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Abstract

Rapid industrial growth has generated high levels of pollution in many urban areas of developing
countries. We study the role of pollution as a tax on worker effort in an Indian garment factory in
Bangalore, India. We match hourly, worker-level data on garment production with multiple hourly
PM2.5 measurements on two separate production floors and estimate a steep pollution-productivity
gradient: a 10µg/m3 increase in pollution reduces hourly worker efficiency by more than .3 percent-
age points; a one-standard deviation increase (about 45 µg/m3) leads to a 1.4 percentage point (6%)
decrease in efficiency. We then document significant heterogeneity in this impact across production
lines. We show that capable (i.e., experienced and “relatable”) line supervisors are able to flatten
this gradient by 25 to 85 percent. Good managers are able to reallocate workers to tasks on high pol-
lution days based on the heterogeneous effects of pollution on worker effort. Thus, in addition to
the direct impacts of pollution and other environmental factors, re-optimization of the production
process in response to productivity shocks is a mechanism through which management contributes
to the productivity gap between firms in developed and developing country settings.
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1 Introduction

The process of development inevitably involves the transition of economies from agriculture into man-

ufacturing and other sectors. This is indeed the case for much of the developing world today: labor is

shifting steadily from agriculture to industrial employment . Much of this influx of formerly agricul-

tural laborers is into low-skilled manufacturing jobs in urban centers (World Bank, 2012).

While in the long run, the sectoral reallocation of labor away from agriculture may be productivity-

enhancing, in the short run, this transition is fraught with frictions. Labor productivity in developing

settings lags far behind that of developed country firms, and turnover contributes to already high

uncertainty in production capacity and operating costs. Recent studies have shown that labor and

total factor productivity is much lower among developing country firms as compared to analogous

developed country firms, after accounting for observable inputs and many market frictions, even when

focusing on extremely homogeneous technologies and commoditized goods (see, e.g., Bloom et al.

(2012) for a review of this evidence).

Noting that many of the world’s largest garment exporting countries (e.g. India, Bangladesh,

China, Turkey) also have the world’s highest recorded levels of fine particulate matter, this paper

provides strong empirical evidence of the degree to which adverse environmental conditions impact

labor productivity and of the role of management in potential mitigation of these impacts.1

Using detailed, high-frequency data on hourly, worker-level garment production and multiple,

hourly measurements of both fine and coarse particulate matter levels across two productions floors

in a garment factory in Bangalore, India, we estimate a steep pollution-productivity gradient. We find

that an increase in fine PM levels of roughly 10 micrograms per cubic meter leads to a reduction in

hourly worker efficiency of roughly .3 percentage points; a one SD increase in fine PM levels (roughly

45 micrograms per cubic meter) leads to a large 1.4 percentage point decrease in hourly worker effi-

ciency.

Perhaps most interesting is the smaller impact observed on lines managed by more experienced

and more relatable supervisors (i.e., younger, less educated, and with the same native language and

hometown as their workers). We interpret this heterogeneity as strong evidence of a role for manage-

ment in impact mitigation. Indeed, we find that more experienced and relatable supervisors are 3-4%

more likely to reallocate the workers on their lines across tasks in response to a rise in pollution than

1See, e.g., Krzyzanowski et al. (2014) for a list of cities of the world with the highest fine particulates levels.
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their less experienced and less relatable counterparts, resulting in up to 85% mitigation of the impact

of fine PM on worker hour efficiency.

This paper contributes to three distinct literatures. First, we provide rigorous estimates of a nega-

tive gradient between air pollution and worker productivity using a wealth of micro data with unique

granularity and frequency from a developing country setting with high pollution levels. Recent stud-

ies have documented impacts of temperature on agricultural and industrial productivity and labor

supplies in both developed and developing country settings, as well as impacts of exposure to air pol-

lution on worker productivity in the US (Adhvaryu et al., 2014; Chang et al., 2014; Dell et al., 2012;

Graff Zivin and Neidell, 2010, 2012). We add to this literature estimates of the impacts of high levels of

air pollution on worker productivity in labor-intensive manufacturing in a developing country setting

with roughly 4 times the levels of fine particulates in the US on average. Our estimates are particularly

relevant and informative for policy and research in that the vast majority of the world’s labor-intensive

manufacturing is done in developing country settings with extremely high levels of air pollution and

this specialization will only continue to intensify in the coming years.

Furthermore, the richness of our data permits us to comment on the heterogeneity of these im-

pacts by worker and task. We are accordingly able to contribute to a second growing literature on

the existence and determinants of the gap in labor and total factor productivity across developed and

developing country settings. Early studies documented a large degree of residual variation in labor

and total factor productivity across large and small firms within countries as well as in mean or even

tail productivities across developed and developing countries, even in extremely homogeneous and

commoditized industries. Recent studies have provided evidence that labor regulation, financial mar-

ket frictions, limited competition and resulting technological innovation, ethnic and cultural frictions,

infrastructural failures, and differences in organizational behavior might all contribute to these dis-

crepancies (Allcott et al., 2014; Bloom et al., 2010a; Bloom and Van Reenen, 2010; Hjort, 2013; Tybout,

2000). We add to this list of determinants adverse work environments. In this respect, the results in

this paper strongly complement our earlier work documenting the existence of a markedly negative

temperature-productivity gradient (Adhvaryu et al., 2014).

Lastly, we contribute to a newer, rapidly growing strand of literature modeling and measuring the

role of management and organizational behavior in determining worker productivity and resilience to

shocks, particularly as these elements differ across developed and developing country firms (Bloom

et al., 2013; Bloom and Reenen, 2011; Bloom et al., 2010b,b; Bloom and Van Reenen, 2007, 2010; Bruhn
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et al., 2010; Lazear et al., 2014; Schoar, 2014). We show that supervisor experience and the worker-

management match produce a great deal of heterogeneity in the pollution-productivity gradient. Fur-

thermore, we document that dynamic worker-task match adjustments are at least one specific way

in which supervisor can actively augment impacts of adverse working conditions. In this way, re-

optimization, or lack thereof, in response to productivity shocks (whether deriving from pollution,

power outages, infrastructural failures, or other frictions frequently faced in developing countries) is

one important mechanism by which management contributes to the productivity gap between devel-

oped and developing country firms (as shown proposed in recent studies), in addition to the direct

contributions of frequent productivity shocks themselves.

The rest of the paper is organized as follows. Section 2 discusses the garment industry and the

specific garment production process in the study factory. Section 4 discusses our data sources. Section

5 describes our empirical strategy. Section 6 describes the results. Section 7 concludes.

2 Background

In this section, we discuss the garment sector in India, key elements of the garment production pro-

cess including the role of supervisors in maximizing productivity, and the physiology underlying the

impacts of pollution on worker productivity.

2.1 The Indian Garment Sector

Global apparel is one of the largest export sectors in the world, and vitally important for economic

growth in developing countries (Staritz, 2010). India is the world’s second largest producer of tex-

tile and garments, with export value totaling $10.7 billion in 2009-2010. With the steady transition of

the employment share in India, and in much of the developing world, from rural agricultural self-

employment to urban and peri-urban wage labor, the garment sector represents an unparalleled ca-

pacity to absorb this current and future influx of young, unskilled and semi-skilled labor (World Bank,

2012). Furthermore, women comprise the majority of the global garment workforce; and new labor

force entrants tend to be disproportionately female in contexts like India where the baseline female la-

bor force participation rate is low (Staritz, 2010). The partner firm in this research is the largest private

garment exporter in India, and the single largest employer of unskilled and semi-skilled female labor

in the country.
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2.2 The Garment Production Process

There are three broad stages of garment production: cutting, sewing, and finishing. In this study, we

focus on sewing for 3 reasons. First, sewing makes up roughly 80% of the factory’s total labor em-

ployment; and is, therefore, the most appropriate setting to study the impacts of shocks to worker

productivity. Second, output is measurable for each worker for each hour on the sewing floor and is

particularly comparable across workers, lines, and garments being produced. Third, the number of

lines, and hence supervisors, is sufficiently large and the mapping of workers to supervisors is suffi-

ciently dynamic, yet clearly observable to allow for the study of the interaction between supervisors

and workers experiencing shocks to productivity.

On the sewing floors of the factory we study in this paper, garments are sewn in production lines

consisting of 50-150 workers (depending on the complexity of the style) arranged in sequence and

grouped in terms of segments of the garment (e.g. sleeve, collar, placket). Roughly two-thirds to three-

quarters of the workers on the line are machine operators completing production tasks, while the

remainder are helpers who are responsible for supporting tasks such as folding, aligning and feeding.

Each line will produce a single style of garment at a time (i.e. color and size will vary but the design of

the style will be the same for every garment produced by that line until the order for that garment is

met).2 Completed sections of garments pass between machine operators, are attached to each other in

additional operations along the way, and emerge at the end of the line as a completed garment. These

completed garments are then transferred to the finishing floor.

