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Abstract

What form of intellectual property rights (IPR) policy contributes to economic growth?
Should a company with a large technological lead receive the same IPR protection as a company
with a more limited advantage? Should technological followers be able to license the products
of technological leaders? We develop a general equilibrium framework to investigate these
questions. The economy consists of many industries and �rms engaged in cumulative (step-by-
step) innovation. IPR policy regulates whether followers in an industry can copy the technology
of the leader and also how much they have to pay to license past innovations. With full
patent protection, followers can catch up to the leader in their industry either by making the
same innovation(s) themselves or by making some pre-speci�ed payments to the technological
leaders.

We prove the existence of a steady-state equilibrium and characterize some of its proper-
ties. We then quantitatively investigate the implications of di¤erent types of IPR policy on
the equilibrium growth rate and welfare. The two major results of this exercise are as follows.
First, the growth rate and welfare in the standard models used in the (growth) literature can
be improved signi�cantly by introducing a simple form of licensing. Second and more impor-
tantly, full patent protection is not optimal from the viewpoint of maximizing welfare; instead,
welfare-maximizing (and growth-maximizing) policy involves state-dependent IPR protection,
providing greater protection to technological leaders that are further ahead than those that are
close to their followers. This form of the welfare-maximizing policy is a result of the �trickle-
down�e¤ect, which implies that providing greater protection to �rms that are further ahead of
their followers than a certain threshold increases the R&D incentives also for all technological
leaders that are less advanced than this threshold.
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1 Introduction

How should the intellectual property rights of a company be protected? Should a �rm with

a large technological lead receive the same intellectual property rights (IPR) protection as a

company with a more limited technological lead? These questions are central to many dis-

cussions of patent and competition policy. A recent ruling of the European Commission, for

example, has required Microsoft to share secret information about its products with other

software companies (New York Times, December 22, 2004). There is a similar debate about

whether Apple should make iPod�s code available to competitors that are producing comple-

mentary products. Central to these debates is the substantial technological lead that these

companies have built over their rivals, which was viewed by the European Commission both as

a source of excessive monopoly power and as an impediment to further technological progress

in the industry. A systematic analysis of these policy questions and a full investigation of the

e¤ects of intellectual property rights on growth and welfare require a framework incorporat-

ing state-dependent patent/IPR protection policy. By state-dependent IPR policy, we mean

a policy that makes the extent of patent or intellectual property rights protection conditional

on the technology gap between di¤erent �rms in the industry. Existing work has investigated

the optimal length and breadth of patents assuming an IPR policy that does not allow for

licensing and is uniform. In this paper, we make a �rst attempt to develop a framework that is

rich enough to investigate these issues and we use it to study the implications, and the optimal

form, of various IPR policies.

Our basic framework builds on and extends the step-by-step innovation models of Aghion,

Harris and Vickers (1997) and Aghion, Harris, Howitt and Vickers (2001), where a number of

(typically two) �rms engage in price competition within an industry and undertake R&D in

order to improve the quality of their product. The technology gap between the �rms determines

the extent of the monopoly power of the leader, and hence the price markups and pro�ts.

The purpose of R&D by the follower is to catch up and surpass the leader (as in standard

Schumpeterian models of innovation, e.g., Reinganum, 1981, 1985, Aghion and Howitt, 1992,

Grossman and Helpman, 1991), while the purpose of R&D by the leader is to escape the

competition of the follower and increase its markup and pro�ts. As in racing-type models in

general (e.g., Harris and Vickers, 1985, 1987, Budd, Harris and Vickers, 1993), a large gap

between the leader and the follower discourages R&D by both. Consequently, overall R&D

and technological progress are greater when the technology gap between the leader and the
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follower is relatively small.1 One may expect that full patent protection may be suboptimal in

a world of step-by-step competition; by stochastically or deterministically allowing the follower

to use the innovations of the technological leader, the likelihood of relatively small gap between

leaders and followers, and thus the amount of R&D, may be raised.2 Based on this intuition,

one may further conjecture that state-dependent IPR policy, when feasible, should provide less

protection to �rms that are technologically more advanced relative to their competitors.

There are two problems with this intuition, however. First, it is derived from models with

uniform IPR policy, where relaxation of patent protection always discourages R&D. The major

contribution of our paper will be to show that state-dependent relaxation of patent protection

can increase R&D. This force will lead to the opposite of the above conjecture and show that

optimal IPR policy involves providing more protection to �rms that are technologically more

advanced. This is because of trickle-down of incentives; providing relatively low protection

to �rms with limited leads and greater protection to those that have greater leads not only

improves the incentives of �rms that are technologically advanced, but also encourages R&D

by those that have limited leads because of the prospect of reaching levels of technology gaps

associated with greater protection. Second, this conjecture is based on models that do not

allow licensing of the leading-edge technology. Introducing licensing changes the trade-o¤s

underlying the above intuition and the implied form of the optimal IPR policy.3

To investigate these issues systematically, we construct a general equilibrium model with

step-by-step innovation, potential licensing of patents and state-dependent IPR policy. In our

model economy, each �rm can climb the technology ladder via three di¤erent methods: (i)

by �catch-up R&D,� that is, R&D investments applied to a variant of the technology of the

leader; (ii) by �frontier R&D,�that is, building on the patented innovations of the technological

leader for a pre-speci�ed license fee; and (iii) as a result of the expiration of the patent of the

technological leader.

The presence of various di¤erent forms of technological progress in this model allows for a

range of di¤erent policy regimes. The �rst is full patent protection with no licensing, which cor-

responds to the environment assumed in existing growth models (e.g., Aghion, Harris, Howitt

and Vickers, 2001) and provides full (inde�nite) patent protection to technological leaders, but

does not allow any licensing agreements (it sets the license fees to in�nity). The second is
1Aghion, Bloom, Blundell, Gri¢ th and Howitt (2005) provide empirical evidence that there is greater R&D

in British industries where there is a smaller technological gap between �rms. See O�Donoghue, Scotchmer and
Thisse (1998) for a discussion of how patent life may come to an end because of related innovations.

2This is conjectured, for example, in Aghion, Harris, Howitt and Vickers (2001, p. 481).
3See Scotchmer (2005) for the importance of incorporating these types of licensing agreements into models

of innovation.
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full patent protection with (compulsory) licensing. This regime allows technological followers

to build on the leading-edge technology in return for a pre-speci�ed license fee. Licensing is

�compulsory�in this regime in the sense that the patent holder does not have the right to refuse

to license its innovation to a follower that is willing to pay the pre-speci�ed license fee. There

is �full patent protection� in the sense that patents never expire and the license fee is equal

to the gain in net present value accruing to the follower because of its use of the leading-edge

technology.4 The third regime is uniform imperfect patent protection, which deviates from the

previous two benchmarks by allowing either expiration of patents and/or license fees that are

less than the full bene�t to the follower. The adjective uniform indicates that in this policy

environment all industries are treated identically regardless of the technology gap between the

leader and the follower. The �nal and most interesting policy regime is state-dependent imper-

fect patent protection, which deviates from full patent protection as a function of the technology

gap between the leader and the follower in the industry (i.e., it allows technologically more

advanced �rms to receive a di¤erent amount of IPR protection). Each of these policy regimes

captures a di¤erent conceptualization of IPR policy and is interesting in its own right (and

naturally, the last regime is general enough to nest the other three).

We �rst prove the existence of a stationary (steady-state) equilibrium under any of these

policy regimes and characterize a number of features of the equilibrium analytically. For

example, we prove that with uniform IPR policy, R&D investments decline when the gap

between the leader and the follower increases.

We then turn to a quantitative investigation of welfare-maximizing (�optimal�) IPR policy.

We provide a simple calibration of our baseline model and then derive the optimal IPR given

this economy. This calibration exercise only requires the choice of two parameters and the

functional form for the R&D production function. Despite its simplicity and parsimony, the

model generates reasonable numbers for the allocation of the workforce between production

and research and the magnitude of pro�ts in GDP. Our quantitative investigation leads to two

major results:

1. Allowing for (compulsory) licensing of patents increases the equilibrium growth and welfare

4Compulsory license fees may be based on the damage that the use of the technology causes to the tech-
nological leader (because of loss of pro�ts) or on the gain to followers from the use of superior technology. In
practice, licensing fees or patent infringement fees re�ect both the bene�ts to the �rm using the knowledge and
the damage to the original inventor (see, e.g., Scotchmer, 2005). In our analysis, we allow license fees to be
set at any level, thus incorporating both possibilities. The analysis can also be extended to allow for bilateral
licensing arrangements between the leader and the follower in the industry, for example at some license fee
that results from a bargain between them. We will discuss this possibility in subsection 3.3 and argue that
compulsory licensing fees typically improve welfare and growth relative to bilateral agreements.

3



of the economy signi�cantly. Intuitively, without such licensing, a large part of the R&D e¤ort

goes to duplication, and followers�R&D does not directly contribute to growth. Licensing

implies that R&D by all �rms� not just the leaders� contributes to growth and also increases

the R&D incentives of followers. In our benchmark parameterization, allowing for licensing

increases the steady-state equilibrium growth rate of the economy from 1.86% to 2.58% per

annum and also has a signi�cant e¤ect on steady-state welfare.

2. More importantly, we show that welfare-maximizing IPR policy is state dependent and

provides greater protection to �rms that are technologically more advanced (relative to techno-

logical leaders that only have a small lead over their followers). In particular, because of the

disincentive e¤ect of relaxing IPR protection on R&D, uniform IPR policy (either by manip-

ulating license fees or the duration of patents) has a minimal e¤ect on growth and welfare. In

contrast, state-dependent IPR policy can signi�cantly increase innovation, growth and welfare.

For example, in our baseline parameterization, optimal state-dependent IPR policy increases

the growth rate to 2.96% relative to the growth rate of 2.63% under (optimal) uniform IPR

policy.

The reason why optimal IPR policy provides greater protection to technological leaders that

are further ahead than their rivals is the trickle-down e¤ect. When a particular state for the

technological leader (say being n� steps ahead of the follower) is very pro�table, this increases

the incentives to perform R&D not only for leaders that are n� � 1 steps ahead, but for all
leaders with a lead of size n � n��1. The trickle-down e¤ect makes state-dependent IPR, with
greater protection for �rms that are technologically more advanced than their rivals, preferable

to uniform IPR. Another implication of the trickle-down e¤ect is also worth noting. As is well

known, uniform relaxation of IPR protection reduces R&D incentives (because innovation is

rewarded less). However, because of the trickle-down e¤ect, state-dependent relaxation of IPR

may increase (average) R&D investments� because increasing protection at technology gap n�

and reducing it at n� � k creates a big boost to the R&D of �rms with technological lead of

n� � k steps. We will show that for plausible parameter values the amount of R&D is greater
under imperfect state-dependent IPR protection than under full IPR protection, and this will

be the main reason why state-dependent IPR can have a signi�cant positive e¤ect on economic

growth.

Our paper is a contribution both to the IPR protection and the endogenous growth litera-

tures. Previous work in industrial organization and in growth theory emphasizes that ex-post

monopoly rents and thus patents are central for generating the ex-ante investments in R&D
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and technological progress, even though monopoly power also creates distortions (e.g., Arrow,

1962, Reinganum, 1981, Tirole, 1988, Romer, 1990, Grossman and Helpman, 1991, Aghion

and Howitt, 1992, Green and Scotchmer, 1995, Scotchmer, 1999, Gallini and Scotchmer, 2002,

O�Donoghue and Zweimuller, 2004).5 Much of the literature discusses the trade-o¤ between

these two forces to determine the optimal length and breadth of patents. For example, Klem-

perer (1990) and Gilbert and Shapiro (1990) show that optimal patents should have a long

duration in order to provide inducement to R&D, but a narrow breadth so as to limit monopoly

distortions. A number of other papers, for example, Gallini (1992) and Gallini and Scotchmer

(2002), reach opposite conclusions.

Another branch of the literature, including the seminal paper by Scotchmer (1999) and

the recent interesting papers by Llobet, Hopenhayn and Mitchell (2006) and Hopenhayn and

Mitchell (2001), adopts a mechanism design approach to the determination of the optimal

patent and intellectual property rights protection system. For example, Scotchmer (1999)

derives the patent renewal system as an optimal mechanism in an environment where the cost

and value of di¤erent projects are unobserved and the main problem is to decide which projects

should go ahead. Llobet, Hopenhayn and Mitchell (2006) consider optimal patent policy in the

context of a model of sequential innovation with heterogeneous quality and private information.

They show that allowing for a choice from a menu of patents will be optimal in this context.

To the best of our knowledge, no other paper in the literature has considered state-dependent

IPR policy or developed the general equilibrium framework for IPR policy analysis. As a �rst

attempt, we only look at state-dependent patent length and license fees (though similar ideas

can be applied to an investigation of the gains from making the breadth of patent awards

state-dependent).

Our paper is most closely related to and extends the results of Aghion, Harris and Vickers

(1997) and Aghion, Harris, Howitt and Vickers (2001) on endogenous growth with step-by-

step innovation.6 Although our model builds on these papers, it also di¤ers from them in a

number of signi�cant ways. First, we allow licensing agreements whereby followers can pay a

pre-speci�ed license fee for building on the leading-edge technology developed by other �rms.

We show that such licensing has signi�cant e¤ects on growth and welfare. Second, our economy

incorporates a general IPR policy that can be state dependent. Third, in our economy there

is a general equilibrium interaction between production and R&D, since they both compete

5Boldrin and Levine (2001, 2004) or Quah (2003) argue that patent systems are not necessary for innovation.
6Segal and Whinston (2005) analyze the impact of anti-trust policy on economic growth in a related model

of step-by-step innovation.
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for scarce labor.7 Finally, we provide a number of analytical results for the general model

(with or without IPR policy), while previous literature has focused on the special cases where

innovations are either �drastic�(so that the leader never undertakes R&D) or very small, and

has not provided existence or general characterization results for steady-state equilibria in this

class of economies.

Lastly, our results are also related to the literature on tournaments and races, for example,

Fudenberg, Gilbert, Stiglitz and Tirole (1983), Harris and Vickers (1985, 1987), Choi (1991),

Budd, Harris and Vickers (1993), Taylor (1995), Fullerton and McAfee (1999), Baye and Hoppe

(2003), and Moscarini and Squintani (2004). This literature considers the impact of endogenous

or exogenous prizes on e¤ort in tournaments, races or R&D contests. In terms of this literature,

state-dependent IPR policy can be thought of as �state-dependent handicapping�of di¤erent

players (where the state variable is the gap between the two players in a dynamic tournament).

To the best of our knowledge, these types of schemes have not been considered in this literature.

The rest of the paper is organized as follows. Section 2 presents the basic environment.

Section 3 proves the existence of a steady-state equilibrium and characterizes some of its

key properties under both uniform and state-dependent IPR policy. In this section, we also

brie�y discuss how bargaining over license fees can be incorporated into our framework and

why compulsory licensing fees would have a useful role even in the presence of bilateral bar-

gaining between technology leaders and followers. Section 4 quantitatively evaluates the im-

plications of various di¤erent types of IPR policy regimes on welfare and characterizes the

welfare-maximizing state-dependent IPR policies. Section 5 concludes, while the Appendix

contains the proofs of all the results stated in the text.

2 Model

We now describe the basic environment. The characterization of the equilibrium under the

di¤erent policy regimes is presented in the next section.

2.1 Preferences and Technology

Consider the following continuous time economy with a unique �nal good. The economy is

populated by a continuum of 1 individuals, each with 1 unit of labor endowment, which they

7This general equilibrium aspect is introduced to be able to close the model economy without unrealistic
assumptions and makes our economy more comparable to other growth models (Aghion, Harris, Howit and
Vickers, 2001, assume a perfectly elastic supply of labor). We show that the presence of general equilibrium
interactions does not signi�cantly complicate the analysis and it is still possible to characterize the steady-state
equilibrium.
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supply inelastically. Preferences at time t are given by

Et
Z 1

t
exp (�� (s� t)) logC (s) ds; (1)

where Et denotes expectations at time t, � > 0 is the discount rate and C (t) is consumption

at date t. The logarithmic preferences in (1) facilitate the analysis, since they imply a simple

relationship between the interest rate, growth rate and the discount rate (see (2) below).

Let Y (t) be the total production of the �nal good at time t. We assume that the economy

is closed and the �nal good is used only for consumption (i.e., there is no investment), so that

C (t) = Y (t). The standard Euler equation from (1) then implies that

g (t) �
_C (t)

C (t)
=
_Y (t)

Y (t)
= r (t)� �; (2)

where this equation de�nes g (t) as the growth rate of consumption and thus output, and r (t)

is the interest rate at date t.

