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Abstract

The asymptotic local power of various panel unit root tests is investigated. The

(Gaussian) power envelope is obtained under homogeneous and heterogeneous

alternatives. The envelope is compared with the asymptotic power functions for

the pooled t- test, the Ploberger-Phillips (2002) test, and a point optimal test

in neighborhoods of unity that are of order n−1/4T−1 and n−1/2T−1, depending

on whether or not incidental trends are extracted from the panel data. In the

latter case, when the alternative hypothesis is homogeneous across individuals,

it is shown that the point optimal test and the Ploberger-Phillips test both

achieve the power envelope and are uniformly most powerful, in contrast to

point optimal unit root tests for time series. Some simulations examining the

finite sample performance of the tests are reported.

JEL Classification: C22 & C23

Keywords and Phrases: Asymptotic power envelope, common point optimal

test, incidental trends, local asymptotic power function, panel unit root test.



1 Introduction

In the past decade, much research has been conducted on panels in which both

the cross-sectional and time dimensions are large. Testing for a unit root in such

panels has been a major focus of this research. For example, Quah (1994), Levin

et al (2002), Im et al (2003), Maddala and Wu (1999), and Choi (2001) have

all proposed various tests. These studies derived the limit theory for the tests

under the null hypothesis of a common panel unit root and power properties

were investigated by simulation. On the other hand, Bowman (2002) studies

the exact power of panel unit root tests against fixed alternative hypotheses.

He characterizes the class of admissible tests for unit roots in panels and shows

that the averaging-up tests of Im, Pesaran, and Shin (2003) and the test based

on Fisher-type statistics in Maddala and Wu (1999) and Choi (2001) are not

admissible.

The asymptotic local power properties of some panel unit root tests have

become known recently. Breitung (2000) 1 and Moon and Perron (2004) in-

dependently find that without incidental trends in the panel, their panel unit

root test, which is based on a t-ratio type statistic, has significant asymptotic

local power in a neighborhood of unity that shrinks to the null at the rate of

n−1/2T−1 (where n and T denote the size of the cross-section and time di-

mensions, respectively). However, in the presence of incidental trends, Moon

and Perron (2004) show that their t-ratio type test statistic constructed from

ordinary least squares (OLS) detrended data has no power (beyond size) in

a n−κT−1- neighborhood of unity with κ > 1/6. For a panel with incidental

trends, Ploberger and Phillips (2002) proposed an optimal invariant panel unit

root test that maximizes average local power. They show that the optimal in-

variant test has asymptotic local power in a neighborhood of unity that shrinks

at the rate n−1/4T−1, thereby dominating the t-ratio test of Moon and Perron

1We thank a referee for bringing this paper to our attention. Breitung (2000) derives his

results under a homogeneous local alternative and with cross-sectional independence, while

Moon and Perron (2004a) consider a more general model with heterogeneous local alternatives

and cross-sectional dependence arising from the presence of common factors.
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(2004) when there are incidental trends.

The present study makes three contributions. First, the local asymptotic

power envelope of the panel unit root testing problem is derived under Gaussian

assumptions for four scenarios: (i) with no fixed effects; (ii) with fixed effects

that are parameterized by heterogeneous intercept terms (deemed incidental in-

tercepts); (iii) with fixed effects that are parameterized by heterogeneous linear

deterministic trends (deemed incidental trends); and (iv) with incidental inter-

cepts but with a common trend. For cases (ii), (iii), and (iv) we restrict the class

of tests to be invariant with respect to the incidental intercepts and trends. We

show that in cases (i) and (ii), the power envelope is defined within n−1/2T−1-

neighborhoods of unity and that it depends on the first two moments of the

local-to-unity parameters. On the other hand, in case (iii), the power envelope

is defined within n−1/4T−1- neighborhoods of unity and it depends on the first

four moments of the local-to-unity parameters. Finally, in case (iv), we demon-

strate that the power envelope is defined within n−1/2T−1- neighborhoods of

unity and that it is identical to that of cases (i) and (ii) 2.

Second, we derive the asymptotic local power of some existing panel unit

root tests and compare these to the power envelope. For case (i), we investigate

the t-ratio statistics studied by Quah (1994), Levin et al (2002), and Moon and

Perron (2004). For case (ii), we discuss results from Moon and Perron (2005) on

a modified t-ratio statistic that is asymptotically equivalent to the test proposed

by Levin et al. For case (iii), we compare the optimal invariant test proposed

by Ploberger and Phillips (2002), the LM test proposed by Moon and Phillips

(2004), the unbiased test proposed by Breitung (2000), and a new t-test that is

asymptotically equivalent to the Levin et al. (2002) test. First, we show that

in all three cases the existing tests do not achieve maximal power. Next, when

the alternative hypothesis is homogeneous across individuals, it is shown that

some tests (the t-test in case (i) and the optimal invariant test of Ploberger and

Phillips (2002) in cases (ii) and (iii) ) do achieve the power envelope and are

2This result can also be found in Breitung (1999), the working paper version of Breitung

(2000).

2



uniformly most powerful.

Third, we propose a simple point optimal invariant panel unit root test for

each case. These tests are uniformly most powerful (UMP) when the alternative

hypothesis is homogeneous, in contrast to point optimal unit root tests for time

series (Elliot et al., 1996) where no UMP test exists.

The paper is organized as follows. Section 2 lays out the model, the hypothe-

ses to test, and the assumptions maintained throughout the paper. Section 3

studies the model where there are no fixed effects (or where the fixed effects are

known), develops the Gaussian power envelope, gives a point optimal test and

performs some power comparisons. Sections 4 and 5 perform similar analyses

for panel models with incidental intercepts and trends. Section 6 discusses var-

ious extensions and generalizations of our framework. Section 7 reports some

simulations comparing the finite sample properties of the main tests studied in

Sections 4 and 5. Section 8 concludes, and the Appendix contains the main tech-

nical derivations and proofs; the remaining proofs can be found in a companion

paper, Moon, Perron, and Phillips (2006b) .

2 Model

The observed panel zit is assumed to be generated by the following component

model

zit = b0igt + yit (1)

yit = ρiyit−1 + uit, i = 1, ...; t = 0, 1...,

where uit is a mean zero error, gt = (1, t)
0
, and bi = (b0i, b1i)

0
.

The focus of interest is the problem of testing for the presence of a common

unit root in the panel against local alternatives when both n and T are large.

For a local alternative specification, we assume that

ρi = 1−
θi
nκT

for some constant κ > 0, (2)
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where θi is a sequence of iid random variables. 3 The main goal of the paper is

to find efficient tests for the null hypothesis

H0 : θi = 0 a.s. (i.e., ρi = 1) for all i, (3)

against the alternative

H1 : θi 6= 0 (i.e., ρi 6= 1) for some i0s. (4)

A common special case of interest for the alternative hypothesis H1 is

H2 : θi = θ > 0 for all i, (5)

where the local-to-unity coefficients take on a common value θ > 0 for all i.

In this case, the series are homogeneously locally stationary, that is ρi = ρ =

1− θ
nκT < 1 for all i.

In (1) the nonstationary panel zit has two different types of trends. The

first component b0igt is a deterministic linear trend that is heterogeneous across

individuals i. This component characterizes individual effects in the panel. The

second component yit is a stochastic trend or near unit-root process with ρi

close to unity.

The following sections look at four different cases. In the first case, there

are no fixed effects in the panel that have to be estimated, i.e. bi = (0, 0)0

(or alternatively bi is known). The second case arises when the panel data zit

contain fixed effects that are parameterized by heterogeneous intercept terms

b0i, which are incidental parameters to be estimated. The third case arises when

the panel contains fixed effects that are parameterized by heterogeneous linear

deterministic trends, b0i+b1it where both sets of parameters b0i and b1i need to

be estimated. A final case considers panels with heterogeneous intercepts and

a common trend of the form b0i + b1t.

In each case, under the assumptions that the error terms uit are iid nor-

mal with zero mean and known variance σ2i and that the initial conditions are

3Notice that under the local altenative, ρi depends on n and T. Thus, the sequences of

panel data zit and yit should be understood as triangular arrays.
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yi.t−1 = 0 for all i, we construct point optimal test statistics. By deriving the

limits of the test statistics, we establish the asymptotic power envelopes of the

panel unit root testing problems. Then, we discuss the implementation of these

procedures using feasible point optimal test statistics. To develop these, we

relax some of the assumptions made in deriving the power envelopes.

We maintain the following assumptions in deriving the limits of the feasible

point optimal tests and some other tests available in the literature.

Assumption 1 For i = 1, 2... and over t = 0, 1, ..., uit ∼ iid
¡
0,σ2i

¢
with

supiE
£
u8it
¤
< M and infi σ

2
i ≥M > 0 for some finite constants M and M.

Assumption 2 The initial observations yi0 are iid with E |yi0|8 < M for some

constant M and are independent of uit, t ≥ 1 for all i.

Assumption 3 1
T +

1
n +

n
T → 0.

Before proceeding, we introduce the following notation. Define

zt = (z1t, ...., znt)
0 , yt = (y1t, ..., ynt)

0 , ut = (u1t, ...., unt)
0 ,

Z = (z1, ...., zT ) , Y = (y1, ...., yT ), Y−1 = (y0, y1, ..., yT−1) , U = (u1, ..., uT ) ,

so the (i, t)th elements of Z, Y, Y−1, and U are zit, yit, yit−1, and uit, respectively.

Define the T− vectors G0 = (1, ...., 1)0 , G1 = (1, 2, ..., T )0 , set G = (G0,G1) =
(g1, ..., gT )

0 , and define

β0 = (b01, ...., b0n)
0 , β1 = (b11, ...., b1n)

0 ,

β = (β0,β1) = (b1, ..., bn)
0 .

Let Zi, Y i, Y −1,i, and U i denote the transpose of the i
th row of Z, Y, Y−1, and

U, respectively, and write the model in matrix form as

Z = βG0 + Y,

Y = ρY−1 + U,

where ρ = diag (ρ1, ..., ρn) . Define Σ = diag
¡
σ21, ...,σ

2
n

¢
.
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3 No Fixed Effects

This section investigates the model in which b0igt is observable or equivalently

gt = 0. In this case, the model becomes

Z = Y,

Y = ρY−1 + U.

We consider local neighborhoods of unity that shrink at the rate of 1
n1/2T

and

one-sided alternatives, as indicated in the following assumptions.

Assumption 4 κ = 1/2 in (2).

Assumption 5 θi is a sequence of iid random variables whose support is a

subset of a bounded interval [0,Mθ] for some Mθ ≥ 0.

Let µθ,k = E
³
θki

´
. The assumption of a bounded support for θi is made for

convenience, and could be relaxed at the cost of stronger moment conditions.

It is also convenient to assume that the θi are identically distributed, and this

assumption could be relaxed as long as cross sectional averages of the moments

1
n

Pn
i=1E

³
θki

´
have limits such as µθ,k.

According to Assumption 5, θi ≥ 0 for all i, so that ρi ≤ 1. In this case, the
null hypothesis of a unit root in (3) is equivalent to µθ,1 = 0 or Mθ = 0 (i.e.

θi = 0 a.s. and the variance of θ, σ2θ, is 0), and the alternative hypothesis in

(4) implies µθ,1 > 0. Hence, in this section we set the hypotheses in terms of

the first moment of θi as follows:

H0 : µθ,1 = 0, (6)

and

H1 : µθ,1 > 0. (7)

To test these hypotheses, Moon and Perron (2004) proposed t - ratio tests

based on a modified pooled OLS estimator of the autoregressive coefficient and

show that they have significant asymptotic local power in neighborhoods of

6



unity shrinking at the rate 1√
nT
. This section first derives the (asymptotic)

power envelope and shows that the power function of a feasible point optimal

test for H0 achieves the envelope for the hypotheses above. We then compare the

asymptotic local power of this point-optimal test with that of the Moon-Perron

test.

3.1 Power Envelope

The power envelope is found by computing the upper bound of power of all

point optimal tests for each local alternative. To proceed, we define

ρci = 1−
ci

n1/2T
,

where ci is an iid sequence of random variables on [0,Mc] for some Mc > 0.

Denote by µc,k the k
th raw moment of ci, i.e., µc,k = E

¡
cki
¢
.

Define

∆ci
((T+1)×(T+1))

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0

−ρci 1
. . .

...
...

0
. . .

. . . 0 0
... −ρci 1 0

0 . . . 0 −ρci 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C = diag (c1, ..., cn) , and ∆C = diag (∆c1 , ...,∆cn) .

When uit are iid N
¡
0,σ2i

¢
with σ2i known and the initial conditions yi,−1

are all zeros, so that yi0 = ui0 for all i, the log-likelihood function is

LnT (C) = −
1

2
(vec (Y 0))

0
∆0C

¡
Σ−1 ⊗ IT+1

¢
∆C (vec (Y

0)) .

Denote by LnT (0) the log-likelihood function when ci = 0 for all i.

Define

VnT (C) = −2LnT (C) + 2LnT (0)−
1

2
µc,2.

The statistic VnT (C) is the (Gaussian) likelihood ratio statistic of the null hy-

pothesis ρi = 1 against an alternative hypothesis ρi = ρci for i = 1, ..., n. Ac-

cording to the Neyman-Pearson lemma, rejecting the null hypothesis for small
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values of VnT (C) is the most powerful test of the null hypothesis H0 against

the alternative hypothesis ρi = ρci .When the alternative hypothesis is given by

H1, the test is a point optimal test (see, e.g., King (1988)). Let ΨnT (C) be the

test that rejects H0 for small values of VnT (C).

Theorem 6 Assume that bi = 0 for all i or gt = 0 for all t in (1). Suppose

that Assumptions 1 — 5 hold. Then,

VnT (C)⇒ N
¡
−E (ciθi) , 2µc,2

¢
.

The asymptotic critical values of the test ΨnT (C) can be readily computed.

In a notation we will use throughout the paper, let z̄α denote the (1 − α)−
quantile of the standard normal distribution, i.e., P (Z ≤ −z̄α) = α, where

Z ∼ N (0, 1) . Then, the size α asymptotic critical value ψ (C,α) of the test

ΨnT (C) is ψ (C,α) = −
p
2µc,2z̄α, and its asymptotic local power is

Φ

Ã
E (ciθi)p
2µc,2

− z̄α

!
, (8)

where Φ (x) is the cumulative distribution function of Z.

