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Abstract

Bayesian inference has the advantage of dynamic consistency, but the draw-

back of rigidity. When a decision-maker’s initial model fails a hypothesis

test, he may wish to form a new model, violating Bayes’ rule. We show

that if such “paradigm shifts” are rare, he will be “approximately” dynam-

ically consistent. More specifically, we show that in our setting dynamic

consistency is equivalent to the non-existence of Dutch books, and that a

decision-maker who is almost always Bayesian will suffer from only “small”

Dutch books. This gives the decision-maker some latitude to revise his

model while bounding the pain of inconsistency.
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“...I equate the rational attitude and the critical attitude. The point is that,

whenever we propose a solution to a problem, we ought to try as hard as we can

to overthrow our solution, rather than defend it. Few of us, unfortunately,

practice this precept...”

Karl Popper, The Logic of Scientific Discovery

1 Introduction

If a decision-maker (DM) aspires to be rational according to Popper’s criterion,

he will try to avoid being trapped by a dogmatic belief in his model. He may

therefore wish to update his model and adjust his beliefs when he sees a surprising

pattern on the data. However, decision theory tells him that if he does so in any

way other than according to Bayes’ rule, he will be subject to a different sort

of criticism: he will make dynamically inconsistent decisions, and be subject

to arbitrage. He may feel that he is caught between a rock and a hard place:

following Bayes’ rule perfectly is the only way to avoid inconsistency, but it

prevents him from responding to any pattern which was not present in his prior.

An ideal Bayesian would respond by including every possible pattern in his prior,

but such an approach is impractical and even provably uncomputable1. So, a

practical Bayesian may wish to occasionally transgress against Bayes’ rule, and

may well wonder about the price of such transgressions in terms of inconsistency.

The message of this paper is: Occasional violations of Bayes’ rule will make

the DM only slightly inconsistent. An attentive reader will now wonder how we

will formally define the italicized words, and indeed the merit of the paper will

depend largely on how intelligently we do so. It is generally quite difficult to quan-

tify inconsistency. In pure logic, it is impossible, as any inconsistency whatsoever

implies that all propositions are both true and false, infecting the entire system of

reasoning. In logic, then, it is useless to speak of a “minor” inconsistency. Here,

though, we will be able to develop tools from decision theory into a method for

measuring dynamic inconsistency. We will first show (Proposition 1) that, in our

1Solomonoff (1964) introduced the idea of a prior placing weight on every computable theory,
with more weight on simpler theories according to Kolmogorov complexity. This is a fascinating
formalization of Occam’s razor but does not produce a practical method of reasoning.
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framework, dynamic consistency (DC) is equivalent to Bayesian updating, and

DC is also equivalent to the non-existence of arbitrage opportunities against the

DM. An arbitrage, also called a Dutch book, is a set of gambles the DM accepts

which, in aggregate, guarantee him a negative payoff. Then, it is natural to

measure inconsistency by the magnitude of the potential Dutch book it creates,

as measured by the amount of certain loss. Our two main results, Propositions

3 and 4, show that the magnitude of possible Dutch books against the DM is

bounded by the product of (a) the subjective probability he initially attaches to

non-Bayesian shifts in beliefs and (b) the maximum amount he wagers along any

history. (The two propositions each refine this bound in distinct ways.) Notice

that if the DM performs non-Bayesian updating only when his initial model fails

a classical hypothesis test, the quantity (a) is precisely the significance level α of

this test. Hence our results state that a DM who is primarily Bayesian but also

tests, and sometimes replaces, his theory, will be “almost” as consistent as one

who is purely Bayesian when α is small.

We hope that our results lessen the perceived paradigmatic conflict between

Bayesian and classical statistics. A DM who forms an initial, provisional, model

and updates its parameters using Bayes’ rule, while also, in parallel, conducting

a hypothesis test which may reject the model, is covered by our results. He can

achieve almost the full consistency of Bayesian reasoning, while maintaining the

flexibility to reject his theory when surprising2 events occur.

To illustrate why a DM may wish to violate Bayes’ rule, some examples are in

order. Suppose the DM believes he is observing repeated flips of a fair coin, i.e.

his initial distribution is uniform on sequences in {H,T}N . According to Bayesian

updating, if he observes 100 consecutive heads he must continue to believe that

the next flip is 50-50. This will doubtless put him in mind of Emerson’s dictum

that “A foolish consistency is the hobgoblin of little minds,” and he will wish to

change his belief in a non-Bayesian way.