The �nal good Y is produced using a continuum 1 of intermediate goods according to the

Cobb-Douglas production function

lnY (t) =

Z 1

0
ln y (j; t) dj; (3)

where y (j; t) is the output of jth intermediate at time t. Throughout, we take the price of the

�nal good as the numeraire and denote the price of intermediate j at time t by p (j; t). We

also assume that there is free entry into the �nal good production sector. These assumptions,

together with the Cobb-Douglas production function (3), imply that the �nal good sector has

the following demand for intermediates

y (j; t) =
Y (t)

p (j; t)
; 8j 2 [0; 1] : (4)

Intermediate j 2 [0; 1] comes in two di¤erent varieties, each produced by one of two

in�nitely-lived �rms. We assume that these two varieties are perfect substitutes and these

�rms compete a la Bertrand.8 Firm i = 1 or 2 in industry j has the following technology

y (j; t) = qi (j; t) li (j; t) (5)
8A more general case would involve these two varieties being imperfect substitutes, for example, with the

output of intermediate j produced as

y (j; t) =
h
'y1 (j; t)

��1
� + (1� ') y2 (j; t)

��1
�

i �
��1

;

with � > 1. The model analyzed in the text corresponds to the limiting case where � !1. Our results can be
easily extended to this more general case with any � > 1, but at the cost of additional notation. We therefore
prefer to focus on the case where the two varieties are perfect substitutes. It is nonetheless useful to bear this
formulation with imperfect substitutes in mind, since it facilitates the interpretation of �distinct� innovations
by the two �rms (when the follower engages in �catch-up�R&D).
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where li (j; t) is the employment level of the �rm and qi (j; t) is its level of technology at

time t. Each consumer in the economy holds a balanced portfolio of the shares of all �rms.

Consequently, the objective function of each �rm is to maximize expected pro�ts.

The production function for intermediate goods, (5), implies that the marginal cost of

producing intermediate j for �rm i at time t is

MCi (j; t) =
w (t)

qi (j; t)
(6)

where w (t) is the wage rate in the economy at time t.

When this causes no confusion, we denote the technological leader in each industry by i

and the follower by �i, so that we have:

qi (j; t) � q�i (j; t) :

Bertrand competition between the two �rms implies that all intermediates will be supplied by

the leader at the �limit�price:9

pi (j; t) =
w (t)

q�i (j; t)
: (7)

Equation (4) then implies the following demand for intermediates:

y (j; t) =
q�i (j; t)

w (t)
Y (t) : (8)

2.2 Technology, R&D and IPR Policy

R&D by the leader or the follower stochastically leads to innovation. We assume that when

the leader innovates, its technology improves by a factor � > 1.

The follower, on the other hand, can undertake R&D to catch up with the frontier tech-

nology or to improve over the frontier technology.10 The �rst possibility is catch-up R&D and

can be thought of R&D to discover an alternative way of performing the same task as the

current leading-edge technology. Because this innovation applies to the follower�s variant of

the product (recall footnote 8) and results from its own R&D e¤orts, we assume that it does

9 If the leader were to charge a higher price, then the market would be captured by the follower earning
positive pro�ts. A lower price can always be increased while making sure that all �nal good producers still
prefer the intermediate supplied by the leader i rather than that by the follower �i, even if the latter were
supplied at marginal cost. Since the monopoly price with the unit elastic demand curve is in�nite, the leader
always gains by increasing its price, making the price given in (7) the unique equilibrium price.
10A third possibility is for the follower to climb the technology ladder step-by-step, meaning that, for example,

when the current leader is at some technology rung nij (t) and the follower itself is at n�ij (t) < nij (t) � 1,
it must �rst discover technology n�ij (t) + 1, et cetera. We have investigated this type of environment with
�slow catch-up�in a previous version of the paper. Since the general results are similar, we do not discuss this
variation to save space.
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not constitute infringement on the patent of the leader, and the follower does not have to make

any license fee payments. Therefore, if the follower chooses the �rst possibility, it will have to

retrace the steps of the technological leader (corresponding to its own variant of the product),

but in return, it will not have to pay a patent license fee. For follower �rm �i in industry j at
time t, we denote this type of R&D by

a�i (j; t) = 0:

The alternative, frontier R&D, involves followers building on and improving the current

leading-edge technology. If this type of R&D succeeds, the follower will have improved the

leading-edge technology using the patented knowledge of the technological leader, and thus

will have to pay a license fee to the leader. The license fees may result from bargaining

between the leader and the follower or they may be compulsory license fees imposed by policy.

In either case, one must �rst characterize the equilibrium for a given sequence of license fees,

which will be the main part of our analysis. We specify the license fees and how they vary

below, and consistent with our main focus, we refer to them as �policy,�though we will also

discuss how they can be determined via bargaining.11 This strategy is denoted by

a�i (j; t) = 1:

Throughout, we allow a�i (j; t) 2 [0; 1] for mathematical convenience, thus a should be inter-
preted as the probability of frontier R&D by the follower.

R&D by the leader, catch-up R&D by the follower, and frontier R&D by the follower may

have di¤erent costs and success probabilities. We simplify the analysis by assuming that all

three types of R&D have the same costs and the same probability of success. In particular, in

all cases, we assume that innovations follow a controlled Poisson process, with the arrival rate

determined by R&D investments. Each �rm (in every industry) has access to the following

R&D technology:

xi (j; t) = F (hi (j; t)) ; (9)

where xi (j; t) is the �ow rate of innovation at time t and hi (j; t) is the number of workers

hired by �rm i in industry j to work in the R&D process at t. This speci�cation implies that

within a time interval of �t, the probability of innovation for this �rm is xi (j; t)�t+ o (�t).

We assume that F is twice continuously di¤erentiable and satis�es F 0 (�) > 0; F 00 (�) < 0,

F 0 (0) < 1 and that there exists �h 2 (0;1) such that F 0 (h) = 0 for all h � �h. The

11 It should already be noted that the follower will never license the technology of the leader for production
purposes, since this would lead to Bertrand competition and zero ex post pro�ts for both parties.
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assumption that F 0 (0) < 1 implies that there is no Inada condition when hi (j; t) = 0. The

last assumption, on the other hand, ensures that there is an upper bound on the �ow rate of

innovation (which is not essential but simpli�es the proofs). Recalling that the wage rate for

labor is w (t), the cost for R&D is therefore w (t)G (xi (j; t)) where

G (xi (j; t)) � F�1 (xi (j; t)) ; (10)

and the assumptions on F immediately imply that G is twice continuously di¤erentiable and

satis�es G0 (�) > 0; G00 (�) > 0, G0 (0) > 0 and limx!�xG
0 (x) =1, where

�x � F
�
�h
�

(11)

is the maximal �ow rate of innovation (with �h de�ned above).

We next describe the evolution of technologies within each industry. Suppose that leader i

in industry j at time t has a technology level of

qi (j; t) = �nij(t); (12)

and that the follower �i�s technology at time t is

q�i (j; t) = �n�ij(t); (13)

where nij (t) � n�ij (t) and nij (t), n�ij (t) 2 Z+ denote the technology rungs of the leader and
the follower in industry j. We refer to nj (t) � nij (t)�n�ij (t) as the technology gap in industry
j. If the leader undertakes an innovation within a time interval of �t, then its technology

increases to qi (j; t+�t) = �nijt+1 and the technology gap rises to nj (t+�t) = nj (t) + 1

(the probability of two or more innovations within the interval �t will be o (�t), where o (�t)

represents terms that satisfy lim�t!0 o (�t) =�t).

When the follower is successful in catch-up R&D (i.e., a�i (j; t) = 0) within the interval

�t, then its technology improves to

q�i (j; t+�t) = �nijt ;

and the technology gap variable becomes njt+�t = 0. In contrast, if the follower is successful

in frontier R&D and pays the license fee (i.e., a�i (j; t) = 1), then it surpasses the leading-edge

technology, so we have

q�i (j; t+�t) = �nijt+1

and the technology gap variable becomes njt+�t = 1 (and from this point onwards, the labels

i and �i are swapped, since the previous follower now becomes the leader).
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In addition to catching up with or surpassing the technology frontier with their own R&D,

followers can also copy the technology frontier because IPR policy is such that some patents

expire. In particular, we assume that patents expire at some policy-determined Poisson

rate �, and after expiration, followers can costlessly copy the frontier technology, jumping

to q�i (j; t+�t) = �nijt .12

This description makes it clear that there are two aspects to IPR policy: (i) the length

of the patent (modeled as a Poisson rate of arrival of the termination of the patent); (ii) the

license fees. We allow both of these to be state dependent, so they are represented by the

following two functions:

� : N! R+

and for all t � 0,
�̂ (t) : N! R+ [ f+1g :

Here � (n) � �n < 1 is the �ow rate at which the patent protection is removed from a

technological leader that is n steps ahead of the follower. When �n = 0, this implies that there

is full protection at technology gap n, in the sense that patent protection will never be removed.

In contrast, �n ! 1 implies that patent protection is removed immediately once technology

gap n is reached. Similarly, �̂ (n; t) � �̂n (t) denotes the patent fee that a follower has to pay in

order to build upon the innovation of the technological leader, when the technology gap in the

industry is n steps.13 Our formulation imposes that � �f�1; �2; :::g is time-invariant, while
�̂ (t)�

n
�̂1 (t) ; �̂2 (t) ; :::

o
is a function of time. This is natural, since in a growing economy,

license fees should not remain constant. Below, we will require that �̂ grows at the same rate

as aggregate output in the economy.

When �̂n (t) = 0, there is no protection because followers can license the leading-edge

technology at zero cost.14 In contrast, when �̂n (t) =1, licensing the leading-edge technology
is prohibitively costly. Note however that �̂n < 1 does not necessarily imply that patent

protection is imperfect. In particular, in what follows we interpret a situation in which the

12Alternative modeling assumptions on IPR policy, such as a �xed patent length of T > 0 from the time
of innovation, are not tractable, since they lead to value functions that take the form of delayed di¤erential
equations.
13Throughout, we assume that � is a policy choice and �rms cannot contract around it. An alternative

approach would be to allow �rms to bargain over the level of license fees. In this case, it is plausible to presume
that the legally-speci�ed infringement penalties or license fees will a¤ect the equilibrium in the bargaining game,
so the e¤ect of policies we investigate would still be present. We do not allow bargaining between �rms over
the license fees in order to simplify the analysis.
14Throughout, we interpret �n (t) = 0 as �n (t) = " with " # 0, so that followers continue not to license the

new technology without innovation (recall the comment in footnote 11).
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license fee is equal to the net extra gain from surpassing the leader rather than being neck-

and-neck (i.e., being at a technology gap of 0) as �full protection�.15 We also refer to a policy

regime as uniform IPR protection if both � and �̂ (t) are constant functions of n, meaning that

intellectual property law treats all �rms and industries identically regardless of the technology

gap between the leader and the follower (i.e., �uni�f�; �; :::g and �̂uni (t)�
n
�̂ (t) ; �̂ (t) ; :::

o
).

We also assume that there exists some �n < 1 such that �n = ��n and �̂n (t) = �̂�n (t) for all

n � �n.
Given this speci�cation, we can now write the law of motion of the technology gap in

industry j as follows:

nj (t+�t) =

8>>>>>>>>>><>>>>>>>>>>:

nj (t) + 1

0

1

nj (t)

with probability

with probability

with probability

with probability

xi (j; t)�t+ o (�t)�
(1� a�i (j; t))x�i (j; t) + �nj(t)

�
�t+ o (�t)

a�i (j; t)x�i (j; t)�t+ o (�t)

1�
�
xi (j; t) + x�i (j; t) + �nj(t)

�
�t� o (�t))

:

(14)

Here o (�t) again represents second-order terms, in particular, the probabilities of more than

one innovations within an interval of length �t. The terms xi (j; t) and x�i (j; t) are the

�ow rates of innovation by the leader and the follower; a�i (j; t) 2 [0; 1] denotes whether the
follower is trying to catch up with a leader or surpass it; and �nj(t) is the �ow rate at which the

follower is allowed to copy the technology of a leader that is nj (t) steps ahead. Intuitively, the

technology gap in industry j increases from nj (t) to nj (t)+1 if the leader is successful. When

a�i (j; t) = 1, the technology gap in industry j becomes 1 if the follower is successful (�ow

rate x�i (j; t)). Finally, the �rms become �neck-and-neck�when the follower comes up with

an alternative technology to that of the leader (�ow rate x�i (j; t)) without using the license

(a�i (j; t) = 0) or the patent expires at the �ow rate �nj :

15 In other words, we interpret �full protection�to correspond to a situation in which �n (t) � V1 (t)� V0 (t),
where V1 refers to the net present value of a �rm that is one step ahead of its rival and V0 is the value of a �rm
that is neck-and-neck with its rival. Alternatively, full protection could be interpreted as corresponding to the
case in which the follower pays a license fee equal to the loss of pro�ts that it causes for the technology leader
(see Scotchmer, 2005). In our model, this would correspond to �n (t) = V0 (t) � V�1 (t), where V�1 is the net
present value of a �rm that is one step behind the technology leader. In all equilibria we compute below, we
�nd that the second amount is signi�cantly less than the �rst, thus our notion of full protection licensing fee
is large enough to cover both possibilities. In any case, what value of � is designated as �full protection�does
not have any bearing on our formal analysis, since we characterize the equilibrium for any � and then �nd the
welfare-maximizing policy sequence.
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2.3 Pro�ts

We next write the instantaneous �operating�pro�ts for the leader (i.e., the pro�ts exclusive

of R&D expenditures and license fees). Pro�ts of leader i in industry j at time t are

�i (j; t) = [pi (j; t)�MCi (j; t)] yi (j; t)

=

�
w (t)

q�i (j; t)
� w (t)

qi (j; t)

�
Y (t)

pi (j; t)

=
�
1� ��nj(t)

�
Y (t) (15)

where nj (t) � nij (t)�n�ij (t) is the technology gap in industry j at time t. The �rst line simply
uses the de�nition of operating pro�ts as price minus marginal cost times quantity sold. The

second line uses the fact that the equilibrium limit price of �rm i is pi (j; t) = w (t) =q�i (j; t)

as given by (7), and the �nal equality uses the de�nitions of qi (j; t) and q�i (j; t) from (12)

and (13). The expression in (15) also implies that there will be zero pro�ts in neck-and-neck

industries, i.e., in those with nj (t) = 0. Also clearly, followers always make zero pro�ts, since

they have no sales.

The Cobb-Douglas aggregate production function in (3) is responsible for the form of the

pro�ts (15), since it implies that pro�ts only depend on the technology gap of the industry

and aggregate output. This will simplify the analysis below by making the technology gap in

each industry the only industry-speci�c payo¤-relevant state variable.

The objective function of each �rm is to maximize the net present discounted value of �net

pro�ts�(operating pro�ts minus R&D expenditures and plus or minus patent fees). In doing

this, each �rm will take the sequence of interest rates, [r (t)]t�0, the sequence of aggregate

output levels, [Y (t)]t�0, the sequence of wages, [w (t)]t�0, the R&D decisions of all other �rms

and policies as given.

2.4 Equilibrium

Let � (t)�f�n (t)g1n=0 denote the distribution of industries over di¤erent technology gaps, withP1
n=0 �n (t) = 1. For example, �0 (t) denotes the fraction of industries in which the �rms are

neck-and-neck at time t. Throughout, we focus on Markov Perfect Equilibria (MPE), where

strategies are only functions of the payo¤-relevant state variables.16 This allows us to drop

the dependence on industry j, thus we refer to R&D decisions by xn for the technological

16MPE is a natural equilibrium concept in this context, since it does not allow for implicit collusive agreements
between the follower and the leader. While such collusive agreements may be likely when there are only two
�rms in the industry, in most industries there are many more �rms and also many potential entrants, making
collusion more di¢ cult. Throughout, we assume that there are only two �rms to keep the model tractable.
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leader that is n steps ahead and by a�n and x�n for a follower that is n steps behind. Let

us denote the list of decisions by the leader and the follower with technology gap n at time

t by �n (t) � hxn (t) ; pi (j; t) ; yi (j; t)i and ��n (t) � ha�n (t) ; x�n (t)i.17 Throughout, � will

indicate the whole sequence of decisions at every state, so that � (t) � f�n (t)g1n=�1 :We de�ne

an allocation as follows:

De�nition 1 (Allocation) Let < �; [�̂ (t)]t�0 > be the IPR policy sequences. Then an

allocation is a sequence of decisions for a leader that is n = 0; 1; 2; ::: step ahead, [�n (t)]t�0,

a sequence of R&D decisions for a follower that is n = 1; 2; ::: step behind,
�
��n (t)

�
t�0, a

sequence of wage rates [w (t)]t�0, and a sequence of industry distributions over technology gaps

[� (t)]t�0.

For given IPR sequences � and [�̂ (t)]t�0, MPE strategies, which are only functions of the

payo¤-relevant state variables, can be represented as follows

x : Z� R2+ � [0; 1]
1! R+;

a : Z�n f0g � R2+ � [0; 1]
1! [0; 1] :

The �rst mapping represents the R&D decision of a �rm (both when it is the follower and

when it is the leader in an industry) as a function of the technology gap, n 2 Z, the aggregate
level of output and the wage, (Y;w) 2 R2+, and R&D decision of the other �rm in the industry,
~x 2 [0; 1]1. The second function represents the follower�s decision of whether to direct its R&D
to catching up with or surpassing the leading-edge technology (or more precisely, it represents

the probability with which the follower will choose to undertake R&D to surpass the leading

edge technology). Consequently, we have the following de�nition of equilibrium:

De�nition 2 (Equilibrium) Given an IPR policy sequence < �; [�̂ (t)]t�0 >, a Markov

Perfect Equilibrium is given by a sequence [�� (t) ; w� (t) ; Y � (t)]t�0 such that (i) [p
�
i (j; t)]t�0

and [y�i (j; t)]t�0 implied by [�
� (t)]t�0 satisfy (7) and (8); (ii) R&D policies [a� (t) ;x� (t)]t�0

are best responses to themselves, i.e., [a� (t) ;x� (t)]t�0 maximizes the expected pro�ts of �rms

taking aggregate output [Y � (t)]t�0, wages [w
� (t)]t�0, government policy < �; [�̂ (t)]t�0 > and

the R&D policies of other �rms [a� (t) ;x� (t)]t�0 as given; (iii) aggregate output [Y � (t)]t�0 is

given by (3); and (iv) the labor market clears at all times given the wage sequence [w� (t)]t�0.

