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Abstract

This paper investigates stationary β-mixing dynamics in nonlinear panel models and develops

nonparametric estimation of dynamic panel models using series approximations. We extend

the standard linear dynamic panel model to a nonparametric form that maintains additive

fixed effects. Convergence rates and the asymptotic distribution of the series estimator are

derived, in which an asymptotic bias is present and it reduces the mean square convergence rate

compared with the cross section case. Bias correction is developed using a heteroskedasticity

and autocorrelation consistent (HAC) type estimator. Some extensions of this framework

are also considered under exogenous variables and partial linear models. Using partial linear

models, an empirical study on nonlinearity in the cross-country growth regression is presented.

After bias correction, the convergence hypothesis is true only for countries in the upper income

range and for OECD countries.
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1 Introduction

In spite of the large and growing literature on nonparametric modelling in econometrics, little attention

has been given to nonparametric estimation in dynamic panels. One explanation is the difficulty of

treating individual effects and the autoregressive structure simultaneously in the context of nonparametric

estimation, especially when the unobserved individual effects are specified as fixed effects. This paper seeks

to overcome this problem by developing series approximations for nonlinear dynamics in a panel system.

We extend the standard linear dynamic panel model to a nonparametric form that maintains additive

fixed effects.

There are several studies on nonparametric or semiparametric models for panel systems. For non-

parametric models, Porter (1996) derives a limit distribution of the nonparametric estimator in static

(i.e., non-dynamic) independent panel models with fixed effects, when the cross section sample size, N , is

large but the length of time, T , is fixed. Both series and kernel estimations are explored. Under similar

conditions, Ullah and Roy (1998) consider kernel estimation for panels when both N and T are large.

In a recent study by Mundra (2005), the local polynomial estimation technique is used to estimate the

slope of the unknown function. Instead of considering fixed effects, Henderson and Ullah (2005) look at

nonparametric estimation of random-effects models. All of these studies examine static panel systems and

show that the conventional nonparametric analysis can be extended to panel models. For semiparametric

models, Baltagi and Li (2002) extend the partial linear model of Robinson (1988) to panel systems includ-

ing fixed effects, and consider static and independent panels. Li and Stengos (1996), and Li and Kniesner

(2002) investigate partial linear models in the context of dynamic panel models but they only consider

random effects. In a similar vein, Hahn and Kuersteiner (2004) examine parametric nonlinear dynamic

panel models with fixed effects.

Though several studies have analyzed nonparametric and semiparametric panel models with individual

effects, there appear to be no theoretical studies tackling both dynamics and fixed effects at the same

time in the context of nonparametric panel estimation. Therefore, the main contribution of this paper

is that it develops nonparametric estimation techniques suitable for dynamic panel models with fixed

effects, in which the fixed effects are eliminated by the within transformation (i.e., deviations from the

individual sample average over time). Moreover, the limit properties of the within-transformation-based

nonparametric estimator are explored under large N and T asymptotics when N and T are of comparable

sizes. Such asymptotic results are expected to be of practical relevance when T is not too small compared

to N as is in the cases of cross-country studies (e.g., the Penn World Table) and cross-firm studies.

This paper mainly looks at the within transformation instead of the first-differencing transformation.
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First-differenced dynamic panel models are, unlike static panel models, estimated using instrumental

variables (IV) because the first-differencing transformation provokes nonzero correlation between the error

and regressors. For the cross section case, nonparametric IV estimation is examined in several recent

studies. See Ai and Chen (2003), Blundell and Powell (2003), Darolles, Florens and Renault (2003),

Newey and Powell (2003), and Hall and Horowitz (2005) among others. Though these studies are mainly

for cross section data, the extension to dynamic panels can be done as long as T is small and fixed.

Meanwhile, there seems to be no attempt to develop nonparametric estimation for the within-transformed

model in the context of dynamic panels.

Taking it into account, we develop nonparametric estimation for the within-transformed dynamic panel

models using series approximation. Series estimation is convenient in this context because it approximates

an unknown function with a linear combination of known functions; therefore, the within transformation

of the unknown function can be simply approximated by the same linear combination of the within-

transformed series functions. Moreover, as in the conventional within-group (WG; or the least squares

dummy variable, LSDV) estimation, the new estimation procedure is based on least squares estimation,

and thus it is much easier to implement in practice than IV-based estimation.2

Specifically, this approach follows earlier works on cross sectional series estimation by Andrews (1991a)

and Newey (1997), and generalizes their asymptotic results to dynamic panels. Under proper conditions,

a panel homogeneous Markov process is shown to satisfy stationary β-mixing condition, which will be the

basic building block to control temporal dependence. We derive the mean square convergence rate and the

asymptotic distribution of the series estimator when both N and T are large. Just as for pooled estimation

in linear dynamic panels (e.g., Hahn and Kuersteiner, 2002; Alvarez and Arellano, 2003), an asymptotic

bias is present, which reduces the mean square convergence rate compared with the cross section case. To

tackle this problem, we develop bias correction using a heteroskedasticity and autocorrelation consistent

(HAC) type estimator.

Some extensions of this framework are also considered under exogenous variables and partial linear

models, which are more relevant in applications. The limit theory and bias correction for these cases

follow by extending the main results. Finally, an empirical study on nonlinearity in the cross-country

growth regression is presented to illustrate the use of the nonparametric estimation techniques for dynamic

panels with fixed effects. Including fixed effects in the growth regression allows heterogeneous production

functions across countries. In addition, recent studies question the assumption of linearity in growth

2We expect that the within-transformed model based estimation, as long as the asymptotic bias is properly corrected, is
more desirable in finite samples than the first-differenced model based estimation. As is well known in linear dynamic panel
models, the IV-based estimators are inferior to the WG estimators in their efficiencies in finite samples, which is closely
related to the slow rate of convergence of the IV-based nonparametric estimators.
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equations and propose nonlinear alternatives that allow for multiple regimes of growth patterns among

different countries. When we analyze a semiparametric dynamic panel growth equation with fixed effects

using the Penn World Table, the findings suggest the presence of multiple regimes in growth patterns. In

particular, before bias correction, the results exhibit the convergence for the countries in the middle to

upper income range. After bias correction, however, the results support the convergence hypothesis only

for the OECD countries and the countries in the upper income range.

This paper is organized as follows. Section 2 introduces the basic model and discusses the stability

condition for the nonlinear autoregressive panel systems. In Section 3, WG series estimation is developed

and its limit properties are examined under large N and T asymptotics. A pointwise bias correction

method is also discussed. In Section 4, the main results are generalized to include exogenous variables

and partial linear models. Some ideas on two stage nonparametric IV estimation, which is based on the

first-differenced model, are also briefly discussed. In Section 5, Monte Carlo experiments are conducted

to examine the performance of the WG series estimator and bias correction in finite samples. In Section

6, an empirical study on the nonlinear cross-country growth regression is presented. Section 7 concludes

this paper with some remarks. All the mathematical proofs are provided in Appendix.

2 Nonparametric Dynamic Panel Models

2.1 Fixed Effects Models

We consider a panel process {yi,t} generated from a nonlinear autoregressive model given by3

yi,t = m (yi,t−1) + μi + ui,t (1)

for i = 1, 2, · · · , N and t = 1, 2, · · · , T , where m : R→ R is an unknown Borel measurable function. The

realization of the initial values, yi,0, are observed for all i. A fixed (individual) effect, μi, is assumed to

have finite variance and to satisfy E (ui,t|μi) = 0 for all i and t, but possibly correlated with yi,t−1. Unlike

a random effect, the fixed effect captures the omitted and thus unobserved cross sectional heterogeneity,

and it is allowed to be correlated with the explanatory variables, yi,t−1. On the other hand, it is assumed

that E (ui,t|yi,t−1, · · · , yi,0) = 0. Therefore, we suppose a common shape of the conditional mean function

m (·) for all i but different in intercepts.

Note that the conditional mean assumption, E (ui,t|μi) = 0, is important to avoid an endogeneity

3One could consider yi,t = mμ (yi,t−1;μi) + ui,t, but μi and mμ cannot be separately identifiable without further
restrictions on mμ.
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problem. Since the data generating process in (1) implies that yi,t is a function of both μi and {ui,s}s≤t,

the (strict) exogeneity condition E (ui,t|yi,t−1, · · · , yi,0) = E (ui,t|μi, ui,t−1, ui,t−2, · · · ) = 0 requires that the

conditional mean of ui,t on μi is zero.
4 The condition, E (ui,t|μi) = 0, on the other hand, does not implies

E (μi|yi,t−1, · · · , yi,0) = 0 since {yi,s}s≤t−1 are still functions of μi. The potential correlation between

the individual effects and the regressors thus remains, which is a key property of fixed-effects models.

To make the notation as simple as possible, we let {ui,t} be an independent and identically distributed

process with mean zero and finite variance. Further more, we simply assume μi to be independent of ui,t

for all i and t, instead of assuming E (ui,t|μi) = 0. Therefore, across i, {yi,t} is also independent with

heterogeneous means. Note that the generalization to serially (weakly) dependent ui,t such as a martingale

difference sequence can be easily done, but at the cost of notational complexity. On the other hand, the

generalization to cross sectional dependence as in Phillips and Sul (2004) is not straightforward and we

do not pursue it in this paper.

We can consider a more general specification given by

yi,t = m (yi,t−1, · · · , yi,t−p;xi,t, · · · , xi,t−q+1) + μi + ui,t,

which allows for higher order lag terms of yi,t and lags of exogenous variables xi,t ∈ Rr in the unknown

function m. Including exogenous variables in the regression is relevant in empirical studies, and we will

discuss such an extension in Section 4.1. The main analysis of this paper, however, focuses on the simple

nonparametric model given in (1).

2.2 Beta-mixing Processes

The stability of the linear autoregressive process is determined by restricting the support of the roots of

the polynomial characteristic function. In the nonlinear case, however, such techniques are infeasible and

proper conditions are required to satisfy ergodicity and mixing property. To derive such conditions, we

suppose {yi,t} is a Markov process given in (1), with homogeneous transition probability Fi and initial

distribution as its invariant measure πi for each i. Then the process {yi,t} is stationary over t and its

marginal distribution is given by πi. We define the β-mixing coefficient βi (τ) as (e.g., Davydov, 1973;

Doukhan, 1994)

βi (τ) = sup
t
E

"
sup

A∈G∞i,t+τ

°°P ¡A|Gti,−∞¢− P (A)°°TV
#

4For example, {ui,t} needs to be a martingale difference sequence on its natural filtration {Fi,t} conditional on μi, where
Fi,t = σ (ui,s : s ≤ t).
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for τ > 0, where Gt2i,t1 is the σ-field generated by {yi,t : t1 ≤ t ≤ t2} for each i. k·kTV is the total variation5

of a signed measure. If βi (τ)→ 0 as τ →∞, then {yi,t} is β-mixing for a fixed i. Davydov (1973) gives

the following equivalent definition of βi (τ) for a homogeneous stationary Markov chain {yi,t}:

βi (τ) =

Z
πi (dy) kF τ

i (y, ·)− πi (·)kTV ,

where F τ
i (y, ·) is the τ -th step transition probability. We define β (τ) = sup1≤i≤N |βi (τ)| for all τ > 0,

and we will say a panel process {yi,t} is β-mixing (i.e., absolutely regular) if β (τ)→ 0 as τ →∞.

In the nonlinear time series literature, it is well established that a homogeneous Markov chain is β-

mixing with mixing coefficients tending to zero at an exponential rate if it is geometrically (Harris) ergodic.

See, Doukhan (1994) for example. Moreover, geometric ergodicity implies stationarity of the process

({yi,t}) if the distribution of the initial values (yi,0) are defined by an invariant probability measure (πi).

When individual effects are present in the dynamics as in (1), however, {yi,t} cannot be (geometrically)

ergodic because a common random constant μi will affect the temporal dependence structure. But when

the whole process is conditional on μi, it
6 becomes a common constant shift in the distribution of the

process; therefore, μi no longer affects the temporal dependence of {yi,t}. In what follows, even though we

do not explicitly indicate “conditional on μi,” all the arguments presume it. The following two assumptions

summarize the conditions for the homogeneous Markov process {yi,t} to be geometrically ergodic.

Assumption E1 (i) {ui,t} is i.i.d. with mean zero, variance σ2 and E |ui,t|ν <∞ for some ν > 4. (ii)

{ui,t} has a positive density almost everywhere and an absolutely continuous marginal distribution with

respect to the Lebesgue measure on R. (iii) ui,t is independent of μi for all i and t.

The condition E1 implies that ui,t is independent of {yi,s}s≤t−1. We assume the density of ui,t to be

positive almost everywhere so that we can minimize restrictions on m (·). We do not need this assumption

for a linear autoregressive model. The next condition controls the nonlinear function m (·) to ensure the

stability of the process {yi,t}. We let φi (y) = μi +m (y) for each i and for y ∈ Y, where Y ⊆ R is the

support of {yi,t}.

Assumption E2 (i) For each i and for the Borel measurable function φi : Y → R, there exist positive

constants y, c1 < 1 and ci0 satisfying |φi (y)| ≤ c1 |y|+ ci0 if |y| > y; and supy:|y|≤y |φi (y)| < ∞, where

5We denote the total variation norm of the signed measure σ on a σ-field B by kσkTV such that kσkTV
.
= supB∈B σ (B)−

infB∈B σ (B). If σ1 and σ2 are two probability measures and σ = σ1−σ2, then we have kσkTV = 2 supB∈B |σ1 (B)− σ2 (B)|
in view of Scheffe’s theorem. (cf. Liebscher, 2005, p.671)

6Considering μi as random is essential to allow correlation between μi and yi,t−1. Otherwise, there remains no correlation
between μi and yi,t−1, and μi is no longer a fixed effect in the sense of Wooldridge (2002, Chapter 10).
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[−y, y] ⊂ Y. (ii) For each i, the Markov process {yi,t} has a homogeneous transition probability Fi, and

the initial value yi,0 is drawn from the invariant distribution πi.

The assumption E2-(i) implies that for large |y| the behavior of the function φi is dominated by a stable

linear function. A wide class of nonlinear autoregressive functions, such as (bounded) autoregressive

processes, semi-parametric autoregressive processes and threshold autoregressive processes, satisfy this

assumption. For more examples and discussions, readers may refer to Tong (1990), Doukhan (1994),

An and Huang (1996) and references therein. The condition E2-(ii) is necessary for stationarity. The

following propositions establish that the homogeneous Markov process {yi,t} is geometrically ergodic and

thus β-mixing with mixing coefficients β (τ) tending to zero as τ →∞ at an exponential rate. Since {yi,t}

is simply an autoregressive time series for each i and conditional on μi, the proofs of Proposition 2.1 and

2.2 directly follow from Doukhan (1994), An and Huang (1996), or Liebscher (2005).

Proposition 2.1 Suppose that the process {yi,t} is generated by (1). Then, for each i, the process {yi,t}

is geometrically ergodic conditioning on μi, provided that Assumptions E1 and E2 hold.

Proposition 2.2 For each i and conditioning on μi, the homogeneous Markov process {yi,t} is stationary

and geometrically ergodic if and only if {yi,t} is stationary β-mixing with exponential decay.

Note that β-mixing implies α-mixing (i.e., strong mixing; Doukhan, 1994). Therefore, Assumptions E1

and E2 imply that {yi,t} is α-mixing conditioning on μi and we can use well-established results for α-

mixing processes. The α-mixing condition has been frequently employed in the nonparametric time series

literature à la Robinson (1983). In fact, we only require a mixing condition in order to control the temporal

dependence in the proof, and thus using more general mixing condition (i.e., using α-mixing condition

instead of β-mixing) does not alter any implication of the study. To make this section complete, we define

α-mixing coefficients of {yi,t} as

αi (τ) = sup
t

"
sup

A∈Gti,−∞,B∈G∞i,t+τ
|P (A ∩B)− P (A)P (B)|

#
(2)

for τ > 0 and for each i. We let α (τ) = sup1≤i≤N |αi (τ)|. Since α (τ) ≤ β (τ) for each τ , α (τ) also tends

to zero at an exponential rate. That is, we can write α (τ) ≤ Cαa
τ for some a such that 0 < a < 1 and for

some constant 0 < Cα <∞. The following proposition gives that an α-mixing process is invariant under

arbitrary Borel measurable transformations. The details can be found in White and Domowitz (1984).

