
Dynamic Contracting: An Irrelevance Result

Péter Eső∗ and Balázs Szentes†

September 5, 2013

Abstract

This paper considers a general, dynamic contracting problem with adverse selection and

moral hazard, in which the agent’s type stochastically evolves over time. The agent’s

final payoff depends on the entire history of private and public information, contractible

decisions and the agent’s hidden actions, and it is linear in the transfer between her

and the principal. We transform the model into an equivalent one where the agent’s

subsequent information is independent in each period. Our main result is that for any

fixed decision-action rule implemented by a mechanism, the maximal expected revenue

that the principal can obtain is the same as if the principal could observe the agent’s

orthogonalized types after the initial period. In this sense, the dynamic nature of the

relationship is irrelevant : the agent only receives information rents for her initial private

information. We also show that any monotonic decision-action rule can be implemented

in a Markov environment satisfying certain regularity conditions.

Keywords: asymmetric information, dynamic contracting, mechanism design

1 Introduction

We analyze multiperiod principal-agent problems with adverse selection and moral hazard.
The principal’s per-period decisions and the monetary transfers are governed by a contract
signed at the beginning of the relationship, in the presence of some initial informational
asymmetry, and the agent’s private information stochastically evolves over time. The agent’s
final payoff can depend, quite generally, on the entire history of private and public information,
contractible decisions and the agent’s hidden actions, and it is linear in the transfer between
her and the principal. We discuss the wide-ranging applications of such models in micro- and
macroeconomic modeling below.
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Our main result is an irrelevance theorem: In a mechanism implementing a given action-
decision rule, the maximal expected revenue that the principal can obtain (and his maximal
payoff if it is linear in the transfers) is the same as if he could contract on whatever “new”
(orthogonal) information is observed by the agent in any future period. Note that in the
hypothetical benchmark case where the agent’s future orthogonalized types are observable
and contractible the parties need not interact beyond the initial period, and the agent has
no access to dynamic deviation reporting strategies. In this sense the dynamic nature of the
adverse selection problem is irrelevant. This irrelevance result holds in a rich environment,
with very little assumed about the agent’s utility function (no single-crossing or monotonicity
assumptions are made), the information structure, and so on.

We also show that monotonic decision rules can be implemented in Markov environments
with time-separable payoffs, subject to additional regularity conditions. The regularity as-
sumptions include familiar single-crossing conditions for the agent’s utility function, and also
assumptions concerning the availability of a contractible public signal about the agent’s action
and type. If the signal is informative (however imperfectly) about a summary statistic of the
agent’s hidden action and type, and its distribution is generic, then any monotonic decision
rule coupled with any monotonic action rule is approximately implementable.1 If the con-
tractible signal is uninformative about the agent’s action (but the other regularity conditions
hold), then monotonic decision rules coupled with agent-optimal actions can be implemented.

The significance of the implementation results is that when they apply, the dynamic con-
tracting problem can indeed be treated as a static one and solved as follows. Consider the
benchmark case in which the agent’s only private information is her initial type, and the prin-
cipal can observe her orthogonalized future types. Solve this relaxed case, either by optimizing
the action rule as well or taking it to be the agent-optimal one, depending on whether or not
a public summary signal about the agent’s type and action is available. If the resulting rule
is monotonic in the agent’s type profile then it can be implemented in the original problem
with the same expected payments as in the benchmark, hence it is optimal in the original
problem as well.2 It is important to note that despite the validity of this solution method the
original and the benchmark problems are not equivalent: the monotonicity requirement on
the decision rule is more stringent, hence the set of implementable decision rules is smaller, in
the benchmark. However, under the regularity conditions the optimal solution in the relaxed
(benchmark) problem is implementable in the more restrictive original problem.