The natural response is that, with better foresight, the DM would have formed

2Some care is needed in interpreting “surprising.” The DM may think that every specific
sequence of 100 coin flips is individually unlikely, but if he thinks that every sequence justifies
a new model, then he is “surprised” with probability 1 and our result will not help him. This
pitfall is equivalent to that of uncorrected multiple hypothesis testing in statistics; it is the
overall rate of rejection, conditional on the model being valid, which must be controlled.
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a slightly different belief at time 0, one that acknowledges the possibility that the

coin is unfair. Suppose then that the DM’s initial belief is a mixture of i.i.d.

distributions with full support on the frequency parameter, perhaps a mixture

somewhat concentrated around .5; this sounds like a sensible prior for an un-

known coin. Now, on observing many consecutive heads, he will have beliefs

which, as seems only reasonable, converge to the belief that the coin is double-

headed. But another problem arises: if he observes a long alternating sequence

HTHTHTHT..., his posterior will converge to the belief that the flips are i.i.d.

50-50. Clearly he will not consider this reasonable, and will instead want to

conclude that the coin is alternating (perhaps due to prestidigitation).

We can suggest more sophisticated beliefs as before, telling the DM: “Aha!

Your actual belief was not fully represented by the exchangeable3 distribution.

Your belief was a mixture of (with high weight) an exchangeable distribution and

(with much lower weight) a distribution including many finer patterns such as

the alternation. Sufficient data can swamp your prior and cause your posterior

to be concentrated on a non-exchangeable belief.”

The DM can attempt to construct his initial belief according to this advice,

but this places a rather large onus on him. Apparently, he must anticipate a

priori every possible pattern that would cause him to believe the coin is not

i.i.d., and mix these together into a grand belief. This is a burden he may find

unmanageable. Even if an exponentially small fraction of the possible paths lead

to a “paradigm shift,” the number may still be exponentially large. A DM being

constrained to follow Bayesianism with full purity is analogous to a chess player

being forced to decide on his entire strategy (in the formal sense) in advance.

Accordingly, the DM may value the latitude to form an initial set of beliefs

without making a binding commitment as to his behavior at all future histories.

To formalize the notion of paradigm shifts, we will define a structure called

provisional beliefs. Formally, a system of provisional beliefs is any mapping

from histories to beliefs about the future. As a formal object, our system of

provisional beliefs is similar to the “conditional probability systems” introduced

by Myerson [7], but without the requirement that Bayes’ rule always be used on

3A mixture of i.i.d. distributions. De Finetti famously showed, for infinitely repeated
processes, that being such a mixture is equivalent to being invariant to permutations, hence
the term “exchangeable.”
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positive-probability events. We are, as the foregoing discussion suggests, inter-

ested in those mappings where the updating is “usually” Bayesian. We will call

the histories at which updating is non-Bayesian paradigm shifts. We should

note that underlying the desire to revise one’s beliefs is a conflict between the

colloquial and formal meanings of belief. Colloquially, when we say someone “be-

lieves” a process to be exchangeable, we do not mean that he wouldn’t change his

mind when he sees HTHTHTH... In Bayesian language, of course, holding such

a belief would mean that he never changes his mind but simply continues us-

ing Bayes’ rule. Treating beliefs as provisional, therefore, may come closer to our

natural understanding of the word. It does run the risk of dynamic inconsistency,

but our results here provide for some control over this potential inconsistency.

Towards our goal of showing that DMs with occasional paradigm shifts are

“approximately” consistent, we have already summarized our most important re-

sults, Propositions 3 and 4. One of the stepping-stones to this result, Proposition

2, is worth mentioning here in its own right. It says that for any DM with a sys-

tem of provisional beliefs, there is a Bayesian DM who makes the same decisions

on shift-protected bets. A bet fails to be shift-protected if it is made prior

to a potential paradigm shift and may be affected by events which occur after

that shift. This provides another sense in which the DM is close to dynamically

consistent: If he avoids bets which are sensitive to events following a paradigm

shift, he behaves just like a Bayesian and hence is dynamically consistent. This

result should be unsurprising, but it is a useful step.

It is important to realize that the Bayesian beliefs, Q, constructed in Propo-

sition 2 will generally be different, and more complex, than the initial provisional

beliefs. The beliefs Q will include all models the DM will ever adopt under any

circumstances, while the initial provisional beliefs may exclude models which are

unlikely to be adopted. Therefore, even when the system of provisional beliefs

rarely results in different decisions from those of a Bayesian, the non-Bayesian

representation may be simpler and closer to the DM’s natural thought processes.

