Selection Bias in a Controlled Experiment: The Case of Moving to Opportunity.

Rodrigo Pinto
Department of Economics
University of Chicago

Click HERE for the latest version of this paper.
*

November 25, 2014

[^0]
Abstract

The Moving to Opportunity (MTO) is a social experiment designed to evaluate the effects of neighborhoods on the economic and social outcomes of disadvantaged families in the United States. It targeted over 4,000 families living in high poverty housing projects during the years of 1994-1997 across five U.S. cities. MTO randomly assigned voucher subsidies that incentivize families to relocate from high poverty housing projects to better neighborhoods. Nearly half of the families assigned to vouchers moved. The MTO randomization is well suited to evaluate the causal effects of offering vouchers to families. It is less clear how to use the randomized vouchers to assess the causal effects of neighborhoods on outcomes. I exploit the experimental design of the MTO to nonparametrically identify the causal effects of neighborhood relocation on socioeconomic outcomes. My identification strategy combines revealed preference analysis as well as tools of causal inference from the literature on Bayesian networks. I find statistically significant causal effects of neighborhood relocation on the labor market outcomes. I decompose the widely reported treatment-on-the-treated parameter - the voucher's effect divided by the compliance rate for the voucher - into components that have a clear interpretation in terms of neighborhood effects. The method that I develop is general and applicable to the case of an unordered choice model with categorical instrumental variables and multiple treatments.

Keywords: Moving to Opportunity, Randomization, Selection Bias, Social Experiment; Causal Inference.

JEL codes: H43, I18, I38. J38.

1 Introduction

Willian J. Wilson's influential book (1987) studies the power of neighborhoods in shaping the life outcomes of individuals in the United States. His work has spawned a large literature that relates the decline of inner city neighborhoods to the life outcomes of their residents (Sampson et al., 2002). According to this literature, the strong correlation between a neighborhood's quality and the well-being of residents is attributed in part to the effects of neighborhood characteristics.

Residential sorting poses a fundamental problem for assessing the causal effects of neighborhood quality. The characteristics that foster economic prosperity of the residents of affluent neighborhoods also affect their choice of residential location. This residential sorting is a source of selection bias that impairs causal inference about a neighborhood's characteristics and the socioeconomic outcomes of its residents.

The potential social benefits of neighborhood effects stimulated a variety of housing policies that operate by relocating poor families living in distressed neighborhoods to better ones. There is a large body of literature on the evaluation of housing programs (van Ham et al., 2012). However, the causal link between the neighborhood characteristics and resident's outcomes is seldom assessed (Bergstrom and van Ham, 2012; Curley, 2005; Sampson et al., 2002). I contribute to this literature by defining and quantifying neighborhood causal effects that account for residential sorting. I solve the econometric problems generated by neighborhood self-selection using a novel method that explores the economic incentives built into the Moving to Opportunity (MTO) Project.

MTO is a housing experiment that used the method of randomized controlled trials to investigate the consequences of relocating families from America's most distressed neighborhoods to low poverty communities (Orr et al., 2003). The project targeted over 4,000 households living in high poverty housing projects during the years of 1994 to 1997 across five U.S. cities (Baltimore, Boston, Chicago, Los Angeles, and New York).

The MTO project randomly assigned tenant-based vouchers that could be used to subsidize housing costs if the family agrees to relocate. Eligible families who volunteered to participate in the project were placed in one of three assignment groups: control (30% of the sample), experimental (40% of the sample), or Section 8 (30% of the sample). The families assigned to the control group were offered no voucher. The families assigned to the experimental group could use their vouchers
to lease a unit in a low poverty neighborhood ${ }^{1}$. Families assigned to the Section 8 group could use their vouchers to lease a unit in either low or high poverty neighborhoods. ${ }^{2}$ MTO vouchers did not force neighborhood relocation but rather created incentives to move. Nearly 50% of experimental families and 60% of Section 8 families relocate using the voucher.

Figure 1 describes the relocation decisions faced by families according to their assignment groups. The families assigned to the control group decided between not moving, moving to a low poverty neighborhood, or moving to a high poverty neighborhood without the incentive of a voucher. The families assigned to the experimental group that used the voucher had to relocate to a low poverty neighborhood. The experimental families that did not use the voucher faced the same choices as the control families. The families assigned to the Section 8 group that used the voucher could relocate to either low or high poverty neighborhoods. The Section 8 families that did not use the voucher faced the same choices as the control families.

An influential literature exploits the experimental design of MTO to evaluate the intention-to-treat (ITT) and the treatment-on-the-treated (TOT) effects. ${ }^{3}$ The ITT evaluates the causal effect of being offered a voucher. The ITT effect for the experimental (or Section 8) voucher is obtained as the difference between the average outcome of experimental (or Section 8) families and the average outcome of control families. Kling et al. (2005) explain that the TOT is a Bloom (1984) estimator that evaluates the causal effect of being offered a voucher for the families that relocate using the voucher, i.e. the voucher compliers. ${ }^{4}$ The TOT effect for each type of voucher is obtained from the ratio of its $I T T$ divided by the voucher compliance rate.

The ITT and TOT are important parameters for evaluating the MTO effect of the housing policy offering vouchers to families. The interpretation of these parameters in terms of neighborhood effects is unclear. For instance, Clampet-Lundquist and Massey (2008) claim that the TOT is not

[^1]
Figure 1: Neighborhood Relocation by Voucher Assignment and Compliance

Notes: This figure describes the possible decision patterns of families in MTO according to voucher assignment and family compliance. Families assigned to the control group decide among not moving, moving to a low poverty neighborhood or moving to a high poverty neighborhood. Families assigned to experimental or Section 8 groups that did not comply with voucher faced the same choices. Experimental compliers could only move to low poverty neighborhoods. Section 8 compliers could move to either high or low poverty neighborhoods.
well suited for the evaluation of neighborhood effects because it does not account for the selection bias generated by compliance with the vouchers. ${ }^{5}$

The goal of this research is to exploit the exogenous variation of the MTO randomized vouchers to nonparametrically identify the causal effects of neighborhoods on labor market outcomes. In order to achieve this goal, I consider a stylized version of the MTO intervention in which the vouchers play the role of instrumental variables for the choice of neighborhood at the intervention onset, and families decide among three neighborhoods alternatives: (1) housing projects targeted by MTO, (2) low poverty neighborhoods, or (3) high poverty neighborhoods. These neighborhood alternatives correspond respectively to three relocation decisions: (1) not to relocate, (2) relocate to a low poverty neighborhood, or (3) relocate to a high poverty neighborhood. Counterfactual outcomes are defined as the potential outcomes generated by fixing relocation decisions for population members. Neighborhood causal effects are defined by differences in counterfactual outcomes among the three neighborhoods categories listed above. ${ }^{6}$ The average neighborhood effect associated with low poverty relocation compares the counterfactual outcome in which all MTO families relocate to low poverty neighborhoods and the counterfactual outcome in which no family relocates. Similar reasoning applies to the average neighborhood effect associated with the high poverty relocation arm of the experiment.

A major challenge to nonparametric identification of neighborhood effects is that the MTO vouchers are insufficient to identify all possible counterfactual relocation decisions. I address this problem by combining economic theory and the tools of causal inference to exploit the experimental variation of MTO.

To fix ideas, it is useful to first consider a familiar binary choice model that clarifies the nature of the identification problem. Consider a simplified housing experiment that randomly assigns families to a voucher group and to a no voucher group. Let $Z_{\omega} \in\{0,1\}$ denote a voucher indicator such that $Z_{\omega}=0$ if family ω does not receives a voucher and $Z_{\omega}=1$ if family ω receives it. Let T_{ω} denote

[^2]the relocation decision of family ω where $T_{\omega}=0$ if family ω does not relocate and $T_{\omega}=1$ if family ω relocates. Define $T_{\omega}(z)$ as the indicator for the counterfactual relocation decision that family ω would choose had it been assigned to voucher $z \in\{0,1\}$. Let $\left(Y_{\omega}(0), Y_{\omega}(1)\right)$ denote the potential counterfactual outcomes when relocation decision T_{ω} is fixed at zero (no relocation) and at one (relocation occurs). The observed outcome for family ω is given by $Y_{\omega}=Y_{\omega}(0)\left(1-T_{\omega}\right)+Y_{\omega}(1) T_{\omega}$. The model is completed by invoking the standard assumption that the instrumental variable Z_{ω} is independent of counterfactual variables, i.e. $\left(Y_{\omega}(0), Y_{\omega}(1), T_{\omega}(0), T_{\omega}(1)\right) \Perp Z_{\omega}$, where \Perp denotes independence.

A key concept in my identification analysis is the response variable S_{ω} defined as the unobserved vector of potential relocation decisions that family ω would choose if voucher assignments were set to zero and to one, i.e., $S_{\omega}=\left[T_{\omega}(0), T_{\omega}(1)\right]^{\prime} .^{7} S_{\omega}=[0,1]^{\prime}$ means that family ω does not relocate if assigned no voucher $\left(T_{\omega}(0)=0\right)$ but would relocate if assigned a voucher $\left(T_{\omega}(1)=1\right)$ and $S_{\omega}=[1,0]^{\prime}$ means that family ω relocates if assigned no voucher $\left(T_{\omega}(0)=1\right)$ but would not relocate if assigned a voucher $\left(T_{\omega}(1)=0\right)$. Table 1 describes the four vectors of potential response-types that S_{ω} can take. Angrist et al. (1996) term these response-types as: never takers $\left(S_{\omega}=[0,0]^{\prime}\right)$, compliers $\left(S_{\omega}=[0,1]^{\prime}\right)$, always takers $\left(S_{\omega}=[1,1]^{\prime}\right)$, and defiers $\left(S_{\omega}=[1,0]^{\prime}\right)$. I later show that the response variable S_{ω} can be interpreted as a coarse partition of the variables generating unobserved heterogeneity across families in an unordered choice model with multiple treatments.

Table 1: Possible Response-types for the Binary Relocation Choice with Binary Voucher

Voucher	Voucher	Relocation	Response-types								
Types	Assignment	Counterfactuals	Never Takers	Compliers	Always Takers	Defiers					
No Voucher	$Z_{\omega}=0$	$T_{\omega}(0)$	0	0	1	1					
Voucher Recipient	$Z_{\omega}=1$	$T_{\omega}(1)$	0	1	1	0					
	Response variable							$S_{\omega}=[0,0]^{\prime}$	$S_{\omega}=[0,1]^{\prime}$	$S_{\omega}=[1,1]^{\prime}$	$S_{\omega}=[1,0]^{\prime}$

In this simplified model, the $I T T$, i.e. $E\left(Y_{\omega} \mid Z_{\omega}=1\right)-E\left(Y_{\omega} \mid Z_{\omega}=0\right)$, can be expressed as the

[^3]weighted sum of the causal effect of relocation compared to no relocation for compliers ($S_{\omega}=[0,1]$) and the causal effect of not relocating compared to relocation for defiers $\left(S_{\omega}=[1,0]\right)$, that is: ${ }^{8}$
\[

$$
\begin{equation*}
I T T=\underbrace{E\left(Y_{\omega}(1)-Y_{\omega}(0) \mid S_{\omega}=[0,1]^{\prime}\right)}_{\text {causal effect for compliers }} \underbrace{P\left(S_{\omega}=[0,1]^{\prime}\right)}_{\text {compliers probability }}+\underbrace{E\left(Y_{\omega}(0)-Y_{\omega}(1) \mid S_{\omega}=[1,0]^{\prime}\right)}_{\text {causal effect for defiers }} \underbrace{P\left(S_{\omega}=[1,0]^{\prime}\right)}_{\text {defiers probability }} . \tag{1}
\end{equation*}
$$

\]

The observed propensity score difference between voucher assignments identifies the difference between compliers and defiers probabilities:

$$
\begin{equation*}
\underbrace{P\left(T_{\omega}=1 \mid Z_{\omega}=1\right)-P\left(T_{\omega}=1 \mid Z_{\omega}=0\right)}_{\text {difference of propensity scores between vouchers }}=\underbrace{P\left(S_{\omega}=[0,1]^{\prime}\right)-P\left(S_{\omega}=[1,0]^{\prime}\right)}_{\text {probability difference between compliers and defiers }} \tag{2}
\end{equation*}
$$

The causal interpretation of the ratio between $I T T$ (1) and the propensity score difference (2) hinges on assumptions that reduce the number of response-types. For example, the Bloom (1984) approach assumes that only voucher recipients can relocate, i.e. $P\left(T_{\omega}=1 \mid Z_{\omega}=0\right)=0$, which implies no defiers or always takers. Under this assumption, TOT identifies the causal effect of neighborhood relocation for compliers:

$$
T O T=\frac{I T T}{P\left(T_{\omega}=1 \mid Z_{\omega}=1\right)}=\frac{E\left(Y_{\omega}(1)-Y_{\omega}(0) \mid S_{\omega}=[0,1]^{\prime}\right) P\left(S_{\omega}=[0,1]^{\prime}\right)}{P\left(S_{\omega}=[0,1]^{\prime}\right)}=E\left(Y_{\omega}(1)-Y_{\omega}(0) \mid S_{\omega}=[0,1]^{\prime}\right),
$$

where the first equality defines $T O T$ and the second equality comes from Equations (1)-(2) under the assumption that $P\left(T_{\omega}=1 \mid Z_{\omega}=0\right)$ and $P\left(S_{\omega}=[1,0]^{\prime}\right)$ are equal to zero.

Imbens and Angrist (1994) define the Local Average Treatment Effect (LATE), defined as ITT (1) divided by the difference of propensity scores (2). LATE assumes no defiers which generates the identification of the causal effect of neighborhood relocation for compliers:

$$
\text { LATE }=\frac{I T T}{P\left(T_{\omega}=1 \mid Z_{\omega}=1\right)-P\left(T_{\omega}=1 \mid Z_{\omega}=0\right)}=E\left(Y_{\omega}(1)-Y_{\omega}(0) \mid S_{\omega}=[0,1]^{\prime}\right), \text { if } P\left(S_{\omega}=[1,0]^{\prime}\right)=0 .
$$

MTO differs from the simplified model just discussed. It assigns families to three randomized group (control, experimental, Section 8) and allows for three relocation choices (no relocation, low and high poverty relocations). Notationally, I use $Z_{\omega}=z_{1}$ to denote no voucher (control group), $Z_{\omega}=z_{2}$ to denote the experimental voucher and $Z_{\omega}=z_{3}$ to denote the Section 8 voucher. I use $T_{\omega}=1$ to denote no relocation, $T_{\omega}=2$ for low poverty neighborhood relocation, $T_{\omega}=3$ for high

[^4]poverty neighborhood relocation. Let $T_{\omega}(z)$ denote the relocation decision that family ω would choose if assigned voucher $z \in\left\{z_{1}, z_{2}, z_{3}\right\}$.

The response-type of the MTO family ω is represented by the unobserved three-dimensional vector $S_{\omega}=\left[T_{\omega}\left(z_{1}\right), T_{\omega}\left(z_{2}\right), T_{\omega}\left(z_{3}\right)\right]^{\prime}$ whose elements denote the counterfactual relocation decision that family ω would take if assigned to the control group z_{1}, the experimental group z_{2}, and the Section 8 group z_{3}. For example, if family ω is of response-type $S_{\omega}=[3,2,3]^{\prime}$, the family relocates to a high poverty neighborhood if assigned to the control group $\left(T_{\omega}\left(z_{1}\right)=3\right)$, relocates to a low poverty neighborhood if assigned to the experimental group $\left(T_{\omega}\left(z_{2}\right)=2\right)$, and relocates to a high poverty neighborhood $\left(T_{\omega}\left(z_{3}\right)=3\right)$ if assigned a Section 8 voucher.

The support of S_{ω} is given by the combination of all of the possible values that each element $T_{\omega}(z)$ takes for $z \in\left\{z_{1}, z_{2}, z_{3}\right\}$. For instance, $T_{\omega}\left(z_{1}\right)$ can take three possible values: one, two, or three. For each value of $T_{\omega}\left(z_{1}\right), T_{\omega}\left(z_{2}\right)$ can also take the same three values. This generates nine possible relocation patterns by voucher assignment. Further, for each value of $T_{\omega}\left(z_{1}\right)$ and $T_{\omega}\left(z_{2}\right), T_{\omega}\left(z_{3}\right)$ can also take the same three values, thus generating the 27 possible response-types. These response-types summarize the unobserved heterogeneity across families and are depicted in Table 2 in lexicographic order. Thus suppose a family ω is of response-type $s_{2}=[1,1,2]$, then this family would chose not to relocate if assigned to either control group or the experimental group, i.e. $T_{\omega}\left(z_{1}\right)=1$ and $T_{\omega}\left(z_{2}\right)=1$, but would relocate to a low poverty neighborhood if assigned to the Section 8 group, i.e. $T_{\omega}\left(z_{3}\right)=2$.

Table 2: MTO Possible Response-types

Voucher	Z Assignments	s_{1}	Possible Response-types (lexicographic ordering)													
			s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}	s_{9}	s_{10}	\ldots	s_{24}	s_{25}	s_{26}	s_{27}
Control	$Z=z_{1}$	1	1	1	1	1	1	1	1	1	2	\cdots	3	3	3	3
Experimental	$Z=z_{2}$	1	1	1	2	2	2	3	3	3	1	\ldots	2	3	3	3
Section 8	$Z=z_{3}$	1	2	3	1	2	3	1	2	3	1	\ldots	3	1	2	3

Like in the simplified model, the $I T T$ evaluates a weighted sum of the causal effects of neighborhood relocation across a subset of response-types. For instance the $I T T$ that compares the ex-

Table 3: Relevant Response-types for the ITT of Experimental Voucher $\left(z_{2}\right)$ vs. No Voucher $\left(z_{1}\right)$

		Block 1			Block 2			Block 3			Block 4			Block 5			Block 6		
Voucher		$\begin{aligned} & T_{\omega}\left(z_{1}\right)=1 \\ & T_{\omega}\left(z_{2}\right)=2 \end{aligned}$			$\begin{aligned} & T_{\omega}\left(z_{1}\right)=1 \\ & T_{\omega}\left(z_{2}\right)=3 \end{aligned}$			$\begin{aligned} & T_{\omega}\left(z_{1}\right)=2 \\ & T_{\omega}\left(z_{2}\right)=1 \end{aligned}$			$\begin{aligned} & T_{\omega}\left(z_{1}\right)=2 \\ & T_{\omega}\left(z_{2}\right)=3 \end{aligned}$			$\begin{aligned} & T_{\omega}\left(z_{1}\right)=3 \\ & T_{\omega}\left(z_{2}\right)=1 \end{aligned}$			$\begin{aligned} & T_{\omega}\left(z_{1}\right)=3 \\ & T_{\omega}\left(z_{2}\right)=2 \end{aligned}$		
Assignment	Z	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}	s_{9}	s_{10}	s_{11}	s_{12}	s_{16}	s_{17}	s_{18}	s_{19}	s_{20}	s_{21}	s_{22}	s_{23}	s_{24}
Control	$Z=z_{1}$	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3	3	3
Experimental	$Z=z_{2}$	2	2	2	3	3	3	1	1	1	3	3	3	1	1	1	2	2	2
Section 8	$Z=z_{3}$	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3

perimental voucher $\left(z_{2}\right)$ with the no voucher assignment $\left(z_{1}\right)$, i.e., $E\left(Y_{\omega} \mid Z_{\omega}=z_{2}\right)-E\left(Y_{\omega} \mid Z_{\omega}=z_{1}\right)$ can be expressed as a weighted sum of relocation causal effects across all response-types S_{ω} whose first element $\left(T_{\omega}\left(z_{1}\right)\right)$ and second element $\left(T_{\omega}\left(z_{2}\right)\right)$ differ. Table 3 extracts the 18 response-types of Table 2 that fall into this category. The large number of response-types not only prevents the identification of relocation effects but also impairs interpretation of the ITT parameter in terms of relocation effects. I classify the these 18 response-types of Table 3 into six blocks according to the counterfactual relocation choice for control assignment $T_{\omega}\left(z_{1}\right)$ and experimental group assignment $T_{\omega}\left(z_{2}\right)$. Block 1 compares low poverty relocation $T_{\omega}\left(z_{2}\right)=2$ and no relocation $T_{\omega}\left(z_{1}\right)=1$, while Block 3 makes the opposite comparison. The same contrast occurs between Blocks 2 and 5 and between Blocks 4 and 6 .

The econometric model underlying MTO is an unordered choice model with a categorical instrumental variable and multiple treatments. In this paper I examine the necessary and sufficient conditions for nonparametrically identifying the treatment effects for this class of models. I show that the identification of relocation effects in MTO relates to the identification strategy of the simplified model previously discussed. Specifically, the identification of relocation effects in both models hinges on assumptions that reduce the number of possible response-types.

Some response-types of MTO are unlikely to occur. For example, if $S_{\omega}=[2,1,1]^{\prime}$, family ω chooses to relocate to a low poverty neighborhood with no voucher $\left(T_{\omega}\left(z_{1}\right)=2\right)$ but does not relocate if assigned an experimental voucher $\left(T_{\omega}\left(z_{2}\right)=1\right)$. This is an implausible decision pattern as the experimental voucher subsidizes relocation to low poverty neighborhoods. If $S_{\omega}=[1,2,1]^{\prime}$, then family ω chooses to relocate to a low poverty neighborhood under the experimental voucher $\left(T_{\omega}\left(z_{2}\right)=2\right)$, but chooses not to relocate under the Section 8 voucher $\left(T_{\omega}\left(z_{3}\right)=1\right)$. However, both the Section 8 and the experimental vouchers subsidize relocation to low poverty neighborhoods,

Table 4: Economically Justifiable MTO Response-types

		Response-types						
Voucher	Z Assignment	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}
Control	$Z=z_{1}$	1	2	3	1	1	3	1
Experimental	$Z=z_{2}$	1	2	3	2	2	2	1
Section 8	$Z=z_{3}$	1	2	3	3	2	3	3

which makes $T_{\omega}\left(z_{3}\right)=1$ unlikely.
I use revealed preference analysis to systematically reduce the number of response-types. I model the family's choice of relocation as a utility maximization problem and use the Strong Axiom of Revealed Preferences to reduce the 27 possible response-types of the MTO into the 7 responsetypes shown in Table 4. This allows for the identification of: (a) the response-type distribution, (b) the distribution of pre-intervention variables conditional on each response-type, (c) a range of counterfactual outcomes and (d) bounds for the relocation causal effects. I also express the TOT parameter that compares the experimental and control groups as a weighted average of two causal effects: the effect of relocating to a low poverty neighborhood versus not relocating, and the effect of relocating to a low poverty neighborhood versus relocating to a high poverty neighborhood.

I extend the analysis of Kling et al. (2007) to achieve point identification of the causal effects of relocation. They use data on a neighborhood's poverty level as a metric that summarizes a bundle of unobserved variables that are associated with neighborhood quality. They evaluate the impact of a neighborhood's poverty level on the outcomes of residents using a parametric twostage least squares procedure that uses MTO vouchers as instrumental variables. I show that a weaker version their assumptions can be used to nonparametrically point identify the causal effects of relocation conditioned on response-types as well as the average causal effect of neighborhood relocation. My identification strategy explores ideas from Bayesian networks (Lauritzen, 1996; Pearl, 2009) that are not commonly used in economics. Specifically, I exploit the assumption that the overall quality of a neighborhood is not directly caused by the unobserved variables of a family even though neighborhood quality correlates with the family's unobserved variables due to neighborhood sorting. I show that this assumption is testable and can be used to achieve point identification. In my empirical analysis I test and no not reject this assumption.

The method developed in this paper produces fresh insights on the MTO project. This paper contributes to the previous analysis of the MTO by identifying parameters with clear causal interpretations that were never previously estimated in MTO study. I partition the sample of MTO families into subsets associated with economically justified response-types and estimate the causal effects of neighborhood relocation conditioned on these response-types.

I focus on labor market outcomes in the empirical analysis presented in this paper. My analysis agrees with the previous literature that shows no statistically significant TOT effects on economic outcomes. However, I obtain sharper results by focusing on relocation effects instead of voucher effects. I find that the causal effect of relocating from housing projects to low poverty neighborhood generates statistically significant results on labor marked outcomes. The causal effect of relocation is 65% higher than the TOT effect for adult earnings. Both parameters are estimated conditioned on the sites of the intervention. In a companion paper (Pinto, 2014), I examine a wider selection of outcomes while addressing further aspects of the MTO study.

This paper proceeds as follows. Section 2 presents a description of the MTO project. In Section 3, I develop my methodology. In Section 3.1, I describe the economic model that frames the relocation decision as a utility maximization problem. Section 3.2 investigates the necessary and sufficient conditions to nonparametrically identify the treatment effects generated by a general unordered choice model with categorical instrumental variables and multiple treatments. Section 3.3 examines the identification of the neighborhood's causal effects in light of the response-types of Table 4. Section 3.4 maps the TOT into causal effects of neighborhood relocation. Section 3.5 presents the point identification of the causal effects of relocation by response-types. Section 4 presents empirical results and Section 5 concludes.

2 MTO: Experimental Design and Background

The MTO is a housing experiment implemented by the Department of Housing and Urban Development (HUD) between June 1994 and July 1998. It was designed to investigate the social and economic consequences of relocating poor families from America's most distressed urban neighborhoods to low poverty communities.

The experiment targeted low-income households living in public housing or Section 8 project-
based housing located in disadvantaged inner city neighborhoods in five US cities - Baltimore, Boston, Chicago, Los Angeles, and New York. The eligible households consisted of families with children under 18 years of age that lived in areas with very high poverty rates (40% or more). The final sample consisted of 4,248 families, two-thirds of whom were African-American. The remaining were mostly Hispanic. ${ }^{9}$ Three-quarters of the families were on welfare and less than half of the household heads had graduated from high school. Nearly all of the households (92%) were headed by a female and had an average of three children (Orr et al., 2003).

The MTO experiment used the RCT method to assign vouchers that could be used as rent subsidies for families who sought to relocate. Each family was assigned by lottery to one of the three groups:

1. Control group : members were not offered vouchers but continued to live in public housing or received some previous project-based housing assistance.
2. Experimental group : members were offered housing vouchers that could be used to lease a unit in a low poverty neighborhood.
3. Section 8 group : members were offered Section 8 vouchers with no geographical restriction. The families could use their vouchers to move to low or high poverty neighborhoods of their own choosing.

The low poverty neighborhoods were those whose fraction of poor households was below 10% according to the 1990 US Census. ${ }^{10}$ By the time of the relocation, about half of the neighborhood destinations of the participants who used the experimental voucher had poverty rates below 10% although the majority of the poverty rates were below 20% percent (Orr et al., 2003).

The experimental families who complied with the voucher requirements were requested to live for a period of one year in low poverty areas in order to retain their vouchers. After this period, the families could use the voucher to relocate without geographical constraints. Less than two percent of the families that move using the vouchers returned to their original neighborhood.

[^5]Table 5: Compliance Rates by Site

Site	All Sites	Baltimore	Boston	Chicago	Los Angeles	New York
Experimental Compliance Rate	47%	58%	46%	34%	67%	45%
Section 8 Compliance Rate	59%	72%	48%	66%	77%	49%

This tables presents the fraction of voucher recipients that actually used the voucher (compliance rate) for relocation by site.

The vouchers consisted of a tenant-based subsidy in which the rent of an eligible dwelling was paid by HUD directly to the landlord. The voucher beneficiary was requested to pay 30% of the household's monthly adjusted gross income for rent and utilities. ${ }^{11}$

The experimental group's average compliance rate was 47%, while the compliance rate for Section 8 vouchers was 59%. Table 5 shows that the compliance rates differ by site for both experimental and Section 8 vouchers.

A baseline survey was conducted at the onset of the intervention after which the families were re-contacted in 1997 and 2000. An impact interim evaluation was conducted in 2002 (four to seven years after enrollment) and assessed six study domains: (1) mobility, housing, and neighborhood; (2) physical and mental health; (3) child educational achievement; (4) youth delinquency; (5) employment and earnings; and (6) household income and public assistance. ${ }^{12}$ The MTO Long Term Evaluation consists of data collected between the years of 2008-2010.

Table 6 presents a statistical description of the MTO baseline variables surveyed before any relocation decisions. Columns 2-6 of Table 6 show that, apart from sampling variations, the variables are reasonably balanced across the voucher assignments. However, Columns 7-9 and 1012 show that the means of the baseline variables differ significantly depending on the relocation choices. Table 6 shows evidence that families with fewer social connections are more likely to move using the voucher. Families whose household head is not married, do not have teenage siblings, and have fewer friends in the neighborhood are more likely to move by using the vouchers. Living in an unsafe neighborhood is also an incentive for relocating using the vouchers. However, families that

[^6]Table 6: Baseline Variables of MTO by Voucher Assignment and Compliance

This table presents a statistical description of MTO baseline variables by group assignment and compliance decision. By baseline variables I mean pre-program variables surveyed at the onset of the intervention before neighborhood relocation. Columns 2-6 present the arithmetic means for selected baseline variables conditional on Voucher assignments. Column 2 presents the control mean. Columns 3 presents the difference in means between the Experimental and Control groups. Columns 4 shows the double-sided single-hypothesis p-value associated with the equality in means test. Inference is based on the bootstrap method. Columns 5-6 compares the Section 8 group with the control group in the same fashion as columns 3-4. Columns 7-9 examine baseline variables for the experimental group conditional on the choice of voucher compliance. Column 7 presents the variable mean conditioned on voucher compliance. Column 8 gives the difference in means between the families assigned to the Experimental voucher that did not use the voucher and the ones the used the voucher for relocation. Columns 9 shows the double sided p-value associated with the equality in means test. Columns 10-12 analyze the families assigned to the Section 8 group in the same fashion of columns $7-9$.
had lived in the same neighborhood for more than five years were less likely to use the vouchers. Web Appendix C estimates the distribution of the poverty of the neighborhoods for the MTO families by voucher assignment and their relocation decision.

The goal of this is to solve the statistical problems that impede the nonparametric identification of neighborhood effects. To achieve this goal I consider a stylized version of the MTO intervention that allows to exploit the exogenous variation in the MTO voucher assignments to identify the effects of neighborhood relocations.

