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Abstract

I develop a theory of “interspection” for finite extensive-form games of perfect recall. This
theory addresses the question of how sufficiently sophisticated players will behave in games if
suboptimal actions are interpreted by other players as evidence of a player’s lower sophistication
level, rather than inconsequential one-time trembling mistakes.

I show that interspection theory has several attractive features. In particular, under in-
terspection theory, normal-form analysis of games is sufficient: extensive-form games can be
equivalently analyzed in the corresponding normal forms. Also, under interspection theory, any
player’s behavior is admissible: players do not select weakly dominated strategies.

I introduce the notion of interspected rationalizability and provide an axiomatic characteriza-
tion of environments to which it applies. I also introduce the notion of interspected equilibrium,
prove its existence, and discuss its properties.
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If you can keep your head when all about you
Are losing theirs and blaming it on you,
If you can trust yourself when all men doubt you,
But make allowance for their doubting too.

Rudyard Kipling

1 Introduction

This paper studies general finite extensive-form games of perfect recall. I develop a theory to address
the following question:

Which strategies will be chosen by sufficiently intelligent players if suboptimal actions
are interpreted by other players as evidence of a player’s lower sophistication level, rather
than inconsequential one-time trembling mistakes?

The first part of the question: “which strategies will be chosen by sufficiently intelligent players”
is a standard question that almost any theory of games aims to answer. However, a theory of games
needs to describe the behavior of players both along the predicted path and in the case of observed
deviations. To do so, a theory of games should also specify how players interpret possible deviations.

One way to interpret deviations is to attribute them to one-time inconsequential trembling-hand
mistakes, following Selten (1975). In such a case, a deviation from the predicted path would be
commonly perceived by other players as bearing no signal about the characteristics of the deviator.

The current paper considers an alternative way of treating deviations: the players think that
trembling mistakes are impossible. In the absence of trembling-hand mistakes, suboptimal devia-
tions must then signal deviators’ lack of sophistication (cf. Reny (1993)).

The emphasis of this paper is on “interspection” in games. The word “introspection” is defined
in the dictionary as “the examination or observation of one’s own mental and emotional processes.”
By analogy, the word “interspection” is understood here as “the examination or observation of other
people’s mental and emotional processes.” Specifically, in a game, a player “interspects” when he
thinks about what his opponents play and why, what they think about what their opponents play
and why, what they think their opponents think about the thought processes of their opponents,
and so on.

To model interspection, I introduce the concept of interspecting type. Each player has some inter-
specting type t “ pk;σ; Ωk;P q. Here k ě 0 denotes the player’s finite interspection level ; σ is a pure
strategy the player intends to play; Ωk is the player’s subjective state-space, called the interspection
state-space; and P i is the player’s subjective probability assessment on Ωki

i . The state-space Ωki
i

encodes the combinations of the player’s opponents’ strategy profiles and their interspection levels
for all interspection levels lower than k. A player with interspection level 0 is irrational and can
play any strategy. If k ą 1, the strategy σ intended by the player must be a best response to his
assessment P . A player with interspection level 1 forms an assessment on his opponents’ strategy
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profiles, but is incapable of interspecting their behavior. I.e., a level-1 interspecting player may form
any full-support subjective probability assessment on his opponents’ strategy profiles. A player with
interspection level 2 forms a full-support assessment on his opponents’ strategy profiles, distinguish-
ing strategies played by opponents with interspection level 0 (irrational), and interspection level 1

(level-1 interspecting). And so on.
A player is rational if his intended strategy is a best response to his subjective probability

assessment. Departing from the classical Bayesian model, I use the framework of full-support lexi-
cographic probability systems (LPS) developed by Blume et al. (1991a). A cautiously rational player
then is a player who plays a best-response strategy to some LPS with full support on his subjective
state-space.

The model of cautious rationality has two attractive features. First, for the theory developed
here, cautious rationality ensures the equivalence of normal-form and extensive-form analyses. I.e.,
with certain conditions on players’ subjective state-spaces, a normal-form strategy that is initially
optimal against a cautious assessment will be sequentially optimal against the Bayesian updates
of the same assessment in the extensive-form game. Second, cautious rationality guarantees ad-
missibility of selected strategies. I.e., a cautiously rational player never plays weakly dominated
strategies.

Finally, I put a restriction on how severely players, upon seeing a deviation, can downgrade the
deviator’s perceived interspection level. Informally, a player respects his opponents if he assesses
that it is infinitely more likely that they have higher interspection levels rather than lower ones. I
assume that it is common knowledge among the players that they respect each other (c.f. Battigalli
(1996), Battigalli and Siniscalchi (2002)).

1.1 Main results

The main results of the paper can be divided into tree parts.
First, I show two equivalence results. The first equivalence result states that in interspection

theory, extensive-form games can be completely analyzed using their normal forms only. I.e., for a
cautiously rational player, with certain conditions on his subjective state-space, a strategy that is
optimal initially is optimal sequentially. The second equivalence result translates the formal notion
of Respect, expressed in terms of assessments on interspection state-spaces, into the language of
assessments on strategy profiles. Thus, in interspection theory, instead of analyzing the epistemic
model, one can work directly with primitives of the game.

Second, I give an explicit construction of interspected rationalizability. I provide an axiomatic
characterization of environments in which the players can be expected to play precisely interspected
rationalizable strategies. For two-player games interspected rationalizability coincides with iterative
admissibility (elimination of weakly dominated strategies in rounds). However, for general multi-
player games these two concepts are different. For perfect information games without chance nodes
and without relevant ties, the unique interspected rationalizable outcome is the unique backward
induction outcome.
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Figure 1: Example

Third, I introduce the concept of interspected equilibrium as a refinement of interspected rational-
izability. For general finite games, interspected equilibria always exist and satisfy invariance, (weak)
sequential rationality, and admissibility. For two-player games, interspected equilibria also satisfy
a certain forward induction property: an interspected equilibrium of the full game corresponds to
an interspected equilibrium of the reduced game after a one-round elimination of all never-best re-
sponse strategies of one of the players. For multi-player games, interspected equilibria only satisfy a
weaker version of forward induction: an interspected equilibrium of the full game corresponds to an
interspected equilibrium of the reduced game after elimination of all interspected non-rationalizable
strategies of all of the players. The path of interspected equilibrium may be not supportable in
a subgame perfect equilibrium even in perfect information games. Finally, interspected equilibria
do not always satisfy on-the-path backward induction. I.e., an interspected equilibrium does not
necessary induce an interspected equilibrium of a subgame reachable with positive probability under
the equilibrium play.

1.2 Example

To illustrate informally the ideas behind interspection theory, consider the game from Myerson
(1997), p. 192. The extensive-form game and its normal form are given in Figure 1a and Figure 1b.

The unique subgame perfect equilibrium (SPNE) of this game is prus, rDs, rys, rY sq. This out-
come may be interpreted as a predicted outcome under common knowledge of rationality, with
deviations being attributed to inconsequential one-time trembling mistakes.

Let us now analyze this game from the perspective of interspection theory.
If the players are level-0 interspecting, i.e., irrational, they can play any strategy: Player 1 can

play tu, dx, dyu and Player 2 can play tU,DX,DY u.1

If the players are level-1 interspecting, they play best-response strategies to some full support
LPS assessments on the sets of strategies of their opponents. In this example, this is equivalent
to the play of best-response strategies to some full-support probability measures. I.e., cautious
level-1 interspecting players should not play weakly dominated strategies. In particular, a level-1

1Each player is assumed to play only pure strategies. A mixed strategy is understood as a pure strategy to commit
to a randomizing device. Allowing for mixed strategies would not not change the predictions. C.f. Aumann (1987).
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interspecting Player 1 would never play strategy rdys. Similarly, a level-1 interspecting Player 2

would never play strategy rDXs. Thus, in this game, level-1 interspecting players may only play
strategies tu, dxu and tU,DY u.

Suppose the players are level-2 interspecting. Then, they can calculate all possible plays of
1- and level-0 interspecting opponents. If the players respect their opponents, they assess that it is
infinitely more likely that their opponents have interspection level 1, rather than 0. In particular, a
level-2 interspecting Player 1 who respects Player 2 will play a best response to some full-support
probability measure on tU,DY u. Similarly, a level-2 interspecting Player 2 who respects Player 1

will play a best response to a full-support probability measure on tu, dxu. Therefore, in this game,
players who have at least two levels of interspection and who respect their opponents, may only
play strategies tuu and tUu.

Note that the prediction tuu ˆ tUu generated by interspection theory prescribes action rU s to
Player 2 at the node h2. This is different from the SPNE prescription rDs. The reason is that
under these two theories, Player 2 is supposed to think differently if he observes a deviation rds
from Player 1. Specifically, under the theory of subgame perfect equilibrium, Player 2 thinks:

It is commonly known at the beginning of the game that we are supposed to play
the equilibrium prus, rDs, rys, rY sq. However, Player 1 deviated. Since I know that
there is common knowledge of the equilibrium and of rationality, I think that Player 1

made a trembling mistake. Thus, I believe that he should know the continuation of the
equilibrium and should believe in that I will conform to it. Since I think he is rational
and would also find it optimal to conform, I expect him to play ruys, which makes it
optimal for me to play rDs.

On the contrary, under interspection theory, Player 2 thinks:

Action rus is inconsistent with Player 1 having at least 2 interspection levels and respect-
ing me. Since he did not make a trembling mistake and since he always respects me,
I conclude that he is either irrational (level-0), or level-1 interspecting. Since I respect
Player 1, I think it is infinitely more likely that he is level-1 interspecting rather than
irrational. Therefore, I expect him to play rdxs. Against such belief I find it optimal to
play rU s.

The thought process behind Player 2’s reaction under interspection theory corresponds to the
logic of forward induction. Myerson (1997) identifies one more outcome of this game corresponding
to the forward induction logic: tdxuˆtUu. This outcome is eliminated in interspection theory since
this outcome is inconsistent with Player 1 being cautious. Indeed, the play of rus gives the payoff
2 to Player 1 for sure. The play of rDs is not certain. Under interspection theory, Player 1 expects
that with probability 1 Player 2 will react to rU s, giving the payoff 2 Player 1. But the second most
likely reaction is rDY s, which is strictly worse for Player 1. Thus, Player 1 would prefer to get the
payoff 2 for sure, rather than to pass the turn to Player 2. I.e., he would rather play rus.
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1.3 Related literature

Bernheim (1984) and Pearce (1984) were among the first to study rationalizable behavior in games.
Specifically, Pearce (1984) proposed rationalizability concepts for both normal-form and extensive-
form games. Battigalli (1996) showed that the logic of Pearce (1984)’s extensive-form rationalizabil-
ity (EFR) can be expressed by the so-called Best Rationalization Principle: “a player should always
believe that her opponents are implementing one of the ‘most rational’ (or ‘least irrational’) strategy
profiles which are consistent with her information.” Subsequently, Battigalli and Siniscalchi (2002),
using the epistemic model of Battigalli and Siniscalchi (1999), provided a further characterization
of EFR in terms of common strong belief in expected utility maximization. The ideas behind inter-
spection theory and especially behind interspected rationalizability are closely related to the ideas
expressed in that sequence of papers. However, interspection theory is different in the following
aspects: First, EFR is formulated for usual-type rational players, while interspected rationaliz-
ability is formulated for cautiously rational players. This fact ensures equivalence of normal-form
and extensive-form analysis under interspection theory. Second, in the model of Battigalli and
Siniscalchi (1999), subjective assessments are modeled as lexicographic conditional probability sys-
tems (LCPSs) distributed on epistemic type-spaces, while under interspection theory, subjective
assessments are lexicographic probability systems (LPSs) distributed on interspection state-spaces.
This makes the model of interspection theory much more tractable: in finite games, players form as-
sessments only on finite state-spaces. Third, the framework of interspection theory is also convenient
for formalizing the equilibrium concept as well as the rationalizability concept.

Cautious rationality is modeled in interspection theory with the use of full-support LPSs of
Blume et al. (1991a). In the companion paper, Blume et al. (1991b) showed that such classical
equilibrium concepts as perfect and proper equilibrium can be equivalently characterized as equilib-
ria played by cautiously rational players. Another application of full-support LPSs is Brandenburger
et al. (2008), which provides epistemic conditions under which players will play iteratively admissible
strategies.

An Interspected equilibrium is a special case of Reny (1992)’s weak sequential equilibrium. In a
weak sequential equilibrium, players interpret a deviation as a signal that the deviator is not aware
of the equilibrium, similar to the case of interspected equilibrium. Even more closely, the concept
of interspected equilibrium is related to the concept of Reny (1992)’s explicable equilibrium. The
main difference is that in an explicable equilibrium, upon seeing a deviation, players attribute to
the deviator strategies that are still logically possible and can be played in equilibria of the highest
order of explicability. In an interspected equilibrium, the behavior of the deviators is assumed to
be of the highest order of rationalizability, but does not have to correspond to any equilibrium. An-
other difference is that unlike explicable equilibria, interspected equilibria are defined for cautiously
rational players directly in the normal form of a game, rather than in the extensive form. This fact
makes the properties of interspected equilibria easier to study.

The concept of interspected equilibrium introduced here satisfies a certain forward induction
property. The idea of forward induction was first introduced by Kohlberg and Mertens (1986),
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and later by Van Damme (1989). Besides Battigalli and Siniscalchi (2002) mentioned above, other
papers have also studied possible ways to formalize the logic of forward induction. Specifically,
see Govindan and Wilson (2009) and, for the discussion of a forward induction property of proper
equilibrium, Blume et al. (1991b).

Finally, the idea that players may play strategies corresponding to finite levels of interspection
is similar to level-k thinking introduced by Stahl and Wilson (1994), Stahl and Wilson (1995), and
Nagel (1994). Thus, interspection theory may shed some additional light on their ideas.

2 Basic Concepts

In this section I review some basic concepts used in interspection theory.

2.1 Terminology and notation

Normal-form game. The definition of N -player normal-form game G is standard. The notation is
as follows:

• the players are Player 1, 2,..., N ;

• σi and µi are pure and randomized strategies of Player i;

• Si is the set of all pure strategies of Player i;

• uipσ1, σ2, ..., σN q is the payoff to Player i from the play of pure strategy profile pσ1, σ2, ..., σN q;
correspondingly, uipµ1, µ2, ..., µN q is the expected payoff to Player i from the play of random-
ized strategy profile pµ1, µ2, ..., µN q.

Extensive-form game of perfect recall. The definition of extensive-form game of perfect recall Γ

is standard as well (c.f. Kuhn (1953)). The notation is the same as in Kreps and Wilson (1982).
Normal form corresponding to an extensive-form game. For each N -player extensive-form game

of perfect recall Γ, the corresponding normal-form game GpΓq is defined as an N -player game
in norm form. Normal-form strategies are strategies that prescribe actions to the player only in
strategy-relevant (logically reachable) information sets.2 The payoffs in the normal-form game GpΓq
for a given strategy profile correspond to the terminal payoffs in Γ, possibly after taking objective
expectation operator if Γ has chance nodes. This version of normal form is referred to as reduced
normal form in Fudenberg and Tirole (2000). However, it is different from Kohlberg and Mertens
(1986)’s reduced normal form.

2Following Kuhn (1953), an information node h is relevant to Player i’s strategy σi if there is a strategy profile
σ´i

P S´i for Player i’s opponents, such that h is reached with positive probability under the play of pσi;σ´i
q

9



2.2 Cautious (admissible) rationality

A key concept in interspection theory is the notion of cautious (admissible) rationality. This notion
was formally developed by Blume et al. (1991a, subsequently BBD1) with the use of full support lex-
icographic probability systems (LPSs). I start by defining cautious rationality using the framework
of BBD1, which is then adapted to the setting of games.

Suppose a decision maker faces an exhaustive finite set of states Ω and a set of pure consequences
C. Let P denote the set of simple objective probability distributions on C. The decision maker has
(weak) preferences ľ over acts, which are maps from Ω into P. In the terminology of Anscombe
and Aumann (1963), acts are horse lotteries over states, that in turn contain roulette lotteries over
pure consequences. The ωth coordinate of act x is denoted as xω. Nonempty subsets of Ω are
termed events. For any event S Ď Ω, xS denotes the tuple pxωqωPS . Also, x´S denotes xΩzS . A
constant act x maps each state into the same roulette lottery over pure consequences: xω “ xω1 for
all ω, ω1 P Ω.

Consider the following axioms (the numbering as in BBD1):

Axiom CR 1 (Order). ľ is a complete and transitive binary relation on PΩ.