This is an additional motivation for introducing the formalism and results of this

paper.
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2 Literature

Versions of our preliminary result, Proposition 1, were proved by Freedman and

Purves [6] and others; it is convenient for us to reprove it here to show how it

fits our particular formalism. Also closely related to Proposition 1 is the work

of Epstein and Le Breton [3]. They show that a dynamically consistent decision-

maker whose static decisions are based on beliefs must in fact be Bayesian. Our

assumption here of a very simple form for static decisions is mostly in order to

focus attention on dynamic decision-making, but their result further justifies this

choice.

The no-Dutch-book argument for Bayesian updating has been subject to cri-

tiques independent of the present paper. For instance, Border and Segal [1]

showed that a bookie (who faces a problem similar to our DM) may wish to

create odds that do not satisfy Bayes’ rule, because strategic considerations in-

volving the beliefs of his counterparties outweigh the issue of avoiding Dutch

books. In general, more recent papers in decision theory are likely to focus on

dynamic consistency alone rather than the accompanying issue of Dutch books.

In the present context, the no-Dutch-book condition is an appealing equivalent

formulation of DC because it lends itself naturally to measuring violations of DC.

Previous work on non-Bayesian updating includes the papers of Epstein [2]

and Epstein, Noor and Sandroni [4],[5]. The decision-makers in their papers,

unlike here, are sophisticated and anticipate their future non-Bayesian updating.

This alternative modeling choice may reflect a difference in the motivation behind

the non-Bayesian updating; in Epstein et. al. it is described as a temptation to

overreact or underreact to news, whereas we are concerned with a DM who simply

decides that his statistical model needs to be replaced. For us, if the DM could

anticipate all possible eventualities, he would simply form an all-encompassing

prior and update it. The fact that we are interested in limitations on foresight

rather than on rationality has led us to analyze different issues than Epstein et.

al.; they are not concerned with approximate dynamic consistency in our sense,

and we do not address interesting issues in their work such as learning under

imperfect Bayesian updating.

A recent paper by Ortoleva [8] also considers decision-makers who sometimes
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violate Bayesian updating. Our papers differ in focus; in [8] the main result

is a representation theorem, while here we begin with a simple representation

and analyze the impact of occasional non-Bayesian updating on our measure of

dynamic consistency. Also, [8] assigns a very different meaning to approximate

dynamic consistency. There, DC is relaxed by defining a very weak condition

called “Dynamic Coherence4.” The representation theorem in [8] shows that a

DM who follows Dynamic Coherence (and other basic conditions) can be rep-

resented as performing Bayesian updating after all events of probability greater

than some ε, and arbitrary5, potentially non-Bayesian updating after events with

probability less than ε. Notice that even for small ε, this does not imply our

notion of approximate DC, since it may be certain that some event of probability

ε occurs – the familiar problem of multiple hypothesis testing. Furthermore, the

representation theorem makes no conclusion regarding ε (i.e. ε may be arbitrarily

close to 1), so it implies virtually no restriction on how the DM forms his beliefs6.

The main theorem in [8] includes a converse, so that no stronger conclusion is

available from the assumptions.

4Dynamic Coherence states: For any cyclical sequence of events A1, A2, . . . , An+1 = A1 such
that for each i, Ac

i+1 is a null event when conditioned on Ai, preferences conditional on A1 and
An are identical. To understand this better, consider first the case that, conditional on any A,
each state ω ∈ A is non-null, our focus in this paper. Then if Bc is null when conditioned on A,
A ⊆ B. Then the antecedent in Dynamic Coherence implies that A1 ⊆ · · · ⊆ An+1 = A1, and
therefore that all the Ai are equal, so that without null states, Dynamic Coherence is vacuous.
More generally, when some states are null, the condition says roughly that events that differ
only on null states lead to the same preferences, or in other words that the DM’s preferences
are unaffected by events he was certain would occur.

5In the representation in [8], non-Bayesian updating is performed by applying maximum
likelihood to a prior over priors ρ, which may make the updating seem non-arbitrary. However,
the proof that a representation exists proceeds by showing that there is sufficient freedom in
choosing ρ to fit any updating at all, except for the small restriction involving null states we
discussed in footnote 4. Because of the unrestrictive nature of Dynamic Coherence, this freedom
is needed for the result to hold.