First the family's relocation choice at the onset of the intervention consists of three alternatives: (1) do not relocate, (2) relocate to a low poverty neighborhood, or (3) relocate to a high poverty neighborhood. A relocation choice can be interpreted as the bundle that consists of the relocation choice at the onset of the intervention but also the neighborhood mobility pattern associated with this relocation choice.

Second, the MTO vouchers play the role of instrumental variables because of their impact on the choice of neighborhood. That is to say that vouchers impact family outcomes by affecting the family's choice of neighborhood relocation. The voucher assignment is assumed to be independent of the counterfactual outcomes generated by fixing the relocation decisions, even though voucher assignments are not independent of observed outcomes conditioned on relocation choice. Thus voucher's income effects cannot explain the difference in the outcome distribution of the families who relocate to a low poverty neighborhood whether they use their vouchers or not. This difference is explained by the confounding effects of the unobserved family variables that affect both the choice of relocation and the choice of the neighborhood.

In order to exploit the exogenous variation of randomized voucher, it is necessary to summarize the patterns of neighborhood relocation of the MTO families into the three relocation alternatives just described. The MTO data from the interim evaluation classifies participating families into three categories: families that do not move, families that move using the voucher, and families that move without using the voucher. ${ }^{13}$ I use this classification to allocate the choice of no relocation to families that do not move, and the choice of low poverty relocation to the families that move using the experimental voucher. I use poverty levels of the 1990 U.S. Census to classify the relocation

[^7]choice of families that move using the Section 8 voucher into low or high poverty neighborhood.
It remains to classify the relocation choice of control families that move and the experimental and Section 8 families that move without using the voucher. To do so, I investigate the cumulative distribution of the numbers of days from the onset of the intervention until the first move for families that relocate. This distribution is presented in Table 7.

Table 7: Cumulative Distribution of Days from Onset until First Move

	Move using the Voucher				
Days until First Move	Experimental Section 8 3	Control	No Voucher Use Experimental	Section 8	
$\mathbf{5 0}$	0.04	0.06	0.03	0.03	0.03
$\mathbf{7 0}$	0.11	0.14	0.04	0.04	0.05
$\mathbf{9 0}$	0.20	0.27	0.05	0.06	0.08
$\mathbf{1 1 0}$	0.30	0.39	0.07	0.07	0.09
$\mathbf{1 3 0}$	0.40	0.54	0.08	0.08	0.11
$\mathbf{1 5 0}$	0.49	0.64	0.11	0.10	0.13
$\mathbf{1 7 0}$	0.59	0.76	0.12	0.11	0.14
$\mathbf{2 0 0}$	0.71	0.88	0.14	0.13	0.18
$\mathbf{2 5 0}$	0.80	0.95	0.18	0.15	0.24
$\mathbf{3 7 5}$	0.90	0.98	0.27	0.23	0.34
$\mathbf{5 2 5}$	0.95	0.99	0.41	0.40	0.45

This table shows the cumulative distribution of days from the intervention onset until first move for MTO participating families that move conditional on voucher assignment and voucher usage. The first column gives days until first move. Columns $2-3$ provide the cumulative distribution for the families that move using the experimental and Section 8 vouchers. Next column gives the cumulative distribution of days until first move for families assigned to the control group that move. The remaining two columns give the cumulative distribution for families assigned to the experimental group and Section 8 group that move without using the vouchers.

Columns 2-3 provide the cumulative distribution for the families that move using the experimental and Section 8 vouchers. The relocation decision for those families is already defined. My quest is to ascribe relocation choices for the families that move without using vouchers. Those families are represented in Columns 4-6 of Table 7. A simple approach is to estimate a threshold for the number of days until first move such that the cumulative distribution of days until first move of the families that do not use the voucher matches the respective distribution for the families that move using the vouchers. ${ }^{14}$ The families that move before this threshold are considered to have relocated. I then use the poverty level in the 1990 US Census to classify classify the relocation

[^8]choice of families that move using the Section 8 voucher into low or high poverty neighborhood according to the 10% criteria in the MTO design.

3 An Economic Model for the MTO Program

Randomized controlled trials (RCTs) are often called the gold standard for policy evaluation. In the case of the MTO, the randomization of the vouchers allows for the evaluation of the causal effects of voucher assignment. However, this randomization does not identify the causal effects of the neighborhood relocations. To assess those, I need to address the selection bias possibly generated by the family's relocation decision.

3.1 An Economic Model for Neighborhood Relocation

I express a family's choice of neighborhood relocation as a utility maximization problem. I use the real valued function $u_{\omega}(k, t)$ to represent the rational preferences for family ω over its consumption goods $k \in \operatorname{supp}(K)$ (including dwelling characteristics) and the relocation decision t. The argument t of the utility function accounts for the nonpecuniary preferences of the relocation such that $t=1$ stands for not relocating, $t=2$ for relocating to a low poverty neighborhood, and $t=3$ for relocating to a high poverty neighborhood.

The impact of the MTO vouchers is captured by allowing the family's budget set to vary according to the voucher assignment and the relocation decision. Namely, $W_{\omega}(z, t) \subset \operatorname{supp}(K)$ is the budget set of family ω under relocation decision $t \in\{1,2,3\}$ and MTO voucher $z \in\left\{z_{1}, z_{2}, z_{3}\right\}$ where z_{1} stands for no voucher (control group), z_{2} stands for the experimental voucher, and z_{3} for the Section 8 voucher.

The choice of relocation for family ω under MTO voucher z is given by:

$$
\begin{equation*}
C_{\omega}(z)=\underset{t \in\{1,2,3\}}{\arg \max }\left(\max _{k \in W_{\omega}(z, t)} u_{\omega}(k, t)\right) \tag{3}
\end{equation*}
$$

where the bundle of optimal consumption goods and the choice of relocation $t \in\{1,2,3\}$ given a voucher assignment $z \in \operatorname{supp}(Z)$ for family ω is $\left[k_{\omega}(z, t), t\right]$. Equation (3) implies that if $C_{\omega}(z)=$ $t \in\{1,2,3\}$, then the bundle $\left[k_{\omega}(z, t), t\right]$ is preferred to $\left[k_{\omega}\left(z, t^{\prime}\right), t^{\prime}\right]$ where t^{\prime} is a relocation choice
in $\{1,2,3\}$ other than t.
S_{ω} is termed a response variable and denotes the unobserved three-dimensional vector of decisions to relocate that occur if family ω is assigned respectively to the control group $\left(z_{1}\right)$, experimental group $\left(z_{2}\right)$, or the Section $8\left(z_{3}\right)$ group:

$$
\begin{equation*}
S_{\omega}=\left[C_{\omega}\left(z_{1}\right), C_{\omega}\left(z_{2}\right), C_{\omega}\left(z_{3}\right)\right]^{\prime} \tag{4}
\end{equation*}
$$

where $\operatorname{supp}(S)=\left\{s_{1}, s_{2}, \ldots, s_{N_{S}}\right\}$ denote support of S_{ω} and a value $s \in \operatorname{supp}(S)$ is termed a response-type. Each element $C_{\omega}(z) ; z \in\left\{z_{1}, z_{2}, z_{3}\right\}$ of S_{ω} can take a value in $\{1,2,3\}$. There are a total of $3 \cdot 3 \cdot 3=27$ possible response-types in $\operatorname{supp}(S)$ as explained in the Introduction 1. The remainder of this section uses economic reasoning such as the Strong Axiom of Revealed Preference to investigates which of the possible response-types are economically justified.

The MTO vouchers subsidize the rent of an eligible dwelling when that rent is in excess of 30% of the family's monthly income. Housing subsidies allow families to afford consumption bundles that would exceed the family's available income if the subsidy were not available. Furthermore, the Section 8 subsidy can be used in both low and high poverty neighborhoods. The experimental voucher subsidy is restricted to low poverty neighborhood relocations. These statements can be translated into the following budget restrictions:

Assumption A-1. Budget Restrictions:

$$
\begin{align*}
& W_{\omega}\left(z_{1}, 2\right) \subset W_{\omega}\left(z_{2}, 2\right)=W_{\omega}\left(z_{3}, 2\right) \tag{5}\\
& W_{\omega}\left(z_{1}, 3\right)=W_{\omega}\left(z_{2}, 3\right) \subset W_{\omega}\left(z_{3}, 3\right) \tag{6}
\end{align*}
$$

Equation (5) states the budget set relationships for families that relocate to low poverty neighborhoods $(t=2)$. The family's budget set under the experimental and Section 8 vouchers is bigger than under no voucher. Equation (6) characterizes the budget sets of families that move to high poverty neighborhoods $(t=3)$. A Section 8 voucher increases the family's budget set compared to no voucher or an experimental voucher.

I assume that the family's budget set does not change across relocation choices if the family is not offered a voucher (control group). I also assume that the family's budget set are the same for
the relocation choices for which the experimental or Section 8 vouchers do not apply. Formally:
Assumption A-2. Budget Equalities:

$$
W_{\omega}\left(z_{1}, 1\right)=W_{\omega}\left(z_{1}, 2\right)=W_{\omega}\left(z_{1}, 3\right)=W_{\omega}\left(z_{2}, 1\right)=W_{\omega}\left(z_{2}, 3\right)=W_{\omega}\left(z_{3}, 1\right) .
$$

The following lemma applies the strong axiom of revealed preferences (SARP) to translate the budget restrictions in Assumptions A-1-A-2 into constraints on the Choice Rule (3):

Lemma L-1. If preferences are rational and the agent is not indifferent between the relocation choices, then, under Assumptions A-1-A-2, the family Choice Rules C_{ω} must satisfy the following assertions:

$$
\begin{aligned}
& \text { 1. } C_{\omega}\left(z_{1}\right)=2 \Rightarrow C_{\omega}\left(z_{2}\right)=2 \text { and } C_{\omega}\left(z_{3}\right) \neq 1 \text {, } \\
& \text { 2. } C_{\omega}\left(z_{1}\right)=3 \Rightarrow C_{\omega}\left(z_{2}\right) \neq 1 \text { and } C_{\omega}\left(z_{3}\right) \neq 1 \text {, } \\
& \text { 3. } C_{\omega}\left(z_{2}\right)=1 \Rightarrow C_{\omega}\left(z_{1}\right)=1 \text { and } C_{\omega}\left(z_{3}\right) \neq 2 \text {, } \\
& \text { 4. } C_{\omega}\left(z_{2}\right)=3 \Rightarrow C_{\omega}\left(z_{1}\right)=3 \text { and } C_{\omega}\left(z_{3}\right)=3 \text {, } \\
& \text { 5. } C_{\omega}\left(z_{3}\right)=1 \Rightarrow C_{\omega}\left(z_{1}\right)=1 \text { and } C_{\omega}\left(z_{2}\right)=1 \text {, } \\
& \text { 6. } C_{\omega}\left(z_{3}\right)=2 \Rightarrow C_{\omega}\left(z_{2}\right)=2 .
\end{aligned}
$$

Proof. See Mathematical Appendix.

I further assume that a neighborhood is a normal good. This assumption means that if a family decides to relocate to a low or high poverty neighborhood under no subsidy, then the family does not change its decision if a subsidy is offered for the chosen relocation. Notationally this assumption translates to:

Assumption A-3. The neighborhood is a normal good, that is, for each family ω, and for $z, z^{\prime}, t \in$ $\left\{z_{1}, z_{2}, z_{3}\right\}$, if $C_{\omega}(z)=t$ and $W_{\omega}(z, t)$ is a proper subset of $W_{\omega}\left(z^{\prime}, t\right)$ then $C_{\omega}\left(z^{\prime}\right)=t$.

Theorem T-1 uses Lemma L-1, and Assumption A-3 to reduce the number of potential response-types from 27 to 7 :

Theorem T-1. Under Assumptions A-1-A-3, the set of possible response-types is given by:

		Possible Response-types							
Voucher	Z	Assignment	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}
Control	$Z=z_{1}$	1	2	3	1	1	3	1	
Experimental	$Z=z_{2}$	1	2	3	2	2	2	1	
Section 8	$Z=z_{3}$	1	2	3	3	2	3	3	

This table shows the possible values that the response variable S_{ω} can take under the restrictions of Choice Rules C_{ω} presented in Lemma L-1 and Assumption A-3.

Proof. See Mathematical Appendix.

In the next subsection, I use the concept of response-types to develop a general instrumental variable model that describes the MTO intervention.

3.2 A General Instrumental Variable Model for MTO Experiment

I use a general instrumental variable model (IV) to investigate the MTO experiment. The results described in this subsection apply to any unordered choice model with categorical instrumental variables and multiple treatments.

A general IV model is described by four main variables $V_{\omega}, Z_{\omega}, T_{\omega}$ and Y_{ω} defined in the common probability space (Ω, \mathscr{F}, P) in which $Y_{\omega} \in \Omega$ denotes a measurement of the random variable Y for family ω. These variables are described as:

1. Z_{ω} denotes an observed categorical instrumental variable.
2. T_{ω} denotes an observed categorical treatment.
3. Y_{ω} denotes an observed post-treatment outcome.
4. V_{ω} denotes an unobserved random vector affecting both the treatment and the outcome.

In the case of the MTO, Z_{ω} denotes the voucher assigned to family ω that takes its value from the support $\operatorname{supp}(Z)=\left\{z_{1}, z_{2}, z_{3}\right\}$, where z_{1} stands for the control group; z_{2} for the experimental group; and z_{3} for the Section 8 group. I use the term instrumental variable or assigned voucher interchangeably. Treatment T_{ω} denotes the relocation decision whose support is $\operatorname{supp}(T)=\{1,2,3\}$, where $T_{\omega}=1$ stands for not relocating, $T_{\omega}=2$ for relocating to a low poverty neighborhood, and
$T_{\omega}=3$ for relocating to a high poverty neighborhood. I use the terms treatment and relocation choices interchangeably. The random vector V_{ω} represents all of the unobserved characteristics of family ω that affect the outcome Y_{ω} and the relocation choice T_{ω}. Therefore, the distribution of the outcome conditioned on the relocation choices might differ due to the differences in the conditional distribution of V_{ω} instead of the relocation itself. The V_{ω} is often called a confounding variable, and it is the source of the selection bias in the IV model.

I denote the observed pre-program variables by X_{ω}. For the sake of notational simplicity, they are not explicitly included in the model. All of the analyses described in this subsection can be understood as conditional on any pre-program variables that I need to control for.

The following structural equations govern the causal relationships among the variables of this model: ${ }^{15}$

$$
\begin{align*}
Y_{\omega} & =f_{Y}\left(T_{\omega}, V_{\omega}, \epsilon_{\omega}\right) . \tag{7}\\
T_{\omega} & =f_{T}\left(Z_{\omega}, V_{\omega}\right) . \tag{8}
\end{align*}
$$

The arguments of Equations (7)-(8) are said to cause Y_{ω} and T_{ω} respectively. Equation (7) states that outcome Y_{ω} is caused by relocation decision T_{ω}, the unobserved variable V_{ω}, and by an error term ϵ_{ω} independent of any variable other than Y_{ω}, that is, $\epsilon_{\omega} \Perp\left(V_{\omega}, Z_{\omega}, T_{\omega}\right)$. Equation (8) states that the relocation decision T_{ω} is caused by the voucher Z_{ω} and the vector of the family's unobserved characteristics V_{ω}. I suppress the error term in Equation (8) to simplify the notation. The lack of an error term does not constitute a model restriction because V_{ω} has an arbitrary dimension and can subsume the supposed error term.

A key property generated by the MTO randomization is that the vouchers are independent of the family's unobserved characteristics:

$$
\begin{equation*}
Z_{\omega} \Perp V_{\omega} . \tag{9}
\end{equation*}
$$

The model is completed by the following regularity conditions:

[^9]Figure 2: General IV Model

Notes: This figure represents the MTO Model as a DAG. Arrows represent direct causal relations. Circles represent unobserved variables. Squares represent observed variables. Y is the observed outcome. T an observed neighborhood decision that causes outcome $Y . V$ is an unobserved confounding variable generating selection bias and causing T and $Y . Z$ is the MTO voucher assignment that plays the role of instrumental variable that causes the relocation decision T.

Assumption A-4. The expectation of Y_{ω} exists, that is, $E\left(\left|Y_{\omega}\right|\right)<\infty$.
Assumption A-5. $P\left(Z_{\omega}=z \mid X_{\omega}\right)>0 \forall z \in \operatorname{supp}(Z)$ and $P\left(T_{\omega}=t \mid X_{\omega}\right)>0 \forall t \in \operatorname{supp}(T)$.
Assumption A-4 assures that the mean treatment parameters are well defined. Assumption A5 assures that the families are randomized to each MTO voucher with a positive probability and that some families pick each relocation choice.

Figure 2 uses the nomenclature of Bayesian networks (Lauritzen, 1996) to represent the IV model as a Directed Acyclic Graph (DAG). In the figure, causal relationships are indicated by directed arrows, unobserved variables are represented by circles, and squares represent observed variables. The error disturbances typically are not depicted in a DAG but are implicit.

The IV model defined by Equations (7)-(9) is more general than standard representation of the well-known Generalized Roy Model for unordered choices described in Heckman and Urzúa (2010); Heckman et al. (2006, 2008); Heckman and Vytlacil (2007). Both the general IV model and the Roy model allow for a categorical treatment, and both impose no restriction on the random vector of the unobserved variables that impact the outcome. In contrast to Equation (8), the standard form of the Generalized Roy model assumes that the treatment choice T_{ω} is governed by a function that is separable from the instrumental variables Z_{ω} and the unobserved variables V_{ω}. Notationally, the standard form of the Generalized Roy model distinguishes the random vector of the unobserved variables that cause the outcome Y_{ω} from the unobserved variables that cause T_{ω}. The General IV model assumes no specific functional form for Equations (7)-(8) nor does it impose any restriction on the dimension of V_{ω}. Thus, for sake of notational simplicity, I use unobserved random vector V_{ω} for both the outcome and the treatment equations.

A counterfactual outcome is generated by fixing the treatment variable T_{ω} to $t \in \operatorname{supp}(T)$
(Haavelmo, 1944; Heckman and Pinto, 2014b). By fixing I mean setting the argument T_{ω} of Equation (7) to a value $t \in \operatorname{supp}(T)$, that is:

$$
\begin{equation*}
Y_{\omega}(t)=f_{Y}\left(t, V_{\omega}, \epsilon_{\omega}\right) ; t \in \operatorname{supp}(T) . \tag{10}
\end{equation*}
$$

The average causal effect comparing treatment choices t against t^{\prime} on outcome Y_{ω} is defined as $E\left(Y_{\omega}(t)-Y_{\omega}\left(t^{\prime}\right)\right) ; t, t^{\prime} \in \operatorname{supp}(T)$ and the observed outcome Y_{ω} can be expressed as:

$$
\begin{equation*}
Y_{\omega}=\sum_{t \in \operatorname{supp}(T)} Y_{\omega}(t) \cdot \mathbf{1}\left[T_{\omega}=t\right] \tag{11}
\end{equation*}
$$

where $\mathbf{1}[\psi]$ is an indicator function that equals one if ψ is true and zero otherwise. Under this notation, the potential treatment choice T_{ω} when instrument Z_{ω} is fixed at $z \in \operatorname{supp}(Z)$ is given by $T_{\omega}(z)=f_{T}\left(z, V_{\omega}\right) ; z \in \operatorname{supp}(Z)$. I use Equation (10), Relation (9) and the independence properties of error term ϵ_{ω} to state the following counterfactual independence relationships:

$$
\begin{equation*}
Z_{\omega} \Perp Y_{\omega}(t) \text { and } Y_{\omega}(t) \Perp T_{\omega} \mid V_{\omega} . \tag{12}
\end{equation*}
$$

A consequence of the first relationship of (12) is that the vouchers can only cause outcome Y_{ω} through its impact on the relocation decision T_{ω}. This property characterizes Z_{ω} as an instrumental variable for the treatment T_{ω}. The second relation of (12) assigns a matching property to the variable V_{ω}. That is to say that if V_{ω} were known, then the outcome's counterfactual expectation could be evaluated by:

$$
E\left(Y_{\omega} \mid T_{\omega}=t, V_{\omega}\right)=E\left(\sum_{t \in \operatorname{supp}(T)} Y_{\omega}(t) \cdot \mathbf{1}\left[T_{\omega}=t\right] \mid T_{\omega}=t, V_{\omega}\right)=E\left(Y_{\omega}(t) \mid T_{\omega}=t, V_{\omega}\right)=E\left(Y_{\omega}(t) \mid V_{\omega}\right)
$$

where the first equality comes from (11) and the last one from (12).
The response variable S_{ω} in subsection 3.1 denotes the unobserved vector of the counterfactual treatments T_{ω} when the instrument Z_{ω} is fixed at z_{1}, z_{2}, or z_{3}. Notationally, S_{ω} is expressed by:

$$
\begin{equation*}
S_{\omega}=\left[T_{\omega}\left(z_{1}\right), T_{\omega}\left(z_{2}\right), T_{\omega}\left(z_{3}\right)\right]=\left[f_{T}\left(z_{1}, V_{\omega}\right), f_{T}\left(z_{2}, V_{\omega}\right), f_{T}\left(z_{3}, V_{\omega}\right)\right]=f_{S}\left(V_{\omega}\right) . \tag{13}
\end{equation*}
$$

Figure 3: General IV Model with Response Variable S

Notes: This figure shows the MTO model with the response variable S as a DAG. Arrows represent direct causal relations. Circles represent unobserved variables. Squares represent observed variables. Y is the observed outcome. T an observed neighborhood decision that causes outcome $Y . V$ is an unobserved confounding variable that generates the selection bias and causes the response variable S and $Y . Z$ is the MTO voucher assignment that plays the role of the instrumental variable that causes the relocation decision T.

Equation (13) shows that S_{ω} is a function of the unobserved variables V_{ω} and therefore does not add new information to the model. The relocation decision indicator T_{ω} can be written in terms of the response variable S_{ω} as:

$$
\begin{equation*}
T_{\omega}=\left[\mathbf{1}\left[Z_{\omega}=z_{1}\right], \mathbf{1}\left[Z_{\omega}=z_{2}\right], \mathbf{1}\left[Z_{\omega}=z_{3}\right]\right] \cdot S_{\omega} . \tag{14}
\end{equation*}
$$

A useful consequence of (14) is that the treatment choice T_{ω} is deterministically conditioned on the instrumental variable Z_{ω} and the unobserved response variable S_{ω}. The IV model with response variable S_{ω} is represented as a DAG in Figure 3.

The next lemma states three useful relationships of the response variable S_{ω} :

Lemma L-2. The following relationships hold for the IV model of Equations (7)-(8):

$$
S_{\omega} \Perp Z_{\omega}, \quad Y_{\omega} \Perp Z_{\omega} \mid\left(S_{\omega}, T_{\omega}\right) \text { and } Y_{\omega}(t) \Perp T_{\omega} \mid S_{\omega} .
$$

Proof. See Mathematical Appendix.

The first relationship in L-2 states that the voucher Z_{ω} is independent of the potential choice of relocation in S_{ω}. The second relationship states that the outcomes and the assigned vouchers are independent when they are conditioned on the neighborhood decision T_{ω} and the unobserved response variable S_{ω}. The last relationship states that S_{ω} shares the same matching property of V_{ω}. This property comes from the fact that relocation choice T_{ω} only depends on Z_{ω} when conditioned on the response variable S_{ω}, and also that Z_{ω} is independent of counterfactuals $Y_{\omega}(t)$ conditioned
on S_{ω}. Conceptually, S_{ω} solves the problem of the confounding effects of the unobserved variables V_{ω} by generating a coarse partition of the sample space such that the distribution of V_{ω} is the same across the relocation choices T_{ω} within the partitions generated by S_{ω}. Most important, the matching property of S_{ω} allows the evaluation of the counterfactual outcomes by conditioning on $S_{\omega}:$
$E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}\right)=E\left(\sum_{t \in \operatorname{supp}(T)} Y_{\omega}(t) \cdot \mathbf{1}\left[T_{\omega}=t\right] \mid S_{\omega}, T_{\omega}=t\right)=E\left(Y_{\omega}(t) \mid S_{\omega}, T_{\omega}=t\right)=E\left(Y_{\omega}(t) \mid S_{\omega}=s\right)$
where the first equality comes from (11) and the last one from L-2.
The matching property of S_{ω} motivates the definition of the average treatment effect of the responses (RATE), that is, the causal effect of T_{ω} on Y_{ω} when T_{ω} is fixed at t compared to t^{\prime} that is conditioned on response-type $S_{\omega}=s \in \operatorname{supp}(S)$:

$$
\begin{equation*}
\operatorname{RATE}_{s}\left(t, t^{\prime}\right)=E\left(Y_{\omega}(t)-Y_{\omega}\left(t^{\prime}\right) \mid S_{\omega}=s\right)=E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s\right)-E\left(Y_{\omega} \mid T_{\omega}=t^{\prime}, S_{\omega}=s\right) . \tag{15}
\end{equation*}
$$

The subscript s in Equation (15) denotes an element $s \in \operatorname{supp}(S)$. I also use set $\tau \subset \operatorname{supp}(S)$ as subscript to denote $\operatorname{RATE}_{\tau}\left(t, t^{\prime}\right)=E\left(Y_{\omega}(t)-Y_{\omega}\left(t^{\prime}\right) \mid S_{\omega} \in \tau\right)$. If $P\left(T_{\omega}=t \mid S_{\omega}=s\right)>0$ and $P\left(T_{\omega}=t^{\prime} \mid S_{\omega}=s\right)>0$ for all $s \in \operatorname{supp}(S), t, t^{\prime} \in \operatorname{supp}(T)$, then the average treatment effect $($ ATE $)$ can be expressed as a weighted average of RATEs:

$$
\begin{equation*}
A T E\left(t, t^{\prime}\right)=E\left(Y_{\omega}(t)-Y_{\omega}\left(t^{\prime}\right)\right)=\sum_{s \in \operatorname{supp}(S)} R A T E_{s}\left(t, t^{\prime}\right) P\left(S_{\omega}=s\right) . \tag{16}
\end{equation*}
$$

From Equations (15)-(16), the identification of the causal effects of T_{ω} on Y_{ω} relies on the evaluation of the unobserved quantities $E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s\right), P\left(S_{\omega}=s\right) \forall s \in \operatorname{supp}(S), t \in \operatorname{supp}(T)$ based on the observed quantities $E\left(Y_{\omega} \mid T_{\omega}=t, Z_{\omega}=z\right), P\left(T_{\omega}=t, Z_{\omega}=z\right) ; t \in \operatorname{supp}(T), z \in$ $\operatorname{supp}(Z)$. The next theorem uses the relationships of Lemma L-2 to express these unobserved quantities in terms of the observed ones:

Theorem T-2. The following equation holds for the IV model of Equations (7)-(8):

$$
\begin{equation*}
E\left(Y_{\omega} \cdot \mathbf{1}\left[T_{\omega}=t\right] \mid Z_{\omega}\right)=\sum_{s \in \operatorname{supp}(S)} \mathbf{1}\left[T_{\omega}=t \mid S_{\omega}=s, Z_{\omega}\right] E\left(Y \mid T_{\omega}=t, S_{\omega}=s\right) P\left(S_{\omega}=s\right) . \tag{17}
\end{equation*}
$$

Proof. See Mathematical Appendix.

Equation (17) expresses the unobserved outcome expectations conditioned on the responsetypes in terms of the observed expectations of the outcomes and the voucher assignments. If I set outcome Y_{ω} as a constant, then Equation (17) generates the following equality:

$$
\begin{equation*}
P\left(T_{\omega}=t \mid Z_{\omega}=z\right)=\sum_{s \in \operatorname{supp}(S)} \mathbf{1}\left[T_{\omega}=t \mid S_{\omega}=s, Z_{\omega}=z\right] P\left(S_{\omega}=s\right) . \tag{18}
\end{equation*}
$$

Equation (18) expresses the response-type probabilities $P\left(S_{\omega}=s\right) ; s \in \operatorname{supp}(S)$ in terms of the propensity scores $P\left(T_{\omega}=t \mid Z_{\omega}=z\right) ; t \in\{1,2,3\}, z \in\left\{z_{1}, z_{2}, z_{3}\right\}$.

The left-hand sides of Equations (18)-(17) are observed, the right-hand sides are not. It is helpful to transcribe the linear equations of (18)-(17) into matrix algebra in order to investigate conditions for identifying treatment effects. The support of S_{ω} is a matrix \boldsymbol{A} that is denoted by $\boldsymbol{A}=\left[s_{1}, \ldots, s_{N_{S}}\right] ; \operatorname{supp}(S)=\left\{s_{1}, \ldots s_{N_{S}}\right\}$. I express the element in the i-th row and j-th column of a matrix \boldsymbol{A} as $\boldsymbol{A}[i, j]=\left(T_{\omega} \mid Z_{\omega}=z_{i}, S_{\omega}=s_{j}\right) ; i \in\{1,2,3\}, j \in\left\{1, \ldots, N_{S}\right\}$. I use \boldsymbol{A}_{t} for the $|\boldsymbol{A}|$-dimensional binary matrix that is defined by $\boldsymbol{A}_{t}[i, j]=\mathbf{1}[\boldsymbol{A}[i, j]=t]$. As a short hand notation, I use $\boldsymbol{A}[i, \cdot]$ for the i-th row, $\boldsymbol{A}[\cdot, j]$ for the j-th column and $\boldsymbol{A}_{t}=\mathbf{1}[\boldsymbol{A}=t]$ to denote \boldsymbol{A}_{t}. The matrix $\boldsymbol{A}_{\boldsymbol{S}}$ denotes the binary matrix that is generated by stacking the matrices \boldsymbol{A}_{t} as t takes the values of 1,2 , and 3 . The matrix $\boldsymbol{A}_{\boldsymbol{D}}$ denotes the binary matrix generated by setting the matrices \boldsymbol{A}_{t} as t takes the values of 1,2 , and 3 as a diagonal block matrix, that is:

$$
\boldsymbol{A}_{S}=\left[\begin{array}{l}
\boldsymbol{A}_{1} \tag{19}\\
\boldsymbol{A}_{2} \\
\boldsymbol{A}_{3}
\end{array}\right], \quad \boldsymbol{A}_{D}=\left[\begin{array}{ccc}
\boldsymbol{A}_{1} & 0 & 0 \\
0 & \boldsymbol{A}_{2} & 0 \\
0 & 0 & \boldsymbol{A}_{3}
\end{array}\right]
$$

where $\mathbf{0}$ is a matrix of element zeros with the same dimension of $\boldsymbol{A}_{\boldsymbol{t}}$. The matrix $\boldsymbol{A}_{\boldsymbol{S}}$ has $|\operatorname{supp}(Z)| \cdot$ $|\operatorname{supp}(T)|$ rows and N_{S} columns. The matrix $\boldsymbol{A}_{\boldsymbol{D}}$ also has $|\operatorname{supp}(Z)| \cdot|\operatorname{supp}(T)|$ rows but N_{S}. $|\operatorname{supp}(T)|$ columns.