7



Proposition 2.3 Let ψ : Rk1 → Rk2 be measurable with finite k1 and k2. If {wt} is α-mixing with

a mixing coefficient of O (τ−�) for some � > 0, then {ψ (wt, · · · , wt−k)} is also α-mixing with a mixing

coefficient of O (τ−�).

The following mixing inequalities will be used frequently in proving the main results. The proof can be

found in, for example, Billingsley (1968), Bierens (1994), or Fan and Yao (2003).

Proposition 2.4 Let α = supA∈σ(X),B∈σ(Y ) |P (A ∩B)− P (A)P (B)|, then

(1) |cov (X,Y )| ≤ 4αC1C2 if P (|X| < C1) = 1 and P (|Y | < C2) = 1 for some finite and positive

constants C1 and C2;

(2) |cov (X,Y )| ≤ 8α1−1/p−1/q (E |X|p)1/p (E |Y |q)1/q if E |X|p + E |Y |q < ∞ for some p, q ≥ 1 and

1/p+ 1/q < 1.

3 Within-Group Series Estimation

3.1 Within-group estimator

To avoid incidental parameter problem asN increases, we first need to eliminate individual effects, μi, in (1)

by employing one of the following methods: the within transformation (i.e., deviations from the individual

sample average over time) and the first-differencing transformation. Pooled least squares estimation based

on the within transformation is known as within-group (WG) estimation or least squares dummy variable

(LSDV) estimation. Specifically, the within transformation of (1) yields

y0i,t =

(
m (yi,t−1)−

1

T

TX
s=1

m (yi,s−1)

)
+ u0i,t, (3)

and the first-differencing transformation of (1) yields

∆yi,t = {m (yi,t−1)−m (yi,t−2)}+∆ui,t, (4)

where for any variable wi,t we define ∆wi,t = wi,t − wi,t−1 and w0i,t = wi,t − (1/T )
PT

s=1 wi,s.

The equations (3) and (4) show that it is not straightforward to estimate the unknown function m (·)

using simple kernel regressions. The main reason is an endogeneity problem incurred by the within

or first-differencing transformations. To explain this, we rewrite the within-transformed model (3) as

y0i,t = cWT (yi,t−1, · · · , yi,0)+u0i,t, where cWT (y1, · · · , yT ) = m (y1)−(1/T )
PT

s=1m (ys). Then estimating
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cWT by kernel regression is infeasible since its dimension increases as T → ∞; moreover, the regression

involves an endogeneity problem because E
¡
u0i,t|yi,s

¢
6= 0 for any 0 ≤ s ≤ t − 1.7 We can also rewrite

the first-differenced model (4) as ∆yi,t = cFD (yi,t−1, yi,t−2)+∆ui,t, where cFD (y1, y2) = m (y1)−m (y2).

Though this regression model does not incur the curse of dimensionality as in the within transformation

case, it still has an endogeneity problem. Therefore, we need instrumental variables (IV) estimation for

the nonparametric models (3) and (4).

Recently, a large and growing literature has been devoted to studying endogeneity in nonparametric

and semiparametric regression models in the cross section case. Blundell and Powell (2003) provide a

good survey of the recent development. For example, there are well established limit theories for a two

stage nonparametric IV estimator as in Ai and Chen (2003), Darolles, Florens and Renault (2003), Newey

and Powell (2003), and Hall and Horowitz (2005) among others. Though these results are based on the

independent cross section case, the extension to the first differenced dynamic panel in (4) can be done

when T is fixed.8 We will briefly discuss such extension in Section 4.2. One drawback of this approach

is, however, slow rate of convergence, which yields efficiency loss in finite samples. Taking it into account,

we instead develop a different and novel approach: the within-transform-based nonparametric estimation

method based on (3).

For notational convenience, we let m0 (yi,t) = m (yi,t) − (1/T )
PT

s=1m (yi,s) for each i and t,9 and

rewrite the within-transformed model (3) as

y0i,t = m0 (yi,t−1) + u0i,t.

Note, however, that m0 (yi,t−1) does not imply that it is a function of yi,t−1 only; instead, it is a function

of a complete series of (yi,0,yi,1, · · · , yi,T−1) for each i. To estimate m (·), we use series approximation as

in Andrews (1991a) and Newey (1997), which approximates an unknown function m (·) by some linear

combination of K known series functions {qKk}:

m (y) ≈
KX
k=1

θKkqKk (y) , (5)

where qKk : Y → R are measurable and θKk ∈ R for all k = 1, 2, · · · ,K. “≈” indicates series approxima-

7Since (1/T ) T
s=1m (ys) can be approximated by E (m (yt)) using the Law of Large Numbers, we can regard

cWT (y1, · · · , yT ) as a demeaned form of m (y1). Then the curse of dimensionality problem disappears asymptotically.

The approximation error, however, should be considered in addition to the endogeneity problem (i.e., E u0i,t|yi,s 6= 0 for

any 0 ≤ s ≤ t− 1).
8More careful analysis is required when both N and T are large. We leave this case as a future study.
9 In what follows, any variables or functions with superscript 0 indicate that they are within-transformed.
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tion; namely, it means “is approximately equal for large K.” The choice of the sequence must be such that

the approximation to m (·) improves as K gets larger, where K = K (N,T ) and K → ∞ as N,T → ∞.

Using the series approximation in (5), we can rewrite m0 (y) as

m0 (y) ≈
KX
k=1

θKkq
0
Kk (y) ,

where we transform the series functions as q0Kk (yi,t) = qKk (yi,t)− (1/T )
PT

s=1 qKk (yi,s).

Note that we need an additional condition for identifying μi and m (·) separately. By applying either

the within transformation or the first-differencing transformation, we successfully eliminate fixed effects,

μi. The elimination, however, gets rid of both fixed effects and a constant term imbedded in the unknown

function m (·) together. We thus need more condition to correctly identify the heterogeneous constants

μi from the homogeneous unknown function m (·). The following normalization condition is sufficient for

the identification.10

Assumption ID (normalization and identification) m (0) = 0.

In Porter (1996), it is instead assumed that11

Eμi = 0 (6)

or
PN

i=1 μi = 0 if μi’s are regarded as fixed parameters. The condition (6) allows the level of m (0)

unrestricted, but normalizes the sum of individual effects μi to zero. Under this assumption,m (0) could be

nonzero so thatm (·) is allowed to contain a constant term. On the other hand, the normalization condition

ID allows μi to be unrestricted but requires thatm (·) passes through the origin. This condition implies that

μi absorbs both homogeneous and heterogeneous intercepts, and thus it merely shifts a common function

m (·) vertically for each i. If m (0) 6= 0, we can reparametrize μi +m (y) = (μi +m (0)) + (m (y)−m (0))

and consider μi+m (0) andm (y)−m (0) as fixed effects and the unknown function, respectively, to restore

this condition. The distinction between the condition ID and (6) explains why Porter (1996) is only able

to identify m (·) up to a constant addition.12 For example, when we consider the first-differenced model

10To meet this condition, the series functions {qKk} are chosen to satisfy K
k=1 θKkqKk (0) = 0 for each K.

11As noted in Porter (1996), the condition (6) is weaker than E (μi|Gi,t−1) = 0, where Gi,t = σ {yi,s}s≤t , that assumes
away any potential correlation between individual effects and regressors. Thus, under E (μi|Gi,t−1) = 0, heterogeneity bias
is no longer an issue. This is the situation of random-effects models.

12Another merit of the condition ID is that it enables us to readily restore m (y) from the estimator cFD (y1, y2) or
cWT (y1, y2, · · · , yT ) because cFD (y1, 0) = m (y1) −m (0) = m (y1) and (T/ (T − 1)) cWT (y1, 0, · · · , 0) = m (y1). Porter
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given in (4), we need to restore bm (y) from the estimator bcFD (y1, y2) = bm (y1) − bm (y2). The constant
term in m (y) is, however, already eliminated by the first-differencing transformation and thus we cannot

restore it unless it is zero. The same argument can be made for the within-transformed model in (3).

In examining limit theories, it is convenient to introduce a trimming function, which bounds the

regressor yi,t−1 at time t and for each i.13 In the stability condition in Assumption E2, we presume that

the unknown function φi (y) = μi+m (y) is uniformly bounded over a compact set Yc = {y : |y| ≤ y} ⊂ Y

for some y > 0; and it is dominated by stable linear functions outside Yc. Therefore, the statistical

properties outside Yc can be controlled by the estimators for linear dynamic panel models, which is

already well established in the literature. We thus only consider estimating the unknown function m over

a bounded range of the regressor yi,t−1 given by Yc. Note that, however, for each t, we will only restrict

the range of the independent variable yi,t−1 without restricting the support of the dependent variable

yi,t. Restricting the support of the dependent variable yi,t produces the truncated regression problem,

which renders the least squares estimators biased. Specifically, we define a nonrandom trimming function

λ : R→ {0, 1} as follows.

Definition TR (trimming function) A sequence of trimming functions {λ (yi,t)} are defined as

λ (yi,t) = 1 {yi,t ∈ Yc} for some compact Yc ⊂ Y , where 1 {·} is the binary indicator function.

Definition TR along with properly chosen series functions, such as power series or splines,14 guarantees

that λ (y) qKk (y) are uniformly bounded over a bounded subset Yc.15 Looking at the unknown function

over some bounded range is reasonable and innocuous in empirical studies. Finally, we also note that the

trimming is only used for defining the estimator, not for defining the data generating process of {yi,t}

(1996), on the other hand, needs to use the partial integration method of Newey (1994) to restore the original unknown
function (up to a constant addition).

13Note that, unlike the static panel models as in Porter (1996), assuming the entire support of y to be bounded does not
seem appropriate in the case of the autoregressive model (1) because it will not only restrict the support of independent
variables yi,t−1 but also the support of the dependent variable yi,t. Since the error ui,t is defined over R, restricting the
support of yi,t bounded can be too strong an assumption.

14A power series approximation corresponds to qKk (y) = yk for k = 0, · · · ,K−1, where it is conventionally orthogonalized
using the Gram-Schmidt orthonormalization. Hermite polynomial is an example of orthogonal polynomial. The estimator
will be numerically invariant to such transformation, but it may alleviate the multicollinearity problem for power series. An

r-th degree spline with L knots y
¯1
, · · · , y

¯L
over the known (and empirically bounded) support of y is a linear combination

of

qKk (y) =
yk for 0 ≤ k ≤ r;

y − y
¯k−r +

for r + 1 ≤ k ≤ r + L,

where K = 1+ r+L; (z)+ = z if z > 0 and zero otherwise. For example, r = 3 for cubic splines. Note that we will omit the
case k = 0 since m (0) = 0 is assumed.

15Alternatively, Newey and Powell (2003) approach this problem by specifying m (y) = m1 (y)
0 b+m2 (y), where m1 (y)

are vectors of known functions and b are unknown parameters. b is bounded and m2 (y) and its derivatives are small in the
tails. Thus the unknown function is allowed to be nonparametric over the middle of the distribution but is restricted to be
almost parametric in the tail. This specification allows for unbounded y.
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itself. Therefore, if we let gKk (y) = λ (y) qKk (y) and g0K (y) =
¡
g0K1 (y) , g

0
K2 (y) , · · · , g0KK (y)

¢0
, where

gKk : Yc → R, then θK = (θK1, θK2, · · · , θKK)
0 can be estimated by

bθK = Ã NX
i=1

TX
t=1

g0K (yi,t−1) g
0
K (yi,t−1)

0
!−Ã NX

i=1

TX
t=1

g0K (yi,t−1) y
0
i,t

!
, (7)

where (·)− denotes the generalized inverse. Under conditions given below (Assumption W1), however, the

denominator will be nonsingular with probability approaching one, and hence the generalized inverse will

be the standard inverse. The WG series estimator of m (·) is then defined as

bm (y) = KX
k=1

bθKkgKk (y) (8)

for y ∈ Yc. In what follows, we only consider the trimmed series functions {gKk} and estimate the

unknown function m over some bounded support Yc.

3.2 Regularity conditions

In this subsection, we list and discuss regularity conditions on which we base all the main results. Note

that we only consider the case where K is not data dependent, but we let it increase as the number of

individual observations, N , and the length of time, T , increases, where N and T satisfy the following

condition.

Assumption NT limN,T→∞N/T = κ, where 0 < κ <∞.

The properties of dynamic panel models are usually discussed under the implicit assumption that T is

small and N is large, and they are relying on fixed T and large N asymptotics. Such asymptotics seem

quite natural when T is indeed very small compared to N such as the Panel Study of Income Dynamics

(PSID) and the National Longitudinal Surveys (NLS). On the other hand, the alternative asymptotic

approximation based on large N and T satisfying Assumption NT is expected to be of practical relevance

if T is not too small compared to N as is the case, for example, in cross-country studies (e.g., the Penn

World Table) and cross-firm studies.16

The following assumption, as in Newey (1997), is useful for controlling the inverse matrix of the

covariance matrix estimator, (1/NT )
PN

i=1

PT
t=1 gK (yi,t) gK (yi,t)

0, and its convergence in probability in

the Euclidean norm, where g
K
(y) denotes the demeaned process of gK (y) such that EgK (y) = 0.

16Of course, when T is large and N is small, the dynamic panel model becomes Vector Autoregressive (VAR) model with
parameter restrictions.
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Assumption W1 (i) For every K, there exist positive integers N∗ and T ∗ such that for all N ≥ N∗

and T ≥ T ∗, the NT ×K vector
¡
g0K (y1,0) , · · · , g0K (yN,T−1)

¢0
is of full column rank K almost surely.

(ii) For every K, the K ×K matrix ΓK = EgK (y) g
0
K
(y) has the smallest eigenvalue bounded away from

zero and the bounded largest eigenvalue, where all the elements of EgK (y) are finite. (iii) For every K,

there is a sequence of ζ0 (K) satisfying ζ0 (K) ≥ supy∈Yc max1≤k≤K |gKk (y)| and K = K (N,T ) such

that ζ40 (K)K
2/NT → 0 as N,T → ∞, where Yc ⊂ Y ⊂ R is some bounded subset of the support of

{yi,t}.

The condition W1-(iii) seems stronger than Newey (1997), who assumes ζ20∗ (K)K/NT → 0, where ζ0∗ (K)

is the uniform bound of the norm of the K × 1 vector gK (y). Since we assume that N and T are of the

same order of magnitude, however, ζ40 (K)K
2/NT is of the same order of magnitude as

¡
ζ20 (K)K/N

¢2
.

Therefore, the condition can be read as ζ20 (K)K/N → 0, which is comparable to that of Newey (1997).

Since gKk are measurable, Proposition 2.3 implies that {gKk (yi,t)} is also α-mixing whose mixing

coefficient is of the same order of magnitude as that of {yi,t} for all k = 1, 2, · · · ,K from Assumptions

E1 and E2. Therefore, in what follows, we will simply let the mixing coefficient of {gKk (yi,t)} be α (τ),

which is originally the mixing coefficient of {yi,t}. Since the mixing coefficient is only meaningful in its

order of magnitude, such an abuse of notation does not lose generality. If we assume gKk (y) are uniformly

bounded over y ∈ Yc with probability one for all k, then the process {gKk (y)} satisfies the condition A3.1

in Robinson (1983) since
P∞

τ=1 α (τ) < ∞. On the other hand, if we relax boundedness of gKk (y) to

the finite moment condition, then the process {gKk (y)} satisfies the condition A3.2 in Robinson (1983)

since
P∞

τ=1 α (τ)
1−2/νg <∞ is still satisfied for some νg > 4. More precisely, we can have an alternative

condition to Assumption W1 as follows.

Assumption W1b (i) For every K, there exist positive integers N∗ and T ∗ such that for all N ≥ N∗

and T ≥ T ∗, the NT ×K vector
¡
g0K (y1,0) , · · · , g0K (yN,T−1)

¢0
is of full column rank K almost surely.

(ii) For every K, the K ×K matrix ΓK = EgK (y) g
0
K
(y) has the smallest eigenvalue bounded away from

zero and the bounded largest eigenvalue, where all the elements of EgK (y) are finite. (iii) For every K

and for some νg > 4, there is a sequence of ζ0ν (K) satisfying ζ0ν (K) ≥ max1≤k≤K E |gKk (y)|νg/2 and

K = K (N,T ) such that ζ0ν (K)
2/νg K2/NT →∞ as N,T →∞.