Before reaching the sewing floor, pieces of fabric needed for each segment of the garment are cut

using patterns from a single sheet so as to perfectly match on color and fabric quality. These pieces

are divided according to groups of sewing operations (e.g. sleeve construction, collar attachment) and

pieces for 10-20 garments are grouped and tied into bundles. These bundles are then transported to

the sewing floors where they are distributed across the line at various “feeding points” for each group

of sewing operations.

In finishing, garments are checked, ironed, and packed. A great degree of quality checking is

done “in-line” on the sewing floor, but final checking occurs in the finishing stage. Any garments with

quality issues are sent back to the sewing floor for rework or, if irreparably ruined, are discarded before

2In general, we describe here the process for woven garments; however, the steps are quite similar for knits and even
pants, with varying number and complexity of operations. Even within wovens, the production process can vary a bit by
style or factory. The factory we are studying is a predominantly woven factory, and therefore, will follow the process outlined
here very closely.
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packing. Orders are then packed and sent to port.

2.2.1 The Role of Supervisors

On the sewing floor, line supervisors play several important roles. First, due to absenteeism among

workers and the frequently changing demand for skills and efficiency derived from variation in gar-

ment complexity, order sizes, and delivery dates and production timelines, the supervisors of each line

must adjust the worker composition of the line at the beginning of each day to optimize the garment-

specific productivity subject to the manpower constraints that day. Accordingly, on any given day,

between 10 and 50% of workers will be assigned to lines other than their usual production lines.

In addition to the worker composition of the line, the supervisor must also assign each worker to a

task or machine operation according to the perceived skill and speed of the worker and the complexity

of the task or operation. Then, during the production day, one of the main responsibilities of the super-

visor is to dynamically adjust this initial worker-task match to continually optimize performance based

on observed, realized performance in previous hours. These adjustments, termed “line-balancing,”

might involve switching two workers across two tasks, or even doubling up the number of workers

on a particular operation in order to move a more efficient worker to a particularly complex task.

Given the complex interrelationships between the productivity of different workers on a given line, as

well as the contribution of each worker’s productivity to the total productivity of the line (which is of

course the ultimate object of concern for the supervisor and the factory), “line-balancing” is perhaps

the most important mechanism by which factory management can respond to worker-specific pro-

ductivity shocks; and is, therefore, an important determinant of marginal productivity on the sewing

floor.

2.3 Physiology of the Pollution-Productivity Gradient

A vast literature connects particulate matter (PM) pollution to a host of morbidity and mortality im-

pacts (Bell et al. (2004); Dockery and Pope (1994); Pope et al. (1999); Pope and Dockery (2006) provide

comprehensive literature reviews). There are three main categories of particulate matter based on

aerodynamic diameter range - coarse particulates (greater than 2.5 micrometers (µm)), fine particulate

matter (less than or equal to 2.5 µm), and ultra-fine particles (<0.1 µm). The focus on this study in on

the second category, fine particulate matter. Fine PM has been shown to have the largest health impacts
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of the three, for a variety of factors - relative to larger particulates, they can be breathed more deeply

(Bell et al., 2004), remain suspended for a longer time and travel longer distances (Wilson and Suh,

1997), have a chemical composition that is more harmful and penetrate indoor environments more

easily (Pope and Dockery, 2006).

Long-term exposures have been linked to a variety of health impacts including mortality (see re-

view articles above), usually via elevated risk of cardiovascular events and chronic inflammatory lung

injury (Souza et al., 1998), which adversely affects the respiratory tract. However, short-term expo-

sures, such as those in experimental laboratory settings have also found elevated health risks. For

instance, studies that have exposed healthy human subjects to fine PM for short periods (in concentra-

tions currently found in cities) in the laboratory find evidence of adverse cardiovascular effects (Mills

et al., 2005), as well as acute constriction of the blood vessels, which may also increase the probability of

cardiac events (Brook et al., 2002). Thus, short-term exposure to fine PM may potentially impair func-

tioning of otherwise healthy adults, and long-term exposure is linked to severe health and mortality

risks.

3 Model

We develop a simple model of worker effort and task allocation to illustrate the mechanism through

which pollution affects productivity, and the way in which supervisors ameliorate the negative impact

of pollution on productivity.

3.1 Worker effort

Consider a line made up of N workers, indexed by i managed by a supervisor indexed s. Each worker

chooses a level of effort e to put forth subject to a cost of effort function c and utility or monetary

benefit function b. We introduce individual worker-specific heterogeneity in cost of effort through a

scalar multiplier αi.

Pollution is represented as a (normalized) effort cost, δt ∼ N (0, σ2), varying across time t and

common to all workers, but substitutable with effort with individual-specific substitution factor γi.

Pollution is observed (or perhaps “felt” is a better word) by the worker, but not by the supervisor.

Moreover,it is felt differentially by each worker (as indicated by substitution factor γi), generating

heterogeneity in the impacts on optimal effort for each worker.
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Worker i chooses optimal effort level e∗it as follows:

e∗it = arg max
e∈R

be− αic(e+ γiδt). (1)

Then, the necessary first order condition is:

b

αi
= ce(e+ γiδt). (2)

Since ce is invertible, we can define c−1
e and thus get optimal effort e∗it as

e∗it = c−1
e

(
b

αi

)
︸ ︷︷ ︸

Observed by worker and sup

− γiδt︸︷︷︸
Unobserved by sup

(3)

where the second term is unobserved by supervisors, as indicated. Optimal effort is thus an increasing

function of the monetary return to effort; and a decreasing function of the individual-specific scalar

modifier on effort cost, and the individual-specific effort cost of pollution, γiδt.

3.2 Production and the Role of Supervisors

Next, we map worker-level effort and production to line production and introduce the role of the

supervisors in production. A line produces quantity qt of a garment at time t through the completion

of N tasks, indexed by j. Supervisor s attached to a given line will allocate workers to tasks within

the line each hour. The production from each task in each period t is given by qjt = kjet. The line

production is then the sum of each task’s production, so that

qt =

N∑
j=1

qjt =

N∑
j=1

kje
j
t (4)

where ejt denotes effort expended on task j at time t. Given the linear production function, the optimal

allocation will be to assign the worker with the highest (expected) effort to the task with the highest

return to effort, i.e., with the maximum kj ; the next highest effort to the task with the second highest

return, and so on.

Assignment of workers to tasks is done through the ordering function o : {1, 2, ..., N} 7→ {1, 2, ..., N}.
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o takes workers i ∈ {1, 2, ..., N} and maps them to tasks j ∈ {1, 2, ..., N}. Define the set of all possible

such mappings as Ω, and elements of this set as o ∈ Ω. For each level of pollution δ, there exists an

optimal mapping o∗δ , which satisfies o∗δ = arg maxo∈Ω qoδ , where qoδ is the line production under task

mapping o at pollution level δ. Note that δ factors linearly into workers’ optimal effort choices, but that

given the heterogeneous coefficients on the pollution cost (γi), shifts in δ can change the rank ordering

of workers’ effort choices. (Indeed, for shifts in pollution to change optimal allocation patterns, it must

be the case that the rank ordering of optimal effort levels changes at least once.)

Supervisor s observes output (and can thus calculate how much effort was expended by each

worker), at the end of each period. However, the supervisor cannot necessarily perfectly predict

workers’ efforts on specific tasks before allocating workers to tasks unless he allocates effort to observe

production as it is ongoing.

Specifically, if a supervisor invests his own effort (at a supervisor-specific cost of effort, λs) in mon-

itoring workers during production, then he is able to predict perfectly a worker’s effort before alloca-

tion is done. If supervisor s invest effort in monitoring (I = 1) in a given period t, then the supervisor

chooses the allocation that maximizes total output, given by equation 4. When I = 1, the optimal effort

of each worker is observed fully (including the effort costs of pollution felt by each worker), and thus

allocation can be done optimally, such that the highest (realized) effort in period t is paired with the

task that has highest productive return on effort. Thus in each period when I = 1, maximal production

given δ pollution, qo
∗
δ , is obtained.

On the other hand, if the supervisor chooses not to invest effort in monitoring, such that I = 0, then

he maximizes expected output by allocating workers to tasks based on the expectation of their effort.

Expected optimal effort for each worker from the supervisor’s perspective is:

E e∗it = c−1
e

(
b

αi

)
− E γiδt = c−1

e

(
b

αi

)
, (5)

which is fixed across t, since E γiδt = 0 for all t.