The following matrix notation stacks the observed and the unobserved parameters into vectors. The $\boldsymbol{P}_{Z}(t)$ denotes the vector of observed propensity scores $P\left(T_{\omega}=t \mid Z_{\omega}\right)$ when Z_{ω} ranges in
$\left\{z_{1}, z_{2}, z_{3}\right\}$, and \boldsymbol{P}_{Z} stacks vectors $\boldsymbol{P}_{Z}(t)$ as t ranges in $\{1,2,3\}:$

$$
\begin{align*}
\boldsymbol{P}_{Z}(t) & =\left[P\left(T_{\omega}=t \mid Z_{\omega}=z_{1}\right), P\left(T_{\omega}=t \mid Z_{\omega}=z_{2}\right), P\left(T_{\omega}=t \mid Z_{\omega}=z_{3}\right)\right]^{\prime}, \\
\boldsymbol{P}_{Z} & =\left[\boldsymbol{P}_{Z}(1)^{\prime}, \boldsymbol{P}_{Z}(2)^{\prime}, \boldsymbol{P}_{Z}(3)^{\prime}\right] . \tag{20}
\end{align*}
$$

Vectors $\boldsymbol{Q}_{Z}(t)$ and \boldsymbol{Q}_{Z} focus on the outcome expectations in the same manner as $\boldsymbol{P}_{Z}(t)$, and $P\left(T_{\omega}=t \mid Z_{\omega}\right)$ focuses on the propensity scores:

$$
\begin{align*}
\boldsymbol{Q}_{Z}(t) & =\left[E\left(Y_{\omega} \mid T_{\omega}=t, Z_{\omega}=z_{1}\right), E\left(Y_{\omega} \mid T_{\omega}=t, Z_{\omega}=z_{2}\right), E\left(Y_{\omega} \mid T_{\omega}=t, Z_{\omega}=z_{3}\right)\right]^{\prime} \odot \boldsymbol{P}_{Z_{\omega}}(t), \\
\boldsymbol{Q}_{Z} & =\left[\boldsymbol{Q}_{Z}(1)^{\prime}, \boldsymbol{Q}_{Z}(2)^{\prime}, \boldsymbol{Q}_{Z}(3)^{\prime}\right], \tag{21}
\end{align*}
$$

where \odot denotes the Hadamard product. ${ }^{16}$ The vector of the unobserved response-type probabilities is denoted by \boldsymbol{P}_{S}. The vectors of the outcome expectations that are conditional on the responsetypes are given by $\boldsymbol{Q}_{S}(t)$ and \boldsymbol{Q}_{S} :

$$
\begin{aligned}
\boldsymbol{P}_{S} & =\left[P\left(S_{\omega}=s_{1}\right), \ldots, P\left(S_{\omega}=s_{N_{S}}\right)\right]^{\prime}, \\
\boldsymbol{Q}_{S}(t) & =\left[E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s_{1}\right), \ldots, E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s_{N_{S}}\right)\right]^{\prime} \odot \boldsymbol{P}_{S}, \\
\boldsymbol{Q}_{S} & =\left[\boldsymbol{Q}_{S}(1)^{\prime}, \boldsymbol{Q}_{S}(2)^{\prime}, \boldsymbol{Q}_{S}(3)^{\prime}\right] .
\end{aligned}
$$

Under this notation, Equations (18)-(17) can be rewritten as:

$$
\begin{align*}
\boldsymbol{P}_{Z} & =\boldsymbol{A}_{\boldsymbol{S}} \boldsymbol{P}_{S} \tag{22}\\
\boldsymbol{Q}_{Z} & =\boldsymbol{A}_{\boldsymbol{D}} \boldsymbol{Q}_{S} \tag{23}
\end{align*}
$$

Equations (22)-(23) can be used to generate bounds for a range of estimates. To this end, \boldsymbol{C}^{+}denotes the Moore-Penrose pseudoinverse ${ }^{17}$ of the matrix \boldsymbol{C}. Further, the $\min (\boldsymbol{C}, \boldsymbol{D})$ and

[^10]$\max (\boldsymbol{C}, \boldsymbol{D})$ denote the element-wise minimum and maximum of any two matrices $\boldsymbol{C}, \boldsymbol{D}$ of the same dimension. Under this notation, the following identification results can be proved:

Theorem T-3. Given a Response Matrix \boldsymbol{A}, the following bounds for the response-type probabilities hold:

$$
\boldsymbol{P}_{S} \in\left[\max \left(\mathbf{0}_{N_{S}}, \min _{\lambda \in \mathbb{R}^{N_{S}}}\left(\boldsymbol{A}_{S}^{+} \boldsymbol{P}_{Z}+\boldsymbol{K}_{S} \lambda\right)\right), \min \left(\iota_{N_{S}}, \max _{\lambda \in \mathbb{R}^{N_{S}}}\left(\boldsymbol{A}_{S}^{+} \boldsymbol{P}_{Z}+\boldsymbol{K}_{S} \lambda\right)\right)\right]
$$

where $\boldsymbol{K}_{\boldsymbol{S}}=\left(\boldsymbol{I}_{N_{S}}-\boldsymbol{A}_{\boldsymbol{S}}^{+} \boldsymbol{A}_{\boldsymbol{S}}\right), \mathbf{0}_{N_{S}}$ and $\iota_{N_{S}}$ are N_{S}-dimensional vectors of element zero and one respectively, and $\boldsymbol{I}_{N_{S}}$ is the N_{S}-dimensional identity matrix. Moreover, the bounds for the expectation of the outcomes by response-type are given by:

$$
\left(\boldsymbol{A}_{\boldsymbol{D}}^{+} \boldsymbol{Q}_{Z}+\min _{\lambda \in \mathbb{R}^{\kappa}}\left(\boldsymbol{K}_{\boldsymbol{D}} \lambda\right)\right) \leq \boldsymbol{Q}_{S} \leq\left(\boldsymbol{A}_{\boldsymbol{D}}^{+} \boldsymbol{Q}_{Z}+\max _{\lambda \in \mathbb{R}^{\kappa}}\left(\boldsymbol{K}_{\boldsymbol{D}} \lambda\right)\right)
$$

where $\boldsymbol{K}_{\boldsymbol{D}}=\boldsymbol{I}_{\kappa}-\boldsymbol{A}_{\boldsymbol{D}}^{+} \boldsymbol{A}_{\boldsymbol{D}}$ and $\kappa=N_{S} \cdot|\operatorname{supp}(T)|$.
Proof. See Mathematical Appendix.

Corollary C-1. Consider the IV model of Equations (7)-(8). If λ is a real-valued vector of dimension N_{S} such that $\left(\boldsymbol{I}_{N_{S}}-\boldsymbol{A}_{\boldsymbol{S}}^{+} \boldsymbol{A}_{\boldsymbol{S}}\right)^{\prime} \lambda=\mathbf{0}$, then $\lambda^{\prime} \boldsymbol{P}_{S}$ is identified. And, if λ is a real-valued vector of dimension $\kappa=N_{S} \cdot|\operatorname{supp}(T)|$ such that $\left(\boldsymbol{I}_{\kappa}-\boldsymbol{A}_{\boldsymbol{D}}^{+} \boldsymbol{A}_{\boldsymbol{D}}\right)^{\prime} \lambda=\mathbf{0}$, then $\lambda^{\prime} \boldsymbol{Q}_{S}$ is identified.

Proof. See Mathematical Appendix.

The validity of corollary C-1 is not restricted to the case of the MTO but holds for an unordered choice model with categorical instruments and multiple treatments. Corollary C-1 substantially summarizes the requirements for the nonparametric identification of the causal effects in the IV model. It explains that identification depends solely on the binary properties of the matrices A_{S} and A_{D}.

For instance, suppose $\boldsymbol{A}_{\boldsymbol{S}}$ has a full column-rank. Then $\left(\boldsymbol{I}_{N_{S}}-\boldsymbol{A}_{\boldsymbol{S}}^{+} \boldsymbol{A}_{\boldsymbol{S}}\right)^{\prime}$ is equal to a matrix with all its entries being zero, and $\lambda^{\prime} \boldsymbol{P}_{S}$ is identified for any vector of dimension N_{S}. In particular, $\lambda^{\prime} \boldsymbol{P}_{S}$ is identified when λ is set to each vector of the identity matrix. Therefore all of the responsetype probabilities are identified if $\boldsymbol{A}_{\boldsymbol{S}}$ has a full rank. A consequence of corollary C-1 is that The Moore-Penrose matrix always exists and is unique. Moreover, if \boldsymbol{C} is square and $\operatorname{det}(\boldsymbol{C}) \neq 0$, then $\boldsymbol{C}^{+}=\boldsymbol{C}^{-1}$.
the identification of the response-type probabilities does not render the identification of the causal effects, because the full-rank of $\boldsymbol{A}_{\boldsymbol{S}}$ does not imply that $\boldsymbol{A}_{\boldsymbol{D}}$ has a full rank. On the other hand, if $\boldsymbol{A}_{\boldsymbol{D}}$ has a full rank, then $\boldsymbol{A}_{\boldsymbol{S}}$ also has full rank.

The binary-treatment, binary-instrument model mentioned in the introduction of this paper is useful as an example to illustrate the concepts discussed here. This model generates four responsetypes: never takers $\left(s_{\omega}=[0,0]^{\prime}\right)$, compliers $\left(s_{\omega}=[0,1]^{\prime}\right)$, always takers $\left(s_{\omega}=[1,1]^{\prime}\right)$, and defiers $\left(s_{\omega}=[1,0]^{\prime}\right)$. The monotonicity assumption of Imbens and Angrist (1994) deletes the defiers from this set of possible response-types. Under this assumption, the response-type matrices $\boldsymbol{A}, \boldsymbol{A}_{\boldsymbol{S}}$ and $\boldsymbol{A}_{\boldsymbol{D}}$ for the binary-treatment model are given by:

$$
\begin{align*}
\boldsymbol{A} & =\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right], \tag{24}\\
\boldsymbol{A}_{\boldsymbol{S}} & =\left[\begin{array}{l}
\boldsymbol{A}_{0} \\
\boldsymbol{A}_{1}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 1
\end{array}\right], \tag{25}\\
\boldsymbol{A}_{\boldsymbol{D}} & =\left[\begin{array}{cc}
\boldsymbol{A}_{0} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{A}_{1}
\end{array}\right]=\left[\begin{array}{llllll}
1 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1
\end{array}\right] . \tag{26}
\end{align*}
$$

The column-rank of $\boldsymbol{A}_{\boldsymbol{S}}$ in (25) is $\operatorname{rank}\left(\boldsymbol{A}_{\boldsymbol{S}}\right)=3$. Thus, $\boldsymbol{A}_{\boldsymbol{S}}$ has a full rank, and all of the response-types probabilities (never takers, compliers, and always takers) are identified. The matrix $\boldsymbol{A}_{\boldsymbol{D}}$ has six columns and $\operatorname{rank}\left(\boldsymbol{A}_{\boldsymbol{D}}\right)=4$. Therefore, it does not have a full rank. However, the matrix $\boldsymbol{A}_{\boldsymbol{D}}$ in (26) is such that $\left(\boldsymbol{I}_{6}-\boldsymbol{A}_{\boldsymbol{D}}^{+} \boldsymbol{A}_{\boldsymbol{D}}\right)^{\prime} \lambda=\mathbf{0}$ for $\lambda=[0,-1,0,1,0]^{\prime}$. Therefore, according to $\mathbf{C - 1}, \lambda^{\prime} \boldsymbol{Q}_{S}$ is identified for $\lambda=[0,-1,0,1,0]^{\prime}$. For this value of λ, I have:

$$
\lambda^{\prime} \boldsymbol{Q}_{S}=\left(E\left(Y_{\omega} \mid T_{\omega}=1, S_{\omega}=[0,1]^{\prime}\right)-E\left(Y_{\omega} \mid T_{\omega}=0, S_{\omega}=[0,1]^{\prime}\right)\right) P\left(S_{\omega}=[0,1]^{\prime}\right),
$$

and therefore the causal effect for the compliers, i.e. $S_{\omega}=[0,1]^{\prime}$, is identified.

Corollary C-1 translates the identification requirements of the IV model's causal effects into a search for the assumptions under which the matrices $\boldsymbol{A}_{\boldsymbol{S}}$ and $\boldsymbol{A}_{\boldsymbol{D}}$ have full ranks. A challenge
with this approach is that while the number of possible values that the instrument or treatment takes grows linearly, the number of possible response-types grows exponentially. Specifically, while the number of rows in $\boldsymbol{A}_{\boldsymbol{S}}$ is given by $|\operatorname{supp}(Z)|$ times $|\operatorname{supp}(T)|$, the number of possible columns, that is, the number of possible response-types, is given by $|\operatorname{supp}(Z)|$ raised by $|\operatorname{supp}(T)|$. Thus, matrix $\boldsymbol{A}_{\boldsymbol{S}}$ is typically a matrix whose column dimension far exceeds its row dimension. But the rank of a matrix is less or equal to its row dimension. As a consequence, a necessary condition for achieving identification is a reduction in the number of columns in $\boldsymbol{A}_{\boldsymbol{S}}$, i.e. the response-types, in order to decrease the gap between the row and column dimensions of $\boldsymbol{A}_{\boldsymbol{S}}$.

Heckman and Pinto (2014a) consider a generalized concept of monotonicity for the IV model with unordered treatment and categorical instruments. The authors show that the model's properties, such as identification, separability, and generalized monotonicity, occur if and only if the response-type matrices are lonesum, that is, if the binary matrices associated with the response matrix can be uniquely recovered by its row and column sums. The next subsection uses corollary C-1 and the response-types of T-1 to examine the identification of the causal effects of the relocation.

3.3 Using Economics to Identify Neighborhood Location Effects

The response matrix of T-1 consists of seven economically justifiable response-types generated by the MTO design. The response-types s_{1}, s_{2}, and s_{3} of T-1 refer to the families whose relocation choice does not vary across the voucher assignments: s_{1} stands for families that never relocate, s_{2} for families that always relocate to low poverty neighborhoods and, s_{3} for families that always relocate to high poverty neighborhoods. The variation in the voucher assignments cannot be used to evaluate the causal effects of the relocation of those response-types because the choice does not change across the voucher assignments.

The response-type s_{4} refers to compliers in the sense that a family does not move if no voucher is assigned, moves to a low poverty neighborhood under the experimental voucher, and moves to a high poverty neighborhood under the Section 8 voucher. The remaining response-types also refer to the families whose relocation choices vary according to the voucher assignments.

The causal effect of moving to a low poverty neighborhood $\left(T_{\omega}=2\right)$ versus not moving ($T_{\omega}=1$)
can be evaluated only for response-types that can make these relocation choices, that is, s_{4} and s_{5} :

$$
\begin{align*}
R A T E_{\left\{s_{4}, s_{5}\right\}}(2,1) & =E\left(Y_{\omega} \mid T_{\omega}=2, S_{\omega} \in\left\{s_{4}, s_{5}\right\}\right)-E\left(Y_{\omega} \mid T_{\omega}=1, S_{\omega} \in\left\{s_{4}, s_{5}\right\}\right) \tag{27}\\
& =\frac{R A T E_{s_{4}}(2,1) P\left(S_{\omega}=s_{4}\right)+R A T E_{s_{5}}(2,1) P\left(S_{\omega}=s_{5}\right)}{P\left(S_{\omega}=s_{4}\right)+P\left(S_{\omega}=s_{5}\right)}
\end{align*}
$$

But, the causal effect of moving to a high poverty neighborhood versus not moving can only be evaluated for response-types s_{4} and s_{7} :

$$
\begin{align*}
R A T E_{\left\{s_{4}, s_{7}\right\}}(3,1) & =E\left(Y_{\omega} \mid T_{\omega}=3, S_{\omega} \in\left\{s_{4}, s_{7}\right\}\right)-E\left(Y \mid T_{\omega}=1, S_{\omega} \in\left\{s_{4}, s_{7}\right\}\right) \tag{28}\\
& =\frac{R A T E_{s_{4}}(3,1) P\left(S_{\omega}=s_{4}\right)+R A T E_{s_{7}}(3,1) P\left(S_{\omega}=s_{7}\right)}{P\left(S_{\omega}=s_{4}\right)+P\left(S_{\omega}=s_{7}\right)}
\end{align*}
$$

The next theorem describes the parameters that can be identified by the response-types of matrix T-1:

Theorem T-4. Under Assumptions A-1-A-3:

1. Response-type Probabilities \boldsymbol{P}_{S}, that is $P\left(S_{\omega}=s\right) ; \forall s \in \operatorname{supp}(S)$, are identified.
2. The following outcome expectations that are conditioned on the response-types and the relocation choice are identified:

No Relocation	Low Poverty Neighborhood	High Poverty Neighborhood
$E\left(Y_{\omega}(1) \mid S_{\omega}=s_{1}\right)$	$E\left(Y_{\omega}(2) \mid S_{\omega}=s_{2}\right)$	$E\left(Y_{\omega}(3) \mid S_{\omega}=s_{3}\right)$
$E\left(Y_{\omega}(1) \mid S_{\omega}=s_{7}\right)$	$E\left(Y_{\omega}(2) \mid S_{\omega}=s_{5}\right)$	$E\left(Y_{\omega}(3) \mid S_{\omega}=s_{6}\right)$
$E\left(Y_{\omega}(1) \mid S_{\omega} \in\{4,5\}\right)$	$E\left(Y_{\omega}(2) \mid S_{\omega} \in\{4,6\}\right)$	$E\left(Y_{\omega}(3) \mid S_{\omega} \in\{4,7\}\right)$

3. For any variable X_{ω} such that $X_{\omega} \Perp T_{\omega} \mid S_{\omega}$ holds, $E\left(X_{\omega} \mid S_{\omega}=s\right)$ is identified for all $s \in$ $\operatorname{supp}(S)$.

Proof. See Mathematical Appendix.

Item (1) of Theorem T-4 shows that the response-type probabilities \boldsymbol{P}_{S} are identified. This identification result is consequence of the response-types in \mathbf{T} - $\mathbf{1}$ for which response matrix $\boldsymbol{A}_{\boldsymbol{S}}$ has full column rank. Response-types probabilities can be evaluated through Equation (22) by using
the Moore-Penrose pseudo-inverse of matrix $\boldsymbol{A}_{\boldsymbol{S}}$:

$$
\boldsymbol{P}_{S}=\boldsymbol{A}_{\boldsymbol{S}}^{+} \boldsymbol{P}_{\boldsymbol{Z}}=\left[\begin{array}{ccccccccc}
1 & 1 & 7 & 1 & 1 & -2 & 1 & 1 & -2 \tag{29}\\
-2 & 1 & 1 & 7 & 1 & 1 & -2 & 1 & 1 \\
1 & -2 & 1 & 1 & -2 & 1 & 1 & 7 & 1 \\
3 & -6 & 3 & 3 & 3 & -6 & -6 & 3 & 3 \\
3 & 0 & -3 & -6 & 0 & 6 & 3 & 0 & -3 \\
-3 & 3 & 0 & -3 & 3 & 0 & 6 & -6 & 0 \\
0 & 6 & -6 & 0 & -3 & 3 & 0 & -3 & 3
\end{array}\right] \cdot \frac{\boldsymbol{P}_{\boldsymbol{Z}}}{9}
$$

Furthermore, if a matrix $\boldsymbol{A}_{\boldsymbol{S}}$ has full rank, then its Moore-Penrose pseudo-inverse can be computed as $\boldsymbol{A}_{\boldsymbol{S}}^{+}=\left(\boldsymbol{A}_{\boldsymbol{S}}^{\prime} \boldsymbol{A}_{\boldsymbol{S}}\right)^{-1} \boldsymbol{A}_{\boldsymbol{S}}^{\prime}$. In other words, $\boldsymbol{A}_{\boldsymbol{S}}^{+}$is equal to the closed-form expression of an Ordinary Least Square that uses the vectors of $\boldsymbol{A}_{\boldsymbol{S}}$ for covariates. Hence the estimated values of the responsetype probabilities can be interpreted as the coefficients of a linear regression that uses the propensity scores as dependent variables and the response-types indicators of $\boldsymbol{A}_{\boldsymbol{S}}$ of as regressors.

Item (2) of Theorem T-4 lists the counterfactual outcome expectations that are identified according to the response matrix of $\mathrm{T}-1$.

Item (3) states that the conditional expectation of the pre-intervention variables are identified for all of the response-types. Table A. 6 of Web Appendix F shows the estimates for the preintervention variables variables described in subsection 2 by response-types.

The response matrix of $\mathbf{T}-\mathbf{1}$ also allows the mapping of the content of the TOT parameter in terms of the causal effects of the relocation. This feature is discussed in subsection 3.4.

The following separability condition can also be stated:

Theorem T-5. Under Assumptions A-1-A-3, the relocation decision T_{ω} is separable in V_{ω} and Z_{ω}, that is, there are functions $\varphi: \operatorname{supp}(V) \times \operatorname{supp}(T) \rightarrow \mathbb{R}$ and $\zeta: \operatorname{supp}(Z) \times \operatorname{supp}(T) \rightarrow \mathbb{R}$ such that $P\left(T_{\omega}=\sum_{t \in \operatorname{supp}(T)} t \cdot \mathbf{1}\left[\varphi\left(V_{\omega}, t\right)+\zeta\left(Z_{\omega}, t\right) \geq 0\right]\right)=1$.

Proof. See Mathematical Appendix.

In contrast to Heckman et al. $(2006,2008)$, the separability condition of $\mathbf{T}-5$ is not an assumption, but a consequence of rational economic choice.

The identification analysis presented here uses economics, that is, the SARP, to reduce the column dimension of the response matrix that in turn generates the identification of the causal parameters. This method adds to the economic literature that examines how individual rational behavior impacts observed data. Examples of this literature are: McFadden and Richter (1991)
and McFadden (2005) who study aggregate data on prices and consumption when heterogeneous individuals are rational, as well as Blundell et al. $(2003,2008)$ who examine the impact of revealed preferences on Engel curves. More recently, Blundell et al. (2014) and Kline and Tartari (2014) explore the inequality restrictions generated by the revealed preferences to investigate the estimation of the decisions on the consumer demand and the labor supply. Web Appendix D presents a brief discussion of this literature. Kitamura et al. (2014) suggest a nonparametric test that verifies whether the observed empirical data on prices and consumption are consistent with an underlying model in which agents maximize their utility, which represents rational preferences. Web Appendix D also compares the identification approach presented here with that of Kitamura et al. (2014).

The MTO model differs from the binary-treatment model investigated by Imbens and Angrist (1994) as families choose among three relocation alternatives. A natural approach to examine the identification of neighborhood effects in the MTO is to extend the monotonicity condition of Imbens and Angrist (1994) to the case of three unordered treatment choices. Web Appendix G examines this idea. An extended monotonicity condition that accounts for the relocation incentives generated by MTO vouchers would generate 17 response-types and does not render the identification of relocation causal effects.

3.4 Interpreting Treatment-on-the-Treated

This subsection investigates the causal interpretation of the TOT parameter, which is defined here as the ratio of the causal effect on outcome Y from being assigned voucher z versus $z^{\prime}(I T T)$ divided by the difference in the propensity score of a relocation choice $\tau \subset \operatorname{supp}(T)$ that is induced by the voucher change:

$$
\begin{equation*}
\operatorname{TOT}_{\tau}\left(z, z^{\prime}\right)=\frac{E(Y \mid Z=z)-E\left(Y \mid Z=z^{\prime}\right)}{P(T \in \tau \mid Z=z)-P\left(T \in \tau \mid Z=z^{\prime}\right)} ; \tau \subset \operatorname{supp}(T), z, z^{\prime} \in \operatorname{supp}(Z) . \tag{30}
\end{equation*}
$$

The denominator of Equation (30) differs from the Bloom estimator used in the MTO literature. In Equation (30), I use the difference in the propensity of the relocation choice induced by the voucher change instead of the voucher's compliance rate. Empirically, the propensity difference
and the compliance rate generate similar values and hence similar estimates. ${ }^{18}$ Theoretically, those denominators yield distinct interpretations. Kling et al. (2007) explain that the Bloom estimator differs conceptually from the LATE parameter of Angrist et al. (1996) because the endogenous variable being examined is not relocation, but the voucher itself. Equation (30) generates the LATE parameter of Imbens and Angrist (1994) in the case of a binary treatment and is more suitable to examine the causal effects of the relocation. Henceforth, I use TOT for the parameter defined in (30) and refer to the vouchers' effects divided by the compliance rates as Bloom estimators.

Theorem T-6 disentangles the TOT into components associated with the causal effects of the relocation by response-types:

Theorem T-6. If $z, z^{\prime} \in \operatorname{supp}(Z)$ and $\tau \subset \operatorname{supp}(T)$, then $T O T_{\tau}\left(z, z^{\prime}\right)$ of (30) can be expressed as the weighted average of causal effects of the response-types $R A T E_{s} ; s \in \operatorname{supp}(S)$, that is:

$$
\begin{aligned}
\operatorname{TOT}_{\tau}\left(z, z^{\prime}\right) & =\sum_{j=1}^{N_{S}}\left(\operatorname{RATE}_{s_{j}}\left(\boldsymbol{A}[i, j], \boldsymbol{A}\left[i^{\prime}, j\right]\right)\right) H_{s_{j}} \\
\text { such that } H_{s_{j}} & =\frac{\left(\sum_{t \in \tau}\left(\boldsymbol{A}_{t}[i, j]-\boldsymbol{A}_{t}\left[i^{\prime}, j\right]\right)\right) P\left(S_{\omega}=s_{j}\right)}{\sum_{j=1}^{N_{S}}\left(\sum_{t \in \tau}\left(\boldsymbol{A}_{t}[i, j]-\boldsymbol{A}_{t}\left[i^{\prime}, j\right]\right) P\left(S_{\omega}=s_{j}\right)\right)}
\end{aligned}
$$

where $R A T E_{s}$ is given by (15), \boldsymbol{A}_{t} as defined in subsection 3.2, $\tau \subset \operatorname{supp}(T)$ denotes the set of choices induced by the change in values of the instrumental variable, and $H_{s} ; s \in \operatorname{supp}(S)$ are positive weights that total one.

Proof. See Mathematical Appendix.

The TOT that compares the experimental to the control group is denoted by $T O T_{2}\left(z_{2}, z_{1}\right)$ and is defined by the $I T T$ parameter of being assigned the experimental group versus control group, that is, $E\left(Y \mid Z=z_{2}\right)-E\left(Y \mid Z=z_{1}\right)$, divided by the difference in the propensity to relocate to the low poverty neighborhood across these voucher assignments $P\left(T=2 \mid Z=z_{2}\right)-P\left(T=2 \mid Z=z_{1}\right)$.

[^11]According to (T-6) and the response matrix of $\mathbf{T}-1, T O T_{2}\left(z_{2}, z_{1}\right)$ is given by:

$$
\begin{equation*}
\operatorname{TOT}_{2}\left(z_{2}, z_{1}\right)=\frac{\operatorname{RATE}_{\left\{s_{4}, s_{5}\right\}}(2,1) P\left(S_{\omega} \in\left\{s_{4}, s_{5}\right\}\right)+R A T E_{s_{6}}(2,3) P\left(S_{\omega}=s_{6}\right)}{P\left(S_{\omega} \in\left\{s_{4}, s_{5}\right\}\right)+P\left(S_{\omega}=s_{6}\right)} . \tag{31}
\end{equation*}
$$

Equation (31) shows that $\operatorname{TOT}_{2}\left(z_{2}, z_{1}\right)$ is a weighted average of two causal effects that differ on the relocation choices. Specifically, $\operatorname{TOT}_{2}\left(z_{2}, z_{1}\right)$ sums (with appropriate weight) the effects of relocating to a low poverty neighborhood $\left(T_{\omega}=2\right)$ versus no relocation $\left(T_{\omega}=1\right)$ for response-types s_{4}, s_{5} with the effects of relocating to the low poverty neighborhood $\left(T_{\omega}=2\right)$ versus the high poverty neighborhood $\left(T_{\omega}=3\right)$ for the response-type s_{6}.

The TOT parameter associated with the Section 8 group is defined as the fraction of the ITT that compares the Section 8 voucher with no voucher divided by the difference in the propensity to relocate to either a low or a high poverty neighborhood:

$$
\begin{equation*}
\operatorname{TOT}_{\{2,3\}}\left(z_{3}, z_{1}\right)=\frac{\operatorname{RATE}_{\left\{s_{4}, s_{7}\right\}}(3,1) P\left(S_{\omega} \in\left\{s_{4}, s_{7}\right\}\right)+R A T E_{s_{5}}(2,1) P\left(S_{\omega}=s_{5}\right)}{P\left(S_{\omega} \in\left\{s_{4}, s_{7}\right\}\right)+P\left(S_{\omega}=s_{5}\right)} \tag{32}
\end{equation*}
$$

In this case, $\operatorname{TOT}_{\{2,3\}}\left(z_{3}, z_{1}\right)$, compares relocating to the high poverty neighborhood ($T_{\omega}=3$) and no relocation $\left(T_{\omega}=1\right)$ for response-types $S_{\omega} \in\left\{s_{4}, s_{7}\right\}$, but relocating to the low poverty neighborhood ($T_{\omega}=2$) versus no-relocation $\left(T_{\omega}=1\right)$ for response-type $S_{\omega}=s_{5}$.