17The price and output decisions, pi (j; t) and yi (j; t), depend not only on the technology gap, aggregate
output and the wage rate, but also on the exact technology rung of the leader, nij (t). With a slight abuse of
notation, throughout we suppress this dependence, since their product pi (j; t) yi (j; t) and the resulting pro�ts
for the �rm, (15), are independent of nij (t), and consequently, only the technology gap, nj (t), matters for
pro�ts, R&D, aggregate output and economic growth.
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2.5 The Labor Market

Since only the technological leader produces, labor demand in industry j with technology gap

nj (t) = n can be expressed as

ln (t) =
��nY (t)

w (t)
for n 2 Z+: (16)

In addition, there is demand for labor coming for R&D from both followers and leaders in all

industries. Using (9) and the de�nition of the G function, we can express industry demands

for R&D labor as

hn (t) = G (xn (t)) +G (x�n (t)) for n 2 Z+ ; (17)

where G (xn (t)) and G (x�n (t)) refer to the demand of the leader and the follower in an

industry with a technology gap of n. Note that in this expression, x�n (t) refers to the R&D

e¤ort of a follower that is n steps behind (conditional on its optimal choice of a�n (t) 2 [0; 1]).
The labor market clearing condition can then be expressed as:

1 �
1X
n=0

�n (t)

�
1

! (t)�n
+G (xn (t)) +G (x�n (t))

�
; (18)

and ! (t) � 0, with complementary slackness, where

! (t) � w (t)

Y (t)
(19)

is the labor share at time t. The labor market clearing condition, (18), uses the fact that total

supply is equal to 1, and demand cannot exceed this amount. If demand falls short of 1, then

the wage rate, w (t), and thus the labor share, ! (t), have to be equal to zero (though this

will never be the case in equilibrium). The right-hand side of (18) consists of the demand for

production (the terms with ! in the denominator), the demand for R&D workers from the

neck-and-neck industries (2G (x0 (t)) when n = 0) and the demand for R&D workers coming

from leaders and followers in other industries (G (xn (t)) +G (x�n (t)) when n > 0).

De�ning the index of aggregate quality in this economy by the aggregate of the qualities

of the leaders in the di¤erent industries, i.e.,

lnQ (t) �
Z 1

0
ln qi (j; t) dj; (20)

the equilibrium wage can be written as:18

w (t) = Q (t)��
P1
n=0 n�n(t): (21)

18Note that lnY (t) =
R 1
0
ln qi (j; t) l (j; t) dj =

R 1
0

h
ln qi (j; t) + ln

Y (t)
w(t)

��nj
i
dj, where the second equality uses

(16). Thus we have lnY (t) =
R 1
0
[ln qi (j; t) + lnY (t)� lnw (t)� nj ln�] dj. Rearranging and canceling terms,

and writing exp
R
nj ln�dj = �

�
P1
n=0 n�n(t), we obtain (21).
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2.6 Steady State and the Value Functions

Let us now focus on steady-state (Markov Perfect) equilibria, where the distribution of in-

dustries � (t) � f�n (t)g1n=0 is stationary, ! (t) de�ned in (19) and g; the growth rate of the
economy, are constant over time. We will establish the existence of such an equilibrium and

characterize a number of its properties. If the economy is in steady state at time t = 0, then

by de�nition, we have Y � (t) = Y0e
g�t and w� (t) = w0e

g�t, where g� is the steady-state growth

rate. These two equations also imply that ! (t) = !� for all t � 0. Throughout, we assume

that the parameters are such that the steady-state growth rate g� is positive but not large

enough to violate the transversality conditions. This implies that net present values of each

�rm at all points in time will be �nite. This enables us to write the maximization problem of

a leader that is n > 0 steps ahead recursively.

First note that given an optimal policy x̂ for a �rm, the net present discounted value of a

leader that is n steps ahead at time t can be written as:

Vn (t) = Et
Z 1

t
exp (�r (s� t)) [� (s) + Z (s)� w (s)G (x̂ (s))] ds

where �(s) is the operating pro�t at time s � t, Z (s) is the patent license fees received (or

paid) by a �rm which is the leader and w (s)G (x̂ (s)) denotes the R&D expenditure at time

s � t. All variables are stochastic and depend on the evolution of the technology gap within

the industry.

Next taking as given the equilibrium R&D policy of other �rms, x��n (t) and a
�
�n (t), the

equilibrium interest and wage rates, r� (t) and w� (t), and equilibrium pro�ts f��n (t)g
1
n=1 (as

a function of equilibrium aggregate output), this value can be written as (see the Appendix

for the derivation of this equation):19

r� (t)Vn (t)� _Vn (t) = max
xn(t)

8><>:
[��n (t)� w� (t)G (xn (t))] + xn (t) [Vn+1 (t)� Vn (t)]
+
��
1� a��n (t)

�
x��n (t) + �n

�
[V0 (t)� Vn (t)]

+
�
a��n (t)x

�
�n (t) + �n

� h
V�1 (t)� Vn (t) + �̂n

i
9>=>; ; (22)

where _Vn (t) denotes the derivative of Vn (t) with respect to time. The �rst term is cur-

rent pro�ts minus R&D costs, while the second term captures the fact that the �rm will

undertake an innovation at the �ow rate xn (t) and increase its technology lead by one step.

The remaining terms incorporate changes in value due to catch-up by the follower (�ow rate�
1� a��n (t)

�
x��n (t) + �n in the second line) and due to the follower leapfrogging the leader

19Clearly, this value function could be written for any arbitrary sequence of R&D policies of other �rms. We
set the R&D policies of other �rms to their equilibrium values, x��n (t) and a

�
�n (t), to reduce notation in the

main body of the paper.
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(�ow rate a��n (t)x
�
�n (t) in the third line). In this last case, the follower will make a payment

of �̂n to the leader for the license.

In steady state, the net present value of a �rm that is n steps ahead, Vn (t), will also grow

at a constant rate g� for all n 2 Z+. Let us then de�ne the normalized values as

vn (t) �
Vn (t)

Y (t)
(23)

for all n 2 Z, which will be independent of time in steady state, i.e., vn (t) = vn. Similarly, in

what follows we assume that license fees are also scaled up by GDP, so that

�n �
�̂n (t)

Y (t)
;

which will ensure the existence of a (stationary) steady-state equilibrium.

Using (23) and the fact that from (2), r (t) = g (t)+�, the recursive form of the steady-state

value function (22) can be written as:

�vn = max
xn

� �
1� ��n

�
� !�G (xn) + xn [vn+1 � vn]

+
��
1� a��n

�
x��n + �n

�
[v0 � vn] + a��nx��n [v�1 � vn + �n]

�
for n 2 N; (24)

where x��n is the equilibrium value of R&D by a follower that is n steps behind, and !� is the

steady-state labor share (while xn is now explicitly chosen to maximize vn).

Similarly the value for neck-and-neck �rms is

�v0 = max
x0

f�!�G (x0) + x0 [v1 � v0] + x�0 [v�1 � v0]g ; (25)

while the values for followers are given by

�v�n = max
x�n;a�n

�
�!�G (x�n) + [(1� a�n)x�n + �n] [v0 � v�n]
+a�nx�n [v1 � v�n � �n] + x�n [v�n�1 � v�n]

�
for n 2 N; (26)

which takes into account that if the follower decides to build upon the leading-edge technology,

when it innovates it will become the new leader but will have to pay the patent fee �n.

For neck-and-neck �rms and followers, there are no instantaneous pro�ts, which is re�ected

in (25) and (26). In the former case this is because neck-and-neck �rms sell at marginal cost,

and in the latter case, this is because followers have no sales. These normalized value functions

emphasize that, because of growth, the e¤ective discount rate is r (t) � g (t) = � rather than

r (t).

The maximization problems in (24)-(25) immediately imply that any steady-state equilib-

rium R&D policies, ha�;x�i, must satisfy:

a��n

8<:
= 1 if v1 � �n > v0
2 [0; 1] if v1 � �n = v0
= 0 if v1 � �n < v0

(27)
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and

x�n = max

�
G0�1

�
[vn+1 � vn]

!�

�
; 0

�
(28)

x��n = max

(
G0�1

 �
1� a��n

�
[v0 � v�n] + a��n [v1 � v�n � �n]

!�

!
; 0

)
(29)

x�0 = max

�
G0�1

�
[v1 � v0]
!�

�
; 0

�
; (30)

where the normalized value functions, the vs, are evaluated at the equilibrium, and G0�1 (�) is
the inverse of the derivative of the G function. Since G is twice continuously di¤erentiable and

strictly concave, G0�1 is continuously di¤erentiable and strictly increasing. These equations

therefore imply that innovation rates, the x�ns, will increase whenever the incremental value of

moving to the next step is greater and when the cost of R&D, as measured by the normalized

wage rate, !�, is less. Note also that since G0 (0) > 0, these R&D levels can be equal to zero,

which is taken care of by the max operator.

The response of innovation rates, x�n, to the increments in values, vn+1 � vn, is the key

economic force in this model. For example, a policy that reduces the patent protection of

leaders that are n + 1 steps ahead (by increasing �n+1 or reducing �n+1) will make being

n + 1 steps ahead less pro�table, thus reduce vn+1 � vn and x�n. This corresponds to the

standard disincentive e¤ect of relaxing IPR policy. In contrast to existing models, however,

here relaxing IPR policy can also create a positive incentive e¤ect. This novel incentive e¤ect

has two components. First, as equation (29) shows, weaker patent protection in the form

of lower license fees (lower �) may encourage further frontier R&D by the followers, directly

contributing to aggregate growth. Second and perhaps somewhat more paradoxically, lower

protection for technological leaders that are n + 1 steps ahead will tend to reduce vn+1, thus

increasing vn+2 � vn+1 and x�n+1. We will see that this latter e¤ect plays an important role

in the form of optimal state-dependent IPR policy. In addition to the incentive e¤ects, relax-

ing IPR protection may also create a bene�cial composition e¤ect ; this is because, typically,

fvn+1 � vng1n=0 is a decreasing sequence, which implies that x�n�1 is higher than x�n for n � 1
(see, e.g., Proposition 2). Weaker patent protection (in the form of shorter patent lengths)

will shift more industries into the neck-and-neck state and potentially increase the equilibrium

level of R&D in the economy. Finally, weaker patent protection also creates a bene�cial �level

e¤ect� by in�uencing equilibrium markups and prices (as shown in equation (7) above) and

by reallocating some of the workers engaged in �duplicative�R&D to production. This level

e¤ect will also feature in our welfare computations. The optimal level and structure of IPR

18



policy in this economy will be determined by the interplay of these various forces.

Given the equilibrium R&D decisions ha�; x�i, the steady-state distribution of industries
across states �� has to satisfy the following accounting identities:�

x�n+1 + x
�
�n�1 + �n+1

�
��n+1 = x�n�

�
n for n 2 N; (31)

�
x�1 + x

�
�1 + �1

�
��1 = 2x

�
0�
�
0 +

1X
n=1

a��nx
�
�n�

�
n; (32)

2x�0�
�
0 =

1X
n=1

��
1� a��n

�
x��n + �n

�
��n: (33)

The �rst expression equates exit from state n + 1 (which takes the form of the leader going

one more step ahead or the follower catching up for surpassing the leader) to entry into the

state (which takes the form of a leader from state n making one more innovation). The second

equation, (32), performs the same accounting for state 1, taking into account that entry into

this state comes from innovation by either of the two �rms that are competing neck-and-neck

and also from followers that perform frontier R&D. Finally, equation (33) equates exit from

state 0 with entry into this state, which comes from innovation by a follower in any industry

with n � 1.
The labor market clearing condition in steady state can then be written as

1 �
1X
n=0

��n

�
1

!��n
+G (x�n) +G

�
x��n

��
and !� � 0, (34)

with complementary slackness.

The next proposition characterizes the steady-state growth rate. As with all the other

results in the paper, the proof of this proposition is provided in the Appendix.

Proposition 1 Let the steady-state distribution of industries and R&D decisions be given by

< ��; a�; x� >, then the steady-state growth rate is

g� = ln�

"
2��0x

�
0 +

1X
n=1

��n
�
x�n + a

�
�nx

�
�n
�#
: (35)

This proposition clari�es that the steady-state growth rate of the economy is determined

by three factors:

1. R&D decisions of industries at di¤erent levels of technology gap, x� � fx�ng
1
n=�1.

2. The distribution of industries across di¤erent technology gaps, �� � f��ng
1
n=0.
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3. Whether followers are undertaking R&D to catch up with the frontier or to surpass the

frontier, a� � fa�ng
�1
n=�1.

IPR policy a¤ects these three margins in di¤erent directions as illustrated by the discussion

above.

3 Existence and Characterization of Steady-State Equilibria

We now de�ne a steady-state equilibrium in a more convenient form, which will be used to

establish existence and derive some of the properties of the equilibrium.

De�nition 3 (Steady-State Equilibrium) Given an IPR policy < �; � >, a steady-state

equilibrium is a tuple < ��; v; a�; x�; !�; g� > such that the distribution of industries ��

satisfy (31), (32) and (33), the values v �fvng1n=�1 satisfy (24), (25) and (26), the R&D

decisions a� and x� are given by (27), (28), (29) and (30), the steady-state labor share !�

satis�es (34) and the steady-state growth rate g� is given by (35).

We next provide a characterization of the steady-state equilibrium, starting �rst with the

case in which there is uniform IPR policy.

3.1 Uniform IPR Policy

Let us �rst focus on the case where IPR policy is uniform. This means �n = � < 1 and

�n = � <1 for all n 2 N and we denote these by �uni and �uni. In this case, (26) implies that
the problem is identical for all followers, so that v�n = v�1 for n 2 N. Consequently, (26) can
be replaced with the following simpler equation:

�v�1 = max
x�1;a�1

f�!�G (x�1) + [(1� a�1)x�1 + �] [v0 � v�1] + a�1x�1 [v1 � v�1 � �]g ; (36)

implying optimal R&D decisions for all followers of the form

x��1 = max

�
G0�1

�
max h[v0 � v�1] ; [v1 � v�1 � �]i

!�

�
; 0

�
: (37)

Let us denote the sequence of value functions under uniform IPR as fvng1n=�1. We next
establish the existence of a steady-state equilibrium under uniform IPR and characterize some

of its most important properties. Establishing the existence of a steady-state equilibrium

in this economy is made complicated by the fact that the equilibrium allocation cannot be

represented as a solution to a maximization problem. Instead, as emphasized by De�nition
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3, each �rm maximizes its value taking the R&D decisions of other �rms as given; thus an

equilibrium corresponds to a set of R&D decisions that are best responses to themselves and

a labor share (wage rate) !� that clears the labor market. Nevertheless, there is su¢ cient

structure in the model to guarantee the existence of a steady-state equilibrium and monotonic

behavior of values and R&D decisions.

Proposition 2 Consider a uniform IPR policy < �uni; �uni > and suppose that

G0�1
��
1� ��1

�
= (�+ �)

�
> 0. Then a steady-state equilibrium < ��; v; a��1; x

�; !�; g� >

exists. Moreover, in any steady-state equilibrium !� < 1. In addition, if either � > 0 or

x��1 > 0, then g� > 0. For any steady-state R&D decisions < a��1; x
� >, the steady-state

distribution of industries �� is uniquely determined.

In addition, we have the following results:

� v�1 � v0 and fvng1n=0 forms a bounded and strictly increasing sequence converging to
some v1 2 (0;1).

� x�0 > x�1, x
�
0 � x��1, and x

�
n+1 � x�n for all n 2 N with x�n+1 < x�n if x

�
n > 0. Moreover,

provided that G0�1
��
1� ��1

�
= (�+ �)

�
> 0 and � > 0, x�0 > x��1.

Proof. See the Appendix.