6The only restriction is that, since ε is strictly less than 1, the DM does not revise his beliefs
after an event he was certain would occur. This conclusion is closely related to the assumption
of Dynamic Coherence; see footnote 4.
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3 Model and Results

3.1 Definitions and Notation

The decision-maker (DM) observes in each of N periods an element of a finite set

A. The set of possible sequences is Ω = AN . A history of length k is an element

h ∈ Ak, and we then write |h| = k. We use ∅ for the empty history, and write

h1 ≤ h2 when h1 is an initial segment of h2. The set of all histories is H. We

denote the set of distributions over Ω by ∆(Ω). Given a history h ∈ H (including

terminal histories ω ∈ Ω), we denote its truncation to k periods by hk, and its

truncation to |h| − k periods by h−k. The key object of study will be:

Definition 1. A system of provisional beliefs, Ph : h ∈ H, is a collection

of distributions on Ω, one for each history, such that Ph ∈ ∆(Ω), Ph({ω : h ≤
ω}) = 1 for each history h.

This collection represents the DM’s beliefs over future events contingent on

each history. In particular, P∅ is his initial belief. As a convenient shorthand we

write Ph1(h2) = Ph1({ω : h2 ≤ ω}) for the probability of reaching h2 conditional

on reaching h1, according to the subjective belief held at h1. Also as shorthand,

we will write Ph(A), where A ⊂ H, to mean the probability at h of reaching any

history in A, that is, Ph(A) ≡ Ph(∪h′∈A{ω : h′ ≤ ω}).
Fixing a system of beliefs f , a history h is said to be normal if Ph is formed

by a Bayesian updatefrom Ph−1 , and otherwise is said to be a paradigm shift.

Write S ⊆ H for the set of all paradigm shifts. Let S̄ be the set of terminal

histories with a shift somewhere along their path, i.e S̄ =
⋃

s∈S{ω ∈ Ω : s ≤ ω}.
Also, let Ŝ = {s ∈ S : @s′ ∈ S : s′ < s} be the set of “initial” paradigm shifts,

those without a prior shift. We call the DM Bayesian if S = ∅, i.e. he is normal

at all histories.

We use elements of V = RΩ to describe state-contingent payoffs. We write

Vh = {v ∈ V : vω 6= 0→ h ≤ ω} for the set of vectors which have non-zero value

only at states consistent with history h. A bet is a pair (h, v) where h denotes

the history at which the bet is offered and v ∈ Vh denotes the net gain or loss

for the DM at each terminal history. The interpretation is that the bet is offered

after history h is observed; if this history is not reached, it is never offered. The
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restriction to Vh imposes a conventional requirement7 that a bet has non-zero

value only at states consistent with the current history. A bet (h, v) is accepted

by the DM if the expectation of v according to the measure Ph is non-negative,

i.e. if Ph ·v ≥ 0, where Ph is viewed in the natural way as a vector in RΩ. A finite

set D = {(h, v)} of bets is a weak (dynamic) Dutch book if all elements of

D are accepted and v̂ ≡
∑

D v < 0, i.e. v̂ω is nowhere positive and is negative for

sone ω. It is a strong Dutch book if v̂ << 0, i.e. vω is negative for every ω.

We will use the sup norm for vectors, denoted ||v|| = maxω |vω|.
Note that we have assumed the simplest possible form for static decisions,

expected utility with risk neutrality, in order to focus attention on issues of

dynamic consistency. The axioms which lead to such a representation for static

decision-making are well-known, and we will not review them here.

3.2 Equivalence of Bayesian inference, dynamic consis-

tency, and absence of Dutch books

It will be convenient to prove the following proposition in our specific context, but

as mentioned earlier, the core of the result is certainly not new. For this result

and through the rest of the paper, we assume that P∅ has full support, and indeed

that for each h, Ph has support ω : h ≤ ω. The motivation for this assumption

is that among his theories about the data, the DM considers it possible that the

sequence is generated by a fair coin. Issues involving zero-probability histories are

certainly vital in studies of dynamic games, but are orthogonal to our concerns

here.

Proposition 1. Suppose the DM’s beliefs at each history have full support, i.e.

Ph(ω) > 0 whenever h ≤ ω. Then the following are equivalent:

1. There is a strong Dutch book against the DM.

2. There is a weak Dutch book against the DM.

7This convention departs slightly from the usual setup in which a bet may specify non-zero
payoffs at impossible states. These payoffs will always be simply ignored by the DM. Since here
we assume that all relevant parties know the history h, it is natural to assume that they do not
bother specifying non-zero payoffs at impossible states. This convention loses no substantive
freedom and simplifies the statements of our results.
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3. The DM is not Bayesian.

4. There exist v, h1, h2 with v ∈ Vh1 ∩ Vh2 such that (h1, v) is accepted and

(h2, v) is rejected.

5. There exist h and v ∈ Vh such that (∅, v) is rejected but (h, v) is accepted.

Proof. 5⇒ 4: Trivial.

