J , while the aggregate component (Dt)

shifts all time-t demand curves. The same forces remain when some goods do not fully

depreciate each period, just in a more opaque form.

2.2 Production and Market Clearing

Each industry produces a quantity (QtJ) of good J at date t using capital (KtJ), labor

(LtJ), and intermediate inputs (MtJ) according to the following constant-returns-to-scale

11Horvath (2000) and Kim and Kim (2006) use a more flexible specification regarding the disutility from
supplying labor. In their specification, the second line of Equation 1 is replaced by

− εLS
εLS + 1

·
(

N∑
J=1

(LtJ)
τ+1
τ

) τ
τ+1

εLS+1

εLS

.

The idea behind this specification is to "capture some degree of sector specificity to labor while not
deviating from the representative consumer/worker assumption." Horvath (2000, p. 76) As it turns out,
neither the volatility of aggregate economic activity nor the covariances of output across industries are
particularly sensitive to the value of τ (see Table 9 of that paper). Moreover, since wages and hours are not
among the observable variables that I am trying to match, the data that I employ in the following sections
would have trouble identifying τ . For these reasons, I use the simpler specification of the disutility from
labor supply.
12The ideal price index is:

Pt ≡
[
N∑
I=1

ξI ·DtI ·DtAgg∑N
J=1 ξJ ·DtJ ·DtAgg

(PtI)
1−εD

] 1
1−εD

.
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production function:

QtJ = AtJ · At,Agg (3)

×

(1− µJ)
1
εQ

((
KtJ

αJ

)αJ (BtJ ·Bt,Agg · LtJ
1− αJ

)1−αJ
) εQ−1

εQ

+ (µJ)
1
εQ (MtJ)

εQ−1
εQ


εQ
εQ−1

.

The parameters µJ and αJ reflect long-run averages in each industry’s usage of

intermediate inputs, labor, and capital. These parameters will eventually be inferred from

the factor cost shares of each industry. At,Agg · AtJ and Bt,Agg · BtJ are, respectively, the

factor-neutral and the labor-augmenting productivity of industry J at time t. As with

the preference parameters, each of these productivity terms consists of an industry-specific

component and a component that is common to all industries.

The parameter εQ dictates how easily factors of production are substituted. From

the cost-minimization condition of the industry J representative firm, the relationship be-

tween the intermediate input cost share of industry J and the industry J specific intermediate

input price (denoted Pmat
tJ ) is log-linear, with slope 1− εQ:13

log

(
Pmat
tJ ·MtJ

PtJ ·QtJ

)
= log µJ + (1− εQ) log

(
Pmat
tJ

PtJ

)
+ (εQ − 1) log (AtJ · At,Agg) . (4)

When εQ = 1, as assumed in previous papers, an industry’s intermediate input cost share

is constant, independent of the price of its intermediate inputs, a prediction that I will show

to be at odds with the data.

The evolution of capital, for each industry J , is given in Equation 5.

Kt+1,J = (1− δK)KtJ +XtJ . (5)

The capital stock is augmented via an industry-specific investment good, XtJ , and de-

13The equivalence between sales and costs in the denominator of the left-hand side of Equation 4 comes
from the assumption that each industry is perfectly competitive, with a constant returns-to-scale production
function.
To derive Equation 4, take first-order conditions of Equation 3 with respect to intermediate input pur-

chases:

PmattJ = PtJ ·
∂QtJ
∂MtJ

= PtJ · (AtJ ·At,Agg)
εQ−1
εQ (MtJ)

− 1
εQ (µJ ·QtJ)

1
εQ .(

PmattJ

)εQ
= (PtJ)

εQ (AtJ ·At,Agg)εQ−1 (MtJ)
−1
µJ ·QtJ .

Taking logs and re-arranging gives Equation 4.
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preciates at a rate δK that is common across industries.

The industry-specific investment good is produced by combing the goods produced

by other industries. The ΓXIJ indicate how important industry I is in the production of the

industry J specific investment good, while εX parameterizes the substitutability of different

inputs in the production of each industry’s investment bundle:

XtJ =

(
N∑
I=1

(
ΓXIJ
) 1
εX (Xt,I→J)

εX−1
εX

) εX
εX−1

. (6)

Analogously, the intermediate input bundle of industry J is produced through a

combination of the goods purchased from other industries:

MtJ =

(
N∑
I=1

(
ΓMIJ
) 1
εM (Mt,I→J)

εM−1
εM

) εM
εM−1

. (7)

In Equation 7, εM parameterizes the substitutability of different goods in the production

of each industry’s intermediate input bundle. The ΓMIJ indicate how important industry I

is in the production of the industry J specific intermediate input.

To emphasize, the parameters ΓMIJ , ΓXIJ , αJ , and µJ are time invariant. As such,

movements in the share of J’s expenditures spent on different factors of production are due,

only, to the shocks to industries’productivity and consumers’preferences.

Finally, the market-clearing condition for each industry states that output can be

used for consumption, as an intermediate input, or to increase one of the N capital stocks:

QtI = CtI − (1− δCI )Ct−1,I +
N∑
J=1

(Mt,I→J +Xt,I→J) . (8)

2.3 Evolution of the Exogeneous Variables

The three sets of exogenous variables– to factor-neutral productivity, labor-augmenting

productivity, and preferences– follow stochastic processes each of a similar form. Each

variable has an industry-specific and an aggregate component, both of which follow a first-

order autoregressive process.

The industry-specific components take the form described by Equations 9 to 11:

logAt+1,J = ρA,Ind · logAtJ + σA,Ind · ωInd,AtJ . (9)

logBt+1,J = ρB,Ind · logBtJ + σB,Ind · ωInd,BtJ . (10)

logDt+1,J = ρD.Ind · logDtJ + σD,Ind · ωInd,DtJ . (11)
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The aggregate components take the form characterized by Equations 12 to 14:

logAt+1Agg = ρA,Agg · logAt Agg + σA.Agg · ωAgg,At . (12)

logBt+1Agg = ρB.Agg · logBt Agg + σB,Agg · ωAgg,Bt . (13)

logDt+1,Agg = ρD,Agg · logDt,Agg + σD.Agg · ωAgg,Dt . (14)

In Equations 9 to 14, the ωs are independent standard normal random variables.

Several assumptions are embedded within Equations 9 to 14. First, the persistence

and standard deviations of each of the industry-specific components is assumed to be the

same for all industries (e.g., σInd,D and ρInd,D are common across all industries.) In reality,

industries may differ in how persistent and volatile their productivity and demand are. Moro

(2012) and Carvalho and Gabaix (2013), for example, argue that productivity is substantially

more volatile in manufacturing and finance than in other industries. Second, Equations 9 to

14 place strong restrictions on the covariance matrix of the productivities (or the covariance

matrices of preferences) across industries. For example, the correlation between the produc-

tivity growth of two industries is the same for all pairs.14 Despite their restrictive nature,

the assumptions embedded in Equations 9 to 14 are useful: they yield a parsimonious com-

parison of the importance of the industry-specific and aggregate components of the shocks

to the exogeneous variables.15

3 Data and Descriptive Statistics

The three datasets employed to evaluate the model are Dale Jorgenson’s 35-Sector

KLEMS database, the 1992 BEA Input-Output Table, and the 1992 BEA Capital Flows

Table. The first dataset is used to measure fluctuations in sales, inputs, and prices, while

the second and third datasets are employed to measure long-run flows of inputs across pairs

of industries. I describe the three databases, in turn. Additional details can be found in

Appendix B.

Dale Jorgenson’s 35-Sector KLEMS dataset contains information on industries’pro-

14The growth of industry J’s factor-neutral productivity equals:

log

[
At+1,J ·At+1,Agg
AtJ ·At ,Agg

]
=
(
ρA,Agg − 1

)
·logAt ,Agg+

(
ρA,Ind − 1

)
·logAtJ+σA,Ind ·ωInd,AtJ +σA,Agg ·ωAgg,At .

Thus, conditional on the productivities of industries J and J ′ at time t, the correlation of the factor-neutral

productivity growth of the two industries equals
[
1 + (σA,Ind ÷ σA,Agg)2

]−1
.

15In Appendix A, I examine the consequences of relaxing the restrictions discussed in this paragraph.
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duction and input usage patterns at an annual level, from 1960 to 2005.16 As its name

suggests, the dataset contains information on 35 industries, roughly at the 2-digit level for

the manufacturing sector and at the 1 to 2-digit level for other sectors. I drop the "Gov-

ernment Enterprises" industry, leaving 34 industries in my dataset. There are two main

advantages of this dataset, compared to others that track industries’production fluctuations.

First, unlike the NBER– CES Manufacturing database or the Federal Reserve Board’s In-

dustrial Production database, Dale Jorgenson’s dataset contains information on the entire

economy, not just the goods-producing sectors. Second, unlike the Industrial Production

database, the dataset that I am working with tracks intermediate input prices and purchases

for each industry. These data are critical in evaluating the shape of industries’production

technologies.

The BEA Input-Output Table and Capital Flows Table provide information on the

flows of intermediate inputs and capital goods, across pairs of industries. While these data

are published every five years, I use only the 1992 version of the two tables. By taking only

one vintage of the Input-Output and Capital Flows Tables, I am assuming that the strength

of the linkages across industries (as parameterized by the ΓMIJs and ΓXIJs) are unchanged

throughout the sample period.

The four industry-level time series that I consider are gross output (YtI),17 the inter-

mediate input expenditure share (M share
tI ), the price for the good produced by the industry

(PtI), and the price for the intermediate input used by the industry (Pmat
tI ). Gross output is

the product of the industry output price (PtI) and the quantity of the good produced (QtI).

I compute the intermediate input expenditure share by taking the ratio of expenditures

on intermediate inputs to the total expenditure on capital goods, labor, and intermediate

inputs.

I perform three transformations on the variables of interest, with the aim of har-

monizing the data and Section 2’s model. First, I consider growth rates of each of the

variables, with the aggregate price level subtracted off of the sales, output price, and input

price measures.18 To mitigate the effect of outliers on the parameter estimates, I winsorize

the variables at the top and bottom 0.5 percentiles.19 Finally, because there is no trend

16KLEMS is an acronym for capital, labor, energy, materials, and services. The data can be found on
Dale Jorgenson’s home page (see http://scholar.harvard.edu/jorgenson/data).
17I will use the terms gross output and sales interchangeably.
18The rationale for subtracting the aggregate price level stems from Section 2’s model’s omission of mon-

etary considerations. Because this model is not equipped to distinguish between technology growth from
money supply growth as the source of aggregate price fluctuations, I have decided to simply remove aggregate
price variation from the data. In the estimation stage, I also construct the model counterpart to changes in
the aggregate price level and subtract this series from industries’sales and price measures.
19When winsorizing, I pool across all industries, compute the growth rate of the variable of interest across

industries and years, and then trim the top and bottom 0.5% observations within this pooled sample. In
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present in the model, I linearly de-trend the four industry level variables.20 Throughout

this section and the next two, I use ∆v to refer to the transformed version of variable V .

Having introduced the data sources and discussed the industry definitions, I now

present two patterns which will guide the empirical analysis of Section 4. The first pattern

is simply that activity is correlated across industries. Over the 352 pairs of industries, the

correlation of industries’ sales growth rates is, on average, 27.3%. The correlation of the

growth rates of industries’intermediate input cost shares is 22.2% for the average industry

pair. As discussed in the introduction, there are two possible explanations for the positive

values of these correlations. Aggregate events– such as a change in monetary or fiscal policy

or a financial crisis– no doubt play some role in explaining these co-movements. At the

same time, because of the input-output relationships that exist between industries, pairs of

industries’sales (or input purchases) will co-move even with independent, industry-specific

shocks. Disentangling the two alternatives is the primary goal of the model. In general,

the estimation will assign greater importance to aggregate (versus industry-specific) shocks

the higher the value of the cross-industry correlations.

Table 1 presents the second set of patterns: the volatility and average correlations

in the growth rates of the four industry-level characteristics, now pooled across all industry-

years. Here, the standard deviation of the growth rate of gross output is 7.2% in the

pooled sample. Output and input prices are less volatile: The standard deviations of the

growth of the price variables are 4.8% and 2.7%, respectively. Finally, the intermediate

input cost share is the least volatile. Critically, however, the cost share fluctuates over

time and is positively correlated with input prices. The fluctuating intermediate input cost

share is a first indication that sectoral production technologies are not well-described by a

Cobb-Douglas production function.

Motivated by Equation 4, define ∆πtI ≡ ∆pmattI − ∆ptI as the change in the ratio

of industry I’s intermediate input price to its output price. According to Equation 4, the

strength and direction of the relationship between ∆mshare
tI and ∆πtI depends critically on

Appendix A, I consider the effect of varying this 0.5% cut-off to 0.25% or 1.0%.
20In estimations of dynamic general equilibrium models, the choice of the de-trending procedure is poten-

tially important; see Canova (2013). In Appendix A, I re-estimate the model with alternative de-trending
procedures. Both the relative importance of industry-specific shocks and the estimate of εQ are robust to
the alternative procedures.
An alternative– intuitively appealing but unfortunately infeasible– way to deal with trends would be to

include both transitory and permanent shocks in the model. This would obviate the need to de-trend the
data before estimation; the parameters governing the permanent and transitory shock processes would be
jointly estimated in a single stage. I do not pursue this approach, mainly because of the diffi culty of scaling
the model by the permanent shocks. Doing so requires a clean characterization of the changes in the industry-
level observable variables as functions of the permanent shocks, something that exists only for a few special
cases of the model (such special cases can be found in, for example, Ngai and Pissarides 2007 and Acemoğlu
and Guerreri 2008).
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∆ytI ∆ptI ∆mshare
tI ∆pmattI

∆ytI 1
∆ptI 0.610* 1
∆mshare

tI 0.107* -0.010 1
∆pmattI 0.451* 0.745* 0.244* 1
∆πtI -0.516* -0.841* 0.212* -0.265*
SD 0.072 0.048 0.025 0.027

Table 1: Correlations and standard deviations of the growth rates of industry-level
statistics.
Notes: Stars indicate that the correlation is statistically different from 0, at the 5% level.

εQ. The positive, 21%, correlation between ∆πtI and ∆mshare
tI indicates that the elasticity

of substitution between intermediate inputs and other inputs may be less than 1. The

intermediate input cost share and the relative price of intermediate inputs are positively

related over longer horizons, as well: The correlation between∆mshare
tI and∆πtI equals 9.1%,

25.0%, and 37.5%, over 3-year, 5-year, and 10-year intervals, respectively, thus indicating

that the low substitutability between intermediate inputs and other inputs is not just a

short-run phenomenon.

As I will argue below in Sections 4 and 5, the estimate of εQ both hinges on the

relationship between ∆πtI and ∆mshare
tI and is a crucial component in an assessment of

the relative importance of industry-specific shocks. For these reasons, it will be useful to

examine the correlation between ∆πtI and ∆mshare
tI in more detail. Figure 1 depicts the

cross-sectional (left panel) and time series (right panel) relationships between these variables.

In the left panel, I plot ∆πtI and∆mshare
tI for a typical year, 1984: In this year the correlation

equals 18%. The right panel plots ∆mshare
tI and ∆πtI for a single industry, Miscellaneous

Manufacturing, across the entire 45-year sample period. For this industry, input prices

increased substantially between 1971 and 1974.21 During this time, the intermediate input

cost share increased moderately, as well, from 48% to 52% of total expenditures.