Remark 1 The condition that G0�1
��
1� ��1

�
= (�+ �)

�
> 0 ensures that there will be posi-

tive R&D in equilibrium. If this condition does not hold, then there exists a trivial steady-state

equilibrium in which x�n = 0 for all n 2 Z+, i.e., an equilibrium in which there is no innovation

and thus no growth (this follows from the fact that x�0 � x�n for all n 6= 0, see the Appendix
for more details). Moreover, if � > 0, then this equilibrium would also involve ��0 = 1, so that

in every industry two �rms with equal costs compete a la Bertrand and charge price equal to

marginal cost, leading to zero aggregate pro�ts and a labor share of output equal to 1. The

assumption that G0�1
��
1� ��1

�
= (�+ �)

�
> 0, on the other hand, is su¢ cient to rule out

��0 = 1 and thus !
� = 1. If, in addition, the steady-state equilibrium involves some probability

of catch-up or innovation by the followers, i.e., either � > 0 or x��1 > 0, then the growth rate

is also strictly positive. A su¢ cient condition to ensure that x��1 > 0 when � = 0 is that

G0�1
��
1� ��1

�
=�� �

�
> 0.20

20To see why this condition is su¢ cient suppose that � = 0 and also that x��1 = 0. Then (36) immediately
implies v�1 = 0 and (24) implies v1 �

�
1� ��1

�
=�. Moreover, from (37) and the fact that !� � 1, we have

x��1 � G0�1 (v1 � v�1 � �) � G0�1
��
1� ��1

�
=�� �

�
. Therefore, G0�1

��
1� ��1

�
=�� �

�
> 0 contradicts the

hypothesis that x��1 = 0, and implies x
�
�1 > 0. The reason why � > 0 can, under some circumstances, contribute

to positive growth is related to the composition e¤ect discussed above.
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In addition to the existence of a steady-state equilibrium with positive growth, Proposition

2 shows that the sequence of values fvng1n=0 is strictly increasing and converges to some
v1, and more importantly that x� � fx�ng

1
n=1 is a decreasing sequence, which implies that

technological leaders that are further ahead undertake less R&D. Intuitively, the bene�ts of

further R&D are decreasing in the technology gap, since greater values of the technology gap

translate into smaller increases in the equilibrium markup (recall (15)). Moreover, the R&D

level of neck and-and-neck �rms, x�0, is greater than both the R&D level of technological leaders

that are one step ahead and technological followers that are one step behind (i.e., x�0 > x�1 and

x�0 � x��1). This implies that with uniform policy neck-and-neck industries are �most R&D

intensive,�while industries with the largest technology gaps are �least R&D intensive�. This

is the basis of the conjecture mentioned in the Introduction that reducing protection given to

technologically advanced leaders might be useful for increasing R&D by bringing them into

the neck-and-neck state.

3.2 State-Dependent IPR Policy

We now extend the results from the previous section to the environment with state-dependent

IPR policy, though results on monotonicity of values and R&D e¤orts no longer hold.21

Proposition 3 Consider the state-dependent IPR policy < �; � > and suppose that

G0�1
��
1� ��1

�
= (�+ �1)

�
> 0. Then a steady-state equilibrium < ��; v; a��1; x

�; !�; g� >

exists. Moreover, in any steady-state equilibrium !� < 1. In addition, if either �1 > 0 or

x��1 > 0, then g
� > 0.

Proof. See the Appendix.

Unfortunately, it is not possible to determine the optimal (welfare- or growth-maximizing)

state-dependent IPR policy analytically. For this reason, in Section 4, we undertake a quan-

titative investigation of the form and structure of optimal state-dependent IPR policy using

plausible parameter values.

3.3 Compulsory Versus Bargained License Fees

The analysis so far has characterized the steady-state equilibrium for a given sequence of

license fees �. Our interpretation in the next section will be that this sequence of license fees is

21This is because IPR policies could be very sharply increasing at some technology gap, making a particular
state very unattractive for the leader. For example, we could have �n = 0 and �n+1 ! 1, which would imply
that vn+1 � vn is negative.
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determined by policy� i.e., these fees correspond to compulsory licensing fees for intellectual

property that has been patented. We will thus imagine a world in which once a company patents

an innovation, the knowledge embedded in this innovation can be used by its competitors as

long as they pay a pre-speci�ed licensing fee. The analysis in the next section will show that

such licensing fees will increase growth and welfare.

One may also wish to consider an alternative world in which license fees are determined by

bilateral bargaining. To characterize the equilibrium in such a world, one must conduct exactly

the same analysis as we have done in this section. In other words, one must �rst characterize

the equilibrium for a given sequence of license fees, and then taking the license fees agreed by

other �rms as given, one ought to consider the bargaining problem between a leader and a

follower. As already noted in footnote 11, regardless of whether license fees are set by policy

or are bargained, no follower will pay a positive price for a license for production (since this

will simply lead to zero ex post pro�ts). The only issue then becomes whether the leader and

the follower in an industry can agree on a license fee if such fees are not speci�ed by policy.

The answer to this question depends on the exact bargaining protocol between the two

�rms and there are two scenarios, which have quite di¤erent implications. The �rst scenario

corresponds to a situation in which the leader and the follower can write a contract specifying

the licensing fee before the follower undertakes R&D. In this case, the gain to the follower

from licensing would be v1 � v0 (conditional on success in the innovation), while the loss to

the leader would be v0 � v�1. As long as the �rst quantity is greater than the second (which

may not always be the case), some level of � would be agreed between the two �rms. Once

this level is determined, then the equilibrium characterization so far applies with this level of

license fee. However, this license fee would be uniform, not state dependent, since the gain to

the follower and the loss to the leader are independent of the technology gap in the industry.

Since our analysis in the next section shows signi�cant gains from state-dependent IPR policy

(including licensing fees), some type of compulsory licensing fee policy would improve over this

bargained solution.

The potential welfare improvements from compulsory licensing policy are greater in the

second scenario, where bargaining over the license fee would be undertaken after the innovation

of the follower. In this scenario, a bargained price may not even emerge. In particular, the

follower would have committed itself to an innovation using the patented knowledge of the

leader and would have to bargain after its innovation e¤orts are sunk. In this case, the value

of the license to a follower in an industry with an n-step gap is v1 � v�n instead of v1 � v0,

because if it cannot obtain a license, the follower would still remain n steps behind the leader.
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Clearly v1�v�n > v1�v0, re�ecting a form of holdup of the follower by the leader. This holdup
may imply that there would be no licensing fee that the two parties can agree on (for example,

because v1 � v�n will be typically greater than the ex post loss of the leader, v0 � v�1). This

second scenario, which appears to us more likely than the scenario with full contracting on

the licensing fee before R&D, signi�cantly reduces the role for bilateral licensing arrangements

and implies that the type of compulsory licensing policies considered in the next section may

create substantial welfare and growth bene�ts.

4 Optimal IPR Policy: A Quantitative Investigation

In this section, we investigate the implications of various di¤erent types of IPR policies on

R&D, growth and welfare using numerical computations of the steady-state equilibrium. Our

purpose is not to provide a detailed calibration of the model economy but to highlight the

broad quantitative characteristics of the model and its implications for optimal IPR policy

under plausible parameter values. We focus on welfare-maximizing policy (growth-maximizing

policies are discussed below). We will see that the structure of optimal IPR policy and the

innovation gains from such policy are relatively invariant to the range of parameter values we

consider.

4.1 Welfare

Our focus so far has been on steady-state equilibria (mainly because of the very challenging

nature of transitional dynamics in this class of models). In our quantitative analysis, we

continue to focus on steady states and thus look at steady-state welfare. In a steady-state

equilibrium, welfare at time t = 0 can be written as

Welfare (0) =

Z 1

0
e��t ln

�
Y (0) eg

�t
�
dt

=
lnY (0)

�
+
g�

�2
; (38)

where the �rst-line uses the facts that all output is consumed, utility is logarithmic (recall (1)),

output and consumption at date t = 0 are given by Y (0), and in the steady-state equilibrium
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output grows at the rate g�. The second line simply evaluates the integral. Next, note that

lnY (t) =

Z 1

0
ln y (j; t) dj

=

Z 1

0
ln

�
q�i (j; t)Y (t)

w (t)

�
dj

=

Z 1

0
ln q�i (j; t) dj � ln! (t)

= lnQ (t)� ln�
 1X
n=0

n�n (t)

!
� ln! (t) ; (39)

where the �rst line simply uses the de�nition in (3), the second line substitutes for y (j; t)

from (8), the third line uses the de�nition of the labor share ! (t), and the �nal line uses the

de�nition of Q (t) from (20) together with the fact that in the steady state qi (j; t) = �nq�i (j; t)

in a fraction �n (t) of industries. The expression in (39) implies that output simply depends

on the quality index, Q (t), the distribution of technology gaps, � (t) (because this determines

markups), and also on the labor share, ! (t). In steady-state equilibrium, the distribution of

technology gaps and labor share are constant, while output and the quality index grow at

the steady-state rate g�. Therefore, for steady-state comparisons of welfare across economies

with di¤erent policies, it is su¢ cient to compare two economies with the same level of Q (0),

but with di¤erent policies. We can then evaluate steady-state welfare with the distribution of

industries given by their steady-state values in the two economies, and output and the quality

index growing at the corresponding steady-state growth rates. Expression (39) also makes it

clear that only the aggregate quality index Q (0) needs to be taken to be the same in the

di¤erent economies. Given Q (0), the dispersion of industries in terms of the quality levels

has no e¤ect on output or welfare (though, clearly, the distribution of industries in terms of

technology gaps between leaders and followers, �, in�uences the level of markups and output,

and thus welfare).

However, note one di¢ culty with welfare comparisons highlighted by equations (38) and

(39); proportional changes in steady-state welfare due to policy changes will depend on the ini-

tial level of Q (0), which is an arbitrary number. Therefore, proportional changes in welfare are

not informative (though none of this a¤ects ordinal rankings, thus welfare-maximizing policy

is well de�ned and independent of the level of Q (0)). These two expressions also make it clear

that changes in steady-state welfare will be the sum of two components: the �rst is the growth

e¤ect, given by g�=�2, whereas the second is due to changes in ln� (
P1
n=0 n�n) =� � ln! (0).

Since changes in the labor share ! (0) are largely driven by the distribution of industries, we
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refer to this as the distribution e¤ect. Policies will typically a¤ect both of these quantities.

In what follows, we give the welfare rankings of di¤erent policies and then report the relative

magnitudes of the growth and the distribution e¤ects. This will show that the growth e¤ects

will be one or two orders of magnitude greater than the distribution e¤ects and dominate

welfare comparisons. So if the reader wishes, he or she may think of the magnitudes of the

changes in welfare as given by the proportional changes in growth rates.

4.2 Calibration

For our calibration exercise, we take the annual discount rate as 5%, i.e., �year = 0:05. In all our

computations, we work with the monthly equivalent of this discount rate in order to increase

precision, but throughout the tables, we convert all numbers to their annual counterparts to

facilitate interpretation.

The theoretical analysis considered a general production function for R&D given by (9).

The empirical literature typically assumes a Cobb-Douglas production function. For example,

Kortum (1993) considers a function of the form

Innovation (t) = B0 exp (�t) (R&D inputs)

 ; (40)

where B0 is a constant and exp (�t) is a trend term, which may depend on general technological

trends, a drift in technological opportunities, or changes in general equilibrium prices (such as

wages of researchers etc.). The advantage of this form is not only its simplicity, but also the

fact that most empirical work estimates a single elasticity for the response of innovation rates

to R&D inputs. Consequently, they essentially only give information about the parameter 


in terms of equation (40). A low value of 
 implies that the R&D production function is more

concave. For example, Kortum (1993) reports that estimates of 
 vary between 0.1 and 0.6

(see also Pakes and Griliches, 1980, or Hall, Hausman and Griliches, 1988). For these reasons,

throughout, we adopt a R&D production function similar to (40):

x = Bh
 (41)

whereB; 
 > 0. In terms of our previous notation, equation (41) implies thatG (x) = [x=B]
1

 w,

where w is the wage rate in the economy (thus in terms of the above function, it is captured by

the exp (�t) term).22 Equation (41) does not satisfy the boundary conditions we imposed so far

22More speci�cally, (41) can be alternatively written as

Innovation (t) = Bw (t)�
 (R&D expenditure)
 ;

thus would be equivalent to (40) as long as the growth of w (t) can be approximated by constant rate.
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and can be easily modi�ed to do so without a¤ecting any of the results, since in all numerical

exercises only a �nite number of states are reached.23 Following the estimates reported in

Kortum (1993), we start with a benchmark value of 
 = 0:35, and then report sensitivity

checks for 
 = 0:1 and 
 = 0:6. The other parameter in (41), B, is chosen so as to ensure

an annual growth rate of approximately 1.9%, i.e., g� ' 0:019, in the benchmark economy

which features inde�nitely-enforced patents and no licensing. This growth rate together with

�year = 0:05 also pins down the annual interest rate as ryear = 0:069 from equation (2).

We choose the value of � using a reasoning similar to Stokey (1995). Equation (35) implies

that if the expected duration of time between any two consecutive innovations is about 3 years

in an industry, then a growth rate of about 1.9% would require � = 1:05.24 This value is also

consistent with the empirical �ndings of Bloom, Schankerman and Van Reenen (2005).25 We

take � = 1:05 as the benchmark value, and check the robustness of the results to � = 1:01

and � = 1:2 (expected duration of 1 year and 12 years, respectively). Finally, without loss

of generality, we normalize labor supply to 1. This completes the determination of all the

parameters in the model except the IPR policy.

As noted above, we begin with the full patent protection regime without licensing, i.e.,

h� = f0; 0; :::g ; � = f1;1; :::gi.26 We then compare this to an economy with full patent pro-
tection and licensing, i.e.,



� = f0; 0; :::g ; � =

�
��; ��; :::

	�
, where �� = v1 � v0.27 We move to a

comparison of the optimal (welfare-maximizing) uniform IPR policy �uni; �uni to the optimal

state-dependent IPR policy. Since it is computationally impossible to calculate the optimal

23For example, we could add a small linear term to the production function for R&D, (41), and also make it
�at after some level �h. For example, the following generalization of (41),

x = min
�
Bh
 + "h;B�h
 + "�h

	
for " small and �h large, makes no di¤erence to our simulation results.
24 In particular, in our benchmark parameterization with full protection without licensing, 24% of industries

are in the neck-and-neck state. This implies that improvements in the technological capability of the economy
is driven by the R&D e¤orts of the leaders in 76% of the industries and the R&D e¤orts of both the leaders and
the followers in 24% of the industries. Therefore, the growth equation, (35), implies that g ' ln� � 1:24 � x,
where x denotes the average frequency of innovation in a given industry. A major innovation on average every
three years implies a value of � ' 1:05.
25The production function for the intermediate good, (5), can be written as log (y (j; t)) = n (j; t) log (�) +

log (l (j; t)), where n (j; t) is the number of innovations to date in sector j and represents the �knowledge stock�
of this industry. Bloom, Schankerman and Van Reenen (2005) proxy the knowledge stock in an industry by
the stock of R&D in that industry and estimate the elasticity of sales with respect to the stock of R&D to be
approximately 0.06. In terms of the exercise here, this implies that log (�) = 0:06, or that � � 1:06.
26Here � =1 stands for � su¢ ciently large so that there is no licensing. It does not need to be literally equal

to in�nity and in fact, in the theoretical analysis we presumed that it is equal to some �nite number.
27For the interpretation of full patent protection as �� = v1�v0, recall the discussion in footnote 15. Note also

that at a license fee of ��, followers are indi¤erent between a = 0 and a = 1, and in computing the equilibrium
in this case we always suppose that they choose a = 1. Thus alternatively one might wish to think that
�� = v1 � v0 � " for " # 0.
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value of each �n and �n, we limit our investigation to a particular form of state-dependent IPR

policy, whereby the same � and � applies to all industries that have a technology gap of n = 5

or more. In other words, the IPR policy can be represented as:

IPR policy!
Technology gap: n!

none
�
0

(�1; �1)z}|{
�
1

(�2; �2)z}|{
�
2

(�3; �3)z}|{
�
3

(�4; �4)z}|{
�
4

(�5; �5)z }| {
�
5
�
6
�
7
�
8
�
9
�
10
�
11
�
:
�
:
�
1:

We checked and veri�ed that allowing for further �exibility (e.g., allowing �5 and �6 or �5 and

�6 to di¤er) has little e¤ect on our results.

The numerical methodology we pursue relies on uniformization and value function iteration.

The details of the uniformization technique are described in the proof of Lemma 1 in the

Appendix. On value function iteration, see Judd (1999). In particular, we �rst take the IPR

policies � and � as given and make an initial guess for the equilibrium labor share !�. Then

for a given !�, we generate a sequence of values fvng1n=�1, and we derive the optimal R&D
policies, fx�ng

1
n=�1 ; fa�ng

�1
n=�1 and the steady-state distribution of industries, f��ng

1
n=0. After

convergence, we compute the growth rate g� and welfare, and then check for market clearing

in the labor market from equation (18). Depending on whether there is excess demand or

supply of labor, !� is varied and the whole process is repeated until the entire steady-state

equilibrium for a given IPR policy is computed. The process is then repeated for di¤erent IPR

policies.

In the state-dependent IPR case, the optimal (welfare-maximizing) IPR policy sequences,

� and �; are computed one element at a time, until we �nd the welfare-maximizing value for

that component, for example, �1. We then move the next component, for example, �2. Once

the welfare-maximizing value of �2 is determined, we go back to optimize over �1 again, and

this procedure is repeated recursively until convergence.

4.3 Full IPR Protection Without Licensing

We start with the benchmark with full protection and no licensing, which is the case that the

existing literature has considered so far (e.g., Aghion, Harris, Howitt and Vickers, 2001). In

terms of our model, this corresponds to �n = 0 for all n and �n = 1 for all n. Equation

(27) implies that a��n = 0 for all n. We choose the parameter B in terms of (41), so that the

benchmark economy has an annual growth rate of 1.86%.

The value function for this benchmark case is shown in Figure 1 (with the solid line). The

value function has decreasing di¤erences for n � 0, which is consistent with the results in

Proposition 2, and features a constant level for all followers (since there is no state dependence
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in the IPR policy). Figure 2 shows the level of R&D e¤orts for leaders and followers in this

benchmark (with the solid lines). Again consistent with Proposition 2, this �gure also shows

that the R&D level of a leader declines as the technology gap increases and that the highest

level of R&D is for �rms that are neck-and-neck (i.e., at the technology gap of n = 0). Since

there is no state-dependent IPR policy, all followers undertake the same level of R&D e¤ort,

which is also shown in the �gure.