Models in the class of dynamic contracting problems that we analyze can be, and indeed
1The genericity condition and the notion of approximate implementability will be precisely defined in

Section 4.
2However, Battaglini and Lamba (2012) point out that the regularity conditions guaranteeing the mono-

tonicity of the “pointwise-optimal” decision rule are quite strong.
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have been, applied to a wide range of economic problems.3 The roots of this literature reach
back to Baron and Besanko (1984) who used a multi-period screening model to address the
issue of regulating a monopoly over time. Courty and Li (2000) studied optimal advance
ticket sales, Eso and Szentes (2007a) the optimal disclosure of private information in auc-
tions, Eso and Szentes (2007b) the sale of advice as an experience good. Farhi and Werning
(2012), Golosov, Troshkin and Tsivinsky (2011) and Kapička (2013) apply a similar approach
to optimal taxation and fiscal policy design, respectively. Pavan, Segal and Toikka (2012)
apply their (to date, most general) results on the multi-period pure adverse selection prob-
lem to the auction of experience goods (bandit auctions). Garrett and Pavan (2012) use a
dynamic contracting model with both adverse selection and moral hazard to study optimal
CEO compensation. Such mixed, hidden action – hidden information models could also be
applied in insurance problems.

In this paper we also develop three applications in order to illustrate our techniques and
new results. The first two examples are dynamic monopoly problems in which the buyer’s
valuation for the good (her type) stochastically evolves over time. In the second example the
valuation also depends on the buyer’s hidden, costly action: e.g., she may privately invest in
learning how to better enjoy the good. The monopolist cannot observe any signal about the
buyer’s type and action; all he can do is to offer a dynamic screening contract. We derive the
optimal contract and show that our dynamic irrelevance theorem holds: all distortions are due
to the buyer’s initial private information. The third application is a dynamic principal-agent
problem with adverse selection and moral hazard, where the principal is an investor and the
agent an investment advisor. The contractible decision is the amount of money invested by
the principal with the agent. The agent’s type is her ability to generate higher expected
returns, whereas her costly action is aimed at picking stocks that conform with the principal’s
other (e.g., ethical) considerations. Here the principal (investor) observes a summary signal
about the agent’s (advisor’s) type and action, in the form of the principal’s flow payoff. We
fully solve this problem as well and show that the dynamic irrelevance theorem applies.

In order to formulate the main, irrelevance result of the paper we rely on an idea in-
troduced in our previous work (Eso and Szentes (2007a)): We transform the model into an
equivalent orthogonal representation, in which the agent’s private information in each period is
independent of that obtained in earlier periods. The irrelevance theorem obtains by showing
that in the original problem (where the agent’s orthogonalized future types and actions are not

observable), in any incentive compatible mechanism, the agent’s expected payoff conditional
on her initial type are fully determined by her on-path (in the future, truthful) behavior.

3Our review of applications is deliberately incomplete; for a more in-depth survey this literature see Kräh-
mer and Strausz (2012) or Pavan, Segal and Toikka (2012).
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Therefore, the agent’s expected payoff (and payments) coincide with those in the benchmark
case, where the orthogonalized future types are publicly observable.

The results on the implementability of monotonic decision rules are obtained in Markovian
environments subject to additional regularity conditions. Here, the key step in the derivation
(also used in Eso and Szentes (2007a) in a simpler model) is to show that if the agent is
untruthful in a given period in an otherwise incentive compatible mechanism, she immediately
undoes her lie in the following period to make the principal’s inference regarding her type
correct in all future periods. The explicit characterization of out-of-equilibrium behavior
in regular, Markovian environments enables us to pin down the transfers that implement a
given monotonic decision rule in a model with adverse selection. The results for models with
both moral hazard and adverse selection are obtained by appropriately reducing the general
model to ones with only adverse selection, the exact way depending on the assumptions made
regarding the observability of a public signal on the agent’s type and action.

The technical contributions notwithstanding, we believe the most important message of the
paper is the dynamic irrelevance result. The insight that the principal need not pay his agent
rents for post-contractual hidden information in a dynamic adverse selection problem has been
expressed in previous work (going back to Baron and Besanko (1984)). Our paper highlights
both the depth and the limitations of this insight: Indeed the principal that contracts the
agent prior to her discovery of new information can limit the agent’s rents to the same level
as if he could observe the agent’s orthogonalized future types; however, we also point out that
the two problems are not equivalent.