4⇒ 3: Clearly v 6= 0. For Vh1 ∩ Vh2 to be non-trivial, it is necessary that one

history is an initial segment of the other, say h1 ≤ h2. If the DM were Bayesian,

then for each ω ≥ h2 we would have f(h1)(ω) = f(h1)(h2) ∗ f(h2)(ω). Since

these are the only histories where v is non-zero, f(h1) · v = f(h1)(h2) ∗ f(h2) · v,

so different decisions are impossible. The full-support assumption on f(h1) is

needed here.

3 ⇒ 2: If the DM is not Bayesian, let h be a paradigm shift. There must

be two states compatible with h whose likelihood ratio shifts8 between h−1 and

h, say r = f(h−1, ω1)/f(h−1, ω2) and s = f(h, ω1)/f(h, ω2) with r > s. Then,

restricting payoff vectors to (ω1, ω2), D = {(h−1, (1,−r)), (h, (−1, s))} is a weak

Dutch book, giving payoff s− r < 0 at state ω2 and zero elsewhere.

2 ⇒ 1: Let ω have negative payoff in the weak Dutch book. Append to the

book a bet (∅, v) with vω = ε and vω′ = −εf(∅, ω) for all ω′ 6= ω. This bet will

be accepted and gives a strong Dutch book for sufficiently small ε > 0. The full

support of P∅ is needed here.

1 ⇒ 5: If this implication failed, the DM would accept all of the bets in the

Dutch book at time 0. Then there would also be a strong static Dutch book at

time 0; by adding all of the bets involved we would get a strictly negative vector

with non-negative expectation according to measure P∅.

Note that in the absence of the full-support assumption, it is easy to find

counterexamples for the implications 4⇒ 3 and 2⇒ 1. Full support of P∅ alone

would suffice to show 5 ⇒ 3 and 2 ⇒ 1, and hence that 1, 2, 3, and 5 are

8In fact, Bayesian updating is equivalent to the likelihood ratio of all pairs of events consis-
tent with h being unchanged by the update.
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equivalent. We tacitly assume full support in the remainder of the paper for ease

of interpretation, though it is not used directly in later results.

3.3 Shift-protected bets

Call a bet (h, v) shift-protected (with respect to a fixed system f) if whenever

h < h′ < ω1, ω2 for a paradigm shift h′, vω1 = vω2 . That is, a shift-protected bet

is not sensitive to events subsequent to any future paradigm shift – note that the

definition depends on h as well as v. Let Wh ⊆ Vh be the set of v such that (h, v)

is shift-protected; note that Wh is a vector subspace of Vh, since it is defined by

equality constraints. A bet that is not shift-protected is called shift-exposed.

Proposition 2. Given any DM with a system of provisional beliefs P , there is

a Bayesian DM with prior Q∅ who, on all shift-protected bets, makes the same

decisions as the original DM. More specifically, if Qh : h ∈ H is the Bayesian

system of beliefs with Q∅ = Q, then Ph · v = f ′(h) · v for all h and v ∈ Wh.

Proof. Given a terminal history ω, let h1 < h2 < . . . < hn be the paradigm shifts

that are subhistories of ω. Define a prior Q by

Q(ω) =
n∏

i=0

f(hi, hi+1)

where h0 = ∅, hn+1 = ω. Equivalently, Q could be defined by a product of

one-period-ahead probabilities:

Q(ω) =
N−1∏
i=0

f(ωi, ωi+1)

That is, Q is precisely the prior under which all the “myopic” forecasts

f(ωi, ωi+1) (of the next observation) are identical to those of f . A Bayesian

who begins with prior Q will have, at every history, the same opinion as f about

the next observation, but will have different predictions in the longer term when

f has paradigm shifts.

Let f ′ be the system of provisional beliefs formed by Bayesian updating from

Q. Our claim is that f and f ′ lead to the same decisions on all bets that are

shift-protected (with respect to f).
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To prove the claim: the definition of a shift-protected bet (h, v) can be restated

by saying that v assigns the same outcome to any states which are equivalent

under the relation

ω1 ≡h ω2 ⇔ ∃h′ ∈ S ∪ Ω : h < h′, h′ ≤ ω1, h
′ ≤ ω2

It then suffices to show that Ph and f ′(h) assign the same weight to each equiv-

alence class. Indeed, an equivalence class consists either of a single state ω with

no shifts between h and ω, or a set {ω : h′ < ω} where h′ is a shift following h

with no intermediate shifts. In either case the result follows from the fact that if

there are no shifts between h and h′, then

Ph(h′) =

|h′|−1∏
i=|h|

f(ωi, ωi+1) = f ′(h)(h′)

because on the relevant histories both systems of beliefs are Bayesian with

the same myopic forecasts.