Using either of the conditions, W1 or W1b, does not alter the result much because the boundedness

condition on gKk (y) is mainly for controlling temporal dependence and for using an adequate mixing

inequality in Proposition 2.4. In this study, therefore, we use the condition W1 instead of W1b. Note

that, unlike Robinson (1983), Assumption W1 implies Assumption W1b only when the entire support of
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yi,t is bounded. Finally, we need an additional condition, which specifies a rate of approximation for the

series, as in Newey (1997).

Assumption W2 There exist θK ∈ RK and a constant δ > 0 satisfying supy∈Yc
¯̄
m (y)− gK (y)

0
θK
¯̄
=

O
¡
K−δ

¢
for every K.

The uniform approximation condition is a conventional one in the series approximation literature and

it is useful to specify a rate of approximation for the series. In Assumption W2, we only specify the

convergence rate of the series gK (y) over a bounded support Yc instead of the entire support. This is

because we are only interested in estimating m (·) over a specific bounded range Yc. As noted in Newey

(1997), δ is related to the smoothness of m (y) and the dimensionality of y. For example, for regression

splines and power series, this assumption will be satisfied with δ = D/dim (y), where D is the number of

continuous derivatives of m (y) that exists and dim (y) is the dimension of y. When we consider an AR (1)

model as in (1), therefore, δ (= D) corresponds to the smoothness of m (y) and the following condition

can replace Assumption W2. Assumption W2b is intuitively more appealing in that the smoother m (y),

the easier it is to approximate it.

Assumption W2b There exists a nonnegative integer D (= δ) such that m (y) is continuously differ-

entiable to order D on Yc.

Since we are only interested in estimating the unknown function over the bounded support Yc, m (y) only

needs to be smooth enough on Yc ⊂ Y.

3.3 Asymptotic properties

In this subsection, we derive the main asymptotic results of the WG series estimator bm (y) defined in (8).
The first theorem provides the mean square convergence rate of bm (y).
Theorem 3.1 (Convergence rate) Under Assumptions E1, E2, W1 and W2,

Z
y∈Yc

[bm (y)−m (y)]
2
dP (y) = Op

µ
K

NT
+K−2δ +

ζ20 (K)K

NT

¶
(9)

as N,T →∞, where P (y) denotes the cumulative distribution function of yi,t.17

17 In fact, the formulae (9) should read y∈Yc [m (y)−m (y)]2 dP (y) = Op ζ20 (K)K/NT +K−2δ since ζ0 (K) is a

nondecreasing function of K and thus ζ20 (K)K/NT dominates K/NT for large K. However, writing as in (9) is helpful to
compare the result with the findings in Newey (1997).
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Theorem 3.1 implies that the probability limit of
R
y∈Yc [bm (y)−m (y)]2 dP (y) is zero since K−2δ → 0

and ζ20 (K)K/NT → 0. For the mean square convergence rate (9), the first term, K/NT , essentially

corresponds to the convergence rate of the variance, whereas the remaining terms,K−2δ and ζ20 (K)K/NT ,

correspond to the convergence rate of the bias. The third term, ζ20 (K)K/NT , is new and it does not

appear in the conventional series estimators for the cross section case as in Newey (1997). Just as for

pooled estimation in linear dynamic panels, it is from the endogeneity bias. It reduces the mean square

convergence rate compared with the cross section case since ζ0 (K) is a nondecreasing function of K.

If we assume gK (·) and m (·) are differentiable up to D-th order as in Assumption W20, and if we intro-

duce ζD (K) ≥ supy∈Yc max1≤k≤K maxs≤D |dsgKk (y) /dy
s|, which is assumed to be larger than O

¡
K−1/2

¢
and to exist, then we have a uniform convergence rate of bm (y) given by

sup
y∈Yc

max
s≤D

|ds (bm (y)−m (y)) /dys| = Op

³
K1/2ζD (K)

h
ζ0 (K)K

1/2/
√
NT +K−δ

i´
.

Its derivation is provided in the proof of Theorem 3.1. Note that the uniform convergence rate is not

optimal as discussed in Newey (1997). Recently, De Jong (2004) proposes a sharper rate of the bound for

the i.i.d. cross section case under stronger conditions. The first two terms of the mean square convergence

rate in (9), however, attain Stone’s (1982) optimal bound as noted in Newey (1997).

We now derive the asymptotic normality of the WG series estimator of the unknown function m (·)

as follows. Note that “→d” means convergence in distribution; kBk = (B0B)1/2 if B is a vector and

kBk = (tr (B0B))1/2 if B is a matrix, where tr (·) is the trace operator.

Theorem 3.2 (Asymptotic normality) Let ΦK =
P∞

j=0 cov (gK (yi,t+j) , ui,t) satisfy kΦKk <∞ for

each K. If Assumptions NT, E1, E2, W1 and W2 are satisfied and
√
NTK−δ → 0,18 then as N,T →∞

v (y,K,N, T )−1/2
µbm (y)−m (y) +

1

T
bK (y)

¶
→d N (0, 1) (10)

for y ∈ Yc, where v (y,K,N, T ) = σ2gK (y)
0 Γ−1K gK (y) /NT and bK (y) = gK (y)

0 Γ−1K ΦK . The asymptotic

normality still holds using a consistent estimator bv (y,K,N, T ) = bσ2gK (y)0 bΓ−1K gK (y) /NT , where19 bΓK =
(1/NT )

PN
i=1

PT
t=1 g

0
K (yi,t) g

0
K (yi,t)

0 and bσ2 = (1/NT )
PN

i=1

PT
t=1

¡
y0i,t − bm0 (yi,t−1)

¢2
.

18 Since K is usually chosen not too large (mostly less than ten), the rate condition
√
NTK−δ → 0 seems too strong and

δ seems to be very large. However, if K = K (N,T ) is chosen to satisfy reasonably small rate with respect to N and T ,

e.g., K = O (NT )1/6 , then δ only needs to satisfy δ > 3. That is, m is continuously differentiable to order three. We will

discuss more about selecting K in Remark 2.3.4.
19For obtaining ΓK and σ2, we can normalize them using 1/ (NT −N −K) by adjusting the degrees of freedom.
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The pointwise asymptotic distribution result in Theorem 3.2 is similar to the i.i.d. cross section cases as

in Andrews (1991a) and Newey (1997). The only difference is that bm (y) has non-degenerating asymptotic
bias incurred by the within transformation, especially when limN,T→∞N/T 6= 0. Therefore, it requires

bias correction as in (10) by adding (1/T ) bK (y) for each y ∈ Yc. Also note that the rate of convergence in

(10) is not
√
NT . As the usual nonparametric regression estimators, the convergence rate cannot achieve

√
NT rate; it is slower than

√
NT rate as the smoothing parameter shrinks. In (10), the smoothing

parameter corresponds to 1/K. Even though it is not explicitly revealed, the smoothing parameter is

embedded in the K ×K matrix σ2gK (y)
0 Γ−1K gK (y). So the convergence rate is determined by the entire

term of v (y,K,N, T )−1/2 =
√
NT

¡
σ2gK (y)

0 Γ−1K gK (y)
¢−1/2

. For example, since we assume the smallest

eigenvalue of ΓK is bounded away from zero and its largest eigenvalue is bounded for every K, if we simply

let ΓK be the identity matrix IK , then the rate of convergence is given by
p
NT/K.

Finally, the following theorem suggests a bias corrected estimator for m (·).

Theorem 3.3 (Bias correction) Under the same conditions as in Theorem 3.2, as N,T →∞

v (y,K,N, T )−1/2 (em (y)−m (y))→d N (0, 1)

for y ∈ Yc, where em (y) = bm (y) + (1/T )bbK (y) and
bbK (y) = gK (y)

0
Ã

NX
i=1

TX
t=1

g0K (yi,t) g
0
K (yi,t)

0
!−1 NX

i=1

JX
j=0

T−jX
t=1

µ
1− j

J + 1

¶
gK (yi,t+j) bu0i,t

with J = J (T ) ≤ O
¡
T 1/3

¢
and bu0i,t = y0i,t − bm0 (yi,t−1). The asymptotic normality still holds after

replacing v (y,K,N, T ) with its consistent estimator, bv (y,K,N, T ), defined as in Theorem 3.2.

Since the bias is bK (y) = gK (y)
0 Γ−1K ΦK as shown in Theorem 3.2, Theorem 3.3 follows by consistently

estimating bK (y) with bbK (y) = gK (y)
0 bΓ−1K bΦK . In Appendix A.1, it is shown that °°°bΓ−1K − Γ−1K °°° = op (1)

and bΦK = 1

NT

NX
i=1

JX
j=0

w (j, J)

T−jX
t=1

gK (yi,t+j) bu0i,t (11)

is a consistent estimator for the one-side long-run covariance ΦK so that
°°°bΦK − ΦK°°° = op (1) for large

N and T , provided that the truncation parameter, J , satisfies J = J (T ) ≤ O
¡
T 1/3

¢
and that the weight

function, w (j, J), is uniformly bounded. Note that the truncation is necessary since there remain a

smaller number of summands as j gets larger. This idea follows the studies on heteroskedasticity and
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autocorrelation consistent (HAC) estimation of covariance matrices such as White and Domowitz (1984),

Newey and West (1987), and Andrews (1991b) to name a few. The simple weights (1− j/(J + 1)) are

borrowed from Newey and West (1987), in which J is required to be smaller than O
¡
T 1/4

¢
for the

consistency of the long-run autocovariance matrix estimator. Notice that we need a weaker condition for

J to grow slower than T 1/3. We can modify the simple weight function w (j, J) = (1− j/(J + 1)) using

kernel functions as in Andrews (1991b).

Remark 3.4 (Determining the order of K) In nonparametric analysis, the smoothing parameters

are conventionally chosen by minimizing the (integrated) mean square error. Similarly, we can determine

the optimal order of K in terms of N and T by minimizing the mean square convergence rate (9). As

usual, this result does not provide the exact value of K, but gives a guideline as to how to select it as a

function of N and T . The basic idea is that K is chosen so that the two terms, K−2δ and ζ20 (K)K/NT

in (9), go to zero at the same rate.20

For example, we have the explicit bound ζ0 (K) = O (K) for orthogonal polynomials over the com-

pact support Yc, as noted in Newey (1997). Therefore, the mean square convergence rate is given by

Op

¡
K3/NT +K−2δ

¢
from Theorem 3.1, which is minimized with K such that K3/NT = K−2δ. In other

words, K needs to satisfy K = O
³
(NT )1/(3+2δ)

´
. Meanwhile, K should also obey the rate condition given

by ζ40 (K)K
2/NT → 0 in Assumptions W1, which implies K < O

³
(NT )

1/6
´
for orthogonal polynomials.

Therefore, if δ > 3/2, then both rate conditions are satisfied and we can simply let K = C1 (NT )
1/7

for some constant 0 < C1 < ∞. This rate condition is identical to the finding K = O
¡
N1/7

¢
in Ai

and Chen (2003) for the cross section case. Similarly, for B-splines over the bounded support [−1, 1], we

have ζ0 (K) = O
¡
K1/2

¢
as noted in Newey (1997). In this case, the optimal order of K should satisfy

K = O
³
(NT )1/(2+2δ)

´
and K < O

³
(NT )1/4

´
. Therefore, we need δ > 1 and we can let, for example,

K = C2 (NT )1/5 for some constant 0 < C2 <∞.

However, if the series estimator, bm (y), needs to satisfy the asymptotic normality, an additional rate
condition,

√
NTK−δ → 0 from Theorem 3.2, is also required. This condition changes the range of δ.

For example, orthogonal polynomials21 require δ > 3, and B-splines require δ > 2. This implies that,

loosely speaking, we need twice as much smoothness of m for the asymptotic normality. Moreover, the

optimal choices of K are also changed to satisfy K < O
³
(NT )1/9

´
for orthogonal polynomials, and

K < O
³
(NT )1/6

´
for B-splines.

20Recall that ζ20 (K)K/NT dominates K/NT .
21For orthogonal polynomials, K needs to satisfy K6/NT +

√
NT/Kδ → 0 in this case. The first term implies that

K = C3 (nT )
(1/6)−κ1 , whereas the second term implies that K = C4 (nT )

(1/2δ)+κ2 for κ1, κ2, δ > 0 and 0 < C3, C4 < ∞.
If we set these two terms same, we have (1/6)−κ1 = (1/2δ)+κ2 and thus (1/6) = (1/2δ)+κ3 for κ3 > 0. Therefore, δ > 3.
For the B-splines case, we can find the range of δ similarly if we use the condition K4/NT +

√
NT/Kδ → 0.
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Remark 3.5 (Testing linearity) When we approximate the unknown functionm (·) using (orthogonal)

polynomials, testing linearity for m (·) becomes straightforward. Since qK1 (y) = y in this case, testing

the linearity is identical to testing θKk = 0 for all k = 2, 3, · · · ,K in (5), where K → ∞ as N,T → ∞.

Therefore, we can construct a Wald statistic as WK−1 =
³
RK
eθK´0 hRK

bΓ−1K R0K

i−1 ³
RK
eθK´ /³bσ2/NT

´
,

where RK = [0K×1; IK−1] is a (K − 1) × K matrix and eθK =
³eθK1,eθK2, · · · ,eθKK

´0
, bΓK and bσ2 are

defined as in Theorem 3.3.22 By the similar argument as in the proof of Theorem 3.3 in Appendix A.3, it

is following thatWK−1 →d limK→∞X 2
K−1 as N,T →∞. The critical values can be found by applying the

well-known normal approximation results such as X2
K (ϑ) ≈ (1/2)

©
Z (ϑ) +

√
2K − 1

ª2
(Fisher, 1925) or

X2
K (ϑ) ≈ K

n
1− (2/9K) + Z (ϑ)

p
2/9K

o3
(Wilson and Hilferty, 1931) for large K, where X2

K (ϑ) and

Z (ϑ) denote the 100ϑ percentage point of the X 2 distribution with K degrees of freedom and the standard

normal distribution, respectively. On the other hand, if we approximate m (·) using other functionals, we

need to consider more general nonparametric specification tests such as the general likelihood ratio test

for nonparametric models (e.g., Fan and et al., 2001). We leave further details as a future project.

4 Extensions

4.1 Partial linear models

Direct applications of the pure autoregressive panel model (1) are limited in empirical studies. In this

subsection, we generalize it by allowing for exogenous variables xi,t ∈ Rr in the regression. For example,

we consider a partial linear model given by

yi,t = m (yi,t−1) + γ0xi,t + μi + ui,t, (12)

where γ is an r × 1 parameter vector. In the time series literature, the conventional partial linear model

assumes that the lagged values are of linear form, whereas the exogenous variables are of nonparametric

form: yt = ρyt−1 + m (xt) + ut. The purpose of such a model is to control out the effects from xt

nonparametrically. In (12), on the other hand, we are rather interested in the partial effects of exogenous

variable xi,t to yi,t, whereas the dynamics of yi,t on its own lag is controlled by an unknown function m.

It is a clear extension of the existing dynamic panel literature with m (yi,t−1) = ρyi,t−1. In some cases,

moreover, we are more interested in uncovering the unknown shape of dynamics in yi,t (i.e., m (·)) with

controlling other characteristics xi,t linearly. Such examples can be found in semiparametric cross-country

22That is θK = θK + (1/T ) N
i=1

T
t=1 g

0
K (yi,t) g

0
K (yi,t)

0 −1 N
i=1

J
j=0

T−j
t=1 1− j

J+1
gK (yi,t+j)u

0
i,t.
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growth regressions as in Liu and Stengos (1999).

We could relax the linear part in (12) so that it is also fully nonparametric in both yi,t−1 and xi,t as

yi,t = m (yi,t−1, xi,t) + μi + ui,t. (13)

However, such generalization is limited in empirical studies because of the curse of dimensionality. There-

fore, we need more restriction on m (·, ·), such as single index or additivity, to reduce the dimension

of m (·, ·). For example, a number of studies on semiparametric estimation assume m (yi,t−1, xi,t) =

my (yi,t−1) +mx (xi,t) with my : R1 → R1 and mx : Rr → R1, and use marginal integration to estimate

the additive nonparametric components.23 If we assume similar conditions on the series approximation

for both mx and my as in the previous section, we can derive the asymptotic distribution of the series

estimator for (13). Note that the conditions for mx should correspond to those in Porter (1996) since

xi,t is strictly exogenous. The following condition guarantees that the autoregressive process {yi,t} with

exogenous variables satisfying (13) is stationary and mixing as in Section 2. This condition also ensures

the stationarity and mixing for {yi,t} in (12) since the partial linear model (12) is a special case of (13).