Using (8), it is easy to find the power envelope, i.e., the values of ci for which

power is maximized. By the Cauchy-Schwarz inequality

Φ

Ã
E (ciθi)p
2µc,2

− z̄α

!
≤ Φ

Ãr
µθ,2
2
− z̄α

!
,

and the upper bound of Φ

µq
µθ,2
2 − z̄α

¶
is achieved with ci = θi. Then, by the

Neyman-Pearson lemma, Φ

µq
µθ,2
2 − z̄α

¶
traces out a power envelope and we

have the following theorem.

Theorem 7 Assume that bi = 0 for all i or gt = 0 for all t in (1). Suppose that

Assumptions 1 — 5 hold. Then, the power envelope for testing H0 in (3) against

H1 in (4) is Φ
µq

µθ,2
2 − z̄α

¶
, where µθ,2 = E

¡
θ2i
¢
and z̄α is the (1 − α)−

quantile of the standard normal distribution.
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3.2 Implementation of the test

In order to implement a test that achieves the power envelope, estimates of the

variances, σ2i , are necessary. The estimator we propose computes the variances

under the null hypothesis. To simplify notation, let the first difference matrix

∆0 be simply denoted by ∆. Our estimator just takes the sample average of the

squared first differences for each cross-section:

σ̂21,iT =
1

T
(∆Zi)

0∆Zi =
1

T

Ã
y2i0 +

TX
t=1

(∆yit)
2

!
.

Denote by Σ̂1 = diag
¡
σ̂21,1T , ..., σ̂

2
1,nT

¢
the estimated covariance matrix and by

L̂nT (C) and L̂nT (0) the log-likelihood functions where the unknown Σ has been

replaced by Σ̂1.

The feasible point-optimal statistic is:

V̂nT (C) = −2L̂nT (C) + 2L̂nT (0)−
1

2
µc,2

=
nX
i=1

1

σ̂21,iT

"
z2i0 +

TX
t=1

(∆cizit)
2

#
−

nX
i=1

1

σ̂21,iT

"
z2i0 +

TX
t=1

(∆zit)
2

#
− 1
2
µc,2.

The following theorem establishes asymptotic equivalence between the feasible

and infeasible versions of the test:

Theorem 8 Assume that bi = 0 for all i or gt = 0 for all t in (1). Suppose

that Assumptions 1 — 5 hold. Then, V̂nT (C) = VnT (C) + op (1) .

3.3 Power Comparison

3.3.1 The t− ratio Test

We start by investigating the t− ratio test of Quah (1994), Levin et al (2002),
and Moon and Perron (2004), which is based on the pooled OLS estimator4.

4When the error term uit is serially correlated, one can use a modified version of the pooled

OLS estimator. Details of this modification can be found in Moon and Perron (2004a). A

more detailed discussion of the case where the errors are serially correlated can be found in

section 6.4 below.
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For simplicity we assume that the error variances σ2i are known. Let

ρ̂ =

Pn
i=1

1
σ2i

PT
t=1 yityit−1Pn

i=1
1
σ2i

PT
t=1 y

2
it−1

,

be the pooled OLS estimator with corresponding t statistic

t =
ρ̂− 1r

1Pn
i=1

1

σ2
i

PT
t=1 y

2
it−1

.

Under the conditions assumed above, we have t⇒ N
³
−µθ,1√

2
, 1
´
(see Moon and

Perron (2004)). The power of the t test with size α is then

Φ

µ
µθ,1√
2
− z̄α

¶
. (9)

Remarks

(a) By the Cauchy-Schwarz inequality, it is straightforward to show that

Φ

µ
µθ,1√
2
− z̄α

¶
≤ Φ

Ãr
µθ,2
2
− z̄α

!
. (10)

In view of (10) , the t ratio test achieves optimal power only when the

alternative is homogeneous as in H2, that is when θi = θ a.s., so that

E (θi) =
q
E
¡
θ2i
¢
. Otherwise, the power of the t ratio test is strictly

sub-optimal. This implies that the t− ratio test is the uniformly most

powerful test for testing H0 against H2 but not against H1. The result is

not surprising since the t ratio test is constructed based on the pooled OLS

estimator and pooling is efficient only under the homogeneous alternative.

(b) Notice from (9) that the asymptotic local power of the t-test is deter-

mined by µθ,1, the mean of the local to unity parameters θi. In the given

formulation, the local alternative is restricted to be one sided in Assump-

tion 5. If we allow two-sided alternatives, this opens the possibility that

µθ,1 = 0 even under the alternative hypothesis, in which case the power

of the pooled t− test is equivalent to size.
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(c) The pooled OLS estimator defined above can be interpreted as a GLS

estimator since it gives weights that are inversely related to the variance of

each observation. Moon and Perron (2004) do not make this adjustment

and use a conventional OLS estimator. However, Levin et al. (2002)

first correct for heteroskedasticity by dividing through by the estimated

standard deviation before using pooled OLS on this transformed data.

Their procedure can thus also be interpreted as a GLS estimator although

it is commonly called pooled OLS. To avoid confusion with the previous

literature, we will keep referring to estimators with weights that are the

reciprocal of the standard deviation as pooled OLS estimators.

3.3.2 A Common-Point Optimal Test with ci = c

As shown earlier, to achieve the power envelope, one needs to choose ci = θi a.s.

for ΨnT (C) . Denote this test ΨnT (Θ) . Of course, the test ΨnT (Θ) is infeasible

because it is not possible to identify the distribution of θi in the panel and

generate a sequence from its distribution. Indeed, if the θi were known, there

would be no need to test the null of a panel unit root.

One way of implementing the test ΨnT (C) is to use randomly generated ci’s

from some domain that is considered relevant. The variates ci are independent

of θi and the power of the test ΨnT (C) is

Φ

Ã
µc,1µθ,1p
2µc,2

− z̄α

!
. (11)

Since µc,1 ≤
√
µc,2, the power (11) is bounded by

Φ

µ
µθ,1√
2
− z̄α

¶
, (12)

which is achieved when we choose ci = c, where c is any positive constant. We

denote this test ΨnT (c) .

Remarks

(a) Not surprisingly, the power (12) of the test ΨnT (c) is identical to that of
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the t - ratio test in the previous section. Of course, both tests are based

on the homogeneous alternative hypothesis.

(b) Note that the power of the test ΨnT (c) does not depend on c. The test

is optimal against the special homogeneous alternative hypothesis H2 for

any choice of c. This result is in contrast to the power of the point optimal

test for unit root time series in Elliot et al (1996), where power does

depend on the value of c. The reason is that the local alternative in the

panel unit root case, ρci = 1−
ci

n1/2T
, is closer to the null hypothesis than

the alternative ρci = 1 − c
T that applies in the case where there is only

time series data. In effect, when we are this close to the null hypothesis

with a homogeneous local alternative, it suffices to use any common local

alternative in setting up the panel point optimal test.

4 Fixed Effects I: Incidental Intercepts Case

We extend the analysis in the previous section by allowing for fixed effects,

i.e. b0igt = b0i, so that gt = 1. In this case, the model has the matrix form

Z = β0G
0
0 + Y.

4.1 Power Envelope

This section derives the power envelope of panel unit root tests for H0 that

are invariant to the transformation Z → Z + β∗0G
0
0 for arbitrary β∗0. When uit

are iid N
¡
0,σ2i

¢
with σ2i known and the initial conditions yi,−1 are zeros, i.e.

yi0 = ui0, the log-likelihood function is

LnT (C,β0) = −
1

2

£
vec

¡
Z0 −G0β00

¢¤0
∆0C

¡
Σ−1 ⊗ IT+1

¢
∆C

£
vec

¡
Z 0 −G0β00

¢¤
.

We denote by LnT (0,β0) the log-likelihood function when ci = 0 for all i.

A (Gaussian) point optimal invariant test statistic for this case can be con-

structed as follows (see, for example, Lehmann (1959), Dufour and King (1991),
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and Elliott et al (1996)):

Vfe1,nT (C) = −2
∙
min
β0
LnT (C,β0)−min

β0
LnT (0,β0)

¸
− 1
2
µc,2.

For given ci’s, the point optimal invariant test, say Ψfe1,nT (C), rejects the null

hypothesis for small values of Vfe1,nT (C) .

Theorem 9 Suppose Assumptions 1 — 5 hold and that b1i = 0 or are known.

Then, as (n, T )→∞

(a) Vfe1,nT (C)⇒ N
¡
−E (ciθi) , 2µc,2

¢
.

(b) The power envelope for invariant testing of H0 in (3) against H1 in (4)

is Φ

µq
µθ,2
2 − z̄α

¶
, where µθ,2 = E

¡
θ2i
¢
and z̄α is the (1−α)− quantile

of the standard normal distribution.

Remarks

(a) As in the case of ΨnT (c) , we define the test Ψfe1,nT (c) with a common

constant point ci = c. Then, the power of the test Ψfe1,nT (c) is

Φ

µ
µθ,1√
2
− z̄α

¶
, (13)

which is the same as for the ΨnT (c) test in the previous section without

fixed effects.

(b) Note that the asymptotic power envelope is the same as in the case without

incidental intercepts, so estimation of intercepts does not affect maximal

achievable power. The result is analogous to the time series case in Elliott

et at (1996, p. 816).

(c) With incidental intercepts in the model, Levin et al. (2002) proposed

a panel unit root test based on the pooled OLS estimator. Let z̃it =

zit− 1
T

PT
t=1 zit and z̃it−1 = zit−1− 1

T

PT
t=1 zit−1.When the error variances

σ2i are known, the t - statistic proposed by Levin et al. is asymptotically

equivalent to the following t - statistic

t+ =

r
30

51

vuut nX
i=1

1

σ2i

TX
t=1

z̃2it−1

³
ρ̂+pool − 1

´
,
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where

ρ̂+pool =

"
nX
i=1

1

σ2i

TX
t=1

z̃2it−1

#−1 " nX
i=1

1

σ2i

TX
t=1

z̃it−1z̃it

#
+
3

T
.

As shown by Moon and Perron (2005), the t+ test also has significant

asymptotic local power within n−1/2T−1 neighborhoods of unity, and its

power is given by

Φ

Ã
3

2

r
5

51
µθ,1 − z̄α

!
,

which is below that of the Ψfe1,nT (c) test.

4.2 Implementation of the test

As in the case without fixed effects, we need to estimate the unknown quantities

to make the point-optimal test feasible. In this case, the unknown quantities

are the intercepts, bi0, and variances, σ
2
i . The fixed effects will be estimated by

generalized least squares (GLS) under the null hypothesis, or

b̂0i (0) = (∆G
0
0∆G0)

−1
∆G00∆Zi.

where ∆G0 = (1, 0. . . . , 0)
0 , and the resulting estimate is simply the first obser-

vation, zi0. The variance estimator for each cross-section is then:

σ̂22,iT =
1

T

h
∆Zi −∆G0b̂0i (0)

i0 h
∆Zi −∆G0b̂0i (0)

i
=
1

T

TX
t=1

(∆zit)
2
.

Define Σ̂2 = diag
¡
σ̂22,1T , ..., σ̂

2
2,nT

¢
as before, and let L̂nT (C,β0) and L̂nT (0,β0)

be the log-likelihood function values with the unknown Σ replaced by Σ̂2. The

feasible statistic is then

V̂fe1,nT (C) = −2
∙
min
β0
L̂nT (C,β0)−min

β0
L̂nT (0,β0)

¸
− 1
2
µc,2,

leading to an asymptotically equivalent test.

Theorem 10 Suppose that Assumptions 1 — 5 hold and that b1i = 0 or are

known. Then, V̂fe1,nT (C) = V̂nT (C) + op (1).

14



5 Fixed Effects II: Incidental Trends Case

This section considers the important practical case where heterogeneous linear

trends need to be estimated. Set gt = (1, t)
0 and for this case, we consider local

neighborhoods of unity that shrink at the slower rate of 1
n1/4T

.

Assumption 11 κ = 1/4 in (2).

We relax Assumption 5 to allow for two-sided alternatives, so that the time

series behavior of yit can be either stationary or explosive under the alternative

hypothesis.

Assumption 12 θi ∼ iid with mean µθ and variance σ2θ with a support that is
a subset of a bounded interval [−Mlθ, Muθ], where Mlθ, Muθ ≥ 0.

Under Assumption 12, we can re-express hypotheses (3) and (4) using the

second raw moment of θi as follows:

H0 : µθ,2 = 0, (14)

and

H1 : µθ,2 > 0. (15)

The usual one-sided version where the series has a unit root or is stationary is

the special case with Mlθ = 0. We proceed as above by first deriving the power

envelope, developing a feasible implementation of the resulting statistic, and

then investigating the asymptotic local power of different panel unit root tests.

5.1 Power Envelope

This section derives the Gaussian power envelope of panel unit root tests for H0
that are invariant to the transformation Z → Z + β∗G0 for arbitrary β∗. When

uit are iid N
¡
0,σ2i

¢
with σ2i known and the initial conditions yi,−1 are zeros,

that is, yi0 = ui0, the log-likelihood function is

LnT (C,β) = −
1

2

£
vec

¡
Z0 −Gβ0

¢¤0
∆0C

¡
Σ−1 ⊗ IT+1

¢
∆C

£
vec

¡
Z0 −Gβ0

¢¤
.
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We denote by LnT (0,β) the log-likelihood function when ci = 0 for all i. As

above, a (Gaussian) point optimal invariant test statistic can be constructed as

Vfe2,nT (C) = −2
∙
min
β
LnT (C,β)−min

β
LnT (0,β)

¸
+

Ã
1

n1/4

nX
i=1

ci

!
+

Ã
1

n1/2

nX
i=1

c2i

!
ωp2T +

Ã
1

n

nX
i=1

c4i

!
ωp4T ,

where

ωp2T = − 1
T

TX
t=1

t− 1
T

+
2

T

TX
t=1

t

T

µ
t− 1
T

¶
− 1
3
,

ωp4T =
1

T 2

TX
t=1

TX
s=1

t− 1
T

s− 1
T

min

µ
t− 1
T

,
s− 1
T

¶
− 2
3

1

T

TX
t=1

µ
t− 1
T

¶2
+
1

9
.

For given ci’s, the point optimal invariant test, say Ψfe2,nT (C), rejects the null

hypothesis for small values of Vfe2,nT (C) .

The asymptotic behavior of Vfe2,nT (C) is given in the following result.