The paper is organized as follows. In Section 2 we introduce the model and describe
the orthogonal transformation of the agent’s information. In Section 3 we derive necessary
conditions of the implementability of a decision rule and our main, dynamic irrelevance result.
Section 4 presents sufficient conditions for implementation in Markov environments. Section
5 presents the applications; Section 6 concludes. Omitted proofs are in the Appendix.

2 Model

Environment.— There is a single principal and a single agent. Time is discrete, indexed by
t = 0, 1, ..., T . The agent’s private information in period t is θt ∈ Θt, where Θt =

�
θt, θt

�
⊂ R.

In period t, the agent takes action at ∈ At which is not observed by the principal. The set At

is an open interval of R. Then a contractible public signal is drawn, st ∈ St ⊂ R. After the
public signal is observed in period t, a contractible decision is made, denoted by xt ∈ Xt ⊂ Rn,
which is observed by both parties. Since xt is contractible, it does not matter whether it is
taken by the agent or by the principal. The contract between the principal and the agent is
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signed at t = 0, right after the agent has learned her initial type, θ0.
We denote the history of a variable through period t by superscript t; for example x

t =
(x0, ..., xt), and x

−1 = {∅}. The random variable θt is distributed according to a c.d.f.
Gt

�
·|θt−1

, a
t−1

, x
t−1

�
supported on Θt. The function Gt is continuously differentiable in all

of its argument, and the density is denoted by gt
�
·|θt−1

, a
t−1

, x
t−1

�
. The public signal st

is distributed according to a continuous c.d.f. Ht (·|ft(θt, at)), where ft : Θt × At → R
is continuously differentiable. We may interpret st as an imperfect public summary signal
about the agent’s current type and action; for example, in Application 3 of Section 5 it will
be st = θt + at + ξt, where ξt is noise with a known distribution. In the general model we
assume that for all θt,

�θt and at there is a unique �at such that ft(θt, at) = ft(�θt,�at).4

The agent’s payoff is quasilinear in money, and is defined by

�u
�
θ

T
, a

T
, s

T
, x

T
�
− p,

where p ∈ R denotes the agent’s payment to the principal, and �u : ΘT ×A
T × S

T ×X
T → R

is continuously differentiable in θt and at for all t = 0, ..., T . We do not specify the principal’s
payoff. In some applications (e.g., where the principal is a monopoly and the agent its
customer) it could be the payment itself, in others (e.g., where the principal is a social planner
and the agent the representative consumer) it could be the agent’s expected payoff; in yet
other applications it could be something different.

A notational convention: We denote partial derivatives with a subscript referring to the
variable of differentiation, e.g., ũθt ≡ ∂ũ/∂θt, ftθt ≡ ∂ft/∂θt, etc.

Orthogonalization of Information.— The model can be transformed into an equivalent one
where the agent’s private information is represented by serially independent random variables.
Suppose that at each t = 0, ..., T , the agent observes εt = Gt

�
θt|θt−1

, a
t−1

, x
t−1

�
instead of

θt. Clearly, ε
t can be inferred from

�
θ

t
, a

t−1
, x

t−1
�
. Conversely, θ

t can be computed from
(εt

, a
t−1

, x
t−1), that is, for all t = 0, ..., T there is ψt : [0, 1]t ×A

t−1 ×X
t−1 → Θt such that

εt = Gt
�
ψt(εt

, a
t−1

, x
t−1)|ψt−1(εt−1

, a
t−2

, x
t−2), at−1

, x
t−1

�
, (1)

where ψ
t(εt

, a
t−1

, x
t−1) denotes

�
ψ0(ε0), . . . ,ψt(εt

, a
t−1

, x
t−1)

�
. In other words, if the agent

observes
�
ε
t
, a

t−1
, x

t−1
�

at time t in the orthogonalized model, she can infer the type history
ψ

t(εt
, a

t−1
, x

t−1) in the original model.
Of course, a model where the agent observes εt for all t is strategically equivalent to

the one where she observes θt for all t (provided that in both cases she observes x
t−1 and

4This assumption ensures that the principal cannot resolve the adverse selection problem by requiring the
agent to take a certain action and using the public signal to detect the agent’s type.