Since we have made the simplifying assumption that production is linear in effort, expected pro-

duction for a given task-worker match will simply be kjE ejt , and so for a given allocation o ∈ Ω,

expected output is:
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E qo =
N∑
j=1

kjE ejo. (6)

The supervisor who chooses not to invest in observing effort (I = 0) thus picks the task mapping

that generates the maximum expected production. That is, the supervisor chooses

o′∗ = arg max
o∈Ω

E qo. (7)

The supervisor’s problem in each period is therefore to choose whether or not to invest in observ-

ing worker-specific effort before task allocation is done. We assume supervisors wish to maximize

expected production. The supervisor evaluates the predicted gains from observing effort before task

allocation against the cost (λs) associated with investing in effort. He evaluates this potential gain over

the distribution of γ. That is, for given γ, if he chooses I = 1, he will be able to allocate optimally

according to the actual optimal effort contributions of each worker, and thus realized production will

be qo
∗
δ . For all γ, if he chooses not to invest (I = 0), realized production will qo

′∗
. Thus his decision is

to choose I = 1 if and only if

λs <

∫
δ∈R

qo
∗
δ f(δ)dδ − qo′∗ , (8)

where f(δ) is the probability density function forN (0, σ2), the distribution from which δ is drawn.

The above inequality captures the intuitive idea that if the supervisor chooses to invest if his cost of

effort is small relative to the predicted gains from investing in observing his workers closely.

Note that this inequality does not vary by t, and thus the right-hand side quantity
∫
δ∈R q

o∗
δ f(δ)dδ−

qo
′∗

defines a cutoff in the distribution of λs, such that all supervisors with λs smaller than this cutoff

will always choose to invest in observing their workers closely, while those with λs above the cutoff

will never invest and will thus never shift the task mapping from the optimum for the expected effort

levels of their workers.

It is straightforward to extend the model such that supervisor cost of effort varies stochastically

from day to day. In this extension, supervisors are differentiated by the fact that they draw their λt

from distributions with different means. It is then simple to show that the probability that a “high type”

supervisor (one with a smaller distribution mean) invests will be higher than the probability a low type
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invests.

3.3 Implications

To summarize, the framework laid out above provides some intuitive predictions regarding the im-

pacts of pollution on worker and line productivity, and the role of supervisors in mitigating the impacts

of pollution.

• First, by assumption, worker and line productivity are negatively affected by pollution.

• Second, at any given level of pollution, supervisors that invest effort in monitoring will achieve

higher production on their lines, on average, than those who do not invest effort in monitoring.

• Third, supervisors with low-enough costs of monitoring effort λs will invest in monitoring each

period. If the rank ordering of optimal effort changes with pollution, then these supervisors

will reallocate workers to tasks in response to changes in pollution across periods. As a result,

“high-type” supervisors will achieve optimal production on their line at all levels of pollution.

• Fourth, larger deviations in pollution levels will generate greater probability of task shuffling,

because rank order switching is more likely with large δ shocks.

In our empirical analysis, we test these predictions using data on pollution, worker-level produc-

tivity, supervisor characteristics, and worker-task reallocations. We consider supervisors that are more

experienced and more similar or relatable to their workers as those with lower costs of monitoring

effort λs.

4 Data

4.1 Pollution Data

The air pollution data used in this study were collected using 5 particulate matter monitors positioned

at different locations across the 2 sewing floors of the garment factory.3 Two monitors were placed

on the first floor on which lines 1 through 9, along with an occasional line 10, are located; and the

remaining three monitors were placed on the second floor on which lines 11 through 17 are located.

3The monitors used were custom calibrated particulate matter count monitors.
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The monitors were calibrated to collect two distinct counts of particulates: 1) those equal to or

smaller than 2.5 microns in diameter, denoted here as fine particulates, and 2) those between 2.5 and

10 microns in diameter, denoted here as coarse particulates. In the analysis that follows, we focus on

the impacts of fine particulate matter (PM) on efficiency controlling for coarse PM. We do so because

fine PM is extremely unlikely to be produced by the garment production activities on the sewing floor,

but rather is due to ambient air pollution, namely industrial combustion and automobile exhaust. On

the other hand, coarse PM is produced by the garment production process and could therefore exhibit

a reverse causality relationship; i.e., high efficiency produces high coarse PM levels. Lastly, the envi-

ronmental and medical literatures suggest that fine PM is the more impactful of the two particulates

due to its ability to accumulate in the lungs and restrict respiration.

4.1.1 Fine Particulates (PM 2.5)

We can check the exogeneity of fine PM levels by studying whether fine PM levels decay at the end

of the work day and work week when production stops, and how this decay compares to coarse PM

which we hypothesize is endogenous to production. We can also check the robustness of our results

to instrumenting for contemporaneous fine PM levels using future fine PM levels from the same day

and controlling for the day’s average fine PM level. Results of these checks are presented in the figures

and tables in the appendix. Lastly, it is clear that to the degree that fine PM is in fact produced by

the manufacturing process, this reverse causality will bias estimates of the negative impact of fine PM

exposure on worker productivity towards zero.

Figure 1A
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Figure 1B
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Figure 1C
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As shown in Figures 1A-1C, fine PM levels vary systematically by month or season of the year, as
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well as day of week and hour of the day. Specifically, fine PM levels tend to be highest on average in the

winter months, later in the week, and at the end of the production day. These patterns likely reflect the

burning of carbon-based fuels for heating and industrial energy demand as well as automobile traffic

patterns. Note that the PM data used in this study are available from August 2013 through April 2014.

4.2 Production Data

The production data used in this study is collected using tablet computers assigned to each produc-

tion line on the sewing floor. Each production writer, traditionally charged with recording by hand

on paper each machine operator’s completed operations each hour for the line, was trained to input

production data directly in the tablet computer. Whereas traditionally this operator-hour level data

would be tallied by hand and the sum for the entire line at the end of each hour, or even often the day,

would be digitally entered into the production database, with the introduction of the tablet computers

no manual tabulation or entry was necessary. In this way, we were able to preserve the most granular,

disaggregated, and accurate data at the worker by hour level.

4.2.1 Efficiency

The key measure of worker productivity we study below is efficiency. This measure is calculated as

actual quantity produced divided by the target quantity per unit time, here hour. The target quantity

for a given garment is calculated using a measure of garment complexity called the standard allowable

minute (SAM). The SAM is defined as the number of minutes that should be required for a single

garment of a particular style to be produced. That is, a garment style with a SAM of .5 is deemed to

take a half minute to produce one complete garment. The SAM, as the name denotes, is standardized

across the global garment industry and is drawn from an industrial engineering database. The SAM,

however, might be amended to account for stylistic variations from the representative garment style

in the database. Any amendments are explored and suggested by the sampling department in which

master tailors make samples for costing purposes of each specific style to be produced in the near

future by lines on the sewing floor.

The target quantity for a given unit of time for a line producing a particular style is then calculated

as the unit of time in minutes divided by the SAM. That is, the target quantity to be produced by a line

in an hour for a style with a SAM of .5 will be 60/.5 = 120. Then, the target quantity for a given worker

13



completing a particular operation in the production of this same garment will be the target quantity

for the hour for the line multiplied by the number of times the specific operation for which the worker

is responsible has to be completed to produce a single garment. That is, if a worker is for example

sewing the sleeves on the body of the shirt, the worker must complete the operation 2 times in order

for a single shirt to be produced; and thus, her target quantity for an hour of producing this same

garment with a SAM of .5 is 2 x 120 = 240. Then, recall that if this worker completes only 180 sleeve to

body attachments in a given hour, her actual efficiency will be 180/240 = 75%. In this way, efficiency

is the most comparable measure of productivity across garments being produced by different lines

at a given time and even of productivity across workers completing different operations on the same

line producing the same garment at a given time. That is, efficiency is appropriately standardized by

garment and task complexity.

Figure 1D
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Figure 1E
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Figure 1F
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As shown in Figures 1D-1F, worker efficiency also follows mild seasonal, day of week, hour of day

patterns. Specifically, efficiency peaks around March with late winter and early spring showing high

mean efficiency as well. Also, Mondays tend to lag behind the rest of the days of the week in efficiency,

and the efficiency trends upwards through the first 2-3 hours of the day before plateauing through the

rest of the work day.

These patterns are somewhat coincident with the patterns in fine PM and might convolute the

analysis of causal impacts of fine PM on efficiency and other work outcomes. Accordingly, we will

restrict our attention in the ensuing analysis to comparisons within month, day of week, and hour of

the day.
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4.3 Human Resources Data

Data on personal details of workers and the line supervisors are kept in a firm-managed database.

These data linked to worker ID numbers were shared with us. The variables available in this data

include date of birth, date on which the worker joined the firm, gender, native language, home town,

and education. We use these data to explore heterogeneity among workers in impacts as well as het-

erogeneity by supervisor experience and similarity to the workers.

4.4 Attendance and Health Clinic Data

Data on individual worker attendance, as well as time clocking in and out, is collected by the factory

using biometric scanning devices. This data is stored in a central human resources database and in-

dexed by worker ID number and date. We use attendance to data to check that selective attendance

and workforce composition are not convoluting our main analysis.

A health clinic is maintained on the factory grounds. All employees are free to utilize the services

and products offered at the clinic. A full-time nurse attends the clinic and is sometimes joined by

a physician who rotates between several of the factory units run by the same firm. The worker ID

numbers, symptoms, diagnoses, and treatments are recorded for each of the patient visits each day. We

match this data by worker ID numbers to hourly productivity data and particulate matter exposure on

the production floor. We use health clinic data to check for impacts of fine PM exposure on quantity of

time spent producing as a check of the proposed mechanism of impact (i.e., pollution impacts intensive

margin effort and efficiency of workers).