Though we provide general conditions for (13) in the following assumption, we will mainly examine its

special case, the partial linear specification (12), since it is more relevant in empirical studies. We let

φi (z) = μi +m (z), where z = (y1, ..., yp;x1, ..., xq) ∈ Rp ×Rqr.

Assumption E3 (Stability condition) (i) {xi,t} and {ui,t} are mutually independent and i.i.d; {ui,t}

is independent of μi for all i and t. (ii) {ui,t} has a positive density almost everywhere and an absolutely

continuous marginal distribution with respect to the Lebesgue measure on R. (iii) For each i, there exist

constants ci > 0, z > 0 and ai, · · · , ap ≥ 0, and a locally bounded measurable function f : Rr →

[0,∞) such that |φi (z)| ≤
Pp

j=1 aj |yj | +
Pq

h=1 f (xh) − ci if kzk∞ > z and supz:kzk∞≤z |φi (z)| < ∞,

where wp − a1w
p−1 − · · · − ap 6= 0 for |w| ≥ 1 and kzk∞ = max {|y1| , ..., |yp| , |x1| , ..., |xq|}. (iv)

Ef (xi,1)+E |ui,1|ν <∞ for some ν > 4 and for all i. (v) The Markov process {yi,t} has a homogeneous

transition probability, and the initial values of yi,t is drawn from an invariant distribution.

Assumption E3 is an extension of pure time series models discussed in Doukhan (1994: Section 2.4.2,

Theorem 7). Conditional on μi, this assumption ensures that {yi,t} is geometrically ergodic over t and

thus β-mixing with exponentially decaying mixing coefficients for each i. One remark is that the condition

presumes the exogenous variables xi,t are i.i.d. for all i and t, which is rather strong. However, extending

to weakly dependent process xi,t over i, but with keeping independence across i, should not be complicated.
23For identification convenience, we assume my (0) = mx (0) = 0 and we exclude the constant term in xi,t, in this case.
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For example, Doukhan (1994) considers stationary Markov {xi,t}, in fact. We conjecture that conditional

on μi, provided {xi,t} is mixing with mixing coefficients decaying faster than or as fast as those of {yi,t}

for each i, the stability condition should also hold. In this case, we are implicitly assuming that xi,t =

ξ
¡
x∗i,t, μi

¢
, where ξ (·, ·) ∈ Rr is a measurable function and x∗i,t is a stable stochastic process independent

of μi.

In the partial linear model (12), we first eliminate fixed effects, μi, by the within transformation:

y0i,t = m0 (yi,t−1) + γ0x0i,t + u0i,t.

Note that (12) cannot be directly estimated by Robinson (1988)’s two step estimation. It is because

individual effects cannot be eliminated once the conditional expectation on yi,t−1 is subtracted from the

equation (12). To show this, we take conditional expectations on (12) to have

E (yi,t|yi,t−1) = m (yi,t) + γ0E (xi,t|yi,t−1) + E (μi|yi,t−1) (14)

since E (ui,t|yi,t−1) = 0 by assumption. We subtract (14) from (12), and obtain

[yi,t − E (yi,t|yi,t−1)] = γ0 [xi,t − E (xi,t|yi,t−1)] + [μi − E (μi|yi,t−1)] + ui,t,

in which we cannot eliminate [μi − E (μi|yi,t−1)] either by the within transformation or the first-differencing

transformation. This is because [μi − E (μi|yi,t−1)] is a function of not only μi but also yi,t−1, which still

depends on the time index t. This illustration suggests that we need to eliminate fixed effects at the very

first stage. Porter (1996), for example, proposes two step estimation, in which m (·) is estimated using

regression residuals from projecting yi,t on the individual dummy variables and xi,t. We, on the other

hand, suggest one step estimation using the within-transformed series functions.

For notational convenience, we introduce the following vectors and matrices. We define an NT×K vec-

tor g0K =
¡
g0K (y1,0) , · · · , g0K (yN,T−1)

¢0
, and NT×1 vectors y0 = (y1,1, · · · , yN,T )0, x0 =

¡
x01,1, · · · , x0N,T

¢0
and bm0 =

¡ bm0 (y1,0) , · · · , bm0 (yN,T−1)
¢0
. We also define NT × NT matrices such as Mx = INT −

x0
¡
x00x0

¢−1
x00 andMg = INT −g0K

¡
g00Kg

0
K

¢−1
g00K with assuming that both x

00x0 and g00Kg
0
K are nonsin-

gular (at least almost surely). Then, the WG series estimator for m (·) is given by bm (y) = gK (y)
0 bθK for

y ∈ Yc, where bθK = ¡g00KMxg
0
K

¢−1
g00KMxy

0. The parameter of the linear part, γ, can be estimated either

by bγ = ¡x00x0¢−1 x00 ¡y0 − bm0
¢
or bγ = ¡x00Mgx

0
¢−1

x00Mgy
0. Both estimation procedures yield the same

result using the standard argument of partitioned regressions. We also let Σ be the (K + r) × (K + r)
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variance-covariance matrix of
¡
gK (yi,t−1)

0
, x0i,t

¢0
, whose smallest eigenvalue is bounded above zero and

the largest eigenvalue is bounded for every K. We decompose it into

Σ =

⎛⎜⎝ Σgg Σgx

Σxg Σxx

⎞⎟⎠
K r

K

r

conformably as
¡
gK (yi,t−1)

0 , x0i,t
¢0
. Recall that the conditional variance of gK (yi,t−1) given xi,t is defined

as Σgg·x = Σgg − ΣgxΣ−1xxΣxg and the conditional variance of xi,t given gK (yi,t−1) is defined as Σxx·g =

Σxx − ΣxgΣ−1gg Σgx. We summarize the additional conditions in the following assumption.

Assumption W3 (i) x0 is of a full column rank r. (ii) For every K, Σ has the smallest eigenvalue

bounded above zero and the bounded largest eigenvalue.

We now derive the asymptotic distribution of the partial linear model estimators in (12).

Theorem 4.1 (Partial linear model) Under Assumptions NT, E3, W1, W2 and W3, as N,T →∞

vx (y,K,N, T )
−1/2

µbm (y)−m (y) +
1

T
gK (y)

0
Σ−1gg·xΦK

¶
→d N (0, 1)

for y ∈ Yc, and
√
NTV −1/2x

µbγ − γ − 1

T
Σ−1xx·gΣxgΣ

−1
gg ΦK

¶
→d N (0, 1) ,

where vx (y,K,N, T ) = σ2gK (y)
0 Σ−1gg·xgK (y) /NT and Vx = σ2Σ−1xx·g. The results still hold after replacing

vx (y,K,N, T ) and Vx with their consistent estimators, bvx (y,K,N, T ) = bσ2gK (y)0 bΣ−1gg·xgK (y) and bVx =bσ2bΣ−1xx·g, where bσ2 = (1/NT )
PN

i=1

PT
t=1

¡
y0i,t − bm0 (yi,t−1)− bγ0x0i,t¢2 and the conditional variance estima-

tors, bΣ−1gg·x and bΣ−1xx·g, are obtained from bΣ = (1/NT )
PN

i=1

PT
t=1

¡
g0K (yi,t−1)

0
, x00i,t

¢0 ¡
g0K (yi,t−1)

0
, x00i,t

¢
.

Unlike the conventional partial linear models, the estimator for the linear part, bγ, exhibits asymptotic
bias. But the direction of the bias is opposite to that of the nonparametric component bm (y). As in
Theorem 3.3, bias correction can be conducted as follows.

Corollary 4.2 (Bias correction) Under the same conditions as in Theorem 4.1, as N,T →∞

vx (y,K,N, T )
−1/2

(em (y)−m (y))→d N (0, 1)
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for y ∈ Yc, and
√
NTV −1/2x (eγ − γ)→d N (0, 1) ,

where

em (y) = bm (y) + 1

T
gK (y)

0 bΣ−1gg·xbΦK = gK (y)
0 ¡g00KMxg

0
K

¢−1½
g00KMxy

0 +
1

T
bΦK¾ ,

eγ = bγ − 1

T
bΣ−1xx·gbΣxgbΣ−1gg bΦK = ¡x00Mgx

0
¢−1

x00
½
Mgy

0 − 1

T
g0K

¡
g00Kg

0
K

¢−1 bΦK¾

and bΦK is defined as in (11 ).

4.2 Two stage instrumental variables estimator

The main results of this paper are all based on the within-transformed model given in (3). In this

subsection, we instead consider nonparametric estimation for the first-differenced model in (4) given by

∆yi,t = c (yi,t−1, yi,y−2) +∆ui,t

where c (y1, y2) = m (y1) −m (y2). Notice that c (y1, y2) 6= m (y1 − y2). As we discussed in Section 3.1,

we cannot simply regress ∆yi,t on a pair of regressors xi,t = (yi,t−1, yi,t−2)
0 because of the following two

problems. The first one is an endogeneity problem since E (∆ui,t|xi,t) 6= 0. We thus need to introduce

v× 1 vector of instruments zi,t satisfying E (∆ui,t|zi,t) = 0 and E (xi,t|zi,t) 6= 0 for all i and t. In dynamic

panel regressions, instruments conventionally consist of the lagged observations of yi,t−s for s ≥ 2. Using

instruments zi,t, we conduct two stage estimation, such as the kernel IV regression as in Darolles et al.

(2003), or sieve minimum distance estimation as in Newey and Powell (2003) and Ai and Chen (2003). The

most appealing property of the IV-based method is that it does not need large T because the consistency

result can be derived under fixed T and large N asymptotics. Therefore, the IV-based method has been

worked out for conventional microeconomic data, in particular. When the length of time T is large,

however, the total number of available instruments increases and it could generate a bias problem.24 In

this case, the within-transformation-based method seems to be more appropriate.

The second problem is restoring the estimator of the original function bm (·) from bc (·). The identification
problem in a fixed-effect model is closely discussed in Porter (1996), where he uses the partial integration

24The IV estimator using a fixed number of instrumental variables will remain well-defined, and will be consistent regardless
of whether T or N or both tend to infinity. However, the total number of available instruments increases as T → ∞ since
they consist of lagged yi,t. It thus generates the many instruments problem. In this case, we need to let the number of
instruments be fixed to avoid any potential problem. As noted in Alvarez and Arellano (2003), even if we allow the number
of instruments to increase as T grows, the GMM estimator is still consistent as long as T grows much slower than N , e.g.,
(logT )2 /N → 0.
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method as in Newey (1994): to restore the original function m (y1), he integrates c (y1, y2) over y2 with y1

kept fixed. But the problem is that this method does not use the original structural information that two

functions of y1 and y2 are the same but the sign: c (y1, y2) = m (y1)−m (y2). Porter (1996) employs the

structural information by imposing additional restrictions c (y1, y2) = −c (y2, y1) and c (y, y) = 0. This

method, however, can only identify m (·) up to a constant addition by Em (·). We suggest an alternative

method that, under the normalization condition ID (i.e., m (0) = 0), which is introduced in Section 3.1, we

can easily restore bm (·) from bc (·) using the additive structure, c (y1, y2) = m (y1)−m (y2). That is, bm (y)
can be obtained from bc (y1, y2) by letting the second argument be zero because c (y1, 0) = m (y1)−m (0) =

m (y1).

Remark 4.3 (Identification) The identification of c from the conditional expectation, E (∆y|z) =

E (c (y1, y2) |z), can be discussed in a more general setup as follows. The conditional expectation of the

first-differenced model given instruments z yields

η (z) = E (∆y|z) =
Z

c (y1, y2)P (dy1|z) , (15)

where y2 ∈ z and P (y1|z) is the conditional distribution of y1 given z. As noted in Newey and Powell

(2003), η (z) and P (dy1|z) are identified because they are functionals of the distribution function for

the observations (y1, y2, z). Identification of c (y1, y2) from the integral equation (15), however, is not

straightforward. We need the following condition to solve this problem:

Z
c (y1, y2)P (dy1|zi,t) =

Z
c∗ (y1, y2)P (dy1|zi,t) implies c (y1, y2) = c∗ (y1, y2) .

This completeness condition guarantees the uniqueness of the solution c (y1, y2) of the integral equation

(15) if its existence is presumed. Another important condition is the continuity assumption to avoid the

ill-posed inverse problem in estimation. As noted by Newey and Powell (2003) or Florens (2003), if bc, the
estimator of c, is not continuous in bη and bP , which are the estimators of η and P , then the consistency of bc
does not follow from the consistency of bη and bP . One solution to avoid ill-posed problem is to assume that
m (or c) belongs to a compact subset of a normed set of functions and to restrict the estimator bm (or bc)
to lie in this compact set. Since integration is a continuous mapping, compactness implies that inverse is

continuous. We also employ this approach to eliminate the ill-posed inverse problem. In our case, since we

consider nonparametric estimation only over a compact subset Yc of the support of y, restricting m and bm
to be in a compact set is not difficult. As noted in Gallant and Nychka (1987), and Ai and Chen (2003),
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when the infinite dimensional parameter spaceMc, such that m ∈Mc, consists of bounded and smooth

functions, then there exists a metric k·kc such that Mc is compact under k·kc. Note that Assumption

E2-(i) implies m is bounded over Yc and Assumption W2 (or W20) implies m is smooth up to order D on

Yc. For further discussions on this type of regularization, see Tikhonov et al. (1995), Ai and Chen (2003),

Blundell and Powell (2003), Newey and Powell (2003), and references therein. More general treatment

using a ridge-type regularization can be found in Darolles et al. (2003), Florens (2003), and Hall and

Horowitz (2005) among others.

We now extend two stage nonparametric IV estimation of Newey and Powell (2003) to the context

of dynamic panels. We only look at large N and fixed T cases, and argue that the consistency result of

Newey and Powell (2003) still holds in dynamic panel models. If we use the series approximation as (5),

we have

m (y1)−m (y2) ≈
KX
k=1

θKk [gKk (y1)− gKk (y2)] , (16)

and

E (∆yi,t|zi,t) ≈
KX
k=1

θKkE [gKk (yi,t−1)− gKk (yi,t−2) |zi,t] .

In the first stage, we estimate the conditional expectation by any nonparametric estimation method

to have bE [gKk (yi,t−1)− gKk (yi,t−2) |zi,t] ≡ ∆bgKk (zi,t). In the second stage, if define a K × 1 vector

∆bgK (zi,t) = (∆bgK1 (zi,t) , · · · ,∆bgKK (zi,t))
0, we can estimate θK = (θK1, · · · , θKK)

0 by solving the mini-

mization problem:25

bθK = argmin
θK

NX
i=1

(∆yi −∆bgK (zi) θK)0H (∆yi −∆bgK (zi) θK) , (17)

where ∆yi = (∆yi,1, · · · ,∆yi,T )0, ∆bgK (zi) = (∆bgK (zi,1) , · · · ,∆bgK (zi,T ))0, and H is a T×T matrix given

by

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 · · · 0

−1 2 −1 . . .
...

0 −1 . . .
. . . 0

...
. . .

. . . 2 −1

0 · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1

.

The nonparametric estimate is then obtained by bm (y) = PK
k=1

bθKkgKk (y) for any y ∈ Yc. Notice that
25Newey and Powell (2003) use penalized least squares, where the penalty term is added by imposing the compactness

conditions. But if we let the unknown function m to be bounded over some bounded support Yc, we do not have such
addition restrictions.
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H is derived from the variance-covariance matrix of ∆ut = (∆u1,t, , · · ·∆ui,T )0, which is not spherical.

The minimization problem (17) is therefore a simple GLS problem with a known covariance matrix. The

pointwise consistency of bm (·) for large N can be derived similarly as Newey and Powell (2003), and Ai

and Chen (2003) under proper regularity conditions and a metric. Their regularity conditions need to

be modified in the context of dynamic panels, but once we fix T the extension is closely related to the

multivariate regression. Detailed conditions for consistency are discussed in Appendix B when N →∞.26

Remark 4.4 (Partial linear models) We can also extend two stage IV estimation under partial linear

models with exogenous variables. The estimation strategy for the partial linear model, after the first-

differencing transformation, is identical to WG series estimation except conducting two stage estimations.

In this case, we can consider more general models such as

yi,t = m (yi,t−1,wi,t) + γ0xi,t + μi + ui,t,

where xi,t and wi,t do not need to be exogenous. In order to prevent any problem with large dimension, we

simply let m (·, ·) be additive (i.e., m (y, w) = my (y)+mw (w)) so that ∆m (y, w) = ∆my (y)+∆mw (w).