Along with Proposition 1, this implies:

Corollary 1. Any Dutch book must contain a shift-exposed bet.

More specifically, a Dutch book must include bets (h1, v1) and (h2, v2) where

f(h2) is not a Bayesian update of f(h1) and v1 /∈ Wh1 . That is, (h1, v1) is exposed

to some shift h′ with h1 < h′ ≤ h2.

The following lemma relies on the fact that Q is identical to P∅ in predicting

events leading up to a shift.

Lemma 1. The probability of ever reaching a shift is identical under Q and P∅,

i.e. Q(S̄) = P∅(S̄)

Proof. Recall that Ŝ ≡ {s ∈ S :6 ∃s′ ∈ S : s′ < s}. By construction it is clear

that for each s ∈ Ŝ, Q({ω : s ≤ ω}) = P∅({ω : s ≤ ω}). But S̄ is the disjoint

union of such sets, implying the result.
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Define an inner product on Vh by

〈v, w〉h =
∑
ω∈Ω

f(h, ω)vωwω

That is, 〈v, w〉h is the expected value of the product of the two payoffs with

respect to the measure Ph. Note that for any h we can write Vh as a direct sum

Vh = Wh + W⊥
h where W⊥

h is the orthogonal complement to Wh with respect to

this inner product. That is, we can write any v ∈ Vh as v′ + v′′ where (h, v′) is a

shift-protected bet and v′′ ∈ W⊥
h .

To better understand the space W⊥
h , note that a basis for Wh is given by

indicator functions for the sets {ω : h′ < ω} for each paradigm shift h′ > h with

no shift in between, i.e. no h′′ ∈ S with h′ > h′′ > h, together with indicator

functions for singleton states ω ≥ h with no prior shift h′′ ∈ S, ω > h′′ > h.

Then W⊥
h is the set of vectors orthogonal to each basis element. These are the

vectors with zero expectation (according to the measure Ph) at each paradigm

shift h′ > h, as well as zero payoff at each ω with no prior shift.

3.4 Measuring deviations from dynamic consistency

Because the defining property of a Dutch book is a certain loss, we define the

magnitude of a Dutch book as the smallest absolute loss the DM experiences

in any state.

Definition 2. The magnitude of a Dutch book D is ||D|| = minω∈Ω |
∑

(h,v)∈D vω|.

By this measure, a Dutch book with moderate equal losses in all states is worse

than one with widely varying losses. While very large losses in selected states

may certainly be imprudent, there is nothing inconsistent about tolerating such

losses; one may simply hold a strong belief that those states are very unlikely9. If

the reader considers small certain losses less important than large losses caused

by erroneous beliefs, this paper is designed to be sympathetic. As mentioned in

the introduction, the results here seek to free the DM from a fruitless quest for

9This is not only true for a DM who bases static decisions on a single belief, as in our model.
Even an ambiguity-averse DM may assign some states small mass according to all distributions
he considers possible, and hence tolerate large losses in those states.
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perfect internal consistency, so that he can pay attention to the potentially more

important task of refining his beliefs when unusual events occur.

Our stated program is that given a system of beliefs, we will measure its

inconsistency by the magnitude of potential Dutch books. In this risk-neutral

environment, though, Dutch books can be multiplied by an arbitrary scalar.

Clearly, then, we cannot simply use the largest absolute magnitude of any Dutch

book as in Definition 2. We will have to divide the magnitude by a measurement

proportional to the scale of the bets made. There are two useful ways to define

this scale factor, leading to the distinct bounds in the two main results below. In

Proposition 3, the scale factor is ||
∑

(h,v)∈P v||, the largest possible gain or loss

from our post-shift bets along any history10. Notice that it is easy for the DM

to control this quantity, since even under the imperfect introspection we have in

mind, he knows when he changes paradigm after it happens. For instance, if he

knows there will be a shift (subjectively) only 5% of the time according to his

prior P∅, and he can commit to losing at most $100 after any shift, the magnitude

of the largest possible Dutch book is $5.

Proposition 3. Let D be a Dutch book. Let α = P∅(S̄) be the P∅-probability of

ever reaching any paradigm shift. Let C ⊆ D be the bets which are subsequent to

some paradigm shift, i.e. C = {(h, v) ∈ D : ∃h′ ∈ S : h′ ≤ h} . Then

||D||
||
∑

(h,v)∈C v||
≤ α

More specifically, the P∅-expectation of
∑

(h,v)∈D v is at worst −α||
∑

(h,v)∈C v||.