4.5 Summary Statistics

Table 1 presents summary statistics of the main variables of interest in the data. Note that the mean

level of fine PM in our whole sample is roughly 65 with a standard deviation of nearly 45. The units

of fine PM have been translated as closely as possible to micrograms per cubic meter in order to allow

for easy comparison with impacts from previous studies in other contexts.4 Columns 2 and 3 show

observation counts, means and standard deviations for the above and below median fine PM level

sub-samples. The top panel shows that all lines and nearly all workers are observed during exposure

to both high and low fine PM levels. Also, the number of days and worker-hour observations are

4For the sake of comparison, the mean level of fine particulates in Southern CA is between 10 and 20 micrograms per
cubic meter.
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roughly balanced across high and low PM sub-samples. Lastly, both hourly efficiency and coarse PM

levels are higher on average in the low fine PM sub-sample than in the high fine PM sub-sample,

consistent with a negative impact of fine PM on efficiency and a positive association between coarse

PM and efficiency due to reverse causality.

5 Empirical Strategy

5.1 Overview of strategy

The empirical analysis undertaken in this study proceeds in several parts. We first estimate the contem-

poraneous efficiency-fine-PM gradient, controlling for contemporaneous coarse PM levels and month,

day-of-week, and hour-of-day fixed effects. We also establish robustness of these estimates to alter-

native specifications including worker and/or line fixed effects. We also estimate non-linearity in the

gradient by quartiles of the fine PM distribution, estimating the slope within each quartile separately.

The next phase of the analysis documents heterogeneity in the slope of this gradient across produc-

tion lines and explores the degree to which supervisor characteristics (i.e., experience and relatability

in terms of age, education, and language) can explain these differential slopes. Again, we estimate

differences in linear slopes as well as contributions of supervisor characteristics to non-linearities by

quartile of the fine PM distribution.

Lastly, we explore more specifically how supervisors might be able to avoid or offset large losses due

to high particulate matter exposure. That is, we estimate the relationship between fine PM levels and

adjustments in worker-task matches in response to resulting efficiency losses. In order to complement

estimates from nonlinearities in the pollution-efficiency gradient, we also estimate quartile specific

impacts of fine PM on worker-task adjustments.

5.2 Specifications

We estimate the following base specification, for the efficiency of worker i in hour h on day of the week

d in month m:

Eihdm = α0 + βFPMfhdm + φCPMfhdm + γh + ηm + δd + εihdm (9)

Here, β is the main coefficients of interest, measuring the impact of exposure to fine particulate
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Number  of  worker-‐‑hour  observations
Number  of  lines
Number  of  workers
Number  of  days

Mean SD Mean SD Mean SD
Pollution
          Fine  PM 65.176 44.555 48.111 28.797 82.272 50.587
          Coarse  PM 265.039 187.236 278.751 219.217 251.303 147.168

Production
          Hourly  Efficiency 49.604 19.852 50.521 19.800 48.686 19.862

Supervisor  Characteristics
          1(Experience  >=  1.5  yrs)
          1(Relatability  Index  =  4)
          1(Age  >=  33)
          1(Native  Language  =  Kannada)
          1(Education  <=  10th  Standard)
          1(Native  City  =  Bangalore)

0.570
0.852
0.583
0.919

0.497
0.432
0.495
0.305
0.493
0.273

820588
820588
860804
820588
820588

Table  1
Summary  Statistics

(1) (2) (5)
Whole  Sample Low  PM High  PM

860,804 430,790 430,014
17 17 17
1763
178

1755
119

1738
133

Observations Mean SD

820588

0.551
0.248
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matter level, FPM , on floor f for hour h on day d in month m on worker hourly efficiency E. We

estimate equation 9 in both levels of efficiency as well as logs in which we replace E with ln (E). CPM

is coarse PM on floor f for hour h on day d in month m. γh are hour fixed effects; ηm are month fixed

effects; and δdare day-of-week fixed effects. In additional specifications, we also include line fixed

effects αl and/or worker fixed effects αi.

We then also estimate non-linearities in the gradient by fitting separate slopes for each quartile of

the distribution of fine PM. Specifically, we estimate the following amended specification:

Eihdm = α0 + FPMfhdm

[ 4∑
j=1

βjQ(j)fhdm

]
+ φCPMfhdm + γh + ηm + δd + εihdm (10)

Here, Q(j)fhdm are dummy variables taking value 1 if FPMfhdm falls in the jth quartile of the fine

PM distribution and βj measure the jth quartile-specific slope coefficient on FPMfhdm.

In the remaining specifications estimated below, we include supervisor characteristics along with

their interactions with fine particulate matter levels. These specifications estimate the degree to which

the impact of fine PM on efficiency differs by line supervisors. Specifically, we estimate the following

amended specifications:

Eihdm = α0 + λ(FPMfhdm × Sldm) + βFPMfhdm + ψSldm + φCPMfhdm + γh + ηm + δd + εihdm (11)

Eihdm = α0 + (FPMfhdm × Sldm)
[ 4∑
j=1

λjQ(j)fhdm

]
+ FPMfhdm

[ 4∑
j=1

βjQ(j)fhdm

]
+ ψSldm + φCPMfhdm + γh + ηm + δd + εihdm (12)

Here, λ and λj are the coefficients of interest and Sldm is one of two key supervisor characteristics

studied below: experience and relatability. We define experienced supervisors as those with greater

than 1.5 years of experience as that is the median amongst the supervisors in the sample. We define

relatable supervisors as those meeting all of the following 4 characteristics: younger than median age

among supervisors, completed less than high school education, native tongue is the local language of

the factory (Kannada), originally from the Bangalore area. These are meant to capture the degree to
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which the line supervisor is similar in age, education, and culture to the majority of the workers on the

line.

Finally, we also estimate equations 9 through 12 replacing outcome Eihdm with TCihdm, a dummy

taking value 1 if worker i was assigned to a different task in hour h than she was in hour h − 1.

The corresponding estimates then of the β’s and λ’s reflect the degree to which workers are adjusted in

response to fine PM levels and how much this response differs across supervisors of varying experience

and relatability, respectively.

6 Results

In this section, we present and discuss the results of the empirical analysis described in section 5 above.

6.1 Impacts of Fine PM on Worker Efficiency

We begin by establishing the existence of a gradient between efficiency and contemporaneous exposure

to fine PM. We first present graphical evidence of this gradient, and follow with tables reporting the

regression analogues to the exercises conducted in the figures.

As depicted in Figures 1A-1F, some coincidental patterns across month, day of week, and hour of

day exist in both worker efficiency and levels of fine particulates. Accordingly, we include, as discussed

in section 5, month of year, day of week, and hour of day dummies in all empirical specifications that

follow. Similarly, all figures below depict residuals from regressions of efficiency on these baseline

fixed effects. We also include additional controls and fixed effects in alternate specifications to explore

robustness and consistency of results.

Figures 2A and 2B plots hourly efficiency residuals in levels and logs, respectively, against hourly

fine PM levels with the vertical dashed line representing the mean fine PM residual value correspond-

ing to the mean level in California. The solid gradient is the residual from a base specification including

month, day of week, and hour of day fixed effects; while the dashed line is the residual from a speci-

fication including production line fixed effects, and the dotted line from a specification including both

line and worker fixed effects. All six plots across both figures depict identical negative, yet non-linear

gradients. The slope appears particularly negative at low levels of fine PM, becoming progressively

less negative towards the high end of the fine PM distribution. Overall the slope shows that an increase

in fine PM levels of roughly 50 micrograms/cubic meter (just over 1 standard deviation of the fine PM
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distribution) leads to a reduction in efficiency of roughly 2.5 percentage points (Figure 2A) or roughly

5 percent (Figure 2B).

Figure 2A
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In Table 2, we report estimates from regression analysis analogous to the figures discussed above.

Columns 1 through 3 of Panel A report results from the estimation of equation ??. A one µg/m3 increase

in fine PM (reported in the first row) leads to a decrease in individual hourly efficiency of roughly .03

percentage points. Fine PM has a standard deviation of roughly 45 (as reported in Table 1). The second

row of Table 2 reports that a one SD rise in fine PM leads to a decrease in individual hourly efficiency

of between 1.42-1.45 percentage points. Columns 4 through 6 report similar estimates in logs instead

of levels. A one µg/m3 increase in fine PM leads to a reduction of .08%; while a one SD rise in fine

PM leads to between a 3.56-3.67% reduction in hourly worker efficiency. As discussed in section 5, we

try three separate regression specifications at the worker level. The first includes, in addition to coarse

PM level, only time fixed effects, namely, hour of the day, day of the week, and month fixed effects.