In this case, however, we need a richer set of instrumental variables zi,t satisfying E (∆ui,t|zi,t) = 0 but

E ((wi,t, wi,t−1) |zi,t) 6= 0, E ((xi,t, xi,t−1) |zi,t) 6= 0 and E (yi,t−1|zi,t) 6= 0.

5 Simulations

To illustrate the implementation of the WG series estimation developed in Section 3, and to evaluate

the finite sample performance of the nonparametric estimator bm (·), we conduct simulation studies. The
simulation is based on nonlinear panel models with fixed effects of five different dynamic structures given

by

(M1) : yi,t = {0.6yi,t−1}+ μi + ui,t

(M2) : yi,t = {exp (yi,t−1) / (1 + exp (yi,t−1))− 0.5}+ μi + ui,t

(M3) : yi,t = {ln (|yi,t−1 − 1|+ 1) sgn (yi,t−1 − 1) + ln 2}+ μi + ui,t

26As in Porter (1996), we can alternatively approximate c using series functions hKk : R2 → R1 given by

c (y1, y2) ≈ K
k=1 hKk (y1, y2) θKk.

We estimate hKk (z) = E [hKk (y1,y2) |z] using any nonparametric method and conduct series estimation such as θK =

argminθK
N
i=1 ∆yi −∆hK (zi)

0 θK
0
H ∆yi −∆hK (zi)

0 θK , which produces c (y1, y2) =
K
k=1 θKkhKk (y1, y2) for

any y1, y2 ∈ Yc. However, this approach still has an identification problem of restoring m from c, whereas the first approach
in (16) does not have such a problem.
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(M4) : yi,t = {0.6yi,t−1 − 0.9yi,t−1/ (1 + exp (yi,t−1 − 2.5))}+ μi + ui,t

(M5) : yi,t =
©
0.3yi,t−1 exp

¡
−0.1y2i,t−1

¢ª
+ μi + ui,t

for i = 1, 2, · · · , N and t = 1, 2, · · · , T . Fixed effects μi are randomly drawn from U (0, 1) and ui,t

from N (0, 1). Each nonlinear function is properly centered to satisfy m (0) = 0. The first model is a

linear dynamic model, a benchmark structure. The second model is of the logistic function, which is also

investigated in Ai and Chen (2003) in the cross section case. The third model is adopted from Newey

and Powell (2003). The fourth model is known as the smoothed threshold autoregressive (STAR) model

in the time series literature. In the time series context, this nonlinear structure was used in analyzing

economic business cycles as in Luukkonen and Teräsvirta (1991). Instead of using the indicator function

as in the conventional discrete threshold autoregressive (TAR) models, it uses a smooth non-decreasing

function. The general motivation is that we need not assume any abrupt changes over the states and

we let the data tell us if the changes are abrupt or not. For the smooth indicator function, we use the

logistic distribution function in this example. The fifth model is referred to as the amplitude-dependent

exponential autoregressive model, which is discussed in Tong (1990).

Samples of (N,T ) = (100, 50) data points were generated, so N/T = 2 in this case. We estimate the

unknown functionm (·) by WG series estimation and we iterate the entire procedure 1000 times. For series

estimation, we use both power series and cubic splines. Orthogonal (Hermite) polynomial is used for the

power series. The number of series functions, K, is determined to satisfy the order condition discussed

in Remark 3.4. For example, when (N,T ) = (100, 50), we let K = 4 for power series, where it satisfies

(NT )1/7 ≤ K < (NT )1/6; we let K = 8 for regression splines, where it satisfies (NT )1/5 ≤ K < (NT )1/4.

Note that for the cubic splines, we use four knots since the other four terms are cubic polynomials,¡
1, y, y2, y3

¢
. We do not consider different locations of the knots and simply use equispaced knots.

The simulation results are displayed in Table 5.1. The integrated mean square errors (IMSE) and

the integrated mean absolute errors (IMAE) are calculated over y ∈ Yc = [−3, 3] for each case. The

IMSE is computed as27
P121

j=0 (0.05)
n
(1/1000)

P1000
r=1 (m (−3 + 0.05j)− bmr (−3 + 0.05j))2

o
, where m is

the true nonlinear function and bmr is the estimate in rth replication. The IMAE is similarly obtained

by
P121

j=0 (0.05)
n
(1/1000)

P1000
r=1 |m (−3 + 0.05j)− bmr (−3 + 0.05j)|

o
. Table 5.1 exhibits that the IMSE

and the IMAE are smaller after bias corrections. A graphical representation is given in Appendix C. The

graphs display the average values over 1000 replications. Before bias correction, power series approximation

performs better then cubic splines. The bias correction, however, improves the fit for all the cases and the

difference between power series and cubic splines becomes much smaller.
27These discrete expressions are borrowed from Ai and Chen (2003).
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TABLE 5.1

Simulation Resulta

Cubic Splines Power Series

IMSE IMAE IMSE IMAE

original bias-c original bias-c original bias-c original bias-c

M1 0.9228 0.4842 0.7959 0.5374 0.0450 0.0355 0.1441 0.1375

M2 0.1010 0.0428 0.2472 0.1429 0.0458 0.0415 0.1416 0.1179

M3 0.6174 0.3163 0.6318 0.4220 0.1771 0.0784 0.1733 0.0708

M4 0.1930 0.1134 0.3509 0.2505 0.1341 0.0480 0.1120 0.0451

M5 0.1111 0.0444 0.2681 0.1559 0.1387 0.0427 0.1162 0.0387

aWithin-group series estimation over 1,000 iterations with (N,T) = (100,50). “original” displays IMSE and

IMAE before bias correction; “bias-c” displays IMSE and IMAE after bias correction.

6 Application: Cross-Country Growth Regression

Most of the empirical studies examining cross-country growth equations are based on the assumption that

there is a common linear dynamic specification as required by the Solow model. However, recent studies

question the assumption of linearity and propose nonlinear alternatives allowing for multiple regimes of

growth patterns among different countries. These models are consistent with the presence of multiple

steady-state equilibria that classify countries into different groups with different convergence character-

istics. See Durlauf and Johnson (1995), and Bernard and Durlauf (1996) for further discussion. In

this context, the conventional approach is including group-specific dummy variables to look at different

growth patterns for different groups. On the other hand, Liu and Stengos (1999) employ a semiparamet-

ric approach to model the growth equation and show the nonlinear growth patterns. We also take the

semiparametric approach in this section.

Liu and Stengos (1999) use the pooled cross-country data. As pointed out in Islam (1995), one drawback

of the conventional single cross section regression is that identical aggregate production functions need

to be assumed for all the countries. The panel approach, on the other hand, allows for differences in the

aggregate production functions across countries by including country-specific effect parameters (i.e., fixed

effects). Moreover, such an approach will reduce the possible variable omission bias in the cross-country

regression because unobserved country-specific effects can be captured in the fixed effects. Similarly as in

Islam (1995), we also use panel data to examine the growth patterns. However, this approach is different
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from Islam (1995) in that it considers a semiparametric model.

For the growth equation, we use the traditional approach based on the Solow type growth model

assuming Cobb-Douglas production function (e.g., Mankiw, Romer and Weil, 1992). Combining Liu and

Stengos (1999) and Islam (1995), we have the following partial linear growth equation:28

∆ ln yi,t = m (ln yi,t−1) + α2 ln si,t + α3 ln (ni,t + g + δ) + α4 lnhi,t + μi + ui,t, (18)

where yi,t is the GDP per capita of country i at year t, the log-difference ∆ ln yi,t = ln yi,t − ln yi,t−1 is

the growth rate, si,t is the savings rate. ni,t and g are the exogenous growth rates of population and

technology, whereas δ is the constant rate of depreciation. Following Islam (1995), g + δ is set to equal

to 0.05 for all i and t. All these variables are obtained from the Penn World Table (version 6.1)29 , which

provides (unbalanced) panels for 168 countries from the year 1950 to 2000. hi,t is a proxy for the human

capital measure, which is the average schooling years in the total population over age 25. It is obtained

from Barro and Lee (2000)30 for 115 countries in every five years from 1960 to 2000. μi is a country-specific

fixed effect and ui,t is simply assumed i.i.d.; we do not consider cross-country dependence. Recall that in

the growth equation (18), when m (ln yi,t−1) = α1 ln yi,t−1, namely

∆ ln yi,t = α1 ln yi,t−1 + α2 ln si,t + α3 ln (ni,t + g + δ) + α4 lnhi,t + μi + ui,t, (19)

it supports the growth convergence hypothesis if α1 < 0. Analogously, if the slope of m (·) is negative,

then we can interpret that the growth equation supports the growth convergence.

In the empirical analysis, we use a balanced panel set for 73 countries. The list of countries are

provided in Table D.4 in Appendix D. OECD member countries among the selected 73 countries are

marked with asterisks. We conduct semiparametric estimation developed in Section 4.1 for three different

sets of samples: entire 73 countries, 24 OECD countries31 and 49 non-OECD countries. For each data set,

we choose two different panel frequencies: the annual panel and the quintannual (every five years) panel.

In the conventional growth analysis, annual data is not used because they are more likely affected by

short-run factors. It is therefore difficult to recover long-run dynamics from high frequency data. Taking

28We also included time dummies in the regression but projected them out after taking the within transformation.
Whether including the time dummies or not, interestingly, does not effects the results much.

29Heston, A., R. Summers, and B. Aten (2002). Penn World Table Version 6.1, Center for International Comparisons at
the University of Pennsylvania (CICUP).

30 Source : www.cid.harvard.edu/ciddata/ciddata.html.
31 In 2000, the total number of OECD members are 30. But the following six countries are excluded in the analysis since

the Penn World Table does not provide balanced panels from 1960 to 2000 for them: Czech Republic, Germany, Hungary,
Luxembourg, Poland, and Slovak Republic.
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it into account, we also choose to employ a five year interval, which is also the time span used by Islam

(1995) among others. On the other hand, we analyze the annual data to increase the number of time

series as in Lee, Longmire, Mátyás and Harris (1998). Since the average schooling years, h, is available

only in five-year time intervals, we can look at the effects of the human capital only for the quintannual

panel analysis. For the annual data, we use from the year 1960 to 2000 for the entire countries and

the non-OECD countries, whereas we use from the year 1953 to 2000 for the OECD countries. For the

quintannual data, we use the years of 1960, 1965, 1970, 1975, 1980, 1985, 1990, 1995 and 2000 for the

entire countries and the non-OECD countries, whereas we use one additional year of 1955 for the OECD

countries. For the analysis with five-year time intervals, savings rates and population growth variables are

averaged over each five-year interval.

The estimation results are provided in Tables D.1 to D.3 and Figures D.1 to D.3 in Appendix D.

The tables display estimation results both for the linear specification (19) below and for the partial

linear specification (18). For the nonparametric part, we use cubic splines with four knots. For the

linear regressions (19), the results are close to Islam (1995) and all the estimates for α1 support the

growth convergence hypothesis with 1% significance level. The bias correction, which is proposed in Lee

(2005), does not change the results much. For the partial linear regressions (18), we cannot directly

compare the results with the findings in Liu and Stengos (1999) since they estimate the effects of ln si,t

nonparametrically as well as ln yi,t−1. In most of the cases, however, the estimates for the linear part

(i.e., ln si,t, ln (ni,t + g + δ) and lnhi,t) are close to what we find in the linear growth equation (19)

except for non-OECD countries.

Figures D.1 to D.3 show the nonlinear relations between the GDP growth (∆ ln yi,t) and the logarithm

of lagged GDP (ln yi,t−1) after country-specific fixed effects and the other variables — savings rate s,

human capital h, population growth n, depreciation rate δ, and technical growth g — are controlled out.

Before bias corrections, we can see that the convergence hypothesis is true for any data sets, particularly

for countries in the middle to upper income range. This result is identical with the findings in Liu and

Stengos (1999). However, after the bias correction,32 only the OECD countries reveal the convergence

patterns. (See Figure D.2) For the entire 73 countries and for the non-OECD countries, we hardly can

find the convergence except for the very upper income range. (See Figure D.1 and D.3)

Finally, we conduct a very similar analysis as in Islam (1995), in that we rank countries based on the

country-specific effect estimates. As discussed in Islam (1995), fixed effects reflect the unobserved country-

32We can use the bias correction formula developed in Section 4.1 because the asymptotic bias does not change whether
∆ ln yi,t or ln yi,t is used for the dependent variable. It is also true for the linear case (19).
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specific effects such as production technology, resource endowments, institutions and so forth. Though the

precise interpretation of fixed effects is not available yet in the literature, we present our findings in Table

D.4 in Appendix D for comparison purposes with Islam (1995). The ranks are close to what is found in

Islam (1995), for the top ranked countries in particular. But some countries show different ranks from

Islam (1995): Venezuela and Syria show much lower ranks; but Ireland and Barbados are ranked in the

top tier.

7 Concluding Remarks

This paper calls into question the linear autoregressive structure in dynamic panels. In most cases, we do

not have prior information on the functional form of the regression model, so we employ nonparametric

estimation without imposing any structural assumptions. For the nonparametric estimation, fixed effects

are eliminated by the within transformation and series approximation is employed. No instrument variables

are required since the endogeneity bias is directly corrected. Based on the stationary β-mixing condition,

we derive the convergence rates and the asymptotic distribution of the within-group series estimator under

large N and T asymptotics. Just as for pooled estimation in linear dynamic panels, an asymptotic bias is

present, and a proper bias correction is suggested.

Even though we allow for a general functional form in the regression, we still suppose the additive

separable structure so that both individual effects and the error term are not included in the unknown

function m. Nonseparability can be considered with a cost of more restrictions on the unknown function

m, which is required for a proper identification. See, for example, Chesher (2003), Altonji and Matzkin

(2005) and references therein for the discussion of nonparametric identification in non-dynamic setup.

Comparing with series approximation, the kernel-based estimation (or the local linear estimation)

seems more appealing when we are interested in a local properties of the unknown function. However,

it is required that most of the observations {yi,t} should be concentrated around a particular interesting

point for all i and t; otherwise, we cannot linearly approximate the unknown function with a negligible

approximation error for each observation. More precisely, we Taylor expand m (·) around y ∈ R to obtain

yi,t = m (yi,t−1) + μi + ui,t = m (y) + (yi,t−1 − y)m0 (y) + μi + vi,t,

where m0 (y) = dm (y) /dy, vi,t = ui,t+
P∞

j=2
1
j! (yi,t−1 − y)j m(j) (y), and m(j) is the j-th derivative of m.

For each y, we can eliminate the intercept term,m (y)+μi, using the first-differencing transformation or the

within-transformation. Once we estimate m0 (y), we can recover the estimate for m (y) under Assumption
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ID or the condition (6). In order to employ the conventional nonparametric analysis as in Ullah and Roy

(1998), however, we need that the residual term ri,t (y) ≡
P∞

j=2
1
j! (yi,t−1 − y)j m(j) (y) disappears fast

enough for all i and t as N,T →∞. It is possible (e.g., ri,t (y) ≤ Oa.s.

¡
h2
¢
) when |yi,t−1 − y| ≤ Oa.s. (h)

for all i and t with h = hN,T → 0 as N,T → ∞ and m(j) (y)’s are uniformly bounded over y and j. In

static panel models, such conditions can be easily obtained by imposing a (small) compact support of the

explanatory variables. Unfortunately, it is not feasible for the dynamic panel case. A closer investigation

is in progress by the author and the statistical properties of kernel-based estimator are expounded in detail

in a companion paper.

Several topics need to be explored further. For example, the asymptotic properties of the two stage

IV estimator, in comparison with the WG estimator, need to be studied when both N and T are large.

Analyzing nonseparable models, especially when the unknown function is not smooth everywhere, is

another interesting topic because it could cover many economic models such as (smoothed) discrete choice

models. Finally, allowing cross section dependence is relevant in practical implementation. For example,

a common factor structure can be assumed as in Phillips and Sul (2004) instead of i.i.d. errors; imposing

a specific spatial dependence structure using spatial econometrics is another way.
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Appendix A: Mathematical Proofs

A.1 Useful lemmas
We first look at the following lemmas, which collect the basic building blocks that will be used in proving results in
Section 3.3. We denote the mean deviated process g

K
(y) = gK (y)−EgK (y) for each K. The proof of each lemma

is given in the following section. Lemma A1.1 and A1.2 first provide the convergence rate of the denominator of
the within group type estimator eθK .
Lemma A1.1 Under Assumptions E1, E2 and W1, for large N and T ,����� 1

NT

N[
i=1

T[
t=1

g
K
(yi,t−1) g

K
(yi,t−1)

0 − ΓK

����� = Op

�
ζ20 (K)K√

NT

�
.