5



recalls a
t−1 at t). By definition, εt is uniformly distributed on the unit interval5 for all t

and all realizations of θ
t−1, a

t−1 and x
t−1, hence the random variables {εt}T

0 are independent
across time. There are many other orthogonalized information structures (e.g., ones obtained
by strictly monotonic transformations). In what follows, to simplify notation, we fix the
orthogonalized information structure as the one where εt is uniform on Et = [0, 1].

The agent’s gross payoff in the orthogonalized model, u : ET × A
T × S

T × X
T → R,

becomes
u

�
ε
T
, a

T
, s

T
, x

T
�

= �u
�
ψ

T
�
ε
T
, a

T−1
, x

T−1
�
, a

T
, s

T
, x

T
�
.

Revelation Principle.— A deterministic mechanism is a four-tuple
�
Z

T
,xT

,aT
, p

�
, where Zt

is the agent’s message space at time t, xt : Z
t × S

t → Xt is the contractible decision rule
at time t, at : Z

t × S
t−1 → At is a recommended action at t, and p : Z

T × S
T → R is the

payment rule. The agent’s reporting strategy at t is a mapping from previous reports and
information to a message.

We refer to a strategy that maximizes the agent’s payoff as an equilibrium strategy and the
payoff generated by such a strategy as equilibrium payoff. The standard Revelation Principle
applies in this setting, so it is without loss of generality to assume that Zt = Et for all t, and to
restrict attention to mechanisms where telling the truth and taking the recommended action
(obedience) is an equilibrium strategy. A direct mechanism is defined by a triple

�
xT

,aT
,p

�
,

where xt : E t × S
t → Xt, at : E t × S

t−1 → At and p : ET × S
T → R. Direct mechanisms in

which telling the truth and obeying the principal’s recommendation is an equilibrium strategy
are called incentive compatible mechanisms.

We call a decision-action rule
�
xT

,aT
�

implementable if there exists a payment rule,
p : ET → R such that the direct mechanism

�
xT

,aT
,p

�
is incentive compatible.

Technical Assumptions.— We make three technical assumptions to ensure that the equilibrium
payoff function of the agent is Lipshitz continuous in the orthogonalized model.

Assumption 0.
(i) There exists a K ∈ N such that for all t = 1, ..., T and for all θ

T
, a

T
, s

T
, x

T
,

�uθt

�
θ

T
, a

T
, s

T
, x

T
�
, �uat

�
θ

T
, a

T
, s

T
, x

T
�

< K.

(ii) There exists a K ∈ N such that for all t = 1, ..., T , τ < t, and for all θ
t
, a

t−1
, x

t−1
,

Gtθt

�
θt|θt−1

, a
t−1

, x
t−1

�
,
��Gtθτ

�
θt|θt−1

, a
t−1

, x
t−1

��� < K.
5To see this, note that since εt = Gt

`
θt|θt−1, at−1, xt−1

´
, the probability that εt ≤ ε̄ is

Pr
`
Gt

`
θt|θt−1, at−1, xt−1

´
≤ ε̄

´
= Pr

`
θt ≤ G−1

t

`
ε̄|θt−1, at−1, xt−1

´´
= Gt

`
G−1

t

`
ε̄|θt−1, at−1, xt−1

´´
= ε̄.
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(iii) There exists a K ∈ N such that for all t = 1, ..., T and for all θ
t
, a

t
,

����
ftθt (θt, at)
ftat (θt, at)

���� < K.

3 The main result

We refer to the model in which the principal never observes the agent’s types as the original

model, whereas we call the model where ε1, ..., εT are observed by the principal the benchmark

case. The contracting problem in the benchmark is a static one in the sense that the principal
only interacts with the agent at t = 0, and the agent has no access to dynamic deviation
reporting strategies. Our dynamic irrelevance result is that in any mechanism that implements
a given decision-action rule in the original model the principal’s maximal expected revenue is
the same as it would be the benchmark case.