The second adds worker fixed effects in addition to the controls in the first specification, and the third

includes both individual worker and line fixed effects to the baseline specification.

In Panel B of Table 2, we report estimates from equation 10 in which we fit linear slopes separately

by quartile of the fine PM distribution. Columns 1 through 3 show that, as indicated in Figure 2A, the

slope of the gradient is most steeply negative in the first quartile of the fine PM distribution (between

-2.4 and -2.6), slightly less steep through the second and third quartiles (between -2 and -2.4), and

flattest in the fourth quartile (between -1.8 and -1.9). Columns 4 through 6 of Panel B show the same
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(1) (2) (3) (4) (5) (6)

Panel  A:  Linear  Effects

Fine  PM -‐‑0.03259*** -‐‑0.03219*** -‐‑0.03186*** -‐‑0.00082*** -‐‑0.00080*** -‐‑0.00080***
(0.00181) (0.00173) (0.00171) (0.00005) (0.00005) (0.00005)

Standardized  Fine  PM -‐‑1.45203*** -‐‑1.43407*** -‐‑1.41953*** -‐‑0.03668*** -‐‑0.03575*** -‐‑0.03563***
(0.08086) (0.07726) (0.07621) (0.00215) (0.00210) (0.00207)

Coarse  PM 0.00320*** 0.00336*** 0.00339*** 0.00008*** 0.00009*** 0.00009***
(0.00036) (0.00036) (0.00036) (0.00001) (0.00001) (0.00001)

Panel  B:  PM  Quartiles

1st  Quartile  Std  Fine  PM -‐‑2.58035*** -‐‑2.52083*** -‐‑2.42249*** -‐‑0.07033*** -‐‑0.06822*** -‐‑0.06605***
(0.20092) (0.19681) (0.19405) (0.00549) (0.00543) (0.00537)

2nd  Quartile  Std  Fine  PM -‐‑2.40853*** -‐‑2.34758*** -‐‑2.26508*** -‐‑0.06122*** -‐‑0.05939*** -‐‑0.05752***
(0.15950) (0.15553) (0.15285) (0.00446) (0.00440) (0.00434)

3rd  Quartile  Std  Fine  PM -‐‑2.09688*** -‐‑2.02599*** -‐‑1.95282*** -‐‑0.05391*** -‐‑0.05165*** -‐‑0.05000***
(0.14385) (0.14032) (0.13793) (0.00393) (0.00387) (0.00382)

4th  Quartile  Std  Fine  PM -‐‑1.87873*** -‐‑1.84661*** -‐‑1.80148*** -‐‑0.04921*** -‐‑0.04789*** -‐‑0.04702***
(0.11457) (0.11159) (0.10973) (0.00317) (0.00313) (0.00309)

Month,  Day-‐‑of-‐‑Week,  Hour-‐‑of-‐‑Day  FE Yes Yes Yes Yes Yes Yes
Line  FE No Yes Yes No Yes Yes

Worker  FE No No Yes No No Yes
Observations 860,804 860,804 860,804 860,804 860,804 860,804

Mean  of  Dependent  Variable 49.60439 49.60439 49.60439 3.803626 3.803626 3.803626

Table  2
Impact  of  Pollution  on  Production  Efficiency

Notes:  Robsut  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  worker  level.

Efficiency ln(Efficiency)

(Actual  Production  /  Targeted  Production) ln(Actual  Production  /  Targeted  Production)
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pattern in logs, as depicted in Figure 2B, with slopes ranging from negative 7% per SD increase in fine

PM in the first quartile to a reduction of roughly 4.8% per SD fine PM increase in the fourth quartile of

the fine PM distribution.

6.2 Heterogeneous Impacts by Workers and Lines

Having established a negative and somewhat convex pollution-productivity gradient, we next explore

the degree to which the slope of this gradient varies by worker and line. The model set forth in section

3 imposes heterogeneous impacts of pollution on workers (or more specifically, worker-task matches)

and finds heterogeneous impacts by lines (or rather supervisors) as a result of the dynamic worker-task

match optimization process. Here we check whether the data supports such a characterization.

Figure 3A plots the pollution-ln(efficiency) gradient from Figure 2B, but separately by the baseline

efficiency level of the worker within the line. That is, we first categorize workers into quartiles of the

efficiency distribution within the line during hours with low fine PM levels (within the first quartile of

the fine PM distribution), and then draw gradients of the evolution of their efficiency over the fine PM

distribution for each quartile separately.5 The gradients in Figure 3A show that indeed the slopes are

different for workers of different baseline efficiency levels in the line, with the most efficient workers

at baseline being the most impacted the least efficient workers at baseline nearly unaffected.

Figure 3B repeats the exercise from Figure 3A, but for task difficulty quartiles instead of baseline

worker efficiency quartiles. That is, we first categorize operations or tasks into quartiles of efficiency

on low PM days as a measure of the task’s difficulty. We do so using residuals from specifications

regressing efficiency on coarse PM, month, day of week, and hour fixed effects as well as line and

worker fixed effects. In this sense, the categorization of tasks to difficulty levels should be void of line

or worker specific contributions to, along with fine PM impacts on, efficiency levels. The comparison

of the gradients by quartile of task difficulty in Figure 3B show that the most difficult tasks are more

taxed by fine PM levels than are less difficult tasks, with the simplest tasks appearing unaffected or

even positively impacted by high fine PM levels. This positive impact on simple tasks could reflect

reallocations of workers across tasks in response to high PM levels as proposed by the model in section

3.

If reallocation is indeed occurring within the line, and some line supervisors are better at, or more

5Mapping to baseline efficiency quartiles are done using residuals from the baseline specification including coarse PM
and month, day of week, and hour of day fixed effects.
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likely to undertake, this reallocation than others, then we should expect that the slopes of the pollution-

efficiency gradient are heterogeneous across lines. In Figure 3C, we check for this heterogeneity by

plotting the pollution-productivity gradient for each line separately. Indeed, Figure 3C shows clearly

that some lines have steep negative gradients quite similar to that depicted in Figure 2B, while others

have gradients that are nearly flat or concave in shape. In the following sections, we report results

from further regression analysis aimed at explaining this heterogeneity across lines.

Figure 3A
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6.3 Impacts of Fine PM on Efficiency by Supervisor Characteristics

We begin our investigation of the role of supervisors in mitigating the impacts of fine PM on efficiency

by drawing the pollution-efficiency gradients for lines under the supervision of more experiences su-

pervisors and less experienced supervisors separately. This comparison is depicted in Figure 4 and

clearly shows that workers on lines with more experienced supervisors (those with greater than or

equal to 1.5 years of tenure with the factory) have a less steeply negative gradient than those with less

experienced supervisors.

Figure 5 repeats the same exercise for more “relatable” supervisors. Here, we define “relatable”

supervisors (as described in section 5) as those who are relatively young and uneducated and whose

native language and city Kannada and Bangalore, respectively. Once again, we find in Figure 5 that

the efficiency of workers on lines with more relatable supervisors is much less impacted by fine PM

exposure than that of lines and workers with less relatable supervisors.

Table 3 reports estimation results from the analogous regression analysis to the exercise undertaken

in Figure 4. Once again, Panel A reports results from linear specifications in which estimates in the
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second row slopes among workers on lines with inexperienced supervisors; while estimates in the first

row measure how slopes among those with experienced supervisors deviate from those in the second

row. As in previous tables, Panel B shows estimates of quartile-specific slopes for workers on lines

with inexperienced supervisors (bottom four rows in Panel B) and deviations from these slopes for

those with more experienced supervisors (top four rows in Panel B). As before, columns 1 through 3

show estimates for efficiency in levels, while columns 4 through 6 show estimates for efficiency in logs.

In Panel A, we find that having a more experienced supervisor mitigates the impact of fine PM on

efficiency by between 22 and 35%. Panel B shows that the largest mitigation (roughly 35-40%) occurs in

the second quartile with still a significant degree of mitigation occurring in the third and particularly

the fourth quartiles of the fine PM distribution. However, there is no evidence of significant mitigation

occurring in the first quartile. These patterns suggest that supervisors, and specifically their experience

levels, contribute to the non-linearities in the pollution-productivity gradient depicted in Figures 2A

and 2B and estimated in Table 2.