Proof. We proceed by evaluating the P∅-expectation of each bet. We divide bets

into two groups:

1. For bets (h, v) ∈ D − C, which are made before any shift, we know that

(by convention) vω 6= 0→ h ≤ ω. For each such ω, P∅(ω) = P∅(h) ∗ Ph(ω),

because there is Bayesian updating between ∅ and h. It follows that the

P∅-expectation is proportional to the Ph-expectation and so is non-negative,

since the bet is accepted.

10See formal definition of P in the proposition. It is important to note that this quantity is in
general much smaller than

∑
(h,v)∈P ||v||, the total magnitude of all bets made at all post-shift

histories.
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2. Bets in C have non-zero outcomes only in S̄, making it immediate that the

P∅-expectation of their sum is at worst −α||
∑

(h,v)∈C v||.

The desired result follows; the certain loss from a Dutch book cannot be worse

than its expectation under a given measure.

The scale factor in Proposition 3 depended only on magnitudes of bets that

are made after a shift. The next bound, in Proposition 4, is complementary:

It depends only on the shift-sensitive components of bets, i.e. the projection on

W⊥
h . These are bets that are made before a shift but depend on events that occur

after the shift. Neither bound is necessarily weaker or stronger than the other.

The bound in Proposition 3 is probably more useful, since under the limited

introspection we have in mind, it may be difficult for the DM to monitor the

shift-sensitive components of his bets; he would have to know when a shift was

coming. Still, we find Proposition 4 worthwhile for a complete understanding of

the requirements for Dutch books. They occur only when the DM makes shift-

sensitive bets prior to a shift, and bets again after the shift; if either kind of bet

is bounded, so proportionally will be the Dutch book.

Proposition 4. Let D be a Dutch book, and for each (h, v) ∈ D let v = v′ + v′′

be the decomposition of v into Wh + W⊥
h . Let α = P∅(S̄) as in Proposition 3.

Then

||D||
||
∑

D v
′′||
≤ α

More specifically, the Q-expectation of
∑

D v is at worst −α||
∑

D v
′′||.

Proof. Let C = {(h, v) ∈ D : ∃h′ ∈ S : h′ ≤ h} as in Proposition 3. Let Q

be as in Proposition 2. This proof will proceed somewhat similarly to that of

Proposition 3, but by calculating the Q-expectation of each bet rather than the

P∅-expectation.

For any h, let Qh be the Bayesian update of Q at history h. Recall that by
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Proposition 2, Qh · v′ = Ph · v′ for any shift-protected bet v′. Then

Qh · v ≥ (Qh − Ph) · v

= (Qh − Ph) · (v′ + v′′)

= (Qh − Ph) · v′′

= Qh · v′′

where the first inequality holds because the bet (h, v) is accepted, and last

equality holds because Ph · v′′ = 〈λh, v′′〉 = 0 where λh is the characteristic vector

for {ω : h ≤ ω}, since λh ∈ Wh.

Because v ∈ Vh, we can write

Q · v = Q(h) ∗ (Qh · v) ≥ Q(h) ∗ (Qh · v′′) = Q · v′′

It now follows that

Q ·
∑
D

v =
∑
D

Q · v ≥
∑
D

Q · v′′ = Q ·
∑
D

v′′

As per the prior discussion of the space W⊥
h , each vector v′′ ∈ W⊥

h is non-zero

only at terminal states in S̄. It follows that

Q ·
∑
D

v ≥ Q ·
∑
D

v′′ ≥ −Q(S̄)||
∑
D

v′′||

The final claim in the stated result now follows from Lemma 1, and the primary

claim follows since, again, the certain loss from a Dutch book cannot be worse

than its expectation under a given measure.
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4 Bounding rejection probability with limited

introspection

Our interpretation of the model is that while the DM’s beliefs depend determinis-

tically on the data, via the function f , the DM does not know all the details of the

function f at time 0. The astute reader should then wonder how he could apply

our main results, which require knowledge of α = P∅(S̄), the overall probability

of rejection. As in classical hypothesis testing, a DM who rejects the initial the-

ory only when some unlikely event occurs is not sufficiently disciplined, because

all sufficiently long histories may be unlikely. Then, the DM may go through a

paradigm shift on every history (α = 1), and he may not even know that he has

this property, because he only lives once.

The dilemma is: How, if the DM does not even know at time 0 what the

set S looks like, can he know that its P∅ probability is low? Fortunately, there

is a way. While he need not know the entire set S at time 0, we will require

that he plan his paradigm shifts somewhat in advance. Our idea is that at some

histories he generates new alternative hypotheses, and specifies later histories at

which he will consider these alternative hypotheses to be verified and undergo a

paradigm shift. He must do so far enough in advance that the shifts still have a

low conditional probability at the time they are planned. We can show that any

DM who disciplines himself in this way will have rejection probability at most α.