Axiom CR 2 (Objective Independence). For all x, y, z P PΩ and 0 ă α ď 1, if x ą (respectively
„) y, then αx` p1´ αqz ą (respectively „) αy ` p1´ αqz.

Axiom CR 3 (Nontriviality). There are x, y P PΩ such that x ą y.

Definition (Conditional Preferences). Conditional preferences ľS on the event S Ď Ω are deter-
mined as follows:

xS ľS yS ðñ

´

Dz P PΩzS , pxS , z´Sq ľ pyS , z´Sq
¯

For one state event tωu, conditional preferences will be denoted as ľω.

Axiom CR 41 (Conditional Archimedian Property). For each ω P Ω, if x ąω y ąω z, then there
exist 0 ă α ă β ă 1 such that βx` p1´ βqz ąω y ąω αx` p1´ αqz.

Axiom CR 51 (State Independence). For all states ω, ω1 P Ω and for any two constant acts
x, y P PΩ, x ąω y if and only if x ąω1 y.

Cautious preferences over acts are defined as follows:

Definition (Cautious Preferences). Preferences over acts PΩ, which satisfy BBD Axioms CR 1,2,3,41,
and 51, are called cautious preferences.

As usual, a decision maker, who choses an act optimal according to his preferences, is called
rational.

Definition (Cautious Rationality). A rational decision maker with cautious preferences is called
cautiously rational.
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A lexicographic probability system (LPS) is a K-tuple ρ “ pλ1, ..., λKq, for some natural K, of
nonnegative nonzero measures on Ω. An LPS ρ has full support if Ω is covered by the supports of
the measures from ρ:

Ω “
K
ď

k“1

supppλkq

The following is a slightly restated result from BBD1, which provides a lexicographic represen-
tation of cautious preferences:

(BBD1) Corollary 3.1. Preferences ľ over acts in PΩ are cautious preferences if and only if they
can be represented by some affine function u : P Ñ R and some LPS ρ “ pλ1, ..., λKq on Ω. I.e.,
for all acts x, y P PΩ:

x ľ y ðñ
´

ÿ

ωPΩ

λkpωqupxωq
¯K

k“1
ěL

´

ÿ

ωPΩ

λkpωqupyωq
¯K

k“1

where ěL is the standard lexicographic order. Furthermore, u is unique up to positive affine trans-
formations. There is minimal K ď |Ω|. Among LPSs of minimal length K representing ľ, each λk
is unique up to linear combinations of λ1,..., λk that assign positive weight to λk. Finally, for each
representation ρ and for each ω there is k such that λkpωq ą 0.

Now, define the concept of subjective probability assessment. Take a cautiously rational decision
maker with preferences ľ over acts in PΩ. Fix any lexicographic representation pu, ρq of ľ. For
any act x P PΩ define the imputed act ximp P RΩ as ximp “ tupxωquωPΩ. LPS ρ then defines the
preferences of the decision maker over imputed acts. These preferences then may be extended to the
whole RΩ. Call these preferences imputed preferences ľimp of the decision maker on RΩ determined
by representation pu, ρq. Remarkably, imputed preferences do not depend on the particular lexico-
graphic representation of ľ.3 Thus, for any cautiously rational decision maker, the corresponding
imputed preferences are defined uniquely. Following the standard path in Bayesian decision theory,
I identify the imputed preferences with the subjective probability assessment:

Definition (Subjective Probability Assessment). For a cautiously rational decision maker with
preferences ľ over acts PΩ subjective probability assessment P rľs on Ω is defined as the imputed
preference relation ľimp on RΩ.

In the context of games, lexicographic subjective probability assessments on players’ strategy
profiles are closely related to test sequences used in the original definition of Selten (1975)’s perfect
and Myerson (1978)’s proper equilibrium. Blume et al. (1991b, subsequently BBD2) provides a
discussion of this issue. See also Appendix A.2 for additional details.

3See Appendix A.1 for the details.
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2.3 Infinitely more likely events

I now define what it means for a cautiously rational decision maker to think that one event is
infinitely more likely than another.4

Consider any cautiously rational decision maker with a finite state-space Ω and cautious pref-
erences ľ over acts PΩ. Fix any lexicographic representation ρ “ pλ1, ..., λKq of the subjective
probability assessment P rľs. For any nonempty event S Ď Ω, define ρS as the beginning of ρ

which covers S. I.e., ρS “ pλ1, ..., λtq, with t “ min
 

n P N : S Ď
t
Ť

i“1
supptλiu

(

. Define the relation

of “being infinitely more likely” as follows:

Definition (Infinitely More Likely). Given any cautious preferences ľ over acts PΩ and any two
nonempty disjoint events A and B, event A is infinitely more likely than B, symbolically A "P rľs B,
if there exists some lexicographic representation ρ of P rľs such that:

supptρAu XB “ H

In other words, for a given representation ρ, the event A is infinitely more likely than B, if the
states in B start getting covered by ρ only after A is for the first time fully covered. It turns out
that the relation "P rľs does not depend upon a particular representation of P rľs. Thus, "P rľs is
well defined. Also, "P rľs is an incomplete strict order on the set of nonempty events in Ω.

2.4 Complete Strategy Description Assumption (CSDA)

The strategies in a game must completely capture the the strategic situation. In particular, I require
that for each player the following Complete Strategy Description Assumption (CSDA) holds:

Definition (Complete Strategy Description Assumption). In an N -player extensive-form game of
perfect recall Γ Complete Strategy Description Assumption holds for Player i if:

1. Player i is a decision maker who perceives his acts as subjective lotteries over simple objective
lotteries over pure consequences;

2. Player i has in mind a finite subjective state-space Ωi;

3. each state ωi P Ωi is labeled with a strategy profile of his opponents σ´i P S´i;

4. for each strategy profile of his opponents σ´i P S´i, there is at least one state ωi P Ωi labeled
with σ´i;

5. each Player i’s strategy σi P S´i, considered as an act, induces from the point of view of
Player i conditional on any state ωi P Ωi with label σ´i precisely the objective lottery as
specified in the rules of Γ for the play of pσi;σ´iq.

4The notion of “infinitely more likely” considered here is different from the one discussed in BBD1, p. 69. However,
the current version of “infinitely more likely” also admits a representation in terms of the original preferences ľ. See
Appendix A.3 for a more detailed exposition.
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CSDA restricts how a player in a game may assess uncertainty. First, it states that a player must
distinguish in his state-space between situations, in which his opponents play different strategies.
Second, in his state-space he must consider all of the possible strategy profiles for his opponents.
Third, from his subjective point of view, his play of strategy σi together with the play of his
opponents σ´i completely defines the resulting objective lottery.

CSDA in not an innocuous assumption. First, it assumes that each player is a BBD-type
decision maker. I.e., the player’s perception of his acts under uncertainty can be represented as
a subjective lottery over simple objective lotteries over pure consequences. Second, under CSDA,
the player views his own trembling mistakes as impossible. Third, if a game has objective chance
nodes, under CSDA, the player does not distinguish states with different chance-node realizations.
Instead, the player combines these realizations into states corresponding to his opponents’ strategy
profiles. This last requirement may sound overly restrictive. However, this requirement already
seems to be implicitly present in the definition of chance nodes as objective lotteries with commonly
known probability distributions independent of players’ actions.

One implication of CSDA is that for a player, his subjective probability assessment on potentially
rich state-space Ωi may be equivalently represented as a subjective probability assessment directly
on the set of his opponent’s strategy profiles. I.e., there is a a subjective probability assessment on
his opponent’s strategy profiles, which induces the same preferences over his strategies. To obtain
this equivalent assessment, one simply needs to merge subjective probabilities from the original
assessment for states with the same label. This representation is standard in Bayesian game theory.

2.5 Interspecting types

Under interspection theory, each player has an interspecting type. For Player i, his interspecting
type ti is a tetrad ti “ pki;σ

i; Ωki
i ;P iq. Here ki ě 0 is his interspection level (similar to level-k

thinking); σi is the pure strategy he intends to play; Ωki
i is his subjective state-space, called the

interspection state-space; and P i is his cautious assessment on the interspection state-space Ωki
i .

The interspection state-space Ωki
i encodes Player i’s opponents’ interspection levels and strategy

profiles they intend to play, but not their assessments. Informally, Player i has interspection level ki
if he can analyze the play of his opponents up to pki ´ 1q-th level, but not further. The assessment
P i captures the probability assessment Player i may have on the combinations of his opponents’
strategy profiles and their interspection levels lower than ki. Also, if Player i has interspection level
ki ě 1, then his strategy σi must be a best response to his assessment P i. Irrational types are types
with level-0 interspection. They can play any strategy.

For each Player i with interspection level ki, his interspection state-space Ωki
i can be constructed

as follows: Suppose for a moment that there is some smart guy (a game theorist, for example). The
smart guy knows for each Player j, with j ‰ i, and for each interspection level kj ă ki the exact
set of strategies Hkj

j Ď Sj which Player j can play if he has interspection level kj . For kj “ 0 the
set H0

j is the set of all Player j’s strategies Sj . For k ě 1 the set Hk
j may be any non-empty subset

of Sj . The smart guy advises Player i to consider all of the interspecting events Ek´i , indexed by a
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nonnegative multi-index k´i “ pk1, k2, .., ki´1, ..., ki`1, ..., kN q with k´i ď tk ´ 1uN´1.5 The event
Ek´i is the event that Player i’s opponents have intersection levels corresponding to the multi-index
k´i. Further, the smart guy tells Player i that for each event Ek´i , his opponents can play strategy
profiles comprising precisely the set Ek´i “ Hk1

1 ˆHk2
2 ˆ ...ˆH

ki´1

i´1 ˆH
ki`1

i`1 ˆ ...ˆH
kN
N . Following

this advice, Player i constructs the interspection state-space Ωki
i as the disjoint union of all such

strategy profile sets Ek´i (strategy profiles may have several copies in Ωki
i ):

Ωki
i “

ğ

k´iďtk´1uN´1

Ek´i

In the state-space Ωki
i , interspecting events Ek´i are identified with the corresponding sets Ek´i .

In the actual game, Player i does not receive any advice from a smart guy. Instead, Player i
calculates the sets Ek´i himself. The level of interspection then captures Player i’s limiting abilities
for this kind of calculations.

All possible interspecting types of a given game comprise the interspection type-space corre-
sponding to this game:

Definition (Interspection Type-Space). The intersection type-space corresponding to a finite game
is the set of all interspecting types possible in this game.

Notably, for any finite game the corresponding intersection type-space is unique.

2.6 Respect

Another key concept in interspection theory is the concept of Respect. Informally, a player respects
his opponents if he assesses that it is infinitely more likely that they have higher interspection
levels than not. Yet, each player has only a finite interspection level and, therefore, cannot analyze
opponents’ interspection levels higher than his own. Formally:

Consider Player i with an interspecting type ti “ pki;σi; Ωki
i ;P iq. The interspection state-space

Ωki
i is the disjoint union of interspecting events Ek´i , for all nonnegative k´i ď tk ´ 1uN´1.
Respect assumption requires that if some interspecting event has higher interspection multi-

index than another, then the former is infinitely more likely than the later:

Definition (Respect). In an N -player game Γ, an interspecting type ti “ pki;σi; Ωki
i ;P iq of Player i

satisfies Respect if:

@ k´i, k̂´i ď tk ´ 1uN´1 :
´

k´i ą k̂´i

¯

ùñ

´

Ek´i "P i E
k̂´i

¯

Player i then is said to respect his opponents.
5
taun stands for the vector a “ pa, ..., aq P Rn. Vectors in Rn are compared componentwise: for two vectors

x, y P RN , x ě y if @i ď N , xi ě yi; and x ą y if @i ď N , xi ě yi with at least one inequality being strict.
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3 Equivalence Results

In this section I provide two equivalence results, which greatly simplify the construction of inter-
spection theory. The first result states that under CSDA, the play of cautiously rational players
in extensive-form games may be equivalently analyzed in the corresponding normal forms. More
precisely, under CSDA, a player is initially rational against some cautious assessment if and only
if he is sequentially rational against the same assessment. The second result is the equivalent re-
formulation of Respect as a property of assessments on the set of players’ strategy profiles. This
representation allows me to define interspection theory solution concepts in terms of primitives of
the game, rather than in terms of the interspection type-space.

3.1 Sufficiency of normal-form analysis

Recall that under CSDA, any subjective assessment of a player may be equivalently represented as
a subjective probability assessment on the set of his opponent’s strategy profiles. It turns out, that
under CSDA, the behavior of cautiously rational players in extensive-form games of perfect recall
can be analyzed completely in the corresponding normal forms. I.e., if in an extensive-form game
a player choses initially a best response strategy to some cautious assessment on his opponents’
strategy profiles, then this strategy will be a sequential best response to the Bayesian updates of
the same assessment in all of the strategy-relevant information sets. Formally:

Definition (Initial Rationality). In an extensive-form game of perfect recall Γ, Player i is initially
rational if:

1. he has a cautious probability assessment P i on the set of his opponents’ strategy profiles S´i;

2. he plays a normal-form best response strategy to P i.

In that case Player i is said to be initially rational against P i.

Assume for simplicity that the game has no chance nodes. Suppose that at the beginning of the
game Player i has some cautious subjective probability assessment P i on his opponents’ strategy
profiles S´i. If some of Player i’s information sets h is reached during the play, then Player i will
be able to logically exclude strategy profiles of his opponents that are not h-relevant. Denote their
remaining strategy profiles through Sh´i. Let the updated assessment P h

i be the assessment on Sh´i
obtained from P i using Bayes rule. I.e., P h is P conditioned on the event Sh´i. Sequential rationality
is defined as cautious rationality against the updated assessment in each of the strategy-relevant
information sets:

Definition (Sequential Rationality). In an extensive-form game of perfect recall Γ, Player i is
sequentially rational if:

1. at the beginning of the game he has a cautious assessment P i on the set of his opponents’s
strategy profiles S´i;
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2. he plays a strategy that is a best response to the updated assessment P h
i in each of his strategy-

relevant information sets h.

In that case Player i is said to be sequentially rational against P i.

This notion of sequential rationality is similar to weak sequential rationality of Reny (1992). The
main difference is that Reny (1992)’s version is defined for usual-type rational players.

Naturally, if a player is sequentially rational against some cautious assessment, then he is ini-
tially rational against the same assessment. The following theorem establishes the equivalence of
initial rationality and sequential rationality for cautiously rational players under CSDA. Thus, in
interspection theory, it is sufficient to analyze games in their normal forms:

Theorem 1 (Normal-Form Sufficiency). Under CSDA, in an extensive-form game of perfect recall
a cautiously rational player is initially rational against a cautious probability assessment if and only
if he is sequentially rational against the same assessment.

Proof. See Appendix B.1

Theorem 1 holds for games with chance nodes as well: in that case one has to include into
Bayesian updating elimination of logically impossible combinations of chance-node realizations and
opponents’ strategy profiles.

3.2 Respect in strategy form

The purpose of the paper is to analyze games. The notion of Respect, however, is formulated for
assessments on interspection state-spaces. I now provide an equivalent reformulation of Respect as
a property of assessments on players’ strategy profiles.

Definition (Hierarchy). A hierarchy H of order k ě 1 on some nonempty finite set S is a non-
decreasing sequence Hk´1, Hk´2, ...,H0 of subsets of S, with the last element being equal to S:

H “
 

H i
(0

i“k´1
, where Hk´1 Ď Hk´2 Ď ... Ď H0 “ S

The sets H i in hierarchy H are termed atoms. For each atom H i the number i is called the
index of atom H i in H. Atoms in a hierarchy are allowed to be equal.