Figure 3 shows the distribution of industries according to technology gaps (again the solid

line refers to the benchmark case). The mode of the distribution is at the technology gap of

n = 1, but there is also a concentration of industries at technology gap n = 0, because a��n = 0

implies that innovations by the followers take them to the �neck-and-neck�state.

The �rst column of Table 1 also reports the results for this benchmark simulation. As noted

above, B is chosen such that the annual growth rate is equal to 0.0186, which is recorded at

the bottom of Table 1 together with the initial consumption and welfare levels according to

(3) and (38) respectively. The table also shows the R&D levels x�0 and x
�
�1 (0.35 versus 0.22),

the frequencies of industries with technology gaps of 0, 1 and 2. The steady-state value of !

is 0.95. Since labor is the only factor of production in the economy, !� should not be thought

of as the labor share in GDP. Instead, 1� !� measures the share of pure monopoly pro�ts in

value added. In the benchmark parameterization, this corresponds to 5% of GDP, which is

reasonable.28 Finally, the table also shows that in this benchmark parameterization 3.2% of

the workforce is working as researchers, which is also consistent with US data.29 These results

are encouraging for our simple calibration exercise, since with very few parameter choices, the

model generates reasonable numbers, especially for the share of the workforce allocated to

research.30

4.4 Full IPR Protection With Licensing

We next turn to full IPR protection with licensing. As speci�ed above, we think of full IPR

protection with licensing as corresponding to �n = 0 for all n (so that patents never expire)

and �n =
�� � v1 � v0 for all n (so that the license fee for making use of a leading-edge

28Bureau of Economic Analysis (2004) reports that the ratio of before-tax pro�ts to GDP in the US economy
in 2001 was 7% and the after-tax ratio was 5%.
29According to National Science Foundation (2006), the ratio of scientists and engineers in the US workforce

in 2001 is about 4%.
30Most endogenous growth models imply that a signi�cantly greater fraction of the labor force should be

employed in the research sector and one needs to introduce various additional factors to reduce the pro�tability
of research or to make entry into research more di¢ cult. In the current model, the step-by-step nature of
innovation and competition plays this role and generates a plausible allocation of workers between research and
production.
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technology is equal to the net present discounted value gap between being a one step ahead

leader and a neck-and-neck �rm). Figures 1-3 show the corresponding value functions, R&D

e¤ort levels and distribution of industries for this case (with the dashed lines). Since there

is no state-dependent policy, the general pattern is similar to that in the economy without

licensing. There is no longer a spike in R&D e¤ort at n = 0, however, since now �rms always

prefer to pay the license fee and jump ahead of the leading-edge technology. This makes the

neck-and-neck state no longer special (in fact, as column 2 of Table 1 shows, in equilibrium

there will be no industries in the neck-and-neck state). More importantly, the level of R&D

by followers is considerably higher than in the benchmark case. In particular, x��1 is now

0:25 rather than 0:22. The resulting growth rate is 2.58% instead of 1.86%. Correspondingly,

welfare increases by 5.76 points because of the growth e¤ect (that is, g�=�2 increases by 5.76)

and declines by 0.03 points because of the distribution e¤ect (in particular, because of the

change in the composition of markups). This case therefore illustrates the general pattern

mentioned above, whereby the growth e¤ect is one or two orders of magnitudes greater than

the distribution e¤ect and dominates the welfare implications of alternative policies.

It is important to note that, in this case, the boost to growth and welfare comes not from

increased R&D e¤ort, but from the fact that the R&D of the followers now also advances the

technological frontier of the economy owing to licensing (recall equation (35)). In fact, column

2 of Table 1 shows that this considerably higher growth rate is achieved with a lower fraction

of the workforce, only 2.6%, working in the research sector.

The contribution of licensing to growth and welfare, which is robust across di¤erent pa-

rameterizations of the model, is the �rst important implication of our analysis. Relative to

existing models of step-by-step innovation, such as Aghion, Harris, Howitt and Vickers (2001),

which do not allow for the possibility of licensing, here the R&D e¤ort by followers can directly

contribute to economic growth and this increases the equilibrium growth rate of the economy.

4.5 Optimal Uniform IPR Protection

We next turn to optimal IPR policy with licensing. That is, we impose that �n = � and �n = �

for all n, and look for values of � and � that maximize the welfare in the economy. Column

3 of Table 1 shows that the welfare-maximizing values of � and � are both equal to 0 in the

benchmark parameterization. This corresponds to zero license fees and inde�nite duration of

patents, so that followers can never copy the leading-edge technology without R&D, but they

can always advance one step ahead of the leader when they are successful in their R&D e¤orts

(without paying any license fees).
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The resulting value function, R&D e¤ort levels and industry distributions according to

technology gaps are shown in Figures 4-6 (with the solid lines). The �gures and column 3 of

Table 1 show that the welfare-maximizing IPR policy discourages leaders (this can be seen from

the fact that v1 � v0 declines signi�cantly), but encourages R&D e¤ort by the followers, since
when successful they do not have to pay the license fee. The optimal uniform IPR increases

the growth rate by only a small amount, however. While the growth rate of the economy with

full IPR protection with licensing was 2.58%, it is now 2.63%. This increase in the growth rate

also raises steady-state welfare. In particular, the growth e¤ect increases welfare by 4 points,

while in this case there is also a slight improvement in welfare because of the change in the

distribution of markups (though this is again small, equivalent to 0.1 points, that is, 1/40th as

important as the growth e¤ect). Finally, optimal uniform IPR protection also lead to a modest

rise in the share of the labor force working in research (from 2.6% to 2.7%).

4.6 Optimal State-Dependent IPR Without Licensing

We next turn to our second major question; whether state-dependent IPR makes a signi�cant

di¤erence relative to the uniform IPR. To highlight the roles played by di¤erent components of

IPR policy, we �rst investigate the nature of welfare-maximizing space-dependent IPR policy

without licensing (so that the comparison is to the benchmark case in column 1). In particular,

we set �n =1 for all n and look for the combination of f�1; :::; �5g that maximizes the welfare.
The results are shown in column 4 of Table 1.

Two features are worth noting. First, the growth rate increases noticeably relative to

column 1; it is now 2.04% instead of 1.86%. Nevertheless, this increase is models at relative to

the bene�ts of licensing. The increase in steady-state welfare is also correspondingly smaller.

Therefore, state-dependent IPR policy with no licensing is not a substitute for licensing.

Second, we see an interesting pattern (which is in fact quite general in all of our quantitative

investigations). The optimal state-dependent policy f�1; :::; �5g provides greater protection to
technological leaders that are further ahead. In particular, we �nd that the optimal policy

involves �1 = 0:71, �2 = 0:08, and �3 = �4 = �5 = 0. This corresponds to very little patent

protection for �rms that are one step ahead of the followers. In particular, since �1 = 0:71

and x��1 = 0:12, in this equilibrium �rms that are one step behind followers are more than

six times as likely to catch up with the technological leader because of the expiration of the

patent of the leader as they are likely to catch up because of their own successful R&D. Then,

there is a steep increase in the protection provided to technological leaders that are two steps

ahead, and �2 is 1/12th of �1. Perhaps even more remarkably, after a technology gap of three
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or more steps, optimal IPR involves full protection, and patents never expire.

This pattern of greater protection for technological leaders that are further ahead may go

against a naïve intuition that state-dependent IPR policy should try to boost the growth rate

of the economy by bringing more industries with large technology gaps (where leaders engage in

little R&D) into neck-and-neck competition. This composition e¤ect is present, but dominated

by another, more powerful force, the trickle-down e¤ect. The intuition for the trickle-down

e¤ect is as follows: by providing secure patent protection to �rms that are three or more steps

ahead of their rivals, optimal state-dependent IPR increases the R&D e¤ort of leaders that are

one and two steps ahead as well. This is because technological leaders that are only one or two

steps ahead now face greater returns to R&D, which will not only increase their pro�ts but

also the security of their intellectual property. Mechanically, high levels of �1 and �2 reduce

v1 and v2, while high IPR protection for more advanced �rms increases vn for n � 3, and this
increases the R&D incentives of leaders at n = 1 or at n = 2. This pattern of increased R&D

investments under state-dependent IPR contrasts with uniform IPR, which always reduces

R&D by all �rms. The possibility that imperfect state-dependent IPR protection can increase

(rather than reduce) R&D incentives is a novel feature of our approach and will be illustrated

further in the next subsection.

4.7 Optimal State-Dependent IPR With Licensing

Finally, we turn to the most general policy regime, which allows both state-dependent patent

protection and licensing. In particular, we now choose combinations of f�1; :::; �5g and
f�1; :::; �5g to maximize steady-state welfare. The results of this exercise are shown in col-
umn 5 of Table 1. The most natural comparison in this case is to the optimal uniform IPR

policy with licensing in column 3, where uniform IPR policies � and � were chosen to maximize

welfare. The value functions, R&D e¤orts and the industry distribution over di¤erent levels of

technology gaps in this economy are shown in Figures 4-6 (with the dashed lines).

We see in column 5 that welfare-maximizing IPR policy involves �n = 0 for all n, so that

with compulsory licensing, optimal IPR involves in�nite duration of patents (though this is not

always the case, see Table 2). Nevertheless, IPR protection for technological leaders is not full.

In particular, the welfare-maximizing policy involves �1 = 0, which implies that followers can

build on the leading-edge technology that is one step ahead of their own knowledge without

paying any license fees. From there on, � increases to �2 = 0:98, then to �3 = 1:93, and to

�4 = 1:97. After �ve steps, the welfare-maximizing policy is equivalent to full patent protection,

that is, �5 = 1:98 (note that v1 � v0 = 1:98). The resulting growth rate of the economy is
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2.96%, which is signi�cantly higher than the growth rate under uniform IPR policy, 2.63% in

column 3. Steady-state welfare also increases by a corresponding amount relative to the case

with optimal uniform IPR case. In particular, the growth e¤ect on welfare is an increase of

1.32 points, while the distribution e¤ect involves a slight deterioration in welfare, equivalent

to 0.015 points. Overall, this benchmark case shows that state-dependent policies can increase

growth and welfare signi�cantly.

State-dependent policies again achieve this superior growth performance by exploiting the

trickle-down e¤ect, which we already saw in the case without licensing. In particular, �n is

an increasing sequence, so that technological leaders that are further ahead receive greater

protection. As in the previous subsection, this pattern of IPR is used as a way of boosting the

R&D e¤ort of technological leaders that are one or two steps ahead of their rivals (see Figure

5). Since these leaders receive little protection and understand that they can increase both

their pro�ts and their IPR protection by undertaking further innovations, they have relatively

strong innovation incentives and undertake high levels of R&D. Figure 5 makes it clear that

state-dependent relaxation of IPR in this case increases total R&D in the economy relative

to full protection. The dashed line in Figure 5 is almost everywhere above the solid line.

Alternatively, Table 1 shows that the fraction of the labor force working in R&D increases to

3.9% from 2.6% under full IPR protection with licensing. This positive e¤ect of relaxation of

IPR on R&D incentives is a novel implication of our model, and is due to the trickle-down

e¤ect.

It is also worth noting that, under state-dependent IPR policy with licensing, the growth

rate of the economy receives a further boost from the R&D e¤ort of the followers, since, thanks

to licensing, followers�R&D directly contributes to the advancing the technological frontier of

the economy. Figure 5 shows that followers that are one step behind the frontier also have a

higher R&D e¤ort than even in the case with welfare-maximizing uniform IPR (which involved

�n = 0 for all n). The reason for this pattern of R&D e¤orts is again the trickle-down e¤ect,

which increases the value of being a technological leader and thus the incentive of followers to

undertake R&D. In contrast, the R&D level of followers that are more than one step behind

is lower than in the economy with uniform IPR (though as the comparison of the fraction of

the labor force working in research to other columns demonstrates, this is dominated by the

increase in the R&D of the technological leaders and of followers that are one step behind).

Overall, the results show that state-dependent IPR policies can increase growth and steady-

state welfare substantially, and that this is because of the trickle-down e¤ect. The trickle-down

e¤ect is powerful, not only when we consider an economy without licensing, but also in the
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presence of licensing.

4.8 Robustness

Tables 2-5 show the robustness of the patterns documented in Figures 1-6 and in Table 1.

In particular, each of these tables changes one of the two parameters � and 
 (increasing or

reducing � to 1.2 or 1.01, and increasing or reducing 
 to 0.6 or 0.1) and shows the results

corresponding to each one of the �ve di¤erent policy regimes and discussed so far. In each case,

we also change the parameter B in equation (41) to ensure the growth rate of the benchmark

economy with full IPR protection and without licensing is the same as in Table 1, that is,

g� = 1:86%.

Notably, the qualitative, and even the quantitative, patterns in Table 1 are relatively robust.

In all cases we see a signi�cant increase in the growth rate and welfare when we allow licensing.

The smallest increase is seen when 
 = 0:6, presumably because with limited diminishing

returns to R&D, incentives were already su¢ ciently strong without licensing. As a result, in

this case, the growth rate increases only from 1.86% to 1.98%. In all other cases, allowing for

licensing increases the growth rate to above 2.6%, which is a sizable increase relative to the

baseline of 1.86%.

Moreover, in all cases, moving to state-dependent IPR policy increases the growth rate and

welfare further, though the extent of the increase varies depending on parameters.

Perhaps, more noteworthy is the fact that in all cases, welfare-maximizing state-dependent

IPR is shaped by the trickle-down e¤ect. In all of the various parameterizations we have

considered, there is little or no protection provided to technological leaders that are one step

ahead, but IPR protection grows as the technology gap increases. This is the typical pattern

implied by the trickle-down e¤ect. In addition, in most, but not all, cases optimal IPR policy

provides patents of in�nite duration and only makes compulsory licensing fees state dependent.

Table 2 and 5, which are for (� = 1:01; 
 = 0:35) and (� = 1:05; 
 = 0:6), provide instances

where both the optimal length of patent enforcement and optimal licensing fees are used as

part of the welfare-maximizing policy and are both state dependent.

Finally, we have also computed growth-maximizing policies. In all cases, these are very

similar to the welfare-maximizing policies, which is not surprising in view of the fact that, as

shown above, welfare comparisons are driven by the growth e¤ects.

We therefore conclude that both the substantial bene�ts of licensing and the bene�ts of

state-dependent policies are robust across di¤erent speci�cations.
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4.9 Partial Equilibrium Calibration and Further Robustness

The calibration exercises reported in the previous subsections show that for a range of plausible

parameters the trickle-down e¤ect is powerful and induces a pattern of welfare-maximizing (and

growth-maximizing) policy that provides greater IPR protection to �rms that are technologi-

cally more advanced relative to their rivals than to those enjoying a more limited technology

gap. This is a new and somewhat surprising �nding. Despite the robustness exercises, the

reader may wonder whether this result holds for a much broader range of parameter values.

Given the computationally-intensive nature of the exercises reported so far, it is not possible

to compute or report results for the entire range of parameters for �, 
 and �.

In this last subsection, we specialize the economy in three ways and report results for the

entire set of parameter values. First, we �x !, so that the general equilibrium feedback on

the labor share is removed. Second, we take the function G (�) to be quadratic. Finally, as
assumed by a number of papers in this literature (e.g., Aghion, Harris, Howitt and Vickers,

2001, or Aghion, Bloom, Blundell, Gri¢ th and Howitt, 2005), we assume that the maximum

technology gap between a leader and a follower is n = 2. Under these assumptions, there are

only two possible values for �, �1 and �2, and two possible values for �, �1 and �2. State-

dependent IPR policy here simply means �1 6= �2 and/or �1 6= �2. The pattern we have seen

in the general equilibrium model, where technological leaders that are further ahead receive

greater protection, in turn, corresponds to �1 > �2 and/or �1 < �2. Since there are only two

parameters, � and �, we can plot the distribution of optimal policies for a large range of values

of these two parameters and see the robust patterns in the form of optimal IPR policy.

More speci�cally, for a policy vector (�1; �2; �1; �2), the stationary equilibrium is charac-

terized by the solution to the following set of recursive equations:

�v2 = max
x2�0

� �
1� ��2

�
+
��
1� a��2

�
x��2 + �2

�
[v0 � v2]

+a��2x
�
�2 [v�1 � v2 + �2]

�
;

�v1 = max
x1�0

� �
1� ��1

�
� x21=2 + x1 [v2 � v1]

+
��
1� a��1

�
x��1 + �1

�
[v0 � v1] + a��1x��1 [v�1 � v1 + �1]

�
;

�v0 = max
x0�0

�
�x20=2 + x0 [v1 � v0] + x�0 [v�1 � v0]

	
;

�v�1 = max
x�1�0;a�12[0;1]

�
�x2�1=2 + [(1� a�1)x�1 + �1] [v0 � v�1]
+a�1x�1 [v1 � v�1 � �1] + x�1 [v0 � v�1]

�
;

and

�v�2 = max
x�2�0;a�22[0;1]

�
�x2�2=2 + [(1� a�2)x�2 + �2] [v0 � v�2]

+a�2x�2 [v1 � v�2 � �2]

�
:

Given the solution to these equations, we can determine the welfare-maximizing combina-
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tion of policies as in our previous calibration exercise (using the same notion of steady-state

welfare). For expositional convenience, we do this in two steps, depicted in Figures 7 and 8;

�rst for �1 and �2 (setting �1 = �2 =1), and then for �1 and �2 (setting �1 = �2 = 0).