Were it not for the omitted variable of industry J productivity (the final term on

the right-hand side), Equation 4 would yield an unbiased estimate of εQ: I would sim-

ply need to compute the slope of the relationship between log (Pmat
tJ ÷ PtJ) and industries’

log (MtJ). However, because industries’productivities and output prices are (negatively)

correlated, such an exercise would yield a biased estimate of εQ. The exercise to which I

now turn– jointly estimating the preference and technology elasticities in conjunction with

the parameters of the exogeneous productivity and demand processes– circumvents these

problems.

21During this period there was a broad increase in commodity prices. See Cooper and Lawrence (1975)
and Radetzki (2006) for two accounts of this commodity price boom.
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Figure 1: Relationship between ∆mshare and ∆π.
Notes: Left panel: Data from 1984. Right panel: Data from the Miscellaneous Manufacturing industry.

4 Estimation and Results

This section contains the main empirical content of the paper. In this section, I describe

the estimation procedure (Section 4.1), present the model’s MLE estimates and correspond-

ing variance decompositions (Section 4.2), and examine the sensitivity of the benchmark

results to changes in sample, industry definition, period length, country, and other details of

the estimation procedure (Section 4.3).

4.1 Estimation Procedure

I apply a combination of moment matching and maximum likelihood to empirically

evaluate the model.

The parameters ξJ , µJ , αJ , ΓXIJ , and ΓMIJ are chosen to match the model-predicted

cost shares to the corresponding values in the data. These parameters contain only infor-

mation about the steady-state of the equilibrium allocation. The demand shares, ξJ , are

chosen so that the model’s steady-state consumption choices are proportional to the amount

that the industry sells; the ξJ are restricted to sum to 1. The other parameters are chosen

to match factor intensities, for each industry-factor pair. For instance, µJ is the value that

equates the model-predicted intermediate input cost share with the empirical counterpart.22

The empirical values that are used to calibrate the factor intensities are described in Ap-

22When εQ = 1, the intermediate input cost share and µJ are equal to one another. Alternatively, when
intermediate inputs are gross complements or gross substitutes to other factors of production, the model-
predicted cost share will also depend on the relative prices of the intermediate input bundle and the price of
the other factors of production.
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pendix B. Appendix D.2 provides additional details on the calibration of the parameters

relevant to the steady state.23

I choose β, δK , δCJ , and εLS based on the values used in past analyses. I set

the discount factor, β, to 0.96 and the capital good depreciation rate, δK , to 0.10. The

durable good depreciation rates, δCJ , are taken from computations published by the BEA

(see Appendix B for these depreciation rates). In the benchmark calculations, I set the

Frisch labor supply elasticity to be equal to 1, in line with Prescott (2006). In the appendix,

I re-estimate the model using larger values for εLS, closer to the values given in Chetty et

al. (2011).

The other parameters– the elasticities of substitution and the parameters charac-

terizing the exogeneous processes– are estimated via maximum likelihood. The maximum

likelihood procedure compares the model’s predictions over the growth rates of industries’

sales, prices, and intermediate input cost shares to their data counterparts.24

I allow for measurement error in industries’intermediate input cost shares. There

is considerable evidence that the values of industries’ intermediate inputs are measured

with error, and that this measurement error is more severe than for the other variables.

First, as Jorgenson, Gollop, and Fraumeni (1987) write in their description of the KLEMS

dataset, information on industries’intermediate input purchases are, in general, taken as a

residual of the gross output of a given industry and the labor and capital value added of that

industry (see p. 159). Any measurement error in labor or capital inputs will show up in the

intermediate input cost shares, as well. For manufacturing industries, it is possible to gauge

the extent to which intermediate input cost shares are mismeasured in the Jorgenson KLEMS

Dataset. The NBER– CES manufacturing dataset, which draws on data from the Census

Bureau’s Annual Survey of Manufacturers, is an alternate source of information on industry

level sales, prices, and input cost shares. Applying the same industry classification and

using the same sample period as in the current paper, I compute that the standard deviation

of the growth rate of industries’intermediate input cost shares is 1.8% for the NBER– CES

dataset and 2.1% for the Jorgenson KLEMS dataset. Since these two datasets measure

the same thing, the difference in these standard deviations serves as a lower bound for the

23In Appendix A, I examine the sensitivity of Section 4’s results to using 1972, instead of 1992, as the year
to which the steady-state allocation is calibrated.
24All computations are performed in Dynare. The value of the likelihood function, at any parameter

configuration, is the result of the Kalman filter algorithm applied to the first-order approximation to the
model introduced in Section 2. Regarding the Kalman filter, see Canova (2007, Chapter 6) for a textbook
introduction, and Adjeman et al. (2011) for a description of the practical implementation. To find the
numerical maximum of the log likelihood function, I use a simplex search algorithm, and try different
starting points to check that the search algorithm is finding a global optimum.
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measurement error present in the Jorgenson KLEMS dataset.

The measurement errors serve a second, more practical, role in the empirical analy-

sis. Without these measurement errors, specifications in which εQ is restricted to 1 cannot

possibly be estimated with the aforementioned procedure. With a unitary elasticity of sub-

stitution between intermediate inputs and value added, the intermediate input cost share

must be constant. Thus, when εQ equals 1, the log likelihood would be negative infinity for

all combinations of the other parameters.

In the benchmark calculations, I assume that the measurement error for each in-

dustry has an industry-specific and an aggregate component (call these M error
tJ and M error

t,Agg ,

respectively). Thus, the observed intermediate input cost share is specified by the following

equation:

M share
tJ ≡ Pmat

tJ ·MtJ

YtJ
·M error

tJ ·M error
t,Agg . (15)

The logarithm of each component of an industry’s measurement error follows an first-

order autoregressive process, with a serial autocorrelation of 0.8 and innovations that have a

standard deviation of 0.2%.25 I choose these values to be roughly consistent with the evidence

described above and to allow the productivity and demand shocks to explain almost all of

the variation in industries’intermediate input purchases.

4.2 Results

Parameter estimates are collected in Table 2.

The full specification is presented in the first column. The first four rows give

the estimates of the elasticities of substitution; the next six rows give the estimates of the

standard deviations of the innovations to productivities and preferences; and the final six

give the estimates of the serial autocorrelations of the exogeneous processes. The estimate

for the elasticity of substitution, εQ, between intermediate inputs and value added is 0.05;

intermediate inputs and value added are used in (almost) fixed proportions. The elasticity

of substitution, εD, in consumer’s preferences, is 0.65, indicating the the goods produced by

different industries are also gross complements. Finally the elasticity of substitution in the

production of the intermediate input bundle, εM , is close to 0.

In columns (2) to (6), I restrict various combinations of the elasticities of substitution

to be equal to 1. The point of this exercise is to understand the impact of the assumptions

made by previous authors, such as Foerster, Sarte, and Watson (2011) and Acemoğlu et al.

(2012), regarding these elasticities of substitution. The largest drop in the log likelihood

25In Appendix A, I show that the results of the current section are robust to moderate changes to assump-
tions on these measurement error terms.
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Specification (1) (2) (3) (4) (5) (6)
εD 0.654 1 1 0.587 1 1
εQ 0.046 0.053 0.020 1 1 1
εM 0.034 0.031 1 0.128 0.010 1
εX 2.870 0.001 1 2.313 0.731 1

σA,Ind 0.046 0.045 0.042 0.034 0.035 0.034
σB,Ind 0.110 0.113 0.110 0.000 0.000 0.000
σD,Ind 0.062 0.072 0.103 0.061 0.071 0.105
σA,Agg 0.010 0.000 0.008 0.010 0.009 0.007
σB,Agg 0.040 0.038 0.040 0.001 0.016 0.015
σD,Agg 0.001 0.006 0.000 0.050 0.001 0.021
ρA,Ind 1.000 0.981 1.000 1.000 1.000 1.000
ρB,Ind 0.889 0.937 0.894 1.000 1.000 0.999
ρD,Ind 0.949 0.944 0.957 0.964 0.933 0.956
ρA,Agg 1.000 0.552 0.934 1.000 0.860 0.850
ρB,Agg 0.984 0.973 0.962 0.978 1.000 0.781
ρD,Agg 1.000 -0.257 1.000 0.964 1.000 1.000

Log Likelihood 6743.0 6682.1 6397.6 -94288.6 -94374.2 -94677.1

Table 2: MLE Estimates.
Notes: Each column gives the results from a different specification. Whenever a "1" appears in the first
four rows, the corresponding elasticity is set equal to 1 prior to estimating the other parameters. 26

function occurs in specifications for which εQ is fixed at 1: The model simply cannot fit

movements in industries’intermediate input cost shares. Imposing εQ = 1 also alters the

estimated values of the exogeneous processes. Most importantly, the estimated value σB,Ind
is considerably larger in the first three columns.

The estimates of εQ and εD given in Table 2 broadly accord with the few existing

estimates for these parameters, with εQ on the lower end of existing estimates. With

respect to the estimate of εD, the most appropriate comparison would probably be Ngai

and Pissarides (2007) and its cited sources. The authors argue that the "observed positive

correlation between employment growth and relative price inflation across two-digit sectors"

(p. 430) is consistent with an estimate of εD that is less than 1.27 Bruno (1984) estimates

εQ by running an industry panel regression of manufacturing industries’intermediate input

26Standard errors are omitted to preserve space. These standard errors are almost universally small, on
the order of 1% or less.
27To emphasize, εD parameterizes how easily the consumer can substitute across coarsely-defined indus-

tries’products (for example the elasticity of substitution between automobiles and furniture, or between
apparel and construction). Broda and Weinstein (2006) and Foster, Haltiwanger, and Syverson (2008),
among others, estimate a much lager elasticity of substitution in consumers’preferences. These larger elas-
ticities of substitution are estimated using within-industry variation, and characterize how easily consumers
substitute between, for example, ready-mix concrete produced by two different plants, or between different
varieties of red wine.
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Specification (1) (2) (3) (4) (5) (6)
Aggregate Shocks 36.9 28.7 41.4 56.6 54.8 52.0
Aggregate, Factor-Neutral Productivity 10.0 0.0 11.8 36.2 42.6 28.4
Aggregate, Labor-Augmenting Productivity 26.9 28.7 29.7 0.1 12.2 18.7
Aggregate, Demand 0.0 0.0 0.0 20.3 0.0 4.8

Industry-Specific Shocks 63.1 71.2 58.6 43.4 45.2 48.0
Industry, Factor-Neutral Productivity 21.3 25.9 17.9 37.8 40.5 35.5
Industry, Labor-Augmenting Productivity 40.2 43.5 36.5 0.0 0.0 0.0
Industry, Demand 1.7 1.8 4.1 5.6 4.7 12.5

Which Elasticities are Restricted to 1? None εD

εD
εM
εX

εQ
εD
εQ

All

Table 3: Variance Decompositions.
Notes: Each row gives the fraction of the variance in aggregate output growth that is due to the specified
type of shock. The columns correspond to the specifications estimated in Table 2.

expenditure shares against the relative price of intermediate inputs. Bruno’s benchmark

specification yields an estimate of εQ = 0.3; other specifications in this paper have εQ
estimated to be anywhere in the range of −0.2 to 0.9. Rotemberg and Woodford (1996)

run a similar regression, but instrument the relative price of intermediate inputs using the

price of crude oil. For industries within the manufacturing sector, Rotemberg and Woodford

estimate that εQ = 0.7.

Table 3 presents the forecast error variance decompositions. The table apportions

the fraction of the variance of the change in aggregate output that is due to these six sets

of shocks. In the unrestricted specification, industry-specific demand, factor-neutral pro-

ductivity, and labor-augmenting productivity shocks account, respectively, for 2%, 21% and

40% of aggregate output growth variation, meaning that 63% of the variability of aggre-

gate output growth originates from industry-specific shocks; see column 1. Restricting

εQ = 1, as I do in the fourth, fifth, and sixth columns of Table 3, decreases the estimated

importance of industry-specific shocks to approximately 43% to 48%, close to the values

reported by Foerster, Sarte, and Watson (2011). (As a reminder, the authors impose that

εQ = εD = εM = εX = 1.) In that paper, the authors report that approximately 40% of the

variability of industrial production growth is due to industry-specific shocks.28

28Foerster, Sarte, and Watson (2011) perform a factor analysis on industries’productivity shocks and then
compute the fraction of industrial production growth that is due to the first two factors. The remaining
variation can be considered equivalent to the industry-specific productivity shocks in the current paper. The
two common factors explain 80% of the variation in overall industrial production growth in the first third of
the sample (1972 to 1983) and 50% in the latter two-thirds (1984 to 2007).
There are a few potential explanations for the difference. The biggest difference is that the Foerster,

Sarte, and Watson (2011) analysis is restricted to the goods-producing sectors of the economy, while I study
the entire private economy. Other differences include a difference in sample period (1960 to 2005 in the
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Tables 2 and 3 contain the main results of the paper. The remainder of the paper

is devoted to studying the robustness of the MLE estimates, explaining how the elasticities

of substitution are identified, and discussing a simple example that explains why freely

estimating εQ corresponds to larger estimates for the relative importance of industry-specific

shocks.

4.3 Robustness Checks

Industry Definition, Sample Period, and Period Length

Table 4 considers three robustness checks: to the industry classification scheme, to the

sample period, and to the period length. Throughout the remainder of the section, I consider

two specifications: In the first, all elasticities are freely estimated, while the second sets all

elasticities equal to 1 (corresponding to columns 1 and 6 of Table 2). The motivation for

presenting both specifications is to establish the impact of trying to fit the data on industries’

intermediate input cost shares, something that is only possible when εQ 6= 1.

In the first two columns, I establish that the results of Tables 2 and 3 are qualitatively

robust to an 8-industry partition of the economy.29 The relative importance of industry-

specific shocks is now somewhat larger than in the benchmark specification, representing

71% of the variation in aggregate output growth. The primary difference, compared to the

benchmark specification, is that the demand and productivity processes are substantially

less volatile. This difference reflects the "averaging-out" of the idiosyncratic shocks within

each of the 8 coarsely-defined industries.

Columns 3 through 6 examine the sample period stability of the parameter estimates.

Consistent with the large literature on the Great Moderation, the estimated standard de-

viations are smaller in the second half of the sample period. The decline in dispersion is

attributable mainly to the decline of aggregate shocks, similar to Foerster, Sarte, and Watson

(2011): The fraction of variability due to industry-specific shocks is 60% in 1960 to 1982 and

70% in 1983 to 2005.