Specifically, what we show below is that the expected transfer payment of an agent with a
given initial type when the principal implements decision-action rule

�
xT

,aT
�

in the original
problem is the same (up to a type-invariant constant) as it would be in the benchmark.
This implies that the principal’s maximal expected revenue (and his payoff, in case it is
linear in the revenue) when implementing a decision-action rule in the original problem is
just as high as it would be in the benchmark. This does not imply, however, that the two
problems are equivalent: sufficient conditions of implementability (of a decision rule) are
stronger in the original problem than they are in the benchmark. We will turn to the question
of implementability in Section 4.

In the next subsection we consider a decision-action rule
�
xT

,aT
�

and derive a necesarry
condition for the payment rule p such that

�
xT

,aT
,p

�
is incentive compatible. This condition

turns out to be the same in the benchmark case and in the original model. We then use this
condition to prove our main, irrelevance result.

3.1 Payment rules

We fix an incentive compatible mechanism
�
xT

,aT
,p

�
and analyze the consequences of time-0

incentive compatibility on the payment rule, p, in both the original model and the benchmark.
We consider a particular set of deviation strategies and explore the consequence of the

non-profitability of these deviations in each case. To this end, let us define this set as follows:
If the agent with initial type ε0 reports �ε0 then (i) she must report ε1, ..., εT truthfully, and (ii)
for all t = 0, . . . , T , after history

�
ε
t
, s

t−1
�
, she must take action �at(εt

, �ε0, s
t−1) such that the

distribution of st is the same as if the history were
�
�ε0, ε

t
−0, s

t−1
�

and action at(�ε0, ε
t
−0, s

t−1)
were taken, where ε

t
−0 = (ε1, . . . , εt). Since the distribution of st only depends on ft(θt, at),
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the action �at(εt
, �ε0, s

t−1) is defined by

ft

�
�θt,at(�ε0, ε

t
−0, s

t−1)
�

= ft
�
θt, �at(εt

, �ε0, s
t−1)

�
, (2)

where

�θt = ψt
�
�ε0, ε

t
−0,a

t−1
�
�ε0, ε

t−1
−0 , s

t−2
�
,xt−1

�
�ε0, ε

t−1
−0 , s

t−1
��

,

θt = ψt
�
ε
t
, �at−1

�
ε
t−1

, �ε0, s
t−2

�
,xt−1

�
�ε0, ε

t−1
−0 , s

t−1
��

.

In other words, the deviation strategies we consider require the agent (i) to be truthful in the
future about her orthogonalized types, and (ii) to take actions that “mask” her earlier lie so
that the principal could not detect her initial deviation based on the public signals, even in
a statistical sense.6 Note that in the benchmark case we only need to impose restriction (ii)
since the principal observes ε1, ..., εT by assumption. Also note that the strategies satisfying
restrictions (i) and (ii) include the equilibrium strategy in the original model because if ε0 = �ε0

the two restrictions imply truth-telling and obedience (adherence to the action rule).
We emphasize that we do not claim by any means that after reporting �ε0 it is optimal for

the agent to follow a continuation strategy defined by restrictions (i) and (ii). Nevertheless,
since the mechanism

�
xT

,aT
,p

�
is incentive compatible, none of these deviations are profitable

for the agent. We show that this observation enables us to characterize the expected payment
of the agent conditional on ε0 up to a type-invariant constant.

Let Π0 (ε0) denote the agent’s expected equilibrium payoff conditional on her initial type
ε0 in the incentive compatible mechanism

�
xT

,aT
,p

�
. That is,

Π0 (ε0) = E
�
u

�
ε
T
,aT

�
ε
T
, s

T−1
�
, s

T
,xT

�
ε
T
, s

T
��
− p

�
ε
T
� �� ε0

�
, (3)

where E denotes expectation over ε
T and s

T .