Theorem 13 Suppose that Assumptions 1 — 3, 11, and 12. Then, Vfe2,nT (C)⇒
N
¡
− 1
90E

¡
c2i θ

2
i

¢
, 145E

¡
c4i
¢¢
.

From Theorem 13, the size α asymptotic critical value is

ψfe2 (C,α) = −
r
µc,4
45
z̄α,

and the asymptotic power of the test is given by

Φ

Ã
1

6
√
5

E
¡
c2i θ

2
i

¢p
E (c4i )

− z̄α

!
. (16)

By the Cauchy-Schwarz inequality, we have

Φ

Ã
1

6
√
5

E
¡
c2i θ

2
i

¢p
E (c4i )

− z̄α

!
≤ Φ

µ
1

6
√
5

√
µθ,4 − z̄α

¶
. (17)

Again, the maximal power, Φ
³

1
6
√
5

√
µθ,4 − z̄α

´
, is achieved by choosing ci = θi.

According to the Neyman-Pearson lemma, Φ
³

1
6
√
5

√
µθ,4 − z̄α

´
traces out the

power envelope. Summarizing, we have the following theorem.
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Theorem 14 Suppose that the trends b0igt in (1) are unknown and need to be

estimated and Assumptions 1 — 3, 11, and 12 hold. Then, the power envelope

for testing the null hypothesis H0 in (3) against the alternative hypothesis H1 in

(4) is Φ
³

1
6
√
5

√
µθ,4 − z̄α

´
, where µθ,4 = E

¡
θ4i
¢
and z̄α is the (1−α)− quantile

of the standard normal distribution.

Remarks

(a) An important finding of Theorem 14 is that in the panel unit root model

with incidental trends, the POI test has significant asymptotic local power

in local neighborhoods of unity that shrink at the rate 1
n1/4T

. By contrast,

in the panel unit root model either without fixed effects or only with in-

cidental intercepts, the POI test has significant asymptotic power in local

neighborhoods of unity that shrink at the faster rate 1
n1/2T

. This differ-

ence in the neighborhood radius of non-negligible power is a manifestation

of the difficulty in detecting unit roots in panels in the presence of het-

erogeneous trends, a problem that was originally discovered in Moon and

Phillips (1999) and called the ‘incidental trend’ problem.

(b) The power envelope of invariant tests of H0 in (3) against H1 depends on

the fourth moment of the local to unity parameters θ0is. This dependence

suggests that panels with more dispersed autoregressive coefficients will

tend to more easily reject the null hypothesis.

(c) When the alternative hypothesis is the homogeneous alternative H2 (i.e.,

θi = θ), the power envelope is

Φ

µ
1

6
√
5
θ2 − z̄α

¶
. (18)

and, in this case, the power envelope is attained by using ci = c for any

choice of c.

(d) If the θi are symmetrically distributed about µθ,1 and κ4 is the 4
th cumu-

lant, then
√
µθ,4 = µ2θ,1

n
1 +

6σ2θ
µ2θ,1

+
3σ4θ+κ4
µ4θ,1

o1/2
and this will be close to

17



µ2θ,1 when the ratios
6σ2θ
µ2θ,1

and
3σ4θ+κ4
µ4θ,1

are both small. In such cases, it is

clear from (17) that the test with ci = c for any choice of c will be close

to the power envelope.

5.2 Implementation of the test

Again, the covariance matrix Σ is generally unknown and needs to be estimated.

To do so, we use the GLS estimator of bi under the null hypothesis,

b̂i (0) = (∆G
0∆G)

−1
∆G0∆Zi =

⎛⎝ zi0

1
T

PT
t=1∆zit

⎞⎠ ,

where∆G =

⎛⎝ 1 0 · · · 0

0 1 · · · 1

⎞⎠0

, and define the estimator of the error variance

for cross-section i as:

σ̂23,iT =
1

T

h
∆Zi −∆Gb̂i (0)

i0 h
∆Zi −∆Gb̂i (0)

i
=
1

T

TX
t=1

Ã
∆zit −

1

T

TX
t=1

∆zit

!2
.

Denote Σ̂3 = diag
¡
σ̂23,1T , ..., σ̂

2
3,nT

¢
. Let L̂nT (C) and L̂nT (0) be the log-likelihood

function with the unknown Σ replaced with Σ̂3. The feasible statistic is then:

V̂fe2,nT (C) = −2
∙
min
β
L̂nT (C,β)−min

β
L̂nT (0,β)

¸
+

Ã
1

n1/4

nX
i=1

ci

!
+

Ã
1

n1/2

nX
i=1

c2i

!
ωp2T +

Ã
1

n

nX
i=1

c4i

!
ωp4T .

Again, we have an asymptotically equivalent test.

Theorem 15 Suppose that Assumptions 1 — 5 hold. Then, V̂fe2,nT (C) =

Vfe2,nT (C) + op (1) .

5.3 Power Comparison

We compare the power of five tests, and for simplicity assume that the error

variances σ2i are known.
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5.3.1 The Optimal Invariant Test of Ploberger and Phillips (2002)

We start with the optimal invariant panel unit root test proposed by Ploberger

and Phillips (2002). To construct the test statistic, we first estimate the trend

coefficients β by GLS β̄ = (∆Z∆G) (∆G0∆G)−1 , and detrend the panel data

Z giving E = Z − β̄G0. Define

Vg,nT =
√
n

µ
1

nT 2
tr
³
Σ−1/2EE0Σ−1/2

´
− ω1T

¶
, (19)

where ω1T =
1
T

PT
t=1

t
T

¡
1− t

T

¢
. In summation notation, we have

Vg,nT =
1√
n

nX
i=1

"
1

Tσ2i

TX
t=1

Z̄2it,T − ω1T

#
, (20)

where

Z̄it,T =
1√
T

∙
(zit − zi0)−

t

T
(ziT − zi0)

¸
,

a maximal invariant statistic. In view of (19) and (20) , we may interpret Vg,nT

as the standardized information of the GLS detrended panel data. The test

Ψg,nT proposed by Ploberger and Phillips (2002) rejects the null hypothesis H0
for small values of Vg,nT .

To investigate the asymptotic power of Ψg,nT , we first derive the asymptotic

distribution of Vg,nT .

Lemma 1 Suppose Assumptions 1 — 3, 11, and 12 hold. Then, Vg,nT ⇒
N
¡
− 1
90µθ,2,

1
45

¢
.

Using Lemma 1, it is straightforward to find the size α asymptotic critical

values φg (α) of the test Ψg,nT . For z̄α, the (1− α)− quantile of Z, the critical
value is φg (α) = − 1

3
√
5
z̄α, and the asymptotic local power is given by

Φ

µ
µθ,2

6
√
5
− z̄α

¶
, (21)

showing that the test Ψg,nT has significant asymptotic power against the local

alternative H1.
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Remarks

(a) Notice that the asymptotic power of the test Ψg,nT is determined by the

second moment of θi, µθ,2, so that it relies on the variance of θi as well as

the mean of θi.

(b) According to Ploberger and Phillips (2002), the test Ψg,nT is an opti-

mal invariant test. Let Qθ,nT (θ) be the joint probability measure of the

data for the given θ0is and let v be the probability measure on the space

of θi. Ploberger and Phillips (2002) show that the test Ψg,nT is asymp-

totically the optimal invariant test that maximizes the average powerR ¡R
Ψg,nTdQθ,nT (θ)

¢
dv, a quantity which also represents the power of

Ψg,nT against the Bayesian mixture
R
Qθ,nT (θ) dv.

(c) Comparing the power (21) of the test Ψg,nT to the power envelope is

straightforward. By the Cauchy-Schwarz inequality we have

Φ

µ
µθ,2

6
√
5
− z̄α

¶
≤ Φ

µ√
µθ,4

6
√
5
− z̄α

¶
.

The test Ψg,nT achieves the power envelope if the θi are constant a.s.

That is, the power envelope is achieved against the special alternative

hypothesis H2.

5.3.2 The LM Test in Moon and Phillips (2004)

The second test we investigate is the LM test proposed by Moon and Phillips

(2004), which is constructed in a fashion similar to Vg,nT . The main difference

is that Moon and Phillips (2004) use ordinary least squares (OLS) to detrend

the data. To fix ideas, define QG = IT − PG with PG = G (G0G)−1G0. Let

DT = diag (1, T ) . and

Vo,nT =
√
n

µ
1

nT 2
tr
³
Σ−1/2ZQGZ

0Σ−1/2
´
− ω2T

¶
,
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where

ω2T =
1

T

TX
t=1

t

T
− 1

T 2

TX
t=1

TX
s=1

min (t, s)

T
hT (t, s) ,

hT (t, s) = g0tD
−1
T

Ã
1

T

TX
p=1

D−1T gpg
0
pD
−1
T

!−1
D−1T gs.

Define

Z̃it,T =
1√
T

⎡⎣zit − g0t
Ã

TX
t=1

gtg
0
t

!−1Ã TX
t=1

g0tzit

!⎤⎦ ,
a scaled version of the OLS detrended panel. Then, we can write

Vo,nT =
1√
n

nX
i=1

"
1

Tσ2i

TX
t=1

Z̃2it,T − ω2T

#
,

which can also be interpreted as the standardized information of the detrended

panel data. The LM test, say Ψo,nT , of Moon and Phillips (2004) is to reject

the null hypothesis H0 for small values of Vo,nT (c) .

The following theorem gives the limit distribution of Vo,nT (c) .

Lemma 2 Suppose Assumptions 1 — 3, 11, and 12 hold. Then, Vo,nT ⇒
N
¡
− 1
420µθ,2,

11
6300

¢
.

The size α asymptotic critical value of Ψo,nT , say φo (α) , is given by φo (α) =

−
q

11
6300 z̄α, and the asymptotic power is Φ

³
µθ,2
2
√
77
− z̄α

´
.

Remarks

(a) Similar to the test Ψg,nT , the test Ψo,nT has significant asymptotic power

against the local alternative H1, and its power depends on the second

moment of θi, µθ,2.

(b) The asymptotic power of the optimal invariant test Ψg,nT dominates that

of the test Ψo,nT because
µ2θ+σ

2
θ

2
√
77

<
µ2θ+σ

2
θ

2
√
45
. This is not so surprising since

the optimal invariant test Ψg,nT is based on GLS-detrended data, while

the test Ψo,nT is based on OLS-detrended data.

(c) As remarked earlier, the test Vfe2,nT (c) will achieve power close to the

power envelope when the ratios
6σ2θ
µ2θ,1

and
3σ4θ+κ4
µ4θ,1

are both small.
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5.3.3 The unbiased test of Breitung (2000)

Breitung (2000) has proposed an alternative test to the Levin et al. (2002) test

that does not require bias adjustment. The idea is to transform the data as

y∗it = st

∙
∆zit −

1

T − t (∆zit+1 + ...+∆ziT )
¸
,

x∗it = zit−1 − zi0 −
t− 1
T

(ziT − zi0) ,

and note that y∗it and x
∗
it are orthogonal to each other. The pooled estimator

proposed by Breitung is then

ρ∗ = 1 +

Pn
i=1

PT−1
t=2 σ−2i y

∗
itx
∗
itPn

i=1

PT−1
t=2 σ−2i x

∗2
it

,

and is correctly centered and does not require bias adjustment in contrast to

the Levin et al. (20002) pooled OLS estimator. Breitung suggests testing the

panel unit root null hypothesis by looking at the corresponding t-statistic:

UBnT =

Pn
i=1

PT−1
t=2 σ−2i y

∗
itx
∗
itqPn

i=1

PT−1
t=2 σ−2i x

∗2
it

.

Under a homogeneous local alternative, Breitung claims (theorem 5, p. 172)

that this statistic has power in a local neighborhood defined with κ = 1/2, and

that the expectation in the asymptotic normal distribution under the alternative

is

θ
√
6

"
lim
T→∞

∂E
¡
T−1

P
x∗ity

∗
it

¢
∂ (θ/

√
n)

¯̄̄̄
¯
θ=0

#
.

In a separate paper (Moon, Perron, and Phillips (2006a)), we show analytically

that the limit above is 0, and therefore that Breitung’s test does not have power

in a neighborhood that shrinks at the faster rate 1
n1/2T

towards the null. Instead,

we show that the necessary rate is the same slower 1
n1/4T

rate that applies to the

other tests with incidental trends. Indeed, we show that under the assumptions

in this section, the UB statistic has the following distribution.

Lemma 3 Suppose Assumptions 1 — 3, 11, and 12 hold. Then, UBnT ⇒
N
³
µθ,2
6
√
6
, 1
´
.
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Remark The above lemma shows that the asymptotic power of Breitung’s test

is Φ
³
µθ,2
6
√
6
− z̄α

´
, which is obviously below the power envelope.

5.3.4 A Common-Point Optimal Invariant Test

The test Vfe2,nT (Θ) that achieves the power envelope is infeasible. If we use

randomly generated c0is that are independent of θi and the panel data zit in

constructing the test, according to (16) , the power of the test Vfe2,nT (C) is

Φ

Ã
1

6
√
5

µc,2µθ,2√
µc,4

− z̄α

!
. (22)

Since µc,2 ≤
√
µc,4, the power (22) is bounded by

Φ

µ
1

6
√
5
µθ,2 − z̄α

¶
, (23)

which is achieved when we choose ci = c for Vfe2,nT (C) , where c is any positive

constant. We denote this test Vfe2,nT (c).

Remarks

(a) The power (23) of the test Vfe2,nT (c) is identical to that of the Ploberger-

Phillips optimal invariant test Vg,nT .

(b) The power of the test Vfe2,nT (c) also does not depend on c. It is optimal

against the special homogeneous alternative hypothesis H2 for any choice

of c.

5.3.5 A t-test

In a manner similar to Moon and Perron (2005), we can define statistics that

are asymptotically equivalent to the Levin et al. (2002) statistic based on the

pooled OLS estimator for this case. When there are incidental trends, the Levin

et al. statistic is asymptotically equivalent to the following t - statistic

t+ =

r
112

193

r
tr
³
Σ−1/2Z̃−1Z̃0−1Σ

−1/2
´³

ρ̂+pool − 1
´
,
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where the bias-corrected pooled OLS estimator is

ρ̂+pool =
h
tr
³
Σ−1/2Z̃−1Z̃

0
−1Σ

−1/2
´i−1 h

tr
³
Σ−1/2Z̃−1Z̃

0Σ−1/2
´i
+
7.5

T
.