Definition (Product Hierarchy). Let Γ be a finite N -player extensive-form game of perfect recall.
Suppose that for each Player j, with j ‰ i, there is a given hierarchy Hj of order ki ě 1 on the
set of Player j’s strategies Sj. Then, the corresponding product hierarchy H´i of order ki is the
collection of Hj, for j ‰ i:

H´i “
 

H1,H2, ...,Hi´1,Hi`1, ...,HN
(

Suppose that some product hierarchy H´i of order ki is fixed for Player i. For each Player i’s
opponents’ strategy profile σ´i P S´i, I define the corresponding hierarchical index as the highest
multi-index of atoms in H´i whose product contains σ´i. Formally:
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Definition (Hierarchical Index). Let Γ be a finite N -player extensive-form game of perfect recall.
Let H´i be a product hierarchy of order ki ě 1 constructed on the set S´i of Player i’s opponents’
strategy profiles. For σ´i P S´i, the hierarchical index IndH´ipσ

´iq with respect to H´i is defined
as:

IndH´ipσ
´iq “ max

!

k´i “ tk1, ..., ki´1, ki`1, ..., kNu ď tki ´ 1uN´1 : σ´i P
ą

j‰i

H
kj
j

)

Given a product hierarchy H´i and some cautious subjective probability assessment P on S´i,
the assessment P conforms to the hierarchyH´i if under P , strategy profiles with higher hierarchical
indices are infinitely more likely than are strategy profiles with lower indices. Formally:

Definition (Conforming to Hierarchy). Let Γ be a finite N -player extensive-form game of perfect
recall. Let H´i be a product hierarchy of order ki ě 1 constructed on the set S´i of Player i’s
opponents’ strategy profiles. Let P be a cautious lexicographic probability assessment on the state-
space S´i. The assessment P is said to conform to H´i if:

@σ´i, σ̂´i P S´i :
´

IndH´ipσ
´iq ą IndH´ipσ̂

´iq

¯

Ñ

´

tσ´iu "P tσ̂
´iu

¯

Recall the definition of Player i’s interspecting type ti “ pki;σi; Ωki
i ;P iq. The construction of

the corresponding interspection state-space Ωki
i was given based on the advise of some smart guy. In

particular, the smart guy was asked to name all of the sets Hkj
j Ď Sj for all j ‰ i and 0 ď kj ă ki,

i.e., the sets of strategies that can be played by a level-kj interspecting Player j. Suppose that those
sets Hkj

j were coming from some product hierarchy H´i of order ki constructed on S´i. In that
case, the interspecting type ti is said to be constructed upon the hierarchy H´i.

Consider two different tasks. Task 1 is to predict the behavior of a player who has an interspect-
ing type constructed upon some product hierarchy, and who respects his opponents. Task 2 is to
predict the behavior of this player, provided he is cautiously rational and has a cautious assessment
on his opponents’ strategy profiles conforming to the same product hierarchy.

The following theorem, effectively, establishes the equivalence of Task 1 and Task 2:

Theorem 2 (Respect in Strategy Form). Let Γ be a finite N -player extensive-form game of perfect
recall. Let H´i be a product hierarchy of order ki ě 1 constructed on the set S´i of Player i’s
opponents’ strategy profiles. Then:

1. if an interspecting type ti “ pki;σ
i; Ωki

i ;P iq is constructed upon H´i and satisfies Respect,
then there exists a cautious probability assessment P̃ i on S´i conforming to H´i that induces
the same preference relation on the set Si of Player i’s strategies;

2. for any cautious probability assessment P̃ i on S´i conforming to H´i there exists an inter-
specting type ti “ pki;σ

i; Ωki
i ;P iq constructed upon H´i and satisfying Respect that induces

the same preference relation on the set Si of Player i’s strategies.
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Proof. See Appendix B.2

Theorem 2 allows one to switch from Task 1 to Task 2 in the construction of interspection
theory. Using this equivalence, in the remainder of the paper, I work directly with assessments on
strategy profiles that conform to product hierarchies, rather than with interspecting types satisfying
Respect.

4 Interspected Rationalizability

In the previous section, I established two equivalences in interspection theory: the equivalence be-
tween normal-form and extensive-form analyses, and the equivalent representation of Respect in
terms of primitives of the game. Using these equivalences, I proceed by working directly with nor-
mal forms and players’ assessments on sets of their opponents’ strategy profiles. I now introduce
two solution concepts in interspection theory: interspected rationalizability and interspected equi-
librium. The current section deals with interspected rationalizability. The next section discusses
interspected equilibrium.

In this section, I first give a constructive definition of the notion of interspected rationalizability.
I then provide an axiomatic characterization of “environments” to which this notion applies. Finally,
I compare interspected rationalizability with two familiar solution concepts: iterative admissibility
and backward induction.

4.1 Interspected rationalizability: construction

In this subsection I provide a constructive definition of interspected rationalizability.
Consider a finite N -player extensive-form game of perfect recall Γ. The corresponding normal

form is GpΓq.
Assume CSDA holds. Then players’ assessments may be equivalently represented as subjective

probability assessments on the set of their opponents’ strategy profiles. For any Player i’s cautious
assessment P i on the state-space S´i, denote by BpP iq the set of Player i’s pure strategies that are
best responses to P i.

Recall the definition of product hierarchy from subsection 3.2. Let H´i be a product hierarchy
H´i of order ki on the set S´i. Denote through ApH´iq the space of all cautious assessments on Si
conforming to the hierarchy H´i. Player i’s strategy is said to be an H´i-never-best response if it
is not a best response to any cautious assessment conforming to H´i. Formally:

Definition (H-Never-Best Response). Given a product hierarchy H´i on S´i, a strategy σi P Si is
said to be an H´i-never-best response if:

@ P i P ApH´iq : σi R BpP iq

Suppose it is known to us that Player i is cautiously rational and that his cautious assessment
conforms to some product hierarchy H´i of order ki on S´i. Then, based on this information
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alone, we can only conclude that Player i will not play a strategy that is H´i-never-best response.
In other words, we can only predict that he will play some strategy from H´i-best response set
BpH´iq, defined as follows:

Definition (H-Best Response Set). Given a product hierarchy H´i on S´i, the H´i-best response
set BpH´iq is defined as the complement in Si of the set of H´i-never-best response strategies.

As GpΓq is finite, BpH´iq is nonempty for any hierarchy H´i. One can show that in a finite
game, the set BpH´iq can be computed in a finite algorithm. Thus, BpH´iq is defined constructively.

The sequence of interspected hierarchies is defined as follows:

Definition (Interspected Hierarchies). In a finite N -player extensive-form game of perfect recall
Γ, the sequence of interspected hierarchies tHki ukě0, for i “ 1, ..., N , is defined recursively in k and
simultaneously for all players as follows:

1. H0
i “ tSiu, for i “ 1, ..., N ;

2. Hk`1
i “ tBpHk´iq;Hki u, for i “ 1, ..., N and k ě 0.

For each k ě 0, the set of strategy profiles Hk “
N
Ś

i“1
Hk
i consisting of the first atoms in the k-th

step interspected hierarchies Hk “
`

Hk1 , ...,HkN
˘

is called the set of k-th step interspected strategies,
or the set of k-th step predicted strategies.

By induction, Hk`1 Ď Hk, for each k ě 0.6 Also, if Hm`1 “ Hm for some m ą 0, then
Hk`1 “ Hk for all k ě m. I.e., the sequence of the sets of k-th step predicted strategies tHkukě0

is weakly decreasing. Moreover, if this sequence stabilizes for the first time, then it is constant ever
after. As the game Γ is finite, there exists some finite k ě 0 such that Hk`1 “ Hk. The smallest
such k is called the interspection index of the game Γ:

Definition (Interspection Index). For a finite extensive-form game of perfect recall Γ, the inter-
spection index IndpΓq is defined as the number of the first step k at which the sequence of k-th step
interspected strategies stabilizes:

IndpΓq “ min
kě0

´

Hk`1pΓq “ HkpΓq
¯

The set of interspected rationalizable strategies then is defined as the set of the predicted strate-
gies at the moment the construction of the interspected hierarchies stabilizes:

Definition (Interspected Rationalizability). For a finite extensive-form game of perfect recall Γ

with interspection index IndpΓq, the set of interspected rationalizable strategies is defined as the set
of of IndpΓq-th step interspected strategies:

RpΓq “ HIndpΓqpΓq

6Indeed, assuming that atoms in Hk contain atoms from Hk´1, i.e. Hk´1
Ď Hk, we get that any assessment that

conforms to Hk
´i also conforms to Hk´1

´i . Therefore, BpHk
´iq Ď BpHk´1

´i q, and so Hk
Ď Hk`1 .
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The strategies that are not interspected rationalizable are called interspected non-rationalizable.
Fully interspected hierarchies are the hierarchies obtained at the moment the construction of the

interspected hierarchies stabilizes:

Definition (Fully Interspected Hierarchies). For a finite extensive-form game of perfect recall Γ

with interspection index IndpΓq, fully interspected hierarchies H8 are identified with the IndpΓq-th
step interspected hierarchies:

H8 “ HIndpΓq

Strictly speaking, the construction of interspected hierarchies never stabilizes. However, in each
step after the IndpΓq-th step, only a copy of the set of interspected rationalizable strategies is
attached to the front of the previous-step hierarchies. Such attachment is inconsequential. Thus,
the hierarchies after the IndpΓq-th step may be identified with fully interspected hierarchies H8.

4.2 Interspected rationalizability: axiomatic characterization

In the previous subsection, I gave a constructive definition of interspected rationalizability. It is
natural to ask when we expect this notion to apply. In this subsection I provide axiomatic char-
acterization of environments in which players’ behavior conforms to interspected rationalizability.
The axioms are as follows:

Axiom 1 (Common Knowledge of the Game Form). The set of normal-form strategies of the game
is common knowledge.

Axiom 2 (Common Knowledge of the Payoffs). The payoffs in the normal form are common
knowledge.

Axiom 3 (Cautious Rationality). Each player is cautiously rational.

Axiom 4 (Sufficient Interspection). Each player has an interspecting type with interspection level
at least as high as the interspection index of the game.

Axiom 5 (Common Knowledge of Impeccability). It is common knowledge that each action in the
game is intentional.

Axiom 6 (Common Knowledge of Respect). It is common knowledge that the players respect their
opponents.

Common Knowledge of the Game Form and of the Payoffs imply that the normal form of
the game is common knowledge. Sufficient Interspection ensures that each player can fully grasp
the game. Impeccability is the logical negation of Selten’s type trembling-hand mistakes. Common
Knowledge of Respect is a substitute for Common Knowledge of Rationality. If trembling-hand mis-
takes are commonly viewed as impossible, deviations can be explained by a breakdown of Common
Knowledge of Rationality. One possible way to restrict players’ interpretations of these breakdowns
is to impose Common Knowledge of Respect.

I can now state and prove the main result of this section:
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Theorem 3 (Axiomatic Characterization). Given a finite extensive-form game of perfect recall Γ,
if Axioms 1-6 are satisfied, then the set of strategies the players can be expected to play is precisely
the set of interspected rationalizable strategies RpΓq.

Proof. See Appendix B.3

Thus, interspected rationalizability is a solution concept for environments satisfying Axioms 1-
6. Other solution concepts in interspection theory can be obtained as refinements of interspected
rationalizability, provided there is some secondary or refining principle in addition to Axioms 1-6.

Consider, for example, a secondary principle that the played strategies should be consistent
with players’ assessments about each other. This is the refining principle of equilibrium. Suppose
some tentative equilibrium is believed in by the players. The players then may also contemplate the
possibility that their opponents do not conform to the equilibrium. If the principle of equilibrium is
secondary, then at any point each player believes that it is infinitely less likely that his opponents are
not sufficiently interspecting, rather than the fact that they do not play according to the equilibrium.
In other words, the hypothesis that their opponents are playing according to the equilibrium is the
first hypothesis the players would reject if they observe a deviation.

Another notable refinement principle is Harsanyi’s doctrine: the assumption that assessments
of the players come from the common prior.

4.3 Interspected rationalizability and iterative admissibility

Brandenburger et al. (2008) provided epistemic conditions under which players can be expected to
play strategies surviving iterative elimination of weakly dominated strategies in rounds (iterative
admissibility). I now compare interspected rationalizability and iterative admissibility.

For finite two-player games these two concepts coincide:

Theorem 4 (Iterative Admissibility). For a finite two-player extensive-form game of perfect recall
Γ, the set of interspected rationalizable strategies coincides with the set of iteratively admissible
strategies. Moreover, the construction of fully interspected hierarchies pH81 ,H82 q corresponds to the
rounds of iterative admissibility. I.e., for each Player i, i “ 1, 2, the set Hj

i is precisely the set of
Player i’s strategies surviving j rounds of elimination of weakly dominated strategies.

Proof. See Appendix B.4

Remarkably, for games with more than two players, interspected rationalizability does not co-
incide with iterative admissibility:

Consider, for example, the three-player game Γ depicted in Figure 2.7 At the beginning of
the game, Players 1 and 2 each choose independently and simultaneously whether to move “left”
or “right.” If both of them move “right” the game ends. If at least one of them choses “left” the
turn is passed to Player 3. He then select either “left” or “right” himself. Yet Player 3 does not

7The extensive form of Γ is borrowed from Kreps and Ramey (1987).
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Player 1

paq

p0, 0, 1q

l3

p0, 0, 0q

r3

l2

pbq

p0, 1, 0q

l3

p0, 1, 1q

r3

r2

l1

pcq

p1, 0, 0q

l3

p1, 0, 1q

r3

l2

p1, 1, 1q

r2

r1

Player 2

Player 3

Figure 2: Interspected rationalizability ‰ iterative admissibility.

observe which of his opponents has chosen “left”. After Player 3’s move the game ends. The payoffs
are such that for both Player 1 and Player 2, choosing “right” strictly dominates choosing “left.”
Player 3, however, does not have a dominated strategy. Thus, the set IApΓq of iteratively admissible
strategies in this game is:

IApΓq “ tr1u ˆ tr2u ˆ tl3, r3u

What about interspected rationalizability? For Players 1 and 2, the result is still the same, as
dominated strategies cannot be cautious best responses. Consider the situation from the point of
view of Player 3. Upon getting a chance to move, Player 3 knows that at least one (and possibly
both) of his opponents (and possibly both) are not rational. However, if Player 3 respects his
opponents, he must conclude that it still is infinitely more likely that only one of them is irrational,
rather than that both are irrational. Then, Player 3 would think that the node paq is infinitely
unlikely. His unique best response then will be to choose “right.” Thus, the set of interspected
rationalizable strategies is:

RpΓq “ tr1u ˆ tr2u ˆ tr3u ‰ IApΓq

In other words, under interspection theory, players think respectfully about their opponents
even after observing deviations. Under the theory of iterative admissibility, players may interpret
deviations as signal of arbitrarily calamitous events.

4.4 Interspected rationalizability and backward induction in PI games

Finally, I discuss the properties of interspected rationalizability in perfect information games (PI
games). The result is that for any PI game without chance nodes and without relevant ties, the
unique terminal node reachable by playing interspected rationalizable strategies is the unique back-
ward induction outcome of the game.
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What is the logic of backward induction in PI games? Following Arieli and Aumann (2013), for
any PI extensive-form game Γ without chance nodes, each decision node h is labeled in inductive
labeling procedure by a set Zh of terminal outcomes. The labeling procedure starts by labeling all
terminal nodes with their own outcomes. Then, the procedure gradually moves towards the root of
the tree, from sons to their parenting nodes. The precise procedure is the following. Suppose that
for some node h, the labels have been attached to all of his sons. For each of his sons s with the
label Zs, define max s and min s as the maximum and minimum payoffs to the father h from the
outcomes in Zs. Call a son node s inferior if it has a brother s1 with min s1 ą max s. The label
of the father h then is the union of the labels of all of his non-inferior sons. The set of backward
induction outcomes BIpΓq of the game Γ is the label attached to its root.

Following Battigalli (1997), a PI game without chance nodes is said to be without relevant ties
if for any two terminal nodes, the player moving at the last common predecessor of these nodes is
not indifferent between them. In particular, PI games with generic payoffs have no relevant ties.

If a PI game without chance nodes has no relevant ties, then its backward induction outcome is
unique. Interspected rationalizability predicts the same outcome:

Theorem 5 (Backward Induction for PI Games). For any perfect information game without chance
nodes and without relevant ties, the unique interspected rationalizable terminal outcome is the unique
backward induction outcome.

Proof. See Appendix B.5.

The proof of Theorem 5 is an adaptation of the proofs of Reny (1992)’s Proposition 3 and
Battigalli (1997)’s Theorem 4. The proof relies on the properties of Kohlberg and Mertens (1986)’s
fully stable sets.

The question of how interspected rationalizability compares with backward induction for non-
generic PI games remains open. Also, with regards to equilibria, subsection 6.3 contains an example
of a non-generic PI game that has an interspected equilibrium with the path that cannot be sup-
ported by any subgame perfect equilibrium.

5 Interspected Equilibrium

In the previous section, I studied the notion of interspected rationalizability. In this section, I
introduce the notion of interspected equilibrium, another solution concept in interspection theory.
Interspected equilibrium may be viewed as a refinement of interspected rationalizability. Inter-
spected equilibria correspond to situations in which, before observing any deviation, players believe
that their opponents follow the equilibrium strategies. Moreover, after observing deviations, players
believe that their opponents play strategies corresponding to the highest interspection levels that
are still logically possible for them.