In the final columns, I re-estimate the model using biennial data. The motivation

behind this exercise is to examine whether the low values of εQ or εM are due to adjustment

current paper, compared to 1972 to 2008 in Foerster, Sarte, and Watson 2011), period length (one quarter
in Foerster, Sarte, and Watson 2011 versus one year, here), my inclusion of shocks to demand, which are
absent in Foerster, Sarte, and Watson (2011), and Foerster, Sarte, and Watson (2011)’s imposition of unit
roots in the stochastic process governing the productivity of each industry.
29These industries are primary inputs (industries 1 to 5, according to Table 11), construction (industry 6),

non-durable goods (industries 7 to 10 and 13 to 18), durable goods (industries 11, 12, and 19 to 27), transport
(industries 28 to 31), wholesale and retail (industry 32), finance, insurance, and real estate (industry 33),
and personal and business services (industry 34). While it would be interesting to test the sensitivity of
these results to a finer industry classification scheme, the necessary data are unavailable.
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Coarse Industry
Definition

1960-1982 1983-2005
Period Length=

2 Years
εD 0.812 1 0.749 1 0.616 1 0.579 1
εQ 0.020 1 0.055 1 0.063 1 0.031 1
εM 0.030 1 0.0.37 1 0.034 1 0.033 1
εX 0.061 1 0.364 1 1.628 1 2.953 1

σA,Ind 0.029 0.023 0.045 0.035 0.044 0.031 0.067 0.050
σB,Ind 0.055 0.014 0.105 0.000 0.110 0.000 0.166 0.001
σD,Ind 0.038 0.045 0.069 0.106 0.055 0.098 0.100 0.173
σA,Agg 0.000 0.005 0.010 0.009 0.007 0.002 0.016 0.014
σB,Agg 0.020 0.009 0.033 0.023 0.041 0.019 0.068 0.041
σD,Agg 0.017 0.023 0.017 0.001 0.000 0.025 0.000 0.007
ρA,Ind 0.948 1.000 0.986 1.000 0.954 1.000 0.918 0.977
ρB,Ind 0.888 0.211 0.902 1.000 0.821 -0.990 0.769 0.654
ρD,Ind 0.942 1.000 0.797 0.887 0.999 1.000 0.912 0.920
ρA,Agg 0.357 0.874 0.999 0.807 0.999 1.000 0.864 1.000
ρB,Agg 0.301 0.999 0.824 0.727 0.999 1.000 0.896 1.000
ρD,Agg 0.471 1.000 0.931 1.000 0.999 0.422 0.999 1.000

Log Likelihood 1975.3 -8106.8 3145.9 -48565.7 3543.5 -35526.4 2486.8 -20266.3
% of Variation
from Industry-
Specific Shocks

70.7 64.8 60.2 32.2 69.6 72.2 55.8 45.0

Table 4: MLE Estimates, Robustness Checks: Industry Definition, Sample Period, and
Period Length.
Notes: The final row gives the fraction of aggregate output growth volatility that is due to industry-specific
demand and productivity shocks.

costs– or some other friction– that prevent industries from substituting across its factors of

production in the very short run. To the extent that this is the case, the results in the final

columns of Table 4 should differ from those in the benchmark specification. It turns out

that the change in period length alters neither the relative importance of industry-specific

shocks nor the estimates of εQ or εM . The primary difference between these specifications

are larger values for the standard deviations of the productivity and demand shocks, and a

smaller estimate of the preference elasticity of substitution (εD).

Which Shocks Should the Estimation Include?

It is possible that other disturbances– in addition to, or perhaps instead of, shocks

to demand or productivity– drive movements in industries’sales, prices, and intermediate
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input cost shares.30 Here, I explore the effects of the addition and deletion of sources of

variation on the model’s estimates.

Investment
Shocks

σB,Ind = 0
σB,Agg = 0

εD 0.749 1 0.669 1
εQ 0.052 1 0.754 1
εM 0.029 1 0.029 1
εX 2.573 1 0.000 1

σA,Ind 0.047 0.034 0.041 0.034
σB,Ind 0.102 0.000
σD,Ind 0.062 0.095 0.295 0.104
σI,Ind 0.327 0.330
σA,Agg 0.011 0.007 0.031 0.008
σB,Agg 0.039 0.000
σD,Agg 0.006 0.000 0.217 0.001
σI,Agg 0.001 0.238
ρA,Ind 1.000 1.000 1.000 1.000
ρB,Ind 0.914 0.997
ρD,Ind 0.989 0.905 1.000 0.955
ρI,Ind -0.078 0.820
ρA,Agg 0.890 0.921 0.999 0.800
ρB,Agg 0.881 1.000
ρD,Agg -0.079 0.992 -0.002 0.943
ρI,Agg -0.363 0.833

Log Likelihood 6766.2 -94628.7 -88401.4 -94676.9
% of Variation
from Industry-
Specific Shocks

62.9 31.3 30.5 51.7

Table 5: MLE Estimates, Robustness Checks: Different Sets of Shocks.
Notes: The final row gives the fraction of aggregate output growth volatility that is due to industry-specific
demand and productivity shocks.

Analyses of one-sector economies indicate that investment-specific technology shocks

account for a large fraction of the business cycle variation in output and (see Fisher 2006

and Justiniano, Primiceri, and Tambalotti 2010). In the context of the model presented in

Section 2, I alter Equation 5 to include shocks to the investment technology:

Kt+1,J = (1− δK) ·KtJ + ιtJ · ιt,Agg ·XtJ . (16)

30Canova, Ferroni, and Matthes (2013, Section 4) show that parameter estimates can be sensitive to the
choice of shocks and observable variables used in the estimation procedure. Guerron-Quintana (2010) and
Ríos-Rull et al. (2012) make a similar point.
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In Equation 16, ιtJ and ιt,Agg are industry-specific and aggregate investment technology

shocks. These shocks alter the effi ciency by which an industry’s investment good is trans-

formed into its next-period capital stock. As with the other stochastic processes, assume

that the log ιtJ and log ιt,Agg are each first-order autoregressive processes.

Including investment shocks alters neither the estimated relative importance of

industry-specific shocks nor the estimates of the model’s elasticities of substitution (see the

first two columns of Table 5). These shocks are, however, moderately important, representing

22% of output volatility. There are two potential explanations why investment shocks play

a less prominent role here than in to Fisher (2006) or Justiniano, Primiceri, and Tambalotti

(2010). First, Justiniano, Primiceri, and Tambalotti (2010) show that investment shocks are

particularly important in models that also incorporate price and wage stickiness. Their ab-

sence in the model of Section 2 may account for the discrepancy between my multi-industry

model and results from one-sector models. Second, it is possible that the mere consid-

eration of a model of multiple industries may reduce the scope of investment technology

shocks. As in the one-sector models, investment shocks alter the relative price of capital

goods. Unlike these models, however, productivity shocks to the few capital-producing

industries– Construction, Non-electrical Machinery, Electrical Machinery, and Transporta-

tion Equipment– will have a similar effect on the relative price of capital goods. While

the reason behind the limited importance of investment shocks may be unclear, it is clear

that industry-specific shocks are the predominant source of aggregate fluctuations, as in the

benchmark specification.

In columns 3 and 4, I remove the labor-augmenting productivity shocks (Bt,Agg and

the BtJs) as a source of variation. The main goal of this exercise is to show why the labor-

augmenting productivity shocks are included in the benchmark specification in the first

place: Without these shocks, the model cannot possibly match the dynamics of industries’

intermediate input purchases (compare the log likelihood of column 3 to that given in the

first column of Table 2).31 The B shocks alter the marginal product of labor and thus

alter the relative marginal productivity of intermediate inputs to other inputs. In turn,

these B shocks drive much of the variation in industries’ intermediate input cost shares.

A secondary goal of this exercise is to provide an example (albeit a dubious one) in which

aggregate shocks explain the bulk, roughly 70%, of GDP growth variation. It turns out

that only aggregate shocks, and not industry-specific shocks, can account for the volatile

intermediate input cost shares that are observed in the data when σB,Agg = σB,Ind = 0. I

31I experimented with several other specifications that also omitted labor-augmenting productivity shocks
as a potential source of variation, and always found that the maximized likelihood was several orders of
magnitude smaller than the maximum of the benchmark specification.
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explain why this is the case, using a simple example, in Section 5.1.

International Evidence

Table 6 presents results from estimations involving data from other countries. For all

countries, εQ is less than 0.15, and always significantly less than 1. With the exception

of Italy, industry-specific shocks account for the bulk of the variation in aggregate output

growth.

Similar to the United States, restricting εQ = 1 diminishes the relative importance of

these shocks for three of the countries in the sample: Denmark, the Netherlands, and Spain.

For the other three countries (France, Italy, and Japan), the restricted specification has a

more prominent estimated role for industry-specific shocks. In the data, the distinguishing

features of these two sets of countries are the cross-industry correlation of industries’sales

and the cross-industry correlation of industries’ intermediate input cost shares. In the

restricted specification, intermediate input cost shares are uninformative about the model’s

parameters. For countries that have highly correlated sales, across industries, aggregate

shocks will explain most of the output variation. When εQ is freely estimated, intermediate

input cost shares will also now inform the estimates of the stochastic productivity and

demand processes. All things equal, the specification with estimated εQ will indicate that

industry-specific shocks are relatively more important for the countries for which sales are

highly correlated and intermediate input cost shares are uncorrelated.32

In summation, industry-specific shocks are the primary source of aggregate fluc-

tuations for most, but not all, countries. Including intermediate input cost shares as an

observable variable, only possible when εQ is freely estimated, increases the estimated impor-

tance of industry-specific shocks for countries with uncorrelated intermediate input growth

rates, and decreases the estimated importance of micro shocks for the remaining countries.

32To provide some support for this argument, consider the relationship between the following two variables.
The first variable is the difference, across the free and restricted specifications, in the fraction of aggregate
output variation that is explained by industry-specific shocks. These values for Denmark, France, Italy,
Japan, the Netherlands, Spain, and U.S. are -6%, -37%, 57%, 29%, -14%, 34%, and -15%, respectively (see
the last rows of Tables 3 and 6). The second variable is the ratio of the two across-industry correlations, as
described in the text. These ratios are 1.31, 1.04, 1.45, 1.07, 1.54 , and 1.23. The correlation between the
two variables is 77%.
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Additional Robustness Checks

Additional robustness checks are given in Appendix A. There, I explore robustness

checks to the extent of measurement error in intermediate input cost shares, winsorization of

the observed variables, the de-trending procedure, the covariance structure of the stochastic

processes, and the calibrated values of εLS, ΓMIJ , αJ , µJ and ξJ . Overall, the main results

of the paper– that the estimate of εQ is close to 0 and that industry-specific shocks are of

primary importance– are robust to these different specifications.

5 How are the parameters identified?

The purpose of this section is to provide some intuition as to how the model’s parameters

are identified. I do this in two ways. First, in Section 5.1, I consider an example econ-

omy for which I can derive expressions for the covariances among industries prices, sales,

and intermediate input cost shares. Second, in Section 5.2, I numerically relate εQ and

εD to various model-predicted moments (setting all other parameters to the Table-2 MLE

estimates). The aim of this second exercise is to illustrate how these two elasticities are

identified, and to show that the analytical results obtained in Section 5.1’s simple example

are pertinent.

Section 5.1 demonstrates that if εQ < 1, then only industry-specific shocks can

account for the intermediate input cost shares that are both volatile and uncorrelated across

industries (as documented in Section 3). The primary takeaway from Section 5.2 is that

εQ is estimated to be less than 1 mainly because of volatile intermediate input shares that

are positively correlated with the industries’own intermediate input prices. In combination,

these two findings explain why industry-specific shocks are important.

5.1 A Simple Example33

In this section, I study a simple economy for which analytic expressions are available.

The goal of this exercise is to explain why industry-specific shocks are more prominent

when εQ is freely estimated. To summarize the results of this exercise, when εQ = 1 only

measurement error can possibly generate any variation in the observed intermediate input

cost shares. On the other hand, when εQ is less than 1, industry I’s intermediate input

cost shares also co-vary with its own industry-specific labor-augmenting productivity and

33This subsection is related to the technical appendix of Carvalho and Gabaix (2013). The main differences
are that Carvalho and Gabaix impose that εQ = 1 and also allow for some adjustment costs to aggregate
labor.
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the aggregate factor-neutral productivity. When the aggregate factor-neutral productivity

term is large, industries intermediate input cost shares co-move. Thus, to fit the volatile,

uncorrelated intermediate input cost shares, the MLE procedure assigns higher values to

σB,Ind when εQ is freely estimated.

Compared to the benchmark model given in Section 2, I make a number of simplifying

assumptions. I assume that a) all goods depreciate fully each period; b) there is no physical

capital in production; c) the exogeneous productivity and preference processes have zero

persistence; d) each industry has identical production functions; e) the consumer’s preference

weight is the same for each of the N goods; f) the input-output matrix has 1
N
in each entry;

and g) εM = 0. For the reader’s convenience, I re-write the utility function and each

industry’s sectoral production function, incorporating these assumptions. Via assumptions

(a) through (c), the equilibrium allocation can be solved period by period. For this reason,

I omit time subscripts in this section.

The output of industry J equals:

QJ = AJ · AAgg

(1− µ)
1
εQ (BJ ·BAgg · LJ)

εQ−1
εQ + µ

1
εQ

[
1

N
min
I
MI→J

] εQ−1
εQ


εQ
εQ−1

. (17)

Output is produced using labor LJ and intermediate inputs MI→J purchased from other

sectors. Note that the restriction of εM = 0 is already incorporated in Equation 17. Finally,

to emphasize, each sector’s production function is distinguished only by the industry-specific

components of the two productivity terms. The cost share parameters (µJ and ΓMIJ), which

were previously allowed to differ by industry, are now the same for each industry.

The representative consumer has preferences over leisure and the N consumption

goods, parameterized by the following utility function:

U =

(
DAgg ·

N∑
J=1

DJ

N

)
· log

( N∑
J=1

(
DJ

N

) 1
εD

(CJ)
εD−1
εD

) εD
εD−1

− εLS
εLS + 1

(
N∑
J=1

LJ

) εLS+1

εLS

.

(18)

As before, εD and εLS parameterize, respectively, the elasticity of substitution across the

consumption goods and the elasticity of labor supply. For future reference, define the ideal

price index of the consumption-good bundle as:

P ≡
[

N∑
J=1

DJ∑N
I=1DI

(PJ)1−εD

] 1
1−εD

, (19)
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where PJ is again the price of the industry J output.

Given the maintained assumptions, the solution to the equilibrium allocation is

straightforward. The first step is to solve for the relative price of each industry’s output

and each industry’s intermediate input cost share. The first-order condition of intermediate

input purchases yields the following expression for the observed cost share (lettingW denote

the Lagrange multiplier on the labor-market clearing condition, and Pmat
J the price of a unit

of the intermediate bundle for industry J):

M share
J = µ · (AAgg · AJ)εQ−1 ·

(
Pmat
J

PJ

)1−εQ
·M error

J ·M error
Agg

=
µ · (Pmat

J )
1−εQ

µ (Pmat
J )εQ−1 + (1− µ)W 1−εQ · (BJ ·BAgg)

εQ−1 ·M
error
J ·M error

Agg

=
µ ·
(

1
N

∑N
I=1 PI

)1−εQ

µ
(

1
N

∑N
I=1 PI

)1−εQ
+ (1− µ)W 1−εQ · (BJ ·BAgg)

εQ−1
·M error

J ·M error
Agg .(20)

Equation 20 gives a first indication why, provided εQ 6= 1, the intermediate input share is

influenced primarily by labor-augmenting productivity shocks. The only industry-specific

factors present in this equation are BJ and M error
J . If an industry’s intermediate input cost

share is to display any variation that is uncorrelated with other industries’cost shares, it

must be due to either BJ or M error
J .34

The cost-minimization condition of industry J implies that

PJ =
1

AJ · AAgg
·

(1− µ)

(
W

BJ ·BAgg

)1−εQ
+ µ

(
N∑
J=1

1

N
PJ

)1−εQ
 1

1−εQ

. (21)

According to Equation 21, the price of industry J’s output depends on its productivity, the

wage, and the price of all other goods in the economy. Solving this system of equations (see

Appendix E) yields expressions for the relative prices of each of the goods of the economy

in terms of industries’productivities. Then, plugging the relative prices into Equation 20

gives the intermediate input cost shares in terms of the exogeneous variables.