On the other hand, Moon and Perron (2004) consider the following t-ratio test

based on a different bias-corrected pooled estimator

t# =

r
tr
³
Σ−1/2Z̃−1Z̃0−1Σ

−1/2
´³

ρ̂#pool − 1
´
,

where

ρ̂#pool =
h
tr
³
Σ−1/2Z̃−1Z̃

0
−1Σ

−1/2
´i−1 ∙

tr
³
Σ−1/2Z̃−1Z̃

0Σ−1/2
´
+
nT

2

¸
.

By definition,

ρ̂+pool − ρ̂#pool =
15

2T

⎛⎝ tr
³
Σ−1/2Z̃−1Z̃

0
−1Σ

−1/2
´
− nT 2

15

tr
³
Σ−1/2Z̃−1Z̃0−1Σ

−1/2
´

⎞⎠ ,
and

t+ =

r
112

193
t# +

15

2

r
112

193

√
n
n

1
nT2 tr

³
Σ−1/2Z̃−1Z̃

0
−1Σ

−1/2
´
− 1

15

o
1

nT2 tr
³
Σ−1/2Z̃−1Z̃0−1Σ

−1/2
´1/2 .

Using Theorem 4 of Moon and Perron (2004) and Lemma 2, it is possible to

show the following.

Lemma 4 Suppose Assumptions 1 — 3, 11, and 12 hold. Then, t+ ⇒ N
³
−15

√
15

2

q
112
193

µθ,2
420 , 1

´
.

6 Discussion

6.1 Case with Incidental Intercepts but a Common Trend

This section investigates the panel model for zit in (1) where there are incidental

intercepts but a common trend, viz.,

zit = b0i + b1t+ yit,

yit = ρiyit−1 + uit, i = 1, ...; t = 0, 1....
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This model is relevant because there is a tradition of imposing such a com-

mon trend in empirical work in microeconometrics. In addition, the analysis

of asymptotic local power for this model provides further evidence that it is

the presence of incidental trends, b1it, rather than incidental intercepts b0i that

makes the detection of unit roots more challenging.

To proceed, we make the same assumptions as in Sections 2, 3, and 4, so

that

ρi = 1−
θi

n1/2T
.

Let ln = (1, ..., 1)
0
, n− vector of ones. Using notation defined in Section 2, we

write the model as

Z = β0G
0
0 + b1lnG

0
1 + Y,

Y = ρY−1 + U.

In the following theorem we show that the power envelope of panel unit root

tests for H0 that are invariant to the transformation Z → Z + β∗0G
0
0 + b

∗
1lnG

0
1

for arbitrary β∗0 and b
∗
1 is the same as the one we found in Sections 3 and 4.

When uit are iid N
¡
0,σ2i

¢
with σ2i known and the initial conditions yi,−1

are zeros, that is, yi0 = ui0, the log-likelihood function is

LnT (C,β0, b1) = −
1

2

£
vec

¡
Z0 −G0β00 −G1l0nb1

¢¤0
∆0C

¡
Σ−1 ⊗ IT+1

¢
∆C

£
vec

¡
Z0 −G0β00 −G1l0nb1

¢¤
.

As before, a (Gaussian) point optimal invariant test statistic for this case can

be constructed as follows:

Vfe3,nT (C) = −2
∙
min
β0,b1

LnT (C,β0, b1)− min
β0,b1

LnT (0,β0, b1)

¸
− 1
2
µc,2.

For given ci’s, the point optimal invariant test, say Ψfe3,nT (C), rejects the null

hypothesis for small values of Vfe3,nT (C) .

Theorem 16 Suppose Assumptions 1 — 5 hold. Then,

Vfe3,nT (C) = Vfe1,nT (C) + op (1) .
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6.2 Initial conditions

In the derivations above, we have assumed that all series in the panel were

initialized at the origin (yi,−1 = 0). It is well-known in the time series case

that the initial condition can play an important role in the performance of unit

root tests (Evans and Savin (1984), Phillips (1987), Elliott (1999) and Müller

and Elliott (2004)). A common assumption made in the time series context is

that the initial condition is drawn from the unconditional distribution under

the stationary alternative, i.e. y0 ∼ N
³
0, 1

1−ρ2
´
. In the local to unity case,

ρ = 1− θ
T , this formulation of the initial condition gives y0 = Op

³√
T
´
, which

has some appeal because the order of magnitude of the initial condition is the

same as that of the sample data yt.

This commonly used set up for the time series case does not extend natu-

rally to the panel model. Indeed, under the assumption yi,−1 ∼ N
³
0, 1

1−ρ2i

´
,

and with local alternatives ρi = 1 − θi
n1/2T

or ρi = 1 − θi
n1/4T

(depending on

whether trends are present or not), we have yi,−1 = Op

³
n1/4
√
T
´
or yi,−1 =

Op

³
n1/8
√
T
´
, respectively, in which case yi,−1 diverges with n. The sample

data yi,t for this series is then dominated by the initial condition yi,−1. There

is, of course, no reason in empirical panels why the order of magnitude of the

initial condition for an individual series should depend on the total number of

individuals (n) observed in the panel and such a formulation would be hard to

justify. In this sense, the situation is quite different from the time series case,

where there are good reasons for expecting initial observations for nonstation-

ary or nearly nonstationary time series to have stochastic orders comparable to

those of the sample. Moreover, under the initialization yi,−1 ∼ N
³
0, 1

1−ρ2i

´
, the

likelihood ratio statistic diverges to negative infinity under the local alternative,

as we show below.

To illustrate, consider the case with no fixed effect and with uit ∼ iid N (0, 1)

across i over t. Here we assume that ρi = 1 − θi
n1/2T

, as in Sections 3 and 4.

Assume that if θi 6= 0, yi,−1 are iid N
³
0, 1

1−ρ2i

´
and independent of ujt, and

if θi = 0, yi,−1 are iid N (0, 1) and independent of ujt. Denote deviations from

26



the initial condition as

ỹit = yit − yi,−1

= uit + ρiuit−1 + ρ2iuit−2 + ...+ ρtiui0 +
¡
ρt+1i − 1

¢
yi,−1.

All quantities based on ỹit will behave as in the case of a fixed initial condition.

Define the notation

∆θiY¯ i
=

³¡
1− ρ2i

¢1/2
yi,−1,∆θiyi0, ...,∆θiyiT

´0
=

µ¡
1− ρ2i

¢1/2
yi,−1,∆yi0 −

θi
n1/2T

yi,−1, ....,∆yiT −
θi

n1/2T
yiT−1

¶0
,

∆0Y
¯ i

= (yi,−1,∆yi0, ...,∆yiT )
0 .

Then, the likelihood ratio is

−1
2
LnT,A +

1

2
LnT,0

=
nX
i=1

(∆θiY¯ i
)
0
∆θiY¯ i

−
nX
i=1

(∆0Y
¯ i
)
0
∆0Y
¯ i

=
nX
i=1

"¡
1− ρ2i

¢
y2i0 +

TX
t=0

µ
∆ỹit −

θi
n1/2T

ỹit−1 −
θi

n1/2T
yi,−1

¶2
− y2i,−1 −

TX
t=0

∆ỹ2it

#

=
nX
i=1

µ
θ2i
nT
− ρ2i

¶
y2i,−1 − 2

1

n1/2T

nX
i=1

θiyi,−1

TX
t=0

(∆ỹit) + 2
1

nT 2

nX
i=1

θ2i yi,−1

TX
t=0

ỹit−1

−2 1

n1/2T

nX
i=1

θi

TX
t=0

∆ỹit (ỹit−1) +
1

nT 2

nX
i=1

θ2i

TX
t=0

ỹ2it−1.

The last two terms behave as in the case of fixed initial conditions in the limit

since they are deviations from the initial condition. As for the other three terms,

we concentrate on the homogeneous case, θi = θ for simplicity. We can show

that the first term is

nX
i=1

µ
θ2

nT
− ρ2i

¶
y2i,−1 = Op

³
n3/2T

´
,

while the second term is

1

n1/2T

nX
i=1

θyi,−1 (yiT − yi,−1) = Op
³
n1/4

´
,
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and the third term is

1

nT 2

nX
i=1

θ2yi,−1

TX
t=0

ỹit−1 = Op

µ
1

n1/4

¶
.

Thus, the behavior of the likelihood ratio statistic is dominated by the first

term. This first term has a negative mean and thus the likelihood ratio statistic

diverges to negative infinity under the local alternative.

This example makes it clear that mechanical extensions of time series formu-

lations that are commonly used for initial conditions can lead to quite unrealistic

and unjustifiable features in a panel context. It is therefore necessary to con-

sider initializations that are sensible for panel models, while at the same time

having realistic time series properties. Given the more limited focus of the

present study, we will not pursue this discussion of initial conditions further

here but retain the (simplistic) assumption of zero initial conditions. Clearly, it

is an important matter for future research to extend the theory and relax this

condition.

6.3 Cross-sectional dependence

As with most of the early panel unit root tests that have been proposed in the

literature, the above analysis supposes that the observational units that make

up the panel are independent of each other. This assumption is not realistic in

many applications, such as the analysis of cross-country macroeconomic series,

where individual series are likely to be affected by common, worldwide shocks.

Accordingly, more recent panel tests such as those in Bai and Ng (2004) , Moon

and Perron (2004), Phillips and Sul (2003) , Chang (2002), and Pesaran (2005)

allow for the presence of cross-sectional dependence among the units, typically

through the presence of dynamic factors.

In order to handle such cross-sectional dependence, we can combine the

defactoring method of Bai and Ng (2004) , Moon and Perron (2004) or Phillips

and Sul (2003) to the analysis of this paper. The idea is to apply the optimal

tests developed here to the data after the common factors have been extracted.
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Once the extraction process has been completed, there is, of course, no claim of

optimality in the resulting tests, and we do not prove here that this approach

has any optimality property. However, intuition suggests that this approach

should perform well in practice, and simulation evidence provided in Moon and

Perron (2006) confirms this.

For illustration, we will use the model of Moon and Perron (2004) . Thus,

the assumption is that the disturbance in (1) has a factor structure

uit = γ
0

ift + eit. (24)

The proposed procedure is as follows:

1. Estimate the deterministic components (bi) by GLS to obtain ŷit;

2. Use the pooled OLS estimate to compute residuals ûit;

3. Use principal components on the covariance matrix of these estimated

residuals to estimate the common factor(s), f̂t and factor loadings, γ̂i.

Post-multiply the data matrix Z by Qγ̂ = I − γ̂
¡
γ̂0γ̂
¢−1

γ̂0 so that ZQγ̂ is

no longer affected by the common factors;

4. Use the common point optimal test proposed earlier in the paper on ZQγ̂ .

6.4 Serial correlation

Serial correlation can be accounted for in the construction of the test statis-

tics by replacing variances with long-run variances, ω2i =
P∞
j=−∞ γij , where

γij = E (ui,tui,t−j) . Since serial correlation is not accommodated in the above

derivation of the power envelope, this procedure will not in general be optimal,

but should result in tests with correct asymptotic size under quite general short

memory autocorrelation (as in Elliott et al. (1996)). Standard kernel-based es-

timators of the long-run variance as in Andrews (1991) and Newey and West

(1994) can be used to estimate the long-run variances. The development of op-

timal procedures that accommodate serial correlation is of interest but beyond

the scope of the present contribution.
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7 Simulations

This section reports the results of a small Monte Carlo experiment designed to

assess and compare the finite-sample properties of the tests presented earlier in

the paper. For this purpose, we use the following data generating process:

zit = b0i + b1it+ yit,

yit = ρiyit−1 + uit,

yi,−1 = 0, uit ∼ iid N
¡
0,σ2i

¢
σ2i ∼ U [0.5, 1.5] .

We consider both the incidental intercepts case (b1i = 0) of section 4 and the

incidental trends case (b1i 6= 0) of section 5. In each case, the heterogeneous
intercepts and/or trends are iidN (0, 1) . We assume that the error term is in-

dependent in both the time and cross-sectional dimensions with a Gaussian

distribution and heteroskedastic variances. Initial conditions are set to zero

and, as discussed earlier, this is a limitation of the experiments and may lead to

more favorable results for many of the tests than under random initializations

where there is some dependence on the localization parameters.

We focus the study on three main questions. The first is the sensitivity

of the point-optimal invariant test to the choice of ci. The second is how far

the feasible and infeasible point-optimal tests are from the theoretical power

envelope in finite samples. Finally, we look at the impact of the distribution of

the local-to-unity parameters under the alternative hypothesis.

We consider the following nine distributions for the local-to-unity param-

eters: θi = 0 ∀i for size, and for local power, (1) θi ∼ iidU [0, 2] , (2) θi ∼

iidU [0, 4] , (3) θi ∼ iidU [0, 8] , (4) θi ∼ iidχ2 (1) , (5) θi ∼ iidχ2 (2) , (6)

θi ∼ iidχ2 (4) , (7) θi = 1 ∀i, and θi = 2 ∀i. These distributions enable us
to examine performance of the tests as the mass of the distribution of the lo-

calizing parameters moves away from the null hypothesis. We can also look

at the effect of homogeneous versus heterogeneous alternatives (cases (1) and

(4) versus (7), and cases (2) and (5) versus (8)) together with the role of the
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higher-order moments of the distribution. For instance, case (1) has the same

mean as case (4) but smaller higher-order moments. The same situation arises

for cases (2) and (5), and cases (3) and (6). Note that the alternatives with χ2

distributions do not fit our asymptotic framework since they have unbounded

support.

We take three values for each of n (10, 25, and 100) and T (50, 100, and

250). All tests are conducted at the 5% significance level, and the number of

replications is set at 10,000.

Table 1 presents the results for the incidental intercepts case. The tests

we consider are the infeasible point-optimal test with ci = θi (the finite-sample

analog of the power envelope which uses the local-to-unity parameters generated

in the simulation), our common point-optimal (CPO) invariant test for three

values of c (1, 2, and 0.5), the t-ratio type test as in Moon and Perron (2005),

and the t− bar statistic of Im, Pesaran, and Shin for which no analytical power
result is available 5. The first panel of the table provides the size and power

predicted by the asymptotic theory in section 4 using the moments of θi and

ci. The other panels in the table report the size and size-adjusted power of the

tests for the various combinations of n and T . Thus, if asymptotic theory were

a reliable guide to finite-sample behavior, subsequent panels in the table would

mirror the first panel.