I start by considering the simpler and more tractable case of two-player games. I then move
to the general case of N -player games. Finally, I provide an interpretation of the interspected
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equilibrium concept and contrast it with Selten (1975)’s trembling-hand perfect equilibrium.

5.1 Interspected equilibrium in two-player games

Having considered the simpler case of two-player games, I now introduce the notion of interspected
equilibrium for the general case of N -player games.

Consider a two-player extensive-form game of perfect recall Γ. The players are Player 1 and
Player 2. Denote through pµ1, µ2q a pair of randomized strategies for Player 1 and Player 2, and
through pP 1,P 2q their cautious assessments on S2 and S1 correspondingly. The following is an
adapted version of the definition from BBD2:

Definition (Lexicographic Nash equilibrium, N “ 2). In a two-player normal-form game G, a
lexicographic Nash equilibrium pµ1, µ2;P 1,P 2q is a pair of players’ randomized strategies pµ1, µ2q

and a pair of lexicographic assessments pP 1,P 2q on pS2,S1q such that:

1. each pure strategy in the support of µi is a best response to P i, for i “ 1, 2;

2. the first measure λi1 in any LPS representation ρi “ pλi1, ..., λ
i
Ki
q of P i is proportional to the

opponents’ randomized strategy:

µ´i “ αi ¨ λ
i
1, for some αi ą 0 and for i “ 1, 2

Recall the construction of fully interspected hierarchies pH81 ,H82 q . Interspected equilibrium
is defined as a lexicographic Nash equilibrium with cautious assessments conforming to fully inter-
spected hierarchies:

Definition (Interspected Equilibrium, N “ 2). In a finite two-player extensive-form game of perfect
recall Γ, an interspected equilibrium pµ1, µ2;P 1,P 2q is a pair of randomized strategies pµ1, µ2q and
a pair of cautious assessments pP 1,P 2q on pS2,S1q such that:

1. pµ1, µ2;P 1,P 2q is a lexicographic Nash equilibrium of GpΓq;

2. assessments pP 1,P 2q conform to fully interspected hierarchies pH82 ,H81 q.

Interspected equilibria correspond to situations in which, before observing any deviation, players
believe that their opponent follow the equilibrium strategies. Moreover, after observing deviations,
players believe that their opponent plays a strategy corresponding to the highest interspection level
that is still logically possible for him.

Note that in the definition of lexicographic Nash equilibrium assessments are not required to be
cautious. I.e., they do not have to have the full support. Yet, for the interspected equilibrium the
full support of the assessments is a requirement.

For any finite two-player game at least one interspected equilibrium exists:
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Theorem 6 (Equilibrium Existence, N “ 2). For any finite two-player extensive-form game of
perfect recall there exists at least one interspected equilibrium.

Proof. See Appendix B.6

The proof of Theorem 6 is similar to the proof of the necessity part for LPS representation
of proper equilibrium of BBD2 Proposition 5, p.88. Essentially, one needs to replace “respect
preferences” by “conforms to fully interspected hierarchies”. In turn, proper equilibrium may be
defined as an equilibrium, with assessments conforming to hierarchies constructed by the expected
payoffs against the equilibrium play.

For the existence of interspected equilibrium it is important that fully interspected hierarchies are
constructed by iteratively dismissing never-best response strategies. Lexicographic Nash equilibria
with assessments conforming to arbitrary hierarchies do not in general exist.

As any interspected equilibrium involves only the play of interspected rationalizable strategies,8

the immediate corollary of Theorem 6 is:

Corollary 1. If a game has the unique interspected rationalizable outcome, then this outcome is the
unique outcome supportable in any interspected equilibrium.

Next, I want to discuss the properties of the interspected equilibrium concept.
Each equilibrium induces some distribution on the payoff outcomes. If some equilibrium concept

generates the same set of payoff distributions for equivalent games, this concept is called invariant:

Definition (Invariance). An equilibrium concept satisfies invariance if for any two extensive-form
games with the same reduced normal form, the distribution on payoff outcomes induced by an equi-
librium of the first game is the distribution on payoff outcomes induced by some equilibrium of the
second game.

Invariance is defined with respect to the same Kohlberg and Mertens (1986)’s reduced normal
form, not normal form. I.e., this notion of invariance coincides with the one from Kohlberg and
Mertens (1986).

I define the forward induction property for equilibrium concepts as follows:

Definition (Forward Induction). An equilibrium concept satisfies forward induction if an equilib-
rium of the full game remains an equilibrium of the reduced game after a one-round elimination of
all never-best response (weakly dominated) strategies of one of the players.

In contrast, Kohlberg and Mertens (1986)’s notion of forward induction (or iterated dominance)
requires that an equilibrium of the full game remains an equilibrium of the reduced game after
elimination of a single never-best response strategy, not all of them. Also, Kohlberg and Mertens
(1986) considers a second type of iterated dominance: with respect to elimination of strategies that

8The fact that the strategies played in interspected equilibrium are interspected rationalizable is directly built
into the definition of interspected equilibrium.
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are not best responses to the considered equilibrium. For a discussion of this second type of iterated
dominance see Govindan and Wilson (2009) and BBD2, p. 89.

Recall that in interspection theory, sequential rationality is cautious rationality in all of the
strategy-relevant information sets. Sequential rationality for equilibrium concepts is defined as
follows:

Definition (Sequential Rationality). An equilibrium concept satisfies sequential rationality if in any
equilibrium a player following the prescribed strategy is sequentially rational against the assessment
specified in the equilibrium.

Admissibility for equilibrium concepts is defined as usually:

Definition (Admissibility). An equilibrium concept satisfies admissibility if any equilibrium does
not involve the play of weakly dominated strategies.

The following proposition summarizes the main properties of the interspected equilibrium con-
cept in two-player games:

Theorem 7 (Equilibrium Properties, N “ 2). For finite two-player extensive-form games of perfect
recall, the concept of interspected equilibrium satisfies sequential rationality, admissibility, invari-
ance, and forward induction.

Proof. See Appendix B.7

Notably, interspected equilibrium does not in general satisfy subgame perfection. Section 6
contains appropriate examples.

5.2 Interspected equilibrium in general N-player games

Having considered the simpler case of two-player games, I now introduce the notion of interspected
equilibrium for the general case of N -player games. In two-player games interspected equilibrium
was introduced as a pair of players’ strategies and their subjective assessments. In the general case
of N players, interspected equilibrium is defined as a pair of players’ strategies and a common prior
cautious assessment on the set of strategy profiles of all of the players at once.

To capture independence of players’ actions in interspected equilibrium, one needs to specify
a notion of independence for lexicographic assessments. BBD1, p. 73 provides a discussion of this
issue. Here, I briefly review some of their points.

There may be several ways to define independence for probability assessments on product spaces.
I will focus on two of them: stochastic independence and strong independence. For classical proba-
bility measures these two notions are equivalent. However, for lexicographic assessments stochastic
independence is strictly weaker than strong independence.

Suppose a state-space Ω is a direct product of N finite spaces Ω “
N
Ś

i“1
Ωi. Let P be a cautious

probability assessment on Ω. Stochastic independence is defined as follows:
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Definition (Stochastic Independence). A cautious probability assessment P on a finite product

space Ω “
N
Ś

i“1
Ωi satisfies stochastic independence, if for all i “ 1, ..., N conditional assessments

margi P “ P tωi,˚u (i.e. marginals) do not depend on ωi P Ωi.

Following BBD2, a nested convex combination rl ρ is defined for any LPS ρ “ pλ1, λ2, ..., λKq

and a vector r P p0, 1qK´1 as the following classical measure:

rl ρ “ p1´ r1qλ1 ` r1

“

p1´ r2qλ2 ` r2rp1´ r3qλ3 ` ...` rK´1λks...
‰

Limiting nested convex combination
 

rpnql ρ
(

nPN is a sequence of nested convex combinations
with rpnq Ñ 0, as nÑ8.

Strong independence is defined as follows:

Definition (Strong Independence). A cautious probability assessment P on a finite product space

Ω “
N
Ś

i“1
Ωi satisfies strong independence, if P has an LPS representation ρ for which there exists

a limiting nested convex combination
 

rpnql ρ
(

nPN with rpnq Ñ 0, such that for each n P N the
measure rpnql ρ is a product measure on Ω in the classical sense.

I now define the concept of interspected equilibrium for general N -players games:

Definition (Interspected Equilibrium). In a finite N -player extensive-form game of perfect recall

Γ, an interspected equilibrium pµ;P q is a pair of independently randomized strategies µ “
N
Ś

i“1
µi and

a common prior cautious assessment P on the set of players’ strategy profiles S “
N
Ś

i“1
Si such that:

1. each pure strategy in the support of µi is a best response against the corresponding marginal
margi P , for all i “ 1, ..., N ;

2. assessment P conforms to fully interspected hierarchies H8;

3. assessment P satisfies strong stochastic independence;

4. the first measure λ1 in any LPS representation ρ “ pλ1, ..., λKq of P is proportional to µ:

µ “ α ¨ λ1, for some α ą 0

Note that if a strongly independent cautious assessment P conforms to fully interspected hier-
archies H8, then for all i “ 1, ..., N , the marginal assessment margi P conforms to H8´i. Yet, the
first measure in any LPS representation of a strongly independent assessment is a product measure.
Thus, in any interspected equilibrium, players’ subjective assessments conform to the corresponding
fully interspected hierarchies. Also, the prescribed strategies are assessed as being independently
randomized.
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Figure 3: Interspected equilibrium does not satisfy strong version of forward induction.

Note that for the case of N “ 2 players, the current definition of interspected equilibrium and
the definition used in the previous subsection are equivalent.

Interspected equilibria always exist in general finite games:

Theorem 8 (Equilibrium Existence). For any finite extensive-form game of perfect recall there
exists at least one interspected equilibrium.

Proof. See Appendix B.8

Recall the forward induction property for equilibrium concepts: an equilibrium of the full game
must remain an equilibrium of the reduced game after a one-round elimination of all never-best
response strategies of one of the players. This strong forward induction property can be weakened
as follows:

Definition (Weak Forward Induction). An equilibrium concept satisfies weak forward induction if
an equilibrium of the full game remains an equilibrium of the reduced game after elimination of all
interspected non-rationalizable strategies of all of the players.

In finite N -player games, the concept of interspected equilibrium has the following properties:

Theorem 9 (Equilibrium Properties). In finite extensive-form games of perfect recall, the concept of
interspected equilibrium satisfies sequential rationality, admissibility, invariance, and weak forward
induction.

Proof. See Appendix B.7.

Note that in multi-player games, the concept of interspected equilibrium does not satisfy the
strong version of forward induction. As an illustration, consider the three-player game Γ depicted
in Figure 3. At the beginning of the game, Players 1 and 2 each choose independently and simul-
taneously whether to move “left” or “right.” If both of them move into the same direction the game
ends. If one of them choses “left” and the other choses “right” the turn is passed to Player 3. He
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then selects where to move: “left,” “middle,” or “right.” Yet Player 3 does not observe which of his
opponents has chosen “left.” After Player 3’s move the game ends. The payoffs are such that for
both Player 1 and Player 2, choosing “right” strictly dominates “left.” Thus, the strategies rl1s and
rl2s do not survive the first round of interspection. Player 3, however, does not have a dominated
strategy. The set of interspected rationalizable strategies is:

RpΓq “ tr1u ˆ tr2u ˆ tl3,m3, r3u

Γ has an interspected equilibrium with the outcome tr1u ˆ tr2u ˆ tm3u. Indeed, this outcome
may be supported, for example, by the following common prior LPS assessment ρ:

ρ “
!

rr1, r2,m3s;
`

rl1, r2,m3s ` rr1, l2,m3s ` rr1, r2, l3s ` rr1, r2, r3s
˘

;

`

rl1, l2,m3s ` rr1, l2, l3s ` rr1, l2, r3s ` rl1, r2, l3s ` rl1, r2, r3s
˘

;
`

rl1, l2, l3s ` rl1, l2, r3s
˘

)

Symbolically ρ can be written as:

ρ “
´

rr1s ` ε ¨ rl1s
¯

ˆ

´

rr2s ` ε ¨ rl2s
¯

ˆ

´

rm1s ` ε ¨ rl3s ` ε ¨ rr3s

¯

where ε stands for an infinitesimal. Clearly, ρ satisfies strong independence and conforms to fully
interspected hierarchies. If the turn is passed to player Player 3, then under the assessment ρ, he
will believe that he is equally likely to be either in the node paq or pbq. Under such a belief, rm3s

will be a best response. Thus, ρ, indeed, corresponds to an interspected equilibrium.
However, the outcome tr1uˆtr2uˆtm3u does not survive the strong version of forward induction.

Indeed, suppose we eliminate the strategy rl1s from the game. I.e., the unique never-best response
strategy of Player 1. In that case, in the reduced game, if the turn is passed to Player 3, he will
know that he is in the node pbq. Then, he will prefer to deviate to rl3s rather than to play rm3s.
Similarly, rm3s is not a best response for Player 3 if rl2s is eliminated from the full game.

Yet, the proposed equilibrium satisfies weak forward induction. Indeed, after elimination of both
rl1s and rl2s, Player 3 becomes indifferent among his strategies. In particular, rm3s remains a best
response.

5.3 Interspected equilibrium: an interpretation

In this subsection, I provide an interpretation of interspected equilibrium. I also contrast inter-
spected equilibrium to another equilibrium concept, Selten (1975)’s trembling-hand perfect equilib-
rium. Consider two different scenarios of how a game can be played:

Suppose first that before the game is played, the players meet and coordinate their actions with
each other. I.e., the players establish common knowledge of the (extensive-form) game to be played,
as well as common knowledge of the intended strategies. Effectively, the players write down an
informal contract specifying how they should act in any contingency . For an agreed-upon contract
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to be actually executed, it should be self-enforcing: no player should find it profitable for himself
to deviate if he believes that his opponents play according to the contract. In such a case, how can
the players treat deviations from the agreed-upon self-enforcing contract? A deviation can probably
not be interpreted as a signal about the deviator’s intentions. Indeed, if the deviator had any
disagreement with the contract, he would have a chance to express it before the game. Thus, the
players may think that the likeliest cause of deviations are inconsequential one-time trembling-hand
mistakes. Therefore, in this case, Selten (1975)’s trembling-hand perfect equilibria may approximate
self-enforcing informal contracts.

Suppose now that the players in the game do not pre-coordinate their actions. Instead, the
players are drawn from an almost-homogenous society in which an almost-commonly known norm
prescribes how the game should be played. In such a case, a player who knows the norm believes
that his opponents most likely also know this norm and play accordingly. Deviations then can be
interpreted as signals that the deviators are unaware of the prevailing social norm. Further, if the
society is commonly respectful, i.e., if the members in the society believe in common knowledge of
respect even after deviations, then the players would interspect the behavior of deviators. In such
cases, interspected equilibria may be viewed as approximations of self-enforcing social norms that
may persist in such societies. Note also that a player who knows the prevailing social norm does not
have to check himself that this norm is self-enforcing. This player should believe that the description
behind the norm corresponds to the true picture of the world and he should play a best-response
strategy to that description. In other words, a player conforming to an interspected equilibrium is
not required to be an expert in game theory, only in decision theory.

To sum up, the proposed interpretation suggests that a trembling-hand perfect equilibrium
may serve as an approximation of a self-confirming pre-coordinated informal contract, while an
interspected equilibrium may suit as a story of a self-enforcing social norm played uncoordinatedly
in almost-homogeneous commonly respectful societies.

6 Examples

In the previous section, I introduced the concept of interspected equilibrium and studied its main
properties. In this section, I provide several examples illustrating additional features of interspected
equilibria. The first example shows that an interspected equilibrium may be not subgame perfect.
The second example demonstrates that interspected equilibria do not satisfy on-the-path backward
induction: an interspected equilibrium of the full game may not induce an interspected equilibrium
in a subgame, even when the subgame is reached with positive probability on the equilibrium path
of play. The last example reinforces the point made by the first one: the path of an interspected
equilibrium may be not supportable in a subgame perfect equilibrium even in perfect information
games.
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6.1 The Prejudice Game: interspected equilibrium is not SPNE

The example in this subsection show that there may be interspected equilibria whose path cannot be
supported in any SPNE. This example is quite similar to the example of explicable and non-subgame
perfect equilibrium of Reny (1992). The reason I provide the alternative is twofold. First, in the
example I am about to show. the off-equilibrium subgame has a pure strategy Nash equilibrium,
which is Pareto superior. Second, the game may be loosely interpreted as a story of how some
prejudices can be persistent in societies, even with mostly sophisticated and respectful members.
I.e., the game might be of some interest on its own. Also, in Subsection 6.3, I provide an additional
example showing that a path of an interspected equilibrium may be not supportable in in SPNE
even in a perfect information game.
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(a) Extensive form Γ

C I R
c 4, 4 1, 1 ´1, 1
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(b) Subgame G
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(c) Normal form GpΓq

Figure 4: Prejudice game

Consider the two-player game Γ in Figure 4. At the beginning of the game, Player 1 may either
take outside option ros, or to play ris and enter the subgame G. The subgame G is a simultaneous
move game. In the subgame G Player 1 can “cooperate” rcs, “exploit” res, or “apologize” ras. At the
same time Player 2 may “Cooperate” rCs, “Ignore” rIs, or “Rebut” rRs.