Throughout the remainder of this section, I consider a log-linear approximation

34This stark result is due to the assumption that all rows of the input-output matrix are identical. In
reality, the diagonal elements of the input-output matrix are substantially greater than 1

N (and, more gen-
erally, rows of the input-output matrix are dissimilar from one another). As the diagonal elements increase,
the relationship between each industry’s intermediate input cost share and its own price strengthens. The
main idea represented in Equation 20– that the intermediate input share of each industry is responsive to
average (and not its own) prices– would also follow from a more realistic input-output matrix.
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around the point at which all of the As, Bs, and Ds are equal to 1. The relative prices and

cost shares are:

log

(
PJ
P

)
≈ − logAJ − (1− µ) logBJ +

1

N

N∑
I=1

logAI + (1− µ) logBI . (22)

log
(
M share

J

)
≈ (εQ − 1) log (AAgg)− (εQ − 1) (1− µ) log (BJ) (23)

+ (εQ − 1) ·
[

1

N

N∑
I=1

logAI + (1− µ) logBI

]
+ log

(
M error

J ·M error
Agg

)
.

According to Equation 22, the relative price of an industry’s good is inversely related to

the relative total factor productivity of that industry. Because we are looking at relative

prices, the aggregate productivity terms, AAgg and BAgg, do not appear in Equation 22. On

the other hand, the intermediate input cost share of each industry depends on the aggregate

factor-neutral productivity term and the industry-specific labor-augmenting productivity.

The sensitivity of M share
J to AAgg or BJ is a U-shaped function of the production elasticity

of substitution, with a minimum at εQ = 1. When εQ = 1, productivity shocks have no

impact on the intermediate input cost shares.

Equation 24 gives the sales of each industry (again, see Appendix E for a derivation).

log

(
YJ
P

)
≈ 1

N

N∑
I=1

1− µ (1− εQ)

1− µ log (AI · AAgg) + log (BI ·BAgg) +
εLS

εLS + 1
log (DAgg ·DI)

+
1

N

N∑
I=1

{
(1− εD (1− µ))

[
log

(
AI
AJ

)
+ (1− µ) log

(
BI

BJ

)]
+ log

(
1

1− µ

)
+ (1− µ) log

(
DJ

DI

)}
. (24)

To understand Equation 24, the terms in the first line equal (the logarithm of) aggregate

GDP. The terms on the second and third lines of the equation give the (logarithm of the)

Domar-weight of industry J . The definition of a Domar weight is the ratio of sales in

industry J to GDP. The weight is a function of the industry’s demand shock (relative to

other industries’demand shocks) and productivity (relative to the productivities of other

industries). Industries with higher demand shocks comprise a higher share of real GDP,

and as a result have an unambiguously higher Domar weight. High-productivity industries

may have a higher or lower Domar weight depending on εD. In the relevant part of the

parameter space, the lowest-productivity sectors have the highest weight.

In the remainder of this section, I will use Equations 22 to 24 to compute the co-

variances of industry-level observable variables as functions of the elasticities of substitution
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and the variances of the exogeneous demand and productivity processes.

Proposition 1 Given the previously stated assumptions (a) through (g), up to a first-order
approximation around the steady state, and ignoring terms of order 1

N
:35

Cov

(
log

PI
P
, log

PJ
P

)
= 1I=J

(
σ2
A,Ind + (1− µ)2 σ2

B,Ind

)
(25)

Cov

(
log

PI
P
, log

YJ
P

)
= 1I=J (1− εD (1− µ))

(
σ2
A,Ind + (1− µ)2 σ2

B,Ind

)
(26)

Cov

(
log

PI
P
, logM share

J

)
= 1I=J (1− µ)2 (εQ − 1)σ2

B,Ind (27)

Cov

(
log

YI
P
, log

YJ
P

)
=

(
1− µ (1− εQ)

1− µ

)2

σ2
A,Agg + σ2

B,Agg (28)

+

(
εLS

εLS + 1

)2

σ2
D,Agg + 1I=J (1− µ)2 σ2

D,Ind

+1I=J (1− εD (1− µ))2 (σ2
A,Ind + (1− µ)2 σ2

B,Ind

)
Cov

(
log

YI
P
, logM share

J

)
= (εQ − 1)

1− µ (1− εQ)

1− µ σ2
A,Agg (29)

Cov
(
logM share

I , logM share
J

)
= (εQ − 1)2 σ2

A,Agg + 1I=J (εQ − 1)2 σ2
B,Ind

1I=Jσ
2
M,Ind + σ2

M,Agg (30)

Proposition 1 provides several insights into the way the model’s parameters are

identified.

First, the variance in industries’relative prices identifies the dispersion of the industry-

specific productivity shocks (see Equation 25).

Second, combining Equations 25 and 26, when I = J , yields:36

E
(
log PI

P
· log YI

P

)
E
((

log PI
P

)2
) ≈

Cov
(
log PI

P
, log YI

P

)
V ar

(
log PI

P

) ≈ 1− εD · (1− µ) . (31)

In other words, assuming that the value of the intermediate input cost share (µ) is known,

the preference elasticity of substitution can be read offof a regression of an industry’s sales on

its relative price. As goods are more and more substitutable in the representative consumer’s

preferences, the relationship between sales and prices is weaker and weaker. In the special

case in which intermediate inputs are not used in production (µ = 0), industry sales and

35The terms that are of order 1
N are omitted, here, for expositional purposes but can be found in Appendix

E.
36The first approximation follows because E

(
log PI

P

)
≈ 0 (see Equation 22).
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consumption are equal, meaning that sales and prices are positively related if and only if

goods are gross substitutes in preferences.

Third, Equation 27 explains how the data help identify whether inputs are gross

complements or gross substitutes (i.e., whether εQ < 1 or εQ > 1). When labor and inter-

mediate are gross complements (εQ < 1), the observed relationship between the intermediate

input cost share and the relative price of intermediate inputs (ΠI ≡ PmatI

PI
) should be positive.

Because ΠI =
(
PI
P

)−1
in this section’s example , a negative observed relationship between rel-

ative prices and intermediate input cost shares indicates that labor and intermediate inputs

are complements to one another.

Fourth, because the demand shock terms only appear in Equation 28, industry sales

data are crucial in identifying the relative importance of demand shocks. When industries’

real sales are volatile, either the industry-specific or the common demand shocks will be

volatile. If the cross-industry correlation of industries’sales is large, then the estimation

will assign high volatilities to the aggregate demand shock and relatively low volatilities to

the industry-specific component.

Fifth, according to Equation 30, variation in industries materials’ shares emerges

from measurement error and, when εQ 6= 1, productivity shocks. When εQ is restricted to be

equal to 1, data on industries’intermediate cost shares are uninformative about the industry-

specific labor-augmenting shocks or the aggregate factor-neutral productivity shocks. On the

other hand, when labor and intermediate inputs are gross complements, the covariance ma-

trix of industries’intermediate input cost shares helps identify these two volatilities. Large

values of elements of this covariance matrix are consistent with a large value of either σA,Agg
or σB,Ind, while uncorrelated cost shares are consistent with a relatively large value of the

industry-specific labor-augmenting shock and a small value of the aggregate neutral shock.

Because, individual industries’observed cost shares are suffi ciently varied and uncorrelated

in the data, the inclusion of data on industries’cost shares, which is only possible when εQ
is freely estimated, drives up the estimate of σ2

B,Ind.

Sixth, Equation 30 indicates why adding additional measurement error will lead to

a lower estimate of σ2
A,Agg and/or σ

2
B,Ind: it will reduce the scope for productivity shocks to
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explain the variance of intermediate input cost shares.37,38

Finally, Proposition 1 also explains why the main result of the paper, that industry-

specific shocks have aggregate consequences, breaks down in the specification that omits

labor-augmenting productivity shocks (as in the final columns of Table 5). Without labor-

augmenting productivity shocks, variation in AAgg is the only potential source of variation

in intermediate input cost shares. Because the intermediate input bundle combines inputs

from different industries, the price of this bundle depends on aggregate, rather than industry-

specific, disturbances. As a result, to fit the volatile intermediate input cost shares that we

actually observe in the data, the estimation procedure assigns high values to the dispersions

of aggregate shocks.39

To recap, when εQ is restricted to be equal to 1, the model cannot possibly fit the

evolution of industries’intermediate input purchases: the unitary elasticity of substitution

implies that the intermediate input cost shares can vary only because of measurement error.

When εQ < 1, the intermediate input cost share can potentially depend on industry-specific

or aggregate shocks. Because, in the data, movements in industries’intermediate input cost

shares are relatively volatile and uncorrelated, the model assigns high estimates of σB,Ind
when εQ is freely estimated.

37One could supplement some of these arguments more formally by comparing the model predictions
of Equations 25 to 30 to their data counterparts. Indeed, because there is no persistence in this simple
example economy, Equations 25 to 30 contain all possible information that could be inferred from data on
industries’intermediate input purchases, output prices, and sales. The likelihood function corresponding to
this estimation is

logL =trace
(
ΣModel + Σ−1Model · ΣData

)
,

where ΣModel is the variance-covariance matrix implied by Equations 25 to 30 and ΣData is the empirical
counterpart. The MLE estimates from this simple exercise affi rm the estimates from the full model given in
Section 4.2. In particular, the estimate of standard deviation of the industry-specific productivity is larger
when εQ is freely estimated.
38A final lesson from Proposition 1: When εQ = 1, factor-neutral productivity shocks and labor-

augmenting productivity shocks are not separably identifiable. Rather, the data only permit identification
of σ2A,Agg + (1− µ)

2
σ2B,Agg (and σ2A,Ind + (1− µ)

2
σ2B,Ind) . (This result follows from the assumption that

all industries have the same labor cost shares. In the full model of Section 2 the two parameters can be
separately identified even when εQ = 1).
39One feature that this simple example cannot capture is the increased importance of aggregate demand

shocks in the specification where both εQ is freely estimated and labor-augmenting productivity shocks are
omitted. This deficiency is due to the absence of capital in the current section’s simple example. Aggregate
demand shocks increase the relative price of current-period consumption, and as a result, increase the relative
price of capital. (Shocks to individual industries’demand have a much smaller effect on the relative price of
capital.) Following an aggregate demand shock, the ratio of PmatJ to PJ increases for industries with capital-
intensive production technologies and decreases for the other industries in the economy, thus generating an
increase in the intermediate input cost shares for the capital-intensive industries (and, again, a decrease in
the intermediate input cost share for the other industries), provided εQ is less than 1.
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Figure 2: Covariances and standard deviations, for various values of εQ.
Notes: The solid line depicts the covariance between ∆mshare and ∆pmat. Values for the covariances are
given on the left axis. The standard deviation of ∆mshare is plotted in dashed lines. Corresponding values
are given on the right axis.

5.2 How are εQ and εD identified?

In this subsection, I perform two comparative statics exercises, with the aim of illus-

trating how εQ and εD are identified. In the first exercise, I vary εQ; in the second, I vary

εD. All other parameters are set equal to the maximum likelihood estimates given in the

first column of Table 2. To emphasize, the assumptions used in producing these figures are

those described in Section 2 (not those introduced in Section 5.1).

In Figure 2, I vary εQ, the elasticity of substitution in the sectoral production func-

tions. For each set of parameters, I solve the model and then compute the model predicted

covariances and standard deviations of ∆mshare
tI , and ∆pmattI . The values that are plotted in

Figure 2 are the average correlations and standard deviations, across industries.

The first takeaway from Figure 2 is the U-shaped relationship between εQ and the

dispersion of ∆mshare: the industry-specific materials cost share approaches 0 as εQ ap-

proaches 1, and is roughly 3% for εQ = 0.5 or 1.5. (To contrast, the dispersions of the

other variables are unchanged in εQ.) Second, the relationship between the intermediate

input cost share and the price of the intermediate input bundle is positive for εQ < 1 and

negative for εQ > 1. As a reminder, in Table 1 we observed that the empirical correlation

between the intermediate input cost share and price is positive, and that the dispersion of

the intermediate input cost share is substantial. Taken together, these patterns indicate

that the model and is consistent with the data, provided εQ < 1. Finally, the patterns

depicted in Figure 2 align with the relevant parts of Proposition 1, namely Equations 27 and
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Figure 3: Covariance between ∆y and ∆p, for various values of εD.

30.

In Figure 3, I now vary εD instead of εQ. As the consumer’s preferences, over

the different goods, becomes more elastic, the correlation between ∆y and ∆p decreases:

When εD is high, any price increase causes the consumer to substitute sharply towards other

goods.40 These patterns match the prediction of the previous subsection’s simple example;

see, in particular, Equation 26.

6 Conclusion

This paper develops and estimates a multi-industry real business cycle model. Data

on industries’sales, intermediate input purchases, and output prices are employed to eval-

uate how easily industries substitute across inputs, how easily consumers substitute across

consumption goods, and the magnitude of the industry-specific and aggregate components

of preference and productivity shocks. The positive relationship between industries’inter-

mediate input prices and cost shares indicates that intermediate inputs and capital/labor

are complements. Because of this complementarity, the industry-specific components of the

productivity shocks have large estimated standard deviations. Almost two-thirds of the vari-

ation in aggregate output growth originates from industry-specific, as opposed to aggregate,

shocks. This contrasts with the Cobb-Douglas-based specification– and with the results of

40Neither of the patterns of Figure 2 (the U-shaped relationship between the elasticity of substitution and
∆mshare, and the positive-to-negative change of the correlation between ∆mshare and ∆pmat) are present
in Figure 3.
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Foerster, Sarte, and Watson (2011)– in which industry-specific shocks are responsible for

less than half of the variation in aggregate output growth.

The paper complements analyses in other areas of economics, such as development

and growth, international trade, and monetary economics, that use input-output linkages as

an amplification mechanism. With respect to the literature on development and growth,

Jones (2011, 2013) argues that a small change in factor misallocations has the potential to

yield large changes in GDP per capita. In the international trade literature, Yi (2003)

and Caliendo and Parro (2011) argue that small reductions in tariffs can explain the large

growth in cross-border gross trade flows that has been observed over the last few decades.

Finally, Basu (1995) and Bouakez, Cardia, and Ruge-Murcia (2009, 2011) have included

nominal rigidities in their multi-industry general equilibrium models, showing that input-

output linkages magnify and prolong the effect of monetary policy shocks. The current

paper’s main results, particularly the sensitivity of the input-output amplification mechanism

to the value of εQ, are of relevance to this literature which has, in general, assumed higher

values for this critical elasticity of substitution.

The paper’s results are also of relevance for policymakers: The potential effi cacy and

necessity of policies that target distressed industries depend on the extent to which events

in individual industries cascade throughout the economy.

The primary implication of the paper is that business cycle fluctuations emerge from

industry-specific shocks. Independent of this industry-specific versus aggregate distinction,

research on the sources of business cycles has offered several additional explanations for

aggregate fluctuations: financial crises, increases in uncertainty about future productivity,

and news about future economic activity, to name a few. An exciting avenue for future

research would be to re-examine these well-known sources of short-run fluctuations with the

new-found appreciation that these sources appear at the micro level.
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A Additional Robustness Checks

Tables 7 to 10 examine the sensitivity of the benchmark results to choices that I make

in the benchmark estimation: the extent of measurement error in industries’intermediate

input cost shares, the winsorization of outlier observations, and the de-trending procedure.