Lemma A1.2 Under Assumptions E1, E2 and W1, for large N and T ,����� 1

NT 2

N[
i=1

T[
t=1

g
K
(yi,t−1)

T[
s=1

g
K
(yi,s−1)

0

����� = Op

�
ζ20 (K)K√

NT

�
.

Andrews (1991a) and Newey (1994 and 1997) show that the variance estimation for linear functions of the series
estimator is essentially the same as it is in least squares estimation for fixed K. We thus estimate ΓK by eΓK =
(1/NT )

SN
i=1

ST
t=1 g

0
K (yi,t) g

0
K (yi,t)

0 for every K. Note that Assumption W1-(i) ensures that eΓK is nonsingular
almost surely. In what follows, therefore, we simply assume that eΓK is invertible.33 The following lemma shows
that eΓK is consistent for ΓK .

Lemma A1.3 Under Assumptions E1, E2 and W1,
���eΓK − ΓK

��� = Op

�
ζ2 (K)K/

√
NT

�
and

���eΓ−1K − Γ−1K

��� =
Op

�
ζ20 (K)K/

√
NT

�
as N,T →∞, where ΓK = EgK (yi,t)gK (yi,t)0 and eΓK = (1/NT )

SN
i=1

ST
t=1 g

0
K (yi,t) g

0
K (yi,t)

0.

We now look at the convergence rate of the numerator of eθK . Lemma A1.4 and A1.5 show that the convergence of
the numerator

�
Op

�
ζ0 (K)K

1/2/
√
NT

��
turns out to be faster than the denominator

�
Op

�
ζ20 (K)K/

√
NT

��
.

Lemma A1.4 Under Assumptions E1, E2 and W1, for large N and T ,����� 1

NT

N[
i=1

T[
t=1

g
K
(yi,t−1)ui,t

����� = Op

�
ζ0 (K)K

1/2

√
NT

�
and����� 1

NT 2

N[
i=1

T[
t=1

g
K
(yi,t−1)

T[
s=1

ui,s

����� = Op

�
ζ0 (K)K

1/2

√
NT

�
.

Lemma A1.5 Under Assumptions E1, E2, W1 and W2, for large N and T ,����� 1

NT

N[
i=1

T[
t=1

g
K
(yi,t−1)

�
m (yi,t−1)− gK (yi,t−1)

0 θK
������ = Op

�
ζ0 (K)K

1/2−δ
√
NT

�
and����� 1

NT 2

N[
i=1

T[
t=1

g
K
(yi,t−1)

T[
s=1

�
m (yi,s−1)− gK (yi,s−1)

0 θK
������ = Op

�
ζ0 (K)K

1/2−δ
√
NT

�

The following three lemmas establish the building blocks for deriving asymptotic distribution of eθK .
33More precisely, we define an indicator function IN,T for the smallest eigenvalue of ΓK being away from zero, so

P IN,T = 1 → 1 as N,T → ∞. Whenever ΓK appears in the proof, we then need to consider IN,TΓK instead of ΓK
as in Newey (1997). It only makes the notation more complicated without affecting the asymptotic results. We thus assume
ΓK is invertible; in other words, the NT ×K vector g0K (y1,0) , · · · , g0K yN,T−1

0 is of full column rank K for every K.
Since we are considering orthogonal basis functions, in fact, this assumption does not lose generality.
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Lemma A1.6 Under Assumptions E1, E2 and W1, as N,T →∞,

1√
NT

N[
i=1

T[
t=1

ρ0Γ
−1/2
K g

K
(yi,t−1)ui,t →d N

�
0, σ2

�
for some K × 1 vector ρ satisfying kρk = 1 and ΓK= EgK (yi,t)gK (yi,t)0.

Lemma A1.7 Let limN,T→∞N/T = κ, where 0 < κ <∞. Under Assumptions E1, E2, W1 and W2, for large
N and T , ����� 1√

NT 3

N[
i=1

T[
t=1

g
K
(yi,t−1)

T[
s=1

ui,s −
√
κΦK

����� = Op

�
ζ0 (K)K

1/2

√
NT

�
,

where ΦK =
S∞

j=0 cov (gK (yi,t+j) , ui,t) and kΦKk <∞ for each K.

Lemma A1.8 Under Assumptions E1, E2, W1 and W2, for large N and T ,����� 1√
NT

N[
i=1

T[
t=1

gK (yi,t−1)
�
m (yi,t−1)− gK (yi,t−1)

0 θK
������ = Op

�
K−δ

√
NT

�
and����� 1√

NT 3

N[
i=1

T[
t=1

gK (yi,t−1)
T[
s=1

�
m (yi,s−1)− gK (yi,s−1)

0 θK
������ = Op

�
K−δ

√
NT

�
.

Now the following lemmas provide consistency of the estimators of σ2 and ΦK . These results justify the bias
correction formula in Theorem 3.3.

Lemma A1.9 Under Assumptions E1, E2, W1 and W2,

eσ2 = 1

NT

n[
i=1

T[
t=1

�
y0i,t − em0 (yi,t−1)

�2 →p σ
2

as N,T →∞.

Lemma A1.10 For each K, we let

eΦK =
J[
j=0

w (j, J)

N (T − j)

n[
i=1

T−j[
t=1

gK (yi,t+j) eu0i,t,
where eu0i,t = y0i,t − em0 (yi,t−1). If we assume

SJ
j=1 |w (j, J)| ≤ CwJ for some constant 0 < Cw < ∞, where

J = J (T ) ≤ O
�
T 1/3

�
, then as N,T → ∞,

���eΦK −ΦK

��� →p 0 under Assumptions E1, E2, W1, W2 and NT.

Recall that ΦK =
S∞

j=0 cov (gK (yi,t+j) , ui,t), where kΦKk <∞ for each K.
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A.2 Proofs of lemmas in A.1
Proof of Lemma A1.1 By the stationarity over t and independence across i,

E

����� 1

NT

N[
i=1

T[
t=1

g
K
(yi,t−1) g

K
(yi,t−1)

0 − ΓK

�����
2

=
K[
j=1

K[
k=1

E

#
1

NT

N[
i=1

T[
t=1

g
Kj
(yi,t−1) g

Kk
(yi,t−1)− ΓK,jk

$2

=
1

NT

K[
j=1

K[
k=1

E
k
g
Kj
(yi,0) g

Kk
(yi,0)− ΓK,jk

l2
+
2

NT

K[
j=1

K[
k=1

T−1[
τ=1

�
1− τ

T

�
cov

�
g
Kj
(yi,0) g

Kk
(yi,0) , g

Kj
(yi,τ ) g

Kk
(yi,τ )

�
≡ A1 (N,T,K) +A2 (N,T,K) ,

where ΓK,jk is the (j, k)th element of the K ×K matrix ΓK . Note that conditional on μi, the stationarity and

the mixing property of {yi,t} are preserved to
q
g
Kk
(yi,t)

r
for all k and t by Proposition 2.3 because gKk (·) are

all measurable functions and the common level shift by its mean does not affect the dependence structure. First
note that EgKj (yi,t)gKk (yi,t) = ΓK,jk implies34

A1 (N,T,K) ≤ 1

NT

K[
j=1

K[
k=1

Eg2
Kj
(yi,0) g

2

Kk
(yi,0)

=
1

NT
E

#
K[
j=1

g2
Kj
(yi,0)

K[
k=1

g2
Kk
(yi,0)

$
≤ ζ40 (K)K

2/NT → 0

by Assumption W1. Secondly, using Proposition 2.4, under Assumptions E1, E2 and W135 ,���cov �g
Kj
(yi,0) g

Kk
(yi,0) , g

Kj
(yi,τ ) g

Kk
(yi,τ )

���� ≤ 4α (τ) ζ40 (K)
because supy∈Yc max1≤k≤K

���g
Kk
(y)
��� ≤ ζ0 (K) implies

���g
Kj
(y) g

Kk
(y)
��� ≤ ζ20 (K) for all j and k. Since we assumeS

τ≥1 α (τ) <∞, we have�����
T−1[
τ=1

�
1− τ

T

�
cov

�
g
Kj
(yi,0) g

Kk
(yi,0) , g

Kj
(yi,τ ) g

Kk
(yi,τ )

������ ≤ 4ζ40 (K)
T−1[
τ=1

�
1− τ

T

�
α (τ)

≤ 4ζ40 (K)
∞[
τ=1

α (τ)

34 Similarly as in Newey (1997), we can derive the sharper upper bound ζ20 (K)K
2/nT by assuming ΓK = IK . Letting

ΓK be the identity matrix does not lose any generality as argued in Newey (1997) since we assume the smallest eigenvalue of
ΓK is bounded above zero and its largest eigenvalue is also bounded. We, however, do not pursue this sharper bound since
the covariance term, A2 (N,T,K), cannot achieve this sharper bound.

35Recall that the mixing inequality should hold conditional on μi. However, using law of iterated expectation yields that
for each i

cov g
Kj
(yi,0) gKk

(yi,0) , gKj
(yi,τ ) gKk

(yi,τ ) ≤ E cov g
Kj
(yi,0) gKk

(yi,0) , gKj
(yi,τ ) gKk

(yi,τ ) |μi
≤ E4α (τ) ζ40 (K) = 4α (τ) ζ40 (K)

since nothing is random any longer. The upper bound obviously is not a function of μi, and therefore, the result holds
without conditioning on μi. We will use this logic in what follows.
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using the Kronecker lemma36 . Therefore,

|A2 (N,T,K)| ≤ O
�
ζ40 (K)K

2/NT
�
→ 0

by Assumption W1. It follows that����� 1

NT

N[
i=1

T[
t=1

g
K
(yi,t−1) g

K
(yi,t−1)

0 − ΓK

����� = Op

�
ζ20 (K)K/

√
NT

�
,

which is op (1) since ζ40 (K)K
2/NT → 0 is assumed.

Proof of Lemma A1.2 Similarly as Lemma A1.1, we first observe that
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NT 2
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.

Note that EgKk (yi,t−1) = 0 implies

1

T
E

#
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t=1

g
Kk
(yi,t−1)

$2
≤ Eg2

Kk
(yi,0) + 2

T−1[
τ=1

�
1− τ

T

� ���cov �g
Kk
(yi,0) , g

Kk
(yi,τ )

����
≤ ζ20 (K) + 8

∞[
τ=1

α (τ) ζ20 (K)

= O
�
ζ20 (K)

�
(a1)

similarly as in the proof of Lemma A1.1. Therefore,
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����� 1

NT 2
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T[
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K
(yi,t−1)

T[
s=1

g
K
(yi,s−1)

0
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2

≤ O
�
ζ40 (K)K

2/NT
�
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and it follows that
����1/NT 2

�SN
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t=1 gK (yi,t−1)
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ζ20 (K)K/
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NT
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Proof of Lemma A1.3 We decompose
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t=1

g0K (yi,t−1) g
0
K (yi,t−1)

0 =
N[
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− 1
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g
K
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0 .

Then the first result is easily derived from Lemma A1.1 and A1.2. For the second result, note that���eΓ−1K ��� ≤ ��Γ−1K ��+ ���eΓ−1K − Γ−1K

��� . (a2)

With a similar argument of Lewis and Reinsel (1985, Theorem 1) and (Berk, 1974), the first term
��Γ−1K �� is

uniformly bounded over K since the smallest eigenvalue is bounded away from zero and the largest eigenvalue is
also bounded (Assumption W1-(ii)). The second term converges to zero in probability if ζ40 (K)K

2/NT → 0. This

36 If T
τ=1 α (τ) converges, then (1/T )

T
τ=1 τα (τ)→ 0 as T →∞.
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is because ���eΓ−1K − Γ−1K

��� ≤ ���eΓ−1K ������eΓK − ΓK
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by Taylor expansion and using the first result
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Proof of Lemma A1.4 First note that
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since
S∞

τ=1 α (τ)
1−2/r <∞, E |ui,t|r <∞ for r > 2 by assumption E1 (E |ui,t|ν <∞ for ν > 4) and ζ20 (K)K/NT ≤
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For the second result, we observe
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Proof of Lemma A1.5 Note that by Assumption W2,
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The second result follows similarly since
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Proof of Lemma A1.6 We first define a random variable Zi,t = ρ0Γ
−1/2
K g

K
(yi,t−1)ui,t/σ, then Zi,t is a

martingale difference sequence with variance one by construction. Moreover, conditioning on μi, Zi,t is α-mixing
with the same mixing coefficients α (τ) of {yi,t} since the temporal dependence is solely determined by g
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similarly as Lemma A1.1, we have (1/NT )
SN

i=1

ST
t=1 Z

2
i,t →p 1 because

E

����� 1

NT

N[
i=1

T[
t=1

Z2
i,t − 1

�����
2

≤ 1

NT

+
E
�
Z2
i,1 − 1

�2
+ 2

T−1[
τ=1

�
1− τ

T

� ��cov �Z2
i,1, Z

2
i,τ+1

���,

≤ 1

NT

+
E
��Z2

i,t

��2 + 16 ∞[
τ=1

α (τ)1−2/r
�
E
��Z2

i,t

��r�2/r,
≤ O

�
K2ζ40 (K) /NT

�
using Proposition 2.4-(2) with p = q = r > 2 and

S∞
τ=1 α (τ)

1−2/r <∞ by Assumption E1 and E2. Note that the
inequality holds without conditioning on μi since��cov �Z2

i,1, Z
2
i,τ+1

��� ≤ E
��cov �Z2

i,1, Z
2
i,τ+1|μi

��� ≤ 8α (τ)1−2/r �E k��Z2
i,t

��r |μil�2/r
≤ 8α (τ)1−2/r

�
C2K

rζ2r0 (K)E
�
E |ui,t|2r |μi

��2/r
= 8α (τ)1−2/r

�
C2K

rζ2r0 (K)E |ui,t|
2r�2/r

since ui,t is independent of μi similarly as in the proof of Lemma A1.1.
Directly applying the conventional Lindeberg condition as in Theorem 5.23 of White (1984) to the double

indexed process Zi,t is not straightforward. Phillips and Moon (1999) develop limit theories for large N and T and
examine Lindeberg condition for the Central Limit Theorem of double indexed processes (Theorem 2 and 3). We
adopt their idea to derive the asymptotic normality of {Zi,t} as follows37 . We first define a partial sum process
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Theorem 5.23 of White (1984) that

�
1/
√
T
�ST

t=1 Zt =
�
1/
√
NT

�SN
i=1

ST
t=1 Zi,t →d N (0, 1) as N,T → ∞.

Therefore,

1√
NT

N[
i=1

T[
t=1

ρ0Γ
−1/2
K g

K
(yi,t−1)ui,t →d N

�
0, σ2

�
as N,T →∞.

Proof of Lemma A1.7 Note that
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37Alternatively, we can directly apply Theorem 3 of Phillips and Moon (1999) since we already show
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The second part is negligible for large N and T since limN,T→∞N/T = κ and kΦKk <∞ for each K. For the first
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Note that (i)
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where C1 and C2 are some positive constants; and (iii) ui,t is i.i.d. with E |ui,t|4 < ∞. From (i), (ii) and (iii), it
follows that
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as N,T →∞ since kEgK (y)k is finite. More precisely,
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Proof of Lemma A1.9 We have
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where the first term is simply (1/NT )E
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Proof of Lemma A1.10 We first decompose
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The third term (a6) simply converges to zero as J →∞ using Kronecker lemma since we assume that�����
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where the third inequality is by Chebyshev’s inequality. We assume
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→ 0

for some constant 0 < Cε <∞, as N,T →∞ with N/T → κ ∈ (0,∞). Note that since N and T are comparable,
ζ20 (K)K/N is close to ζ20 (K)K/

√
NT → 0 for large N and T .