3.5 Point Identification

Theorem T-4 states that economically justified response-types allow for the identification of all of the response-type probabilities (Item 1) and a range of causal parameters (Item 2). In Section 3.4, I use these response-types to map the causal content of the TOT parameter in terms of the causal effects of the relocation.

Nevertheless, these economically justified response-types do not guarantee the point identification of the causal effects of relocation. According to T-4, $\operatorname{RATE}_{\left\{s_{4}, s_{5}\right\}}(2,1)$ of Equation (27) is not identified. While $E\left(Y_{\omega} \mid T_{\omega}=1, S_{\omega} \in\{4,5\}\right)$ is identified, $E\left(Y_{\omega} \mid T_{\omega}=2, S_{\omega} \in\{4,5\}\right)$ is not. I cannot disentangle $E\left(Y_{\omega} \mid T_{\omega}=2, S_{\omega}=4\right)$ from the identified parameter $E\left(Y_{\omega} \mid T_{\omega}=2, S_{\omega} \in\{4,6\}\right)$. The causal effect $\operatorname{RATE}_{\left\{s_{4}, s_{7}\right\}}(3,1)$ of Equation (28) is not identified either. While $E\left(Y \mid T=1, S=s_{7}\right)$ and $E\left(Y_{\omega} \mid T_{\omega}=3, S_{\omega} \in\{4,7\}\right)$ are identified, $E\left(Y_{\omega} \mid T_{\omega}=1, S_{\omega}=s_{4}\right)$ is not. I cannot disentangle
$E\left(Y_{\omega} \mid T_{\omega}=1, S_{\omega}=s_{4}\right)$ from the identified expectation $E\left(Y_{\omega} \mid T_{\omega}=1, S_{\omega} \in\{4,5\}\right)$.
In this subsection, I investigate additional assumptions that yield the point identification of the causal effects for the response-types. The identification strategy is based on the ideas from the literature on causality and Bayesian networks. I use the available data on post-intervention characteristics of the neighborhood and the causal relations between these characteristics and the family's unobserved variables. Specifically, I exploit the assumption that the overall quality of the neighborhood is not directly caused by the unobserved variables of a family. Even though the neighborhood quality correlates with the family's unobserved variables due to neighborhood sorting.

Formally, let G_{ω} denote the post-intervention characteristics of the neighborhood faced by family ω that cause the outcome Y_{ω}. I account for G_{ω} in the MTO framework by recasting Model (7)-(8) and (13) into the following equations:

$$
\begin{align*}
Y_{\omega} & =f_{Y}\left(G_{\omega}, V_{\omega}, \epsilon_{\omega}\right), \tag{33}\\
S_{\omega} & =\left[f_{T}\left(z_{1}, V_{\omega}\right), f_{T}\left(z_{2}, V_{\omega}\right), f_{T}\left(z_{3}, V_{\omega}\right)\right]=f_{S}\left(V_{\omega}\right), \tag{34}\\
G_{\omega} & =f_{G}\left(T_{\omega}, \xi_{\omega}\right), \tag{35}\\
T_{\omega} & =\left[\mathbf{1}\left[Z_{\omega}=z_{1}\right], \mathbf{1}\left[Z_{\omega}=z_{2}\right], \mathbf{1}\left[Z_{\omega}=z_{3}\right]\right] \cdot S_{\omega} \tag{36}
\end{align*}
$$

where f_{T} is the same as in (8) and ξ_{ω} stands for an error term statistically independent of $Z_{\omega}, V_{\omega}, S_{\omega}, T_{\omega}$, and ϵ_{ω}. Figure 4 represents Model (33)-(36) as a DAG.

Figure 4: MTO model with Post-intervention Neighborhood Characteristics

Notes: This figure represents Model (33)-(36) as a DAG. Arrows represent direct causal relations. Circles represent unobserved variables. Squares represent observed variables. Y is the observed outcome. T is an observed relocation choice. V is an unobserved confounding variable that generates a selection bias and causes the response variable S and Y. G denotes the postintervention neighborhood characteristics. Z stands for the MTO vouchers that play the role of the instrumental variable for relocation choice T.

Variable G_{ω} in the MTO model (33)-(36) represents the neighborhood's intrinsic characteristics that affect the family's outcomes. Examples of these characteristics are the quality of public schools, the supply of local jobs or the level of public safety generated by police patrols. Family unobserved variables V_{ω} correlate with these neighborhood characteristics G_{ω} as they are linked through the relocation choice T_{ω} via the causal path $V_{\omega} \rightarrow S_{\omega} \rightarrow T_{\omega} \rightarrow G_{\omega}$. In other words, neighborhood sorting induces a correlation between neighborhood characteristics G_{ω} and the family unobserved variables V_{ω}. But family unobserved variables V_{ω} also cause outcomes Y_{ω}. Therefore V_{ω} constitutes a confounding variable generating selection bias that impairs causal inference between observed G_{ω} and Y_{ω} in the same fashion that V_{ω} impairs causal inference between relocation choice T_{ω} and outcomes Y_{ω}.

The fact that selection bias plagues the relationship between G_{ω} and Y_{ω} as well as between T_{ω} and Y_{ω} begets the following question : how does the inclusion of G_{ω} in the MTO model help to identify the causal effects of T_{ω} on Y_{ω} if the relationship between G_{ω} and Y_{ω} suffers from the same problem we ought to solve? The answer to this question lies on a key property of model (33)-(36), namely, the family unobserved variables V_{ω} do not directly cause neighborhood characteristics G_{ω}.

It is helpful to summarize the main identification results of Sections 3.2-3.3 in order to gain intuition on the identification result of this section. Equation (22) shows that the relation between observed propensity scores $P\left(T_{\omega}=t \mid Z_{\omega}=z\right)$ and unobserved response-type probabilities $P\left(S_{\omega}=s\right)$ is governed by matrix $\boldsymbol{A}_{\boldsymbol{S}}$, which has full rank and renders the identification of the response-type probabilities. On the other hand, Equation (23) shows that the relation between the observed outcome expectations $E\left(Y_{\omega} \mid T_{\omega}=t, Z_{\omega}=z\right)$ and the unobserved outcome expectations conditioned on response-types $E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s\right)$ is governed by matrix $\boldsymbol{A}_{\boldsymbol{D}}$, which does not have full rank and does not generate the point identification of outcome expectations by response-types.

Now, if V_{ω} does not directly cause neighborhood characteristics G_{ω}, then the independence property $Y_{\omega} \Perp\left(Z_{\omega}, T_{\omega}\right) \mid\left(S_{\omega}, G_{\omega}\right)$ holds (proved in the following Lemma L-3). I use this property to show that the relationship between the observed outcome expectations $E\left(Y_{\omega} \mid G_{\omega}=g, T_{\omega}=t, Z_{\omega}=\right.$ z) and the unobserved outcome expectations conditioned on response-types $E\left(Y_{\omega} \mid G_{\omega}=g, S_{\omega}=s\right)$ is governed by matrix $\boldsymbol{A}_{\boldsymbol{S}}$ (instead of $\boldsymbol{A}_{\boldsymbol{D}}$), which renders the identification of the outcome expectation conditioned on response-types $S_{\omega}=s$ and $G_{\omega}=g$.

Another identification insight is given by the analysis of Pearl (1995), who studies a similar
version of Model (33)-(36) termed the "Front-door model". His insight can be summarized as follows. First, if V_{ω} does not directly cause G_{ω}, then the relation between relocationship choice T_{ω} and observed neighborhood characteristics G_{ω} is causal as there is no confounding effect of V_{ω}. Moreover, T_{ω} is a matching variable for the impact of G_{ω} on Y_{ω}, in the same fashion that S_{ω} is a matching variable for the impact of T_{ω} on Y_{ω}. By matching variable I mean that T_{ω} solves the confounding effect generated by V_{ω} on the relationship between G_{ω} on Y_{ω}. As a consequence, the causal effect of G_{ω} on Y_{ω} can be evaluated by conditioning on T_{ω}, which is observed. Thus the causal effect of T_{ω} on Y_{ω} can be computed by weighted average of the causal effect of G_{ω} on Y_{ω} weighted by the distribution of G_{ω} conditioned on $T_{\omega} .{ }^{19}$

The response variable S_{ω} also shares the same matching property of T_{ω} for the impact of G_{ω} on Y_{ω}. Theorem T-9 explores this property to identify the average causal effect of T_{ω} on Y_{ω} as a weighted average of the the expectation of Y_{ω} conditioned on S_{ω} and G_{ω} weighted by the distribution of G_{ω} conditioned on T_{ω}.

A familiar example of the labor economics literature can clarify how the logic of the Front-door identification differs from the standard matching approach. Consider the quest for identifying the causal effect of going to college on income. Let Y_{ω} denote the observed income for an individual ω and let T_{ω} be a binary indicator that takes the value $T_{\omega}=1$ if individual ω goes to college and $T_{\omega}=0$ otherwise. Let V_{ω} represent the unobserved variables, e.g. cognition, that cause both college attendance and income. Therefore V_{ω} is the source of selection bias that prevents the evaluation of the causal effects of college on income based on observed data. A standard matching approach assumes a proxy for V_{ω}. For instance, the Stanford-binet IQ score. In this example, it is difficult to conceive a variable that share the properties that G_{ω} has in the MTO model (33)-(36). For this model of college return, it would be necessary that a variable that is caused by college attendance, causes income, but is not caused by cognition. This example illustrates that the causal relations of the MTO model (33)-(36) are rather an exception than a rule in microeconomic models.

The potential identifying power of variable G_{ω} in the MTO model (33)-(36) comes from the possibility of using available data on the post-intervention characteristics of the neighborhood as a good proxy for variable G_{ω}. The identifying assumption requires that G_{ω} is observed.

[^12]Kling et al. (2007) postulate that neighborhood characteristics (poverty in their case) can be used as a good proxy for the unobserved neighborhood characteristics that affect the outcomes. They evaluate the impact of the poverty levels on the outcomes through a two-stage least squares (2SLS) model that has the MTO vouchers by intervention site as the instrumental variables. Clampet-Lundquist and Massey (2008) also assume that the poverty levels are among the main driving forces that generate the neighborhood effects. In contrast with Kling et al. (2007) 2SLS approach, the identification analysis presented here is nonparametric. It is valid when structural equations for the outcome are nonlinear and nonseparable. Moreover, the assumption that generates the point identification of the causal effects of neighborhood relocation is testable.

Lemma L-3 shows the independence relations of Model (33)-(36) that are used to identify the unobserved expectations $E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s\right)$:

Lemma L-3. The following relations hold Model (33)-(36):

$$
S_{\omega} \Perp Z_{\omega}, \quad Y_{\omega} \Perp\left(Z_{\omega}, T_{\omega}\right)\left|\left(S_{\omega}, G_{\omega}\right), \quad G_{\omega} \Perp\left(S_{\omega}, Z_{\omega}\right)\right| T_{\omega}
$$

Proof. See Mathematical Appendix.
The next theorem uses Lemma L-3 to state two equations that allow the identification of the outcome counterfactual expectations by response-types.

Theorem T-7. The following equation holds for Model (33)-(36):

$$
\begin{gathered}
E\left(Y_{\omega} \mid G_{\omega}=g, Z_{\omega}=z_{j}, T_{\omega}=t\right) P\left(T_{\omega}=t \mid Z_{\omega}=z_{j}\right)=\sum_{s_{i} \in \operatorname{supp}(S)} \boldsymbol{A}_{t}[j, i] E\left(Y \mid G_{\omega}=g, S_{\omega}=s_{i}\right) P\left(S_{\omega}=s_{i}\right) \\
E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s\right)=\int_{g \in \operatorname{supp}(G)} E\left(Y \mid G_{\omega}=g, S_{\omega}=s\right) d F_{G_{\omega} \mid T_{\omega}=t}(g), \text { where } \\
P\left(T_{\omega}=t \mid S_{\omega}=s\right)>0 \text { and } F_{G_{\omega} \mid T_{\omega}=t}(g)=P\left(G_{\omega} \leq g \mid T_{\omega}=t\right)
\end{gathered}
$$

Proof. See Mathematical Appendix.

The equations of Theorem T-7 are useful in identifying $E\left(Y \mid T_{\omega}, S_{\omega}\right)$. Let $\boldsymbol{Q}_{Z}(g)$ denote the vector of the stacked expectations $E\left(Y_{\omega} \mid G_{\omega}=g, Z_{\omega}=z, T_{\omega}=t\right) P\left(T_{\omega}=t \mid Z_{\omega}=z\right)$ in the same fashion that \boldsymbol{Q}_{Z} in Equation (20) stacks the expectations $E\left(Y_{\omega} \mid T_{\omega}=t, Z_{\omega}=z\right) P\left(T_{\omega}=t \mid Z_{\omega}=z\right)$ across the values that T_{ω} and Z_{ω} take. The $\boldsymbol{Q}_{S}(g)$ denotes the vector of the stacked expectations
$E\left(Y_{\omega} \mid G_{\omega}=g, S_{\omega}=s\right) P\left(S_{\omega}=s\right)$ across the values $s \in \operatorname{supp}(S)$. In this notation, I can express the first equation of T-7 using the following matrix notation:

$$
\begin{equation*}
\boldsymbol{Q}_{Z}(g)=\boldsymbol{A}_{\boldsymbol{S}} \boldsymbol{Q}_{S}(g) \tag{37}
\end{equation*}
$$

where $\boldsymbol{A}_{\boldsymbol{S}}$ is defined by (19). According to the response matrix of $\mathbf{T} \mathbf{- 1}$, the rank of $\boldsymbol{A}_{\boldsymbol{S}}$ is equal to seven, which is equal to its column dimension. By the same reasoning of $\mathbf{C - 1 ,} E\left(Y \mid G_{\omega}=g, S_{\omega}=s\right)$ is identified for all $s \in \operatorname{supp}(S)$ because $\boldsymbol{Q}_{S}(g)$ can be obtained by $\boldsymbol{A}_{\boldsymbol{S}}^{+} \boldsymbol{Q}_{Z}(g)$. The second equation of Theorem T-7 shows that $E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s\right)$ is a function of the identified parameters $E\left(Y \mid G_{\omega}=\right.$ $\left.g, S_{\omega}=s\right)$ and the observed probabilities $P\left(G_{\omega} \leq g \mid T_{\omega}=t\right)$. Therefore, $E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s\right)$ are identified for all $s \in \operatorname{supp}(S)$ and $t \in \operatorname{supp}(T)$ such that $P\left(T_{\omega}=t \mid S_{\omega}=s\right)>0$. The next theorem formalizes this identification result.

Theorem T-8. Under Assumptions A-1-A-3 and Model (33)-(36), the outcome expectations $E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s\right)$ are identified for $s \in \operatorname{supp}(S)$ and $t \in \operatorname{supp}(T)$ such that $P\left(T_{\omega}=t \mid S_{\omega}=s\right)>$ 0 .

Proof. See Mathematical Appendix.
Theorem T-8 can be used to test whether the G_{ω}, which represents the available data, are good proxies for the impact of the neighborhood characteristics on the outcomes. The specification test of the model consists of comparing the identified causal parameters of T-4 with the ones computed using G_{ω}. Another testable restriction is given by $G_{\omega} \Perp Z_{\omega} \mid T_{\omega}$ of Lemma L-3. In Web Appendix E, I present the model's specification tests for the labor market outcomes of the interim evaluation. The hypothesis that the observed neighborhood data are good proxies for the impact of the neighborhood characteristics on the outcomes cannot be rejected.

The next theorem an identification result for the average counterfactual outcome of the neighborhood relocation for Model (33)-(36):

Theorem T-9. Under Assumptions A-1-A-3, the counterfactual expectations of the outcomes $E\left(Y_{\omega}(t)\right) ; t \in \operatorname{supp}(T)$ are identified in Model (33)-(36) by the following Equation:

$$
\begin{equation*}
E\left(Y_{\omega}(t)\right)=\int_{g \in \operatorname{supp}(G)}\left(\sum_{s \in \operatorname{supp}(S)} E\left(Y \mid G_{\omega}=g, S_{\omega}=s\right) P\left(S_{\omega}=s\right)\right) \frac{P\left(T_{\omega}=t \mid G_{\omega}=g\right)}{P\left(T_{\omega}=t\right)} d F_{G}(g), \tag{38}
\end{equation*}
$$

where $F_{G}(g)=P\left(G_{\omega} \leq g\right)$.

Proof. See Mathematical Appendix.

The Equation (38) shows that the counterfactual expectation of the outcome is a function of the unobserved expectations $E\left(Y \mid G_{\omega}=g, S_{\omega}=s\right)$ and the unobserved probabilities of the responsetypes $P\left(S_{\omega}=s\right)$. Those quantities are identified according to Theorems T-8 and T-4 respectively. The remaining quantities of Equation (38), that is, $P\left(T_{\omega}=t \mid G_{\omega}=g\right), P\left(T_{\omega}=t\right)$ and $F_{G}(g)$, are observed.

Web Appendix F investigates another identification strategy that relies on the work of Altonji et al. (2005). Namely, $\operatorname{RATE}_{\left\{s_{4}, s_{5}\right\}}(2,1)$ can be identified by assuming that $E\left(Y_{\omega} \mid T_{\omega}=2, S_{\omega}=\right.$ $\left.s_{4}\right)=E\left(Y_{\omega} \mid T_{\omega}=2, S_{\omega} \in\left\{s_{4}, s_{6}\right\}\right)$ and $\operatorname{RATE}_{\left\{s_{4}, s_{7}\right\}}(3,1)$ is identified by assuming that $E\left(Y_{\omega} \mid T_{\omega}=\right.$ $3, S_{\omega} \in\left\{s_{4}, s_{7}\right\}$). Web Appendix F explains how to use Item (3) of Theorem T-4 to make a causal inference under those assumptions.

4 Empirical Analysis

The empirical contribution of this paper is to use the novel method described in Section 3 to shed new light on impacts of the MTO project. I evaluate new parameters that have a clear interpretation in terms of the causal effects of neighborhood relocation and that have never been estimated in the MTO literature. I also investigate the pre-program variables and the outcomes of MTO families according the seven economically justified response-types described in Table 8.

The response-types s_{1}, s_{2}, and s_{3} consist of families whose relocation decisions are not affected by the voucher assignment. The remaining response-types consist of families whose relocation decision vary according to voucher assignments.

Table 8 presents the response-type probabilities. It shows that the response-types s_{1}, s_{2}, and s_{3} account for 43% of the MTO families. The exogenous variation in the MTO vouchers cannot be used to assess the causal effects of relocating for those families because their relocation choice does not vary by the voucher assignment. In spite of this lack of variation, the comparison of outcome counterfactual expectations among s_{1}, s_{2}, and s_{3} is of interest. Suppose that the distribution of family unobserved characteristics that affect outcomes were similar across these response-types.

Then large differences in outcome expectations conditioned on these response-types, say s_{2} and s_{1}, suggest possible effects of neighborhood relocation.

Table 8: Response-type Probabilities

Response-types							
Voucher	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}
Control $\left(z_{1}\right)$	1	2	3	1	1	3	1
Experimental $\left(z_{2}\right)$	1	2	3	2	2	2	1
Section $8\left(z_{3}\right)$	1	2	3	3	2	3	3

Response-type Probabilities

All Sites	0.31	0.04	0.08	0.31	0.05	0.09	0.12

Response-type Probabilities by Site

Baltimore	0.21	0.05	0.10	0.33	0.08	0.13	0.10
Boston	0.39	0.05	0.08	0.28	0.04	0.11	0.05
Chicago	0.24	0.03	0.10	0.22	0.01	0.08	0.31
Los Angeles	0.15	0.03	0.06	0.45	0.09	0.11	0.12
New York	0.45	0.04	0.05	0.31	0.06	0.05	0.04

This table presents the estimated probabilities of the response-types by site according to Equation (29).

The response-types s_{4}, s_{5}, s_{6}, and s_{7} consist of families that change their relocation decisions as the voucher assignment varies. Those response-types represent 57% of the MTO sample and comprise the families that generate the policy conclusions of the MTO vouchers.

Families of type s_{4} are the most responsive to the MTO voucher policy. Those families do not relocate if no voucher is offered, relocate to a low poverty neighborhood if assigned to the experimental voucher and relocate to high poverty neighborhood if assigned to the Section 8 voucher.

Families of type s_{5} can be comprehended as families that intend to relocate to a low poverty neighborhood but do so only if a subsidizing voucher is offered. On the other hand, families of s_{6} prefer to relocate to a high poverty neighborhood but would relocate to a low poverty neighborhood
if the experimental voucher is offered. Families of type s_{7} would relocate only if they could a voucher to lease a unit in a high poverty neighborhood.

According to Item (3) of Theorem T-4, the expected values of pre-program variables conditioned on response-types are identified. These estimates are presented in Table 9.

Families that never move, i.e. response-type s_{1}, are also the families that are more likely to have a disable family member. Families that always move to a low poverty neighborhood, i.e. responsetype s_{2}, were more likely to be victims of crimes in their original neighborhoods. These families have more schooling, are more likely to employed, less likely to be on welfare and fare better economically than the families of any other response-type. For example, low poverty movers of response-type s_{2} are twice as likely to have a car or be employed than the never movers of response-type s_{1}. Families that are most responsive to the MTO vouchers, i.e. response-type s_{4}, are also the families that are less likely to have teenage family members. Families that most dependent on vouchers to relocate to low poverty neighborhoods, i.e. response-type s_{5}, are also the families that most depend on welfare.

Families that dependent the most on the vouchers to relocate to low poverty neighborhoods, i.e. type s_{5}, are also the families that most depend on welfare.

The causal effect of low poverty neighborhood relocation can only be assessed for the responsetypes whose decisions include relocating to low poverty neighborhoods and no relocation. These response-types are s_{4} and s_{5}, which account for a third of the MTO families. I use $R A T E_{\left\{s_{4}, s_{5}\right\}}(2,1)$ to denote the causal effect of relocating to a low poverty neighborhood for these response-types. In the same fashion, the causal effects of high poverty neighborhood relocation can only be determined for response-types that access the choices of no relocation and high poverty neighborhoods as the voucher assignment changes. These families belong to response-types s_{4} and s_{7} and represent 43% of the sample. I use $\operatorname{RATE} E_{\left\{s_{4}, s_{7}\right\}}(3,1)$ to denote the causal effect of relocating to a high poverty neighborhood for these response-types.

I evaluate the causal effects of relocation for labor market outcomes surveyed in the interim evaluation. These outcomes are divided into five domains: (1) adult earnings, (2) total income, (3) poverty, (4) self-sufficiency, and (5) employment.

The estimates presented in this section are conditioned on the sites of the intervention. By this
Table 9: Expected Value of Pre-program Variables by Response-type

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Variable Name \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Response-type \(s_{1}\) \\
Mean Std.
\end{tabular}} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Response-type \(s_{2}\) \\
Mean Std.
\end{tabular}} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Response-type \(s_{3}\) \\
Mean Std.
\end{tabular}} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Response-type \(s_{4}\) \\
Mean Std.
\end{tabular}} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Response-type \(s_{5}\) \\
Mean Std.
\end{tabular}} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Response-type \(s_{6}\) \\
Mean Std.
\end{tabular}} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Response-type \(s_{7}\) \\
Mean Std.
\end{tabular}} \\
\hline Response-type

Probabilities \& 0.31 \& 0.01 \& 0.04 \& 0.01 \& 0.08 \& 0.01 \& 0.31 \& 0.02 \& 0.05 \& 0.01 \& 0.09 \& 0.01 \& 0.12 \& 0.02

\hline | Family |
| :--- |
| Disable Household Member |
| No teens (ages 13-17) at baseline |
| Household size is 2 or smaller | \& \[

$$
\begin{aligned}
& \mathbf{0 . 2 1} \\
& 0.55 \\
& 0.19
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.02 \\
& 0.02 \\
& 0.02
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.14 \\
& 0.63 \\
& \mathbf{0 . 4 4}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.11 \\
& 0.10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.13 \\
& 0.70 \\
& 0.14
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.04 \\
& 0.05 \\
& 0.04
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.13 \\
& \mathbf{0 . 7 2} \\
& 0.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.02 \\
& 0.03 \\
& 0.03
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.14 \\
& 0.54 \\
& 0.24
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.10 \\
& 0.14 \\
& 0.12
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.16 \\
& 0.55 \\
& 0.32
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.08 \\
& 0.07
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.12 \\
& 0.54 \\
& 0.16
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.08 \\
& 0.07
\end{aligned}
$$
\]

\hline | Neighborhood |
| :--- |
| Baseline Neighborhood Poverty |
| Victim last 6 months (baseline) |
| Living in neighborhood >5 yrs. |
| Chat with neighbor |
| Watch for neighbor children |
| Unsafe at night (baseline) |
| Moved due to gangs | \& \[

$$
\begin{gathered}
52.24 \\
0.39 \\
0.66 \\
0.51 \\
0.55 \\
0.43 \\
0.73 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.64 \\
& 0.02 \\
& 0.02 \\
& 0.02 \\
& 0.02 \\
& 0.02 \\
& 0.02
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 56.06 \\
& \mathbf{0 . 5 6} \\
& 0.75 \\
& \mathbf{0 . 3 6} \\
& 0.52 \\
& 0.41 \\
& 0.77
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 3.70 \\
& 0.11 \\
& 0.11 \\
& 0.11 \\
& 0.11 \\
& 0.11 \\
& 0.09
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
54.84 \\
0.38 \\
0.59 \\
0.51 \\
0.61 \\
0.52 \\
0.72
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2.01 \\
& 0.06 \\
& 0.05 \\
& 0.06 \\
& 0.06 \\
& 0.06 \\
& 0.05 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
53.35 \\
0.43 \\
0.61 \\
0.46 \\
0.51 \\
0.57 \\
0.78
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 1.12 \\
& 0.03 \\
& 0.03 \\
& 0.03 \\
& 0.03 \\
& 0.03 \\
& 0.03 \\
& \hline
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
58.83 \\
0.47 \\
0.50 \\
\mathbf{0 . 7 0} \\
0.55 \\
0.51 \\
0.76 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 4.53 \\
& 0.13 \\
& 0.14 \\
& 0.14 \\
& 0.14 \\
& 0.14 \\
& 0.12
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
60.55 \\
0.45 \\
0.52 \\
0.56 \\
0.55 \\
0.49 \\
0.87 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 2.74 \\
& 0.08 \\
& 0.08 \\
& 0.08 \\
& 0.08 \\
& 0.08 \\
& 0.07
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
67.12 \\
0.42 \\
0.55 \\
0.66 \\
0.65 \\
0.51 \\
0.82 \\
\hline
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 3.40 \\
& 0.08 \\
& 0.08 \\
& 0.08 \\
& 0.08 \\
& 0.08 \\
& 0.07
\end{aligned}
$$
\]

\hline | Schooling |
| :--- |
| Has a GED (baseline) |
| Completed high school |
| Enrolled in school (baseline) |
| Never married (baseline) |
| Teen pregnancy |
| Missing GED and H.S. diploma | \& \[

$$
\begin{aligned}
& 0.17 \\
& 0.35 \\
& 0.13 \\
& 0.60 \\
& 0.21 \\
& 0.08
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.02 \\
& 0.02 \\
& 0.02 \\
& 0.02 \\
& 0.02 \\
& 0.01
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.13 \\
& \mathbf{0 . 5 8} \\
& 0.22 \\
& 0.60 \\
& 0.30 \\
& 0.06
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.09 \\
& 0.11 \\
& 0.08 \\
& 0.11 \\
& 0.10 \\
& 0.06
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.20 \\
& 0.38 \\
& 0.14 \\
& 0.64 \\
& 0.20 \\
& 0.07
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.04 \\
& 0.05 \\
& 0.04 \\
& 0.05 \\
& 0.05 \\
& 0.02
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.22 \\
& 0.35 \\
& 0.21 \\
& 0.65 \\
& 0.24 \\
& 0.05
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.03 \\
& 0.03 \\
& 0.02 \\
& 0.03 \\
& 0.03 \\
& 0.02
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.24 \\
& 0.35 \\
& 0.07 \\
& 0.65 \\
& 0.25 \\
& 0.04
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.11 \\
& 0.14 \\
& 0.11 \\
& 0.14 \\
& 0.12 \\
& 0.07
\end{aligned}
$$
\] \& 0.13

0.46
0.22
0.66
0.36

0.05 \& $$
\begin{aligned}
& 0.06 \\
& 0.08 \\
& 0.06 \\
& 0.08 \\
& 0.07 \\
& 0.04
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& 0.19 \\
& 0.38 \\
& 0.14 \\
& 0.52 \\
& 0.35 \\
& 0.11
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.06 \\
& 0.08 \\
& 0.06 \\
& 0.08 \\
& 0.07 \\
& 0.04
\end{aligned}
$$
\]

\hline | Sociability |
| :--- |
| No family in the neigborhood |
| Respondent reported no friends | \& \[

$$
\begin{aligned}
& 0.64 \\
& 0.39
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.02 \\
& 0.02
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.51 \\
& 0.42
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.11 \\
& 0.11
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.70 \\
& 0.37
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.05
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.68 \\
& 0.43
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.03 \\
& 0.03
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.79 \\
& 0.46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.14 \\
& 0.14
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.57 \\
& 0.47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.08
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.55 \\
& 0.36
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.08 \\
& 0.08
\end{aligned}
$$
\]

\hline | Welfare/economics |
| :--- |
| AFDC/TANF Recepient |
| Car Owner |
| Adult Employed (baseline) | \& \[

$$
\begin{aligned}
& 0.71 \\
& \mathbf{0 . 1 3} \\
& 0.23
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.02 \\
& 0.01 \\
& 0.02
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.64 \\
& 0.28 \\
& 0.46
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.10 \\
& 0.09 \\
& 0.10
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.70 \\
& 0.20 \\
& 0.22
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.05 \\
& 0.04 \\
& 0.05
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.78 \\
& 0.21 \\
& 0.20
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.03 \\
& 0.03 \\
& 0.03
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\mathbf{0 . 8 2} \\
0.25 \\
0.27
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 0.12 \\
& 0.11 \\
& 0.13
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.74 \\
& 0.05 \\
& 0.37
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.07 \\
& 0.06 \\
& 0.07
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.79 \\
& 0.14 \\
& 0.34
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 0.07 \\
& 0.06 \\
& 0.07
\end{aligned}
$$
\]

\hline
\end{tabular}

I mean that each estimate is a weighted average of the parameters computed by site. ${ }^{20}$ Table 10 presents a statistical description of outcome expectations for labor market outcomes conditioned on relocation choices and voucher assignments. For every outcome, the expected values for the families who chose to relocate to a low poverty neighborhood are greater than the values for the families that do not relocate. There are substantial differences across the treatment cells.