Figure 7 shows the pattern of welfare-maximizing policy for the range of parameters � 2
[0; 0:5] and � 2 (1; 10]. We can see that for all parameters �1 > �2. Thus there is always

greater protection given to technological leaders that are two steps ahead than those that are

only one step ahead. Figure 8 shows the pattern of optimal policies with only licensing fees

for the range of parameters � 2 [0; 0:5] and � 2 (1; 10]. Once again, there is greater protection
for technological leaders that are further ahead. In fact, in this case for all parameter values,

the welfare-maximizing policy involves �1 = 0, meaning that there is no protection provided to

technological leaders that are one step ahead. In contrast, �2 is always strictly positive. This

pattern again induces a greater R&D investment by technological leaders that are one step

ahead of their rivals.

Finally, we have also computed welfare-maximizing policies when the entire vector

(�1; �2; �1; �2) is allowed to vary. In this case, the welfare-maximizing policy again always

provides greater protection to �rms that are further ahead. In addition, it typically makes

greater use of license fees, but for a small range of parameters, both license fees and relaxation

of patent protection are used simultaneously. To save space, we do not show these results,

which are more di¢ cult to depict in the �gures.

Overall, these results illustrate that the patterns we found for a narrower range of para-

meters in the general equilibrium model hold more broadly in this partial equilibrium version

of the model. In all cases, there is greater protection given to �rms that are further ahead of

their rivals, and in all cases, the reason for this is the trickle-down e¤ect.

5 Conclusions

In this paper, we developed a general equilibrium framework to investigate the impact of the

extent and form of intellectual property rights (IPR) policy on economic growth and welfare.

The two major questions we focused on are whether licensing, which allows followers to build

on the leading-edge technology in return of a license fee, has a major impact on the equilibrium

growth rate and whether the same degree of patent protection should be given to companies

that are further ahead of their competitors as those that are technologically close to their

rivals.

In our model economy, �rms engage in cumulative (step-by-step) innovation. Leaders can
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innovate in order to widen the technology gap between themselves and the followers, which

enables them to charge higher markups. Followers innovate to catch up with or surpass the

technological leaders in their industry. Followers can advance in three di¤erent ways. First,

the patent of the technological leader may expire, allowing the follower in the industry to copy

the leading-edge technology. Second, each follower can undertake �catch-up R&D�to improve

its own variant of the product to catch up with the leader. Third, each follower can undertake

�frontier R&D,�building on and improving the leading-edge technology. In this latter case,

when successful, a follower may have to pay a license fee to the technological leader.

In the model economy, IPR policy regulates the length of patents and whether licensing is

possible and the cost of licensing. We characterized the form of the steady-state equilibrium

and proved its existence under general IPR policies. We then used this framework to investigate

the form of �optimal�(welfare-maximizing) IPR policy quantitatively.

The major �ndings of this quantitative exercise are as follows:

1. A move from an IPR policy without licensing to one that allows for licensing has a

signi�cant e¤ect on the equilibrium growth rate and the welfare. For the benchmark pa-

rameterization of our model, licensing increases the growth rate from 1.86% to 2.58% per

annum, which is a signi�cant e¤ect. There is a corresponding increase in welfare as well.

These substantial increases are robust to a large range of variation in the parameters.

2. State-dependent IPR also leads to a signi�cant improvement in the equilibrium growth

rate and welfare. In our benchmark parameterization, welfare-maximizing IPR policy

increases the growth rate of the economy from 2.58% under the best possible uniform

IPR policy to 2.96% under state-dependent IPR policy. Perhaps more interesting than

this substantial impact on both growth and welfare is the form of the optimal state-

dependent IPR policy. Contrary to a naïve intuition, we �nd that the welfare-maximizing

IPR policy provides greater protection to �rms that are further ahead of their rivals

than those that are technologically close to their competitors. Underlying this form

of the optimal IPR policy is the trickle-down e¤ect. The trickle-down e¤ect implies

that providing greater protection to su¢ ciently advanced technological leaders not only

increases their R&D e¤orts but also raises the R&D e¤orts of all technological leaders

that are less advanced than this level. This is because the reward to innovation now

includes the greater protection that they will receive once they reach this higher level

of technology. Our results suggest that the trickle-down e¤ect is powerful both with

and without licensing, and its form and magnitude are relatively insensitive to the exact
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parameter values used in the quantitative investigation.

The analysis in this paper suggests that a move to a richer menu of IPR policies, in

particular, a move towards optimal state-dependent policies with licensing, may signi�cantly

increase innovation, economic growth and welfare. The results also show that the form of

optimal IPR policy may depend on the industry structure (and the technology of catch-up

within the industry). It should be noted, however, that these conclusions are based on a

quantitative evaluation of a rather simple model. Our objective has not been to obtain practical

policy prescriptions and the exact e¤ects of di¤erent policies implied by our model undoubtedly

miss a host of important factors and ignore potential limitations on the form and complexity

of IPR policies. Nevertheless, our results demonstrate a range of robust and new e¤ects that

should be part of the calculus of IPR and competition policy.

The next step in this line of research should be to investigate the robustness of these

e¤ects in di¤erent models of industry dynamics. It would also be useful to study whether

the relationship between the form of optimal IPR policy and industry structure suggested by

our analysis also applies when variation in industry structure has other sources (for example,

di¤erences in the extent of �xed costs causing di¤erential gaps between technological leaders

and followers across industries). The most important area for future work is a detailed empirical

investigation of the form of optimal IPR policy, using both better estimates of the e¤ects of

IPR policy on innovation rates and also structural models that would enable the evaluation of

the e¤ects of di¤erent policies on equilibrium growth and welfare. We hope that the theoretical

framework presented in this paper will be useful in developing models that can be estimated

in future work.
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Appendix: Proofs

Derivation of Equation (22)

Fix the equilibrium R&D policies of other �rms, x��n (t) and a
�
�n (t), the equilibrium interest and wage

rates, r� (t) and w� (t), and equilibrium pro�ts f��n (t)g
1
n=1. Then the value of the �rm that is n steps

ahead at time t can be written as:

Vn (t) = max
xn(t)

f[��n (t)� w� (t)G (xn (t))]�t + o (�t) (42)

+exp (�r� (t+�t)�t)

26666666664

(xn (t)�t+ o (�t))Vn+1 (t+�t)

+
�
�n�t+

�
1� a��n (t)

�
x��n (t)�t+ o (�t)

�
V0 (t+�t)

+
�
a��n (t)x

�
�n (t)�t+ o (�t)

� �
V�1 (t+�t) + �̂n

�
+
�
1� xn (t)�t� �n�t� x��n (t)�t� o (�t)

�
Vn (t+�t)

37777777775

9>>>>>>>>>=>>>>>>>>>;
:

The �rst part of this expression is the �ow pro�ts minus R&D expenditures during a time interval
of length �t. The second part is the continuation value after this interval has elapsed. Vn+1 (t) and
V0 (t) are de�ned as net present discounted values for a leader that is n + 1 steps ahead and a �rm
in an industry that is neck-and-neck (i.e., n = 0). The second part of the expression uses the fact
that in a short time interval �t, the probability of innovation by the leader is xn (t)�t+ o (�t), where
o (�t) again denotes second-order terms. This explains the �rst line of the continuation value. For
the remainder of the continuation value, note that the probability that the follower will catch up with
the leader is

�
1� a��n (t)

�
x��n (t)�t + o (�t); in particular, if a��n (t) = 1, this eventually will never

happen, since the follower would be undertaking R&D not to catch up but to surpass the leader. This
explains the third line, which applies when a��n (t) = 1. There are two di¤erences between the second
and third lines; (i) in the third line, conditional on success by the follower, a leader moves to the position
of a follower rather than a neck-and-neck �rm (V�1 instead of V0); (ii) it receives the state-dependent
patent fee �̂n. Finally, the last line applies when no R&D e¤ort is successful and patents continue to be
enforced, so that the technology gap remains at n steps. Now, subtract Vn (t) from both sides, divide
everything by �t, and take the limit as �t! 0 to obtain (22). �

Proof of Proposition 1

Equations (19) and (21) imply

Y (t) =
w (t)

! (t)
=
Q (t)��

P1
n=0 n�

�
n(t)

! (t)
:

Since ! (t) = !� and f��ng
1
n=0 are constant in steady state, Y (t) grows at the same rate as Q (t).

Therefore,

g� = lim
�t!0

lnQ (t+�t)� lnQ (t)
�t

:

Now note the following: during an interval of length �t (i) in the fraction ��n of the industries with
technology gap n � 1 the leaders innovate at a rate x�n�t + o (�t); (ii) in the same industries, the
followers innovate at the rate a��nx

�
�n�t+o (�t); (iii) in the fraction �

�
0 of the industries with technology

gap of n = 0, both �rms innovate, so that the total innovation rate is 2x�0�t + o (�t)); and (iv) each
innovation increase productivity by a factor �. Combining these observations, we have

lnQ (t+�t) = lnQ (t) + ln�

"
2��0x

�
0�t+

1X
n=1

��nx
�
n�t+ o (�t) +

1X
n=1

a��nx
�
�n�t+ o (�t)

#
:
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Subtracting lnQ (t), dividing by �t and taking the limit �t! 0 gives (35). �

Proof of Proposition 2

We prove this proposition in four parts. (1) Existence of a steady-state equilibrium. (2) Properties of
the sequence of value functions. (3) Properties of the sequence of R&D decisions. (4) Uniqueness of an
invariant distribution given R&D policies.

Part 1: Existence of a Steady-State Equilibrium.
First, note that each xn belongs to a compact interval [0; �x], where �x is the maximal �ow rate of

innovation de�ned in (11) above. Now �x a labor share ~! 2 [0; 1] and a sequence h~a�1; ~xi of (Markovian)
steady-state strategies for all other �rms in the economy, and consider the dynamic optimization problem
of a single �rm. Our �rst result characterizes this problem and shows that given some z �h~!; ~a�1; ~xi,
the value function of an individual �rm is uniquely determined, while its optimal R&D choices are given
by a convex-valued correspondence. In what follows, we denote sets and correspondences by uppercase
letters and refer to their elements by lowercase letters, e.g., a�1 (z) 2 A�1 [z], xn (z) 2 Xn [z].

Lemma 1 Consider a uniform IPR policy


�uni; �uni

�
, and suppose that the labor share and the R&D

policies of all other �rms are given by z = h~!; ~a�1; ~xi. Then the dynamic optimization problem of an
individual �rm leads to a unique value function v [z] : f�1g [ Z+ ! R+ and optimal R&D policies
Â�1 [z] � [0; 1] and X̂ [z] : f�1g [Z+ � [0; �x] are compact and convex-valued for each z 2 Z and upper
hemi-continuous in z (where v [z] � fvn [z]g1n=�1 and X̂ [z] �

n
X̂n [z]

o1
n=�1

).

Proof. Fix z =
D
~!; f~xng1n=�1 ; f~ang

�1
n=�1

E
, and consider the optimization problem of a represen-

tative �rm, written recursively as:

�vn= max
xn2[0;�x]

f
�
1� ��n

�
� ~!G (xn) + xn [vn+1 � vn]

+ ~x�1 (~a�1 [v�1 � vn + �] + (1� ~a�1) [v0 � vn]) + � [v0 � vn]g for n 2 N

�v0 = max
x02[0;�x]

f�~!G (x0) + x0 [v1 � v0] + ~x0 [v�1 � v0]g

�v�1 = max
x�12[0;�x]; a�12[0;1]

f�~!G (x0) + x�1 (a�1 [v1 � v�1 � �] + (1� a�1) [v0 � v�1])

+� [v0 � v�1]g:

We now transform this dynamic optimization problem into a form that can be represented as a
contraction mapping using the method of �uniformization� (see, for example, Ross, 1996, Chapter

5). Let ~� =
D
f~xng1n=�1 ; f~ang

�1
n=�1

E
and pn;n0

�
� j ~�

�
be the probability that the next state will

be n0 starting with state n when the �rm in question chooses policies � �
D
fxng1n=�1 ; fang

�1
n=�1

E
and the R&D policy of other �rms is given by ~�. Using the fact that, because of uniform IPR
policy, hx�n; a�ni = hx�1; a�1i for all n 2 N, these transition probabilities can be written as:

p�1;0

�
� j ~�

�
= (1�a�1)x�1+�

x�1+�
p�1;1

�
� j ~�

�
= a�1x�1

x�1+�

p0;�1

�
� j ~�

�
= ~x0

x0+~x0
p0;1

�
� j ~�

�
= x0

x0+~x0

pn;�1

�
� j ~�

�
= a�1~x�1

xn+~x�1+�
pn;0

�
� j ~�

�
= (1�a�1)~x�1+�

xn+~x�1+�
pn;n+1

�
� j ~�

�
= xn

xn+~x�1+�

:

Uniformization involves adding �ctitious transitions from a state into itself, which do not change the
value of the program, but allow us to represent the optimization problem as a contraction. For this
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purpose, de�ne the transition rates  n as

 n

�
� j ~�

�
=

8<: xn + x�1 + � for n 2 f1; 2; :::g
x�1 + � for n = �1
2xn for n = 0

:

These transition rates are �nite since  n
�
� j ~�

�
�  � 2�x + � < 1 for all n, where �x is the maximal

�ow rate of innovation de�ned in (11) in the text (both �x and � are �nite by assumption).
Now following equation (5.8.3) in Ross (1996), we can use these transition rates and de�ne the new

transition probabilities (including the �ctitious transitions from a state to itself) as:

~pn;n0
�
� j ~�

�
=

8<:
 n(�j~�)

 pn;n0
�
� j ~�

�
if n 6= n0

1�  n(�j~�)
 if n = n0

:

This yields equivalent transition probabilities

~p�1;�1

�
� j ~�

�
= 1� x�1+�

2�x+� ~p�1;0

�
� j ~�

�
= (1�a�1)x�1+�

2�x+� ~p�1;1

�
� j ~�

�
= a�1x�1

2�x+�

~p0;�1

�
� j ~�

�
= ~x0

2�x+� ~p0;0

�
� j ~�

�
= 1� x0+~x0

2�x+� ~p0;1

�
� j ~�

�
= x0

2�x+�

~pn;0

�
� j ~�

�
= (1�~a�1)~x�1+�

2�x+� ~pn;n

�
� j ~�

�
= 1� xn+~x�1+�

2�x+� ~pn;n+1

�
� j ~�

�
= xn

2�x+� ~pn;�1

�
� j ~�

�
= ~a�1~x�1

2�x+�

;

and also de�nes an e¤ective discount factor � given by

� �  

�+  
=

2�x+ �

�+ 2�x+ �
:

Also let the per period return function (pro�t net of R&D expenditures) be

�̂n (xn) =

(
1���n�~!G(xn)

�+2�x+� if n � 1
�~!G(xn)
�+2�x+� otherwise

: (43)

Using these transformations, the dynamic optimization problem can be written as:

vn = max
xn; an

(
�̂n (xn) + �

X
n0

~pn;n0
�
�nj ~�

�
~vn0

)
, for all n 2 Z; (44)

� T ~vn, for all n 2 Z:

where v �fvng1n=�1 and the second line de�nes the operator T , mapping from the space of
functions V �fv : f�1g [ Z+ ! R+g into itself. T is clearly a contraction, thus, for given
z =



~!; ~a�1; f~xng1n=�1

�
, possesses a unique �xed point v� � fv�ng

1
n=�1 (e.g., Stokey, Lucas and Prescott,

1989).
Moreover, xn 2 [0; �x], a�1 2 [0; 1], and vn for each n = �1; 0; 1; ::: given by the right-hand side of

(44) is continuous in an and xn (an applying only for n = �1), so Berge�s Maximum Theorem (Aliprantis

and Border, 1999, Theorem 16.31, p. 539) implies that the set of maximizers
�
Â�1;

n
X̂n

o1
n=�1

�
exists,

is nonempty and compact-valued for each z and is upper hemi-continuous in z =


~!; ~a�1; f~xng1n=�1

�
.

Moreover, concavity of vn in an and xn for each n = �1; 0; 1; ::: implies that
�
Â�1;

n
X̂n

o1
n=�1

�
is also

convex-valued for each z, completing the proof.
Now let us start with an arbitrary z �h~!; ~a�1; ~xi 2 Z � [0; 1]2 � [0; �x]1. From Lemma 1, this z is

mapped into optimal R&D decision sets Â�1 [z] and X̂ [z], where â�1 2 Â�1 [z] and x̂n [z] 2 X̂n [z].
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From R&D policies h~a�1; ~xi, we calculate � [~a�1; ~x]�f�n [~a�1; ~x]g
1
n=0 using equations (31), (32) and

(33). Then we can rewrite the labor market clearing condition (34) as

! = min

( 1X
n=0

�n

�
1

�n
+G (~xn) ~! +G (~x�n)

�
~!; 1

)
;

� ' (~!; ~a�1; ~x) (45)

where due to uniform IPR, x̂�n = x̂�1 for all n > 0. Next, de�ne the mapping (correspondence)

� [z] �
�
' (z) ; Â�1 [z] ; X̂ [z]

�
, which maps Z into itself, that is,

�: Z� Z: (46)

That � maps Z into itself follows since z 2 Z consists of ~a�1 2 [0; 1], ~x 2 [0; �x]1 and ~! 2 [0; 1], and
the image of z under � consists of â�1 2 [0; 1] and x̂ 2 [0; �x]1, and moreover, (45) is clearly in [0; 1]
(since the right-hand side is nonnegative and bounded above by 1). Finally, from Lemma 1, Â�1 [z]
and X̂n [z] are compact and convex-valued for each z 2 Z, and also upper hemi-continuous in z, and '
is continuous. Using this construction, we can establish the existence of a steady-state equilibrium as
follows.