The subgame G alone has two Nash equilibria: one in pure strategies
`

rcs; rCs
˘

with the payoffs
p4; 4q; and one in randomized strategies

`

1
3 res`

2
3 ras;

1
2 rIs`

1
2 rRs

˘

with the payoffs p1
3 ; 1

3q. Note that
in both of these equilibria Player 1 is strictly better off than he is by taking initially the outside
option with the payoffs p1

4 ; 1
4q. Thus, the whole game Γ has two subgame perfect equilibria, and in

both of them Player 1 enters G. Both of these equilibria are also interspected equilibria.
However, Γ has an interspected equilibrium E with the outcome µ1 ˆ µ2 “ tou ˆ tRu. Indeed,

the play of µ1 ˆ µ2 can be supported, for instance, by the following cautious assessments: ρ1 “
`

rRs; 1
3 rCs `

1
3 rIs `

1
3 rRs

˘

and ρ2 “
`

ros; 1
10 rics `

8
10 ries `

1
10 rias

˘

. These assessments conform
to fully interspected hierarchies, since in Γ, fully interspected hierarchies are trivial

`

H81 ;H82
˘

“
` 

S1

(

;
 

S2

(˘

. Also, ros and rRs are lexicographic best responses to ρ1 and ρ2. Thus, pµ1, µ2; ρ1, ρ2q

is indeed an interspected equilibrium.
The equilibrium E can be interpreted as a story of a persistent prejudice. Suppose that a social
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norm dictates that Player 1 must always choose the decent outside option ros, yielding a small but
positive payoff, rather than to outrageously enter the subgame G. An individual opting to play in
G will be perceived as a villain intending to exploit res a naive Player 2, who choses to ignore rIs.
The only appropriate response to such belief for Player 2 is to rebut the nonconformist with rRs.
Should Player 2 interspect further and figure out that if Player 1 were aware of the equilibrium to
be played, then Player 1 would rather apologize ras, instead of exploiting res? But had Player 1

in fact been aware of the equilibrium, he would have never chosen to play ris in the first place.
The play of ris requires either a Player 1 who is unaware of the equilibrium norm, or an irrational
mistake. If the later is thought to be much less likely, then no further equilibrium interspection for
Player 2 is possible. In view of this prospect, Player 1, at the beginning of the game, is forced to play
according to the restrictive social norm, instead of, say, the Pareto efficient equilibrium

`

rics; rCs
˘

.
In the presence of prejudice, even good intentions of Player 1 may be interpreted falsely and then
rebuffed by Player 2. It may seem that only coordinated efforts may overturn the bad outcome in
such a case.

6.2 Interspected equilibrium does not satisfy on-the-path backward induction

An equilibrium concept satisfies on-the-path backward induction, if the restriction of an equilib-
rium on any proper subgame reachable with positive probability under equilibrium play induces
an equilibrium of the subgame. Remarkably, interspected equilibrium does not satisfy on-the-path
backward induction.

b1 b2 b3 b4
a1 5, 3 4, 3 0, 2 0, 2
a2 2, 6 2, 0 2, 0 2, 1
a3 0, 0 0, 2 0, 3 7, 2

(a) Subgame G

P1

3, 0

l

G

r

(b) Extensive form Γ

b1 b2 b3 b4
l 3, 0 3, 0 3, 0 3, 0
ra1 5, 3 4, 3 0, 2 0, 2
ra2 2, 6 2, 0 2, 0 2, 1
ra3 0, 0 0, 2 0, 3 7, 2

(c) Normal form GpΓq

Figure 5: No on-the-path backward induction.

Consider, for example, the two-player game Γ given in Figure 5. At the beginning of Γ, Player 1

decides whether to enter the subgame G or to take the outside option yielding the payoffs p3; 0q.
The subgame G is the simultaneous move game given in Figure 5a. The corresponding normal form
of the full game is given in Figure 5c.

On the one hand, the construction of fully interspected hierarchies for the subgame G is the
following:
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´!

ta1, a2, a3u

)

;
!

tb1, b2, b3, b4u
)¯

Ñ

´!

ta1, a2, a3u

)

;
!

tb1, b2, b3u, tb1, b2, b3, b4u
)¯

Ñ

´!

ta1, a2u, ta1, a2, a3u

)

;
!

tb1, b2, b3u, tb1, b2, b3, b4u
)¯

Ñ

´!

ta1, a2u, ta1, a2, a3u

)

;
!

tb1u, tb1, b2, b3u, tb1, b2, b3, b4u
)¯

Ñ

´!

ta1u, ta1, a2u, ta1, a2, a3u

)

;
!

tb1u, tb1, b2, b3u, tb1, b2, b3, b4u
)¯

Therefore, the unique interspected equilibrium outcome for the subgame G is ta1u ˆ tb1u, corre-
sponding to the payoff outcome p5; 3q. On the other hand, fully interspected hierarchies for the full
game Γ are constructed as follows:

´!

tl, ra1, ra2, ra3u

)

;
!

tb1, b2, b3, b4u
)¯

Ñ

´!

tl, ra1, ra3u, tl, ra1, ra2, ra3u

)

;
!

tb1, b2, b3u, tb1, b2, b3, b4u
)¯

Ñ

´!

tl, ra1u, tl, ra1, ra2u, tl, ra1, ra2, ra3u

)

;
!

tb2, b3u, tb1, b2, b3u, tb1, b2, b3, b4u
)¯

Ñ

´!

tl, ra1u, tl, ra1, ra2u, tl, ra1, ra2, ra3u

)

;
!

tb2u, tb2, b3u, tb1, b2, b3u, tb1, b2, b3, b4u
)¯

Ñ

´!

tra1u, tl, ra1u, tl, ra1, ra2u, tl, ra1, ra2, ra3u

)

;
!

tb2u, tb2, b3u, tb1, b2, b3u, tb1, b2, b3, b4u
)¯

Thus, the unique interspected equilibrium outcome in the full game Γ is tra1uˆtb2u. The subgame
G is reached with probability 1. But in the subgame, the equilibrium play does not coincide with
the equilibrium outcome for the subgame alone. In particular, the full game equilibrium leads to
the payoff outcome p4; 3q, different from the subgame equilibrium outcome p5; 3q.

In both the subgame alone and the full game, Player 1 is expected to play strategy ra1s, which
makes Player 2 first-order indifferent between playing rb1s or rb2s. Further comparison of these two
strategies depends upon which out-of-equilibrium play, ra2s or ra3s, seems to be less unlikely from
the point of view of Player 2. In the subgame G alone, only two steps of interspection are needed
to exclude ra3s from the play of Player 1. I.e., Player 1 will never play ra3s if he is at least level-1
interspecting and respects Player 2. To eliminate ra2s, Player 2 needs to be sure that Player 1 is
much more sophisticated and respectful: Player 1 has to have at least three levels of interspection
and believe in at least three levels of Common Knowledge of Respect. Therefore, if the subgame G is
played alone, a cautiously rational Player 2 can be expected to play rb2s rather than rb1s. However,
if the full game Γ is played, and Player 1 has moved inside of G, then the presence of an outside
option makes it extremely unlikely that Player 1 would play ra2s. Indeed, he has to be irrational
to do that, or he has to make a trembling mistake. To ensure sure that he does not play ra3s,we
still need to require that he is has at least one level of interspection and respects his opponent. In
particular, Player 1 should be very certain that Player 2 will not play the dominated strategy rb4s,

33



so as not to be tempted to play ra3s for the prize of 7. Thus, the outside option provides additional
assurance that Player 1 would not play ra2s, changing the preferences of Player 2 and leading to
the outcome tra1u ˆ tb2u.

b1 b2 b3 b4
a0 4, 2 6, 2 0, 2 0, 2
a1 5, 3 4, 3 0, 2 0, 2
a2 2, 6 2, 0 2, 0 2, 1
a3 0, 0 0, 2 0, 3 7, 2

Figure 6: Subgame Ĝ

The fact that Player 2 is first-order indifferent between rb1s or rb2s is not a necessary feature
of the example above. For instance, one may consider the game Γ̂ obtained from Γ by replacing
the subgame G with the subgame Ĝ given in Figure 6. The unique interspected equilibrium payoff
outcome of Γ̂ is p5; 3q, whereas the unique interspected equilibrium payoff outcome of Ĝ is p6; 2q, so
neither player is first-order indifferent between these outcomes.

6.3 The interspected equilibrium path is not an SPNE path in PI game

The following example illustrates that the interspected equilibrium path may be not supportable in
any SPNE even in perfect information games.

Consider the PI game Γ in Figure 7, played by Player 1 and Player 2. At the beginning of the
game, at the node h1, Player 1 can either take the outside option rl1s and finish the game or to
play rr1s, passing the turn to Player 2. In the later case, at h2, Player 2 can either take the outside
option rL1s and finish the game, or play rR1s passing the turn back to Player 1. In the later case,
the subgame Γh3 is played. It will be helpful to establish the following three properties of Γ.

Property 1: The strategy rR1R2 L3s is the unique strategy of Γ, which is not interspected ratio-
nalizable. Indeed, rR1R2 L3s is dominated by rL1s, and therefore is not interspected rationalizable.

P1;h1

p2 1
2
, 4q; z1

l1 P2;h2

p3, 2q; z2

L1 P1;h3

P2;h4

P1;h6

p6, 0q; z3

l3

p6, 3q; z4

r3

L2

P1;h7

p2, 0q; z5

l4

p2, 1q; z6

r4

R2

l2 P2;h5

P1;h8

p7, 0q; z7

l5

p7, 1q; z8

r5

L3

P1;h9

p1, 0q; z9

l6

p1, 3q; z10

r6

R3

r2

R1

r1

Figure 7: CGRT equilibrium path is not SPNE path in PI Game
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Check now that all of the other strategies are interspected rationalizable. Start with Player 2’s
strategies first. Assuming that all of Player 1 strategies are interspected rationalizable, rL1s is a
best response to any assessment, which upon reaching h2, puts probability 1 on Player 1 playing
rl2 ˚s at the nodes th6, h7, h8, h9u. The strategy rR1 L2 L3s is a best response to any assessment,
which upon reaching h2, puts the first probability measure on rl2 r3 l4s and the second measure on
rr2 r5 l6s. Analogously, rR1 L2R3s and rR1R2R3s are interspected rationalizable. Check now that
for Player 1, any strategy is interspected rationalizable, provided the set of Player 2’s interspected
rationalizable strategies is

 

L1; R1 L2 L3; R1 L2R3; R1R2R3

(

. Indeed, as I will show below, rl1s
is interspected rationalizable as it is played in an interspected equilibrium. Any strategy of type
rr1 r2 ˚s is a best response to any assessment starting with rL1s as a first measure and rR1 L2 L3s as
a second measure. Any strategy rr1 l2 ˚s is a best response to any assessment starting with rL1s as
a first measure and rR1 L2R3s as a second measure. Q.E.D.

Property 2: Any SPNE of Γ does not involve the play of rl1s. Consider first the subgame
Γh5 starting from the node h5. Note that in any SPNE of Γh5 yielding to Player 2 more than
1 in expectation, Player 2 always plays rR3s. Thus, in any such SPNE the payoff to Player 1 is
precisely 1. Analogously, in any SPNE of Γh4 yielding to Player 2 more than 1, the payoff to
Player 1 is precisely 6. Take a look now at the subgame Γh3 . The claim is that in any SPNE of Γh4
yielding to Player 2 at least 2, the payoff to Player 1 is at least 3. Indeed, in any SPNE of Γh4 that
reaches h5 with positive probability, the payoff to Player 2 conditional on reaching h5 is at most 1.
Otherwise, Player 1 would receive 1 from playing rr2s, so that he would strictly prefer to play rl1s
and get at least 2. But conditional on reaching h4, the payoff to Player 2 is at most 3. Thus, in
any SPNE of Γh4 yielding at least 2 to Player 2, both statements are true: h4 is reached with at
least 50% probability, and at h4 Player 2 plays only L2. Thus, in any such SPNE, Player 1 receives
at least 3. Look now at the subgame Γh2 . From the above analysis it follows that in any an SPNE
of Γh2 , Player 1 receives the payoff of at least 3. But then in any SPNE of the full game Γ, at the
node h1, Player 1 strictly prefers to play rr1s rather than rl1s. Q.E.D.

Property 3: There exists an interspected equilibrium in Γ with the path equal to rl1s. For instance,
take the following equilibrium E . The equilibrium strategies are µ1 “ rl1s and µ2 “ rR1R2R3s.
The supporting cautious assessments are ρ1 “

 

1 ¨ R1R2R3; 1
4 ¨

`

L1 ` R1 L2 L3 ` R1 L2R3 `

R1R2R3

˘

; UpS2q
(

and ρ2 “
 

l1; 1 ¨ r2 r5 r6; 1 ¨ l2 l3 r4; UpS1q
(

, where UpSiq is the uniform dis-
tribution on the set of all Player i’s strategies. By Property 1, these assessments conform to fully
interspected hierarchies, so that E is indeed an interspected equilibrium. Q.E.D.

Thus, the path of the interspected equilibrium E cannot be represented as an SPNE path.

Lastly, one may argue that the equilibrium E may not be robust to seemingly natural impulses
guiding human behavior, such as gratitude and retribution. Indeed, take a closer look at the beliefs
of Player 2 in E . In particular, at h5, his decision to play rR3s is based on the expectation that
Player 1 plays rl5 r6s. But think about the subgame Γh5 from a different perspective. At the node
h5, Player 2 decides whether to give to Player 1 a good or a bad payoff. After observing his decision,
Player 1 then may reward or punish Player 2 at no cost. Then should not Player 2 reasonably expect

35



that Player 1 would reward him in the case of the good payoff for Player 1, and retaliate otherwise?
If so, the belief for Player 2 should be rr5 l6s, and playing rR3s becomes suboptimal. However, one
may still construct an example similar to E that may be robust to the behavior considerations of the
sort mentioned above. For instance, take the game Γ and add to the node h5 an outside option O3

leading to the payoffs p´100; 1
2q, i.e., a horrible outcome for Player 1. Would it still be reasonable to

expect retaliation from Player 1, even after Player 2 saved Player 1 by selecting the middle option
rR3s? The answer does not seem to be obvious anymore.

7 Discussion

In the previous sections, I provided a general exposition of the theory of interspection in games. In
this section, I discuss some additional issues related to interspection theory.

7.1 K-step interspected equilibrium

For any game Γ, fully interspected hierarchies are constructed by iteratively dismissing hierarchical
never-best responses. Let L be the interspection index of Γ, i.e., the number of steps needed to reach
fully interspected hierarchies. An interspected equilibrium then is a lexicographic Nash equilibrium
with a strongly independent common prior assessment conforming to the L-th step interspected
hierarchies. By analogy, for any K ă L one can consider K-step interspected equilibria, which
are lexicographic Nash equilibria with strongly independent common prior assessments conforming
to the K-th step interspected hierarchies. Informally, an equilibrium is a K-step interspected
equilibrium if it can survive K steps of interspection. The existence and the main properties of the
concept of K-step interspected equilibrium are the same as for interspected equilibrium.

Naturally, any interspected equilibrium is a K-step interspected equilibrium for any K ě 0,
but not otherwise. For instance, a 0-step interspected equilibrium is just a perfect equilibrium
in normal form. The concept of K-step interspected equilibrium may correspond to the following
story: Whenever logically possible, each player believes that his opponents play according to the
equilibrium. If not, then the player expects the opponents to conform to at least K levels of
interspection. An equilibrium that is pK ´ 1q-step but not K-step interspected cannot persist
in environments in which players have at least K levels of interspection and pK ´ 1q levels of
Common Knowledge of Respect and of Impeccability. In other words, the more interspection steps
a proposed equilibrium survives, the more robust it may be to strategic manipulations. In this sense,
an interspected equilibrium may be viewed as being perfectly robust to strategic manipulations.