Consider the comparison between control families that relocate to a low-poverty and families that decide not to relocate (columns 10 and 5 of Table 10). The outcome expectation differences for the three variables in Total Income domain - second set of rows in Table 10 - are $\$ 4,812, \$$ 7,300 and $\$ 6,775$ respectively. The corresponding values for control families that relocate to a high-poverty neighborhood are $\$ 1,360, \$ 1,776$ and $\$ 2,214$ respectively. The outcome differences associated with low-poverty relocation account for less than a third of the differences associated with low-poverty relocation. These differences do not have a causal interpretation as they do not account for the selection bias generated by the choice of neighborhood relocation.

The Bloom estimator - the voucher's effect divided by the compliance rate for the voucher - is a useful parameter for evaluating the causal effects of the voucher for families that use the voucher. The parameter is of special importance for the ones interested in examining the policy implications of MTO voucher assignments. Table 11 presents the Bloom estimator for the experimental group versus control group as well as the treatment-on-the-treated estimator suggested by Equation (30). Section 3.4 explains that while these parameters yield different interpretations, they are likely to generate similar results in terms of estimation and inference. Table 11 supports this claim.

The first column of Table 11 presents the variable name and the second columns indicates if the variable is reversed so that greater values of a variable are in accord with the expected direction of the effects. Bloom estimates are presented in columns 3-6. Column 3 gives the outcome mean for the control group and column 4 gives the Bloom estimator. ${ }^{21}$ Columns 5 and 6 show the single-hypothesis and multiple-hypothesis single-sided p-values for the null hypothesis of no effect. ${ }^{22}$

[^13]Table 10: Outcome Expectations by Neighborhood Relocation and Voucher Assignments

Variable	Sample		No Relocation Conditioned on Vouchers				Low-poverty Neighborhood				High-poverty Neighborhood							
			All	Cond	ned on	uchers	All	Condit	ned on V	uchers								
			Vouchers 3	Cntl. 4	Exper. 5	Sec. 8 6	Vouchers 7	Cntl. 8	Exper. 9	Sec. 8 10	Vouchers 11	Cntl. 12	Exper. 13	Sec. 8 14				
Adult Earnings							8440.1	8649.3	8584.5	7472.4	9684.8	11779.2	9568.0	9994.3	9392.0	9235.5	9579.2	9220.4
Earnings (2001)	No	3313																
Current Weekly earnings	No	3311	173.22.35	178.8 2.38	173.02.39	157.72.22	$\begin{gathered} 189.2 \\ 2.54 \end{gathered}$	$\begin{gathered} 199.9 \\ 2.94 \end{gathered}$	$\begin{gathered} 189.1 \\ 2.53 \end{gathered}$	$\begin{gathered} 189.4 \\ 2.56 \end{gathered}$	$\begin{gathered} 184.1 \\ 2.53 \end{gathered}$	$\begin{gathered} 178.4 \\ 2.54 \\ \hline \end{gathered}$	$\begin{gathered} 211.1 \\ 2.55 \\ \hline \end{gathered}$	$\begin{gathered} 178.9 \\ 2.50 \end{gathered}$				
Earnings Range (1 to 6)	No	3313																
Total Income																		
Total income (head)	No	3526	$\begin{aligned} & 11512.6 \\ & 12871.9 \\ & 15196.4 \end{aligned}$	11365.1	11689.6	11398.0	12665.9	16177.1	12636.2	12571.6	12361.4	12725.0	13211.0	11999.5				
Total household income	No	3526		13022.1	12909.3	12450.3	14364.2	20322.1	14415.4	13194.4	13614.5	14798.1	14770.2	12911.9				
Sum of all income	No	3526		14957.4	15284.5	15454.5	16527.9	21732.7	16709.0	15679.3	15413.3	17171.6	17325.0	14375.9				
Poverty Line																		
Income $<50 \%$ poverty line	Yes	3526	-0.34	-0.35	-0.35	-0.31	-0.33	-0.25	-0.31	-0.45	-0.37	-0.35	-0.32	-0.38				
Income $\geq 150 \%$ poverty line	No	3526	0.15	0.14	0.15	0.18	0.18	0.17	0.18	0.20	0.15	0.19	0.12	0.13				
Income > poverty line	No	3526	0.27	0.26	0.29	0.26	0.33	0.60	0.33	0.30	0.31	0.39	0.33	0.28				
Self-suficiency																		
Economic self-sufficiency	No	3499	0.17	0.17	0.18	0.18	0.20	0.30	0.20	0.18	0.20	0.20	0.19	0.20				
Employed (no welfare)	No	3472	0.45	0.45	0.46	0.47	0.49	0.40	0.49	0.51	0.47	0.49	0.52	0.45				
Not in the labor force	Yes	3508	-0.39	-0.37	-0.38	-0.42	-0.31	-0.39	-0.30	-0.38	-0.33	-0.41	-0.30	-0.31				
Self-reported Employment																		
Employed	No	3517	0.51	0.52	0.51	0.49	0.57	0.52	0.57	0.55	0.55	0.53	0.61	0.55				
Employed with health insurance	No	3483	0.30	0.30	0.32	0.24	0.33	0.30	0.33	0.32	0.31	0.29	0.34	0.31				
Employed full-time	No	3488	0.39	0.40	0.39	0.36	0.40	0.30	0.40	0.39	0.40	0.39	0.45	0.40				
Employed above poverty	No	3311	0.31	0.32	0.31	0.30	0.34	0.29	0.34	0.35	0.35	0.35	0.36	0.35				
Job for more than a year	No	3475	0.38	0.37	0.39	0.38	0.39	0.23	0.39	0.38	0.38	0.36	0.44	0.38				

Columns 7-10 provide the same analysis of columns 3-6 to the treatment-on-the-treated estimator of Equation (30), that is, $\operatorname{TOT}_{2}\left(z_{2}, z_{1}\right)$.

Table 11 shows that both methods generate very similar results and no effect survives the multiple hypothesis inference besides the labor force indicator. A few measures of employment are statistically significant when considering single-hypothesis inference.

Theorem T-6 shows that the TOT parameter defined by Equation (30) is a weighted average of the causal effects of relocation across the response-types whose decision changes as the voucher assignment varies. In the case of the experimental group versus the control group, the $T O T_{2}\left(z_{2}, z_{1}\right)$ parameter captures the relocation effects associated with response-types s_{4}, s_{5}, and s_{6}. The $\operatorname{TOT}_{2}\left(z_{2}, z_{1}\right)$ assesses half of the MTO sample and is a mixture of the causal effects associated with relocating to a low poverty neighborhood for response-types s_{4} and s_{5}, that is, $\operatorname{RATE}_{\left\{s_{4}, s_{5}\right\}}(2,1)$, and relocating to a high poverty neighborhood for response-type s_{6}, that is, $\operatorname{RATE}_{S_{6}}(2,3)$.

Section 3.5 provides the expressions to compute counterfactual outcomes conditioned on responsetypes as well as the average causal effect of neighborhood relocation. The identification of the causal components of the $\operatorname{TOT}_{2}\left(z_{2}, z_{1}\right)$ uses post-intervention data on neighborhood poverty levels. Specifically, I rely on available data on the proportion of time that MTO participants lived in neighborhoods that differ on poverty levels.

Table 12 presents three analyses that compare counterfactual outcomes of low-poverty neighborhood relocation and no relocation. The first analysis is presented in columns 3-6 and compares families that always relocate to low-poverty neighborhood (response-type s_{2}) with families that never relocate (response-type s_{1}). Notationally, columns 3-6 report the estimates for $E\left(Y_{\omega} \mid S_{\omega}=s_{2}\right)-E\left(Y_{\omega} \mid S_{\omega}=s_{1}\right)$. As mentioned, this comparison is not causal nor is it captured by $T O T_{2}\left(z_{2}, z_{1}\right)$. Theorem T-4 states that the identification of $E\left(Y_{\omega} \mid S_{\omega}=s_{2}\right)-E\left(Y_{\omega} \mid S_{\omega}=s_{1}\right)$ results from the assumptions that generate the seven economically justified response-types of Table 8.

The second analysis is presented in columns 7-10 and shows the estimates for the causal effect of low-poverty relocation compared to no relocation evaluated for the response-types that access these two relocation choices as voucher assignments vary. Notationally, columns $7-10$ report the $\operatorname{RATE}_{\left\{s_{4}, s_{5}\right\}}(2,1)$ which can also be written in terms of counterfactual expectations: $E\left(Y_{\omega}(2)-\right.$ $\left.Y_{\omega}(1) \mid S_{\omega} \in\left\{s_{4}, s_{5}\right\}\right)$.

Table 11: Treatment-on-the-Treated Comparison for No Move versus Low-poverty Relocation

Variable Rev.		Voucher Effects divided by Compliance Rates				Voucher Effects divided by Difference in Relocation Propensities			
		Baseline	Bloom	Inference		Baseline	тот	Inference	
		Mean 3	Estimator 4	Single 5	$\begin{gathered} \text { SD } \\ 6 \end{gathered}$	Mean 7	Estimator 8	Single 9	SD 10
Adult Earnings									
Earnings (2001)	No	8878.1	677.8	0.27	0.37	8878.1	706.5	0.28	0.39
Current Weekly earnings	No	179.0	9.96	0.33	0.33	179.0	11.02	0.33	0.33
Earnings Range (1 to 6)	No	2.42	0.11	0.27	0.39	2.42	0.12	0.27	0.38
Rank Average	No	0.50	0.02	0.24	-	0.50	0.02	0.24	-
Total Income									
Total income (head)	No	11803.1	1031.4	0.16	0.24	11803.1	1105.0	0.15	0.23
Total household income	No	13597.7	291.2	0.41	0.41	13597.7	313.8	0.41	0.41
Sum of all income	No	15621.2	823.5	0.30	0.33	15621.2	882.4	0.29	0.33
Rank Average	No	0.50	0.03	0.15	-	0.50	0.03	0.15	-
Poverty Line									
Income < 50% poverty line	Yes	-0.35	0.04	0.23	0.46	-0.35	0.04	0.23	0.46
Income $\geq 150 \%$ poverty line	No	0.15	0.02	0.25	0.38	0.15	0.03	0.25	0.38
Income > poverty line	No	0.30	0.02	0.33	0.33	0.30	0.02	0.33	0.33
Rank Average	No	0.50	0.01	0.22	-	0.50	0.01	0.22	-
Self-suficiency									
Economic self-sufficiency	No	0.18	0.02	0.28	0.28	0.18	0.02	0.28	0.28
Employed (no welfare)	No	0.45	0.07	0.10	0.17	0.45	0.07	0.10	0.17
Not in the labor force	Yes	-0.38	0.10	0.03	0.06	-0.38	0.10	0.03	0.06
Rank Average	No	0.49	0.03	0.06	-	0.49	0.03	0.06	-
Self-reported Employment									
Employed	No	0.52	0.05	0.18	0.31	0.52	0.05	0.18	0.30
Employed with health insurance	No	0.29	0.07	0.08	0.17	0.29	0.08	0.08	0.18
Employed full-time	No	0.39	0.02	0.33	0.44	0.39	0.03	0.32	0.43
Employed above poverty	No	0.32	0.01	0.43	0.43	0.32	0.01	0.42	0.42
Job for more than a year	No	0.36	0.08	0.05	0.15	0.36	0.09	0.05	0.15
Rank Average	No	0.50	0.03	0.12	-	0.50	0.03	0.12	-

This table compares the labor market outcomes of the Experimental group versus the Control group. It presents the Bloom estimator - voucher effect divided by voucher compliance rate - and the treatment-on-the-treated estimator suggested by Equation (30). Outcomes grouped in blocks separated by horizontal lines. The last line of each block of outcomes examines the average of the participant rank across the outcomes within each block. It represent a summary index for the selected variables within each block. First column states the variable name. Second column indicates if the variable is reversed, i.e., multiplied by -1 so that greater values of a variable are inline with the expected direction of the effects. Bloom estimates are presented in columns $3-6$. Column 3 gives the outcome mean for the control group and column 4 gives the Bloom estimator. Columns 5 and 6 present the single-hypothesis and multiple-hypothesis single-sided p-values for the null hypothesis of no effect. Columns $7-10$ provide the same analysis of columns $3-6$ to the treatment-on-the-treated estimator of Equation (30). All estimates are weighted by the weighing index recommended by the MTO Interim evaluation. The p-values are computed using the Bootstrap method (Efron, 1981; Romano, 1989) and the multiple hypothesis inference uses the stepdown algorithm of Romano and Wolf (2005). Estimates are nonparametrically conditioned on the site of intervention.

The identification of $\operatorname{RATE} E_{\left\{s_{4}, s_{5}\right\}}(2,1)$ is discussed in Section 3.5 and is based on the assumption that the overall neighborhood quality is not directly caused by the family's unobserved variables. I use available data on post-intervention neighborhood poverty as a proxy for neighborhood quality and I compute $\operatorname{RATE}_{\left\{s_{4}, s_{5}\right\}}(2,1)$ according to Equation (37). In Section 3.5, I explain that the assumptions that render the identification of $\operatorname{RAT} E_{\left\{s_{4}, s_{5}\right\}}(2,1)$ are testable. I test these assumption in Tables A.3-A. 5 of Web Appendix E. I do not reject the assumptions that identify $R A T E_{\left\{s_{4}, s_{5}\right\}}(2,1)$.

The third analysis is presented in columns 11-14 and shows the estimates for the average causal effect of low-poverty relocation versus no relocation. Notationally, columns 11-14 report $E\left(Y_{\omega}(2)-Y_{\omega}(1)\right)$ which is estimated according to Equation (38). The identification of this average causal effect also relies on the assumptions that identify $\operatorname{RATE}_{\left\{s_{4}, s_{5}\right\}}(2,1)$.

Each analysis consists of four columns: (1) a baseline mean; (2) the expected difference of the outcome counterfactuals; (3) the one-sided p-values for single-hypothesis inference that the estimated effect is equal to zero; (4) the one-sided multiple-hypothesis p-values. All estimates are weighted by the weighing index recommended by the MTO Interim evaluation. The p-values are computed using the Bootstrap method (Efron, 1981; Romano, 1989) and the multiple hypothesis inference uses the stepdown algorithm of Romano and Wolf (2005). The reported parameters are conditioned on the site of intervention.

I find statistically significant effects on the labor market outcomes associated with Adult Earning, Total Income and Poverty-line - first three blocks of variables - while the effects for the outcomes associated with Self-sufficiency and Self-reported Employment - last two block of variables - are not statistically significant. Those results are in contrast with the TOT estimates of Table 11.

In summary, the comparison between response-types s_{2} and s_{1} yield the biggest counterfactual differences, followed by $\operatorname{RAT}_{\left\{E_{\left.s_{4}, s_{5}\right\}}\right.}(2,1)$ and then the average relocation effect $E\left(Y_{\omega}(2)-Y_{\omega}(1)\right)$. Columns 5-6 of Table 12 show that the outcome difference between response-types s_{2} and s_{1} is statistically significant for Adult Earnings and total income. The inference survives the multiple hypothesis correction. The table also shows statistically significant results for the causal effect on neighborhood relocation (Columns 7-10) and average causal effect of relocation (Columns 11-14) for total income outcomes. The results for self-sufficiency and employment displayed in Table 12
Table 12: Causal Effects and Response-type Comparison for Low-poverty Relocation versus No Relocation

		Response-type Comparison$S=s_{2} \text { versus } S=s_{1}$				Causal Effects for Response-types s_{4} and s_{5}				Average Treatment Effects All Response-types				
		Base Mean 3	$\begin{gathered} \text { Diff. } \\ \text { Means } \\ 4 \end{gathered}$	Inference		Base Mean 7		Inference		Base Mean 11		Inference		
		Single 5		SD 6	Single			SD 10	Single 13			SD 14		
Adult Earnings														
Earnings (2001)	No		7363.9	4447.8	0.03	0.05	8652.5	1156.1	0.09	0.13	8576.3	1059.1	0.10	0.13
Current Weekly earnings	No	154.2	22.830	0.27	0.27	198.6	8.171	0.28	0.28	180.0	10.740	0.23	0.23	
Earnings Range (1 to 6)	No	2.208	0.731	0.04	0.05	2.329	0.176	0.14	0.17	2.364	0.153	0.16	0.20	
Rank Average	No	0.466	0.073	0.09	-	0.504	0.015	0.26	-	0.498	0.015	0.26	-	
Total Income														
Total income (head)	No	11460.9	4433.9	0.01	0.02	10892.3	1047.7	0.10	0.10	11514.9	1019.3	0.09	0.09	
Total household income	No	12545.8	7416.0	0.01	0.01	12596.5	1676.9	0.07	0.07	12745.1	1522.8	0.07	0.07	
Sum of all income	No	15565.5	5733.3	0.03	0.03	14240.4	2264.7	0.02	0.05	14788.2	1933.4	0.03	0.07	
Rank Average	No	0.489	0.152	0.01	-	0.464	0.026	0.13	-	0.486	0.023	0.16	-	
Poverty Line														
Income < 50\% poverty line	Yes	-0.302	0.038	0.36	0.53	-0.337	0.032	0.08	0.21	-0.347	0.025	0.12	0.30	
Income $\geq 150 \%$ poverty line	No	0.179	-0.006	0.53	0.53	0.138	0.065	0.02	0.03	0.150	0.049	0.03	0.06	
Income > poverty line	No	0.253	0.341	0.00	0.00	0.219	0.030	0.19	0.19	0.279	0.023	0.23	0.23	
Rank Average	No	0.505	0.062	0.05	-	0.485	0.021	0.11	-	0.496	0.016	0.16	-	
Self-sufficiency														
Economic self-sufficiency	No	0.179	0.109	0.17	0.29	0.155	0.035	0.15	0.29	0.168	0.034	0.13	0.24	
Employed (no welfare)	No	0.468	-0.090	0.81	0.81	0.471	-0.009	0.52	0.52	0.461	0.010	0.35	0.35	
Not in the labor force	Yes	-0.430	0.040	0.30	0.43	-0.300	0.022	0.24	0.34	-0.348	0.019	0.22	0.35	
Rank Average	No	0.487	0.012	0.33	-	0.506	0.008	0.32	-	0.499	0.010	0.28	-	
Self-reported Employment														
Employed	No	0.489	-0.008	0.51	0.79	0.578	0.008	0.38	0.56	0.536	0.012	0.33	0.51	
Employed with health insurance	No	0.240	0.041	0.29	0.61	0.316	-0.001	0.46	0.54	0.304	0.007	0.39	0.46	
Employed full-time	No	0.357	-0.088	0.86	0.93	0.429	0.005	0.37	0.56	0.392	0.015	0.29	0.49	
Employed above poverty	No	0.288	-0.029	0.62	0.84	0.347	-0.006	0.47	0.47	0.329	0.006	0.37	0.37	
Job for more than a year	No	0.373	-0.154	0.95	0.95	0.399	0.003	0.39	0.55	0.390	0.008	0.35	0.52	
Rank Average	No	0.487	-0.027	0.76	-	0.515	-0.000	0.44	-	0.505	0.004	0.39	-	This table examines causal parameters associated with the choice of relocation to low-poverty neighborhood versus no relocation for labor market outcomes. MTO Outcomes on this table are grouped in blocks separated by horizontal lines. The last line of each block of outcomes examines the average of the participant rank across the outcomes within block. First column states the variable name. Second column indicates if the variable is reversed, i.e., multiplied by -1 so that greater values of a variable are inline with the expected direction of the effects. The remaining columns refer to three analysis of counterfactual outcome expectations. The first analysis compares families that always move to low-poverty neighborhoods (response-type s_{2}) and families that never move (response-type s_{1}). The second analysis shows the causal effects of low-poverty neighborhood relocation that are defined for response-types s_{4} and s_{5}., i.e., $R A T E_{\left\{s_{4}, s_{5}\right\}}(2,1)$. The third analysis evaluates the average causal effect for low-poverty neighborhood relocation. Results of each analysis are displayed in four columns. The first column shows the baseline outcome expectation. The second column shows the difference in the outcome expectations. The third and fourth columns show the single-hypothesis and multiple-hypothesis single-sided p-values for the null hypothesis of no effect respectively. All estimates are weighted by the weighing index recommended by the MTO Interim evaluation. The p-values are computed using the Bootstrap method (Efron, 1981; Romano,

1989) and the multiple hypothesis inference uses the stepdown algorithm of Romano and Wolf (2005). Estimates are nonparametrically conditioned on the site of intervention.
are not statistically significant.

5 Summary and Conclusions

This paper contributes to the literature that studies the causal effects of neighborhood characteristics on socioeconomic outcomes. A fundamental challenge in neighborhood-level research is accounting for the selection bias generated by residential sorting. I address this challenge by exploiting the features of the Moving to Opportunity (MTO) project, a prominent social experiment that use the method of randomized controlled trials to investigate neighborhood effects.

MTO is a housing experiment designed to investigate the social and economic consequences of relocating poor families from America's most distressed urban neighborhoods to low-poverty communities. MTO randomly assigns vouchers that can be used to subsidize the rent of a housing unit if the family decides to relocate to a better neighborhood.

The intervention consists of three groups: a control group, an experimental group and the section 8 group. The families assigned to the control group were offered no voucher. Experimental families were offered a voucher that could be used to lease a unit in a low poverty neighborhood if the family agreed to relocate. The Section 8 recipients were offered a voucher that could be used to lease a unit in either low or high poverty neighborhoods. The MTO program did not force compliance but rather created incentives for neighborhood relocation.

An influential literature on MTO use randomized vouchers to evaluate the intention-to-treat $I T T$ effect - the voucher's causal effect - and the treatment-on-the-treated TOT effect - the voucher's effect divided by the voucher's compliance rate. These effects are appropriate parameters to examine the policy implications of the MTO voucher assignments. Randomized vouchers, however, do not render the identification of the causal effects of neighborhood relocation on socioeconomic outcomes. To assess those, it is necessary to account for the selection bias generated by the family's relocation decision.

I contribute to the MTO literature by quantifying a new set of parameters that have a clear interpretation in terms of the causal effects of neighborhood relocation. The interpretation of these effects is based on the seven economically justified response-types described in Table 8. I develop a novel method that explores the economic and causal features of the project's design to solve
the problem of selection bias generated by neighborhood sorting. I consider an unordered choice model in which vouchers play the role of instrumental variables for neighborhood relocation and families decide among three relocation alternatives: (1) no relocation, (2) relocation to a low-poverty neighborhood; and (3) relocation to a high-poverty neighborhood.

A major challenge to nonparametric identification of neighborhood effects is that the MTO vouchers are insufficient to identify all possible counterfactual relocation decisions. My identification strategy combines economic theory, the tools of causal inference and the experimental variation from data.

I use economic reasoning such as the Strong Axiom of Revealed Preferences to reduce the gap between the number of counterfactual relocation decisions and the values that the instrumental variable takes. This approach renders the identification of a range of counterfactual outcomes as well as latent probabilities associated economically justifiable relocation patterns of MTO participants. The method allows to decompose the TOT parameter into interpretable components associated with the causal effects of neighborhood relocation. For instance, the TOT parameter that compares the experimental group with the control group can be expressed as a mixture of two effects: the causal effect of relocating to a low poverty neighborhood versus not relating and the causal effect of relocating to a low poverty neighborhood versus relocating to a high poverty neighborhood.

I use tools of causal inference from the literature on Bayesian networks (Lauritzen, 1996; Pearl, 2009) to achieve point identification. I exploit the assumption that the overall quality of the neighborhood is not directly caused by the unobserved variables of a family. Even though the neighborhood quality correlates with the family's unobserved variables due to neighborhood sorting. I use available data on post-intervention neighborhood poverty as a proxy for neighborhood quality. Under these assumptions, I show that it is possible to nonparametrically identify the causal effects of neighborhood relocation.

The empirical analysis of this paper focuses on labor market outcomes. My analysis agrees with the previous literature that shows no statistically significant $T O T$ effects on economic outcomes. However, I obtain sharper results by focusing on relocation effects instead of voucher effects. I find statistically significant causal effects of neighborhood relocation for identifiable subpopulations of MTO. I also find statistically significant results for the average causal effects of neighborhood relocation.

The identification challenge posed by the MTO intervention is an instance of a more general class of econometric problems in which the variation in instrumental variables is insufficient to identify a variety of interesting and policy relevant treatment effects. The methodology developed in this paper is general and applies to the case of unordered choice models with categorical instrumental variables and multiple treatments.

References

Altonji, J. G., T. E. Elder, and C. R. Taber (2005). Selection on observed and unobserved variables: Assessing the effectiveness of catholic schools. Journal of Political Economy 113, 151-184.

Angrist, J. D., G. W. Imbens, and D. Rubin (1996). Identification of causal effects using instrumental variables. Journal of the American Statistical Association 91 (434), 444-455.

Balke, A. and J. Pearl (1994). Probabilistic evaluation of counterfactual queries. Proceedings of the Twelfth National Conference on Artificial Intelligence 1, 230237.

Bergstrom, L. and M. van Ham (2012). Understanding neighbourhood effects: Selection bias and residential mobility. In M. van Ham, D. Manley, N. Bailey, L. Simpson, and D. Maclennan (Eds.), Neighbourhood effects research : new perspectives, Chapter 4. New York: Springer Science Dordrecht.

Bloom, H. S. (1984). Accounting for no-shows in experimental evaluation designs. Evaluation Review 82(2), 225-246.

Blundell, R., M. Browning, and I. Crawford (2003). Nonparametric engel curves and revealed preference. Econometrica 71, 205-240.

Blundell, R., M. Browning, and I. Crawford (2008). Best nonparametric bounds on demand responses. Econometrica 76, 1227-1262.

Blundell, R., D. Kristensen, and R. Matzkin (2014). Bounding quantile demand functions using revealed preference inequalities. Journal of Econometrics 179, 112-127.

Clampet-Lundquist, S. and D. Massey (2008). Neighborhood effects on economic self-sufficiency: A reconsideration of the moving to opportunity experiment. American Journal of Sociology 114, 107-143.

Curley, A. (2005). Theories of urban poverty and implications for public housing policy. Journal of Scociology and Social Welfare 32(2).

Dawid, A. P. (1976). Properties of diagnostic data distributions. Biometrics 32(3), 647-658.
Efron, B. (1981). Nonparametric estimates of standard error: The jackknife, the bootstrap and other methods. Biometrika 68(3), 589-599.

Frangakis, C. and D. Rubin (2002). Principal stratification in causal inference. Biometrics, 2129.
Frisch, R. (1938). Autonomy of economic relations: Statistical versus theoretical relations in economic macrodynamics. Paper given at League of Nations. Reprinted in D.F. Hendry and M.S. Morgan (1995), The Foundations of Econometric Analysis, Cambridge University Press.

Gennetian, L. A., M. Sciandra, L. Sanbonmatsu, J. Ludwig, L. F. Katz, G. J. Duncan, J. R. Kling, and R. C. Kessler (2012). The long-term effects of moving to opportunity on youth outcomes. Cityscape [Internet] 14, 137-68.

Haavelmo, T. (1944). The probability approach in econometrics. Econometrica 12(Supplement), iii-vi and 1-115.

Hanratty, M. H., S. A. McLanahan, and B. Pettit (2003). Los angeles site findings. In J. Goering and J. Feins (Eds.), Choosing a Better Life, pp. 245-274. Washington, DC: The Urban Institute Press.

Hansen, B. E. (2007). Least squares model averaging. Econometrica 75, 1175-1189.
Hansen, B. E. (2008). Least squares forecast averaging. Journal of Econometrics 146, 342-350.

Heckerman, D. and R. Shachter (1995). Decision-theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research 3, 405430.

Heckman, J. and R. Pinto (2014a). Generalized monotonicity: Causality and identification of unordered categorical treatment effects. Unpublished Manuscript.

Heckman, J. J. and R. Pinto (2014b). Causal analysis after haavelmo. Econometric Theory, 1-37.

Heckman, J. J. and R. Pinto (2014c). Econometric mediation analyses: Identifying the sources of treatment effects from experimentally estimated production technologies with unmeasured and mismeasured inputs. Econometric Reviews, forthcoming.

Heckman, J. J. and S. Urzúa (2010, May). Comparing IV with structural models: What simple IV can and cannot identify. Journal of Econometrics 156(1), 27-37.

Heckman, J. J., S. Urzúa, and E. J. Vytlacil (2006). Understanding instrumental variables in models with essential heterogeneity. Review of Economics and Statistics 88(3), 389-432.

Heckman, J. J., S. Urzúa, and E. J. Vytlacil (2008). Instrumental variables in models with multiple outcomes: The general unordered case. Les Annales d'Economie et de Statistique 91-92, 151-174.

Heckman, J. J. and E. J. Vytlacil (2007). Econometric evaluation of social programs, part II: Using the marginal treatment effect to organize alternative economic estimators to evaluate social programs and to forecast their effects in new environments. In J. Heckman and E. Leamer (Eds.), Handbook of Econometrics, Volume 6B, pp. 4875-5144. Amsterdam: Elsevier.

Imbens, G. W. and J. D. Angrist (1994, March). Identification and estimation of local average treatment effects. Econometrica 62(2), 467-475.

Katz, L. F., J. Kling, and J. B. Liebman (2001). Moving to opportunity in boston: Early results of a randomized mobility experiment. Quarterly Journal of Economics 116, 607-654.