Lastly, for the first term (a4), note that

eu0i,t − ui,t =
�
y0i,t − em0 (yi,t−1)

�
− ui,t =

�
m0 (yi,t−1)− em0 (yi,t−1)

�
−
#
1

T

T[
s=1

ui,s

$
.
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Therefore, �����
J[
j=0

w (j, J)

N (T − j)

n[
i=1

T−j[
t=1

gK (yi,t+j)
�eu0i,t − ui,t

������
≤

�����
J[
j=0

w (j, J)

N (T − j)

n[
i=1

T−j[
t=1

gK (yi,t+j)
�
m0 (yi,t−1)− em0 (yi,t−1)

������
+

�����
J[
j=0

w (j, J)

NT (T − j)

n[
i=1

T−j[
t=1

gK (yi,t+j)
T[
s=1

ui,s

����� .
Similarly as in the (a7), for any ε > 0, the first part is

P

#�����
J[
j=0

w (j, J)

N (T − j)

n[
i=1

T−j[
t=1

gK (yi,t+j)
�
m0 (yi,t−1)− em0 (yi,t−1)

������ > ε

$

≤
J[
j=1

�
CwJ

ε

�2
E

����� 1

N (T − j)

n[
i=1

T−j[
t=1

gK (yi,t+j)
�
m0 (yi,t−1)− em0 (yi,t−1)

������
2

≤
J[
j=1

�
CwJ

ε

�2
E

����� 1

N (T − j)

n[
i=1

T−j[
t=1

gK (yi,t+j)

�����
2

O

�
K

NT
+K−2δ +

ζ20 (K)K

NT

�

≤
J[
j=1

�
CwJ

ε

�2
O (1)O

�
K

NT
+K−2δ +

ζ20 (K)K

NT

�
→ 0 as J →∞,

using Theorem 3.1 and since
���(1/ (N (T − j)))

Sn
i=1

ST−j
t=1 gK (yi,t+j)− EgK (yi,t+j)

���→a.s. 0 with kEgK (yi,t+j)k <

∞ by the Law of Large Numbers in mixing process as in the proof of A1.8. Because J ≤ O
�
T 1/3

�
, with the

similar argument as in the proof of (a5), the first part is o (1). The second part also converges to zero as J →∞
since

P

#�����
J[
j=0

w (j, J)

NT (T − j)

n[
i=1

T−j[
t=1

gK (yi,t+j)
T[
s=1

ui,s

����� > ε

$

≤
J[
j=1

�
CwJ

ε

�2
E

�����
J[
j=0

1

N (T − j)

n[
i=1

T−j[
t=1

gK (yi,t+j)
T[
s=1

ui,s

�����
2

≤
J[
j=1

�
CwJ

ε

�2
O

�
ζ20 (K)K

NT

�
→ 0

with the same argument on J .

A.3 Within-group estimator
Using lemmas in Appendix A.1, we now prove the main results in Section 3.3. The basic idea of the proof of
Theorem 3.1 is mainly obtained from Newey (1997).

Proof of Theorem 3.1 As in Section 4.1, for notational convenience, we define NT × K matrices g
K
=�

g
K
(y1,0) , · · · , g

K
(yN,T−1)

�0
and g0K =

�
g0K (y1,0) , · · · , g0K (yN,T−1)

�0; NT × 1 vectors u = (u1,1, · · · , uN,T )0,
u0 =

�
u01,1, · · · , u0N,T

�0
, m = (m (y1,0) , · · · ,m (yN,T−1))0 and m0 =

�
m0 (y1,0) , · · · ,m0 (yN,T−1)

�0
. Then, we can

write eθK − θK =
�
g00Kg

0
K/NT

�−1 �
g00Ku

0/NT
�
+
�
g00Kg

0
K/NT

�−1 �
g00K
�
m0 − g0KθK

�
/NT

�
.
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Also note that using Lemma A1.1 to A1.4, we have

�
g00Kg

0
K/NT

�−1/2
=

�
g0
K
g
K
/NT

�−1/2
+Op

�
ζ20 (K)K/

√
NT

�
g00Ku

0/NT = g0
K
u/NT +Op

�
ζ0 (K)K

1/2/
√
NT

�
g00K
�
m0 − g0KθK

�
/NT = g0

K
(m− gKθK) /NT +Op

�
ζ0 (K)K

1/2−δ/
√
NT

�
,

where the first result is due to the Taylor expansion and the fact that g0
K
g
K
/NT = Op (1). Moreover, with the

similar argument as (a3),
���eΓ−1/2K

��� = Op (1).

First observe that

E
���Γ−1/2K

�
g0
K
u/NT

����2 = E�u0g
K
Γ−1K g0

K
u
�
/ (NT )2 = tr

k
Γ
−1/2
K E

�
g0
K
uug

K

�
Γ
−1/2
K

l
/ (NT )2 ,

where

E
�
g0
K
uug

K

�
= E

#
N[
i=1

T[
t=1

g
K
(yi,t−1)ui,t

$#
N[
i=1

T[
t=1

ui,tg
0
K
(yi,t−1)

$

= NE

#
T[
t=1

g
K
(yi,t−1)ui,t

$#
T[
s=1

ui,sg
0
K
(yi,s−1)

$
= NTE

�
g
K
(yi,0)u

2
i,1g

0
K
(yi,0)

�
+2NT

T−1[
τ=1

(1− τ/T )E
�
g
K
(yi,0)ui,1ui,1+τg

0
K
(yi,τ )

�
.

The first term is simply NTσ2ΓK by the law of iterated expectations. For the second term, similarly as the proof
in Lemma A1.3, �����2NT

T−1[
τ=1

(1− τ/T )E
�
g
K
(yi,0)ui,1ui,1+τg

0
K
(yi,τ )

������ ≤ 2NTΓ
∞[
τ=1

α (τ) .

Therefore,

E
���Γ−1/2K

�
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K
u/NT

����2 ≤ tr

%
Γ
−1/2
K

+
σ2ΓK + 2Γ

∞[
τ=1

α (τ)

,
Γ
−1/2
K

&
/NT = O (K/NT ) ,

since
S∞

τ=1 α (τ) <∞. Substituting eΓK for ΓK does not change the result since���eΓ−1/2K

�
g0
K
u/NT

����2
≤

���Γ−1/2K

�
g0
K
u/NT

����2 + ����eΓ−1/2K − Γ
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K

��
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K
u/NT

����2
≤

���Γ−1/2K

�
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K
u/NT

����2 + ���eΓ−1/2K

���2 ���Γ1/2K − eΓ1/2K

���2 ���Γ−1/2K

�
g0
K
u/NT

����2
= Op (K/NT ) (a8)

for
���eΓK − ΓK

���→p 0 with kΓKk <∞ by Lemma A1.3. It follows that

����g00Kg0K/NT
�−1 �

g00Ku
0/NT

����2 ≤
���eΓ−1/2K

���2 ���eΓ−1/2K

�
g0
K
u/NT +Op

�
ζ0 (K)K

1/2/
√
NT

�����2
≤ Op

�
K/NT + ζ20 (K)K/NT

�
.

since
���eΓ−1/2K

��� = Op (1).

45



Secondly, using Lemma A1.4 and since g
�
g0
K
g
K

�−1
g
K
is idempotent38 ,

���eΓ−1/2K

��
g0
K
(m− gKθK) /NT

�����2
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√
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���
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� ���g0
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�
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K

�
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K
g
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/NT
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2/NT
�
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�
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�
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�
/NT +Op

�
ζ60 (K)K
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�
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�
K−2δ + ζ60 (K)K
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�
,

giving ����g00Kg0K/NT
�−1 �
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�
m0 − g0KθK

�
/NT

����2
≤

���eΓ−1/2K

���2 ���eΓ−1/2K

�
g0
K
(m− gKθK) /NT +Op

�
ζ0 (K)K

1/2−δ/
√
NT

�����2
≤

���eΓ−1/2K

���2 ���eΓ−1/2K

�
g0
K
(m− gKθK) /NT

����2 + ���eΓ−1/2K

���4Op

�
ζ20 (K)K

1−2δ/NT
�

≤ Op

�
K−2δ + ζ20 (K)K

1−2δ/NT
�

since
���eΓ−1/2K

��� = Op (1) and ζ60 (K)K
3−2δ/ (NT )2 =

�
ζ40 (K)K

2/NT
� �
ζ20 (K)K

1−2δ/NT
�
= o (1)

�
ζ20 (K)K

1−2δ/NT
�
<

ζ20 (K)K
1−2δ/NT . Therefore,���eθK − θK

���2 ≤
����g00Kg0K/NT

�−1 �
g00Ku

0/NT
����2 + ����g00Kg0K/NT

�−1 �
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�
m0 − g0KθK

�
/NT

����2
= Op

�
K/NT +K−2δ + ζ20 (K)K/NT

�
since ζ20 (K)K

1−2δ/NT is dominated by ζ20 (K)K/NT for δ > 0. Next, by the triangular inequality,]
y∈Yc

[em (y)−m (y)]2 dP (y) =

]
y∈Yc

k
gK (y)

0
�eθK − θK

�
+
�
gK (y)

0 θK −m (y)
�l2

dP (y)

≤
���eθK − θK

���2 + ]
y∈Yc

��
gK (y)

0 θK −m (y)
��2

dP (y)

= Op

�
K/NT +K−2δ + ζ20 (K)K/NT

�
+O

�
K−2δ

�
= Op

�
K/NT +K−2δ + ζ20 (K)K/NT

�
.

38 Since all the eigenvalues of any idempotent matrix P is either zero or one, x0Px ≤ x0Ix for non-zero vector x and the
identity matrix I with conformable dimensions.
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For the uniform convergence rate, if we use the triangular inequality and Cauchy-Schwartz inequalities, we have

sup
y∈Yc

max
s≤D

|ds (em (y)−m (y)) /dys|

≤ sup
y∈Yc

max
s≤D

���ds �gK (y)0 �eθK − θK
��

/dys
���+ sup

y∈Yc
max
s≤D

��ds �gK (y)0 θK −m (y)
�
/dys

��
≤ K1/2ζD (K)

���eθK − θK

���+O
�
K−δ

�
= Op

�
K1/2ζD (K)

�
K1/2/

√
NT +K−δ + ζ0 (K)K

1/2/
√
NT

��
by Assumption W2.

Proof of Theorem 3.2 The within group type estimator of m (·) can be written as

em (y)−m (y) = gK (y)
0
�eθK − θK

�
−
�
m (y)− gK (y)

0 θK
�

or

√
NT

� em (y)−m (y) + (1/T ) gK (y)
0 Γ−1K ΦK

�t
gK (y)

0 eΓ−1K gK (y)
=

gK (y)
0√NT

�eθK − θK + (1/T )Γ
−1
K ΦK

�
t
gK (y)

0 eΓ−1K gK (y)

−
√
NT

�
m (y)− gK (y)

0 θK
�t

gK (y)
0 eΓ−1K gK (y)

. (a9)

By Assumption W2, the second term in (a9) is negligible since������
√
NT

�
m (y)− gK (y)

0 θK
�t

gK (y)
0 eΓ−1K gK (y)

������ ≤ Op (1)Op

�
K−δ

√
NT

�
= Op

�
K−δ

√
NT

�
→ 0.

Therefore, the asymptotic distribution of em (·) is determined by the asymptotic behavior of the first term in (a9),
which is given by

=
gK (y)

0√NT
�eθK − θK + (1/T )Γ

−1
K ΦK

�
t
gK (y)

0 eΓ−1K gK (y)
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=

#
1√
NT

N[
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eρ0eΓ−1/2K g
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$
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gK (yi,t−1)
�
m0 (yi,t−1)− g0K (yi,t−1)

0 θK
�$

,

where eρ = gK (y)
0 eΓ−1/2K /

t
gK (y)

0 eΓ−1K gK (y). By construction, keρk = 1. We look at the asymptotic distribution
of (a10) in the following three steps.

[Step 1] We first consider the infeasible case that ΓK is known. We have

√
NT

� em (y)−m (y) + (1/T ) gK (y)
0 Γ−1K ΦK

�t
gK (y)

0 Γ−1K gK (y)
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where ρ = gK (y)
0 Γ
−1/2
K /

t
gK (y)

0 Γ−1K gK (y) and kρk = 1 by construction. The first term converges in distribution

to N
�
0, σ2

�
by Lemma A1.5. The second term becomes negligible as N,T → ∞ with limN,T→∞N/T → κ,

0 < κ <∞, since
���ρ0Γ−1/2K

��� ≤ kρk���Γ−1/2K
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����� 1√
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����� 1√
NT 3

N[
i=1

T[
t=1

g
K
(yi,t−1)

T[
s=1

ui,t −
√
κΦK

�����+
�����
u

N

T
−
√
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where the first part is op (1) by Lemma A1.6;
���sN/T −√κ

���→ 0 for N/T → κ; and kΦKk <∞ from Assumption

W2. Finally, the third term also converges in probability to zero using Lemma A1.7. The asymptotic normality
thus simply follows by adding these three results:

√
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� em (y)−m (y) + (1/T ) gK (y)
0 Γ−1K ΦK
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�
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[Step 2] We now consider another infeasible case that

√
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where hρ = gK (y)
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t
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0 Γ−1K gK (y). If we use the matrix notation defined in the proof of Theorem 3.1,
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where the residual term is����gK (y)0 Γ−1K gK (y)
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[Step 3] We finally consider the feasible case39 given by
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39We, however, still assume the asymptotic bias is of known form.
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where the residual term is�����kgK (y)0 eΓ−1K gK (y)
l−1/2

−
�
gK (y)

0 Γ−1K gK (y)
�−1/2�

gK (y)
0 eΓ−1K g0

K
u/
√
NT

����
≤

����kgK (y)0 eΓ−1K gK (y)
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gK (y)
0 −

�
gK (y)

0 Γ−1K gK (y)
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gK (y)
0
����

×
���eΓ−1K ������Γ1/2K

������Γ−1/2K g0
K
u/
√
NT

���
≤

�����kgK (y)0 eΓ−1K gK (y)
l−1/2

gK (y)
0 eΓ−1/2K

�������eΓ1/2K

���
+
����gK (y)0 Γ−1K gK (y)

�−1/2
gK (y)

0 Γ
−1/2
K

������Γ1/2K
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������Γ−1/2K g0
K
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√
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���
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q���eΓ1/2K

���+ ���Γ1/2K
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������Γ−1/2K g0
K
u/
√
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���
= Op

�
K1/2/

√
NT

�
→ 0.

Therefore, using the proof in [Step 2], hρ0Γ−1/2K g0
K
u/
√
NT →d N

�
0, σ2

�
. Now the rest two terms are still asymp-

totically negligible similarly as in [Step 2] since���eρ0eΓ−1/2K − hρ0eΓ−1/2K

���
=

����kgK (y)0 eΓ−1K gK (y)
l−1/2

gK (y)
0 eΓ−1K −

�
gK (y)

0 Γ−1K gK (y)
�−1/2

gK (y)
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≤
����kgK (y)0 eΓ−1K gK (y)
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The desired result then follows using Lemma A1.9.

Proof of Theorem 3.3 First observe that

v (K,N, T )−1/2 (hm (y)−m (y)) = v (K,N, T )−1/2
�em (y)−m (y) +

1

T
bK (y)

�
+
1

T
v (K,N, T )−1/2

�ebK (y)− bK (y)
�
,

where the first part converges in distribution to the standard normal as N,T →∞ by Theorem 3.2. For the second

part, we will show that
���(1/T ) v (K,N, T )−1/2

�ebK (y)− bK (y)
����→p 0 as N,T →∞ to complete the proof. Note

that ���� 1T v (K,N, T )−1/2
�ebK (y)− bK (y)

�����
≤ 1

T

����gK (y)0 Γ−1K gK (y)

NT
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���
+
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���
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0 Γ−1K gK (y)

������+
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������
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0 Γ−1K

�eΦK −ΦK

�
t
gK (y)

0 Γ−1K gK (y)

������
= D1 (N,T,K) +D2 (N,T,K) . (a12)

50



The second term D2 (N,T,K) is simply o (1) since N/T → κ <∞ and������
gK (y)

0 Γ−1K

�eΦK −ΦK

�
t
gK (y)

0 Γ−1K gK (y)

������ ≤
������ gK (y)

0 Γ
−1/2
Kt

gK (y)
0 Γ−1K gK (y)

������
���Γ−1/2K

������eΦK −ΦK

���→ 0,

where for each K, the first norm is one by construction, the second norm is bounded by Assumption W1, and the
third norm converges to zero in probability as N,T → ∞ by Lemma A1.10. For the first term D1 (N,T,K) in
(a12), observe that ������

gK (y)
0
�eΓ−1K − Γ−1K

� eΦKt
gK (y)

0 Γ−1K gK (y)

������
≤

������
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��eΦK −ΦK

�
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������+
������
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ΦKt

gK (y)
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������
���Γ1/2K

������eΓ−1K − Γ−1K

���q���eΦK −ΦK

���+ kΦKk
r
→ 0

since for each K, the first norm is one by construction, the second norm is bounded by Assumption W1, the third
norm converges to zero in probability as N,T → ∞ by Lemma A1.3, the fourth norm also converges to zero in
probability as N,T →∞ by Lemma A1.10, and the fifth norm is bounded by assumption.