Consider, for example, the Van Damme (1989) Money Burning game given in Figure 8. This
game has four Nash equilibrium outcomes:

`

rrbrs; rBrs
˘

,
`

rrsrs; rSrs
˘

,
`

3
4 ¨ rrbrs `

1
4 ¨ rrsrs;

1
4 ¨

rBrs `
3
4 ¨ rSrs

˘

, and
`

rlbls; rBls
˘

. The unique outcome supportable in interspected equilibrium
is
`

rrbrs; rBrs
˘

. The outcome
`

rlbls; rBls
˘

can be supported in a two-step equilibrium, but not in a
three-step equilibrium. The outcomes

`

rrsrs; rSrs
˘

and
`

3
4 ¨ rrbrs `

1
4 ¨ rrsrs;

1
4 ¨ rBrs `

3
4 ¨ rSrs

˘

are
supportable only in zero-step equilibria. Thus, the best outcome for Player 1

`

rrbrs; rBrs
˘

is the
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0, 0
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Sr

sr

r

P2 P2

(a) Extensive form Γ

BlBr Bl Sr SlBr Sl Sr
l bl 2, 1 2, 1 ´1, 0 ´1, 0
l sl ´1, 0 ´1, 0 0, 3 0, 3
r br 3, 1 0, 0 3, 1 0, 0
r sr 0, 0 1, 3 0, 0 1, 3

(b) Normal form GpΓq

Figure 8: The Battle of Sexes with Money Burning

unique equilibrium outcome surviving three steps of interspection.

7.2 Respect as a representation of ε-doubt Respect

The notion of Respect that is introduced in this paper may seem very extreme. Indeed, it requires
that respectful players treat lower interspection levels of opponents as infinitely less likely than
higher levels. One may wonder if Respect may be relaxed to allow for lower interspection levels
to be treated as still less likely, but not infinitely less likely. For instance, take Player i with
interspection level ki and interspection state-space Ωki

i . Let P be any classical probability measure
with full support on Ωki

i . Define ε-doubt Respect as follows:

Definition (ε-Doubt Respect). A probability measure P , with full support on the interspection
state-space Ωki

i , satisfies ε-doubt Respect for ε ą 0, if for any two states ω1, ω2 P Ωki
i such that the

interspection index of the interspection event containing ω1 is higher than the index of the event
containing ω2, the following holds:

P pω2q ă ε ¨ P pω1q

Thus, Respect may be viewed as the limiting case of ε-doubt Respect with εÑ 0. Indeed, using
the results from Appendix A.2, one can show that in finite games, if Player i’s preferences can be
represented by some ε-doubt Respect assessment Pε for any ε close to 0, then these preferences
can also be represented by a cautious lexicographic assessment P satisfying Respect. The reverse
is also true: if Player i’s preferences can be represented by a cautious lexicographic assessment P
satisfying Respect, then for some ε ą 0 they can be represented by an ε-doubt Respect assessment
Pε.

As in finite games, there are only finitely many strategies and only finitely many steps in the
construction of fully interspected hierarchies, for each finite game Γ, there exists a constant εpΓq
such that the result of Theorem 3 (Axiomatic Characterization) still holds if Common Knowledge
of Respect is replaced by Common Knowledge of εpΓq-doubt Respect. In other words, informally:

Interspected rationalizability is the prediction under Cautious Rationality, Sufficient In-
terspection, and Common Knowledge of the Game Form, of the Payoffs, of Impeccability,
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(c) Two player game Γ3

Figure 9: Neglect of own mistakes

and of Low-Doubt Respect.

7.3 Cautious behavior and players’ own mistakes

The model of interspection theory is one of the possible ways to model cautiously rational behavior
in games. Under interspection theory, players take into account the possibility that their opponents
may play any strategy. However, players are not cautious against their own trembling-hand mistakes.
Even if such mistakes occur, the assumption is that the players treat them as being so unlikely that
there is no practical reason to account for them in the future.

Consider, for example, the games in Figure 9. In the game Γ1 in Figure 9a, Player 1 selects
rAs, rBs, or rCs in one period. The set of interspected rationalizable strategies is tA,Bu. The
game Γ2 in Figure 9b is logically equivalent to Γ1. However, in Γ2, Player 1 makes his decision
in two periods; first he choses rAs or to wait rW s, and if he waits, he then further choses rBs or
rCs. Again, interspected rationalizability predicts logically the same set tA,WBu. Now, the game
Γ3 in Figure 9c is played by two players. The preferences of Player 1 and Player 2 are perfectly
aligned. For this game, the unique interspected rationalizable outcome, however, is tAu. The games
Γ1 and Γ2 are treated in interspection theory as equivalent: they are both played by Player 1, who
disregards the possibility of his own mistakes. In the game Γ3, however, a cautious Player 1 would
not wait rW s. He would not wait not because he thinks Player 2 might make a trembling mistake,
but because he thinks Player 2 might be irrational. Note also that in Γ2, the outcome tWBu can
be supported in interspected equilibrium. However, this outcome is not consistent with perfectly
cautious behavior: it seems that a truly cautious player should also factor in the possibility of
his own mistakes. Allowance for such kind of incautious behavior is the price to pay for keeping
interspection theory simple.

Finally, even though players completely disregard the possibility of trembling mistakes under
interspection theory, the theory still provides a guidance to a player in case he actually makes one.
Specifically, if he makes a mistake, a player does not have to change his assessment of the opponents’
behavior. Indeed, he is the only player who knows that his action was a mistake. Therefore, the
next time this player acts, he should simply calculate a best response continuation strategy to
his Bayesian updated assessment. Analogue of Theorem 1 guarantees sequential rationality of that
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continuation strategy. In other words, after an extremely unlikely one-time trembling-hand mistake,
the mistaken player should make a one-time correction.

7.4 Independence or correlation

In the analysis of games with more than two players an issue arises whether players’ assessments of
the opponents’ behavior should be modeled as independent or correlated.

Interspected rationalizability assumes that players form correlated assessments. Alternatively,
it is possible to restrict attention on strongly independent assessments. However, in that case the
sets of hierarchical best responses might be not computable.9 Yet, the notion of Respect entails
some weak requirement of independence: in an assessment satisfying Respect, the fact that one of
the players has a low interspection level does not affect the likelihood that other players have low
interspection levels.

Interspected equilibrium assumes that players’ behavior is strongly independent. Even the be-
havior of deviators, who are unaware of the equilibrium. This is despite the fact that fully inter-
spected hierarchies on deviators’ strategies are constructed with correlated interspected rationaliz-
ability. This may seem like a logical flaw. However, this construction is consistent if an interspected
equilibrium is understood as a description of an environment with independent players in which
deviators, who are unaware of the equilibrium, assess the game in a correlated fashion.

7.5 Rationality and bounded interspection

Bounded interspection is not always a deviation from perfect rationality. In fact, a rational sophisti-
cated player may find it sufficient to think only on few interspection levels. For instance, if a player
attributes a high probability to low interspection levels of his opponents, then thinking beyond a
few levels may be unnecessary, since additional interspection would not change his decision.

Under interspection theory, a sophisticated player believes in Common Knowledge of Respect.
He then desires to think on as many levels of interspection as will suffice to fully comprehend the
game. In environments with commonly respectful players, the desired level of interspection raises
as in an arms race. The opposite is also true: a player who does not deeply respect his opponents
may often decide not to overthink his play against them.

8 Conclusion

Interspection theory developed in this paper addresses the question of how sufficiently sophisticated
players will behave in games if suboptimal actions are interpreted by other players as evidence
of a player’s lower sophistication level, rather than inconsequential one-time trembling mistakes.
This theory employs the notion of cautious rationality, a version of Bayesian rationality against

9The issue is that one would need to check responses to all of the strongly independent assessments conforming to
a given product hierarchy.
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full-support lexicographic probability systems. Interspection theory has the following attractive
features:

1. interspection theory deals with general finite extensive-form games;

2. extensive-form games can be equivalently analyzed in their normal forms;

3. for finite games, players’ probability assessments are distributed on finite state-spaces;

4. the epistemic model of interspection theory admits a tractable reformulation in terms of
primitives of the game;

5. interspection theory incorporates both rationalizable behavior and equilibrium;

6. players’ behavior is admissible;

7. interspection theory captures a form of forward induction logic.

The main solution concepts in interspection theory are interspected rationalizability and inter-
spected equilibrium.

The notion of interspected rationalizability applies to environments with sufficiently interspect-
ing cautiously rational players, provided there is Common Knowledge of the Game Form, of the
Payoffs, of Impeccability, and of Respect. Interspected rationalizability coincides with iterative
admissibility in two-player games. In multi-player games, these two concepts are different. In per-
fect information games without chance nodes and without relevant ties, the unique interspected
rationalizable outcome coincides with the unique backward induction outcome.

Interspected equilibria correspond to situations in which, before observing any deviation, players
believe that their opponents follow the equilibrium strategy. Moreover, after observing a deviation,
players believe that their opponents play a strategy corresponding to the highest logically possible
interspection level. Interspected equilibria exist in general finite extensive form games and satisfy
invariance, (weak) sequential rationality, and admissibility. Also, in two-player games, interspected
equilibria satisfy forward induction: an interspected equilibrium of the full game corresponds to
an interspected equilibrium of the reduced game after a one-round elimination of all never-best
response strategies of one of the players. In multi-player games, interspected equilibria only satisfy
weak forward induction: an interspected equilibrium of the full game corresponds to an interspected
equilibrium of the reduced game after elimination of all interspected non-rationalizable strategies of
all of the players. In general, interspected equilibria are not subgame perfect.

Lastly, the concept of interspected equilibrium may be interpreted as a story of self-enforcing
social norms played uncoordinatedly in almost-homogeneous commonly respectful societies. In con-
trast, the concept of trembling-hand perfect equilibrium may serve as an approximation of self-
confirming pre-coordinated informal contracts.
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A Properties of Lexicographic Assessments

A.1 Lexicographic probability assessments

In this subsection, I show that lexicographic subjective probability assessments are well defined,
i.e., they do not depend on particular lexicographic representations of decision makers’ preferences.
The results in this subsection can be extended to the case of LPSs without full support on Ω.

Let ľ be cautious lexicographic preferences on acts in PΩ, where Ω is a finite state-space. Let
pu, ρq be some lexicographic representation of ľ, where u : P Ñ R is an in-state utility function
and ρ “ pλ1, λ2, ..., λKq is an LPS with full support on Ω. Let ľ

imp
ρ be the imputed preferences on

RΩ induced by representation pu, ρq.
The following lemma is similar to Lemma 2 from BBD1. It shows that ľ

imp
ρ does not depend

on particular representation pu, ρq of ľ:

Lemma 1. For any cautious lexicographic preferences on PΩ subjective probability assessment P rľs
defined as the inputed preferences ľ

imp
ρ on RΩ for some representation pu, ρq of ľ does not depend

on the particular representation pu, ρq.

Proof. Fix some in-state utility function u, and consider all representations for ľ of the form pu, ρq.
By (BBD) Axiom 3 (Nontriviality) and (BBD) Axiom 51 (State Independence), the image of the
set of all acts PΩ after taking in-state expectation by u contains some non-empty cube C in RΩ.
Preferences ľ then define uniquely projected preferences in C. We know that these preferences can
be represented by some LPS ρ. But then these preferences can be described as follows:

• in the first approximation, C is divided by some parallel hyper-spaces into first-order indiffer-
ence surfaces;

• in the second approximation, each first-order indifference surface is divided by parallel hyper-
spaces into second order indifference curves;

• and so on.

In other words, the induced preferences in C can be represented as a geometrical object uniquely
pinned down by ľ. This object (collection of indifference surfaces) can be extended to the whole
RΩ by translation. Note that for fixed u any other LPS representing the preferences on C must
generate the same geometrical object, i.e. the same inputed preferences on RΩ.

To finish the proof it remains to notice that u is unique up to positive affine transformation,
and the geometrical object remains invariant to translations and positive proportional rescaling.
Q.E.D.

A.2 Lexicographic assessments and test sequences

In this subsection, I relate lexicographic preferences to test sequences.
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Following BBD2, nested convex combination rl ρ is defined for any LPS ρ “ pλ1, λ2, ..., λKq

and vector r P p0, 1qK´1 as the following measure on Ω:

rl ρ “ p1´ r1qλ1 ` r1

“

p1´ r2qλ2 ` r2rp1´ r3qλ3 ` ...` rK´1λks...
‰

For any vector x P RΩ and nested convex combination rl ρ define the expectation Erl ρpxq of
x against measure rl ρ as usual:

Erl ρpxq “
ÿ

ωPΩ

`

rl ρ
˘

pωq ¨ xω

Limiting nested convex combination
 

rpnql ρ
(

nPN is a sequence of nested convex combinations
with rpnq Ñ 0, as nÑ8.

The following lemma is similar to Proposition 1 from BBD2 and it states that lexicographic
preferences on RΩ induced by LPS ρ coincide with preferences induced by the tail of any limiting
nested convex combination rpnql ρ:

Lemma 2. Let ρ be LPS distributed on finite state-space Ω, rpnql ρ be some limiting nested com-
bination, and ľ

imp
ρ be imputed preferences induced by ρ on RΩ. Then for any vectors x, y P RΩ the

following two equivalences hold:

1.
´

x „impρ y
¯

Ø

´

@n P N : Erpnql ρpxq “ Erpnql ρpyq
¯

2.
´

x ą
imp
ρ y

¯

Ø

´

DM P N : @n ąM : Erpnql ρpxq ą Erpnql ρpyq
¯

Proof. Part 1 is trivial. Part 2 is just a slightly restated version of Proposition 1 from BBD2.

The following is a restated version of Proposition 2 from BBD2.

(BBD2) Proposition 2. For any sequence ppnq of nonnegative measures on a finite state-space Ω

there exists a subsequence ppnmq, which can be represented as a limiting nested convex combination
ppnmq “ rpmql ρ for some LPS ρ “ pλ1, λ2, ..., λKq and r P p0, 1qK´1 with rpnq Ñ 0.

The above can be informally summarized as follows:

Statement. From any test sequence of nonnegative measures on finite state-space Ω one can select
a subsequence, which in the limit induces preferences on RΩ equivalent to preferences induced by
some LPS.

Note also that if we are interested in player’s lexicographic preferences over the set of his strate-
gies in a finite game, then these preferences can be represented by some nested convex combination
rl ρ without going to the limit rpnq Ñ 0. This fact is shown in BBD2 Proposition 1. Also, a
similar idea implies for finite games the following corollary :
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Corollary 2. Suppose that in a finite game Player i’s preferences over his strategies are represented
by LPS assessment ρ on the set of his opponents’ strategy profiles S´i. Then these preferences can
also be represented by some LPS ρ̃ on S´i, such that consecutive measures in ρ̃ have increasing
support.

A.3 Infinitely more likely events

In this subsection, I provide a formal treatment of the “infinitely more likely” relation.
Let ľ be cautious lexicographic preferences over acts in PΩ, where Ω is a finite state-space. Let

pu, ρq be some lexicographic representation of ľ, where u : P Ñ R is an in-state utility function
and ρ “ pλ1, λ2, ..., λKq is an LPS with full support on Ω. Let P rľs be the induced subjective
probability assessment on RΩ.

For each nonempty event S Ď Ω define ρS as the beginning of ρ, which covers S. I.e., ρS “

pλ1, ..., λtq, with t “ min
 

n P N : S Ď
t
Ť

i“1
supptλiu

(

. For any two disjoint nonempty events A and

B say that A is infinitely more likely in P rľs than B, symbolically A "P rľs B, if elements in B
start getting covered by ρ only after A is covered:

´

A "P rľs B
¯

Ø

´

supptρAu XB “ H
¯

Alternative way to think about P rľs is the following. Take any LPS representation ρ of P rľs.
Then ρ induces complete weak order on elements of Ω : ω1 precedes ω2, if ω1 is covered by ρ strictly
before ω2. Event A then is infinitely more likely than event B if and only if each element in A

precedes each element in B. Such interpretation immediately implies the following two properties
of P rľs:

´

A "P rľs C
¯

&
´

B "P rľs C
¯

ñ

´

AYB "P rľs C
¯

´

A "P rľs B
¯

&
´

A "P rľs C
¯

ñ

´

A "P rľs B Y C
¯

Of course, for "P rľs to be well defined, it should not depend on particular LPS representation
ρ of P rľs. One way to show this is to restate "P rľs directly in terms of the original preferences ľ.
In order to do this additional definitions will be useful.