We �rst show that the mapping �: Z� Z constructed in (46) has a �xed point, and then establish
that when G0�1

��
1� ��1

�
= (�+ �)

�
> 0 this �xed point corresponds to a steady state with !� < 1.

First, it has already been established that � maps Z into itself. We next show that Z is compact in the
product topology and is a subset of a locally convex Hausdor¤ space. The �rst part follows from the
fact that Z can be written as the Cartesian product of compact subsets, Z = [0; 1]� [0; 1]�

Q1
n=�1 [0; �x].

Then by Tychono¤�s Theorem (e.g., Aliprantis and Border, 1999, Theorem 2.57, p. 52; Kelley, 1955,
p. 143), Z is compact in the product topology. Moreover, Z is clearly nonempty and also convex, since
for any z; z0 2 Z and � 2 [0; 1], we have �z+(1� �) z0 2 Z. Finally, since Z is a product of intervals on
the real line, it is a subset of a locally convex Hausdor¤ space (see Aliprantis and Border, 1999, Lemma
5.54, p. 192).

Next, ' is a continuous function from Z into [0; 1] and from Lemma 1, Â�1 (z) and X̂n (z) for

n 2 f�1g [ Z+ are upper hemi-continuous in z. Consequently, � �
D
' [z] ; Â�1 [z] ; X̂ [z]

E
has closed

graph in z in the product topology. Moreover, each one of ' (z), Â�1 (z) and X̂n (z) for n = �1; 0; ::: is
nonempty, compact and convex-valued. Therefore, the image of the mapping � is nonempty, compact
and convex-valued for each z 2 Z. The Kakutani-Fan-Glicksberg Fixed Point Theorem implies that if
the function � maps a convex, compact and nonempty subset of a locally convex Hausdor¤ space into
itself and has closed graph and is nonempty, compact and convex-valued z, then it possesses a �xed
point z� 2 � (z�) (see Aliprantis and Border, 1999, Theorem 16.50 and Corollary 16.51, p. 549-550).
This establishes the existence of a �xed point z� of �.

To complete the proof, we need to show that the �xed point, z�; corresponds to a steady state
equilibrium. First, since ân

�
!�; a��1; fx�ng

1
n=�1

�
= a��1 and x̂n

�
!�; a��1; fx�ng

1
n=�1

�
= x�n for n 2

f�1g [Z+, we have that given a labor share of !�,


a��1; fx�ng

1
n=�1

�
constitutes an R&D policy vector

that is best response to itself, as required by steady-state equilibrium (De�nition 3). Next, we need to
prove that the implied labor share !� leads to labor market clearing. This follows from the fact that the
�xed point involves !� < 1, since in this case (45) will have an interior solution, ensuring labor market
clearing. Suppose, to obtain a contradiction, that !� = 1. Then, as noted in the text, we must have
��0 = 1. From (31), (32) and (33), this implies x�n = 0 for n 2 f�1g [ Z+. However, Lemma 2 implies
that this is not possible when G0�1

��
1� ��1

�
= (�+ �)

�
> 0. Consequently, (45) cannot be satis�ed

at !� = 1, implying that !� < 1. When !� < 1, the labor market clearing condition (34) is satis�ed
at !� as an equality, so !� is an equilibrium given fx�ng

1
n=�1, and thus z

� =
�
!�; a��1; fx�ng

1
n=�1

�
is a

steady-state equilibrium as desired.

42



Finally, if � > 0, then (33) implies that ��0 > 0. Since x
�
0 > 0 from Lemma 2, equation (35) implies

g� > 0. Alternatively, if x��1 > 0, then g� > 0 follows from (35). This completes the proof of the
existence of a steady-state equilibrium with positive growth.

Part 2: Properties of the Sequence of Value Functions.
Let



a�1; fxng1n=�1

�
be the R&D decisions of the �rm and fvng1n=�1 be the sequence of values,

taking the decisions of other �rms and the industry distributions, fx�ng
1
n=�1, f��ng

1
n=�1, !

� and g, as
given. By choosing xn = 0 for all n � �1, the �rm guarantees vn � 0 for all n � �1. Moreover, since
�ow pro�t satisfy �n � 1 for all n � �1, vn � 1=� for all n � �1, establishing that fvng1n=�1 is a
bounded sequence, with vn 2 [0; 1=�] for all n � �1.

Proof of v1 > v0 : Suppose, �rst, v1 � v0, then (30) implies x�0 = 0, and by the symmetry of the
problem in equilibrium (25) implies v0 = v1 = 0. As a result, from (29) we obtain x��1 = 0. Equation
(24) implies that when x��1 = 0, v1 �

�
1� ��1

�
= (�+ �) > 0, yielding a contradiction and proving that

v1 > v0. �
Proof of v�1 � v0 : Suppose, to obtain a contradiction, that v�1 > v0.
If v1 � � � v0, (29) yields x��1 = 0. This implies v�1 = �v0= (�+ �), which contradicts v�1 > v0

since �= (�+ �) < 1. Thus we must have v1 � � > v0, which implies that a��1 = 1. Imposing a
�
�1 = 1,

the value function of a neck-and-neck �rm can be written as:

�v0 = max
x0

f�!�G (x0) + x0 [v1 � v0] + x�0 [v�1 � v0]g ; (47)

� max
x0

f�!�G (x0) + x0 [v1 � v0]g ;

� max
x0

f�!�G (x0) + x0 [v1 � v�1 � �]g ;

� �!�G
�
x��1

�
+ x��1 [v1 � v�1 � �] ;

� �!�G
�
x��1

�
+ x��1 [v1 � v�1 � �] + � [v0 � v�1] ;

= �v�1;

which contradicts the hypothesis that v�1 > v0 and establishes the claim. �
Proof of vn < vn+1 : Suppose, to obtain a contradiction, that vn � vn+1. Now (28) implies x�n = 0,

and (24) becomes

�vn =
�
1� ��n

�
+ x��1

�
a��1 (v�1 + �) +

�
1� a��1

�
v0 � vn

�
+ � [v0 � vn] (48)

Also from (24), the value for state n+ 1 satis�es

�vn+1 �
�
1� ��n�1

�
+ x��1

�
a��1 (v�1 + �) +

�
1� a��1

�
v0 � vn+1

�
+ � [v0 � vn+1] : (49)

Combining the two previous expressions, we obtain�
1� ��n

�
+ x��1

�
a��1 (v�1 + �) +

�
1� a��1

�
v0 � vn

�
+ � [v0 � vn]

� 1� ��n�1 + x��1
�
a��1 (v�1 + �) +

�
1� a��1

�
v0 � vn+1

�
+ � [v0 � vn+1] :

Since ��n�1 < ��n, this implies vn < vn+1, contradicting the hypothesis that vn � vn+1, and es-
tablishing the desired result, vn < vn+1. Consequently, fvng1n=�1 is nondecreasing and fvng

1
n=0 is

(strictly) increasing. Since a nondecreasing sequence in a compact set must converge, fvng1n=�1 con-
verges to its limit point, v1, which must be strictly positive, since fvng1n=0 is strictly increasing and
has a nonnegative initial value. �

The above results combined complete the proof that values form an increasing sequence. �

Part 3: Properties of the Sequence of R&D Decisions.
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Proof of x�n+1 < x�n: From equation (28),

�n+1 � vn+1 � vn < vn � vn�1 � �n (50)

would be su¢ cient to establish that x�n+1 < x�n whenever x
�
n > 0. We next show that this is the case.

Let us write:

��vn = max
xn

��
1� ��n

�
� !�G (xn) + x�n [vn+1 � vn] + x��1

�
a��1 (v�1 + �) +

�
1� a��1

�
v0
�
+ �v0

	
;

(51)
where �� � � + x��1 + �. Since x�n+1, x

�
n and x

�
n�1 are maximizers of the value functions vn+1, vn and

vn�1, (51) implies:

��vn+1 = 1� ��n�1 � !�G
�
x�n+1

�
+ x�n+1 [vn+2 � vn+1] + x��1

�
a��1 (v�1 + �) +

�
1� a��1

�
v0
�
+ �v0;

(52)

��vn � 1� ��n � !�G
�
x�n+1

�
+ x�n+1 [vn+1 � vn] + x��1

�
a��1 (v�1 + �) +

�
1� a��1

�
v0
�
+ �v0;

��vn � 1� ��n � !�G
�
x�n�1

�
+ x�n�1 [vn+1 � vn] + x��1

�
a��1 (v�1 + �) +

�
1� a��1

�
v0
�
+ �v0;

��vn�1 = 1� ��n+1 � !�G
�
x�n�1

�
+ x�n�1 [vn � vn�1] + x��1

�
a��1 (v�1 + �) +

�
1� a��1

�
v0
�
+ �v0:

Now taking di¤erences with ��vn and using the de�nitions of �ns, we obtain

���n+1 � ��n
�
1� ��1

�
+ x�n+1 (�n+2 � �n+1)

���n � ��n+1
�
1� ��1

�
+ x�n�1 (�n+1 � �n) :

Therefore, �
��+ x�n�1

�
(�n+1 � �n) � �kn + x�n+1 (�n+2 � �n+1) ; (53)

where
kn � (�� 1)2 ��n�1 > 0:

Now to obtain a contradiction, suppose that �n+1 � �n � 0. From (53), this implies �n+2 � �n+1 > 0
since kn is strictly positive. Repeating this argument successively, we have that if �n0+1� �n0 � 0, then
�n+1 � �n > 0 for all n � n0. However, we know from Part 2 of the proposition that fvng1n=0 is strictly
increasing and converges to a constant v1. This implies that �n # 0, which contradicts the hypothesis
that �n+1 � �n � 0 for all n � n0 � 0, and establishes that x�n+1 � x�n. To see that the inequality is
strict when x�n > 0, it su¢ ces to note that we have already established (50), i.e., �n+1 � �n < 0, thus if
equation (28) has a positive solution, then we necessarily have x�n+1 < x�n.

We next prove that x�0 � x��1 and then show that under the additional condition
G0�1

��
1� ��1

�
= (�+ �)

�
> 0, this inequality is strict.

Proof of x�0 � x��1 : Suppose �rst that � > v1 � v0. Then (27) implies a��1 = 0, and (25) can be
written as

�v0 = �!�G (x�0) + x�0 [v�1 + v1 � 2v0] : (54)

We have v0 � 0 from Part 2 of the proposition. Suppose v0 > 0. Then (54) implies x�0 > 0 and

v�1 + v1 � 2v0 > 0 (55)

v1 � v0 > v0 � v�1:

This inequality combined with a��1 = 0, (30) and (37) yields x�0 > x��1. Suppose next that v0 = 0.
Inequality (55) now holds as a weak inequality and implies that x�0 � x��1. Moreover, since G (�) is
strictly convex and x�0 is given by (30), (54) then implies x

�
0 = 0 and thus x

�
�1 = 0.
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We next show that when � � v1 � v0, x�0 � x��1. In this case, a
�
�1 = 1 is an optimal policy, so that

�v0 = �!�G (x�0) + x�0 [v1 � v0] + x�0 [v�1 � v0]
�v�1 � �!�G (x�0) + x�0 [v1 � v�1 � �] + � [v0 � v�1] :

Subtracting the second expression from the �rst, we obtain

� [v0 � v�1] � x�0 [v�1 + � � v0] + (x�0 + �) [v�1 � v0] ;

and therefore
[v0 � v�1] � [v�1 + � � v0] :

Part 2 of the proposition implies that v�1 � v0, and therefore v�1 + � � v0. Next observe that with
a��1 = 1, (30) and (37) imply that x�0 � x��1 if and only if v1 � v0 � v1 � v�1 � �, or equivalently if
and only if v�1 + � � v0. Thus we have established that x�0 � x��1 both when � > v1 � v0 and when
� � v1 � v0. �

We now have the following intermediate lemma.

Lemma 2 Suppose that G0�1
��
1� ��1

�
= (�+ �)

�
> 0, then x�0 > 0 and v0 > 0.

Proof. Suppose, to obtain a contradiction, that x�0 = 0. The �rst part of the proof then implies
that x��1 = 0. Then (24) implies

�v1 � 1� �+ � [v0 � v1] :
Equation (25) together with x�0 = 0 gives v0 = 0, and hence

v1 � v0 �
1� ��1

�+ �
:

Combined with this inequality, (30) implies

x�0 � max

�
G0�1

�
1� ��1

!� (�+ �)

�
; 0

�
;

� max

�
G0�1

�
1� ��1

�+ �

�
; 0

�
;

where the second inequality follows from the fact that !� � 1. The assumption that
G0�1

��
1� ��1

�
= (�+ �)

�
> 0 then implies x�0 > 0, thus leading to a contradiction and establishing

that x�0 > 0. Strict convexity of G (�) together with x�0 > 0 then implies v0 > 0.

Proof of x�0 > x��1 when G0�1
��
1� ��1

�
= (�+ �)

�
> 0 and � > 0: Given Lemma 2,

G0�1
��
1� ��1

�
= (�+ �)

�
> 0 implies that x�0 > 0. Then the �rst part of the proof implies that

when � > v1 � v0, x�0 > x��1. Next suppose that 0 < � < v1 � v0. Then the same argument as above
implies that x�0 > x��1 if and only if v1 � v0 > v1 � v�1 � �, or equivalently if and only if v�1 + � > v0.
Suppose this is not the case. Then from the �rst part of the proof, we have that x�0 = x��1 = 0, and
thus v�1 = v0 = 0, which implies v�1 + � > v0 and thus x�0 > x��1. This yields a contradiction and
completes the proof that x�0 > x��1 when � > 0 and G

0�1 ��1� ��1� = (�+ �)� > 0. �
Proof of x�0 > x�1 : To prove that x

�
0 > x�1, let us write the value functions v2; v1 and v0 as in (52):

��v2 = 1� ��2 � !�G (x�2) + x�2 [v3 � v2] + x��1
�
a��1 (v�1 + �) +

�
1� a��1

�
v0
�
+ �v0;

��v1 � 1� ��1 � !�G (x�2) + x�2 [v2 � v1] + x��1
�
a��1 (v�1 + �) +

�
1� a��1

�
v0
�
+ �v0;

��v1 � 1� ��1 � !�G (x�0) + x�0 [v2 � v1] + x��1
�
a��1 (v�1 + �) +

�
1� a��1

�
v0
�
+ �v0;

��v0 = �!�G (x0) + x�0 [v1 � v0] + �v0 + x��1v0 + x�0 [v�1 � v0] :

45



Now taking di¤erences with ��vn and using the de�nitions of �ns as in (50), we obtain

���2 � ��1
�
1� ��1

�
+ x�2 (�3 � �2) ; (56)

���1 �
�
1� ��1

�
+ x�0 (�2 � �1) + x��1

�
a��1 (v�1 + �) +

�
1� a��1

�
v0 � v0

�
� x�0 [v�1 � v0] ;

���1 �
�
1� ��1

�
+ x�0 (�2 � �1) + x��1a��1� +

�
x��1a

�
�1 � x�0

�
[v�1 � v0] ;

���1 �
�
1� ��1

�
+ x�0 (�2 � �1) +

�
x��1a

�
�1 � x�0

�
[v�1 � v0] :

Next recall from Part 2 that v�1 � v0 � 0. Moreover, the �rst part of the �rst part of the proof has
established that x��1�x�0 � 0. Combining this with a��1 � 1 establishes that

�
x��1 � x0

�
[v�1 � v0] � 0,

and the last inequality then implies

���1 �
�
1� ��1

�
+ x�0 (�2 � �1) :

Now combining this inequality with the �rst inequality of (56), we obtain

(��+ x�0) (�2 � �1) � �
�
1� ��1

�2
+ x�2 (�3 � �2) : (57)

Part 2 has already established �2 > �3, so that the right-hand side is strictly negative, therefore, we
must have �2 � �1 < 0, which implies that x�0 > x�1 and completes the proof. �

The above results together complete the proof of Part 3. �

Part 4: Uniqueness of the Invariant Distribution.

Lemma 3 Consider a uniform IPR policy


�uni; �uni

�
and a corresponding steady-state equilibrium


��; v; a��1; x
�; !�; g�

�
. Then, there exists n� 2 N such that x�n = 0 for all n � n�.

Proof. The �rst-order condition of the maximization of the value function (24) implies:

G0 (xn) �
vn+1 � vn

!�
and xn � 0,

with complementary slackness. G0 (0) is strictly positive by assumption. If (vn+1 � vn) =!� < G0 (0),
then xn = 0. The second part of the proposition implies that fvng1n=�1 is a convergent and thus a
Cauchy sequence, which implies that there exists 9n� 2 N such that vn+1�vn < !�G0 (0) for all n � n�.