Proof of Theorem 4.1 First note that for y ∈ Yc,
√
NT (em (y)−m (y))

=
√
NTgK (y)

0
�eθK − θK

�
=

√
NTgK (y)

0 �g00KMxg
0
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�−1
g00KMx

�
m0 − g00KθK

�
+
√
NTgK (y)

0 �g00KMxg
0
K

�−1
g00KMxu

0 (a13)

and √
NT (eγ − γ) =

√
NT

�
x00Mgx

0�−1 x00Mgu
0. (a14)

Similarly as Lemma A1.3,
���eΣ−Σ

��� → 0 as N,T → ∞, where eΣ = (1/NT )
�
g00K ,x

00�0 �g00K ,x00�. Therefore, the
first term of (a13) is simply negligible as in Lemma A1.5 from Assumption W2. For the second term in (a13) and
the formula (a14), the result readily follows if we use the result of partitioned regressions. Since we approximate
the unknown function m (·) using a linear combination of series functions, the estimation is just a partitioned
regression. The detailed proof is, therefore, a straightforward extension of the proof of Theorem 3.3, and we
simply discuss the heuristic idea of the proof here. By combining the second term in (a13) and the formula (a14),
we have # √

NTgK (y)
0 �g00KMxg

0
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Since xi,t is strictly exogenous for all i and t, the limit distribution of�
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is approximately normal with mean Σ−1
�
−√κΦK

0

�
and variance σ2Σ−1 from Theorems 3.2 and 3.3 if we keep

K fixed. By using the inverse matrix formula of the partitioned matrix, however,

Σ−1 =

�
Σgg Σgx

Σxg Σxx

�−1
=

�
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−1
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−1
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−1
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−1
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−1
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−1
gg Σ−1xx·g

�
,

and we have the desired result using this expression.

Appendix B: Two Stage IV Estimation
Similarly as Newey and Powell (2003), and Ai and Chen (2003), we write a generalization of equation E (∆ui,t|zi,t) =
0 as

E [ρ (yi,t, yi,t−1, yi,t−2;m) |zi,t] = 0,

where ρ (yi,t, yi,t−1, yi,t−2;m) = ∆ui,t = ∆yi,t −∆m (yi,t−1) and ∆m (yi,t−1) = m (yi,t−1) −m (yi,t−2). Since we
approximate m (y) ≈

SK
k=1 θKkgKk (y) or ∆m (y) ≈

SK
k=1 θKk∆gKk (y), the first stage series estimator (as one of

the nonparametric estimation methods) of E [∆gKk (y) |z] is given by

eE [∆gKk (y) |zi,t] ≡ ∆egKk (zi,t)

= ςJ (zi,t)
0

#
N[
j=1

T[
s=1

ςJ (zj,s) ςJ (zj,s)
0

$−1 N[
j=1

T[
s=1

ςJ (zj,s)∆gKk (y) ,

where ςJ (z) = (ςJ1 (z) , ςJ2 (z) , · · · , ςJJ (z))0 denotes approximating functions for E [∆gKk (y) |z] for all k =
1, · · · ,K.40 It follows that θK can be estimated by solving the minimization problem:

eθK = argmin
θK

N[
i=1

(∆yi −∆egK (zi) θK)0H (∆yi −∆egK (zi) θK) ,
where ∆yi, ∆egK (zi) and H are given in Section 4.2. Recall that T × T matrix H is positive definite. The
nonparametric estimate is then obtained by em (y) = SK

k=1
eθKkgKk (y) for any y ∈ Yc. We assume the following

conditions.

Assumption I1 (i) {yi,t} satisfies the stability conditions in Section 2.2. (ii) We only consider estimating m
over a nonempty compact subset Yc of the support of {yi,t}.

The stationarity and mixing condition over t is only necessary when T →∞. Considering the bounded support of
yi,t is necessary to avoid any complications. For the details, refer to Newey and Powell (2003, p.1569). The next
condition is the identification condition for m.

Assumption I2 There is a metric k·kc such that Mc (m ∈Mc) is compact under k·kc over Yc.

Assumption I3 m is uniquely identified satisfying E [ρ (yi,t, yi,t−1, yi,t−2;m) |zi,t] = 0.

Assumption I4 Over y ∈ Yc and for any m (y) satisfying Assumption E2-(i), there exists a series approxima-
tion gK (y)

0 θK such that
��m (y)− gK (y)

0 θK
��
c
→ 0 as K →∞.

Assumption I5 (i) E
�
|ρ (y1, y2, y3;m)|2 |z

�
is bounded. (ii) ρ (y1, y2, y3;m) is Hölder continuous in m ∈Mc,

i.e., there exists M (y1, y2, y3), ν > 0 such that for all m1,m2 ∈ Mc, |ρ (y1, y2, y3;m1)− ρ (y1, y2, y3;m2)| ≤
M (y1, y2, y3) km1 −m2kνc and E

�
|M (y1, y2, y3)|2 |z

�
<∞.

40For each k, we could define different sets of approximating functions. However, it will not make any difference empirically.
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The following condition assumes that the first stage series approximation can approximate any function with finite
mean-square.

Assumption I6 (i) For any b (z) with E (b (z))2 <∞, there exist ςJ (z) and ϕ ∈ RJ with E
�
b (z)− ςJ (z)

0 ϕ
�2 →

0 as J →∞, where J/N → 0 if T is fixed; J/NT → 0 if T tends to infinity. (ii) For every J, the J×J variance-
covariance matrix of ςJ (z) exists, whose smallest eigenvalue is bounded away from zero and the largest eigenvalue
is bounded.

We provide the consistency result as in Newey and Powell (2003). The proof follows Theorem 4.1 of Newey and
Powell (2003) with defining Q (m) = E

�
E [ρ (y1, y2, y3;m) |z]0HE [ρ (y1, y2, y3;m) |z]

�
.

Theorem B.1 (Consistency: Newey and Powell (2003, Theorem 4.1)) If Assumptions I1 to I6,

E1 and E2 are satisfied and N,K →∞, then
���ec (y)− c (y)

���
c
→p 0 for y ∈ Yc.

Corollary B.2 (Consistency) Under the same condition of Theorem B.1, if Assumption ID is satisfied,
kem (y)−m (y)kc →p 0 for y ∈ Yc as N,K →∞.

Notice that Theorem B.1 and Corollary B.2 hold as long as K →∞ with N →∞, independent of T →∞ or not.
However, there still remain more challenges when the length of time T is large. This is because the number of
instruments increases as T goes to infinity, which generates the large number of moment conditions problem. We
leave the limit properties with large N and T under Assumption NT as a topic for future research.
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Appendix C: Simulation Results

Model 1 : yi,t = μi + {0.6yi,t−1}+ ui,t

Figure C.1 : Nonparametric estimation - Cubic splines (left, 4 knots) v.s. Power series (right, 4th
polynomial).41

Model 2 : yi,t = μi + {exp (yi,t−1) / (1 + exp (yi,t−1))− 0.5}+ ui,t

Figure C.2 : Nonparametric estimation - Cubic splines (left, 4 knots) v.s. Power series (right, 4th
polynomial).

41For each graph in Figure C.1 to C.5, solid line is the true; dotted (- - -) line is series estimate before bias correction;
dashed (− · −·) line is series estimate after bias correction. Samples of (N,T ) = (100, 50) data points are used and the
estimate values are averaged over 1000 replications.
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Model 3 : yi,t = μi + {ln (|yi,t−1 − 1|+ 1) sgn (yi,t−1 − 1) + ln 2}+ ui,t

Figure C.3 : Nonparametric estimation - Cubic splines (left, 4 knots) v.s. Power series (right, 4th
polynomial).

Model 4 : yi,t = μi + {0.6yi,t−1 − 0.9yi,t−1/ (1 + exp (yi,t−1 − 2.5))}+ ui,t

Figure C.4 : Nonparametric estimation - Cubic splines (left, 4 knots) v.s. Power series (right, 4th
polynomial).

Model 5 : yi,t = μi + 0.3yi,t−1 exp −0.1y2i,t−1 + ui,t

Figure C.5 : Nonparametric estimation - Cubic splines (left, 4 knots) v.s. Power series (right, 4th
polynomial).
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Appendix D: Growth Regression Results

Annual Data

Linear Semiparametric
WG WGc s.e. WG WGc s.e.

ALL (N = 73;T = 40 from 1961 to 2000)

log yi,t−1 -0.0366 -0.0365 0.0045
log s 0.0172 0.0171 0.0027 0.0164 0.0147 0.0029

log (n+ g + δ) -0.0430 -0.0426 0.0111 -0.0446 -0.0383 0.0117
R2 0.0370

OECD (N = 24;T = 47 from 1954 to 2000)

log yi,t−1 -0.0495 -0.0495 0.0055
log s 0.0652 0.0652 0.0046 0.0588 0.0587 0.0049

log (n+ g + δ) -0.0231 -0.0230 0.0105 -0.0104 -0.0051 0.0115
R2 0.1674

Non-OECD (N = 49;T = 40 from 1961 to 2000)

log yi,t−1 -0.0394 -0.0393 0.0059
log s 0.0127 0.0126 0.0033 0.0117 0.0113 0.0035

log (n+ g + δ) -0.0480 -0.0477 0.0149 -0.0489 -0.0439 0.0155
R2 0.0322

Table D.1 : Growth regression results with annual panel data. WG is the within-group type estimates
and WGc is the within-group type estimates after bias correction. Standard errors (s.e.) are of the
bias corrected estimates.
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Every-5-year Data (without Human Capital)

Linear Semiparametric
WG WGc s.e. WG WGc s.e.

ALL (N = 73;T = 8 from 1965 to 2000)

log yi,t−1 -0.2351 -0.2322 0.0235
log s 0.1219 0.1198 0.0157 0.1217 0.1130 0.0200

log (n+ g + δ) -0.1229 -0.1133 0.0805 -0.1389 -0.0759 0.1037
R2 0.2308

OECD (N = 24;T = 9 from 1960 to 2000)

log yi,t−1 -0.2147 -0.2126 0.0316
log s 0.2360 0.2351 0.0313 0.1949 0.1695 0.0426

log (n+ g + δ) 0.0259 0.0288 0.0794 0.1232 0.2137 0.1052
R2 0.2900

Non-OECD (N = 49;T = 8 from 1965 to 2000)

log yi,t−1 -0.2495 -0.2462 0.0302
log s 0.1146 0.1127 0.0186 0.1144 0.1094 0.0231

log (n+ g + δ) -0.1625 -0.1543 0.1100 -0.1921 -0.1474 0.1370
R2 0.2307

Table D.2 : Growth regression results with quintannual panel data (without Human Capital vari-
ables). WG is the within-group type estimates and WGc is the within-group type estimates after bias
correction. Standard errors (s.e.) are of the bias corrected estimates.
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Every-5-year Data (with Human Capital)

Linear Semiparametric
WG WGc s.e. WG WGc s.e.

ALL (N = 73;T = 8 from 1965 to 2000)

log yi,t−1 -0.2479 -0.2441 0.0240
log s 0.1287 0.1273 0.0159 0.1251 0.1113 0.0203

log (n+ g + δ) -0.1223 -0.1132 0.0801 -0.1328 -0.0784 0.1037
logh -0.0517 -0.0540 0.0230 -0.0336 0.0159 0.0309
R2 0.2383

OECD (N = 24;T = 9 from 1960 to 2000)

log yi,t−1 -0.2077 -0.2036 0.0328
log s 0.2417 0.2414 0.0321 0.2016 0.1796 0.0427

log (n+ g + δ) 0.0124 0.0164 0.0810 0.0933 0.1656 0.1070
logh -0.0375 -0.0410 0.0472 -0.0987 -0.1514 0.0722
R2 0.2924

Non-OECD (N = 49;T = 8 from 1965 to 2000)

log yi,t−1 -0.2587 -0.2544 0.0307
log s 0.1196 0.1185 0.0188 0.1166 0.1093 0.0234

log (n+ g + δ) -0.1532 -0.1464 0.1098 -0.1864 -0.1473 0.1372
logh -0.0432 -0.0455 0.0290 -0.0232 0.0002 0.0360
R2 0.2357

Table D.3 : Growth regression results with quintannual panel data (with Human Capital variables).
WG is the within-group type estimates and WGc is the within-group type estimates after bias correc-
tion. Standard errors (s.e.) are of the bias corrected estimates.
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Country rank Country rank Country rank
w/ h w/o h w/ h w/o h w/ h w/o h

Algeria 48 45 Iceland∗ 10 8 Panama 39 41
Argentina 30 31 India 56 57 Paraguay 38 38
Australia∗ 7 7 Indonesia 49 48 Peru 47 49
Austria∗ 16 15 Iran, I.R. of 44 44 Philippines 54 55
Bangladesh 66 65 Ireland∗ 4 3 Portugal∗ 26 23
Barbados 5 4 Israel 21 22 Senegal 67 67
Belgium∗ 14 13 Italy∗ 20 16 South Africa 29 28
Bolivia 57 60 Jamaica 55 56 Spain∗ 24 24
Brazil 34 34 Japan∗ 6 6 Sri Lanka 53 53
Cameroon 60 58 Jordan 50 50 Sweden∗ 13 18
Canada∗ 3 5 Kenya 64 64 Switzerland∗ 8 10
Chile 31 32 Korea∗ 25 25 Syria 51 51
Colombia 37 37 Lesotho 62 69 Thailand 45 47
Costa Rica 36 36 Malawi 68 70 Togo 70 71
Denmark∗ 9 9 Malaysia 33 33 Trinidad & Tob. 19 11
Dominican Rep. 46 46 Mali 71 66 Turkey∗ 35 35
Ecuador 52 52 Mauritius 22 21 Uganda 43 42
El Salvador 41 40 Mexico∗ 32 30 United Kingdom∗ 15 17
Finland∗ 17 19 Mozambique 63 61 United States∗ 1 1
France∗ 18 20 Nepal 69 63 Uruguay 28 29
Ghana 59 59 Netherlands∗ 12 12 Venezuela 40 39
Greece∗ 27 27 New Zealand∗ 23 26 Zambia 73 73
Guatemala 42 43 Niger 72 72 Zimbabwe 61 62
Honduras 65 68 Norway∗ 11 14
Hong Kong 2 2 Pakistan 58 54

Table D.4 : Ranking of 73 countries based on estimated country specific effects. (24 OECD countries
are marked with ∗.) “w/ h” means “with Human Capital variables”; “w/o h” means “without Human
Capital variables.”
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Figure D.1 : GDP growth versus log (GDPt−1) of all 73 countries. The vertical axis represents
the GDP growth after controlling country-specific fixed effects, saving rates, population growth rate,
depreciation rate, technical growth rate and human capital (for bottom two graphs only). Top two
graphs are based on the annual-frequency-panal; bottom two graphs are based on 5-year-frequency-
panel with human capital variables. Bold lines are the curve estimates using cubic splines with 4
knots; dashed lines show the pointwise 95% confidence regions.
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Figure D.2 : GDP growth versus log (GDPt−1) of the 24 OECD countries. The vertical axis represents
the GDP growth after controlling country-specific fixed effects, saving rates, population growth rate,
depreciation rate, technical growth rate and human capital (for bottom two graphs only). Top two
graphs are based on the annual-frequency-panal; bottom two graphs are based on 5-year-frequency-
panel with human capital variables. Bold lines are the curve estimates using cubic splines with 4
knots; dashed lines show the pointwise 95% confidence regions.
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Figure D.3 : GDP growth versus log (GDPt−1) of 49 non-OECD countries. The vertical axis repre-
sents the GDP growth after controlling country-specific fixed effects, saving rates, population growth
rate, depreciation rate, technical growth rate and human capital (for bottom two graphs only). Top two
graphs are based on the annual-frequency-panal; bottom two graphs are based on 5-year-frequency-
panel with human capital variables. Bold lines are the curve estimates using cubic splines with 4
knots; dashed lines show the pointwise 95% confidence regions.
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