I say that for some nonempty event A Ď Ω act z P PΩ A-dominates act z1 P PΩ if for all
ω P A: zw ľ z1w, and for at least one ω P A: zw ą z1w. In that case I write z DomApľq z

1. Robust
preferences conditional on event A are defined as follows:

Definition (Robust Preferences). Given cautious preferences ľ on PΩ and some non-empty finite
event A Ď Ω, the robust preferences conditional on A over acts in PΩ, symbolically ąR

A , are defined
as follows:

43



@x, y P PΩ :
´

x ąR
A y

¯

Ø

´

Dz, z1 P PΩ Dα P p0, 1q :
`

z DomApľq z
1
˘

^
`

α¨x`p1´αq¨z1 ąA α¨y`p1´αq¨z
˘

¯

Informally, x is robustly better than y on A if x is better than y plus some act "positive" on A.
Robust preferences have a representation derived from a lexicographic representation of the

original preferences:

Lemma 3. Suppose that ľ are cautious lexicographic preferences over acts PΩ, where Ω is a finite
state-space. Let pu, ρq be any lexicographic representation of ľ, and A a nonempty event in Ω. Then
the robust preference ąR

A on PA have lexicographic representation pu, ρApAqq, where ρApAq is the
Bayesian update of ρA conditional on A.

Proof. First, suppose that for two acts x, y P PA: x ąpu,ρApAqq y. Let ω P A be a state, which is
covered last by ρ among the elements in A. Take two acts z, z1 P PA such that zω̂ “ z1ω̂ for all ω̂ P A
with ω̂ ‰ ω, and z ąω z

1. Then z DomApľq z
1. Also, for α P p0, 1q sufficiently close to 1 it will be

that α ¨ x` p1´ αq ¨ z1 ąA α ¨ y ` p1´ αq ¨ z. Thus, x ąR
A y.

Second, suppose that for two acts x, y P PA: x „pu,ρApAqq y. Then, for any two acts z, z1 P PA

with z DomApľq z
1 and any α P p0, 1q we will have that α¨x`p1´αq¨z1 ăpu;ρApAqq α¨y`p1´αq¨z,

and hence α ¨ x` p1´ αq ¨ z1 ăA α ¨ y ` p1´ αq ¨ z. Thus, it will be not the case that x ąR
A y.

Therefore, pu, ρApAqq indeed represents ąR
A . Q.E.D.

Lexicographic representation of robust preferences allows to define “infinitely more likely” rela-
tion in terms of the original preferences:

Proposition 1 (Invariant Definition). Suppose that ľ is cautious lexicographic preferences over
acts PΩ, where Ω is a finite state-space. Let A,B Ď Ω be two non-empty disjoint events. The
following are equivalent:

• A is infinitely more likely than B according to ľ: A "P rľs B;

• @x, y P PΩ :
´

x ąR
A y

¯

ùñ

´

x ąR
A\B y

¯

.

The proof of Proposition 1 is left as an exercise.

B Proofs

B.1 Proof of Theorem 1 (Normal-Form Sufficiency)

Proof. The proof is given for the simpler case of games without chance nodes. The idea of this proof
can be directly extended to the general case.

Suppose that Player i initially forms a cautious subjective assessment P i on the strategy profiles
of his opponent. Let σ1 be an initial best response to P i. We need to show that σ1 remains a best
response to P h

i in all of Player i’s σ1-relevant information sets h.
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Suppose, on the contrary, that there exists σ1-relevant information set h for Player i and some
continuation strategy σ̃1

h that is strictly better against P h
i than the continuation of σ1. Consider

then strategy σ̂1 in the initial normal form that is obtained from σ1 by replacing the actions after
h to the actions prescribed by σ̃1

h. Then σ̂1 is strictly better than σ1 against P i, as P i has full
support. Thus, σ1 is not an initial best response. Contradiction. Q.E.D.

B.2 Proof of Theorem 2 (Respect in Strategy Form)

Proof of Part 1. Consider any interspecting type ti “ pki;σi; Ωki
i ;P iq constructed upon a product

hierarchy H´i and satisfying Respect. We need to show that P i can be equivalently represented
by some cautious assessment P̃ i on S´i conforming to H´i. Indeed. Take any LPS representation
ρi “ pλ1, ..., λmq of P i. Take any measure λj from ρi and construct the combined measure λ̃j on S´i
that is obtained from λj by merging probability masses corresponding to the same strategy profiles.
Consider the resulting LPS ρ̃i “ pλ̃1, ..., λ̃mq. By CDSA, ρ̃i and ρi induce the same preferences on
Player i’s strategies.

It remains to show that P̃ i conforms to H´i. Consider any two strategy profiles σ´i and σ̂´i

such that IndH´ipσ
´iq ą IndH´ipσ

´iq. Return to the assessment P i on the interspection state-
space Ωki

i . Consider the interspecting event EIndH´i
pσ´iq. As type ti satisfies Respect, a copy of σ´i

from EIndH´i
pσ´iq is covered by an LPS representation ρi of P i strictly before all the copies of σ̂´i.

But then in ρ̃i, the profile σ´i is covered strictly before σ̂´i. Thus, ρ̃i conforms to H´i. Q.E.D.

Proof of Part 2. Consider any cautious assessment P̃ i on S´i conforming to a product hierarchy
H´i. We need to find some interspecting type ti “ pki;σi; Ωki

i ;P iq, which is constructed upon H´i,
satisfies Respect, and induces the same preferences on Si as P̃ i. Fix any LPS ρ̃i representing P̃ i.

I now provide an algorithm, which takes as input an LPS ρ̃i “ pλ̃1, ..., λ̃lq with full support
on S´i conforming to hierarchy H´i, and produces as output an LPS ρi with full support on the
interspection state-space Ωki

i constructed upon H´i, such that ρi induces the same preferences on
Player i’s strategies and ρi satisfies Respect.

Algorithm:
The algorithm stores data in two stacks: Input Stack and Output Stack. During the work of the

Algorithm Input Stack will be filled with measures from ρ̃i “ pλ̃1, ..., λ̃mq, one by one. In parallel,
Output Stack will be filled with measures pν1, ..., νlq, which will eventually comprise the resulting
LPS ρi.

Recall that interspection state-space Ωki
i is the disjoint union of kN´1

i interspection events Ek,
for all multi-indices t0uN´1 ď k ď tki ´ 1uN´1.

During the work of the Algorithm each of the interspecting events will be exactly in one of three
possible states: Intact, Active, or Treated. At the beginning all events are Intact. As the Algorithm
proceeds each of the events will be changing its status to Active and then Treated. At the end all
events will be Treated. Also, once some event becomes Treated, it remains Treated forever.

At any during the work of the Algorithm the condition for interspecting an event to remain
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Intact is precisely the following:

• interspecting event Ek remains Intact if and only if at the current stage there is at least one
interspecting event Ek1 with higher index, k1 ą k, which is still not Treated.

That is for any Active or Treated event all events with higher interspection indices are Treated.
An LPS ρ distributed on S´i (not necessary with full support) covers interspecting event Ek

if all strategy profiles from Ek are covered by the support of ρ. Note, that if an interspection
state-space is constructed upon some product hierarchy and ρ covers some interspecting event Ek,
then ρ also covers all interspecting events with indices higher than k.

The Algorithm proceeds in large steps. Each large step consists of several small steps as follows:

Beginning of the Algorithm
Step 0: Make the highest index interspecting event Epki´1;ki´1;...;ki´1q Active. Empty Input and

Output Stacks.
Step j, for all 1 ď j ď m, where m is the number of measures in input LPS ρ̃i:

1. add λ̃j to Input Stack, so as Input Stack becomes ρpjq “ pλ̃1, ..., λ̃jq;

2. denote through Cpjq the set of interspecting events covered by ρpjq

3. repeat the following Procedure, until all events in Cpjq become Treated:

(a) calculate which events are currently Active;

(b) for s “ 1 to j:

• take λ̃s;

• construct measure ν on Ωki
i by splitting each probability mass from λs equally among

all of the copies of corresponding strategy profile in events, which are currently Active
or Treated;

• add ν to the end of Output Stack

(c) change the status of all currently Active events in Cpjq to Treated;

Last Step: After the end of Step m return as output the LPS contained in Output Stack.
End of the Algorithm

Two things might potentially go wrong during the work of the Algorithm.
First, at some stage during Step j, 3 (b) it may become impossible to find some strategy

profile from λ̃s inside of currently Treated or Active events. Suppose that this happens. Then, it
must be precisely at the measure λ̃j , as in the previous Step pj ´ 1q the Algorithm was able to
find combinations in events which were Active or Treated. These events are, moreover, Active or
Treated right now. Let σ´i be a strategy profile, which is covered by λ̃s, but does not belong to
any currently Active or Treated event. Take the highest index event that still contains σ´i. Let
this event be Ek. As this event is currently Intact, there exist event Ek1 with higher index, which is
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not yet Treated. By the construction of the Algorithm, Ek1 then was not covered by the pj ´ 1q-th
step Input Stack LPS. Thus, the strategy profile σ´i with index k is covered by ρ̃i no later than
some strategy profile σ̂´i from Ek1 . This contradicts to ρ̃i conforming to H´i. Thus, this problem
cannot occur during the work of the Algorithm.

Second, at some Step j the repetition of Procedure 3 (a,b,c) might freeze. Note, however, that
for any event covered by ρpjq, the events with higher indices are also covered by ρpjq. Thus, if after
a repetition of the Procedure there are events in Cpjq, which are not yet Treated, then at least
one of those events is Active. Thus, after each repetition of the Procedure at least one event in
Cpjq becomes newly Treated. As there are finitely many events in Cpjq, the Procedure stopes after
finitely many steps.

Therefore, the Algorithm will work well for any input LPS conforming to a product hierarchy.

To finish the proof of Part 2 it remains to notice that:

• after each Step j the Output Stack LPS induces preferences of Si, which are the same as
those induced by ρpjq “ pλ̃1, ..., λ̃jq. Thus, at the end the output LPS ρi induces the same
preferences as ρ̃i;

• each interspecting event becomes Treated precisely at the moment it is covered by the output
LPS;

• eventually the whole Ωki
i is covered by ρi. I.e., ρi corresponds to some interspecting type

t “ pki;σ
i; Ωki

i ;P iq;

• moreover, such interspecting type t satisfies Respect, as. by construction, lower index in-
terspecting events begin being covered in ρi (i.e., become Active) only after all higher index
events are covered in ρi (i.e., become Treated).

Q.E.D.

B.3 Proof of Theorem 3 (Axiomatic Characterization)

Consider any finite extensive-form game Γ with the normal form GpΓq. Suppose Axioms 1-6 hold.
Prove first that CSDA is satisfied. Indeed, under Cautious Rationality, the fact that Player i

knows his own Impeccability and the Game Form, implies that the states in his subjective state-space
are labeled by his opponents’ strategy combinations (chance-node realizations do not label states
as chance nodes are viewed as objective lotteries). Also, the fact that Player i knows his payoffs is
interpreted as follows. First, Player i knows his in-state objective expected utility function. Second,
he thinks that any of his strategies generates the same objective lottery in states with the same
label. Thus, CSDA holds for Player i.

Prove next the following Statement:

BpHk´iq is the set of strategies that can be played by a level-k interspecting Player i.
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Indeed:
Suppose Player i has level-1 of interspection. By CSDA, his assessment can be represented

as a full-support LPS on his opponents’ strategy profiles. Therefore, he plays some strategy from
BpH0

´iq “ BpS´iq. Also, by definition of hierarchical best response set, any strategy from BpH0
´iq

can potentially be played by a level-1 interspecting Player i.
Suppose now that Player i is level-2 interspecting. He considers events corresponding to his

opponents having interspection levels 0 and 1. As he knows their Impeccability, he additionally
infers that for j ‰ i, a level-1 interspecting Player j can play strategies precisely from BpH0

´jq.
Player i respects his opponents. By Theorem 2, his assessment then is equivalent to an assessment
conforming to H1

´i. Thus, Player i plays some strategy from BpH1
´iq. Again, by definition of

hierarchical best response set and by Theorem 2, any strategy from BpH0
´iq can potentially be

played by a level-2 interspecting Player i.
Suppose now that Player i is level-3 interspecting. He considers events corresponding to his

opponents having interspection levels 0, 1, 2. Player i knows their Impeccability and knows that
they also know the Impeccability of their opponents. Also, Player i knows that his opponents respect
their opponents. Thus, he additionally concludes that for j ‰ i, a level-2 interspecting Player j
can play strategies precisely from BpH1

´jq. Player i respects his opponents. By Theorem 2, his
assessment then is equivalent to an assessment conforming to H2

´i. Thus, he plays some strategy
from BpH2

´iq. Also, by the same logic as above, any strategy from BpH2
´iq can potentially be played

by a level-2 interspecting Player i.
Repeating this argument for higher levels of interspection and using more levels of Common

Knowledge of Respect and of Impeccability, we will inductively prove the above Statement.
In particular, the Statement implies, that under Sufficient Interspection, the set of strategies

the players can play is precisely the set of interspected rationalizable strategies. Q.E.D.

B.4 Proof of Theorem 4 (Iterative Admissibility)

Consider a two-player game Γ with interspection index L. Fully interspected hierarchies are
pH81 ,H82 q “ ptHj

1u
0
j“L, tH

j
2u

0
j“Lq. It is sufficient to show that for each i “ 1, 2, and l ě 0, the

set Hj
i is precisely the set of Player i’s strategies surviving j rounds of WDS elimination. The prove

is by induction:
For l “ 0 this is true.
Suppose this fact holds for all l ďM . Prove for l “M ` 1.
By definition, the set H l

i is the hierarchical best response to H
l´1
i . I.e., H l

i is the set of strategies
which are best responses to some full-support LPS assessments conforming to Hl´1

i “ tHj
´iu

0
j“l´1.

Call an LPS assessment ρi a simple assessment on Hl´1
´i , if ρi is a concatenation of LPS assess-

ments with full supports on H l´1
´i ; H l´2

´i ,..., H0
´i.

In finite games, a strategy is a best response to an LPS conforming to Hl´1
´i “ tH

j
´iu

0
j“l´1, if

and only this strategy is a best response to some simple LPS on Hl´1
´i .

Suppose that σi is a best response to a simple LPS pρl´1
i ; ...; ρ0

i q on H
l´1
´i . Then, σ

i is a Hl´1
´i -best
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response. By induction assumption, σi survives l ´ 1 rounds of WDS elimination. Yet, σi is a best
response to ρl´1. Thus, σ is not weakly dominated on H l´1

´i . Then, σ survives l rounds of WDS
elimination.

On the other hand, suppose σi survives l rounds of WDS elimination. Then, there exist a full
support measure ρl´1

i on Hl´1
´i such that σi is a best response to ρl´1

i . By induction assumption,
there also exists a simple LPS pρl´2

i ; ...; ρ0
i q on H

l´2
´i such that σi is a best response to it. Then, σi

is a best response to pρl´1
i ; ...; ρ0

i q. Thus, σ
i is a Hl´1

´i -best response. Q.E.D.

B.5 Proof of Theorem 5 (Backward Induction)

Note first that if a PI game Γ has no relevant ties, then interspected rationalizability predicts the
unique terminal outcome (c.f. Battigalli (1997), Lemma 5). Indeed, consider the tree IpΓq consisting
of all the nodes reachable under the play of interspected rationalizable strategies. If IpΓq has no
decision nodes with more than one action, then it has the unique terminal outcome. Suppose there
are adecision nodes with at least two actions. Call such nodes nontrivial. Consider any nontrivial
decision node h in IpΓq such that all of his successors in IpΓq are trivial. The player acting in h then
with sufficiently high interspection level predicts the outcomes reachable after each of his actions
at h. As the game has no relevant ties, he will strictly prefer only one action. This contradict the
definition of IpΓq.

Now, as any interspected equilibrium implies interspected rationalizable outcome, it is sufficient
to show that in any PI game Γ without chance nodes and without relevant ties, the outcome of any
interspected equilibrium is the unique backward induction outcome.

By Corollary 3 from Appendix B.8, any Kohlberg and Mertens (1986)’s fully stable set of a game
contains at least one interspected equilibrium. But, as is shown in the proof of Battigalli (1997)’s
Theorem 4, in PI games without relevant ties the unique fully stable outcome coincides with the
unique backward induction outcome. Q.E.D.