An immediate consequence of Lemma 3, combined with (31) is that �n = 0 for all n � n� (since
there is no innovation in industries with technology gap greater than n�). Thus the law of motion
of an industry can be represented by a �nite Markov chain. Moreover, because after an innovation
by a follower, all industries jump to the neck-and-neck state (when a��1 = 0) or to the technology
gap of one (when a��1 = 1), this Markov chain is irreducible (and aperiodic), thus converges to a
unique steady-state distribution of industries. More formally, there exists n� such that x�n� = 0 and
x�n = 0 for all n > n�. Combined with the fact G0�1

��
1� ��1

�
= (�+ �)

�
> 0 and that either � > 0

or x��1 > 0, this implies that the states n > n� are transient and can be ignored. Consequently,
f��ng

1
n=0 forms a �nite and irreducible Markov chain over the states n = 0; 1; :::; n�. To see this, let

n� = minn2f0;:::;n��g fn 2 N:vn+1 � vn � !�G0 (0)g. Such an n� exists, since the set f0; :::; n��g is �nite
and nonempty because of the assumption that G0�1

��
1� ��1

�
= (�+ �)

�
> 0. Then by construction

x�n > 0 for all n < n� and x�n� = 0 as desired. Now denoting the probability of being in state ~n starting
in state n after � periods by P � (n; ~n), we have that lim�!1 P � (n; ~n) = 0 for all ~n > n� and for all
n. Thus we can focus on the �nite Markov chain over the states n = 0; 1; :::; n�, and f��ng

n�

n=0 is the

limiting (invariant) distribution of this Markov chain. Given a��1 and fx�ng
n�

n=�1, f��ng
n�

n=0 is uniquely
de�ned. Moreover, the underlying Markov chain is irreducible (since x�n > 0 for n = 0; 1; :::; n

� � 1, so
that all states communicate with n = 0 or n = 1). Therefore, by Theorem 11.2 in Stokey, Lucas and
Prescott (1989, p. 62) there exists a unique stationary distribution f��ng

1
n=0. �
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Proof of Proposition 3

We prove this proposition using two crucial lemmas.

Lemma 4 Consider the state-dependent IPR policy h�; �i, and suppose that

��; v; a��1; x

�; !�; g�
�
is a steady-state equilibrium. Then there exists a state n� 2 N such

that ��n = 0 for all n � n�.

Proof. There are two cases to consider. First, suppose that fvngn2Z+ is strictly increasing. Then
it follows from the proof of Lemma 3 that there exists a state n� 2 N such that x�n = 0 for all n � n�,
and as in the proof of Part 4 of Proposition 2, states n � n� are transient (i.e., lim�!1 P � (n; ~n) = 0 for
all ~n > n� and for all n), so ��n = 0 for all n � n�.

Second, in contrast to the �rst case, suppose that there exists some n�� 2 Z+ such that vn�� �
vn��+1. Then, let n� = minn2f0;:::;n��g fn 2 N:vn+1 � vn � !�G0 (0)g, which is again well de�ned.
Then, optimal R&D decision (28) immediately implies that x�n > 0 for all states with n < n�, and
since x�n� = 0, all states n > n� are transient and lim�!1 P � (n; ~n) = 0 for all ~n > n� and for all n,
completing the proof.

Lemma 5 Consider the state-dependent IPR policy h�; �i and suppose that the labor share and the
R&D policies of all other �rms are given by z = h~!; ~a; ~xi. Then the dynamic optimization problem
of an individual �rm leads to a unique value function v [z] : Z ! R+ and optimal R&D policies
Â [z] : Z�n f0g� [0; 1] and X̂ [z] : Z� [0; �x] are compact and convex-valued for each z 2 Z and upper
hemi-continuous in z (where v [z] � fvn [z]g1n=�1, Â [z] �

n
Ân [z]

o�1
n=�1

and X̂ [z] �
n
X̂n [z]

o1
n=�1

).

Proof. The proof follows closely that of Lemma 1. In particular, again using uniformization, the
maximization problem of an individual �rm can be written as a contraction mapping similar to (44)

there. The �niteness of the transition probabilities follows, since  n
�
� j ~�

�
�  � 2�x+maxn f�ng <1

(this is a consequence of the fact that �x de�ned in (11) is �nite and maxn f�ng is �nite, since each
�n 2 R+ and by assumption, there exists �n < 1 such that �n = ��n). This contraction mapping
uniquely determines the value function v [z] : Z! R+.

Berge�s Maximum Theorem (Aliprantis and Border, 1999, Theorem 16.31, p. 539) again implies
that each of Ân (z) for n 2 Z�n f0g and X̂n (z) for n 2 Z is upper hemi-continuous in z = h~!; ~a; ~xi, and
moreover, since vn for n 2 Z is concave in an and xn, the maximizers of v [z], Â �

n
Â�n

o1
n=1

and

X̂ �
n
X̂n

o1
n=�1

, are nonempty, compact and convex-valued.

Now using the previous two lemmas, we can establish the existence of a steady-state equilibrium.

This part of the proof follows that of Proposition 2 closely. Fix z =
D
~!; f~ang�1n=�1 ; f~xng1n=�1

E
, and

de�ne Z � [0; 1]�
Q1
n=�1 [0; 1]�

Q1
n=�1 [0; �x]. Again by Tychono¤�s Theorem, Z is compact in the

product topology. Then consider the mapping �: Z� Z constructed as � �
�
'; Â; X̂

�
, where ' is

given by (45) and Â and X̂ are de�ned in Lemma 5. Clearly � maps Z into itself. Moreover, as in
the proof of Proposition 2, Z is nonempty, convex, and a subset of a locally convex Hausdor¤ space.
The proof of Lemma 5 then implies that � has closed graph in the product topology and is nonempty,
compact and convex-valued in z. Consequently, the Kakutani-Fan-Glicksberg Fixed Point Theorem
again applies and implies that � has a �xed point z� 2 � (z�). The argument that the �xed point z�
corresponds to a steady-state equilibrium is identical to that in Proposition 2, and follows from the
fact that within argument identical to that of Lemma 2, G0�1

��
1� ��1

�
= (�+ �1)

�
> 0 implies that

x�0 > 0. The result that !� < 1 then follows immediately. Finally, as in the proof of Proposition 2,
either �1 > 0 or x

�
�1 > 0 is su¢ cient for g

� > 0. �
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Table 1: Benchmark Results

Full IPR
Protection
without
licensing

Full IPR
Protection
with
licensing

Optimal
Uniform
IPR
with
licensing

Optimal
State

Dependent
without
licensing

Optimal
State

Dependent
with
licensing

� 1.05 1.05 1.05 1.05 1.05

 0.35 0.35 0.35 0.35 0.35

�1 0 0 0 0.71 0
�2 0 0 0 0.08 0
�3 0 0 0 0 0
�4 0 0 0 0 0
�5 0 0 0 0 0

�1 1 3.53 0 1 0
�2 1 3.53 0 1 0.98
�3 1 3.53 0 1 1.93
�4 1 3.53 0 1 1.97
�5 1 3.53 0 1 1.98

v1 � v0 2.71 3.53 1.71 1.52 1.98
x��1 0.22 0.25 0.27 0.12 0.32
x�0 0.35 0.41 0.27 0.25 0.30
��0 0.24 0 0 0.46 0
��1 0.33 0.48 0.51 0.19 0.44
��2 0.20 0.25 0.25 0.13 0.24
!� 0.95 0.93 0.94 0.96 0.94

Researcher
ratio

0.032 0.026 0.027 0.028 0.039

lnC (0) 33.78 35.47 35.57 34.20 36.16
g� 0.0186 0.0258 0.0263 0.0204 0.0296

Welfare 683.0 719.8 722.0 692.1 735.1

Note: This table gives the results of the benchmark numerical computations with � = 0:05, � = 1:05,


 = 0:35 under �ve di¤erent IPR policy regimes. It reports the steady-state equilibrium values of

the di¤erence in the values v1 � v0; the (annual) R&D rate of a follower that is one step behind,

x��1; the (annual) R&D rate of neck-and-neck competitors, x
�
0; fraction of industries in neck-and-neck

competition, ��0; fraction of industries at a technology gap of n = 1; 2; the value of �labor share,�

!�; the ratio of the labor force working in research; initial (annual) consumption, C (0) ; the annual

growth rate, g�; and the welfare level according to equation (38). It also reports the welfare-maximizing

uniform and state-dependent IPR policies with or without licensing. See text for details.
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Table 2: � = 1:01

Full IPR
Protection
without
licensing

Full IPR
Protection
with
licensing

Optimal
Uniform
IPR
with
licensing

Optimal
State

Dependent
without
licensing

Optimal
State

Dependent
with
licensing

� 1.01 1.01 1.01 1.01 1.01

 0.35 0.35 0.35 0.35 0.35

�1 0 0 0 3.14 0.06
�2 0 0 0 0.23 0
�3 0 0 0 0 0
�4 0 0 0 0 0
�5 0 0 0 0 0

�1 1 0.19 0 1 0.04
�2 1 0.19 0 1 0.10
�3 1 0.19 0 1 0.10
�4 1 0.19 0 1 0.10
�5 1 0.19 0 1 0.10

v1 � v0 0.14 0.19 0.09 0.08 0.10
x��1 1.08 1.27 1.29 0.64 1.51
x�0 1.67 1.95 1.29 1.25 1.38
��0 0.25 0 0 0.45 0.01
��1 0.33 0.50 0.50 0.20 0.45
��2 0.19 0.25 0.25 0.14 0.23
!� 0.99 0.99 0.99 0.99 0.99

Researcher
ratio

0.008 0.007 0.007 0.007 0.010

lnC (0) 10.28 11.88 11.90 10.66 12.66
g� 0.0186 0.0257 0.0258 0.0203 0.0293

Welfare 213.1 247.8 248.3 221.4 265.0

Note: This table gives the results of the numerical computations with � = 0:05, � = 1:01, 
 = 0:35

under �ve di¤erent IPR policy regimes. It reports the steady-state equilibrium values of the di¤erence

in the values v1 � v0; the (annual) R&D rate of a follower that is one step behind, x��1; the (annual)

R&D rate of neck-and-neck competitors, x�0; fraction of industries in neck-and-neck competition, �
�
0;

fraction of industries at a technology gap of n = 1; 2; the value of �labor share,� !�; the ratio of

the labor force working in research; initial (annual) consumption, C (0) ; the annual growth rate, g�;

and the welfare level according to equation (38). It also reports the welfare-maximizing uniform and

state-dependent IPR policies with or without licensing. See text for details.
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Table 3: � = 1:2

Full IPR
Protection
without
licensing

Full IPR
Protection
with
licensing

Optimal
Uniform
IPR
with
licensing

Optimal
State

Dependent
without
licensing

Optimal
State

Dependent
with
licensing

� 1.20 1.20 1.20 1.20 1.20

 0.35 0.35 0.35 0.35 0.35

�1 0 0 0 0.19 0
�2 0 0 0 0.08 0
�3 0 0 0 0.05 0
�4 0 0 0 0.05 0
�5 0 0 0 0.05 0

�1 1 25.07 0 1 0
�2 1 25.07 0 1 5.52
�3 1 25.07 0 1 10.95
�4 1 25.07 0 1 13.64
�5 1 25.07 0 1 14.98

v1 � v0 20.29 25.07 13.86 9.62 14.98
x��1 0.06 0.068 0.08 0.02 0.09
x�0 0.10 0.12 0.08 0.06 0.09
��0 0.22 0 0 0.56 0
��1 0.32 0.45 0.52 0.24 0.45
��2 0.20 0.26 0.26 0.10 0.24
!� 0.81 0.74 0.78 0.92 0.76

Researcher
ratio

0.069 0.057 0.070 0.037 0.089

lnC (0) 114.78 116.79 117.17 115.49 117.30
g� 0.0186 0.0265 0.0282 0.0189 0.0306

Welfare 2303.0 2346.5 2354.7 2317.3 2358.3

Note: This table gives the results of the numerical computations with � = 0:05, � = 1:2, 
 = 0:35

under �ve di¤erent IPR policy regimes. It reports the steady-state equilibrium values of the di¤erence

in the values v1 � v0; the (annual) R&D rate of a follower that is one step behind, x��1; the (annual)

R&D rate of neck-and-neck competitors, x�0; fraction of industries in neck-and-neck competition, �
�
0;

fraction of industries at a technology gap of n = 1; 2; the value of �labor share,� !�; the ratio of

the labor force working in research; initial (annual) consumption, C (0) ; the annual growth rate, g�;

and the welfare level according to equation (38). It also reports the welfare-maximizing uniform and

state-dependent IPR policies with or without licensing. See text for details.
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Table 4: 
 = 0:1

Full IPR
Protection
without
licensing

Full IPR
Protection
with
licensing

Optimal
Uniform
IPR
with
licensing

Optimal
State

Dependent
without
licensing

Optimal
State

Dependent
with
licensing

� 1.05 1.05 1.05 1.05 1.05

 0.1 0.1 0.1 0.1 0.1

�1 0 0 0 3.18 0
�2 0 0 0 0.04 0
�3 0 0 0 0 0
�4 0 0 0 0 0
�5 0 0 0 0 0

�1 1 3.12 0 1 0
�2 1 3.12 0 1 0.62
�3 1 3.12 0 1 1.74
�4 1 3.12 0 1 1.82
�5 1 3.12 0 1 1.84

v1 � v0 2.21 3.12 1.64 0.49 1.88
x��1 0.27 0.28 0.29 0.19 0.29
x�0 0.29 0.31 0.29 0.25 0.29
��0 0.31 0 0 0.77 0
��1 0.33 0.50 0.50 0.10 0.49
��2 0.17 0.25 0.25 0.06 0.25
!� 0.94 0.92 0.92 0.98 0.92

Researcher
ratio

0.008 0.008 0.008 0.003 0.010

lnC (0) 34.07 36.16 36.20 34.94 36.31
g� 0.0186 0.0278 0.0280 0.0222 0.0286

Welfare 688.8 734.2 735.1 707.7 737.6

Note: This table gives the results of the numerical computations with � = 0:05, � = 1:05, 
 = 0:1

under �ve di¤erent IPR policy regimes. It reports the steady-state equilibrium values of the di¤erence

in the values v1 � v0; the (annual) R&D rate of a follower that is one step behind, x��1; the (annual)

R&D rate of neck-and-neck competitors, x�0; fraction of industries in neck-and-neck competition, �
�
0;

fraction of industries at a technology gap of n = 1; 2; the value of �labor share,� !�; the ratio of

the labor force working in research; initial (annual) consumption, C (0) ; the annual growth rate, g�;

and the welfare level according to equation (38). It also reports the welfare-maximizing uniform and

state-dependent IPR policies with or without licensing. See text for details.
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Table 5: 
 = 0:6

Full IPR
Protection
without
licensing

Full IPR
Protection
with
licensing

Optimal
Uniform
IPR
with
licensing

Optimal
State

Dependent
without
licensing

Optimal
State

Dependent
with
licensing

� 1.05 1.05 1.05 1.05 1.05

 0.6 0.6 0.6 0.6 0.6

�1 0 0 0 0.61 0.01
�2 0 0 0 0.18 0
�3 0 0 0 0.07 0
�4 0 0 0 0.03 0
�5 0 0 0 0 0

�1 1 5.26 5.26 1 0
�2 1 5.26 5.26 1 0.62
�3 1 5.26 5.26 1 1.52
�4 1 5.26 5.26 1 1.98
�5 1 5.26 5.26 1 2.35

v1 � v0 4.40 5.26 5.26 2.47 2.35
x��1 0.13 0.18 0.18 0.03 0.31
x�0 0.64 0.85 0.85 0.27 0.25
��0 0.09 0 0 0.29 0.01
��1 0.26 0.42 0.42 0.12 0.29
��2 0.19 0.25 0.25 0.09 0.15
!� 0.94 0.94 0.94 0.94 0.93

Researcher
ratio

0.073 0.044 0.044 0.084 0.097

lnC (0) 33.19 33.88 33.88 33.91 35.48
g� 0.0186 0.0198 0.0198 0.0229 0.0303

Welfare 671.3 685.6 685.6 687.3 721.6

Note: This table gives the results of the numerical computations with � = 0:05, � = 1:05, 
 = 0:6

under �ve di¤erent IPR policy regimes. It reports the steady-state equilibrium values of the di¤erence

in the values v1 � v0; the (annual) R&D rate of a follower that is one step behind, x��1; the (annual)

R&D rate of neck-and-neck competitors, x�0; fraction of industries in neck-and-neck competition, �
�
0;

fraction of industries at a technology gap of n = 1; 2; the value of �labor share,� !�; the ratio of

the labor force working in research; initial (annual) consumption, C (0) ; the annual growth rate, g�;

and the welfare level according to equation (38). It also reports the welfare-maximizing uniform and

state-dependent IPR policies with or without licensing. See text for details.
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Figure 1. Value Functions.
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Figure 2. R&D Efforts.
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Figure 3. Industry Shares.
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Figure 4. Value Functions.
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Figure 5. R&D Efforts.
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Figure 6. Industry Shares.
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Figure 7. Welfare Maximizing Flow Rates.
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Figure 8. Welfare Maximizing License Fees.
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