***Table 1 about here ***

The main outcomes from the first panel of the table can be summarized as

follows:

• The power envelope is higher for the χ2 alternatives than for the uniform
alternatives with the same mean. This is because the power envelope

depends on the second uncentered moment of θi;
5We have also considered tests with randomly generated values for the c0is. Since the results

were inferior to those with fixed choices of c, we do not report them here, but they are available

from the authors upon request.
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• The power of the feasible CPO test is the same for the uniform and χ2

alternatives since power in this case depends only on the mean of θi;

• The test based on the t+ statistic is less powerful than the CPO test;

• The power envelope is higher for the heterogeneous alternatives than the
homogeneous alternatives with the same mean.

For the other panels of the table, the second column gives the expected

value of the autoregressive parameter implied by the distribution of the local-

to-untiy parameter and the values of n and T . As can be seen, the alternatives

considered are very close to 1, and at a qualitative level, the results match

closely the asymptotic predictions. The main conclusions are:

• The size properties of the common point-optimal test appear to be mildly
sensitive to the choice of c. The size of the test tends to increase with c;

• In terms of power, the choice of c is much less important, as predicted
by asymptotic theory. In fact, most of the variation is within 2 simula-

tion standard deviations, and much of the difference is probably due to

experimental randomness;

• In all cases, power is far below what is predicted by theory and below the
power envelope defined by ci = θi. The differences are reduced as both n

and T are increased;

• In all cases, the t+ test is less powerful than the CPO tests, but it does

dominate the t-bar statistic;

• In the homogeneous cases, there is less power difference between the CPO
tests and the optimal test. This is expected since the CPO test is most

powerful against these alternatives;

• Finally, despite the theoretical predictions that they should be equal, the
actual power for the χ2 alternatives is slightly below that for the corre-

sponding uniform alternatives.
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Table 2 reports the same information as Table 1 for the incidental trends

case. In addition to the above tests, in this case we also consider the optimal

test of Ploberger and Phillips (2002) the LM test of Moon and Phillips (2004),

and the unbiased test of Breitung (2000). Once again, the first panel of the

table gives the predictions for size and power based on our asymptotic theory.

Just as in unit root testing with time series models, power is much lower

when trends are present or fitted. In fact, power is much lower than it may

first appear in the table since the actual local alternative approaches the null

hypothesis at the slower rate O
¡
n−1/4T−1

¢
than in the incidental intercepts

case. Thus, for the same distribution of the local-to-unity parameters, the

alternative hypothesis is actually further from unity than in Table 1.

*** Table 2 about here ***

The main predictions contained in the first panel of the table for the inci-

dental trends case are as follows:

• In contrast to the incidental intercepts case, power of the CPO test is

higher for χ2 alternatives than for uniform alternatives since it depends

on higher-order moments in this case;

• The Moon and Phillips test, although dominated, is expected to perform
well;

• The t+ test has lowest power as is expected;

• Breitung’s unbiased test has power that lies between the common point-
optimal test and the Moon and Phillips test;

• The power envelope is lower for homogeneous alternatives.

The simulation findings reported in the remaining panels of table 2 conform

well to these predictions. We have not reported the finite-sample analog of the

power envelope because of numerical problems encountered in the computation.
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In a finite sample, the terms involving high powers of ci dominate for distant

alternatives, and this pushes the distribution of the statistic to the right, leading

to negligible rejection probabilities.

Our other findings for this case are:

• The size properties of the point-optimal test are much more sensitive to
the choice of c and values of n and T than for the incidental intercepts

case. It is therefore difficult to come up with a good choice of c based

on these results, although values between 1 and 2 seem to provide a good

balance for all values of n and T ;

• Both the Ploberger-Phillips and Moon-Phillips tests tend to underreject,
sometimes quite severely;

• The t-type test tends to overreject, and its power is close to that of Moon
and Phillips;

• As in the incidental intercepts case, the power properties of the CPO test
do not appear sensitive to the choice of c. There is a slight tendency for

c = 2 to achieve highest power;

• The fatter-tailed distributions have higher power than the corresponding
uniform distributions for the two closest alternatives. For the alternatives

that are furthest away (cases (3) and (6)), the reverse is true;

• The Ploberger-Phillips test behaves in a similar way to the CPO test, as
predicted by the asymptotics;

• The LM test of Moon and Phillips has good power but appears to be

slightly dominated by the other two tests, as again predicted by our theory;

• Power of the unbiased test of Breitung is generally between that of the
Ploberger-Phillips and Moon-Phillips test, again as predicted;

• When the alternative hypothesis is homogeneous (cases (7) and (8)), the
tests based on a common value of ci have higher power than for the corre-
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sponding heterogeneous alternative case. This phenomenon is more pro-

nounced for the χ2 alternative hypothesis.

These results suggest that the asymptotic theory generally provides a useful

guide to the finite sample performance of the tests statistics in the vicinity of

the panel unit root null. However, the presence of more complex deterministic

components and increasing distance from the null hypothesis reduces the ac-

curacy of the analytic results from asymptotic theory. Overall, the simulation

findings strongly suggest that use of the CPO test (and the Ploberger-Phillips

test in the trends case) improves power over the commonly-used t-ratio type

statistics.

8 Conclusion

In terms of their asymptotic power functions, the Ploberger-Phillips (2002) test

and the common point optimal test have good discriminatory power against

a unit root null in shrinking neighborhoods of unity. When the alternative is

homogeneous it is possible to attain the Gaussian asymptotic power envelope

and both the Ploberger- Phillips test and the common point optimal test are

uniformly most powerful in this case. Interestingly, the common point optimal

test has this property irrespective of the point chosen to set up the test. This

is in contrast to point optimal tests of a unit root that are based solely on time

series data (Elliott et. al. 1996), where no test is uniformly most powerful, and

an arbitrary selection of a common point is needed in the construction of the

test.

An important empirical consequence of the present investigation is that in-

creasing the complexity of the fixed effects in a panel model inevitably reduces

the potential power of unit root tests. This reduction in power has a quanti-

tative manifestation in the radial order of the shrinking neighborhoods around

unity for which asymptotic power is non negligible. When there are no fixed

effects or constant fixed effects, tests have power in a neighborhood of unity of
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order n−1/2T−1. When incidental trends are fitted, the tests only have power

in a larger neighborhood of order n−1/4T−1. A continuing reduction in power

is to be expected as higher order incidental trends are fitted in a panel model.

The situation is analogous to what happens in time series models where unit

root nonstationary data is fitted by a lagged variable and deterministic trends.

In such cases, both the lagged variable and the deterministic trends compete to

model the nonstationarity in the data with the upshot that the rate of conver-

gence is affected. In particular, Phillips (2001) showed that rate of convergence

to a unit root is slowed by the presence of increasing numbers of determinis-

tic regressors. In the panel model context, the present paper shows that dis-

criminatory power against a unit root is generally weakened as more complex

deterministic regressors are included in the panel model.
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9 Appendix: Technical Results and Proofs

Let zit (0) and yit (0) , respectively, denote the panel observations zit and yit

that are generated by model (1) with ρi = 1, that is, θi = 0. Also define Z (0) ,

Y (0) , Y−1 (0) , respectively, in a similar fashion to Z, Y, and Y−1. For notational

simplicity, set ui0 = yi0. Throughout the proofs, we will use the notation

σ̃2iT =
1

T

TX
t=1

u2it,

and

h (r, s) = (1, r)

⎛⎝ 1
R 1
0
rdrR 1

0
rdr

R 1
0
r2dr

⎞⎠−1⎛⎝ 1

s

⎞⎠ = 4− 6r − 6s+ 12rs.

9.1 Preliminary Results

Lemma 5 Suppose that Assumption 1 is satisfied. Then, as n, T → ∞ with

n
T → 0, the following hold.

(a)
Pn
i=1

¡
σ̃2iT − σ2i

¢2
= op (1) .

(b) sup1≤i≤n
¯̄
σ̃2iT − σ2i

¯̄
= op (1) .

(c) With probability approaching one, there exists a constant M > 0 such that

infi σ̃
2
iT ≥M .

Proof. See Moon, Perron, and Phillips (2006b) . ¥

Suppose that ci is a sequence of iid random variables, independent of uit for

all i and t, with a bounded support.

Lemma 6 Suppose that Assumptions 1 — 3, 11, and 12 hold. Then, the follow-

ing hold as (n, T →∞) with n
T → 0.

(a) 1√
n

Pn
i=1 c

2
i

h
1

T2σ2i

PT
t=1

©
(yit − yi0)− t

T (yiT − yi0)
ª2 − ω1T

i
⇒ N

µ
−E(c

2
i θ

2
i)

90 ,
E(c4i )
45

¶
(b) 1√

n

Pn
i=1

h
1

T2σ2i

PT
t=1 y

2
it − 1

T 3σ2i

PT
t=1

PT
s=1 yityishT (t, s)− ω2T

i
⇒ N

µ
−E(θ

2
i )

420 ,
11
6300

¶
.

Proof. See Moon, Perron, and Phillips (2006b) . ¥
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9.2 Proofs and Derivations for Section 3

Proof of Theorem 6

Since ∆yit = − θi
n1/2T

yit−1 + uit under Assumption 4, we can write

VnT (C)

=
nX
i=1

1

σ2i

"
y2i0 +

TX
t=1

(∆ciyit)
2

#
− 1

σ2i

nX
i=1

"
y2i0 +

TX
t=1

(∆yit)
2

#
− 1
2
µc,2

=
2

n1/2T

nX
i=1

ci
σ2i

TX
t=1

∆yityit−1 +
1

nT 2

nX
i=1

c2i
σ2i

TX
t=1

y2it−1 −
1

2
µc,2

= − 2

nT 2

nX
i=1

ciθi
σ2i

TX
t=1

y2it−1 +
2

n1/2T

nX
i=1

ci
σ2i

TX
t=1

uityit−1

+
1

nT 2

nX
i=1

c2i
σ2i

TX
t=1

y2it−1 −
1

2
µc,2.

Direct calculation shows that under the assumptions of the theorem, we have

− 2

nT 2

nX
i=1

TX
t=1

ciθi
σ2i
y2it−1 → p −E (ciθi) ,

1

nT 2

nX
i=1

c2i
σ2i

TX
t=1

y2it−1 → p
1

2
µc,2,

and
2

n1/2T

nX
i=1

ci
σ2i

TX
t=1

uityit−1 ⇒ N
¡
0, 2µc,2

¢
,

thereby giving the required result. ¥

Lemma 7 Let M be a finite constant. Under Assumptions 1 and 2, the follow-

ing hold.

(a) supiE

∙³
1
T

PT
t=1 uityit−1

´2¸
< M.

(b) supiE

∙³
1
T2

PT
t=1 y

2
it−1

´2¸
< M.

(c) supiE
£
y2i0
¤
< M.

Proof. The lemma follows by direct calculation and we omit the proof. ¥
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Lemma 8 Suppose that Assumptions 1 — 3, and 4 hold. Then, the following

hold.

(a)
Pn
i=1

¡
σ̂21,iT − σ2i

¢2
= op (1) .

(b) sup1≤i≤n
¯̄
σ̂21,iT − σ2i

¯̄
= op (1) .

(c) With probability approaching one, there exists a constant M > 0 such that

infi σ̂
2
1,iT ≥M .

Proof. See Moon, Perron, and Phillips (2006b) . ¥

Proof of Theorem 8.

By definition,

V̂nT (C) = −
2

nT 2

nX
i=1

ciθi

σ̂21,iT

TX
t=1

y2it−1 +
2

n1/2T

nX
i=1

ci

σ̂21,iT

TX
t=1

uityit−1

+
1

nT 2

nX
i=1

c2i
σ̂21,iT

TX
t=1

y2it−1 −
1

2
µc,2.

First, by the Cauchy-Schwarz inequality,¯̄̄̄
¯ 1n

nX
i=1

Ã
1

σ̂21,iT
− 1

σ2i

!
ciθi
T 2

TX
t=1

y2it−1

¯̄̄̄
¯

≤

⎛⎝ 1
n

nX
i=1

Ã
σ̂21,iT − σ2i

σ̂21,iT

!2⎞⎠1/2⎛⎝ 1
n

nX
i=1

Ã
ciθi
σ2i

1

T 2

TX
t=1

y2it−1

!2⎞⎠1/2

≤
supi

¯̄
σ̂21,iT − σ2i

¯̄
infi σ̂

2
1,iT

M

infi σ2i

⎛⎝ 1
n

nX
i=1

Ã
1

T 2

TX
t=1

y2it−1

!2⎞⎠1/2

= op (1)Op (1) = op (1) ,

where the last line holds by Lemmas 7 and 8, the assumption that ci and θi

have uniformly bounded supports, and infi σ
2
i > 0. Similarly, by Lemmas 7 and
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8, the assumption that ci has a bounded support, and infi σ
2
i > 0, we have¯̄̄̄

¯ 1

n1/2

nX
i=1

Ã
σ̂21,iT − σ2i

σ̂21,iT

!
ci
Tσ2i

TX
t=1

uityit−1

¯̄̄̄
¯

≤

⎛⎝ nX
i=1

Ã
σ̂21,iT − σ2i

σ̂21,iT

!2⎞⎠1/2⎛⎝ 1
n

nX
i=1

Ã
ci
Tσ2i

TX
t=1

uityit−1

!2⎞⎠1/2

≤

³Pn
i=1

¡
σ̂21,iT − σ2i

¢2´1/2
infi σ̂

2
1,iT

M

infi σ2i

⎛⎝ 1
n

nX
i=1

Ã
1

T

TX
t=1

uityit−1

!2⎞⎠1/2

= op (1)Op (1) ,

and
1

nT 2

nX
i=1

c2i
σ̂21,iT

TX
t=1

y2it−1 =
1

nT 2

nX
i=1

c2i
σ2i

TX
t=1

y2it−1 + op (1) .

Combining these, we complete the proof that V̂nT (C) = VnT (C) + op (1) . ¥

9.3 Proofs and Derivations for Section 4

Proof of Theorem 9.

For the theorem, it is enough to show that

Vfe1,nT (C) = VnT (C) + op (1) .