Katz, L. F., J. Kling, and J. B. Liebman (2003). Boston site findings. In J. Goering and J. Feins (Eds.), Choosing a Better Life, pp. 177-212. Washington, DC: The Urban Institute Press.

Kitamura, Y., , and J. Stoye (2014). Nonparametric analysis of random utility models. Umpublished Maniscript.

Kline, P. and M. Tartari (2014). Bounding the labor supply responses to a randomized welfare experiment: A revealed preference approach. Umpublished Manuscript.

Kling, J. R., J. B. Liebman, and L. F. Katz (2007). Experimental analysis of neighborhood effects. Econometrica 75, 83-119.

Kling, J. R., J. Ludwig, and L. F. Katz (2005). Neighborhood effects on crime for female and male youth: Evidence from a randomized housing voucher experiment. The Quarterly Journal of Economics 120, 87-130.

Ladd, H. F. and J. Ludwig (2003). The effects of mto on educational op-portunities in baltimore. In J. Goering and J. Feins (Eds.), Choosing a Better Life, pp. 117-151. Washington, DC: The Urban Institute Press.

Lauritzen, S. L. (1996). Graphical Models (Oxford Statistical Science Series ed.), Volume 17. Oxford University Press.

Leventhal, T. and J. Brooks-Gunn (2003). New york site findings. In J. Goering and J. Feins (Eds.), Choosing a Better Life, pp. 213-244. Washington, DC: The Urban Institute Press.

Ludwig, J., G. J. Duncan, and J. Pinkston (2005). Housing mobility programs and economic selfsufficiency: Evidence from a randomized experiment. Journal ofPublic Economics 89, 131-156.

Ludwig, J., P. Hirschfield, and G. J. Duncan (2001). Urban poverty and juvenile crime: Evidence from a randomized housing mobility experiment. Quarterly Journal of Economics 116, 665-679.

Magnus, J. R. and H. Neudecker (1999). Matrix Differential Calculus with Applications in Statistics and Econometrics (2 ed.). Wiley.

McFadden, D. (2005). Revealed stochastic preference: A synthesis. Economic Theory 26, 245-264.

McFadden, D. and K. Richter (1991). Stochastic rationality and revealed stochastic preference. Preferences, Uncertainty and Rationality,ed. by J. Chipman, D. McFadden, and M.K. Richter. Boulder: Westview Press, 161-186.

Orr, L., J. D. Feins, R. Jacob, and E. Beecroft (2003). Moving to Opportunity Interim Impacts Evaluation. Washington, DC: U.S. Department of Housing and Urban Development Office of Policy Development \& Research.

Pearl, J. (1995, December). Causal diagrams for empirical research. Biometrika 82(4), 669-688.

Pearl, J. (2009). Causality: Models, Reasoning and Inference (Second ed.). Cambridge University Press.

Pinto, R. (2014). Evaluation of the causal effects of neighborhood relocation in mto. Umpublished Manuscript.

Robins, J. M. and S. Greenland (1992). Identifiability and exchangeability for direct and indirect effects. Epidemiology 3, 143-155.

Romano, J. P. (1989). Bootstrap and randomization tests of some nonparametric hypotheses. The Annals of Statistics 17(1), 141-159.

Romano, J. P. and M. Wolf (2005, March). Exact and approximate stepdown methods for multiple hypothesis testing. Journal of the American Statistical Association 100(469), 94-108.

Sampson, R. J., J. D. Morenoff, and T. Gannon-Rowley (2002). Assessing "neighborhood effects": Social processes and new directions in research. Annual Review of Sociology 28, 443-78.

Sobel, M. E. (2006). What do randomized studies of housing mobility demonstrate?: Causal inference in the face of interference. Journal of the American Statistical Association 101, 13981407.
van Ham, M., D. Manley, N. Bailey, L. Simpson, and D. Maclennan (2012). Neighbourhood effects research : new perspectives. In M. van Ham, D. Manley, N. Bailey, L. Simpson, and D. Maclennan (Eds.), Neighbourhood effects research : new perspectives, Chapter 1. New York: Springer Science Dordrecht.

Wilson, W. (1987). The Truly Disadvantaged: The Inner City, the Underclass, and Public Policy. Chicago, IL: University of Chicago Press, Chicago.

A Mathematical Appendix - Proofs

This appendix presents the proofs of lemmas and theorems stated in the main paper.

Proof of Lemma L-1:

Proof. Let $x_{\omega}(z, t)=\max _{(k) \in W_{\omega}(z, t)} u_{\omega}(x, t)$ be choice of consumption goods when family is faced with instrument $z \in\{1,2,3\}$ and neighborhood relocation $t \in\{1,2,3\}$. Also let $\left[x_{\omega}(z, t), t\right]$ is a bundle of goods and neighborhood choices. Then, by SARP:

$$
\begin{align*}
& \quad \text { if }\left[x_{\omega}(z, t), t\right] \succ\left[x_{\omega}\left(z, t^{\prime}\right), t^{\prime}\right] \\
& \text { and } W_{\omega}(z, t) \subseteq W_{\omega}\left(z^{\prime}, t\right), W_{\omega}\left(z, t^{\prime}\right) \supseteq W_{\omega}\left(z^{\prime}, t^{\prime}\right) \\
& \text { then }\left[x_{\omega}\left(z^{\prime}, t\right), t\right] \succ\left[x_{\omega}\left(z^{\prime}, t^{\prime}\right), t^{\prime}\right] \text {. } \tag{39}
\end{align*}
$$

Also, we have that:

$$
\begin{equation*}
C_{\omega}(z)=t \Leftrightarrow\left[x_{\omega}(z, t), t\right] \succ\left[x_{\omega}\left(z, t^{\prime}\right), t^{\prime}\right] ; \forall t^{\prime} \in\{1,2,3\} \backslash\{t\} \tag{40}
\end{equation*}
$$

We now proof the Theorem choice restrictions:

1. $C_{\omega}(1)=2 \Rightarrow\left[x_{\omega}(1,2), 2\right] \succ\left[x_{\omega}(1,1), 1\right]$ and $\left[x_{\omega}(1,2), 2\right] \succ\left[x_{\omega}(1,3), 3\right]$.

- By A-1, $W_{\omega}(1,2) \subset W_{\omega}(2,2)$, and by A-2, $W_{\omega}(1,1)=W_{\omega}(2,1)$ thus by (39) and $\left[x_{\omega}(1,2), 2\right] \succ$ $\left[x_{\omega}(1,1), 1\right]$ we have that $\left[x_{\omega}(2,2), 2\right] \succ\left[x_{\omega}(2,1), 1\right]$. Again, by A-1, $W_{\omega}(1,2) \subset W_{\omega}(2,2)$, and by A-2, $W_{\omega}(1,3)=W_{\omega}(2,3)$ thus by (39) and $\left[x_{\omega}(1,2), 2\right] \succ\left[x_{\omega}(1,3), 3\right]$ we have that $\left[x_{\omega}(2,2), 2\right] \succ$ $\left[x_{\omega}(2,3), 3\right]$. Therefore, by (40), $C_{\omega}(2)=2$.
- By A-1, $W_{\omega}(1,2) \subset W_{\omega}(3,2)$, and by A-2, $W_{\omega}(1,1)=W_{\omega}(3,1)$ thus by (39) and $\left[x_{\omega}(1,2), 2\right] \succ$ $\left[x_{\omega}(1,1), 1\right]$ we have that $\left[x_{\omega}(3,2), 2\right] \succ\left[x_{\omega}(3,1), 1\right]$. Therefore $C_{\omega}(3) \in\{2,3\}$.

2. $C_{\omega}(1)=3 \Rightarrow\left[x_{\omega}(1,3), 3\right] \succ\left[x_{\omega}(1,1), 1\right]$ and $\left[x_{\omega}(1,3), 3\right] \succ\left[x_{\omega}(1,2), 2\right]$.

- By A-1, $W_{\omega}(1,3)=W_{\omega}(2,3)$, and by A-2, $W_{\omega}(1,1)=W_{\omega}(2,1)$ thus by (39) and $\left[x_{\omega}(1,3), 3\right] \succ$ $\left[x_{\omega}(1,1), 1\right]$ we have that $\left[x_{\omega}(2,3), 3\right] \succ\left[x_{\omega}(2,1), 1\right]$. Therefore, by (40), $C_{\omega}(2) \in\{2,3\}$.
- By A-1, $W_{\omega}(1,3) \subset W_{\omega}(3,3)$, and by A-2, $W_{\omega}(1,1)=W_{\omega}(3,1)$ thus by (39) and $\left[x_{\omega}(1,3), 3\right] \succ$ $\left[x_{\omega}(1,1), 1\right]$ we have that $\left[x_{\omega}(3,3), 3\right] \succ\left[x_{\omega}(3,1), 1\right]$. Therefore $C_{\omega}(3) \in\{2,3\}$.

3. $C_{\omega}(2)=1 \Rightarrow\left[x_{\omega}(2,1), 1\right] \succ\left[x_{\omega}(2,2), 2\right]$ and $\left[x_{\omega}(2,1), 1\right] \succ\left[x_{\omega}(2,3), 3\right]$.

- By A-2, $W_{\omega}(2,1)=W_{\omega}(1,1)$ and by A-1, $W_{\omega}(2,2) \supset W_{\omega}(1,2)$ thus by (39) and $\left[x_{\omega}(2,1), 1\right] \succ$ $\left[x_{\omega}(2,2), 2\right]$ we have that $\left[x_{\omega}(1,1), 1\right] \succ\left[x_{\omega}(1,2), 2\right]$. Again, by $\mathbf{A - 2 ,} W_{\omega}(2,1)=W_{\omega}(1,1)$ and
$W_{\omega}(2,3)=W_{\omega}(1,3)$ thus by (39) and $\left[x_{\omega}(2,1), 1\right] \succ\left[x_{\omega}(2,3), 3\right]$ we have that $\left[x_{\omega}(1,1), 1\right] \succ$ $\left[x_{\omega}(1,3), 3\right]$. Therefore, by (40), $C_{\omega}(1)=1$.
- By A-2, $W_{\omega}(2,1)=W_{\omega}(3,1)$, and by A-1, $W_{\omega}(2,2)=W_{\omega}(3,2)$ thus by (39) and $\left[x_{\omega}(2,1), 1\right] \succ$ $\left[x_{\omega}(2,2), 2\right]$ we have that $\left[x_{\omega}(3,1), 1\right] \succ\left[x_{\omega}(3,2), 2\right]$. Therefore $C_{\omega}(3) \in\{1,3\}$.

4. $C_{\omega}(2)=3 \Rightarrow\left[x_{\omega}(2,3), 3\right] \succ\left[x_{\omega}(2,2), 2\right]$ and $\left[x_{\omega}(2,3), 3\right] \succ\left[x_{\omega}(2,1), 1\right]$.

- By A-2, $W_{\omega}(2,3)=W_{\omega}(1,3)$ and $W_{\omega}(2,1)=W_{\omega}(1,1)$ thus by (39) and $\left[x_{\omega}(2,3), 3\right] \succ\left[x_{\omega}(2,1), 1\right]$ we have that $\left[x_{\omega}(1,3), 3\right] \succ\left[x_{\omega}(1,1), 1\right]$. Again, by $\mathbf{A - 2 ,} W_{\omega}(2,3)=W_{\omega}(1,3)$, and by A-1, $W_{\omega}(2,2) \supset W_{\omega}(1,2)$ thus by (39) and $\left[x_{\omega}(2,3), 3\right] \succ\left[x_{\omega}(2,2), 2\right]$ we have that $\left[x_{\omega}(1,3), 3\right] \succ$ $\left[x_{\omega}(1,2), 2\right]$. Therefore, by (40), $C_{\omega}(1)=3$.
- By A-1, $W_{\omega}(2,3) \subset W_{\omega}(3,3)$, and by $\mathbf{A - 2}, W_{\omega}(2,1)=W_{\omega}(3,1)$ thus by (39) and $\left[x_{\omega}(2,3), 3\right] \succ$ $\left[x_{\omega}(2,1), 1\right]$ we have that $\left[x_{\omega}(3,3), 3\right] \succ\left[x_{\omega}(3,1), 1\right]$. Again, by $\mathbf{A - 1}, W_{\omega}(2,3) \subset W_{\omega}(3,3)$ and $W_{\omega}(2,2)=W_{\omega}(3,2)$ thus by (39) and $\left[x_{\omega}(2,3), 3\right] \succ\left[x_{\omega}(2,2), 2\right]$ we have that $\left[x_{\omega}(3,3), 3\right] \succ$ $\left[x_{\omega}(3,2), 2\right]$. Therefore, by (40), $C_{\omega}(3)=3$.

5. $C_{\omega}(3)=1 \Rightarrow\left[x_{\omega}(3,1), 1\right] \succ\left[x_{\omega}(3,2), 2\right]$ and $\left[x_{\omega}(3,1), 1\right] \succ\left[x_{\omega}(3,3), 3\right]$.

- By A-2, $W_{\omega}(3,1)=W_{\omega}(1,1)$, and by A-1, $W_{\omega}(3,2) \supset W_{\omega}(1,2)$ thus by (39) and $\left[x_{\omega}(3,1), 1\right] \succ$ $\left[x_{\omega}(3,2), 2\right]$ we have that $\left[x_{\omega}(1,1), 1\right] \succ\left[x_{\omega}(1,2), 2\right]$. Again, by A-2, $W_{\omega}(3,1)=W_{\omega}(1,1)$, and by A-1, $W_{\omega}(3,3) \supset W_{\omega}(1,3)$ thus by (39) and $\left[x_{\omega}(3,1), 1\right] \succ\left[x_{\omega}(3,3), 3\right]$ we have that $\left[x_{\omega}(1,1), 1\right] \succ$ $\left[x_{\omega}(1,3), 3\right]$. Therefore, by $(40), C_{\omega}(1)=1$.
- By A-2, $W_{\omega}(3,1)=W_{\omega}(2,1)$, and by A-1, $W_{\omega}(3,2)=W_{\omega}(2,2)$ thus by (39) and $\left[x_{\omega}(3,1), 1\right] \succ$ $\left[x_{\omega}(3,2), 2\right]$ we have that $\left[x_{\omega}(2,1), 1\right] \succ\left[x_{\omega}(2,2), 2\right]$. Again, by $\mathbf{A}-1, W_{\omega}(3,1)=W_{\omega}(2,1)$ and $W_{\omega}(3,3)=W_{\omega}(2,3)$ thus by (39) and $\left[x_{\omega}(3,1), 1\right] \succ\left[x_{\omega}(3,3), 3\right]$ we have that $\left[x_{\omega}(2,1), 1\right] \succ$ $\left[x_{\omega}(2,3), 3\right]$. Therefore, by (40), $C_{\omega}(2)=1$.

6. $C_{\omega}(3)=2 \Rightarrow\left[x_{\omega}(3,2), 2\right] \succ\left[x_{\omega}(3,1), 1\right]$ and $\left[x_{\omega}(3,2), 2\right] \succ\left[x_{\omega}(3,3), 3\right]$.

- By A-1, $W_{\omega}(3,2)=W_{\omega}(2,2)$, and by A-2, $W_{\omega}(3,1)=W_{\omega}(2,1)$ thus by (39) and $\left[x_{\omega}(3,2), 2\right] \succ$ $\left[x_{\omega}(3,1), 1\right]$ we have that $\left[x_{\omega}(2,2), 2\right] \succ\left[x_{\omega}(2,1), 1\right]$. Again, by A-2, $W_{\omega}(3,2)=W_{\omega}(2,2)$, and by A-1, $W_{\omega}(3,3) \supset W_{\omega}(2,3)$ thus by (39) and $\left[x_{\omega}(3,2), 2\right] \succ\left[x_{\omega}(3,3), 3\right]$ we have that $\left[x_{\omega}(2,2), 2\right] \succ$ $\left[x_{\omega}(2,3), 3\right]$. Therefore, by (40), $C_{\omega}(2)=2$.

Proof of Theorem T-1:

Proof. The theorem comes as a consequence of applying the rules described in Lemma L-1 and Assumption A-3 to the possible values values, i.e. response-types, variable S can take. Table 13 presents a matrix with all possible values of S and indicates whether those values violate the choice rules stated in the items of Lemma L-1 and the Assumption A-3.

Table 13: Restrictions on the Possible Values that Response Variable S takes

Response-types	Values Instrumental Variable Z takes			Restriction Analysis		
	No Voucher $Z=1$	Experimental $Z=2$	Section 8 $Z=3$	No Voucher $Z=1$	Experimental $Z=2$	Section 8 $Z=3$
1	1	1	1	\checkmark	\checkmark	\checkmark
2	1	1	2	\checkmark	Item 6 of L-1	Item 3 of L-1
3	1	1	3	\checkmark	\checkmark	\checkmark
4	1	2	1	\checkmark	Item 5 of L-1	\checkmark
5	1	2	2	\checkmark	\checkmark	\checkmark
6	1	2	3	\checkmark	\checkmark	\checkmark
7	1	3	1	Item 4 of L-1	Item 5 of L-1	\checkmark
8	1	3	2	Item 4 of L-1	Item 6 of L-1	\checkmark
9	1	3	3	Item 4 of L-1	\checkmark	\checkmark
10	2	1	1	Item 3 of L-1	Item 1 of L-1	Item 1 of L-1
11	2	1	2	Item 3 of L-1	Item 1 of L-1	Item 3 of L-1
12	2	1	3	Item 3 of L-1	Item 1 of L-1	\checkmark
13	2	2	1	Item 5 of L-1	Item 5 of L-1	Item 1 of L-1
14	2	2	2	\checkmark	\checkmark	\checkmark
15	2	2	3	Ass. A-3	Ass. A-3	Ass. A-3
16	2	3	1	Item 4 of L-1	Item 1 of L-1	Item 1 of L-1
17	2	3	2	Item 4 of L-1	Item 1 of L-1	\checkmark
18	2	3	3	Item 4 of L-1	Item 1 of L-1	\checkmark
19	3	1	1	Item 3 of L-1	Item 2 of L-1	Item 2 of L-1
20	3	1	2	Item 3 of L-1	Item 2 of L-1	Item 3 of L-1
21	3	1	3	Item 3 of L-1	Item 2 of L-1	\checkmark
22	3	2	1	Item 5 of L-1	Item 5 of L-1	Item 2 of L-1
23	3	2	2	Ass. A-3	Ass. A-3	Ass. A-3
24	3	2	3	\checkmark	\checkmark	\checkmark
25	3	3	1	Item 5 of L-1	Item 5 of L-1	Item 2 of L-1
26	3	3	2	\checkmark	Item 6 of L-1	Item 4 of L-1
27	3	3	3	\checkmark	\checkmark	\checkmark

This table presents all possible values that the response variable S can possibly take when instrumental variable Z and treatment status T range over $\operatorname{supp}(Z)=\operatorname{supp}(T)=\{1,2,3\}$. The first column enumerates the 27 possible response-types. Columns 2 to 4 presents the response-types according to the vector of the values the instrumental values Z takes. The remaining three columns examine are associated with the three previous ones. Columns 5 to 7 indicate whether the response-type violates any of the restrictions imposed by the items of Lemma L-1 and the Assumption A-3. A check mark sign means that the associate response-type does not violate any rule. Otherwise, the table declares the rule being violated.

Proof of Lemma L-2:

Proof. The independence relation $S_{\omega} \Perp Z_{\omega}$ comes from the fact that $V_{\omega} \Perp Z_{\omega}$ and that S_{ω} is a function of only V_{ω}. Let $t \in \operatorname{supp}(T)$, then $Y(t) \Perp T \mid S$ is a consequence of the independence of error term and the Structural Equations of the general IV model:

$$
\left(\left(V_{\omega}, \epsilon_{\omega}\right) \Perp Z_{\omega}\right) \Rightarrow\left(f_{Y}\left(t, V_{\omega}, \epsilon_{\omega}\right) \Perp g_{T}\left(Z_{\omega}, f_{S}\left(V_{\omega}\right)\right) \mid f_{S}\left(V_{\omega}\right)\right) \Rightarrow\left(Y_{\omega}(t) \Perp T_{\omega} \mid S_{\omega}\right)
$$

Also,

$$
\left(\left(V_{\omega}, \epsilon_{\omega}\right) \Perp Z_{\omega}\right) \Rightarrow\left(\left(f_{Y}\left(t, V_{\omega}, \epsilon_{\omega}\right), f_{S}\left(V_{\omega}\right)\right) \Perp Z_{\omega}\right) \Rightarrow\left(\left(Y_{\omega}(t), S_{\omega}\right) \Perp Z_{\omega}\right)
$$

We now apply the Weak Union Property of conditional independence relations of Dawid (1976) ${ }^{23}$ to obtain $Y_{\omega}(t) \Perp Z_{\omega} \mid S_{\omega}$. But T_{ω} is a linear function of Z_{ω} when conditioned on S_{ω} (see (14)), thus we have that $Y_{\omega}(t) \Perp\left(T_{\omega}, Z_{\omega}\right) \mid S_{\omega}$. Again, by Weak Decomposition we have that $Y_{\omega}(t) \Perp Z_{\omega} \mid\left(S_{\omega}, T_{\omega}\right)$. We according to Representation 11:

$$
\left(Y_{\omega}(t) \Perp Z_{\omega} \mid\left(T_{\omega}, S_{\omega}\right)\right) \Rightarrow\left(\sum_{t \in \operatorname{supp}(T)} Y_{\omega}(t) \cdot \mathbf{1}\left[T_{\omega}=t\right] \Perp Z_{\omega} \mid\left(S_{\omega}, T_{\omega}\right)\right) \Rightarrow\left(Y_{\omega} \Perp Z_{\omega} \mid\left(S_{\omega}, T_{\omega}\right)\right) .
$$

Proof of Lemma T-2:

${ }^{23}$ The Graphoid axioms are a set of conditional independence relations first presented by Dawid (1976):
Symmetry: $X \Perp Y|Z \Rightarrow Y \Perp X| Z$.
Decomposition: $X \Perp(W, Y)|Z \Rightarrow X \Perp Y| Z$.
Weak Union: $X \Perp(W, Y)|Z \Rightarrow X \Perp W|(Y, Z)$.
Contraction: $X \Perp Y \mid Z$ and $X \Perp W|(Y, Z) \Rightarrow X \Perp(W, Y)| Z$.
Intersection: $X \Perp W \mid(Y, Z)$ and $X \Perp Y|(W, Z) \Rightarrow X \Perp(W, Y)| Z$.
Redundancy: $X \Perp Y \mid X$.
The intersection relation is only valid for strictly positive probability distribution.

Proof.

$$
\begin{align*}
& E\left(Y_{\omega} \mid T_{\omega}=t, Z_{\omega}=z\right)=\sum_{s \in \operatorname{supp}(S)} E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s, Z=z\right) P\left(S_{\omega}=s \mid T_{\omega}=t, Z_{\omega}=z\right) \\
& =\sum_{s \in \operatorname{supp}(S)} E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s, Z_{\omega}=z\right) \frac{P\left(T_{\omega}=t \mid S_{\omega}=s, Z_{\omega}=z\right) P\left(S_{\omega}=s \mid Z_{\omega}=z\right)}{P\left(T_{\omega}=t \mid Z_{\omega}=z\right)} \\
& \therefore E\left(Y_{\omega} \mid T_{\omega}=t, Z_{\omega}=z\right) P\left(T_{\omega}=t \mid Z_{\omega}=z\right)= \\
& =\sum_{s \in \operatorname{supp}(S)} 1\left[T_{\omega}=t \mid S_{\omega}=s, Z_{\omega}=z\right] E\left(Y_{\omega} \mid T=t, S_{\omega}=s\right) P\left(S_{\omega}=s\right) . \tag{41}
\end{align*}
$$

The second equality comes from Bayes Rule. The first term of Equation (41) comes from the fact that T_{ω} is deterministic conditional on Z_{ω} and S_{ω}. The second and third terms come from $Y_{\omega} \Perp Z_{\omega} \mid\left(S_{\omega}, T_{\omega}\right)$ and $S_{\omega} \Perp Z_{\omega}$ of Lemma L-2.

Proof of Theorem T-3:

Proof. A general solution for the matrix form of a system of linear equations is obtained by (Magnus and Neudecker, 1999):

$$
\begin{equation*}
\boldsymbol{b}=\boldsymbol{B} \boldsymbol{x} \Rightarrow \boldsymbol{x}=\boldsymbol{B}^{+}\left(\boldsymbol{I}-\boldsymbol{B}^{+} \boldsymbol{B}\right) \lambda \tag{42}
\end{equation*}
$$

such that λ is an arbitrary real-valued $|\boldsymbol{b}|$-dimension vector, \boldsymbol{I} is an identity matrix of the same line dimension and \boldsymbol{B}^{+}is the Moore-Penrose Pseudoinverse of matrix \boldsymbol{B}. Theorem comes as a direct consequence of applying the general solution for the matrix form of a system of linear equations of Equation (42) to $\boldsymbol{P}_{Z}=\boldsymbol{A}_{\boldsymbol{S}} \boldsymbol{P}_{S}$ (Equation (22)) and $\boldsymbol{Q}_{Z}=\boldsymbol{A}_{\boldsymbol{D}} \boldsymbol{Q}_{S}$ (Equation (23)).

Proof of Theorem C-1:

Proof. The result comes from the fact that the bounds described in Theorem T-3 collapse to a single vector when $\left(\boldsymbol{I}_{N_{S}}-\boldsymbol{A}_{\boldsymbol{S}}^{+} \boldsymbol{A}_{\boldsymbol{S}}\right)^{\prime} \lambda=\mathbf{0}$, for the case of $\lambda^{\prime} \boldsymbol{P}_{S}$ and when $\left(\boldsymbol{I}_{\kappa}-\boldsymbol{A}_{\boldsymbol{D}}^{+} \boldsymbol{A}_{\boldsymbol{D}}\right)^{\prime} \lambda=\mathbf{0}$ for the case of $\lambda^{\prime} \boldsymbol{Q}_{S}$.

Proof of Theorem T-4:

Proof. 1. Our goal is to identify \boldsymbol{P}_{S}, but according to Equation (22), that is, $\boldsymbol{P}_{Z}=\boldsymbol{A}_{\boldsymbol{S}} \boldsymbol{P}_{S}$. By Theorem T1, we have that:

$$
\boldsymbol{A}=\left[\begin{array}{lllllll}
1 & 2 & 3 & 1 & 1 & 3 & 1 \\
1 & 2 & 3 & 2 & 2 & 2 & 1 \\
1 & 2 & 3 & 3 & 2 & 3 & 3
\end{array}\right] \Rightarrow \boldsymbol{A}_{\boldsymbol{S}}=\left[\begin{array}{ccccccc}
1 & 0 & 0 & 1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1
\end{array}\right] \therefore \quad \operatorname{rank}\left(\boldsymbol{A}_{\boldsymbol{S}}\right)=7
$$

Thus, according to Corollary C-1, \boldsymbol{P}_{S} is identified through $\boldsymbol{P}_{S}=\boldsymbol{A}_{\boldsymbol{S}}^{+} \boldsymbol{P}_{Z}$ as $\left(\boldsymbol{I}_{9}-\boldsymbol{A}_{\boldsymbol{S}}^{+} \boldsymbol{A}_{\boldsymbol{S}}\right)=\mathbf{0}$.
2. The identified causal parameters is a direct consequence of facta that response-types probabilities are identified according to item (1) and that according to Corollary C-1, if $\left(\boldsymbol{I}_{\kappa}-\boldsymbol{A}_{\boldsymbol{D}}^{+} \boldsymbol{A}_{\boldsymbol{D}}\right)^{\prime} \lambda=\mathbf{0}$, for a λ be a real-valued vector of dimension $\kappa=N_{S} \cdot|\operatorname{supp}(T)|$, then $\lambda^{\prime} \boldsymbol{Q}_{S}$ is identified.
3. According to Theorem T-2, we have that:

$$
E\left(X_{\omega} \cdot \mathbf{1}\left[T_{\omega}=t\right] \mid Z_{\omega}\right)=\sum_{s \in \operatorname{supp}(S)} \mathbf{1}\left[T_{\omega}=t \mid S_{\omega}=s, Z_{\omega}\right] E\left(X_{\omega} \mid T_{\omega}=t, S_{\omega}=s\right) P\left(S_{\omega}=s\right) .
$$

But if $X_{\omega} \Perp T_{\omega} \mid S_{\omega}$, the above equation is simplified by:

$$
E\left(X_{\omega} \cdot \mathbf{1}\left[T_{\omega}=t\right] \mid Z_{\omega}\right)=\sum_{s \in \operatorname{supp}(S)} \mathbf{1}\left[T_{\omega}=t \mid S_{\omega}=s, Z_{\omega}\right] E\left(X_{\omega} \cdot \mathbf{1}\left[S_{\omega}=s\right]\right)
$$

which is identical to the equation for propensity scores (18) when $\mathbf{1}\left[T_{\omega}=t\right]$ is replaced by $X_{\omega} \cdot \mathbf{1}\left[T_{\omega}=t\right]$ and $\mathbf{1}\left[S_{\omega}=s\right]$ is replaced by $X_{\omega} \cdot \mathbf{1}\left[S_{\omega}=s\right]$. Thereby $\boldsymbol{Q}_{Z}=\mathbf{A}_{\mathbf{S}} \boldsymbol{Q}_{S}\left(\right.$ instead of $\left.\boldsymbol{Q}_{Z}=\mathbf{A}_{\mathbf{D}} \boldsymbol{Q}_{S}\right)$ when X_{ω} is the targeted variable of \boldsymbol{Q}_{Z} and \boldsymbol{Q}_{S}. Thus, by the rationale of item (1), $E\left(X_{\omega} \cdot \mathbf{1}\left[S_{\omega}=s\right]\right)$ is identified for all $s \in \operatorname{supp}(S)$. The proof is completed by the fact that probabilities $P\left(S_{\omega}=s\right)$ are identified for all $s \in \operatorname{supp}(S)$.