Table 4 reports estimates of heterogeneity from supervisor relatability interaction specifications

identical to those represented in Table 3 for supervisor experience. Here, we find in Panel A that

having a highly relatable supervisor mitigates the impact of fine PM on efficiency by between 50 and

80%. Panel B once again shows that there is far less mitigation at first quartile fine PM levels than at

higher levels, and the largest degree of mitigation occurs in the middle of the distribution at second

and third quartile levels.
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(1) (2) (3) (4) (5) (6)

Panel  A:  Linear  Effects

Experienced  Supervisor  x  Std  Fine  PM 0.62434*** 0.63587*** 0.37305* 0.01199** 0.01278** 0.00845*
(0.23681) (0.21961) (0.21421) (0.00541) (0.00511) (0.00492)

Standardized  Fine  PM -‐‑1.85538*** -‐‑1.79527*** -‐‑1.63073*** -‐‑0.04322*** -‐‑0.04156*** -‐‑0.03898***
(0.16639) (0.15240) (0.15034) (0.00405) (0.00379) (0.00375)

Experienced  Supervisor 2.00563*** -‐‑5.68738 0.06474*** -‐‑0.13086
(0.52008) (4.80423) (0.01240) (0.11776)

Panel  B:  PM  Quartiles

Experienced  x  1st  Quartile  Std  Fine  PM 0.44311 0.22286 -‐‑0.21670 -‐‑0.00559 -‐‑0.00861 -‐‑0.01539
(0.44494) (0.41968) (0.41785) (0.01017) (0.00974) (0.00956)

Experienced  x  2nd  Quartile  Std  Fine  PM 1.21374*** 1.05405*** 0.56989* 0.01880** 0.01717** 0.00937
(0.33889) (0.31669) (0.31102) (0.00789) (0.00751) (0.00727)

Experienced  x  3rd  Quartile  Std  Fine  PM 0.61359** 0.51511* 0.11941 0.00678 0.00562 -‐‑0.00113
(0.30356) (0.28452) (0.28116) (0.00689) (0.00658) (0.00641)

Experienced  x  4th  Quartile  Std  Fine  PM 0.62089*** 0.64228*** 0.38075* 0.01242** 0.01329*** 0.00869*
(0.23077) (0.21508) (0.21367) (0.00529) (0.00502) (0.00492)

1st  Quartile  Std  Fine  PM -‐‑2.83790*** -‐‑2.53543*** -‐‑2.17487*** -‐‑0.06379*** -‐‑0.05719*** -‐‑0.05087***
(0.33735) (0.31666) (0.31360) (0.00843) (0.00807) (0.00800)

2nd  Quartile  Std  Fine  PM -‐‑3.08830*** -‐‑2.82880*** -‐‑2.46074*** -‐‑0.06856*** -‐‑0.06313*** -‐‑0.05658***
(0.26189) (0.24551) (0.24042) (0.00667) (0.00639) (0.00628)

3rd  Quartile  Std  Fine  PM -‐‑2.49209*** -‐‑2.26769*** -‐‑1.96179*** -‐‑0.05660*** -‐‑0.05124*** -‐‑0.04558***
(0.23557) (0.22054) (0.21622) (0.00583) (0.00557) (0.00548)

4th  Quartile  Std  Fine  PM -‐‑2.26124*** -‐‑2.16757*** -‐‑1.96932*** -‐‑0.05477*** -‐‑0.05219*** -‐‑0.04860***
(0.18694) (0.17262) (0.17113) (0.00475) (0.00449) (0.00447)

Month,  Day-‐‑of-‐‑Week,  Hour-‐‑of-‐‑Day  FE Yes Yes Yes Yes Yes Yes
Line  FE No Yes Yes No Yes Yes

Worker  FE No No Yes No No Yes

Observations 820,588 820,588 820,588 820,588 820,588 820,588
Mean  of  Dependent  Variable 49.72143 49.72143 49.72143 3.804172 3.804172 3.804172

Notes:  Robust  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  worker  level.  

Table  3
Heterogeneous  Impacts  of  Pollution  on  Production  Efficiency  by  Supervisor  Experience

Efficiency ln(Efficiency)

(Actual  Production  /  Targeted  Production) ln(Actual  Production  /  Targeted  Production)
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(1) (2) (3) (4) (5) (6)

Panel  A:  Linear  Effects

Relatable  Supervisor  x  Std  Fine  PM 0.79141*** 1.37193*** 0.94430*** 0.02797*** 0.03733*** 0.02713***
(0.25248) (0.22795) (0.21482) (0.00588) (0.00562) (0.00514)

Standardized  Fine  PM -‐‑1.62605*** -‐‑1.78794*** -‐‑1.66236*** -‐‑0.04146*** -‐‑0.04396*** -‐‑0.04119***
(0.09867) (0.09204) (0.08803) (0.00245) (0.00233) (0.00222)

Relatable  Supervisor -‐‑2.71434*** 3.30166 -‐‑0.08583*** 0.01142
(0.57893) (2.44139) (0.01409) (0.05930)

Panel  B:  PM  Quartiles

Relatable  x  1st  Quartile  Std  Fine  PM 0.22318 1.70163*** 0.74646* 0.02393** 0.04959*** 0.02726***
(0.46802) (0.42540) (0.40779) (0.01088) (0.01042) (0.00964)

Relatable  x  2nd  Quartile  Std  Fine  PM 1.32855*** 2.25123*** 1.41806*** 0.04635*** 0.06133*** 0.04140***
(0.36004) (0.32620) (0.30883) (0.00846) (0.00807) (0.00741)

Relatable  x  3rd  Quartile  Std  Fine  PM 1.20146*** 1.93550*** 1.27851*** 0.04195*** 0.05352*** 0.03798***
(0.32858) (0.29965) (0.28510) (0.00767) (0.00738) (0.00683)

Relatable  x  4th  Quartile  Std  Fine  PM 0.74035*** 1.32272*** 0.90639*** 0.02650*** 0.03601*** 0.02621***
(0.24886) (0.22606) (0.21646) (0.00579) (0.00557) (0.00517)

1st  Quartile  Std  Fine  PM -‐‑2.48170*** -‐‑2.81407*** -‐‑2.46804*** -‐‑0.06855*** -‐‑0.07399*** -‐‑0.06606***
(0.23450) (0.22657) (0.22032) (0.00611) (0.00595) (0.00577)

2nd  Quartile  Std  Fine  PM -‐‑2.58796*** -‐‑2.78380*** -‐‑2.48318*** -‐‑0.06563*** -‐‑0.06856*** -‐‑0.06148***
(0.18667) (0.17910) (0.17177) (0.00492) (0.00478) (0.00457)

3rd  Quartile  Std  Fine  PM -‐‑2.31102*** -‐‑2.44600*** -‐‑2.20384*** -‐‑0.05963*** -‐‑0.06116*** -‐‑0.05552***
(0.16398) (0.15730) (0.15223) (0.00422) (0.00408) (0.00393)

4th  Quartile  Std  Fine  PM -‐‑1.98507*** -‐‑2.12673*** -‐‑1.97426*** -‐‑0.05134*** -‐‑0.05347*** -‐‑0.05009***
(0.12871) (0.12368) (0.11970) (0.00339) (0.00330) (0.00319)

Month,  Day-‐‑of-‐‑Week,  Hour-‐‑of-‐‑Day  FE Yes Yes Yes Yes Yes Yes
Line  FE No Yes Yes No Yes Yes

Worker  FE No No Yes No No Yes

Observations 820,588 820,588 820,588 820,588 820,588 820,588
Mean  of  Dependent  Variable 49.72143 49.72143 49.72143 3.804172 3.804172 3.804172

Notes:  Robust  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  worker  level.  

Table  4
Heterogeneous  Impacts  of  Pollution  on  Production  Efficiency  by  Supervisor  Relatability

Efficiency ln(Efficiency)

(Actual  Production  /  Targeted  Production) ln(Actual  Production  /  Targeted  Production)
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We next investigate the mechanism by which this active mitigation on the part of the supervisor

might occur and present further empirical evidence in support of the model.

6.4 Worker-Task Match Adjustment Responses to Fine PM

Figures 6 and 7 repeat the exercises from Figures 4 and 5, respectively, replacing worker hourly effi-

ciency on the y axis with the probability that a worker is reallocated to another task each hour. That

is, we define task match adjustment as a dummy taking value 1 if a worker is assigned to a different

task this hour than the task she was assigned to in the previous hour. As predicted by the model, both

Figures 6 and 7 show that the probability of task match adjustment is increasing in fine PM levels (and

seemingly in deviations from mean fine PM levels as we would suspect if the mean fine PM levels de-

termine supervisors ex ante optimal work-task match solutions) and much more strongly for workers

with more experienced and relatable supervisors.

Figure 6
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Once again, Tables 5 and 6 present estimates from analogous regression analysis to the exercises

conducted in Figures 6 and 7, respectively. As in Tables 3 and 4, Panels A report linear and continu-

ous interactions, while Panels B report quartile-specific slopes and supervisor-specific deviations from

each quartile-specific slope. Here, however, though columns 1 through 3 of Tables 5 and 6 are from

specifications identical to those represented in columns 1 through 3 of Tables 3 and 4, we include an ad-

ditional specification in columns 4 of Tables 5 and 6 in which we add garment style by line by day fixed

effects to the baseline month, day of week, and hour of day fixed effects. This specification is meant to
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isolate task match adjustments within line and garment order on a given day (which are most likely

to reflect conscious production decisions on the part of the supervisor) from adjustments across lines

or garment styles within the day (which would reflect completion of an order or manpower shortages

elsewhere on the production floor or some other unrelated shock). Note that these additional fixed ef-

fects subsume the line fixed effects from the specification represented in column 2, but do not include

the worker fixed effects in the specification represented in column 3 for the sake of parsimony.