B.6 Proof of Theorem 6 (Equilibrium Existence, N “ 2)

Introduce first the notion of constrained equilibrium:

Definition (Constrained Equilibrium). In a finite two player extensive-form game of perfect recall
Γ a pair of randomized strategies pµ1, µ2q and a pair of LPS assessments pρ1, ρ2q is called constrained
equilibrium if:

1. each strategy in the support of µi is a constrained best response against assessment ρi, where
the choice is constrained to the set of interspected rationalizable strategies RipΓq;

2. first beliefs in the assessments coincide with the strategies actually played by the opponent:

λi1 “ µ´i, for i “ 1, 2
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3. assessments pρ1, ρ2q conform to fully interspected hierarchies pH82 ;H81 q.

The difference between constrained and interspected equilibrium is that in a constrained equi-
librium the players are only allowed to choose among interspeced rationalizable strategies.

Lemma 4. Any constrained equilibrium is interspected equilibrium.

Proof. Let pµ1, µ2; ρ1, ρ2q be a constrained equilibrium. We need to show that any σi P supppµiq is
a best response to ρi. Suppose not. Then there exist σ̃i P Si such that σ̃i ąρi σ

i. But since σi is
a best response to ρi among rationalizable strategies, then σ̃i R Ri. On the other hand, σ̃i is not
a best response to ρi, because ρi conforms to H´i. Thus, there exists σ̂i P Ri such that σ̂i ąρi σ̃

i.
This leads to σ̂i ąρi σ

i. Contradiction. Q.E.D.

Thus, to prove Theorem 6 we only need to show that for any finite two-player extensive-form
game of perfect recall, there exists at least one constrained equilibrium.

Consider any normal form G. Consider the pair of fully interspected hierarchies pH81 ;H82 q.
Let H8i “ tHj

i u
0
j“L, for i “ 1, 2, where L is the interspection index of the game G. Take ε ą 0.

Consider the constrained game Gpεq, in which players are only allowed to play randomized strategies
pµ1, µ2q supported on rationalizable sets pR1pGq, R2pGqq “ pHL

1 , H
L
2 q. The payoffs in Gpεq for

the strategy pair pµ1, µ2q P ∆pR1q ˆ ∆pR2q are defined as payoffs in G for the strategy pair
`

µ1pεq, µ2pεq
˘

P ∆pS1q ˆ∆pS2q, where:

µipεq “
`

1´ δipεq
˘

¨ µi `
0
ÿ

j“L

εL´j`1 ¨

ˇ

ˇ

ˇ
Hj
i

ˇ

ˇ

ˇ
¨ UpHj

i q

with
ˇ

ˇ

ˇ
Hj
i

ˇ

ˇ

ˇ
being the number of elements in Hj

i , UpH
j
i q being the uniform distribution on Hj

i , and

δipεq “
0
ř

j“L

εL´j`1 ¨

ˇ

ˇ

ˇ
Hj
i

ˇ

ˇ

ˇ
. For sufficiently small ε ą 0, the game Gpεq is well defined.

Take a sequence εn Ñ 0` such that all Gpεnq are well defined. By Nash’s theorem, for each
n P N, there exists at least one Nash equilibrium E

`

Gpεnq
˘

in Gpεnq. Select one En for each n. From
the sequence of En select a converging subsequence En1 Ñ E . Then, E is a Nash equilibrium in G.

Show now that E “ pµ1, µ2q corresponds to a constrained equilibrium pµ1, µ2; ρ1, ρ2q of G.
Consider the sequence of full-support measures

`

µ1pεn1q, µ
2pεn1q

˘

corresponding to En1 . By Propo-
sition 2 from BBD2, p. 84, we can further select a subsequence tn2u such that there is an LPS
ρ̂1 “ pp

1
1, ..., p

1
K1
q with full support on S2 and that µ2pεn2 q can be written as a nested convex com-

bination µ2pεn2 q “ r1pn
2

ql ρ̂1 for a sequence r1pn
2

q P p0, 1qK1´1 with r1pn
2

q Ñ 0. Applying this
proposition one more time we can further select a subsequence tn3u, such that there is an LPS
ρ̂2 “ pp

2
1, ..., p

2
K2
q with full support on S1 and that µ1pεn3 q can be written as a convex combination

µ1pεn3 q “ r1pn
3

ql ρ̂1, for a sequence r2pn
3

q P p0, 1qK2´1 with r2pn
3

q Ñ 0.
Consider the subsequence tn3u. Note first that any strategy σi P supppµiq is a constrained

best response to all ripn
2

ql ρ̂i for sufficiently large n3. As ripn
3

q Ñ 0, the strategy σi then is a
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constrained best response to ρ̂i. Thus, E can be represented as a constrained lexicographic Nash
equilibrium pµ1, µ2; ρ̂1, ρ̂2

˘

.
It remains to show that for each i “ 1, 2, the LPS ρ̂i conforms to fully interspected hierarchy

H´i. Suppose that a strategy a´i P S´i has a higher hierarchical index in H´i than a strategy
b´i P S´i. By definition of µ´ipεn3 q, for any n

3 we get µ´ipεn3 qrb´is ă εn3 ¨ µ
´ipεn3 qra´is. Thus:

µ´ipεn3 qrb´is

µ´ipεn3 qra´is
Ñ 0,when n3 Ñ `8

But since µ´ipεn3 q “ ripn
3

ql ρ̂i with ripn
3

q Ñ 0, the strategy a´i is covered in ρ̂i strictly earlier
than b´i. Q.E.D.

B.7 Proof of Theorems 7 and 9 (Equilibrium Properties)

Sequential Rationality. Any strategy played in an interspected equilibrium is a best response to a
cautious assessment. Thus this strategy is initially rational. Sequential rationality of this strategy
then follows from Theorem 1.

Admissibility. Any strategy played in an interspected equilibrium is a best response to a full-
support LPS, an therefore is not weakly dominated.

Invariance. Note that if Γ and Γ1 have the same reduced normal form, then GpΓ1q may be
obtained from GpΓq by a finite sequence of the following four operations: Add/Delete a strategy
payoff-equivalent to a given strategy in the game, Add/Delete a strategy payoff-equivalent to a
convex combination of two strategies in the game. Thus, to prove that invariance holds, we only need
to check that for any interspected equilibrium of Γ, there will be an outcome-equivalent interspected
equilibrium in game Γ1 obtained from Γ by a one-time application of one of the above operations.

Let Γ be an N -player game with normal form GpΓq. Let E be an interspected equilibrium of
Γ represented by a strongly independent common prior cautious assessment P on players’ strategy
profiles. Check one-by-one that for any of the mentioned above four operations there will be an
interspected equilibrium in the new game Γ1 inducing the same distribution over payoff-outcomes:

Case 1: Add a payoff-equivalent strategy. By strong independence of P , there exists an LPS
representation ρ of P and a limiting nested convex combination

 

rpnql ρ
(

nPN with rpnq Ñ 0 such

that for each n, the measure rpnql ρ “
N
Ś

i“1
pipnq is a product measure on S “

N
Ś

i“1
Si. Suppose that

Γ1 is obtained from Γ by adding a duplicate σ̂i for some strategy σi of Player 1. For each measure

rpnql ρ, construct a new measure {rpnql ρ on S 1 “
N
Ś

i“1
S 1i by taking probability mass pipnqpσiq and

splitting it in half between σi and σ̂i. Take the resulting limiting sequence. By Proposition 2 from
BBD2, select a subsequence n1 such that {rpn1ql ρ, with n ě 1, can be represented as a limiting
nested combination

 

r1pn1ql ρ1
(

nPN. Then, the assessment P 1 on the set of strategy profiles, induced
by ρ1 in the new game Γ1, satisfies strong independence and conforms to fully interspected hierarchies.
Thus, P 1 represents an interspected equilibrium with the same distribution over payoff-outcomes as
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the equilibrium represented by P .
Case 2: Delete a payoff-equivalent strategy. The proof is similar to Case 1.
Case 3: Add a strategy payoff-equivalent to a convex combination of two strategies. The proof

is similar to Case 1. Only now one has to be careful to guarantee that the new assessment conforms
to fully interspected hierarchies of the new game: a convex combination of two strategies may have
interspection index lower than the smallest interspection index of those two strategies.

Case 4: Delete a strategy payoff-equivalent to a convex combination of two strategies. This case
is similar to Case 2.

Forward induction. Let Γ be a two-player game with normal form GpΓq. Let Γ1 be the
simplified game obtained from Γ by deleting all weakly dominated strategies of Player ´i. Let
E “ pµ1, µ2; ρ1, ρ2q be an interspected equilibrium of Γ. Take the LPS ρ̂i, the beginning of ρi that
covers all strategies in BpH0

i pΓqq. Note that ρ̂i has full support on S 1´i in Γ1. But then ρ̂i conforms to
H8´ipΓ1q. Thus, E 1 “ pµi, µ´i; ρ̂i, ρ´iq is the interspected equilibrium induced by E in the simplified
game Γ1.

Weak Forward Induction. Consider a multi-player game. Let P be a common prior assessment
corresponding to an interspected equilibrium of the full game. Represent P by a limiting convex
combination in which each measure is a product measure. Selecting subsequences if necessary,
make this limiting nested convex combination consist of products of measures that are limiting
nested convex combinations themselves. Truncate each of those measures by considering only the
beginnings of LPSs covering rationalizable strategies. Notice that the product of these truncated
limiting nested convex combinations corresponds to an interspected equilibrium of the reduced
game. Q.E.D.

B.8 Proof of Theorem 8 (Equilibrium Existence)

The proof of equilibrium existence for the case of two-player games given in Appendix B.6 may be
directly adapted for the current case. However, I present here a slightly different and less direct
version of the proof. This version then is used in the proof of Theorem 5.

Consider an N -player extensive-form game of perfect recall Γ with normal form G. Consider
fully interspected hierarchies pH81 ;H82 q. Let H8i “ tHj

i u
0
j“L, for i “ 1, ..., N , where L is the

interspection index of the game G.
For any sufficiently small ε define simple ε-perturbation GSpεq of the game G by perturbing

slightly the strategies in G similar to how it is done in the proof of Theorem 6. Namely, each
strategy σi of each Player i in game G is replaced in GSpεq by strategy σ̃ipεq:

σ̃ipεq “
`

1´ δipεq
˘

¨ σi `
0
ÿ

j“L

εL´j`1 ¨

ˇ

ˇ

ˇ
Hj
i

ˇ

ˇ

ˇ
¨ UpHj

i q

with
ˇ

ˇ

ˇ
Hj
i

ˇ

ˇ

ˇ
being the number of elements in Hj

i , UpH
j
i q being the uniform distribution on Hj

i , and
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δipεq “
0
ř

j“L

εL´j`1 ¨

ˇ

ˇ

ˇ
Hj
i

ˇ

ˇ

ˇ
.

Thus, in any simply perturbed gameGSpεq all strategies correspond to full-support perturbations
of strategies in the original game.

Theorem 8 follows immediately from the following lemma. This lemma is also is useful in the
proof of Theorem 5:

Lemma 5. Let tGSpεnqu be a sequence of simple perturbations of G with εn Ñ 0. Let tEnu be any
sequence of Nash equilibria of the corresponding games tGSpεnqu. Then tEnu contains a subsequence
tEñu converging to an interspected equilibrium of the unperturbed game G.

Proof. The proof is similar to the proof from Appendix B.6. Therefore, I only present a sketch here.
Take any sequence of Nash equilibria tEnu of simply perturbed games tGSpεnqu with εn Ñ 0.

Each En induces an independently mixed-strategy profile µn “
N
Ś

i“1
µin P ∆0

`

N
Ś

i“1
Si
˘

in G. Select a

subsequence n1 such that tµ1nu can be represented as a limiting nested convex combination corre-
sponding to a strongly independent common prior assessment P . Select consecutively for each of
the players further subsequences such that the players’ marginals are also represented by limiting
nested convex combinations. Denote the final subsequence tµñu.

Consider tµñu. For each Player i denote through Di the set of strategies that are selected in
tEñu infinitely often. Prove now that all strategies in Di, i “ 1, ..., N are interspected rationalizable.
Indeed, suppose not. Take a strategy with the lowest interspection index among all strategis from
all of Di, i “ 1, ..., N . Let this strategy be σi. Let the index of σi be ki ă L, where L is the
interspection index of the game. Note then that in the limiting sequence tµ1nu the marginal of
Player i conforms to the ki-step interspected hierarchy. As σi is a best response infinitely often to
assessments from tEñu , σi is a hierarchical best response to Hki´i. But then the index of σi is at
least ki ` 1. Contradiction.

Thus, all strategies selected in tEñu infinitely often are interspected rationalizable. But then the
limiting assessment P conforms to fully interspected hierarchies. Also P ’s first measure µ8, the
limit of tµñu, is a best response to P . I.e., the sequence tEñu converges to pµ8;P q, an interspected
equilibrium of G. Q.E.D.

Lemma 5 has an immediate corollary:

Corollary 3. Any Kohlberg and Mertens (1986)’s fully stable set of the game contains at least one
interspected equilibrium.

53



References

Anscombe, F. J. and R. J. Aumann (1963). A definition of subjective probability. The Annals of
Mathematical Statistics 34 (1), 199–205.

Arieli, I. and R. J. Aumann (2013). The logic of backward induction. Working Paper.

Aumann, R. J. (1987). Correlated equilibrium as an expression of bayesian rationality. Economet-
rica 55 (1), 1–18.

Battigalli, P. (1996). Strategic rationality orderings and the best rationalization principle. Games
and Economic Behavior 13, 178–200.

Battigalli, P. (1997). On rationalizability in extensive games. Journal of Economic Theory 74,
40–61.

Battigalli, P. and M. Siniscalchi (1999). Hierarchies of conditional beliefs and interactive epistemol-
ogy in dynamic games. Journal of Economic Theory 88, 188–230.

Battigalli, P. and M. Siniscalchi (2002). Strong belief and forward induction reasoning. Journal of
Economic Theory 106, 356–291.

Bernheim, D. B. (1984). Rationalizable strategic behavior. Econometrica 52 (4), 1007–1028.

Blume, L., A. Brandenburger, and D. Dekel (1991a). Lexicographic probabilities and choice under
uncertainty. Econometrica 59 (1), 61–79.

Blume, L., A. Brandenburger, and D. Dekel (1991b). Lexicographic probabilities and equilibrium
refinements. Econometrica 59 (1), 81–98.

Brandenburger, A., A. Friedenberg, and J. Keisler (2008). Admissibility in games. Economet-
rica 76 (2), 307–352.

Fudenberg, D. and J. Tirole (2000). Game Theory. Massachusetts Institute of Technology.

Govindan, S. and R. Wilson (2009). On forward induction. Econometrica 77 (1), 1–28.

Kohlberg, E. and J.-F. Mertens (1986). On the strategic stability of equilibria. Econometrica 54 (5),
1003–1037.

Kreps, D. M. and G. Ramey (1987). Structural consistency, consictency, and sequential rationality.
Econometrica 55 (6), 1331–1348.

Kreps, D. M. and R. Wilson (1982). Sequential equilibria. Econometrica 50 (4), 863–894.

Kuhn, H. (1953). Extensive games and the problem of information. In Contributions to the Theory
of Games, Vol. 2. Princeton, NJ: Princeton University Press. 193-216.

Myerson, R. B. (1978). Refinements of the nash equilibrium concept. International Journal of Game
Theory 7 (2), 73–80.

Myerson, R. B. (1997). Game Theory. Analysis of Conflict. Cambridge, MA; Longon, England:
Harvard University Press.

54



Nagel, R. (1994). Unraveling in guessing games: an experimental study. American Economic
Review 85, 1313–1326.

Pearce, D. G. (1984). Rationalizable strategic behavior and the problem of perfection. Economet-
rica 52 (4), 1029–1050.

Reny, P. J. (1992). Backward induction, normal form perfection and explicable equilibria. Journal
of Economic Theory 60 (3), 627–649.

Reny, P. J. (1993). Common belief and the theory of games with perfect information. Journal of
Economic Theory 59, 257–274.

Selten, R. (1975). Re-examination of the perfectness concept for equilibrium points in extensive
games. International Journal of Game Theory 4, 25–55.

Stahl, D. O. and P. W. Wilson (1994). Experimental evidence on players’ models of other players.
Journal of Economic Behavior and Organization 25, 309–327.

Stahl, D. O. and P. W. Wilson (1995). On player’s models of other players: theory and experimental
evidence. Games and Economic Behavior 10, 218–254.

Van Damme, E. (1989). Stable equilibria and forward induction. Journal of Economic Theory 48,
476–496.

55