In the first four columns of Table 7, I vary the fraction of observations that are winsorized; in

the benchmark estimation, I trim the top and bottom 0.5% of the industry level prices, sales,

and cost shares. The main difference is the overall magnitude of the aggregate productivity

and demand shocks. These shocks are larger when fewer outliers are winsorized. Estimates

of the elasticities of substitution and the relative importance of industry-specific shocks are

unchanged. In the fifth and sixth columns, of Table 7, I choose a higher value of the labor

supply elasticity (the benchmark estimation used εLS = 1) and find little difference in the

estimates. In the final columns, I use data from 1972 (instead of 1992, as in the benchmark

calculations) to infer the steady-state relevant parameters ΓMIJ , µJ , αJ , and ξJ .
41

In Table 8, I consider the effect of varying σM,Agg and σM,Ind (the standard deviation

of the aggregate and industry-specific components of the intermediate input measurement

error). In the benchmark estimation, σM,Agg and σM,Ind are both equal to 0.2%. In the first

column, I set both σM,Agg and σM,Ind equal to 0.1%. In the second (respectively third) col-

umn, I set σM,Ind (respectively σM,Agg) equal to 0.4% and leave the other standard deviation

at its benchmark value. Decreasing both the aggregate and industry-specific components of

the intermediate input measurement error affects neither the estimated elasticities of substi-

tution nor the fraction of aggregate output volatility that originates from industry-specific

shocks. On the other hand, increasing only the aggregate component of the measurement

error leads to a more prominent role of industry-specific shocks (where these shocks account

for 68% instead of 63% of the variation in aggregate output growth), while increasing only

the industry-specific component of the measurement error has the opposite effect. These

findings are consistent with the predictions of Proposition 1. For all of these differences,

however, industry-specific shocks are the dominant source of aggregate output volatility.

In other words, the paper’s main empirical findings are robust to moderate changes in the

degree to which intermediate inputs are mismeasured.

41The Capital Flows data necessary to construct ΓXIJ are unavailable for 1972. For this reason, I use the
1992 Capital Flows Table to infer the ΓXIJ for the robustness check corresponding to the final columns of
Table 7.
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Trim 0.25% Trim 1.0% εLS = 2 Steady State=1972
εD 0.611 1 0.670 1 0.661 1 1.450 1
εQ 0.049 1 0.043 1 0.046 1 0.056 1
εM 0.033 1 0.036 1 0.034 1 0.038 1
εX 2.861 1 2.713 1 2.877 1 3.454 1

σA,Ind 0.048 0.036 0.042 0.031 0.046 0.034 0.045 0.034
σB,Ind 0.119 0.001 0.100 0.000 0.110 0.000 0.104 0.000
σD,Ind 0.063 0.110 0.062 0.101 0.062 0.104 0.356 0.476
σA,Agg 0.009 0.007 0.006 0.006 0.010 0.007 0.007 0.000
σB,Agg 0.041 0.014 0.037 0.016 0.040 0.015 0.034 0.043
σD,Agg 0.002 0.028 0.000 0.029 0.002 0.027 0.001 0.167
ρA,Ind 0.992 1.000 0.999 1.000 1.000 1.000 0.998 1.000
ρB,Ind 0.942 1.000 0.996 1.000 0.892 1.000 0.997 1.000
ρD,Ind 0.887 0.959 0.889 0.951 0.948 0.954 0.886 0.942
ρA,Agg 0.987 0.877 0.963 0.890 1.000 0.878 0.926 -0.212
ρB,Agg 0.968 0.793 0.977 0.797 0.991 0.793 0.999 1.000
ρD,Agg 0.999 0.870 0.999 0.872 1.000 0.864 -0.933 0.799

Log Likelihood 6493.3 -105526.3 6979.7 -76277.6 6735.3 -94674.4 6735.3 -96087.4
% of Variation
from Industry-
Specific Shocks

65.4 52.5 64.6 46.4 67.4 48.8 74.6 36.6

Table 7: MLE Estimates, Robustness Checks: Trimming Cut-off and the Calibrated
Parameters.
Notes: The final row gives the fraction of aggregate output growth volatility that is due to industry-specific
demand and productivity shocks.
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σM,Ind = 0.1%
σM,Agg = 0.1%

σM,Ind = 0.4%
σM,Agg = 0.2%

σM,Ind = 0.2%
σM,Agg = 0.4%

εD 0.650 0.663 0.652
εQ 0.045 0.046 0.047
εM 0.034 0.034 0.034
εX 2.879 2.844 2.850

σA,Ind 0.046 0.045 0.046
σB,Ind 0.111 0.107 0.109
σD,Ind 0.062 0.062 0.062
σA,Agg 0.010 0.010 0.008
σB,Agg 0.041 0.040 0.037
σD,Agg 0.002 0.001 0.002
ρA,Ind 0.999 0.999 0.998
ρB,Ind 0.888 0.889 0.887
ρD,Ind 0.949 0.950 0.949
ρA,Agg 1.000 1.000 0.998
ρB,Agg 1.000 0.984 1.000
ρD,Agg 1.000 1.000 0.999

Log Likelihood 6493.3 6758.0 6748.1
% of Variation
from Industry-
Specific Shocks

64.2 62.4 68.9

Table 8: MLE Estimates, Robustness Checks: Measurement Error.
Notes: The final row gives the fraction of aggregate output growth volatility that is due to industry-specific
demand and productivity shocks.
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In Table 9, I consider the effect of relaxing the assumptions regarding the stochas-

tic processes. In the benchmark specification, both the standard deviation of innova-

tions and the persistence of the stochastic processes are identical for all industries. In

the first columns of Table 9, I relax this assumption by allowing the σϑ,Ind, σϑ,Agg, and

ρϑ,Ind (for ϑ ∈ {A,B,D}) to differ across broad groups of industries, S, (where S =

{primary inputs, durable goods, non-durable goods, services}).42 In other words, Equa-

tions 9 to 14 are changed to:

log ϑt+1,J = ρSϑ,Ind · log ϑtJ + σSϑ,Ind · ω
Ind,ϑ
tJ , and (32)

log ϑt+1,Agg = ρϑ,Agg · log ϑt,Agg + σSϑ,Agg · ω
Agg,ϑ
t for ϑ ∈ {A,B,D} . (33)

In the final columns, I also add a "middle-nest" of shocks, so that the exogeneous demand

and productivity processes co-vary more strongly within the broad groups of industries than

across these broad groups.

log ϑt+1,S = ρSϑ,Middle · log ϑt,Agg + σSϑ,Middle · ω
Middle,ϑ
t for ϑ ∈ {A,B,D} . (34)

The two main results of Table 9 are that a) neither the estimate of εQ nor the estimated

relative importance of industry-specific shocks is sensitive to allowing for differential volatil-

ities and persistencies to the stochastic processes; and b) the "middle-nest" shocks account

for a small fraction, roughly 5%, of aggregate output growth volatility.

A final robustness check considers the sensitivity of the main results to the de-trending

procedure. In the benchmark calculations, I had linearly de-trended each industry-level

observable before performing the maximum likelihood estimation procedure. In Table 10,

I consider two alternate de-trending procedures: a linear trend, with a break in the trend

in 1983, and a Hodrick-Prescott filter. Including a trend break has almost no effect on the

parameter estimates or the resulting relative importance of industry-specific shocks. (see the

first two columns of Table 10). On the other hand, applying a Hodrick-Prescott filter results

in a somewhat higher estimate for the relative importance of industry-specific shocks.

42Primary Inputs are the following five industries: Agriculture, Metal Mining, Coal Mining, and Crude Oil
Extraction. Durable Goods comprise Construction, Lumber, Furniture, Leather, Stone and Glass, Primary
Metals, Fabricated Products, Non-Electrical Machinery, Motor Vehicles, Other Transportation Equipment,
Instruments, and Miscellaneous Manufacturing. Nondurable Goods comprise Food and Kindred Products,
Tobacco, Textile Mill Products, Apparel, Paper, Printing, Chemicals, Petroleum, and Rubber and Plastic.
Finally, Services comprise the remaining industries (Transportation and Warehousing, Communications,
Electric Utilities, Gas Utilities, Wholesale and Retail, F.I.R.E., Personal and Business Services).
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Linearly De-trended,
Break at 1983

Hodrick-Prescott
Filter

εD 0.652 1 0.209 1
εQ 0.050 1 0.039 1
εM 0.0.34 1 0.510 1
εX 3.158 1 0.060 1

σA,Ind 0.045 0.033 0.028 0.026
σB,Ind 0.105 0.001 0.072 0.001
σD,Ind 0.061 0.101 0.048 0.086
σA,Agg 0.009 0.007 0.006 0.000
σB,Agg 0.037 0.017 0.025 0.019
σD,Agg 0.002 0.014 0.002 0.023
ρA,Ind 1.000 1.000 0.477 1.000
ρB,Ind 0.858 1.000 0.174 1.000
ρD,Ind 0.899 0.941 0.356 0.786
ρA,Agg 1.000 0.859 0.777 0.936
ρB,Agg 0.938 0.818 1.000 0.643
ρD,Agg 1.000 0.227 1.000 0.992

Log Likelihood 6887.2 -83619.5 8230.0 -45667.8
% of Variation
from Industry-
Specific Shocks

63.1 46.5 76.4 39.3

Table 10: MLE Estimates, Robustness Checks: De-trending.
Notes: The final row gives the fraction of aggregate output growth volatility that is due to industry-specific
demand and productivity shocks.
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B U.S. Data: Additional Details

This section provides details on the construction of various industry-level variables.

Table 11 presents these expenditure shares for the 34 industries in the benchmark sam-

ple. Intermediate inputs comprise 54.9% of the costs of the average industry. Labor

and capital are represent 28.7% and 16.3%, respectively, of the expenditures of the average

industry. Purchased intermediate inputs are especially important within manufacturing,

accounting for 59.3% of the costs in these industries.

The final columns of Table 11 give the consumption expenditure share and the gross

output share of each industry. The total gross output of each industry is taken directly

from Dale Jorgenson’s dataset. The consumption expenditures are taken from the BEA

1992 Input-Output Table, the sales to the following three BEA IOIND industries: 910000

(personal consumption expenditures), 920000 (private fixed investment), and 940000 (exports

of goods and services).

Depreciation rates for durable goods are given in Table 12. The set of durable goods

are those designated as such by Basu, Fernald, and Kimball (2006), plus the Construction

industry. The depreciation rates are taken from the BEA, which in turn draws on Hulten

and Wykoff (1981). For durable goods with depreciation rates that are not estimated by

Hulten and Wykoff: I set the depreciation rate for Lumber and Wood Products to be equal

to 11.8% (the same as the depreciation rate of Furniture and Fixtures), and the depreciation

rate for other goods to be equal to 16.5%.43

Industry Name Capital Labor Materials Consumption Output

1 Agriculture, Forestry, Fisheries 19.3% 23.7% 57.0% 2.2% 2.8%

2 Metal Mining 20.5% 21.8% 57.7% 0.1% 0.1%

3 Coal Mining 22.9% 34.9% 42.3% 0.3% 0.3%

4 Crude Oil and Gas Extraction 36.9% 14.3% 48.7% 1.1% 1.4%

5 Non-Metallic Mineral Mining 28.6% 32.8% 38.6% 0.1% 0.2%

6 Construction 3.9% 39.6% 56.5% 6.7% 6.5%

7 Food and Kindred Products 12.7% 17.0% 70.4% 4.2% 4.3%

8 Tobacco Manufactures 34.5% 17.2% 48.4% 0.4% 0.3%

9 Textile Mill Products 9.8% 23.9% 66.3% 0.6% 0.8%

10 Apparel and Other Textiles 7.6% 27.7% 64.7% 0.9% 0.7%

11 Lumber and Wood Products 11.5% 25.5% 63.0% 0.9% 0.9%

Continued on next page

43The 16.5% figure is the value that the BEA uses to impute missing durable good depreciation rates.
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12 Furniture and Fixtures 7.4% 39.1% 53.4% 0.4% 0.5%

13 Paper and Allied Products 13.0% 25.6% 61.4% 1.3% 1.4%

14 Printing and Publishing 14.0% 41.5% 44.5% 1.7% 1.8%

15 Chemicals and Allied Products 20.3% 21.4% 58.3% 2.5% 3.3%

16 Petroleum Refining 7.4% 6.2% 86.3% 1.5% 1.7%

17 Rubber and Plastic Products 9.5% 35.1% 55.4% 1.6% 1.2%

18 Leather and Leather Products 15.1% 22.8% 62.1% 0.1% 0.1%

19 Stone, Clay, and Glass Products 11.1% 37.7% 51.2% 0.5% 0.7%

20 Primary Metals 9.4% 20.7% 69.9% 1.4% 1.5%

21 Fabricated Metal Products 11.0% 32.8% 56.2% 1.7% 1.8%

22 Non-Electrical Machinery 9.4% 33.7% 56.9% 2.5% 2.8%

23 Electrical Machinery 18.5% 28.8% 52.7% 2.1% 2.3%

24 Motor Vehicles 4.7% 17.1% 78.2% 2.3% 2.5%

25 Other Transportation Equipment 5.3% 44.3% 50.4% 1.3% 1.6%

26 Instruments 8.4% 50.4% 41.1% 1.3% 1.4%

27 Miscellaneous Manufacturing 15.5% 29.3% 55.2% 0.4% 0.4%

28 Transportation and Warehousing 12.0% 39.1% 48.9% 3.9% 4.1%

29 Communications 35.0% 22.4% 42.6% 2.4% 2.5%

30 Electric Utilities (Services) 42.2% 19.1% 38.7% 1.9% 2.5%

31 Gas Utilities (Services) 12.0% 6.4% 81.6% 0.9% 0.6%

32 Wholesale and Retail Trade 13.0% 48.1% 38.9% 11.1% 13.6%

33 F.I.R.E. 42.5% 23.5% 34.0% 16.8% 13.1%

34 Personal and Business Services 11.0% 53.7% 35.4% 22.7% 20.4%

Table 11: Industry Definitions, Preference Weights, and Factor Shares.

Figure 4 presents the flows of material and capital inputs across pairs of industries. The

figures depict shares of expenditures of each destination industry, so that the rows of each

of these figures sum to 1.

These data are taken from the 1992 BEA Input-Output Table and 1992 BEA Capital

Flows Table. I make one adjustment to the 1992 Capital Flows Table when producing

the right panel of Figure 4 to account for the maintenance and repair expenditures that

are not included in the Capital Flows Table. As McGrattan and Schmitz (1999) report,

maintenance expenditures are substantial, potentially accounting for 50% of total physical

capital investment. Following Foerster, Sarte, and Watson (2011), I add a 25% share to the

diagonal entries of this matrix, to account for these maintenance and repair expenditures.

This augmentation presumes that capital-good repairs draw on within-industry resources
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Industry Name Depreciation Rate
6 Construction 2.1%
11 Lumber and Wood Products 11.8%
12 Furniture and Fixtures 11.8%
19 Stone, Clay, and Glass Products 16.5%
20 Primary Metals 16.5%
21 Fabricated Metal Products 16.5%
22 Non-Electrical Machinery 16.5%
23 Electrical Machinery 17.0%
24 Motor Vehicles 35.3%
25 Other Transportation Equipment 16.5%
26 Instruments 16.7%
27 Miscellaneous Manufacturing 16.2%

Table 12: Depreciation rates of durable goods.