Proof of Theorem T-5:

Proof. According to the definition of S_{ω} :
for each $v \in \operatorname{supp}(V)$, exists a unique $s \in \operatorname{supp}(S)$ such that $s=f_{S}(v)$

$$
\therefore\left(T_{\omega} \mid Z_{\omega}=z, V_{\omega}=v\right)=\left(T_{\omega} \mid Z_{\omega}=z, S_{\omega}=s\right) \text { such that } s=f_{S}(v)
$$

But T_{ω} is deterministic conditioned on S_{ω} and T_{ω}. And, in particular:

$$
\left(T_{\omega} \mid Z_{\omega}=z_{i}, S_{\omega}=s_{j}\right)=\boldsymbol{A}[i, j]=\sum_{t \in \operatorname{supp}(T)} t \cdot \boldsymbol{A}_{t}[i, j]
$$

The ordering of the values that the instrumental variable Z_{ω} takes (i.e. $\left\{z_{1}, z_{2}, z_{3}\right\}$) is arbitrary. Thus, without loss of generality, let $\phi_{t}:[1, \ldots, 3] \rightarrow[1, \ldots, 3]$ be the permutation function such that $P\left(T_{\omega}=t \mid Z_{\omega}=\right.$ $\left.z_{\phi_{t}(1)}\right)<P\left(T_{\omega}=t \mid Z_{\omega}=z_{\phi_{t}(2)}\right)<P\left(T_{\omega}=t \mid Z_{\omega}=z_{\phi_{t}(3)}\right)$. Also the ordering of the values that the Response variable S_{ω} takes (i.e. $\left\{s_{1}, \ldots, s_{7}\right\}$) is also arbitrary. In the same token, let $\psi_{t}:[1, \ldots, 7] \rightarrow[1, \ldots, 7]$ be a permutation function such that $\sum_{i=1}^{3} \boldsymbol{A}\left[i, \psi_{t}(1)\right] \geq \ldots \geq \sum_{i=1}^{3} \boldsymbol{A}\left[i, \psi_{t}(7)\right]$. Let $\widetilde{\boldsymbol{A}}_{t}$ be the matrix generated by the permutated lines of matrix \boldsymbol{A}_{t} according to ϕ_{t} and the permuted columns according to ψ_{t}. Specifically, $\widetilde{\boldsymbol{A}}_{t}[i, j]=\boldsymbol{A}_{t}\left[\phi_{t}(i), \psi_{t}(j)\right] ; i \in\{1,2,3\}$ and $j \in\{1, \ldots, 7\}$. Also we can generate a one-to-one correspondence between support of Z into the set $\{1,2,3\}$ and between support of S_{ω} into the set $\{1, \ldots, 7\}$. Thus, in order to proof the theorem, it suffices to show that there exist functions $\varphi_{t}:\{1, \ldots, 7\} \rightarrow \mathbb{R}$ and $\zeta_{t}:\{1,2,3\} \rightarrow \mathbb{R}$ such that

$$
\widetilde{\boldsymbol{A}}_{t}[i, j]=\mathbf{1}\left[\varphi_{t}(j) \leq \zeta_{t}(i)\right] ; i \in\{1,2,3\} \text { and } j \in\{1, \ldots, 7\}
$$

Now, due to our particular permutation functions ϕ_{t} and ψ_{t}, matrix $\widetilde{\boldsymbol{A}}_{t}$ takes the following composition regardless of the value t takes in $\{1,2,3\}$:

$$
\widetilde{\boldsymbol{A}}_{t}=\left[\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Now let $\widetilde{\boldsymbol{P}}_{Z}(t)$ be the propensity score vector generated by the line permutations of $\boldsymbol{P}_{Z}(t)$ according to permutation function ϕ_{t} and let $\widetilde{\boldsymbol{P}}_{S}$ be the response-types probabilities vector generated by the line permutations of \boldsymbol{P}_{S} according to permutation function ψ_{t}. But $\boldsymbol{P}_{Z}(t)=\boldsymbol{A}_{t} \boldsymbol{P}_{S}$ holds. Thereby $\widetilde{\boldsymbol{P}}_{Z}(t)=\widetilde{\boldsymbol{A}}_{t} \widetilde{\boldsymbol{P}}_{S}$ also holds and we can express the propensity scores in $\widetilde{\boldsymbol{P}}_{Z}(t)$ as:

$$
\begin{equation*}
P\left(T_{\omega}=t \mid Z_{\omega}=z_{\phi_{t}(i)}\right)=\sum_{j=1}^{7} \widetilde{\boldsymbol{A}}_{t}[i, j] \cdot P\left(S_{\omega}=s_{\psi_{t}(j)}\right) \tag{43}
\end{equation*}
$$

Now note that each line if $\widetilde{\boldsymbol{A}}_{t}$ is a sequence of elements 1 followed by elements zero. Upon this fact, we can
express $\widetilde{\boldsymbol{A}}_{t}[i, j]$ as:

$$
\begin{aligned}
\widetilde{\boldsymbol{A}}_{t}[i, j] & =\mathbf{1}\left[\varphi_{t}(j) \leq \zeta_{t}(i)\right] \\
\text { where } \varphi_{t}(j) & =\sum_{j^{\prime}=1}^{7} \mathbf{1}\left[j^{\prime} \leq j\right] P\left(S_{\omega}=s_{\psi_{t}\left(j^{\prime}\right)}\right) \\
\text { and } \zeta_{t}(i) & =P\left(T_{\omega}=t \mid Z_{\omega}=z_{\phi_{t}(i)}\right)
\end{aligned}
$$

Proof of Theorem T-6:

Proof. The TOT parameter as defined in Equation 30 is the ratio between the outcome expectation conditioned on different values of the instrumental variables divided by the difference in propensity scores associated of choices $\tau \in \operatorname{supp}(T)$ that consist of choices induced by the change in instrumental variables. Notationally, let $z_{i}, z_{i^{\prime}} \in \operatorname{supp}(Z)$ and $t \in \tau \subset \operatorname{supp}(T)$. If τ consists of all choices induced by the change in instrumental variables from $z_{i^{\prime}}$ to z_{i}. Therefore it must be the case that:

$$
\begin{equation*}
\boldsymbol{A}[i, j] \neq \boldsymbol{A}\left[i, j^{\prime}\right] \Rightarrow \boldsymbol{A}[i, j] \in \tau \text { and } \boldsymbol{A}\left[i^{\prime}, j\right] \notin \tau \tag{44}
\end{equation*}
$$

In other words, for any $t \in \tau$, it must be the case that:

$$
\begin{equation*}
\boldsymbol{A}_{t}[i, j]-\boldsymbol{A}_{t}\left[i^{\prime}, j\right] \in\{0,1\} \tag{45}
\end{equation*}
$$

Now $\boldsymbol{A}_{t}[i, j]$ only takes value 1 for a single element $t \in \operatorname{supp}(T)$, therefore it is also true that:

$$
\begin{equation*}
\sum_{t \in \tau}\left(\boldsymbol{A}_{t}[i, j]-\boldsymbol{A}_{t}\left[i^{\prime}, j\right]\right) \in\{0,1\} \tag{46}
\end{equation*}
$$

Now by Equation (44) and Equation (46) we have that:

$$
\boldsymbol{A}[i, j] \neq \boldsymbol{A}\left[i, j^{\prime}\right] \Rightarrow \sum_{t \in \tau}\left(\boldsymbol{A}_{t}[i, j]-\boldsymbol{A}_{t}\left[i^{\prime}, j\right]\right)=1
$$

Now the numerator of Equation (30) for $t \in \operatorname{supp}(T)$ and $z_{i}, z_{i^{\prime}} \in \operatorname{supp}(Z)$ can be expressed as:

$$
\begin{align*}
& E\left(Y_{\omega} \mid Z_{\omega}=z_{i}\right)-E\left(Y_{\omega} \mid Z_{\omega}=z_{i^{\prime}}\right)= \\
= & \sum_{j=1}^{N_{S}}\left(E\left(Y_{\omega} \mid Z_{\omega}=z_{i}, S_{\omega}=s_{j}\right)-E\left(Y_{\omega} \mid Z_{\omega}=z_{i^{\prime}}, S_{\omega}=s_{j}\right)\right) P\left(S_{\omega}=s_{j}\right) \\
= & \sum_{j=1}^{N_{S}}\left(E\left(Y_{\omega} \mid Z_{\omega}=z_{i}, S_{\omega}=s_{j}, T_{\omega}=\boldsymbol{A}[i, j]\right)-E\left(Y_{\omega} \mid Z_{\omega}=z_{i^{\prime}}, S_{\omega}=s_{j}, T_{\omega}=\boldsymbol{A}\left[i^{\prime}, j\right]\right)\right) P\left(S_{\omega}=s_{j}\right) \\
= & \sum_{j=1}^{N_{S}}\left(E\left(Y_{\omega} \mid S_{\omega}=s_{j}, T_{\omega}=\boldsymbol{A}[i, j]\right)-E\left(Y_{\omega} \mid S_{\omega}=s_{j}, T_{\omega}=\boldsymbol{A}\left[i^{\prime}, j\right]\right)\right) P\left(S_{\omega}=s_{j}\right) \\
= & \sum_{j=1}^{N_{S}}\left(R A T E_{S_{j}}\left(\boldsymbol{A}[i, j], \boldsymbol{A}\left[i^{\prime}, j\right]\right)\right) P\left(S_{\omega}=s_{j}\right), \tag{47}
\end{align*}
$$

where the first equality comes from the law of iterated expectations. The second comes from the fact that T_{ω} is deterministic conditioned on S_{ω} and Z_{ω}, thus $Y_{\omega} \Perp T_{\omega} \mid\left(S_{\omega}, Z_{\omega}\right)$ in the empirical model. The third equality comes from Lemma L-2. The last equality comes from the definition of RATE. Following the same rationale, let $z_{i}, z_{i^{\prime}} \in \operatorname{supp}(Z)$ and $t, t^{\prime} \in \operatorname{supp}(T)$, then the denominator of Equation (30) can be expressed as:

$$
\begin{align*}
& P\left(T_{\omega}=t \mid Z_{\omega}=z_{i}\right)-P\left(T_{\omega}=t^{\prime} \mid Z_{\omega}=z_{i^{\prime}}\right)= \\
= & \sum_{j=1}^{N_{S}}\left(P\left(T_{\omega}=t \mid Z_{\omega}=z_{i}, S_{\omega}=s_{j}\right)-P\left(T_{\omega}=t^{\prime} \mid Z_{\omega}=z_{i^{\prime}}, S_{\omega}=s_{j}\right)\right) P\left(S_{\omega}=s_{j}\right) \\
= & \sum_{j=1}^{N_{S}}\left(\mathbf{1}[\boldsymbol{A}[i, j]=t]-\mathbf{1}\left[\boldsymbol{A}\left[i^{\prime}, j\right]=t^{\prime}\right]\right) P\left(S_{\omega}=s_{j}\right) \\
= & \sum_{j=1}^{N_{S}}\left(\boldsymbol{A}_{t}[i, j]-\boldsymbol{A}_{t}\left[i^{\prime}, j\right]\right) P\left(S_{\omega}=s_{j}\right) \tag{48}
\end{align*}
$$

Proof of Lemma L-3:

Proof. The independence relation $S_{\omega} \Perp Z_{\omega}$ comes from the fact that $V_{\omega} \Perp Z_{\omega}$ and that S_{ω} is a function of only V_{ω}. Let $t \in \operatorname{supp}(T)$, then $Y(t) \Perp T \mid S$ is a consequence of the independence of error term and the Structural Equations of the general IV model:

$$
\left(\left(V_{\omega}, \epsilon_{\omega}\right) \Perp Z_{\omega}\right) \Rightarrow\left(f_{Y}\left(t, V_{\omega}, \epsilon_{\omega}\right) \Perp g_{T}\left(Z_{\omega}, f_{S}\left(V_{\omega}\right)\right) \mid f_{S}\left(V_{\omega}\right)\right) \Rightarrow\left(Y_{\omega}(t) \Perp T_{\omega} \mid S_{\omega}\right)
$$

Also,

$$
\left(\left(V_{\omega}, \epsilon_{\omega}\right) \Perp Z_{\omega}\right) \Rightarrow\left(\left(f_{Y}\left(t, V_{\omega}, \epsilon_{\omega}\right), f_{S}\left(V_{\omega}\right)\right) \Perp Z_{\omega}\right) \Rightarrow\left(\left(Y_{\omega}(t), S_{\omega}\right) \Perp Z_{\omega}\right)
$$

We now apply the Weak Union Property of conditional independence relations of Dawid (1976) ${ }^{24}$ to obtain $Y_{\omega}(t) \Perp Z_{\omega} \mid S_{\omega}$. But T_{ω} is a linear function of Z_{ω} when conditioned on S_{ω} (see (14)), thus we have that $Y_{\omega}(t) \Perp\left(T_{\omega}, Z_{\omega}\right) \mid S_{\omega}$. Again, by Weak Decomposition we have that $Y_{\omega}(t) \Perp Z_{\omega} \mid\left(S_{\omega}, T_{\omega}\right)$. We according to Representation 11:

$$
\left(Y_{\omega}(t) \Perp Z_{\omega} \mid\left(T_{\omega}, S_{\omega}\right)\right) \Rightarrow\left(\sum_{t \in \operatorname{supp}(T)} Y_{\omega}(t) \cdot \mathbf{1}\left[T_{\omega}=t\right] \Perp Z_{\omega} \mid\left(S_{\omega}, T_{\omega}\right)\right) \Rightarrow\left(Y_{\omega} \Perp Z_{\omega} \mid\left(S_{\omega}, T_{\omega}\right)\right) .
$$

Proof of Theorem T-7:

Proof.

$$
\begin{aligned}
& E\left(Y_{\omega} \mid G_{\omega}=g, Z_{\omega}=z_{j}, T_{\omega}=t\right)= \\
& \quad=\sum_{s_{i} \in \operatorname{supp}(S)} E\left(Y_{\omega} \mid S_{\omega}=s_{i}, G_{\omega}=g, Z_{\omega}=z_{j}, T_{\omega}=t\right) P\left(S_{\omega}=s_{i} \mid G_{\omega}=g, T_{\omega}=t, Z_{\omega}=z_{j}\right) \\
& \quad=\sum_{s_{i} \in \operatorname{supp}(S)} E\left(Y \mid G_{\omega}=g, S_{\omega}=s_{i}\right) P\left(S_{\omega}=s_{i} \mid T_{\omega}=t, Z_{\omega}=z_{j}\right) \\
& \quad=\sum_{s_{i} \in \operatorname{supp}(S)} E\left(Y \mid G_{\omega}=g, S_{\omega}=s_{i}\right) \frac{P\left(T_{\omega}=t \mid S_{\omega}=s_{i}, Z_{\omega}=z_{j}\right) P\left(S_{\omega}=s_{i} \mid Z_{\omega}=z_{j}\right)}{P\left(T_{\omega}=t \mid Z_{\omega}=z_{j}\right)} \\
& \therefore E\left(Y_{\omega} \mid G_{\omega}=g, Z_{\omega}=z_{j}, T_{\omega}=t\right) P\left(T_{\omega}=t \mid Z_{\omega}=z_{j}\right)=\sum_{s \in \operatorname{supp}(S)} A_{t}[j, s] E\left(Y_{\omega} \mid G_{\omega}=g, S_{\omega}=s_{i}\right) P\left(S_{\omega}=s_{i}\right)
\end{aligned}
$$

The first equality comes from the law of iterated expectations. The first term of the second equality comes from $Y_{\omega} \Perp\left(Z_{\omega}, T_{\omega}\right) \mid\left(S_{\omega}, G_{\omega}\right)$ of Lemma L-3 and the second terms comes from $\left(S_{\omega}, G_{\omega}\right)$ and $G_{\omega} \Perp$ $\left(S_{\omega}, Z_{\omega}\right) \mid T_{\omega}$ of Lemma L-3. The second equality comes from Bayes Rule. The third equation comes from $S_{\omega} \Perp Z_{\omega}$ of Lemma L-3, the fact that T_{ω} is deterministic when conditioned on S_{ω} and Z_{ω} and the definition $\boldsymbol{A}_{t}[j, i]=\left(T_{\omega}=t \mid Z=z_{j}, S=s_{i}\right)$.

[^14]The intersection relation is only valid for strictly positive probability distribution.

Proof of Theorem T-8:

Proof. Consider the following notation:

$$
\zeta_{Z}(g, t, z)=E\left(Y_{\omega} \mid G_{\omega}=g, Z_{\omega}=z, T_{\omega}=t\right) P\left(T_{\omega}=t \mid Z_{\omega}=z\right)
$$

and

$$
\zeta_{Z}(g, t)=\left[\zeta_{Z}\left(g, t, z_{1}\right), \zeta_{Z}\left(g, t, z_{2}\right), \zeta_{Z}\left(g, t, z_{3}\right)\right] .
$$

Let the vector of outcome expectations conditioned on G, Z and T be denoted by $\boldsymbol{Q}_{Z}(g)$ and defined as:

$$
\boldsymbol{Q}_{Z}(g)=\left[\zeta_{Z}(g, 1), \zeta_{Z}(g, 2), \zeta_{Z}(g, 3)\right]^{\prime}
$$

Also let the vector of outcome expectations conditioned on $G_{\omega}=g$ and $S_{\omega}=s$ be $\zeta_{S}(g, s)$ and defined as

$$
\zeta_{S}(g, s)=E\left(Y_{\omega} \mid G_{\omega}=g, S_{\omega}=s\right) P\left(S_{\omega}=s\right)
$$

Also let $\boldsymbol{Q}_{S}(g)$ de defined as:

$$
\boldsymbol{Q}_{S}(g)=\left[\zeta_{S}\left(g, s_{1}\right), \ldots, \zeta_{S}\left(g, s_{7}\right)\right]^{\prime}
$$

In this notation, the first equation of T-7 can be expressed by

$$
\boldsymbol{Q}_{Z}(g)=\boldsymbol{A}_{\boldsymbol{S}} \boldsymbol{Q}_{S}(g)
$$

But the rank of $\boldsymbol{A}_{\boldsymbol{S}}$ is equal to 7 for the economically justified response-types. Namely, $\operatorname{rank}\left(\boldsymbol{A}_{\boldsymbol{S}}\right)=7$, and therefore we can write $\boldsymbol{Q}_{S}(g)=\boldsymbol{A}_{\boldsymbol{S}}^{+} \boldsymbol{Q}_{Z}(g)$. Thereby $E\left(Y \mid G_{\omega}=g, S_{\omega}=s\right)$ is identified for all $s \in \operatorname{supp}(S)$. Theorem T-7 states that $E\left(Y_{\omega} \mid T_{\omega}=t, S_{\omega}=s\right)$ is a function of $E\left(Y \mid G_{\omega}=g, S_{\omega}=s\right)$ and the observed probabilities. Therefore also identified.

Web Appendix

B Binary Choice Model with Binary Instrumental Variable

The parsimonious binary choice model with binary instrumental variable consist of the following variables:

1. Instrumental variable $Z_{\omega} \in\{0,1\}$ denotes a voucher assignment for family ω such that $Z_{\omega}=1$ if family ω is a voucher recipient and $Z_{\omega}=0$ if family ω receives no voucher.
2. The relocation decision T_{ω} for family ω such that $T_{\omega}=0$ if family ω does not relocate and $T_{\omega}=1$ if family relocates.
3. Counterfactual relocation decision $T_{\omega}(z)$ stands for the relocation decision that family ω would choose if it had been assigned to voucher $z \in\{0,1\}$.
4. Counterfactual outcomes $\left(Y_{\omega}(0), Y_{\omega}(1)\right)$ denote the potential outcomes when relocation choice T_{ω} is fixed at values 0 and 1 .
5. The observed outcome for family ω is given by $Y_{\omega}=Y_{\omega}(0)\left(1-T_{\omega}\right)+Y_{\omega}(1) T_{\omega}$.
6. The response-type variable S_{ω} that is defined by the unobserved vector of potential relocation decisions that a family ω would choose if voucher assignment were set to zero and one, i.e., $S_{\omega}=\left[T_{\omega}(0), T_{\omega}(1)\right]^{\prime}$.

Table A. 1 describes the four vectors of potential response-types that S_{ω} can take. The model is completed by the standard assumption that the instrumental variable Z_{ω} is independent of counterfactual variables:

$$
\begin{equation*}
\left(Y_{\omega}(0), Y_{\omega}(1), T_{\omega}(0), T_{\omega}(1)\right) \Perp Z_{\omega} . \tag{49}
\end{equation*}
$$

The following equation comes as a direct consequence of Equation (49) and the definition of S_{ω} :

$$
\begin{equation*}
\left(Y_{\omega}(0), Y_{\omega}(1)\right) \Perp Z_{\omega} \mid S_{\omega} . \tag{50}
\end{equation*}
$$

Table A.1: Possible Response-types for the Binary Relocation Choice with Binary Voucher

Voucher Types	Voucher Assignment	Relocation	Response-types			
Countefactuals	Never Takers	Compliers	Always Takers	Defiers		
No Voucher	$Z_{\omega}=0$	$T_{\omega}(0)$	0	0	1	1
Voucher Recipient	$Z_{\omega}=1$	$T_{\omega}(1)$	0	1	1	0

In this notation, the relocation decision T_{ω} can be expressed in terms of response-type S_{ω} as:

$$
\begin{align*}
T_{\omega} & =\left(1-Z_{\omega}\right) T_{\omega}(0)+Z_{\omega} T_{\omega}(0) \tag{51}\\
& =\left[\mathbf{1}\left(Z_{\omega}=0\right), \mathbf{1}\left(Z_{\omega}=1\right)\right] \cdot\left[T_{\omega}(0), T_{\omega}(1)\right]^{\prime} \tag{52}\\
& =\left[\mathbf{1}\left(Z_{\omega}=0\right), \mathbf{1}\left(Z_{\omega}=1\right)\right] \cdot S_{\omega} \tag{53}
\end{align*}
$$

where Equation (51) comes from the definition of $T_{\omega}(z) ; z \in\{0,1\}$, and Equation (53) comes from the definition of S_{ω}. A consequence of Equation (53) is that T_{ω} is deterministic conditioned on Z_{ω} and S_{ω}.

The expected value of observed outcomes conditioned on voucher assignment in this model is given by:

$$
\begin{align*}
E\left(Y_{\omega} \mid Z_{\omega}=1\right) & =E\left(Y_{\omega} \mid Z_{\omega}=1, S_{\omega}=[0,0]^{\prime}\right) P\left(S_{\omega}=[0,0]^{\prime}\right)+E\left(Y_{\omega} \mid Z_{\omega}=1, S_{\omega}=[0,1]^{\prime}\right) P\left(S_{\omega}=[0,1]^{\prime}\right) \\
& +E\left(Y_{\omega} \mid Z_{\omega}=1, S_{\omega}=[1,1]^{\prime}\right) P\left(S_{\omega}=[1,1]^{\prime}\right)+E\left(Y_{\omega} \mid Z_{\omega}=1, S_{\omega}=[1,0]^{\prime}\right) P\left(S_{\omega}=[1,0]^{\prime}\right) \tag{54}\\
& =E\left(Y_{\omega}(0) \mid S_{\omega}=[0,0]^{\prime}\right) P\left(S_{\omega}=[0,0]^{\prime}\right)+E\left(Y_{\omega}(1) \mid S_{\omega}=[0,1]^{\prime}\right) P\left(S_{\omega}=[0,1]^{\prime}\right) \\
& +E\left(Y_{\omega}(1) \mid S_{\omega}=[1,1]^{\prime}\right) P\left(S_{\omega}=[1,1]^{\prime}\right)+E\left(Y_{\omega}(0) \mid S_{\omega}=[1,0]^{\prime}\right) P\left(S_{\omega}=[1,0]^{\prime}\right) \tag{55}
\end{align*}
$$

where Equation (54) comes from the law of iterated expectations. Equation (55) comes the equation for observed outcome $Y_{\omega}=Y_{\omega}(0)\left(1-T_{\omega}\right)+Y_{\omega}(1) T_{\omega}$, the fact that $T_{o m e g a}$ is deterministic conditioned on S_{ω} and Z_{ω} and the independence relation $\left(Y_{\omega}(0), Y_{\omega}(1)\right) \Perp Z_{\omega} \mid S_{\omega}$ of Equations 50 . In the same fashion, we can express $E\left(Y_{\omega} \mid Z_{\omega}=1\right)$ by:

$$
\begin{align*}
E\left(Y_{\omega} \mid Z_{\omega}=0\right) & =E\left(Y_{\omega}(0) \mid S_{\omega}=[0,0]^{\prime}\right) P\left(S_{\omega}=[0,0]^{\prime}\right)+E\left(Y_{\omega}(0) \mid S_{\omega}=[0,1]^{\prime}\right) P\left(S_{\omega}=[0,1]^{\prime}\right) \\
& +E\left(Y_{\omega}(1) \mid S_{\omega}=[1,1]^{\prime}\right) P\left(S_{\omega}=[1,1]^{\prime}\right)+E\left(Y_{\omega}(1) \mid S_{\omega}=[1,0]^{\prime}\right) P\left(S_{\omega}=[1,0]^{\prime}\right) \tag{56}
\end{align*}
$$

The Intention-to-treat effect ITT is defined by $E\left(Y_{\omega} \mid Z_{\omega}=1\right)-E\left(Y_{\omega} \mid Z_{\omega}=0\right)$ and refers to the causal effect of the vouchers Z_{ω} on outcome Y_{ω}. According to Equations (55)-(56), the ITT can
be expressed in terms of response-types as:

$$
\begin{align*}
I T T & =E\left(Y_{\omega} \mid Z_{\omega}=1\right)-E\left(Y_{\omega} \mid Z_{\omega}=0\right) \\
& =E\left(Y_{\omega}(1)-Y_{\omega}(0) \mid S_{\omega}=[0,1]^{\prime}\right) P\left(S_{\omega}=[0,1]^{\prime}\right)+E\left(Y_{\omega}(0)-Y_{\omega}(1) \mid S_{\omega}=[1,0]^{\prime}\right) P\left(S_{\omega}=[1,0]^{\prime}\right) . \tag{57}
\end{align*}
$$

Equation (57) states that the $I T T$ is a mixture between the contradicting effects. By contradicting I mean the causal effect relocating compared to not relocation for the compliers $\left(S_{\omega}=[0,1]^{\prime}\right)$ and the causal effect of not relocatong compared to relocating for the definers.

The probability of relocation conditioned on receiving the voucher is expressed in terms of response-types by:

$$
\begin{align*}
P\left(T_{\omega} \mid Z_{\omega}=1\right) & =E\left(\mathbf{1}\left[T_{\omega}=1\right] \mid Z_{\omega}=1, S_{\omega}=[0,0]^{\prime}\right) P\left(S_{\omega}=[0,0]^{\prime}\right)+E\left(\mathbf{1}\left[T_{\omega}=1\right] \mid Z_{\omega}=1, S_{\omega}=[0,1]^{\prime}\right) P\left(S_{\omega}=[0,1]^{\prime}\right) \\
& +E\left(\mathbf{1}\left[T_{\omega}=1\right] \mid Z_{\omega}=1, S_{\omega}=[1,1]^{\prime}\right) P\left(S_{\omega}=[1,1]^{\prime}\right)+E\left(\mathbf{1}\left[T_{\omega}=1\right] \mid Z_{\omega}=1, S_{\omega}=[1,0]^{\prime}\right) P\left(S_{\omega}=[1,0]^{\prime}\right) \\
& =P\left(S_{\omega}=[0,1]^{\prime}\right)+P\left(S_{\omega}=[1,1]^{\prime}\right), \tag{58}
\end{align*}
$$

where Equation (58) comes from the fact that T_{ω} is deterministic conditioned on S_{ω} and Z_{ω}. Using the same reasoning, the probability of relocation conditioned on not receiving the voucher is expressed in terms of response-types by:

$$
\begin{equation*}
P\left(T_{\omega} \mid Z_{\omega}=0\right)=P\left(S_{\omega}=[1,0]^{\prime}\right)+P\left(S_{\omega}=[1,1]^{\prime}\right) . \tag{59}
\end{equation*}
$$

Thus the difference in propensity of relocation across voucher assignments is given by:

$$
\begin{equation*}
P\left(T_{\omega} \mid Z_{\omega}=1\right)-P\left(T_{\omega} \mid Z_{\omega}=0\right)=P\left(S_{\omega}=[0,1]^{\prime}\right)-P\left(S_{\omega}=[1,0]^{\prime}\right) ; \tag{60}
\end{equation*}
$$

C Additional Information on Neighborhood Poverty

This section described the distribution of neighborhood poverty of MTO participating families by voucher assignment and relocation decision. Figure 5 shows the probability density estimation of baseline neighborhood poverty by voucher assignment. As expected, poverty distributions conditional on voucher assignments are very similar due to the randomized assignment of vouchers.

Figure 6 presents baseline neighborhood poverty for the Experimental group by neighborhood relocation, i.e., moving with voucher, moving without voucher and not moving. Families that

Figure 5: Density Estimation of Baseline Neighborhood Poverty (1990 Census) by Voucher Assignment

This figure presents the density estimation of baseline neighborhood poverty levels by voucher assignment, i.e., Control, Experimental and Section 8 groups. Poverty levels are computed according to the US 1990 Census data as the fraction of households whose income falls below the national poverty threshold for each 1990 census tract. Estimates are based on the normal kernel with optimal normal bandwidth. See columns $2-6$ of Table 6 for inference on the average level of neighborhood poverty by voucher assignment.
did not move had lived in slightly lower poverty level neighborhoods when compared to families that moved. Figure 6 also shows the poverty density of the neighborhood chosen by families that relocated using the Experimental voucher. The poverty levels of relocation neighborhoods are substantially lower than those of baseline neighborhoods as expected.

Figure 7 examines neighborhood poverty of families assigned to the Section 8 voucher. It shows a similar pattern as that observed in Figure 6. The poverty levels of Section 8 relocation neighborhoods are lower than those of baseline neighborhoods. However poverty levels of Section 8 relocation neighborhoods are higher than those faced by the families that relocated using the Experimental voucher in Figure 6.