In Panel A of both Tables 5 and 6, we find that there is little evidence of a relationship between fine

PM levels and worker-task match adjustment on lines with inexperienced or less relatable supervisors,

but there is a strong, positive impact of fine PM on adjustments for workers with more experienced

and highly relatable supervisors. Specifically, a one SD increase in fine PM levels leads to between a .23

and .58 percentage point increase in the probability that each worker on a line under the supervision

of an experienced supervisor is reallocated across tasks each hour (from a mean of roughly 15 percent).

This impact for workers with highly relatable supervisors is between .23 and .72 percentage points.

Panel B of Table 5 shows that adjustment responses to fine PM levels among experienced supervi-

sors are largest in the third and fourth quartiles with the least adjustment occurring in the first quartile;

however, we find some evidence of large adjustments at first quartile PM levels in the specifications

reported in columns 1 and 4. On the other hand, Panel B of Table 6 shows that worker-task match ad-

justment responses among highly relatable supervisors are strongest at first and second quartile levels

of fine PM with some evidence of large adjustments in the fourth quartile in specifications reported

columns 3 and 4.

These patterns of adjustments are consistent with the patterns of heterogeneous impacts on effi-

ciency presented in Tables 3 and 4, and further support the predictions of the model. We, therefore,

interpret these additional results are strong evidence in support of the mechanisms proposed and pre-

dictions developed in section 3 above.

Given that we see workers completing many different tasks across different hours and days, we

can actually observe the degree to which individual workers indeed get reallocated to tasks which

they find easier or on which they can achieve higher efficiency as the fine PM level deviates from mean

levels. We first use data from low fine PM hours and days to rank tasks for each worker by the mean

efficiency level that the worker achieves on each task. That is, for each worker the task ranked 1 is the

task on which that worker achieves the lowest mean efficiency during low PM levels; the task ranked

2 is the task on which the worker achieves the second lowest mean efficiency during low PM levels;
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(1) (2) (3) (4)

Panel  A:  Linear  Effects

Experienced  Supervisor  x  Std  Fine  PM 0.00582*** 0.00376*** 0.00230** 0.00383***
(0.00135) (0.00113) (0.00095) (0.00097)

Standardized  Fine  PM -‐‑0.00203** -‐‑0.00120 -‐‑0.00030 -‐‑0.00057
(0.00098) (0.00087) (0.00077) (0.00070)

Experienced  Supervisor -‐‑0.00727*** 0.01347
(0.00213) (0.01425)

Panel  B:  PM  Quartiles

Experienced  x  1st  Quartile  Std  Fine  PM 0.00805*** 0.00514** 0.00253 0.00439***
(0.00251) (0.00211) (0.00175) (0.00131)

Experienced  x  2nd  Quartile  Std  Fine  PM 0.00827*** 0.00565*** 0.00342** 0.00369***
(0.00192) (0.00163) (0.00136) (0.00113)

Experienced  x  3rd  Quartile  Std  Fine  PM 0.00747*** 0.00522*** 0.00323** 0.00340***
(0.00176) (0.00155) (0.00132) (0.00111)

Experienced  x  4th  Quartile  Std  Fine  PM 0.00563*** 0.00360*** 0.00221** 0.00383***
(0.00132) (0.00111) (0.00094) (0.00097)

1st  Quartile  Std  Fine  PM -‐‑0.00657*** -‐‑0.00520** -‐‑0.00341* -‐‑0.00128
(0.00223) (0.00208) (0.00198) (0.00140)

2nd  Quartile  Std  Fine  PM -‐‑0.00579*** -‐‑0.00460*** -‐‑0.00308** -‐‑0.00132
(0.00179) (0.00167) (0.00156) (0.00114)

3rd  Quartile  Std  Fine  PM -‐‑0.00478*** -‐‑0.00385*** -‐‑0.00255* -‐‑0.00094
(0.00154) (0.00143) (0.00133) (0.00099)

4th  Quartile  Std  Fine  PM -‐‑0.00312*** -‐‑0.00229** -‐‑0.00134 -‐‑0.00079
(0.00121) (0.00112) (0.00105) (0.00082)

Month,  Day-‐‑of-‐‑Week,  Hour-‐‑of-‐‑Day  FE Yes Yes Yes Yes
Line  FE No Yes Yes Yes

Worker  FE No No Yes Yes

Observations 820,588 820,588 820,588 820,588
Mean  of  Dependent  Variable 0.1503142 0.1503142 0.1503142 0.1503142

Notes:  Robust  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  worker  level.  

Table  5
Impacts  of  Pollution  on  Task  Match  Adjustment  by  Supervisor  Experience

Worker-‐‑Task  Match  Change

1(Worker  Switched  Tasks  from  Last  Hour)
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(1) (2) (3) (4)

Panel*A:*Linear*Effects

Relatable*Supervisor*x*Std*Fine*PM 0.00717*** 0.00439*** 0.00226* 0.00357**

(0.00188) (0.00151) (0.00127) (0.00150)

Standardized*Fine*PM K0.00071 K0.00019 0.00043 0.00062

(0.00077) (0.00071) (0.00064) (0.00059)

Relatable*Supervisor K0.00207 0.01264

(0.00207) (0.00918)

Panel*B:*PM*Quartiles

Relatable*x*1st*Quartile*Std*Fine*PM 0.01421*** 0.00934*** 0.00461* 0.00360*

(0.00382) (0.00311) (0.00248) (0.00191)

Relatable*x*2nd*Quartile*Std*Fine*PM 0.01182*** 0.00824*** 0.00409** 0.00225

(0.00287) (0.00238) (0.00200) (0.00162)

Relatable*x*3rd*Quartile*Std*Fine*PM 0.00863*** 0.00544** 0.00237 0.00213

(0.00261) (0.00221) (0.00191) (0.00169)

Relatable*x*4th*Quartile*Std*Fine*PM 0.00710*** 0.00438*** 0.00234* 0.00355**

(0.00185) (0.00150) (0.00128) (0.00150)

1st*Quartile*Std*Fine*PM K0.00571*** K0.00462** K0.00315* 0.00023

(0.00192) (0.00183) (0.00175) (0.00128)

2nd*Quartile*Std*Fine*PM K0.00422*** K0.00348** K0.00219 0.00013

(0.00151) (0.00144) (0.00137) (0.00102)

3rd*Quartile*Std*Fine*PM K0.00281** K0.00223* K0.00131 0.00037

(0.00128) (0.00122) (0.00115) (0.00087)

4th*Quartile*Std*Fine*PM K0.00187* K0.00135 K0.00069 0.00039

(0.00100) (0.00095) (0.00091) (0.00072)

Month,*DayKofKWeek,*HourKofKDay*FE Yes Yes Yes Yes

Line*FE No Yes Yes Yes

Worker*FE No No Yes Yes

Observations 820,588 820,588 820,588 820,588

Mean*of*Dependent*Variable 0.1503142 0.1503142 0.1503142 0.1503142

Notes:*Robust*standard*errors*in*parentheses*(****p<0.01,****p<0.05,***p<0.1).*Clustering*is*done*at*the*worker*level.*

Table*6

Impacts*of*Pollution*on*Task*Match*Adjustment*by*Supervisor*Relatability

WorkerKTask*Match*Change

1(Worker*Switched*Tasks*from*Last*Hour)
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and so on. We observe a given worker on up to 30 tasks during low PM levels.

Figure 8 shows the relationship between the worker-specific task ranking and the mean efficiency

the worker achieved at that rank task. Figure 9 shows that as fine PM levels deviate from mean levels,

workers are indeed assigned to higher ranked (i.e., easier or higher efficiency) tasks. This pattern holds

for all workers in the second, third, and fourth quartiles of baseline efficiency within the line. In fact,

workers in the fourth quartile appear to be more likely to be reallocated to higher ranked tasks than are

those in the second or third quartile. This pattern is consistent with the type of rank order reallocation

of workers across tasks depicted in the model developed in section 3. However, workers in the first

quartile of baseline efficiency do not appear to be as likely to be reallocated, perhaps because these

workers are allocated to the most difficult tasks that many other workers cannot complete.

Figure 8
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We finish our investigation of worker-task reallocations in response to heterogeneously taxed worker

efficiency at higher fine PM levels check the degree to which these reallocations serve to offset the im-

pacts of pollution and equalize production across workers in the line. Figure 10 repeats the exercise

depicted in Figure 3A, but plotting baseline efficiency quartile specific gradients for workers with more

and less experienced supervisors separately. Figure 11 does the same, but separately for workers with

more and less relatable supervisors. Both Figures 10 and 11 show strong evidence of mitigation on the

part of supervisors of impacts of fine PM exposure across the efficiency distribution.
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Figure 10
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Figure 11
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6.5 Impacts of Fine PM on Worker Attendance and Health Clinic Visits

Finally, we investigate whether exposure to fine PM levels are impacting efficiency through increases

in absenteeism or foregone production time due to health clinic visits. Our interpretation of the results

through the framework developed in section 3, particularly as pertains to the role of supervisors in

worker-task match adjustments, relies on intensive margin impacts of fine PM exposure on worker-

specific effort and efficiency. However, there might also be impacts of fine PM exposure on extensive

margin outcomes such as worker attendance and health clinic visits.