(e.g., firms that produce a product use their own labor to repair their capital equipment).

Two patterns emerge from these figures. First, the diagonal entries of the matrices

are larger than average. In the left panel, the average own-industry share of intermediate

input expenditures is 27%. This large share is due, in part, to the coarseness of industry

definitions. To give an example, one of the 34 industries in the benchmark sample is Food

Manufacturers (2-digit SIC, 20). Within this industry are producers of flour and producers

of bread. A bakery, which purchases flour, will be recorded as purchasing inputs from within

the same industry according to my 34-industry categorization. Using a finer categorization,

this purchase would have been classified as an across-industry purchase.

The second pattern is that certain industries are used, as intermediate or investment

inputs, by a large number of other industries. For intermediate inputs, these are the Trans-

portation and Warehousing, Wholesale and Retail, F.I.R.E., and Personal and Business

Services industries. For investment inputs, the main sources are the Construction industry

and the several industries that are categorized as producing different types of machinery.

C Data from Outside the U.S.

The data from other countries come from two sources. The flows of intermediate inputs

are collected by the Organization for Economic Co-operation and Development (OECD).44

The data on industries’output and intermediate input purchases are collected and main-

44The data can be downloaded at http://www.oecd.org/trade/input-outputtables.htm . I use, in this
section, the 2002 edition of the data.
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Figure 4: Flows of intermediate inputs and capital investment goods.
Notes: The left panel gives the intensity of intermediate input flows among the 34 industries, and the right
panel gives the corresponding set of flows of capital investment inputs.

tained by the European Union KLEMS Growth and Productivity Accounts (EUKLEMS).45

The EUKLEMS data are reviewed, in detail, in Timmer et al. (2007) and O’Mahony and

Timmer (2009). Durable good depreciation rates and flows of investment goods are not

available for other countries. For these variables, I imputed values using data from the

United States.

Of the thirty countries that are included in the EUKLEMS dataset, I restrict attention

to six: Denmark, France, Italy, Japan, the Netherlands, and Spain. Many of the countries

that I discarded are from Eastern Bloc countries– such as Latvia, Lithuania, and Poland–

for which pre-1990 data are unavailable. There are other countries, such as England, for

which– for at least half of the sample period– intermediate input purchases and gross output

are imputed from value added data. Data from all countries span 1970 to 2007, with the

exception of Japan, France, and Spain, countries whose samples begin in 1973, 1978, and

1981.

The industry definitions in the EUKLEMS database differ from those in the U.S. dataset.

Service industries are more finely defined. For example, F.I.R.E. is now broken out between

finance and insurance on the one hand and real estate on the other. Mining and manufac-

45The data can be downloaded at http://www.euklems.net/ . I use, in this section, the ISIC Rev. 3
edition of the data.
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# Name Denmark France Italy Japan Netherlands Spain U.S. Ind.
1 Agriculture 1.6% 1.7% 1.9% 0.8% 3.1% 2.6% 1
2 Mining 0.6% 0.1% 0.0% 0.0% 1.2% 0.1% 2-5
3 Food and Tobacco 8.8% 8.2% 7.0% 5.9% 9.0% 7.0% 7-8
4 Textiles and Leather 2.4% 2.7% 6.0% 1.9% 2.4% 3.1% 9-10, 18
5 Wood Products 0.5% 0.1% 0.2% 0.0% 0.2% 0.2% 11
6 Paper and Publishing 1.3% 1.2% 1.1% 0.6% 2.0% 1.3% 13-14
7 Petroleum Refining 0.8% 2.0% 1.9% 0.7% 1.6% 1.1% 16
8 Chemicals 3.1% 4.0% 1.9% 1.1% 7.3% 2.9% 15
9 Rubber and Plastics 0.9% 0.7% 0.6% 0.2% 1.1% 0.6% 17
10 Stone, Clay, and Glass 0.5% 0.4% 0.7% 0.2% 0.4% 0.6% 19
11 Metal products 1.7% 2.4% 1.8% 0.7% 3.1% 1.9% 20-21
12 Non-electrical Machinery 5.4% 3.4% 5.2% 4.3% 3.2% 2.4% 22
13 Electrical Machinery 4.5% 4.5% 4.1% 6.8% 6.7% 3.5% 23, 26
14 Transportation Equipment 2.9% 6.7% 4.3% 4.2% 4.4% 7.0% 24-25
15 Misc. Manufacturing 2.3% 1.6% 2.4% 1.1% 1.9% 1.8% 12, 27
16 Utilities 1.7% 2.1% 1.7% 1.3% 1.5% 1.3% 30, 31
17 Construction 8.2% 9.0% 9.5% 15.4% 6.5% 11.7% 6
18 Wholesale and Retail 12.1% 9.7% 14.8% 13.3% 12.4% 10.7% 32
19 Hotels and Restaurants 1.9% 3.7% 4.6% 6.3% 1.9% 10.7% 34
20 Transport and Warehousing 6.4% 2.8% 4.1% 3.8% 4.6% 3.2% 28
21 Communications 0.9% 0.9% 0.9% 0.9% 0.9% 1.1% 29
22 Finance and Insurance 2.0% 2.0% 1.4% 1.6% 2.3% 1.3% 33
23 Real Estate 8.5% 10.1% 7.2% 10.3% 5.8% 6.8% 33
24 Business Services 1.9% 4.4% 1.8% 2.4% 4.0% 2.6% 34
25 Education 5.1% 4.5% 5.3% 4.2% 3.4% 5.0% 34
26 Health and Social Work 10.5% 7.7% 6.9% 6.4% 6.7% 6.0% 34
27 Other Personal Services 3.5% 3.2% 2.7% 5.3% 2.4% 3.3% 34

Table 13: Industry definitions and consumption shares in the EUKLEMS dataset.
Notes: The final column shows the correspondence between the EUKLEMS industry definitions and the
industry definitions for the United States data.
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# Name Denmark France Italy Japan Netherlands Spain
1 Agriculture 75.7% 76.7% 74.3% 63.8% 77.8% 77.5%
2 Mining 64.8% 65.6% 64.5% 63.0% 68.8% 69.0%
3 Food and Tobacco 60.4% 64.3% 59.6% 66.3% 64.3% 68.1%
4 Textiles and Leather 56.3% 65.5% 61.8% 57.4% 60.3% 66.7%
5 Wood Products 96.2% 87.1% 76.5% 53.5% 90.0% 83.2%
6 Paper and Publishing 58.2% 73.1% 70.6% 61.6% 68.2% 67.3%
7 Petroleum Refining 54.4% 60.7% 64.6% 66.1% 65.3% 65.9%
8 Chemicals 55.1% 60.5% 59.9% 56.8% 59.9% 58.5%
9 Rubber and Plastics 56.9% 63.3% 65.6% 63.7% 64.6% 63.4%
10 Stone, Clay, and Glass 55.9% 66.2% 65.6% 60.2% 65.3% 61.8%
11 Metal products 60.8% 66.5% 60.8% 62.3% 72.9% 65.7%
12 Non-electrical Machinery 68.4% 77.4% 72.6% 73.5% 77.6% 75.5%
13 Electrical Machinery 60.2% 60.5% 66.4% 62.3% 49.6% 68.0%
14 Transportation Equipment 61.8% 49.4% 54.8% 41.3% 51.3% 54.8%
15 Misc. Manufacturing 35.2% 26.7% 31.5% 27.2% 43.1% 25.3%
16 Utilities 28.7% 21.3% 8.8% 14.1% 34.5% 25.0%
17 Construction 41.1% 44.2% 39.7% 44.1% 44.1% 45.5%
18 Wholesale and Retail 55.5% 50.5% 37.3% 43.4% 53.7% 38.5%
19 Hotels and Restaurants 22.4% 39.3% 31.2% 52.6% 23.8% 52.9%
20 Transport and Warehousing 37.2% 53.5% 45.3% 48.5% 71.2% 51.4%
21 Communications 66.3% 54.8% 59.5% 54.4% 64.8% 65.4%
22 Finance and Insurance 43.5% 42.2% 46.9% 34.9% 41.1% 41.8%
23 Real Estate 54.7% 51.1% 49.6% 52.8% 52.1% 46.2%
24 Business Services 37.2% 46.7% 31.0% 33.5% 43.7% 36.4%
25 Education 24.1% 14.8% 16.6% 15.4% 18.9% 14.3%
26 Health and Social Work 24.7% 25.7% 35.4% 45.2% 27.4% 33.0%
27 Other Personal Services 40.0% 43.1% 41.8% 36.7% 56.7% 51.8%

Table 14: Cost shares of intermediate inputs.

turing industries are more coarse. As with the United States data, I discard the Government

Enterprises industry. Table 13 describes the EUKLEMS industry classification, in addition

to the consumption shares of each of the 27 industries. The main takeaway from this table

is that the five countries are broadly similar in their industry composition.

Intermediate input shares for the six countries are given in Table 14. The intermediate

input share of each country is roughly one-half, ranging from 50% for Japan to 56% for the

Netherlands. These figures are close to the United States intermediate input share. Again,

similar to the United States, other countries’intermediate input shares are higher for the

primary and manufacturing sectors, and lower for the service sector.

Figure 5 presents the flows of intermediate inputs for two countries, Italy (left panel)

and Japan (right panel). Similar to the United States tables, the diagonal elements of
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Figure 5: Flows of intermediate inputs.
Notes: Data for Italy are given in the left panel; data for Japan are given in the right panel.

these tables are large: an average industry supplies approximately one-quarter of its own

intermediate input purchases.

Correlations and standard deviations of industries’gross output and intermediate input

purchases are given in Table 15; the analogous values, for the United States, are given in

Table 1. As with the U.S., industries’ gross output is the most volatile statistic. The

intermediate input cost share is somewhat more volatile in these six countries than it is

for the United States (the corresponding standard deviation, there, was 2.5%). As in

the U.S. data, gross output and output prices are positively correlated with one another.

The intermediate input expenditure share is also consistently positively correlated with the

relative price of intermediate inputs. The correlations between ∆mshare and ∆π given in

the final row of Table 15 are somewhat larger than the corresponding value (21.2%) derived

from the United States data.

A-13



Statistic Denmark France Italy Japan Netherlands Spain
SD(∆y) 6.8% 4.2% 5.3% 5.5% 5.8% 5.5%
SD(∆p) 4.6% 3.7% 4.3% 3.9% 3.9% 2.5%
SD(∆mshare) 5.1% 2.8% 3.9% 3.7% 2.8% 3.1%
SD(∆pmat) 4.3% 3.6% 5.1% 5.3% 4.7% 3.0%
SD(∆π) 3.3% 2.1% 3.7% 4.0% 3.4% 2.2%
Corr(∆y, ∆p) 58.3% 65.1%* 61.2%* 60.0%* 52.8% 33.7%*
Corr(∆y, ∆mshare) -10.2%* -3.5% -2.3% 14.9%* -17.3%* 17.9%*
Corr(∆y, ∆pmat) 45.2%* 55.4%* 44.4%* 44.5%* 21.7%* 23.4%*
Corr(∆y, ∆π) -23.4%* -18.4%* -9.3%* 0.6% -30.5%* -6.3%
Corr(∆p, ∆mshare) -10.4%* -13.4%* -10.3%* 11.0%* -12.5%* -9.5%*
Corr(∆p, ∆pmat) 72.8%* 8.8%* 70.1%* 67.5%* 70.2%* 70.4%*
Corr(∆p, ∆π) -46.4%* -30.4%* -18.5%* -8.0%* -17.4%* -17.4%*
Corr(∆mshare, ∆pmat) 17.3%* 7.7%* 30.1%* 51.3%* 28.8%* 8.2%*
Corr(∆mshare, ∆π) 36.9%* 37.2%* 53.4%* 58.4%* 54.0%* 22.2%*
Corr(∆pmat, ∆π) 26.9%* 26.4%* 57.1%* 68.2%* 58.0%* 57.7%*

Table 15: Correlations and standard deviations of the annual growth rates of industry-level
statistics.
Notes: Stars indicate that the correlation is statistically different from 0, at the 5% level.

D Solution of the Section-2 Model and Calibration De-

tails

D.1 First-Order Conditions

To begin, I write the Lagrangian related to the constrained maximization problem of

a social planner. (Since this economy satisfies the conditions of the Welfare Theorems,

the planner’s solution will correspond to an equilibrium outcome.) In this constrained

maximization problem, let PtJ refer to the Lagrange multiplier associated with the market-

clearing-condition for the output of industry J in period t, and let P inv
tJ refer to the Lagrange

multiplier associated with the market-clearing condition for the industry J investment good

in period t. Finally, Et refers to the expectation operator; the expectations are formed at
time t.

L = E0

∞∑
t=0

βt

Dt,Agg ·
(

N∑
J=1

ξJ ·DtJ

)
· log

[ N∑
J=1

(ξJ ·DtJ)
1
εD (δCJ · CtJ)

εD−1
εD

] εD
εD−1


−
(

N∑
J=1

LtJ

) εLS+1

εLS

+

N∑
J=1

P inv
tJ [XtJ + (1− δK)KtJ −Kt+1,J ]
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+
N∑
J=1

PtJ

[
QtJ + (1− δCJ )Ct+1,J − CtJ −

N∑
I=1

[Mt,J→I +Xt,J→I ]

]}
. (35)

For convenience, I re-state the expression for QtJ :

QtJ = AtJ · At,Agg × (36)(1− µJ)
1
εQ

((
KtJ

αJ

)αJ (LtJ ·BtJ ·Bt,Agg

1− αJ

)1−αJ
) εQ−1

εQ

+ (µJ)
1
εQ (MtJ)

εQ−1
εQ


εQ
εQ−1

.

The first-order conditions for the planner are:

[CtJ ] : PtJ = (Dt,Agg ·DtJ · ξJ)
1
εD · (δCJ )

εD−1
εD (CtJ)

− 1
εD ·

(
N∑
I=1

ξI ·DtI

)
(37)

×
(

N∑
I=1

(DtI · ξI)
1
εD (δCI · CtI)

εD−1
εD

)−1

+ Pt+1,J (1− δCJ ) .

[Mt,I→J ] : (AtJ · At,Agg)
εQ−1
εQ

(
QtJ · µJ
MtJ

) 1
εQ

(
MtJ · ΓMIJ
Mt,I→J

) 1
εM

=
PtI
PtJ

. (38)

[Xt,I→J ] : PtI = P inv
tJ

(
XtJ · ΓXIJ
Xt,I→J

) 1
εX

. (39)

[LtJ ] :

(
N∑

J ′=1

LtJ ′

)− 1
εLS

= PtI · (AtJ · At,Agg)
εQ−1
εQ ·BtJ ·Bt,Agg . (40)

× (QtJ (1− µJ))
1
εQ

(
KtJ

αJ

)αJ · εQ−1εQ

(
LtJ ·BtJ ·Bt,Agg

1− αJ

)αJ−1−αJ ·εQ
εQ

.

[Kt+1,J ] : P inv
tJ = β · Et

[
Pt+1,J (Qt+1,J (1− µJ))

1
εQ (At+1,J · At+1,Agg)

εQ−1
εQ (41)

×
(
Kt+1,J

αJ

)−1+αJ ·
εQ−1
εQ

(
Lt+1,J ·Bt+1,J ·Bt+1,Agg

1− αJ

)(1−αJ )·
εQ−1
εQ


+β(1− δK)Et

[
P inv
t+1,J

]
.