To be much more precise:

Fix as before a system of provisional beliefs P . We call a function g : H → 2H

an α-rejection plan for P if it has these properties:

1. For every h, g(h) ⊂ {h′ : h′ ≥ h}

2. S = ∪h∈Hg(h)

3. For every ω ∈ Ω, ∑
h≤ω

P∅(g(h))

P∅(h)
≤ α (1)

The intended interpretation of g(h) is as follows: at history h, the DM comes

to suspect a pattern in the data which contradicts his initial theory, and decides
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that he will reject the theory and undergo a paradigm shift at histories in g(h).

The probability of set g(h) conditional on history h must be small enough that

the total probability of all rejection sets he constructs is at most α. The virtue of

the final condition (1) is that it can be confirmed along the history which actually

transpires. That is, it can be checked by a DM without the unrealistic ability to

introspect about his behavior at every feasible history. Please note that in the

applications we have in mind, the DM only periodically generates new theories,

so that g(h) = ∅ for the vast majority of histories h, but this need not be so for

the result to go through.

Proposition 5. If there exists an α-rejection plan for P , then P∅(S) ≤ α.

Proof.

P∅(S) = P∅(∪h∈Hg(h))

≤
∑
h∈H

P∅(g(h))

=
∑
h∈H

[
P∅(g(h))

∑
ω≥h P∅(ω)

P∅(h)

]
=

∑
h∈H

∑
ω≥h

P∅(g(h))

P∅(h)
P∅(ω)

=
∑
ω∈Ω

P∅(ω)
∑
h≤ω

P∅(g(h))

P∅(h)

≤
∑
ω∈Ω

P∅(ω) ∗ α

≤ α

So, we can conclude that if the DM only undergoes paradigm shifts accord-

ing to an α-rejection plan, then the conclusions of Propositions 3 and 4 apply.

Furthermore, such a plan need not be formed in detail ex ante, but rather its

properties can easily be checked along the realized history.
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5 Further Comments

Please note that while the bounds in our main results are based on the DM’s

subjective probability of reaching a paradigm shift, the conclusions measure an

objective quantity which is defined without reference to any distribution. That

is, we provide an objective, external measure of the internal inconsistency of

the DM’s decision process. We thus provide theoretical support to statistical

practitioners who find the internal consistency of Bayesian inference appealing,

but, for practical reasons, use a procedure that is not fully Bayesian. If a DM’s

criterion for rejecting his model has a strictly defined level as defined in classical

hypothesis testing, the degree to which he is subject to an objective Dutch book

is small.

Recall that our DM’s use of non-Bayesian updating is motivated by a lack of

full introspection; specifying ex ante one’s potential beliefs after every possible

sequence is very costly. The application of Propositions 3 and 4 requires only

limited introspection; the DM need not know every possible future belief to put

a bound on the probability of a shift. If he can guarantee that the possible

paradigm shifts are confined within a set of small subjective probability, he does

not need to know what his beliefs will be when these histories are reached.

References

[1] Border, Kim and Uzi Segal. 1994. “Dutch Books and Conditional Prob-

ability.” Economic Journal, 104: 71-75.

[2] Epstein, Larry. 2006. “An Axiomatic Model of Non-Bayesian Updating.”

Review of Economic Studies, 73: 413-436.

[3] Epstein, Larry and Michel Le Breton. 1993. “Dynamically Consistent

Beliefs Must be Bayesian.” Journal of Economic Theory, 61: 1-22.

[4] Epstein, Larry, Jawwad Noor and Alvaro Sandroni. 2008. “Non-

Bayesian Updating: A Theoretical Framework.” Theoretical Economics, 3:

193-229.

18



[5] Epstein, Larry, Jawwad Noor and Alvaro Sandroni. 2010. “Non-

Bayesian Learning.” The B.E. Journal of Theoretical Economics (Advances),

10(1).

[6] Freedman, David and Roger Purves. 1969. “Bayes’ Method for Bookies.”

The Annals of Mathematical Statistics, 40: 1177-1186.

[7] Myerson, Roger. 1986. “Multistage Games with Communication.” Econo-

metrica, 54: 323-358.

[8] Ortoleva, Pietro. 2011. “Modeling the Change of Paradigm: Non-Bayesian

Reactions to Unexpected News.” American Economic Review, forthcoming.

[9] Solomonoff, Ray. 1964. “A formal theory of inductive inference, Part 1 and

Part 2.” Information and Control, 7:1-22 and 224-254.

19