Figure 6: Density Estimation of Baseline Neighborhood Poverty (1990 Census) of the Experimental Group by Voucher Compliance

This figure presents the density estimation of baseline neighborhood poverty for the Experimental group conditional on relocation choice, i.e., (1) do not relocate, (2) relocate using the voucher and (3) relocate without using the Experimental voucher. See columns $7-11$ of Table 6 for inference on the average level of neighborhood poverty by voucher assignment and compliance. The graph also presents the neighborhood poverty density of the families that use the Experimental voucher after relocation. Estimates are based on the normal kernel with optimal normal bandwidth.

Figure 7: Density Estimation of Baseline Neighborhood Poverty of the Section 8 Group by Voucher Compliance

This figure presents the density estimation of baseline neighborhood poverty for the Section 8 group conditional on relocation choice, i.e., (1) do not relocate, (2) relocate using the voucher and (3) relocate without using the Experimental voucher. See columns 12-16 of Table 6 for inference on the average level of neighborhood poverty by voucher assignment and compliance. The graph also presents the neighborhood poverty density of the families that use the Section 8 voucher after relocation. Estimates are based on the normal kernel with optimal normal bandwidth.

D SARP and the Random Utility Model

The identification analysis of Section 3.1 is the result of the combination of three strategies. The first strategy is to use of MTO vouchers as instrumental variables for neighborhood relocation. The second strategy is o use a causal framework that allows to summarizes the identification problem of neighborhood effects into binary properties of the response matrix. The third one is to rely on economics, i.e. the Strong Axiom of Reveled Preferences (SARP), to reduce the column-dimension of the response matrix and thereby rendering identification results.

A related literature in economics studies the effect of individual rationality on aggregate data. A substantial economic literature uses Random Utility Models (RUM) to examine if observed empirical data on prices and consumed goods is consistent an underlying framework where agents maximize utility representing rational preferences (McFadden, 2005). The term random in RUM refers to unobserved heterogeneity across agents. This literature does not uses SARP to identify causal effects, but rather explore how SARP impacts statistical quantities of observed data. McFadden and Richter (1991) coined the term Axiom of Revealed Stochastic Preference (ARSP) for the collection of inequalities that must hold on aggregate data of prices and consumption when heterogeneous individuals are rational. Blundell et al. $(2003,2008)$ examines the consequences of revealed preferences on the quantiles of Engel curves. They develop a nonparametric estimation of the demand function for consumption goods. Blundell et al. (2014) uses inequality restrictions generated by revealed preferences to investigate the estimation of consumer demand.

A recent paper of Kitamura et al. (2014) implements a nonparametric test that verifies if empirical data comply with the inequalities generated by ARSP. Kitamura et al. (2014) major insight is to form a coarse partition of each budget set W_{i} such that no other budget set, say W_{j}, intersect the interior of the partition subsets associated with W_{i}. This insight allows to transform a continuous utility maximization problem into a discrete problem were the agent selects a consumption bundle that belongs to a finite list of possible choices. They generate a test that explore the choice restrictions generated by SARP. It is useful to clarify Kitamura et al. (2014) approach using a setup that features the MTO experiment. Our goal is to show that the example also generates the same response matrix of T-1.

Let $u_{\omega}: \operatorname{supp}\left(K_{E}\right) \times \operatorname{supp}\left(K_{S}\right) \times \operatorname{supp}\left(K_{X}\right) \rightarrow \mathbb{R}^{+}$represent a non-satiable rational preferences
for agent ω over the consumption bundle consisting of three goods K_{L}, K_{H} and K_{X}. Let K_{X} denotes a divisible good in \mathbb{R}^{+}and K_{L}, K_{H} denote indivisible goods whose support is the natural numbers. Let $K=\left[K_{L}, K_{H}, K_{X}\right]$ to represent a vector of consumption goods associate with the price vector $\boldsymbol{p}=\left[p_{H}, p_{L}, p_{X}\right]>0$, such that $\operatorname{supp}(K)=\mathbb{N} \times \mathbb{N} \times \mathbb{R}^{+}$. Also let the wealth of each agent ω be standardized to 1 . Under this setup, the budget plane of any agent ω only depends on price p and is given by $W(\boldsymbol{p})=\left\{K \in \mathbb{N} \times \mathbb{N} \times \mathbb{R}^{+} ; p K=1\right\}$. The consumption choice for agent ω facing prices p_{ω} is given by:

$$
K_{\omega}\left(\boldsymbol{p}_{\omega}\right)=\underset{k \in W\left(\boldsymbol{p}_{\omega}\right)}{\arg \max } u_{\omega}(k)
$$

The econometrician only observes the random sample of $\left(K_{\omega}\left(\boldsymbol{p}_{\omega}\right), \boldsymbol{p}_{\omega}\right)$.
Now suppose prices can only take three values $\boldsymbol{p}^{C}=[1,1,1], \mathbf{p}^{E}=[0.6,1,1]$ and $\boldsymbol{p}^{S}=$ $[0.6,0.6,1]$. Under discrete goods and non-satiable preferences, the possible consumption bundles are given by: $K_{\omega}\left(\boldsymbol{p}^{C}\right) \in\{[1,0,0],[0,1,0],[0,0,1]\}, K_{\omega}\left(\boldsymbol{p}^{E}\right) \in\{[1,0,0.4],[0,1,0],[0,0,1]\}$, and $K_{\omega}\left(\boldsymbol{p}^{S}\right) \in\{[1,0,0.4],[0,1,0.4],[0,0,1]\}$. We are now able to link this consumer model to the MTO experiment. Good K_{L} indicates the choice of relocating to a low-poverty neighborhood, K_{H} indicates the choice of relocating to a high-poverty neighborhood and $\left[K_{L}, K_{H}\right]=[0,0]$ denotes no relocation. The price values represent MTO voucher assignments. Baseline price \boldsymbol{p}^{C} stands for no voucher. Price \boldsymbol{p}^{E} stands for the experimental voucher, which subsidizes the relocation to lowpoverty neighborhood and price \boldsymbol{p}^{S} stands for Section 8 voucher, which subsidizes the relocation to either low or high-neighborhood relocation.

For each price there are 3 possible consumption bundles. There are also 3 price vector, which totals 27 possible combinations of consumption bundles across price vectors. The same number of possible response-types. We test which of those combinations satisfy SARP, i.e., if the transitive closure of directly revealed preferences is acyclical. The combinations that do not violate SARP are described in Table A.2. There are a total of nine response-type. The two last response-types of Table A. 2 are purged due to Assumption A-3.

Section 3.1 models neighborhood choice using a more natural approach than the one described above. It does not defines relocation decisions as a goods nor assigns prices to neighborhood choices. Instead, the model of Section 3.1 explores the relation of budget sets generated by voucher assignments and relocation choices. This is a simpler approach as no budget set hyperplane intersects. In

Table A.2: Consumption Bundles

Voucher	Prices	Possible Consumption Bundles								
Control	\boldsymbol{p}^{C}	$[0,0,1]$	$[1,0,0]$	$[0,1,0]$	$[0,0,1]$	$[0,0,1]$	$[0,1,0]$	$[0,0,1]$	$[1,0,0]$	$[0,1,0]$
Experimental	\boldsymbol{p}^{E}	$[0,0,1]$	$[1,0, .4]$	$[0,1,0]$	$[1,0, .4]$	$[1,0, .4]$	$[1,0, .4]$	$[0,0,1]$	$[1,0, .4]$	$[1,0,4]$
Section 8	\boldsymbol{p}^{S}	$[0,0,1]$	$[1,0, .4]$	$[0,1,0.4]$	$[0,1, .4]$	$[1,0,4]$	$[0,1, .4]$	$[0,1, .4]$	$[0,1, .4]$	$[1,0, .4]$
Voucher	Z Assignment	s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}	$s 9$
Control	$Z=z_{1}$	1	2	3	1	1	3	1	2	3
Experimental	$Z=z_{2}$	1	2	3	2	2	2	1	2	2
Section 8	$Z=z_{3}$	1	2	3	3	2	3	3	3	2

This tables presents the combinations of possible consumption bundles that survive SARP according to prices $\boldsymbol{p}^{C}, \boldsymbol{p}^{E}$ and \boldsymbol{p}^{S}. The table also maps these bundles into the neighborhood choice and voucher assignments. This generates nine response-types.
other words, symmetric difference of any two budget sets is empty. Budget sets are either identical, disjoint or proper subsets. SARP restrictions are applied directly to choice rules based on the budget sets relations. Kitamura et al. (2014) tests if there is a distribution across potential rational agent types that would generate the observed distribution of prices and consumption goods. They explain that the agent types distribution is commonly non-identified. In the case of MTO, I was able to identify this distribution, that is, the response-types probabilities of T-4.

E Model Specification Tests

This section presents model specification tests for response-types outcome expectations estimated using two methods. The first method does use neighborhood poverty data in the estimation. It refers to the identified parameters described in Section 3.3 of the main paper. Namely, the responsetype counterfactual expectations described below:

$E\left(Y_{\omega}(1) \mid S_{\omega}=s_{1}\right)$	$E\left(Y_{\omega}(2) \mid S_{\omega}=s_{2}\right)$	$E\left(Y_{\omega}(3) \mid S_{\omega}=s_{3}\right)$
$E\left(Y_{\omega}(1) \mid S_{\omega}=s_{7}\right)$	$E\left(Y_{\omega}(2) \mid S_{\omega}=s_{5}\right)$	$E\left(Y_{\omega}(3) \mid S_{\omega}=s_{6}\right)$
$E\left(Y_{\omega}(1) \mid S_{\omega} \in\{4,5\}\right)$	$E\left(Y_{\omega}(2) \mid S_{\omega} \in\{4,6\}\right)$	$E\left(Y_{\omega}(3) \mid S_{\omega} \in\{4,7\}\right)$

The second estimation method uses data on neighborhood poverty as proxy for unobserved neighborhood characteristics. It refers to the assumption stated in Section 3.5 of the main paper.

The model specification test compares the outcome expectations using both methods. If the model assumption that neighborhood poverty is a good proxy for unobserved neighborhood characteristics holds (Section 3.5), then the difference between parameters estimated according to these different methods should not be statistically significant.

I present three tables of inference in this section. Table A. 3 presents inference on the counterfactual parameters associated with no relocation, that is, $E\left(Y_{\omega}(1) \mid S_{\omega}=s_{1}\right), E\left(Y_{\omega}(1) \mid S_{\omega}=s_{7}\right)$ and $E\left(Y_{\omega}(1) \mid S_{\omega} \in\{4,5\}\right)$. Table A. 4 presents inference on the counterfactual parameters associated with the choice of relocating to a low-poverty neighborhood. Namely $E\left(Y_{\omega}(2) \mid S_{\omega}=s_{2}\right)$, $E\left(Y_{\omega}(2) \mid S_{\omega}=s_{5}\right)$ and $E\left(Y_{\omega}(2) \mid S_{\omega} \in\{4,6\}\right)$. Finally, Table A. 5 presents inference on the counterfactual parameters associated with the choice of relocating to a high-poverty neighborhood. Namely $E\left(Y_{\omega}(3) \mid S_{\omega}=s_{3}\right), E\left(Y_{\omega}(3) \mid S_{\omega}=s_{6}\right)$ and $E\left(Y_{\omega}(3) \mid S_{\omega} \in\{4,7\}\right)$. The model specification tests presented here focus on MTO income outcomes interim evaluation.

The MTO outcomes of each table are grouped in blocks separated by horizontal lines. The last line of each block of outcomes examines the average of the participant rank across the outcomes within block. First column states the variable name. Second column indicates if the variable is reversed, i.e., multiplied by -1 . The remaining columns refer to three sections of empirical estimates.

Each section investigates the estimates conditional on the response-types designated in the header of the table. Each block of analysis examines the difference between outcome estimates conditioned on the response-type. The first column presents the outcome estimate that does rely
on the available data on neighborhood characteristics. The second column shows the difference in the outcome expectations of previous column and the one that uses available data on neighborhood poverty. The third column shows double-sided single hypothesis p-value of no difference in outcome expectations. The fourth column presents double-sided multiple hypothesis stepdown p-value associated with joint-hypothesis of no difference in outcome expectations.
Table A.3: Model Specification Tests for No Relocation1 out of 1)
 This table presents model specification tests for counterfactuals expectations conditioned on response-types. MTO Outcomes on this table are grouped in blocks separated by horizontal lines. The last line of each block of outcomes examines the average of the participant rank across the outcomes within block. First column states the variable name. Second column indicates if the variable is reversed, i.e., multiplied by -1. The remaining columns refer to three blocks of counterfactual comparison analysis used as a model specification test. Each block of analysis examines the difference between outcome estimates conditioned on response-types. The first column presents the outcome estimate that does rely on the available data on neighborhood characteristics. The second column shows the difference in the outcome expectations of previous column and the one that uses available data on neighborhood quality. The third column shows double-sided single hypothesis p-value of no difference in outcome expectations. The fourth column presents double-sided multiple hypothesis stepdown p-value associated with joint-hypothesis of no difference in outcome expectations.
Table A.4: Model Specification Tests for Low-poverty Relocation1 out of 1)

[^15]Table A.5: Model Specification Tests for High-poverty Relocation1 out of 1)

This table presents model specification tests for response-type counterfactuals expectations. MTO Outcomes on this table are grouped in blocks separated by horizontal lines. The last line of each block of outcomes examines the average of the participant rank across the outcomes within block. First column states the variable name. Second column indicates if the variable is reversed, i.e., multiplied by -1. The remaining columns refer to three blocks of counterfactual comparison analysis used as a model specification test. Each block of analysis examines the difference between outcome estimates conditioned on response-types. The first column presents the outcome estimate that does rely on the available data on neighborhood characteristics. The second column shows the difference in the outcome expectations of previous column and the one that uses available data on neighborhood quality. The third column shows double-sided single hypothesis p-value of no difference in outcome expectations. The fourth column presents double-sided multiple hypothesis stepdown p-value associated with joint-hypothesis of no difference in outcome expectations.

F Another Approach to Achieve Point-identification

This section is motivated by the work of Altonji et al. (2005) to state identifying assumption for counterfactual outcomes conditioned on response-type.
$\operatorname{RATE} E_{\left\{s_{4}, s_{5}\right\}}(2,1)$ can be identified if we assume that unobserved family characteristics that affect outcomes are similar for families of response-types s_{4} and s_{6}. Under this assumption, the expectation of an outcome conditioned on the same neighborhood choice is the same across these response-types, i.e. $E\left(Y_{\omega} \mid T_{\omega}=2, S_{\omega}=s_{4}\right)=E\left(Y_{\omega} \mid T_{\omega}=2, S_{\omega} \in\left\{s_{4}, s_{6}\right\}\right)$. Thereby term $E\left(Y_{\omega} \mid T_{\omega}=\right.$ $2, S_{\omega} \in\left\{s_{4}, s_{5}\right\}$) of (27) is identified by:
$E\left(Y_{\omega} \mid T_{\omega}=2, S_{\omega} \in\left\{s_{4}, s_{5}\right\}\right)=\frac{E\left(Y_{\omega} \mid T_{\omega}=2, S_{\omega} \in\left\{s_{4}, s_{6}\right\}\right) P\left(S_{\omega}=s_{4}\right)+E\left(Y_{\omega} \mid T_{\omega}=2, S_{\omega}=s_{5}\right) P\left(S_{\omega}=s_{5}\right)}{P\left(S_{\omega}=s_{4}\right)+P\left(S_{\omega}=s_{5}\right)}$.

In the same fashion, $\operatorname{RATE}_{\left\{s_{4}, s_{7}\right\}}(3,1)$ is identified by assuming that unobserved family characteristics that affect outcomes are similar for response-type s_{4} and s_{7}. Under this assumption, we can identify $E\left(Y_{\omega} \mid T_{\omega}=3, S_{\omega} \in\left\{s_{4}, s_{7}\right\}\right)$ of (28) by:

$$
E\left(Y_{\omega} \mid T_{\omega}=1, S_{\omega} \in\left\{s_{4}, s_{7}\right\}\right)=\frac{E\left(Y_{\omega} \mid T_{\omega}=1, S_{\omega} \in\left\{s_{4}, s_{5}\right\}\right) P\left(S_{\omega}=s_{4}\right)+E\left(Y_{\omega} \mid T_{\omega}=1, S=s_{7}\right) P\left(S_{\omega}=s_{7}\right)}{P\left(S_{\omega}=s_{4}\right)+P\left(S_{\omega}=s_{7}\right)} .
$$

These assumptions cannot be tested directly. However Item 3 of T-4 allow us to test if the expectation of pre-program variables X_{ω} conditioned on the response-types s_{4}, s_{6} and s_{4}, s_{7} mentioned above are equal.

Table A. 6 focus on the comparison of pre-intervention variables of response-types s_{4} and s_{5} and of response-type s_{4} and s_{6}. I cannot reject the hypothesis of no difference in means on preintervention variables between the response-types I examine, which is inline with the suggested assumption.

G Extension of the Monotonicity Condition for the Case of MTO

The monotonicity condition of Imbens and Angrist (1994) applies to the choice model in which the agent decides among two treatment options. In the case of MTO, families can decide among three relocation alternatives. A natural approach to examine the identification of neighborhood effects

Table A.6: Pre-program Variables Inference Conditional on Response-types

	Response-type	Diff.	Inference	Diff.	Inference		
Variable Name	Mean $_{4}$	Means	Single	Stepdown	Means	Single	Stepdown
	$s_{6}-s_{4}$	p-value	p-value	$s_{5}-s_{4}$	p-value	p-value	
Family							
Disable Household Member	0.097	0.078	0.706	0.706	0.012	0.974	0.974
No teens (ages 13-17) at baseline	0.304	0.432	0.203	0.395	0.187	0.732	0.883
Household size is 2 or smaller	0.103	0.166	0.414	0.541	0.168	0.682	0.938
Neighborhood							
Baseline Neighborhood Poverty	58.808	-1.409	0.872	0.977	-14.167	0.415	0.774
Victim last 6 months (baseline)	0.311	0.162	0.548	0.946	-0.028	0.960	0.960
Living in neighborhood > 5 yrs.	0.741	-0.200	0.503	0.956	-0.284	0.631	0.965
Chat with neighbor	0.326	0.252	0.330	0.778	0.469	0.415	0.799
Watch for neighbor children	0.439	0.122	0.576	0.942	0.093	0.832	0.957
Unsafe at night (baseline)	0.551	-0.037	0.869	0.869	-0.147	0.737	0.962
Moved due to gangs	0.708	0.100	0.639	0.960	-0.202	0.640	0.943
Schooling							
Has a GED (baseline)	-0.033	0.261	0.290	0.779	0.276	0.502	0.938
Completed high school	0.621	-0.306	0.298	0.641	-0.407	0.438	0.861
Enrolled in school (baseline)	0.197	-0.003	0.984	0.984	-0.196	0.598	0.896
Never married (baseline)	0.486	0.211	0.396	0.792	-0.017	0.972	0.972
Teen pregnancy	0.487	-0.188	0.540	0.721	-0.292	0.538	0.933
Missing GED and H.S. diploma	-0.050	0.120	0.395	0.715	0.087	0.696	0.897
Sociability							
No family in the neigborhood	0.475	0.207	0.424	0.638	0.147	0.785	0.931
Respondent reported no friends	0.350	0.101	0.677	0.677	0.119	0.801	0.801
Welfare/economics							
AFDC/TANF Recepient	0.763	0.031	0.885	0.885	-0.169	0.680	0.824
Car Owner	0.259	-0.099	0.530	0.732	-0.182	0.561	0.811
Adult Employed (baseline)	0.497	-0.286	0.440	0.798	-0.195	0.726	0.726

Notes: This table shows pre-program variables average estimates for MTO pre-program variables conditioned on responsetypes. All estimates and inference are weighted according to the associated weighting index suggested by the MTO intervention and conditional on the site of implementation. All standard deviations are computed using the method of bootstrap.

Table A.7: MTO Response-types Under Monotonicity Restrictions 61

Voucher Assignment	Z	Possible Response-types																
		s_{1}	s_{2}	s_{3}	s_{4}	s_{5}	s_{6}	s_{7}	s_{8}	s_{9}	s_{10}	s_{11}	s_{12}	s_{13}	s_{14}	s_{15}	s_{16}	s_{17}
Control	$Z=z_{1}$	1	1	1	1	1	1	1	1	1	2	2	3	3	3	3	3	3
Experimental	$Z=z_{2}$	1	1	1	2	2	2	3	3	3	2	2	1	1	2	2	3	3
Section 8	$Z=z_{3}$	1	2	3	1	2	3	1	2	3	2	3	2	3	2	3	2	3

in the MTO design is to extend the monotonicity condition of Imbens and Angrist (1994) to the case of an unordered choice model in which the agent decides among three treatments options.

Imbens and Angrist (1994) assume that a change in the instrumental variable induces a change in the treatment choice towards a single direction. For instance, consider a model that randomly assigns house subsidizing vouchers that incentivizes neighborhood relocation to families. Then a family is more likely to relocate if is offered the voucher than otherwise. This rationale supports the deletion of the defiers from the set of possible response-types of the binary-treatment, binaryinstrument model of the introduction.

In the case of MTO, the experimental voucher incentivizes families to relocation to a low poverty neighborhood while the Section 8 voucher incentivizes families to relocate to both low and high poverty neighborhoods. Thus, using the same reasoning of Imbens and Angrist (1994), it is plausible to assume that the family's relocation choice can change only towards low neighborhood relocation as the voucher changes from no voucher to experimental voucher. Also the family's relocation choice can change only towards low or high neighborhoods relocation as the voucher changes from no voucher to Section 8 voucher. Those assumptions can be formally expressed by:

$$
\begin{equation*}
P\left(\mathbf{1}\left[T_{\omega}\left(z_{2}\right)=2\right] \geq \mathbf{1}\left[T_{\omega}\left(z_{1}\right)=2\right]\right)=1, \text { and } P\left(\mathbf{1}\left[T_{\omega}\left(z_{3}\right) \neq 1\right] \geq \mathbf{1}\left[T_{\omega}\left(z_{1}\right) \neq 1\right]\right)=1 \tag{61}
\end{equation*}
$$

The response matrix of T-1 is consistent with the monotonicity restrictions (61). Even though the restrictions (61) are sensible, they are not sufficiently rich to identify the causal effects of neighborhood relocation. The monotonicity restrictions (61) generate the 17 response-types described in Table A.7, which do not render the identification of any causal parameter.

Sobel (2006) also examines the causal interpretation of the Bloom estimator for the MTO intervention under the the monotonicity restrictions (61).

[^0]: *Rodrigo Pinto is a graduate student at the University of Chicago. I thank Stephane Bonhomme, Magne Mogstad, Azeem Shaikh, Melissa Tartari, Thibaut Lamadon and Amanda Agan for helpful comments. I am specially grateful to Professors James Heckman and Steven Durlauf. Many of the ideas described in this paper were motivated by discussions with them. All errors are my own.

[^1]: ${ }^{1}$ A neighborhood was considered low poverty if less than 10% of its households had income below the poverty threshold according to the US 1990 Census. See Section 2 for details.
 ${ }^{2}$ Section 8 is a well-known public housing program created by the Housing Act of 1937 (Title 42 of US Code, subchapter 1437f). It allows low-income families to rent dwellings in the private housing market by subsidizing a fraction of the families' rent. Section 8 is financed by the federal funds of the US Department of Housing and Urban Development (HUD) and is administered locally by the public housing agencies (PHAs). Section 8 benefits approximately 3 million low-income households nationwide. People eligible for the Section 8 voucher were moved ahead in the queue.
 ${ }^{3}$ Examples of this literature are Gennetian et al. (2012); Hanratty et al. (2003); Katz et al. (2001, 2003); Kling et al. (2007, 2005); Ladd and Ludwig (2003); Leventhal and Brooks-Gunn (2003); Ludwig et al. (2005, 2001).
 ${ }^{4}$ Under the weak assumption of no average effect of being offered the MTO voucher on those who do not use the voucher.

[^2]: ${ }^{5}$ Clampet-Lundquist and Massey (2008) state that:
 "... compliance with the terms of the program was highly selective... a variable measuring assignment to the treatment group (the ITT estimate) or the use of the non-experimental TOT estimate can successfully measure the effects of the policy initiative, but is not well suited to capturing neighborhood effects."
 ${ }^{6}$ Counterfactual outcomes are defined as potential outcomes generated by the causal operation of fixing the neighborhood choice at some value among the possible alternative (see Heckman and Pinto (2014b) for a discussion on causality). Each neighborhood choice correspond to a relocation decision. I use the terms neighborhood effects or relocation effects interchangeably.

[^3]: ${ }^{7}$ Different concepts of the response-type variable have been used in the literature. The concept originated in Robins and Greenland (1992). Frangakis and Rubin (2002) coined the term "principal stratification," Balke and Pearl (1994) used "response variable" while Heckerman and Shachter (1995) used "mapping variable." Heckman and Pinto (2014b,c) used the term strata variable for S_{ω}.

[^4]: ${ }^{8}$ See Appendix B for proofs of these claims.

[^5]: ${ }^{9}$ The initial sample consist of 4,608 families, but it was restricted to 4,248 families in order to assure that at least four years had passed for all of the families surveyed by the interim study.
 ${ }^{10}$ The poverty levels were computed as the ratio of the number of poor residents calculated as the sum of the 1990 US Census variables P1170013-P1170024 (which account for 12 age groups) divided by the total number of residents calculated as the sum of the 1990 US Census variables P1170001- P1170012 and P1170013-P1170024.

[^6]: 11 The subsidy amounts were calculated based on the Applicable Payment Standard (APS) criteria set by HUD. The rental subsidy differed depending on the number of bedrooms in the dwelling and family size. The eligible units comprised all of the houses and apartments available for rent that complied with the APS criteria. The landlords of an eligible dwelling could not discriminate against a voucher recipient who met the same requirements as a renter without a voucher. The lease was renewed automatically unless the owner (or the voucher recipient) stated otherwise in a written notice.

 12 See Gennetian et al. (2012); Orr et al. (2003) for detailed descriptions of the intervention and the available data.

[^7]: ${ }^{13}$ This classification refers to the variable " m -movepatt1" of the MTO data documentation for the interim evaluation.

[^8]: ${ }^{14}$ Pinto (2014) models the relocation classification as an unobserved categorical variable and estimates the probability of relocation alternatives for the families that relocate without using vouchers.

[^9]: ${ }^{15}$ By structural I mean that the equations that have the autonomy property of Frisch (1938), i.e., a stable mechanism that is represented by a deterministic function that remains invariant under the external manipulation of its arguments.

[^10]: ${ }^{16}$ Element-wise multiplication.
 ${ }^{17}$ A $n \times m$ matrix \boldsymbol{C}^{+}is the Moore-Penrose inverse of a matrix \boldsymbol{C} if:

 $$
 \begin{aligned}
 \boldsymbol{C C ^ { + }} \boldsymbol{C} & =\boldsymbol{C} \\
 \boldsymbol{C}^{+} \boldsymbol{C} \boldsymbol{C}^{+} & =\boldsymbol{C}^{+} \\
 \left(\boldsymbol{C C ^ { + }}\right)^{\prime} & =\boldsymbol{C C ^ { + }} \\
 \left(\boldsymbol{C}^{+} \boldsymbol{C}\right)^{\prime} & =\boldsymbol{C}^{+} \boldsymbol{C}
 \end{aligned}
 $$

[^11]: ${ }^{18}$ The experimental group's voucher induces the relocation to a low poverty neighborhood. Thus, the denominator of Equation (30) stands for the difference in the fraction of people who relocate to low poverty neighborhoods between the experimental and the control groups. This difference accounts for two types of families that are not assessed by the experimental group's compliance rate: (1) the control families that relocate to low poverty neighborhoods without a voucher, and (2) the few experimental families that relocate to low poverty neighborhoods without using the voucher.

[^12]: ${ }^{19}$ See Heckman and Pinto (2014b) for a discussion of this model and its relationship to more standard approaches in economics.

[^13]: ${ }^{20}$ I follow a parsimonious criteria to select the site indicators as conditioning variables. This selection allows for nonparametric conditioning and avoids potential model misspecification arising from imposing linearity assumptions. In Pinto (2014), I examine the question of covariate selection in greater detail. I use a within-site Bayesian Model Averaging following the methods suggested in Hansen (2007, 2008).
 ${ }^{21}$ Estimates are conditioned on site and weighted according to the weighting index recommended by the MTO interim evaluation.
 ${ }^{22}$ The p-values are computed using the Bootstrap method (Efron, 1981; Romano, 1989) and the multiple hypothesis inference uses the stepdown algorithm of Romano and Wolf (2005).

[^14]: ${ }^{24}$ The Graphoid axioms are a set of conditional independence relations first presented by Dawid (1976):
 Symmetry: $X \Perp Y|Z \Rightarrow Y \Perp X| Z$.
 Decomposition: $X \Perp(W, Y)|Z \Rightarrow X \Perp Y| Z$.
 Weak Union: $X \Perp(W, Y)|Z \Rightarrow X \Perp W|(Y, Z)$.
 Contraction: $X \Perp Y \mid Z$ and $X \Perp W|(Y, Z) \Rightarrow X \Perp(W, Y)| Z$.
 Intersection: $X \Perp W \mid(Y, Z)$ and $X \Perp Y|(W, Z) \Rightarrow X \Perp(W, Y)| Z$.
 Redundancy: $X \Perp Y \mid X$.

[^15]: This table presents model specification tests for counterfactuals expectations conditional on response-types. MTO Outcomes on this table are grouped in blocks separated by horizontal lines. The last line of each block of outcomes examines the average of the participant rank across the outcomes within block. First column states the variable name. Second column indicates if the variable is reversed, i.e., multiplied by -1 . The remaining columns refer to three blocks of counterfactual comparison analysis used as a model specification test. Each block of analysis examines the difference between outcome estimates conditioned on response-types. The first column presents the outcome estimate that does rely on the available data on neighborhood characteristics. The second column shows the difference in the outcome expectations of previous column and the one that uses available data on neighborhood quality. The third column shows double-sided single hypothesis p-value of no difference in outcome expectations. The fourth column presents double-sided multiple hypothesis stepdown p-value associated with joint-hypothesis of no difference in outcome expectations.