Let b̂0i (ci) = (∆ciG
0
0∆ciG0)

−1
(∆ciG

0
0∆ciZi) . Then Zi − G0b̂0i (ci) = Y i −

G0

³
b̂0i (ci)− b0i

´
, and we can rewrite Vfe1,nT (C) as

Vfe1,nT (C)

=
nX
i=1

1

σ2i

⎡⎣ ³
∆ciY i −∆ciG0

³
b̂0i (ci)− b0i

´´0 ³
∆ciY i −∆ciG0

³
b̂0i (ci)− b0i

´´
−
³
∆Y i −∆G0

³
b̂0i (ci)− b0i

´´0 ³
∆Y i −∆G0

³
b̂0i (ci)− b0i

´´
⎤⎦

−1
2
µc,2

= VnT (C) + Vfe11,nT (C) ,

where

Vfe11,nT (C) =
nX
i=1

1

σ2i

⎡⎣ ¡
∆Y 0i∆G0

¢
(∆G00∆G0)

−1
(∆G00∆Y i)

−
¡
∆ciY

0
i∆ciG0

¢
(∆ciG

0
0∆ciG0)

−1
(∆ciG

0
0∆ciY i)

⎤⎦ .
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For the required result, it is enough to show that

Vfe11,nT (C) = op (1)

as n, T →∞ with n
T → 0, which follows by Lemmas 7(c) and 9 and the assump-

tion that infi σ
2
i > 0, since

Vfe11,nT (C)

=
nX
i=1

1

σ2i

⎡⎣y2i0 − 1

1 +
c2i
n
1
T

Ã
yi0 +

ci
n1/2

1

T
(yiT − yi0) +

c2i
n

1

T 2

TX
t=1

yit−1

!2⎤⎦
= I1 − I2 − I3 − 2I4 − 2I5 − 2I6,

and

I1 =
1

nT

nX
i=1

y2i0
σ2i

Ã
c2i

1 +
c2i
nT

!
= Op

µ
1

T

¶
= op (1) ,

I2 =
1

nT

nX
i=1

c2i

σ2i

³
1 +

c2i
nT

´ µyiT − yi0√
T

¶2
= Op

µ
1

T

¶
= op (1) ,

I3 =
1

n2T

nX
i=1

c4i

σ2i

³
1 +

c2i
nT

´ Ã 1

T
√
T

TX
t=1

yit−1

!2
= Op

µ
1

nT

¶
= op (1) ,

|I4| =

¯̄̄̄
¯̄ 1√
nT

nX
i=1

ci

σ2i

³
1 +

c2i
nT

´yi0µyiT − yi0√
T

¶¯̄̄̄¯̄
≤

r
n

T

⎛⎝ 1
n

nX
i=1

ci

σ2i

³
1 +

c2i
nT

´y2i0
⎞⎠1/2⎛⎝ 1

n

nX
i=1

ci

σ2i

³
1 +

c2i
nT

´ µyiT − yi0√
T

¶2⎞⎠1/2

=

r
n

T
Op (1)Op (1) = op (1) ,

and, similarly,

I5 =
1

n3/2T

nX
i=1

c3i

σ2i

³
1 +

c2i
nT

´ µyiT − yi0√
T

¶Ã
1

T
√
T

TX
t=1

yit−1

!
= op (1) ,

I6 =
1

n
√
T

nX
i=1

c2i

σ2i

³
1 +

c2i
nT

´yi0Ã 1

T
√
T

TX
t=1

yit−1

!
= op (1) ,

as required. ¥
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Lemma 9 Let M be a finite constant. Under Assumptions 1 and 2, the follow-

ing hold.

(a) supiE

∙³
yiT−yi0√

T

´2¸
< M.

(b) supiE

∙³
1

T
√
T

PT
t=1 yit−1

´2¸
< M.

Proof. The lemma follows by direct calculation, and its proof is omitted. ¥

Lemma 10 Suppose that Assumptions 1 — 3, and 4 hold. Then, the following

hold.

(a) sup1≤i≤n
¡
σ̂22,iT − σ2i

¢
= op (1) .

(b) With probability approaching one, there exists a constant M > 0 such that

infi σ̂
2
2,iT ≥M .

Proof. See Moon, Perron, and Phillips (2006b) . ¥

Proof of Theorem 10

Using Lemmas 7(c), 9, and 10 and the assumptions that the supports of θi

and ci are bounded and infi σ
2
i > 0, we can show using arguments similar to

those used in the proof of Theorem 8 that

V̂fe11,nT (C)

=
nX
i=1

1

σ̂2i

⎡⎣y2i0 − 1

1 +
c2i
n
1
T

Ã
yi0 +

ci
n1/2

1

T
(yiT − yi0) +

c2i
n

1

T 2

TX
t=1

yit−1

!2⎤⎦
= Vfe11,nT (C) + op (1) .

The required result now follows. ¥
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9.4 Proofs and Derivations for Section 5

Lemma 11 Under Assumptions 1 — 3, 11, and 12,

Vfe2,nT (C)

=
1

n1/4

nX
i=1

ci
σ2i

"
2

T

TX
t=1

∆yityit−1 −
µ
yiT√
T

¶2
+

µ
yi0√
T

¶2
+ σ2i

#

+
1

n1/2

nX
i=1

c2i
σ2i

⎡⎣ 1
T2

PT
t=1 y

2
it−1 − 2

³
yiT√
T

´³
1

T
√
T

PT
t=1

t
T yit−1

´
+1
3

³
yiT√
T

´2
+ σ2iωp2T

⎤⎦
+
1

n

nX
i=1

c4i
σ2i

⎡⎢⎣ −
³

1
T
√
T

PT
t=1

t
T yit−1

´2
+ 2

3

³
yiT√
T

´³
1

T
√
T

PT
t=1

t
T yit−1

´
−19

³
yiT√
T

´2
+ σ2iωp4T

⎤⎥⎦
+

1

n1/4T

nX
i=1

S1iT
σ2i

+
1

n1/2T 1/2

nX
i=1

S2iT
σ2i

+
1

n5/4

nX
i=1

S3iT
σ2i

,

with 1
n

Pn
i=1E

£
S2kiT

¤
= O (1), for k = 1, 2, 3 when (n, T →∞) with n

T → 0.

Proof. See Moon, Perron, and Phillips (2006b) . ¥

Lemma 12 Under Assumptions 1 — 3, 11, and 12, the following hold:

(a) 1
n1/4

Pn
i=1

ci
σ2i

∙
2
T

PT
t=1∆yityit−1 −

³
yiT√
T

´2
+
³
yi0√
T

´2
+ σ2i

¸
= op (1) ;

(b) 1
n1/2

Pn
i=1

c2i
σ2i

⎡⎢⎣
³
1
T2

PT
t=1 y

2
it−1 − σ2i

1
T

PT
t=1

t−1
T

´
+ 1

3

½³
yiT√
T

´2
− σ2i

¾
−
n
2
³
yiT√
T

´³
1

T
√
T

PT
t=1

t
T yit−1

´
− σ2i

2
T

PT
t=1

¡
t
T

¢ ¡
t−1
T

¢o
⎤⎥⎦⇒

N
¡
− 1
90E

¡
c2i θ

2
i

¢
, 145E

¡
c4i
¢¢
;

(c) 1
n

Pn
i=1

c4i
σ2i

⎡⎢⎣ −
³

1
T
√
T

PT
t=1

t
T yit−1

´2
+ 2

3

³
yiT√
T

´³
1

T
√
T

PT
t=1

t
T yit−1

´
− 19

³
yiT√
T

´2
+ σ2iωp4T

⎤⎥⎦ =
op (1) .

Proof: see Moon, Perron, and Phillips (2006b) .
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Lemma 13 Let M be a finite constant. Under Assumptions 1 — 3, 11, and 12,

the following hold.

(a) supiE
£
y4i0
¤
< M.

(b) supiE

∙³
yiT√
T

´4¸
< M.

(c) supiE

∙³
1
T

PT
t=1 yit−1uit

´2¸
< M.

(d) supiE

∙³
1
T2

PT
t=1 y

2
it−1

´2¸
< M.

(e) supiE

∙³
1

T
√
T

PT
t=1 yit−1

´4¸
< M.

(f) supiE

∙³
1

T
√
T

PT
t=1

t−1
T yit−1

´4¸
< M.

Proof. The lemma follows by direct calculations and we omit the proof. ¥

Lemma 14 Suppose that Assumptions 1 — 3, and 11 hold. Then, the following

hold.

(a)
Pn
i=1

¡
σ̂21,iT − σ2i

¢2
= op (1) .

(b) sup1≤i≤n
¡
σ̂21,iT − σ2i

¢
= op (1) .

(c)
Pn
i=1

¡
σ̂23,iT − σ2i

¢2
= op (1) .

(d) sup1≤i≤n
¡
σ̂23,iT − σ2i

¢
= op (1) .

(e) With probability approaching one, there exists a constant M > 0 such that

infi σ̂
2
3,iT ≥M .

Proof. See Moon, Perron, and Phillips (2006b) . ¥
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Proof of Theorem 15

For the required result, it is enough to show that

(a) :
1

n1/4

nX
i=1

Ã
1

σ̂23,iT
− 1

σ2i

!
ci

"
2

T

TX
t=1

∆yityit−1 −
µ
yiT√
T

¶2
+

µ
yi0√
T

¶2
+ σ2i

#
= op (1) ,

(b) :
1

n1/4

nX
i=1

Ã
σ̂23,iT − σ2i

σ̂23,iT

!
= op (1) ,

(c) :
1

n1/2

nX
i=1

Ã
1

σ̂23,iT
− 1

σ2i

!
c2i

⎡⎣ 1
T2

PT
t=1 y

2
it−1 − 2

³
yiT√
T

´³
1

T
√
T

PT
t=1

t
T yit−1

´
+1
3

³
yiT√
T

´2
+ σ2iωp2T

⎤⎦ = op (1) ,
(d) :

1

n

nX
i=1

Ã
1

σ̂23,iT
− 1

σ2i

!
c4i

⎡⎢⎣ −
³

1
T
√
T

PT
t=1

t
T yit−1

´2
+ 2

3

³
yiT√
T

´³
1

T
√
T

PT
t=1

t
T yit−1

´
−19

³
yiT√
T

´2
+ σ2iωp4T

⎤⎥⎦ = op (1) ,
(e) :

1

n1/4T

nX
i=1

Ã
1

σ̂23,iT
− 1

σ2i

!
S1iT = op (1) ,

(f) :
1

n1/2T 1/2

nX
i=1

Ã
1

σ̂23,iT
− 1

σ2i

!
S2iT = op (1) ,

(g) :
1

n5/4

nX
i=1

Ã
1

σ̂23,iT
− 1

σ2i

!
S3iT = op (1) .

Parts (c) — (g) hold by arguments similar to those used in the proof of Theorem 8,

that is, use the Cauchy-Schwarz inequality, Lemmas 13, 14 and the assumptions

that the supports of θi and ci are uniformly bounded and infi σ
2
i > 0. For Part

(a), notice by definition that

1

n1/4

nX
i=1

Ã
1

σ̂23,iT
− 1

σ2i

!
ci

"
2

T

TX
t=1

∆yityit−1 −
µ
yiT√
T

¶2
+

µ
yi0√
T

¶2
+ σ2i

#

=
1

n1/4

nX
i=1

Ã
1

σ̂23,iT
− 1

σ2i

!
ci

"
− (ρi − 1)

2 1

T

TX
t=1

y2it−1 + 2 (1− ρi)
1

T

TX
t=1

yit−1uit −
Ã
1

T

TX
t=1

u2it − σ2i

!#

=
1

n3/4T

nX
i=1

Ã
σ̂23,iT − σ2i

σ̂23,iTσ
2
i

!
ciθ

2
i

T 2

TX
t=1

y2it−1 −
2

n1/2T

nX
i=1

Ã
σ̂23,iT − σ2i

σ̂23,iTσ
2
i

!
ciθi
T

TX
t=1

yit−1uit

+
1

n1/4T 1/2

nX
i=1

Ã
σ̂23,iT − σ2i

σ̂23,iTσ
2
i

!Ã
1

T 1/2

TX
t=1

¡
u2it − σ2i

¢!
.

Using similar arguments to those in the proofs of Parts (c) — (g), we can show

that the first and the second terms are of Op
¡

1
n1/4T

¢
and Op

¡
1
T

¢
, respectively.

45



Also the third term is op (1) since by the Cauchy-Schwarz inequality, Lemma

14, and the assumption infi σ
2
i > 0, it follows that¯̄̄̄

¯ 1

n1/4T 1/2

nX
i=1

Ã
σ̂23,iT − σ2i

σ̂23,iTσ
2
i

!Ã
1

T 1/2

TX
t=1

¡
u2it − σ2i

¢!¯̄̄̄¯
≤ n1/4

T 1/2

⎛⎝ nX
i=1

Ã
σ̂23,iT − σ2i

σ̂23,iTσ
2
i

!2⎞⎠1/2⎛⎝ 1
n

nX
i=1

Ã
T 1/2

TX
t=1

¡
u2it − σ2i

¢!2⎞⎠1/2

≤ n1/4

T 1/2
1

infi σ̂
2
3,iT

1

infi σ2i

Ã
nX
i=1

¡
σ̂23,iT − σ2i

¢2!1/2⎛⎝ 1
n

nX
i=1

Ã
T 1/2

TX
t=1

¡
u2it − σ2i

¢!2⎞⎠1/2

=
n1/4

T 1/2
Op (1) op (1)Op (1) = op (1) ,

which yields Part (a).

For Part (b), notice that

1

n1/4

nX
i=1

Ã
σ̂23,iT − σ2i

σ̂23,iT

!
=

1

n1/4

nX
i=1

Ã
σ̂23,iT − σ2i

σ2i

!
+

1

n1/4

nX
i=1

¡
σ̂23,iT − σ2i

¢Ã 1

σ̂23,iT
− 1

σ2i

!
.

The second term is op (1) by Lemma 14 and the assumption infi σ
2
i > 0, since¯̄̄̄

¯ 1

n1/4

nX
i=1

¡
σ̂23,iT − σ2i

¢Ã 1

σ̂23,iT
− 1

σ2i

!¯̄̄̄
¯ =

¯̄̄̄
¯ 1

n1/4

nX
i=1

¡
σ̂23,iT − σ2i

¢2
σ̂23,iTσ

2
i

¯̄̄̄
¯

≤ 1

n1/4
1

infi σ̂
2
3,iT

1

infi σ2i

Ã
nX
i=1

¡
σ̂23,iT − σ2i

¢2!
= op (1) .