Finally, I re-state the market-clearing condition of each industry J :

QtJ = CtJ + (1− δCJ )Ct−1,J +

N∑
I=1

[Xt,J→I +Mt,J→I ] . (42)
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Equations 36 through 42 are suffi cient to characterize the dynamics of the model, given

information on the steady-state allocation. I turn to the determination of the steady state

allocation in the following subsection.

D.2 Solution of the Steady State and Calibration Details

The solution to the steady-state allocation, as well as the calibration of the production

and preference parameters (ξJ , µJ , αJ , ΓXIJ , and ΓMIJ), are determined using a two-step

fixed-point algorithm. In the "inner" fixed-point algorithm, the prices of each of the N

steady-state prices are jointly determined, given the steady-state wage and the production

and preference parameters. In the "outer" algorithm, the wage, steady-state allocations,

and the production and preference parameters are jointly determined. Here, and throughout

the remainder of the section, I use V ss
I to refer to the steady-state value of the variable VI .

Finally, all exogeneous processes are normalized at 1, in the steady state: AssAgg, B
ss
Agg, D

ss
Agg,

AssJ , B
ss
J , and D

ss
J all equal 1.

The Inner Algorithm

FixW ss, ξJ , µJ , αJ , ΓXIJ , and ΓMIJ . The algorithm is used to determine the steady-state

prices of the N goods.

The cost-minimization problem of the industry I representative firm generates the fol-

lowing expression for the marginal cost of good I:

P ss
I =

(1− µI) (W ss)(1−αI)(1−εQ) · (Rss
I )αI ·(1−εQ) + µI

(∑
J

ΓMJI (P ss
J )1−εM

) 1−εQ
1−εM


1

1−εQ

.

(43)

Using a no-arbitrage (the industry I representative firm can either rent a unit of capital

or, instead, purchase the goods necessary to make the unit of capital and then sell the un-

depreciated part in the subsequent period) argument, the rental price of a unit of capital

equals:

Rss
I =

1− β (1− δ)
β

P inv
I (44)

=
1− β (1− δ)

β

(∑
J

(
ΓXJI
)
· (P ss

J )1−εX

) 1
1−εX

. (45)

Equation 43 comprises a set of N non-linear equations, which can be used to solve
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for the N P ss
I s. The solution to these N equations, which is achieved using a fixed-point

algorithm, constitutes the inner loop.

Note that, given the solution to these equations, the Rss
I ’s can be solved for, using

Equation 44.

The Outer Algorithm

In the outer algorithm, I solve for W ss, ξJ , µJ , αJ , ΓXIJ , and ΓMIJ . In each iteration, of

the fixed point algorithm, the production and preference parameters are read off of the data

and the relative prices (which were solved for in the inner algorithm). The iteration is on

W ss, which converges to a value such that labor supply and demand are equated.

Let sKJ , s
L
J , and s

M
J refer to the expenditure share of industry J on capital, labor, and

intermediate inputs. Also let sCJ refer to the consumer’s expenditure share on the industry

J product. These ss can be read off of Table 11. Finally let sMI→J, and s
X
I→J refer to the

share of the industry I input in the production of the industry J intermediate input and

capital input. These ss refer to the flows depicted in Figure 4.

During each iteration of the outer algorithm, the production function and preference

parameters are chosen so that the following equations hold:

ΓXIJ = sXI→J ·
(

P ss
I

(P inv
J )

ss

)εX
.

ΓMIJ = sMI→J ·
(

P ss
I

(Pmat
J )ss

)εM
.

µJ = sMJ ·
(∑

ΓMIJ · P ss
I

P ss
J

)εQ
.

ξJ = sCJ ·
(
P ss
J

P ss

)εD
.

αJ =
sKJ

sKJ + sLJ
.

In other words, the production and preference parameters are chosen so the data on cost and

consumption expenditure shares exactly match the corresponding model-predicted values.

The first-order conditions, given by Equations 37 to 40 imply that, in the steady-state,

the following equations hold:

δCJ · Css
J = ξJ · (P ss

J )−εD ·
(∑

I

(ξI)
1
εD (δCI · Css

I )
εD−1
εD

)−εD
. (46)
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M ss
J→I = Qss

I · µI · ΓMJI · (P ss
J )−εM (P ss

I )εQ

[∑
J ′

ΓMJ ′I · (P ss
J ′ )

1−εM

] εM−εQ
1−εM

. (47)

Xss
J→I = δ ·Qss

I (1− µI) · αI ·
(
Rss
I

W ss

)αI−1 [
(Rss

I )αI (W ss)1−αI]−εQ . (48)

× (P ss
I )εQ · ΓXJI · (P ss

J )−εX
(

Rss
I β

1− β (1− δ)

)εX
.

LssI = Qss
I (1− µI) (1− αI)

(
Rss
I

W ss

)αI [
(Rss

I )αI (W ss)1−αI]−εQ (P ss
I )εQ . (49)

To sum up, Css
J , M

ss
J→I , X

ss
J→I , and L

ss
J can be solved for given information Rss

J and P ss
J

(which were solved for earlier) and Qss
J and W

ss (which are still unknown).

The supply of good I, in the steady state, is a function of LssI , X
ss
J→I , and the M

ss
J→I :

Qss
I = ΛI(LssI ,X

ss
J→I , M

ss
J→I). Moreover, the demand of good I is the sum over the Xss

I→J ,

M ss
I→J , and C

ss
I . Except for the prices (which, again, have already been solved for) and the

wage (which has yet to be solved for), the LssI , X
ss
J→I , M

ss
J→I and C

ss
I depend only on the N

Qss’s. In other words, we have N non-linear equations for the N unknown Qsss:

ΛI(LssI , X
ss
J→I ,M

ss
J→I) = δCI · Css

I +
∑
J

Xss
I→J +M ss

I→J . (50)

Moreover, the wage can be read off of the labor supply relation:

Lss = (W ss)εLS . (51)

Solving theN+1 equations given in Equations 50 and 51, numerically, and then applying

Equations 47 to 49 yields the desired expressions for the steady-state allocation. In practice,

Equations 50 and 51 can be solved using a tatonnement-like process.

E Calculations Related to Section 5.1

In this section, I solve for the covariance of industries’real sales, relative prices, and

intermediate input cost shares. The solution involves four steps. First, I solve for the wage.

Second, I solve for the relative prices and intermediate input cost shares. Third, I solve for

real sales. Fourth, I write out the covariances of these variables.

Step 1: For later use, I will first solve for the wage in each period. For this portion of

the analysis, it will be suffi cient to examine how much the consumer much to work and how
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much of the consumption bundle to consume. The objective function for the consumer is

U =

(
DAgg ·

N∑
J=1

DJ

N

)
· logC − εLS

εLS + 1
L
εLS+1

εLS .

The budget constraint for this consumer is:

P · C = W · L .

The solution to this constrained optimization problem is:

W = L
1

εLS .

C =
1

P
·DAgg ·

N∑
J=1

DJ

N
. (52)

Invoking the budget constraint of the representative consumer:

L
εLS+1

εLS = DAgg ·
N∑
J=1

DJ

N
.

Thus:

W =

[
DAgg ·

N∑
J=1

DJ

N

] 1
1+εLS

(53)

The log-linear approximation (around the point at which the Ds are equal to 1) to

Equations 52 and 53 are:

log (P · C) ≈ logDAgg +
1

N

N∑
J=1

logDJ , and

logW ≈ 1

1 + εLS

[
logDAgg +

1

N

N∑
J=1

logDJ

]
.

Step 2: Now consider the cost-minimization problem of the representative firm in in-

dustry J . As we argued in the text, the cost-minimization problem implies the following
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recursive equation for the marginal cost (equivalently, price) of industry J’s good:

PJ = (AJ · AAgg)−1

(1− µ)

(
W

BJ ·BAgg

)1−εQ
+ µ

[
N∑
I=1

1

N
PI

]1−εQ
 1

1−εQ

for J = {1, ...N}.

(54)

The log-linear approximation to the previous equation is:

logPJ = − log (AJ · AAgg) + (1− µ) · [logW − log (BJ ·BAgg)] +
µ

N

N∑
I=1

logPI . (55)

Note that:

logPI + logAI + (1− µ) logBI ≈ logPJ + logAJ + (1− µ) logBJ ,

for all pairs of industries, so that Equation 55 implies:

logPJ ≈ − log (AJ · AAgg) + (1− µ) · [logW − log (BJ ·BAgg)]

+
µ

N

N∑
I=1

logPJ + logAJ + (1− µ) logBJ − logAI − (1− µ) logBI .

Re-arranging, and also plugging in Equation 53:

logPJ ≈
1

1 + εLS

[
logDAgg +

1

N

N∑
I=1

logDI

]
− log (AJ + AAgg)

1− µ (56)

− log (BJ +BAgg) +
µ

N

N∑
I=1

[
logAJ − logAI

1− µ + logBJ − logBI

]
.

Because all industries’cost shares are identical (both in the consumer’s preferences and

in the production of each industry’s intermediate input bundle):

logPmat
J ≈ logP

≈ 1

1 + εLS

[
logDAgg +

1

N

∑
J

logDJ

]
− 1

N

N∑
I=1

logAAgg + logAI
1− µ + logBJ + logBAgg .

Thus:

log

(
PJ
P

)
= log

(
PJ
Pmat
J

)
≈ 1

N

N∑
I=1

log

(
AI
AJ

)
+ (1− µ) log

(
BI

BJ

)
. (57)
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And:

M share
J = µ · (AJ · AAgg)εQ−1 ·

(
Pmat
J

PJ

)1−εQ
·M error

J ·M error
Agg

logM share
J ≈ log µ+ (εQ − 1) log (AAgg)− (εQ − 1) (1− µ) log (BJ) (58)

+ (εQ − 1) ·
[

1

N

N∑
I=1

log (AI) + (1− µ) log (BI)

]
+ log

(
M error

J ·M error
Agg

)
.

Equations 57 and 58 appear in the body of the paper.

Step 3: The next task is to solve for YJ
P
, the real sales of industry J . To do so, apply the

market clearing condition for good I, plug in the intermediate input demand by customers’

of I, then re-arrange:

QI = CI +
N∑
J=1

MI→J .

PIQI = PICI +
1

N
PI

N∑
J=1

MI→J

= PICI + PI

N∑
J=1

µ

N
QJ (AJ · AAgg)εQ−1

(
Pmat
J

PJ

)−εQ
.

Next, take the steady-state approximation and use the definition of YI ≡ PI ·QI

log (YI) ≈ log

(
1

1− µ

)
+ (1− µ) (logPI + logCI) +

µ

N

∑
J

εQ log

(
PJ
Pmat
J

)

+
µ

N

N∑
J=1

log YJ + (εQ − 1) log (AJ · AAgg) + logPI − logPJ .

log YI −
µ

N

∑
J

log YJ ≈ log

(
1

1− µ

)
− (1− µ) (logPI + logCI)

+
µ

N

N∑
J=1

(εQ − 1) log (AJ · AAgg) + logPI − logPJ . (59)

Equation 59 is a system of N linear equations for the N unknown Y s. The solution to

this system of equations is:

log YI ≈ log

(
1

1− µ

)
+ (1− µ) (logPI + logCI) +

µ

N

∑
J

(logPJ + logCJ) (60)

A-21



+
µ

N

N∑
J=1

εQ − 1

1− µ log (AJ · AAgg) + logPI − logPJ .

Given the preferences of the representative consumer, the demand function for good I

is:

logCI = log (DAgg) + log (DI)− εD log

(
PI
P

)
− logP .

Plug this expression back into Equation 60, and re-arrange:

log (YI) ≈ log

(
1

1− µ

)
+ logDAgg + (1− µ) logDI +

µ

N

N∑
J=1

logDJ

+
(
1− εD (1− µ)

)
log

(
PI
P

)
+
µ

N

N∑
J=1

εQ − 1

1− µ log (AJ · Agg) .

Use the expression for relative prices (from Equation 60):

log (YI) ≈ log

(
1

1− µ

)
+ logDAgg + (1− µ) logDI +

µ

N

N∑
J=1

logDJ (61)

+
1− εD (1− µ)

N

N∑
J=1

[
log

(
AJ
AI

)
+ (1− µ) log

(
BJ

BI

)]
+
µ

N

∑
J

(εQ − 1)

1− µ log (AJ · Agg) .

Finally, subtract the price index (which I have already solved for) from Equation 61:

log

(
YI
P

)
≈ log

(
1

1− µ

)
+

εLS

εLS + 1
logDAgg +

1− µ
(
1− εQ

)
1− µ logAAgg + logBAgg(62)

+
(
1− εD (1− µ)

)
(− logAI − (1− µ) logBI) + (1− µ) logDI

+
1

N

(
µ− 1

εLS + 1

) N∑
J=1

logDJ

+
1

N

[
1− µ

(
1− εQ

)
1− µ +

(
1− εD (1− µ)

)] N∑
J=1

logAJ

+
1

N

[
1 +

(
1− εD (1− µ)

)
(1− µ)

] N∑
J=1

logBJ .

Equation 62 is equivalent to the expression given in the body of the paper.

Step 4: Having written out the log-linear approximations to the variables of interest, it
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is straightforward to compute the covariances among the relative prices, intermediate input

shares, and sales using Equations 57, 58, and 62. All that is involved is recognizing that

all underlying distinct shocks are uncorrelated (e.g., that cov (DJ , DI) 6= 0 only if I = J ,

and also that cov (DJ , DAgg) = cov (DJ , AAgg) = cov (DJ , AI) = 0 = cov (DJ , BAgg) =

cov (DJ , BI) = 0). The log-linear approximations of the covariances are:

Cov

(
log

(
PI
P

)
, log

(
PJ
P

))
=

[
1I=J −

1

N

]
σ2
A,Ind + (1− µ)2

[
1I=J −

1

N

]
σ2
B,Ind .

Cov

(
log

(
PI
P

)
, log

(
M share

J

))
= (1− µ)2

[
1I=J −

1

N

]
(εQ − 1)σ2

B,Ind .

Cov

(
log

(
PI
P

)
, log

(
YJ
P

))
=

(
1− εD (1− µ)

) [
1I=J −

1

N

]
σ2
A,Ind

+ (1− µ)2 (1− εD (1− µ)
) [
1I=J −

1

N

]
σ2
B,Ind .

Cov
(
log
(
M share

I

)
, log

(
M share

J

))
=

(
εQ − 1

)2
[
σ2
A,Agg +

1

N
σ2
A,Ind

]
+
(
εQ − 1

)2
[
1I=Jσ

2
B,Ind −

1

N
σ2
B,Ind

]
+1I=Jσ

2
M,Ind + σ2

M,Agg .

Cov

(
log
(
M share

I

)
, log

(
YJ
P

))
=

(
εQ − 1

) 1− µ
(
1− εQ

)
1− µ

[
σ2
A,Agg −

1

N
σ2
A,Ind

]
(εQ − 1) (1− εD (1− µ)) (1− µ)2

[
1I=J −

1

N

]
σ2
B,Ind .