Table 7 reports results from regressions of absenteeism and health clinic visits on contemporane-

ous standardized daily fine and coarse PM levels and the one day lags of these measures. Note that

these regressions are conducted at the daily level as data on worker attendance and health clinic visits

are recorded at the daily level rather than hourly level. Panel A reports results from these analyses

conducted at the worker level across specifications including month and day of week fixed effects in

columns 1 and 3 and additional worker fixed effects in columns 2 and 4.

Panel B reports results from similar analyses conducted at the unit level in which number of work-

ers reporting absent and visiting the health are summed across the entire unit each day and then

regressed in a time series regression on the same standardized daily fine and coarse PM levels as well

as the one day lags of these measures. We also sum the number of workers reporting to work tardy

each morning and those working late beyond regular working hours each day and regress these on
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daily fine and coarse PM levels and their one day lags as well. In Panel B, results for number of work-

ers visiting the health clinic per day are reported in column 1; results for the number reporting absent

per day are reported in column 2; results for number reporting tardy are presented in column 3; and

results for number working over time are presented in column 4.

Across all results presented in both Panels A and B of Table 7, we find no evidence of impacts of

either contemporaneous or daily lagged PM exposure on extensive margin measures of attendance

and time spent producing on the line. This evidence supports our interpretation of pollution primarily

impacting intensive margin effort and worker efficiency and the role of supervisors in reallocating

workers to tasks in order to augment these impacts.

7 Conclusion

Pollution in urban centers of developing countries has skyrocketed in the last decade due to rapid

industrial growth and lax regulation and enforcement related to emissions. Levels of pollution in

developing country cities dwarf the levels in similarly sized developed country cities. The health costs

of this pollution have been clearly shown in recent papers, but impacts on the labor force are only

beginning to be explored.

In this study, we document a steep pollution-productivity gradient for particular matter pollution

in garment factories in and around Bangalore, India. Productive efficiency is thus quite elastic with

respect to PM2.5, the type of fine particulate matter pollution that is worst for respiratory health.

Moreover, we find that management plays a key role in mediating this impact. In particular, workers

with more skilled managers (those who are more experienced and “relatable”) realize smaller declines

in efficiency during high pollution hours and days. We show, using detailed, worker-operation-specific

data that capable managers are able to reallocate workers across tasks in response to efficiency losses

from high fine PM levels, and thus boost overall team productivity.

Our findings have important implications for environmental policy and firm decision-making in

low-income countries. Policymakers should take into account the negative impacts of pollution on

industrial output when crafting “green” legislation and allocating resources toward enforcement of

existing laws related to industrial emissions. Firms, on the other hand, must take this pollution as

a given and should act to mitigate its impacts on workers. Where air filtration and other pollution

reduction measures are prohibitively costly, hiring skilled managers and optimizing the allocation of
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(1) (2) (3) (4)

Panel*A:*Worker1Level

Standardized*Fine*PM 0.00119 0.00053 -0.00033 -0.00032
(0.00298) (0.00294) (0.00027) (0.00026)

Standardized*Daily*Fine*PM*Lag -0.00411 -0.00369 -0.00020 -0.00019

(0.00283) (0.00274) (0.00028) (0.00027)
Standardized*Coarse*PM -0.00025 -0.00023 0.00005 0.00004

(0.00203) (0.00199) (0.00019) (0.00019)
Standardized*Daily*Coarse*PM*Lag -0.00306 -0.00248 0.00024 0.00023

(0.00214) (0.00204) (0.00019) (0.00019)

Month,*Day1of1Week,*Hour1of1Day*FE Yes Yes Yes Yes

Worker*FE No Yes No Yes

Observations 630,153 630,153 547,462 547,462
Mean*of*Dependent*Variable 0.1314712 0.1314712 0.0009371 0.0009371

Panel*B:*Unit1Level

Standardized*Fine*PM -0.74318 7.47782 8.46720 15.33834
(0.55596) (9.78940) (19.79085) (11.18281)

Standardized*Daily*Fine*PM*Lag -0.41498 -6.02292 3.19599 5.81703

(0.60940) (9.14406) (19.99067) (11.09703)
Standardized*Coarse*PM 0.18926 -4.74490 12.33683 2.08001

(0.46406) (7.06202) (18.73709) (8.91204)
Standardized*Daily*Coarse*PM*Lag 0.59132 -5.07394 16.02090 2.72809

(0.45819) (7.04236) (18.50304) (10.57244)

Month,*Day1of1Week*FE Yes Yes Yes Yes

Observations 247 247 247 247
Mean*of*Dependent*Variable 2.003906 323.6211 640.125 471.3477

Table*7
Impact*of*Pollution*on*Attendance*and*Health

Visit*Health*Clinic

Notes:*Robsut*standard*errors*in*parentheses*(****p<0.01,****p<0.05,***p<0.1).*Clustering*is*done*at*the*worker*leve*in*Panel*A.

Absent

#*Visiting*Health*
Clinic*Per*Day

#*Absent*Per*
Day

#*Tardy*Per*Day
#*Working*Over*
Time*Per*Day
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workers to tasks might allow firms to buffer negative productivity impacts ensuing from pollution

exposure.

Furthermore, as exposure to high levels of air pollution is only one example of the myriad ad-

verse productivity shocks that firms in developing countries face, our results on the impacts of these

shocks and the role of management in navigating and mitigating these impacts can be generalized to

help explain the vast labor and total factor productivity gaps that have been documented empirically

in the literature and the role of managerial skill in reducing this gap. That is, we provide empirical

evidence that adverse environmental conditions, in combination with shocks deriving from infras-

tructural failures (e.g., power outages, delays due to unmotorable roads and customs frictions) and

input and manpower shortages, etc., might contribute significantly to the observed productivity gap

between firms in developed and developing countries. Additionally, we support empirically the hy-

pothesis recently proposed by the literature that management might also contribute to, or on the other

hand help to reduce, this gap.
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A Checks and Robustness

In Figure A1, we plot fine and coarse PM levels across days of the week, including Sundays on which

very little production occurs at the garment factory. We see that indeed fine PM continue to remain at

roughly the same levels as those during the work week; while coarse PM drops measurably on Sun-

days, indicating that coarse PM is more likely produced through factory activity than fine PM. Figure

A2 plots fine and coarse PM levels across hours of the day including non-production hours. Coarse

PM shows high levels during production hours with a dip in levels before and after production hours

as well as during lunch hours; while fine PM shows peaks during commuting hours and lower levels

during peak production. These patterns suggest that coarse PM is more likely produced through gar-

ment manufacturing activity; while fine PM appears more likely to be produced through automobile

exhaust during high traffic hours.

Figure A1:
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Figure A2: Hourly PM
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Notes:

In Table A1, we report estimates from regression analogues to the comparisons depicted in Figure

A2.

In Table A2, we check robustness of our main results to IV specifications in which contemporaneous

fine PM levels are instrumented with levels one hour in the future after controlling for the day’s fine

PM average. The full pattern of results is overwhelmingly preserved.

In Table A3, we check robustness of our main results to including daily temperature as a control.

Once again, the full pattern of results is preserved.
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(1) (2)

1(Production  Hour) -‐‑8.48976*** 0.99862***
(1.03569) (0.11297)

1(Lunch  Hour) -‐‑0.47383 -‐‑0.41746***
(0.62780) (0.06411)

1(Commute  Hour) 2.97599*** 0.77616***
(1.11590) (0.09762)

1(Night  Hour) -‐‑1.61120 -‐‑0.49183***
(1.22167) (0.12377)

Day  PM  Average 0.00324*** 0.00524***
(0.00026) (0.00019)

1  Hour  Lag  PM 0.00654*** 0.00427***
(0.00045) (0.00019)

2  Hour  Lag  PM 0.00095*** 0.00089***
(0.00033) (0.00020)

3  Hour  Lag  PM -‐‑0.00003 -‐‑0.00023
(0.00017) (0.00018)

4  Hour  Lag  PM -‐‑0.00070*** -‐‑0.00038***
(0.00014) (0.00012)

Month,  Day-‐‑of-‐‑Week  FE Yes Yes

Observations 5,150 5,150
Mean  of  Dependent  Variable 56.69874 4.012719

Notes:  Robsut  standard  errors  in  parentheses  (***  p<0.01,  **  p<0.05,  *  p<0.1).  Clustering  is  done  at  the  date  level.  

Fine  PM Coarse  PM

Table  A1
Checks  of  Fine  PM  Exogeneity
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