To complete the proof of Part (b), it is enough to show that the first term is

op (1) . Write the first term as

1

n1/4

nX
i=1

Ã
σ̂23,iT − σ2i

σ2i

!

=
1

n1/4

nX
i=1

Ã
σ̂23,iT − σ̂21,iT

σ2i

!
+

1

n1/4

nX
i=1

Ã
σ̂21,iT − σ̃2iT

σ2i

!
+

1

n1/4

nX
i=1

µ
σ̃2iT − σ2i

σ2i

¶
.

By definition and by Lemma 13, we have

1

n1/4

nX
i=1

Ã
σ̂23,iT − σ̂21,iT

σ2i

!
=

1

n1/4T

nX
i=1

1

σ2i

Ã
y2i0 +

µ
yiT − yi0√

T

¶2!
= Op

µ
n3/4

T

¶
= op (1) ,
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1

n1/4

nX
i=1

Ã
σ̂21,iT − σ̃2iT

σ2i

!
=

1

n1/4

nX
i=1

1

σ2i

Ã
y2i0
T
+

θ2i
n1/2T

Ã
1

T 2

TX
t=1

y2it−1

!
− 2 θi

n1/4T

Ã
1

T

TX
t=1

uityit−1

!!

= Op

µ
n3/4

T

¶
+Op

µ
n1/4

T

¶
+Op

µ
1

T

¶
= op (1) ,

and

1

n1/4

nX
i=1

µ
σ̃2iT − σ2i

σ2i

¶
=

1

n1/4T 1/2

nX
i=1

1

σ2i

Ã
1

T 1/2

TX
t=1

¡
u2it − σ2i

¢!

= Op

µ
n1/4

T 1/2

¶
= op (1) ,

the last line holding because E
h

1
n1/2

Pn
i=1

1
σ2i

³
1

T 1/2

PT
t=1

¡
u2it − σ2i

¢´i2
= O (1) .

Combining these, we have

1

n1/4

nX
i=1

Ã
σ̂23,iT − σ2i

σ2i

!
= op (1) ,

as required. ¥

Proof of Lemma 1

The lemma holds by Lemma 6(a) with ci = 1. ¥

Proof of Lemma 2

The lemma holds by Lemma 6(b). ¥

9.5 Proofs and Derivations for Section 6

Proof of Theorem 16:

Denote Z∗C =
¡
Σ−1/2 ⊗ IT+1

¢
∆Cvec (Z

0) , G∗0,C =
¡
Σ−1/2 ⊗ IT+1

¢
∆C (In ⊗G0) ,

G∗1,C =
¡
Σ−1/2 ⊗ IT+1

¢
∆C (In ⊗G0) ln, Y ∗C =

¡
Σ−1/2 ⊗ IT+1

¢
∆Cvec (Y

0) , and

M∗0,C = In(T+1) − G∗0,C
¡
G∗00,CG

∗
0,C
¢−1

G∗00,C. Under the null, when C =0, we de-

note these quantities by Z∗0 , G
∗
0,0, G

∗
1,0 Y

∗
0 , and M

∗
0 respectively. Then, by

definition

Z∗C = G
∗
0,Cβ0 +G

∗
1,Cb1 + Y

∗
C .
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Using this notation, we may express

Vfe3,nT (C) = −2
∙
min
β0,b1

LnT (C,β0, b1)− min
β0,b1

LnT (0,β0, b1)

¸
− 1
2
µc,2

= Y ∗0C M
∗
0,CY

∗
C − Y ∗0C M∗0,CG∗1,C

¡
G∗01,CM

∗
0,CG

∗
1,C
¢−1

G∗01,CM
∗
0,CY

∗
C

−Y ∗00 M∗1,0Y ∗0 + Y ∗00 M∗1,0G∗1,0
¡
G∗01,0M

∗
1,0G

∗
1,0

¢−1
G∗01,0M

∗
1,0Y

∗
0 −

1

2
µc,2.

In what follows we show that

Y ∗0C M
∗
0,CG

∗
1,C
¡
G∗01,CM

∗
0,CG

∗
1,C
¢−1

G∗01,CM
∗
0,CY

∗
C

−Y ∗00 M∗1,0G∗1,0
¡
G∗01,0M

∗
1,0G

∗
1,0

¢−1
G∗01,0M

∗
1,0Y

∗
0

= op (1) . (25)

Then, by definition, it follows that

Vfe3,nT (C) = Y ∗0C M
∗
0,CY

∗
C − Y ∗00 M∗1,0Y ∗0 −

1

2
µc,2 + op (1)

= −2
∙
min
β0
LnT (C,β0)−min

β0
LnT (0,β0)

¸
− 1
2
µc,2 + op (1)

= Vfe1,nT (C) + op (1) ,

as required for the theorem. ¥

Proof of (25)

By definition

Y ∗0C M
∗
0,CG

∗
1,C
¡
G∗01,CM

∗
0,CG

∗
1,C
¢−1

G∗01,CM
∗
0,CY

∗
C − Y ∗00 M∗1,0G∗1,0

¡
G∗01,0M

∗
1,0G

∗
1,0

¢−1
G∗01,0M

∗
1,0Y

∗
0

=

³
1√
nT
Y ∗0C M

∗
0,CG

∗
1,C

´2
−
³

1√
nT
Y ∗00 M

∗
1,0G

∗
1,0

´2
1
nTG

∗0
1,CM

∗
0,CG

∗
1,C

+

µ
1√
nT
Y ∗00 M

∗
1,0G

∗
1,0

¶2Ã
1

1
nTG

∗0
1,CM

∗
0,CG

∗
1,C
− 1

1
nTG

∗0
1,0M

∗
1,0G

∗
1,0

!
= I + II, say.

For term I, with probability approaching one,

G∗01,CM
∗
0,CG

∗
1,C

nT
> 0,

48



since

G∗01,CM
∗
0,CG

∗
1,C

nT
=

1

nT

nX
i=1

1
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Next,

1√
nT
Y ∗0C M

∗
0,CG

∗
1,C =

1√
nT
Y ∗0C G

∗
1,C −

1√
nT
Y ∗0C G

∗
0,C
¡
G∗00,CG

∗
0,C
¢−1

G∗00,CG
∗
1,C

=
1√
n

nX
i=1

1

σ2i

Ã
yiT − yi0√

T
+
ci√
n

yiT√
T
+
c2i
n

1

T
√
T

TX
t=1

t

T
yit−1

!
+ op (1)

because

1√
nT
Y ∗0C G

∗
0,C
¡
G∗00,CG

∗
0,C
¢−1

G∗00,CG
∗
1,C

=
1

n
√
T

nX
i=1

ci
σ2i

³
yi0 +

ci
n1/2

(yiT−yi0)
T +

c2i
n

1
T 2

PT
t=1 yit−1

´³
1 + ci

n1/2
1
T

PT
t=1

t
T

´
1 +

c2i
nT

= Op

µ
1√
T

¶
.

Similarly, we have
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∗
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∗
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where the last line holds since
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Therefore, we have

I = op (1) .

Next, we show that II = op (1) . Since
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which follows because with probability approaching one,
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Table 1. Size and size-adjusted power of tests - Incidental
intercepts case

DGP: zit = b0i + z
0
it

z0it =
³
1− θi

n
1
2 T

´
z0it−1 + σieit

b0i, eit ∼ iidN (0, 1)

σi ∼ iidU [0.5, 1.5]