Cov

(
log

(
YI
P

)
, log

(
YJ
P

))
=

(
1− µ

(
1− εQ

)
1− µ

)2

σ2
A,Agg + σ2

B,Agg +

(
εLS

εLS + 1

)2

σ2
D,Agg

+

[
1I=J (1− µ)2 +

1

N

(
µ− 1

εLS + 1

)(
1− µ+

εLS

εLS + 1

)]
σ2
D,Ind

+1I=J
(
1− εD (1− µ)

)2
σ2
A,Ind

1

N

(1− µ
(
1− εQ

)
1− µ

)2

−
(
1− εD (1− µ)

)2

σ2
A,Ind

+1I=J (1− µ)2
[(

1− εD (1− µ)
)2
]
σ2
B,Ind

+
1

N

[
1−

(
1− εD (1− µ)

)2
]
σ2
B,Ind .

Dropping the terms that involve 1
N
yields the expressions given in Proposition 1.

A-23



F Cross-Sectional Estimates

By now, it is hopefully clear that the value of the elasticity of substitution between

intermediate inputs and the capital-labor bundle is a key component of an assessment of

the importance of industry-specific shocks. Since few papers have previously estimated

this parameter, I will try to corroborate the structural estimates that were given in Table

2. Towards this objective, I estimate the industry-level elasticity of substitution– between

material inputs and other inputs– using micro-data from a handful of individual industries.

I pursue the following two-part strategy. For each industry, I estimate how easily individual

plants substitute across their factors of production, by relating plants’materials purchases to

their materials prices. Then, I apply the methods developed in Oberfield and Raval (2013),

which allow me to combine information on a) the plant-level elasticity of substitution, b) the

dispersion of materials cost shares, and c) the elasticity of plant scale to marginal costs so

that I can ascertain the corroborating estimates of εQ.

To preview the main results of this section, the elasticity of substitution for the plant-

level production function is approximately 0.65. Because within-industry variation in mate-

rials expenditure shares is small for each of the ten industries, the industry level production

function’s elasticity of substitution is only somewhat higher, 0.75. Moreover, across the

industries in the sample, the industry level elasticities of substitution are similar to one

another.

F.1 Data Source and Sample

The data source, for this section, is the Census of Manufacturers. This dataset contains

plant-level information for each manufacturer in the United States, and is collected once every

five years, in years ending in a "2" or a "7." For certain industries, plants with greater than

five employees are asked to provide information on each of the material inputs that they

consume and each of the products that they produce. Critically, for the empirical analysis

of this section, the Census Bureau elicits information on both the quantities and values of

these inputs and outputs, allowing me to construct plant-level prices. Additionally, the

Census Bureau records a plant identifier, which will allow me to compare the intermediate

input purchases of the same plant across different time periods.

The sample in this section is identical to that which was used in an earlier paper (see

Atalay 2013). The industries are those for which outputs and inputs are relatively homoge-

neous. This choice reflects a desire to, as much as possible, rule out heterogeneous quality

as a source of input or output price variation. The ten industries that comprise the sample

are corrugated boxes (with the years 1972-1987 and 1992-1997 analyzed separately), ground
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Sample Units of Output Material Inputs N
Boxes, Year≤1987 Short Tons Paper/Paperboard (90%) 1820
Boxes, Year≥1992 Square Feet Paper/Paperboard (89%) 646
Ground Coffee 1000 Pounds Green Coffee Beans (80%) 300

Ready-Mix Concrete 1000 Cubic Yards
Cement (53%),

Sand/Gravel (28%)
3708

White Wheat Flour 50-Pound Sacks Wheat (90%) 503
Gasoline 1000 Barrels Crude Petroleum (84%) 692

Milk, Bulk 1000 Pounds
Unprocessed
Whole Milk (88%)

127

Milk, Packaged 1000 Quarts
Unprocessed
Whole Milk (72%)

2099

Raw Cane Sugar Short Tons Sugar Cane (93%) 177

Carded Cotton Yarn 1000 Pounds
Cotton Fibers (80%),
Polyester Tow (10%)

431

Pooled - - 10,503

Table 16: Description of the 10 industries in the sample.
Notes: The percentages that appear in the Material Inputs column are the fraction of materials
expenditures that go to each particular material input. The Material Inputs column shows the inputs that
represent greater than 6% of the average plant’s total material purchases.

coffee, ready-mix concrete, white wheat flour, gasoline, bulk milk, packaged milk, raw cane

sugar, and grey cotton yarn; see Table 16. For additional details regarding the sample, see

Appendix B of Atalay (2013).

F.2 Environment and Assumptions

Each industry, I, is comprised of a set of plants i ∈ I, who combine capital, labor, ma-
terial inputs, and purchased services to produce a single product. The production function

is constant-returns to scale; separable between material inputs, N , and other inputs, O; with

constant elasticity of substitution, ηP :

Qit(Kit, Lit, Sit, Nit) =
[
(Ait ·Oit)

ηP−1
ηP + (Bit ·Nit)

ηP−1
ηP

] ηP
ηP−1 , (63)

where Oit = F (Kit, Lit, Sit)

Also by assumption, F exhibits constant returns to scale. Plants are allowed to flexibly

alter their input choices, including capital, each period. Furthermore, the factor prices that

each plant faces, both for the material input and for the other input aggregate, are constant

in the amount purchased. These assumptions serve a dual purpose. Not only do these

assumptions greatly simplify the estimation of ηP , they also allow me to apply Oberfield and
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Raval (2013)’s methodology to estimate εQ from ηP .

Use P oth
it and Pmat

it to denote the factor prices for a unit of the other input aggregate and

the material input, respectively. Let Ait and Bit represent the two plant-level productivity

measures (other-input-augmenting and materials augmenting).

The demand curve faced by each plant, i, has constant elasticity, εD:

Qit = exp{θit} ·
(
P out
it

)−ηD (64)

In equation 64, θit represents a plant-year specific demand shifter. The assumption of a

constant elasticity demand curve, while probably counterfactual, is again useful for multiple

reasons. The constant-demand-elasticity assumption allows me to directly apply the Fos-

ter, Haltiwanger, and Syverson (2008) methodology to estimate ηD. Moreover, the same

assumption is invoked by Oberfield and Raval (2013)– whose work I apply, here– in their

aggregation of plant-level to industry level production functions.

The profit-maximizing levels ofNit andOit yield the following expression for the material-

output ratio:

log

[
Nit

Qit

]
= −ηP · log

[
Pmat
it

Pit

]
+ ηP · log

[
ηD − 1

ηD

]
+ (ηP − 1) logBit (65)

This equation will form the basis of the estimation of ηP , a task to which I now turn.

F.3 The Micro Elasticity of Substitution

In this subsection, I estimate the plant-level elasticity of substitution between purchased

inputs and other inputs. The baseline regression that I run is:

nit − qit = −ηP ·
(
pmatit − pit

)
+ εit . (66)

In Equation 66, and throughout the remainder of the section, I use lower-case letters to

denote the logged, de-meaned values of the variable of interest. In other words, ηP is

estimated only using within industry year variation. To emphasize, both nit and qit refer to

the number of physical units, and not the values, of the material good that plant i purchases

and the output that it produces.

Ordinary least squares results are presented in the first column of Table 17. For most

industries, the estimate of ηP lies between 0.5 and 0.7, with concrete and flour having two

of the lower estimates and bulk milk and raw cane sugar with two of the higher estimates.

There are at least two concerns regarding the interpretation of ηP– from an OLS es-

timate of Equation 66– as an estimate of the micro elasticity of substitution. First, to
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the extent that the constant elasticity of demand assumption– embodied in Equation 64– is

violated, Equation 66 suffers from omitted variable bias. A positive correlation between

log
[
ηD−1
ηD

]
and (pmatit − pit) will engender a positive bias in ηP . Second, I have assumed

that the materials supply curve that each i faces is flat. It is likely, however, that each

plant’s factor supply curve is upward sloping. This instance of simultaneity bias– whereby

a high-Bit plant pays a high materials price– will also engender a positive bias in ηP .

I offer two different approaches to circumvent these problems. Fist, I append plant-

level fixed effects to Equation 66. These fixed effects aim to capture long-run cross-sectional

variation in the conditions in output and factor markets. As Foster, Haltiwanger, and

Syverson (2008, 2012) argue, the factor market conditions that a plant faces are substantially

more persistent than its productivity.

In a second specification, I instrument plants’ output and materials prices with the

prices paid and charged by competitor plants. Specifically, the two instrumental variables,

for pmatit − pit, are a) the year-t average materials price for plants that are within 50 miles

of plant i, and b) the year-t average output price for plants that are within 50 miles of

plant i. The idea behind these instruments is that the price of materials in nearby markets

is correlated the price that i pays for its material inputs (if, for example, there is spatial

correlation in the abundance of primary inputs used in the production of i’s intermediate

inputs, or if there is a very productive, low marginal-cost supplier nearby), but should not in

any other way affect the propensity for i have exceptionally high or low materials expenditure

shares.46

Results from the two sets of regressions are given in the second and third columns of

Table 17. In the second column, estimates of ηP range from 0.40 to 0.92, with the two

largest estimates corresponding to two of the smaller-sample industries, coffee and sugar.

The pooled estimate of ηP is 0.68.

The instrumental variables are weak for the six smallest samples. For this reason, the

I.V. specification is performed only on the samples of plants in the corrugated boxes, ready-

mix concrete, packaged milk, and petroleum industries. In the third specification, the

parameter estimates are smaller and much less precisely estimated. The biggest difference

is for the ready-mix concrete industry, for which the estimate of ηP is essentially 0.

46Results from first-stage regressions indicate that these instruments are relevant, at least for the four
largest subsamples: materials prices and output prices are each spatially correlated.
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F.4 The Industry Level Elasticity of Substitution

The previous subsection provided an estimate for the ease with which individual plants

substitute between material inputs and other inputs. This is related to, but distinct from,

how easily an industry substitutes between material inputs and other inputs.

Changes in the scale, across plants, potentially makes the industry-level elasticity of

substitution larger than the corresponding plant-level elasticity. The difference between the

plant-level and industry-level elasticities of substitution depends on a) the heterogeneity of

materials shares, within the industry, and b) how much inputs shift across plants, in response

to a change in relative factor prices.

Given the assumptions, specified in Section F.2, the industry-level elasticity of substi-

tution has a simple expression:47

εQ = χtI · ηD + (1− χtI) · ηP , where (67)

χtI ≡
1

StI (1− StI)︸ ︷︷ ︸
1©

·
∑
i∈I

(
StI −

MitP
in
it

MitP in
it +OitP oth

it

)2

︸ ︷︷ ︸
2©

· MitP
mat
it +OitP

oth
it∑

j∈IMjtPmat
jt +OjtP oth

jt︸ ︷︷ ︸
3©

, and

StI ≡
∑
i∈I

MitP
mat
it

MitPmat
it +OitP oth

it

In words, the industry-level elasticity of substitution is a convex combination of the plant-

level elasticity of substitution and the plant-level elasticity of demand. The demand elasticity

parameterizes how sensitive the scale of the plant is to changes in its marginal cost of

production. Consider, for example, an increase in the price of the material input. The

marginal cost of production will increase more for plants with relatively large materials

cost shares. As a result, low materials share plants will produce relatively more of the

total industry output following the increase of the materials price. The elasticity of demand

determines how much less the high-materials-share plants will produce, following the increase

in the materials price.

The scope for this across-plant factor substitution depends on the dispersion of materials

intensities. According to Equation 67, the appropriate measure of the dispersion of materials

intensity is a weighted, normalized variance of the materials cost shares. The fraction of

total industry expenditures incurred by plant i (given in term 3©) is the appropriate weight
for summing over the within-industry deviation in materials cost shares (given in term 2©).
The normalization, given in term 1©, ensures the χtI lies within the unit interval.

What remains, then, is to provide estimates for the normalized variance of materials

47A proof is given in Oberfield and Raval (2013). See Appendix A.1 of that paper.
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shares, χ, and the elasticity of demand, ηD, for the ten industries in my sample.

The normalized variance of materials shares, χ, ranges from 0.019 (for flour) to 0.065

(for sugar).48 Given these low values, the industry elasticity of substitution will closely

track the micro elasticity of substitution. In other words, the estimate of εQ will be, for the

most part, insensitive to the way in which ηD is estimated.

I estimate ηD via the regression defined by the following equation:

qit = αt + α1 · log INCOMEΥt + ηD · pit + θit (68)

This specification, and the variable definitions, follow Foster, Haltiwanger, and Syverson

(2008). In Equation 68, INCOMEΥt is the aggregate income in establishment i’s market,

Υ, at time t. This variable is included to account for any differences in establishment scale

that may exist between areas of high and low density of economic activity.

A positive relationship between the demand shifter (θit) and output price (pit) poten-

tially induces a downward bias to the OLS estimates of ηD. Like Foster, Haltiwanger, and

Syverson (2008), I instrument pit with the marginal cost of plant i in year t. This in-

strumental variable is certainly relevant: plants with lower marginal costs have significantly

lower output prices. Validity of the instrument rests, then, on the orthogonality of marginal

costs and θit. Foster, Haltiwanger, and Syverson (2008) discuss two potential threats to the

validity of the instrument (measurement error in plants’marginal costs, and a selection bias

that induces a negative relationship between demand shocks and marginal costs), propose

robustness checks to assess the salience of these two threats, and find that their results are

similar across the different robustness checks.

The results of these regressions are presented in the fourth column of Table 17.49 In

each of the ten industries, the estimate for elasticity of demand is greater than 1, reassuringly

indicating that plants are pricing on the elastic portion of their demand curve.

Combining the estimates of ηP , ηD, and χ yields the object of interest: the industry-

level elasticity of substitution, εQ. Since there are three sets of estimates of ηP , there are

also three sets of estimates of εQ. For the estimates corresponding to the fixed effects

regression, εQ is 0.75 for the pooled sample.50 Except for sugar and coffee (two of the

48To give the reader some idea, the (unnormalized) standard deviations of materials shares range from
4.3% to 11.4% across the ten industries, again lowest for bulk milk and highest for raw cane sugar.
49The results reported here are slightly different from those in Foster, Haltiwanger, and Syverson (2008):

I restrict my sample to those plants for which I can observe materials prices, while Foster, Haltiwanger, and
Syverson make no such restriction. Their estimate of ηD is lower for petroleum (η̂D = 1.42) and higher for
ready-mix concrete (η̂D = 5.93). Again, because the normalized variances of materials shares are so small,
these differences have will have only a moderate impact on the estimates of εQ.
50One dissimilarity between the analysis of the current section and that of Section 2 to 5 concerns the

industry definitions that I have used: to credibly compare the material purchases and material prices, I
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smallest industries, representing only 5% of the sample), the industry-level elasticities of

substitution range between 0.46 (for gasoline) and 0.82 (for corrugated boxes). For seven of

the ten industries in the sample (with the exceptions being the smallest three subsamples),

the data would reject a null hypothesis of εQ = 1.

The estimates of εQ that correspond to the instrumental-variables-based estimate of ηP
are even smaller, though again much less precisely estimated. The point estimate for εQ
is 0.10 for the ready-mix concrete subsample, and is somewhat higher (between 0.40 and

0.55) for the other three industries. For the pooled sample, and three of the four industry

subsamples, the data reject a null hypothesis of εQ = 1.

In summation, micro data on plants’materials usage patterns indicate that material

inputs are gross complements to other factors of production. For most specifications (all

except for the I.V. specification for the ready-mix concrete subsample, or the fixed effects

specification for the smaller industries), the data indicate that εQ ranges between 0.45 and

0.80.
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