Panel 1A. Theoretical values

ci = θi ci = 1 ci = 2 ci = 0.5 t+ IPS

θi = 0 (size) 5.0 5.0 5.0 5.0 5.0 5.0

θi ∼ U [0, 2] 20.4 17.4 17.4 17.4 12.0 -

θi ∼ U [0, 4] 49.5 40.9 40.9 40.9 24.0 -

θi ∼ U [0, 8] 94.7 88.2 88.2 88.2 59.2 -

θi ∼ χ2 (1) 33.7 17.4 17.4 17.4 12.0 -

θi ∼ χ2 (2) 63.9 40.9 40.9 40.9 24.0 -

θi ∼ χ2 (4) 96.6 88.2 88.2 88.2 59.2 -

θi = 1 17.4 17.4 17.4 17.4 12.0 -

θi = 2 40.9 40.9 40.9 40.9 24.0 -



Panel 1B. n = 10, T = 50

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 t+ IPS

θi = 0 (size) 1 - 2.8 5.2 1.9 7.1 5.4

θi ∼ U [0, 2] .9684 14.0 11.9 11.9 12.0 9.1 8.0

θi ∼ U [0, 4] .9368 41.0 23.1 23.5 22.9 14.4 9.8

θi ∼ U [0, 8] .8735 88.9 46.4 48.2 45.6 25.9 14.7

θi ∼ χ2 (1) .9684 15.9 11.2 11.2 11.2 9.1 7.4

θi ∼ χ2 (2) .9368 46.5 20.6 20.9 20.7 13.2 9.5

θi ∼ χ2 (4) .8735 87.8 43.9 45.5 43.1 24.6 15.1

θi = 1 .9684 7.9 12.9 12.9 13.1 9.2 7.1

θi = 2 .9368 28.5 27.5 27.6 27.5 15.5 10.5



Panel 1C. n = 25, T = 50

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 t+ IPS

θi = 0 (size) 1 - 3.8 5.5 3.2 8.4 6.4

θi ∼ U [0, 2] .9817 20.1 13.5 13.7 13.4 10.2 7.9

θi ∼ U [0, 4] .9635 47.0 27.2 27.8 26.9 16.8 10.7

θi ∼ U [0, 8] .9270 90.8 58.8 59.7 57.9 32.3 16.9

θi ∼ χ2 (1) .9817 23.4 12.6 12.7 12.4 9.4 7.5

θi ∼ χ2 (2) .9635 55.1 24.6 25.2 24.3 15.1 9.9

θi ∼ χ2 (4) .9270 91.7 56.8 57.8 55.9 32.0 16.8

θi = 1 .9817 12.2 15.4 15.2 15.3 10.9 7.8

θi = 2 .9635 34.2 32.6 32.6 32.4 18.9 11.3



Panel 1D. n = 100, T = 50

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 t+ IPS

θi = 0 (size) 1 - 4.4 5.3 4.1 12.9 8.3

θi ∼ U [0, 2] .99 23.7 14.1 14.2 14.1 10.5 8.0

θi ∼ U [0, 4] .98 49.4 29.4 29.6 29.4 19.1 11.6

θi ∼ U [0, 8] .96 91.6 67.7 68.2 67.6 40.1 21.1

θi ∼ χ2 (1) .99 31.7 13.2 13.4 13.2 9.6 7.9

θi ∼ χ2 (2) .98 60.0 27.8 28.1 27.8 17.8 12.0

θi ∼ χ2 (4) .96 93.9 66.8 67.2 66.8 40.9 21.1

θi = 1 .99 14.4 15.9 15.8 15.8 10.7 7.8

θi = 2 .98 38.6 37.3 37.2 37.4 21.2 12.0



Panel 1E. n = 10, T = 100

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 t+ IPS

θi = 0 (size) 1 - 2.6 5.1 1.7 6.7 5.1

θi ∼ U [0, 2] .9968 13.8 13.5 13.8 13.4 9.1 7.6

θi ∼ U [0, 4] .9937 39.3 23.2 23.9 23.2 13.7 9.3

θi ∼ U [0, 8] .9874 89.3 48.1 50.4 46.9 24.3 14.1

θi ∼ χ2 (1) .9968 14.4 11.0 11.2 11.0 8.2 7.2

θi ∼ χ2 (2) .9937 44.3 21.1 21.6 20.7 11.8 8.6

θi ∼ χ2 (4) .9874 88.0 47.7 49.7 46.7 24.1 14.9

θi = 1 .9968 8.6 14.2 14.3 14.0 9.9 7.9

θi = 2 .9937 28.4 27.7 28.0 27.1 16.0 10.4



Panel 1F. n = 25, T = 100

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 t+ IPS

θi = 0 (size) 1 - 4.0 5.6 3.4 6.7 5.4

θi ∼ U [0, 2] .9982 19.5 13.7 13.6 13.6 9.9 7.7

θi ∼ U [0, 4] .9963 45.8 28.5 28.5 28.3 16.6 11.3

θi ∼ U [0, 8] .9927 91.0 58.9 59.3 58.4 31.0 16.7

θi ∼ χ2 (1) .9982 21.9 12.8 12.9 12.7 9.2 7.7

θi ∼ χ2 (2) .9963 53.5 25.8 25.9 25.5 15.1 10.6

θi ∼ χ2 (4) .9927 91.6 57.9 58.8 57.2 29.8 16.4

θi = 1 .9982 12.1 14.7 14.7 14.6 9.6 7.6

θi = 2 .9963 33.7 31.9 32.1 31.7 17.4 11.5



Panel 1G. n = 100, T = 100

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 t+ IPS

θi = 0 (size) 1 - 4.6 5.3 4.3 8.4 6.3

θi ∼ U [0, 2] .999 22.9 14.7 14.6 14.8 10.8 8.2

θi ∼ U [0, 4] .998 48.9 31.5 31.4 31.6 19.7 11.4

θi ∼ U [0, 8] .996 92.8 71.4 71.7 71.5 42.1 20.8

θi ∼ χ2 (1) .999 30.3 13.3 13.2 13.3 10.2 8.2

θi ∼ χ2 (2) .998 59.9 28.7 28.8 28.8 18.6 11.9

θi ∼ χ2 (4) .996 94.1 68.6 68.6 68.5 40.4 20.8

θi = 1 .999 14.5 15.5 15.8 15.4 10.2 7.6

θi = 2 .998 37.8 36.4 36.7 36.4 19.3 12.0



Panel 1H. n = 10, T = 250

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 t+ IPS

θi = 0 (size) 1 - 3.2 5.5 2.1 6.2 4.3

θi ∼ U [0, 2] .9989 12.6 11.7 12.0 11.6 9.4 7.4

θi ∼ U [0, 4] .9979 37.5 21.8 22.6 21.9 13.3 9.3

θi ∼ U [0, 8] .9958 88.8 46.4 48.7 45.2 23.5 13.9

θi ∼ χ2 (1) .9989 13.7 10.3 10.6 10.2 8.0 6.8

θi ∼ χ2 (2) .9979 43.9 19.2 20.0 18.8 12.7 8.9

θi ∼ χ2 (4) .9958 87.4 44.3 46.7 43.3 23.7 14.3

θi = 1 .9989 8.6 12.9 12.9 12.8 9.5 7.9

θi = 2 .9979 28.1 26.0 26.3 25.7 14.4 9.9



Panel 1I. n = 25, T = 250

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 t+ IPS

θi = 0 (size) 1 - 3.8 5.2 3.2 6.1 4.8

θi ∼ U [0, 2] .9994 18.7 13.9 14.1 13.9 9.8 7.9

θi ∼ U [0, 4] .9988 45.1 28.1 28.4 28.0 16.0 10.2

θi ∼ U [0, 8] .9976 91.1 60.0 60.9 59.6 30.9 16.7

θi ∼ χ2 (1) .9994 21.1 12.2 12.4 12.2 8.5 7.0

θi ∼ χ2 (2) .9988 52.4 25.0 25.6 24.9 15.0 10.7

θi ∼ χ2 (4) .9976 91.5 58.3 59.1 57.9 30.6 17.1

θi = 1 .9994 12.0 14.8 14.6 14.9 10.6 8.2

θi = 2 .9988 33.6 32.7 32.8 32.9 18.0 11.1



Panel 1J. n = 100, T = 250

E (ρi) ci = θi ci = 1 ci = 2 ci = 0.5 t+ IPS

θi = 0 (size) 1 - 4.8 5.6 4.5 6.4 5.3

θi ∼ U [0, 2] .9997 21.6 14.9 14.9 14.8 10.9 7.9

θi ∼ U [0, 4] .9993 49.7 33.3 33.2 32.9 20.4 12.2

θi ∼ U [0, 8] .9987 92.3 73.3 73.4 73.1 41.9 20.7

θi ∼ χ2 (1) .9997 30.4 14.5 14.3 14.4 10.5 7.6

θi ∼ χ2 (2) .9993 59.9 30.4 30.5 30.1 18.4 11.3

θi ∼ χ2 (4) .9987 94.4 71.3 71.3 71.0 40.9 20.6

θi = 1 .9997 15.2 15.7 15.8 15.7 12.4 8.7

θi = 2 .9993 36.8 34.9 35.2 34.9 21.6 12.0



Table 2. Size and size-adjusted power of tests - Incidental trends
case

DGP: zit = b0i + b1it+ z
0
it

z0it =
³
1− θi

n
1
4 T

´
z0it−1 + σieit

b0i, b1i, eit ∼ iidN (0, 1)

σi ∼ iidU [0.5, 1.5]

Panel 2A. Theoretical values

ci = θi ci = 1 ci = 2 ci = 0.5 Ploberger-Phillips Moon-Phillips t+ IPS UB

θi = 0 (size) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

θi ∼ U [0, 2] 6.5 6.1 6.1 6.1 6.1 5.8 5.8 - 6.0

θi ∼ U [0, 4] 13.3 10.6 10.6 10.6 10.6 9.0 8.6 - 10.0

θi ∼ U [0, 8] 68.7 47.8 47.8 47.8 47.8 33.4 30.1 - 42.3

θi ∼ χ2 (1) 18.9 7.8 7.8 7.8 7.8 7.0 6.9 - 7.5

θi ∼ χ2 (2) 42.7 14.7 14.7 14.7 14.7 11.7 11.1 - 13.6

θi ∼ χ2 (4) 94.7 55.7 55.7 55.7 55.7 39.1 35.2 - 49.5

θi = 1 5.8 5.8 5.8 5.8 5.8 5.6 5.6 - 5.7

θi = 2 8.9 8.9 8.9 8.9 8.9 7.8 7.6 - 8.5



Panel 2B. n = 10, T = 50

E (ρi) ci = 1 ci = 2 ci = 0.5 Ploberger-Phillips Moon-Phillips t+ IPS UB

θi = 0 (size) 1 2.2 0.1 3.2 1.3 1.0 6.1 7.1 6.0

θi ∼ U [0, 2] .944 5.9 6.0 5.8 5.8 5.8 5.4 5.2 5.9

θi ∼ U [0, 4] .888 8.3 8.4 8.3 8.3 8.1 7.3 6.2 8.3

θi ∼ U [0, 8] .775 18.3 18.4 18.2 18.1 15.3 13.3 10.6 16.0

θi ∼ χ2 (1) .944 6.4 6.6 6.4 6.4 6.1 6.2 5.8 6.3

θi ∼ χ2 (2) .888 9.4 9.5 9.3 9.3 8.7 7.7 7.0 8.1

θi ∼ χ2 (4) .775 18.1 18.3 18.0 18.1 15.5 13.5 10.8 15.2

θi = 1 .944 5.7 5.6 5.7 5.7 6.0 5.8 5.9 5.9

θi = 2 .888 8.3 8.2 8.2 8.2 7.8 7.4 6.9 7.4



Panel 2C. n = 25, T = 50

E (ρi) ci = 1 ci = 2 ci = 0.5 Ploberger-Phillips Moon-Phillips t+ IPS UB

θi = 0 (size) 1 5.6 1.8 6.7 2.5 1.3 7.8 9.0 5.0

θi ∼ U [0, 2] .957 5.3 5.3 5.3 5.3 4.8 4.5 4.8 5.6

θi ∼ U [0, 4] .915 8.7 8.6 8.7 8.7 7.3 6.0 6.2 7.9

θi ∼ U [0, 8] .829 22.6 22.6 22.5 22.5 17.7 14.2 11.7 18.8

θi ∼ χ2 (1) .957 6.2 6.1 6.2 6.3 5.7 4.8 5.2 6.7

θi ∼ χ2 (2) .915 9.1 9.0 9.1 9.1 7.9 6.6 6.4 9.2

θi ∼ χ2 (4) .829 22.2 22.3 22.1 22.2 17.4 13.9 11.5 18.5

θi = 1 .957 5.6 5.5 5.6 5.6 5.1 5.5 5.0 6.0

θi = 2 .915 8.1 8.1 8.1 8.1 6.9 6.9 6.1 7.5



Panel 2D. n = 100, T = 50

E (ρi) ci = 1 ci = 2 ci = 0.5 Ploberger-Phillips Moon-Phillips t+ IPS UB

θi = 0 (size) 1 12.9 7.9 14.0 3.2 0.1 10.6 12.8 4.2

θi ∼ U [0, 2] .968 5.4 5.4 5.4 5.4 6.0 6.1 5.3 5.1

θi ∼ U [0, 4] .937 9.2 9.4 9.3 9.3 8.9 8.7 7.0 7.9

θi ∼ U [0, 8] .874 29.0 29.3 29.0 29.0 23.6 20.4 13.5 21.7

θi ∼ χ2 (1) .968 7.0 7.2 7.0 7.0 7.2 7.2 5.8 5.6

θi ∼ χ2 (2) .937 10.5 10.6 10.5 10.5 10.1 10.0 8.0 8.8

θi ∼ χ2 (4) .874 27.9 28.3 27.9 27.9 22.6 20.4 13.9 21.4

θi = 1 .968 6.4 6.3 6.4 6.4 5.6 5.7 5.4 4.8

θi = 2 .937 8.4 8.4 8.4 8.4 7.0 6.8 6.4 7.4



Panel 2E. n = 10, T = 100

E (ρi) ci = 1 ci = 2 ci = 0.5 Ploberger-Phillips Moon-Phillips t+ IPS UB

θi = 0 (size) 1 1.2 0.1 1.8 1.3 1.5 5.5 5.7 6.2

θi ∼ U [0, 2] 0.994 5.8 5.6 5.7 5.8 5.7 5.4 5.7 6.0

θi ∼ U [0, 4] 0.989 8.6 8.5 8.6 8.6 8.7 7.4 6.6 7.6

θi ∼ U [0, 8] 0.978 19.3 19.3 19.3 19.4 16.6 14.1 11.2 16.1

θi ∼ χ2 (1) 0.994 6.7 6.7 6.8 6.8 6.7 6.5 6.4 6.5

θi ∼ χ2 (2) 0.989 9.6 9.6 9.6 9.6 8.4 8.1 7.4 8.5

θi ∼ χ2 (4) 0.978 18.2 18.1 18.1 18.2 15.7 13.6 11.2 16.0

θi = 1 0.994 5.3 5.4 5.3 5.4 5.1 5.3 5.3 5.6

θi = 2 0.989 6.9 6.8 6.9 6.9 6.5 6.4 6.9 7.0



Panel 2F. n = 25, T = 100

E (ρi) ci = 1 ci = 2 ci = 0.5 Ploberger-Phillips Moon-Phillips t+ IPS UB

θi = 0 (size) 1 3.6 1.0 4.6 2.7 2.1 6.0 6.2 5.7

θi ∼ U [0, 2] .996 5.7 5.7 5.7 5.7 5.7 5.6 5.6 5.8

θi ∼ U [0, 4] .992 8.8 8.8 8.7 8.7 8.5 7.7 7.1 7.9

θi ∼ U [0, 8] .983 22.7 22.7 22.7 22.6 18.4 16.4 12.9 18.4

θi ∼ χ2 (1) .996 6.8 6.8 6.7 6.7 6.7 6.7 6.4 6.0

θi ∼ χ2 (2) .992 9.5 9.4 9.4 9.3 8.3 8.4 7.6 8.1

θi ∼ χ2 (4) .983 21.2 21.2 21.1 21.1 17.5 15.7 12.6 18.0

θi = 1 .996 5.9 6.0 5.8 5.8 5.9 5.5 5.7 5.4

θi = 2 .992 7.4 7.5 7.3 7.3 7.2 6.8 6.2 7.8



Panel 2G. n = 100, T = 100

E (ρi) ci = 1 ci = 2 ci = 0.5 Ploberger-Phillips Moon-Phillips t+ IPS UB

θi = 0 (size) 1 7.1 3.5 7.9 3.4 1.6 8.0 8.6 4.7

θi ∼ U [0, 2] .997 6.2 6.3 6.2 6.2 5.9 6.0 5.2 5.6

θi ∼ U [0, 4] .994 10.2 10.4 10.3 10.3 8.7 8.7 7.4 8.4

θi ∼ U [0, 8] .988 28.8 29.1 28.8 28.8 21.6 19.6 13.7 23.2

θi ∼ χ2 (1) .997 7.1 7.1 7.1 7.1 6.3 6.4 6.1 6.5

θi ∼ χ2 (2) .994 10.7 10.8 10.7 10.7 9.3 9.0 7.4 9.6

θi ∼ χ2 (4) .987 30.0 30.4 30.0 30.1 22.2 20.1 14.3 23.1

θi = 1 .997 5.9 6.0 5.9 5.9 6.2 6.0 5.2 5.6

θi = 2 .994 9.2 9.3 9.2 9.3 8.0 7.2 6.2 7.7



Panel 2H. n = 10, T = 250

E (ρi) ci = 1 ci = 2 ci = 0.5 Ploberger-Phillips Moon-Phillips t+ IPS UB

θi = 0 (size) 1 1.2 0.0 2.0 1.8 2.5 6.0 5.2 6.2

θi ∼ U [0, 2] .998 5.1 5.1 5.0 5.0 5.1 5.2 5.4 6.1

θi ∼ U [0, 4] .996 7.8 7.8 7.9 7.9 6.6 6.2 6.0 7.5

θi ∼ U [0, 8] .993 18.1 18.4 18.2 18.2 14.4 12.6 9.8 16.6

θi ∼ χ2 (1) .998 6.3 6.4 6.3 6.3 6.0 5.8 5.8 6.3

θi ∼ χ2 (2) .996 9.1 9.1 9.2 9.2 7.4 7.0 6.7 8.3

θi ∼ χ2 (4) .993 17.2 17.2 17.2 17.2 13.9 12.1 10.2 15.9

θi = 1 .998 5.8 5.7 5.8 5.8 5.7 5.7 5.2 5.2

θi = 2 .996 7.2 7.2 7.2 7.3 7.0 6.6 5.9 7.8



Panel 2I. n = 25, T = 250

E (ρi) ci = 1 ci = 2 ci = 0.5 Ploberger-Phillips Moon-Phillips t+ IPS UB

θi = 0 (size) 1 2.6 0.6 3.2 2.8 2.7 5.4 5.2 5.8

θi ∼ U [0, 2] .999 6.6 6.5 6.5 6.5 6.2 6.1 5.8 5.4

θi ∼ U [0, 4] .997 8.9 8.8 8.8 8.8 8.2 7.8 7.1 7.4

θi ∼ U [0, 8] .994 23.1 23.2 22.9 22.9 19.1 16.1 12.5 19.0

θi ∼ χ2 (1) .999 6.6 6.5 6.5 6.5 6.3 6.0 5.9 6.2

θi ∼ χ2 (2) .997 9.4 9.5 9.3 9.3 9.0 8.5 7.3 8.6

θi ∼ χ2 (4) .994 21.5 21.4 21.4 21.3 17.4 15.0 12.4 18.9

θi = 1 .999 5.4 5.4 5.3 5.3 5.4 5.3 5.7 5.6

θi = 2 .997 7.4 7.3 7.4 7.4 6.8 6.5 6.5 7.4



Panel 2J. n = 100, T = 250

E (ρi) ci = 1 ci = 2 ci = 0.5 Ploberger-Phillips Moon-Phillips t+ IPS UB

θi = 0 (size) 1 4.7 2.2 5.4 3.9 3.3 6.6 6.2 5.2

θi ∼ U [0, 2] .999 5.9 5.9 5.8 5.8 5.2 5.2 5.5 5.7

θi ∼ U [0, 4] .998 9.2 9.2 9.1 9.2 8.3 7.5 7.3 8.5

θi ∼ U [0, 8] .996 29.6 29.8 29.6 29.6 21.9 18.6 14.3 23.5

θi ∼ χ2 (1) .999 6.6 6.6 6.5 6.5 6.2 5.8 5.4 6.6

θi ∼ χ2 (2) .998 10.4 10.5 10.4 10.4 9.2 8.3 7.7 9.5

θi ∼ χ2 (4) .996 27.4 27.5 27.4 27.4 20.8 17.8 14.5 24.1

θi = 1 .999 6.0 5.9 5.9 5.9 5.8 5.9 5.5 5.4

θi = 2 .998 9.1 9.0 9.1 9.0 8.1 8.3 7.2 7.7