Proposition 1 If the mechanism
�
xT

,aT
,p

�
is incentive compatible either in the original

model or in the benchmark case, then for all ε0 ∈ E0 :

Π0(ε0) = Π0 (0) + E

�ˆ ε0

0
uε0

�
y, ε

T
−0,a

T
�
y, ε

T
−0, s

T−1
�
, s

T
,xT

�
y, ε

T
−0, s

T
��

dy

���� ε0

�
(4)

+E

�ˆ ε0

0

T�

t=0

uat

�
y, ε

T
−0,a

T
�
y, ε

T
−0, s

T−1
�
, s

T
,xT

�
y, ε

T
−0, s

T
��

�atε0

�
y, ε

t
−0, y, s

t−1
�
dy

����� ε0

�
,

6Similar ideas are used by Pavan, Segal and Toikka (2012) in a dynamic contracting model without moral
hazard and by Garrett and Pavan (2012) in a more restrictive environment with moral hazard.
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where
�
y, ε

t
−0

�
= (y, ε1, ..., εt).

Proposition 1 establishes that in an incentive compatible mechanism that implements a
particular decision-action rule the expected payoff of the agent with a given (initial) type does
not depend on the transfers. Analogous to the necessity part of the Spence–Mirrlees Lemma in
static mechanism design (or Myerson’s Revenue Equivalence Theorem), necessary conditions
similar to (4) have been derived in dynamic environments by Baron and Besanko (1984),
Courty and Li (2000), Eso and Szentes (2007a), Pavan, Segal and Toikka (2012), Garrett and
Pavan (2012), and others. In our environment, which is not only dynamic but incorporates
both adverse selection and moral hazard as well, the real significance of the result is that the

same formula applies in the original problem and in the benchmark case.
It may be instructive to consider the special case where the principal has no access to a

public signal, or equivalently, the distribution of st is independent of (θt, at). Since the choice
of at has no impact on xT and pT , the agent chooses at to maximize her utility. A necessary
condition of this maximization is E

�
uat

�
ε
T
,aT (εT

, s
T−1), sT

,xT (εT
, s

T )
�
|εt

, s
t−1

�
= 0 for all

t. As a consequence the last term of Π0(ε0), i.e. the second line of equation (4), vanishes.

Proof of Proposition 1 First we express the agent’s reporting problem at t = 0 in the
benchmark case as well as in the original problem subject to restrictions (i) and (ii) discussed
at the beginning of this subsection.

In order to do this define

U (ε0, �ε0) = E
�
u

�
ε
T
, �aT

�
ε
T
, �ε0, s

T−1
�
, s

T
,xT

�
�ε0, ε

T
−0, s

T
��

|ε0
�

and

P (�ε0) = E
�
p

�
�ε0, ε

T
−0, s

T
�
|ε0, a

T = �aT
�
ε
T
, �ε0, s

T−1
�
, x

T = xT
�
�ε0, ε

T
−0, s

T
��

, (5)

where �a is defined by (2). Recall that the action �at
�
ε
t
, �ε0, s

t−1
�

generates the same distribution
of st as if the agent’s true type history was

�
�ε0, ε

t
−0

�
and the agent had taken at

�
�ε0, ε

t
−0, s

t−1
�
.

The significance of this is that

E
�
p

�
�ε0, ε

T
−0, s

T
�
|ε0, a

T = �aT
�
ε
T
, �ε0, s

T−1
�
, x

T = xT
�
�ε0, ε

T
−0, s

T
��

= E
�
p

�
�ε0, ε

T
−0, s

T
�
|�ε0, a

T = aT
�
�ε0, ε

T
−0, s

T−1
�
, x

T = xT
�
�ε0, ε

T
−0, s

T
��

,

so the right-hand side of (5) is indeed only a function of �ε0 but not that of ε0.
In the benchmark case, the payoff of the agent with ε0 who reports �ε0 and takes action

�at
�
ε
t
, �ε0, s

t−1
�

at every t is W (ε0, �ε0) = U (ε0, �ε0) − P (�ε0) . Note that W (ε0, �ε0) is also
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the payoff of the agent in the original model if her type is ε0 at t = 0, reports �ε0 and her
continuation strategy is defined by restrictions (i) and (ii) above, that is, she reports truthfully
afterterwards and takes action �at

�
ε
t
, �ε0, s

t−1
�

after the history
�
ε
t
, s

t−1
�
.

The incentive compatibility of
�
xT

,aT
,p

�
implies that ε0 ∈ arg maxbε0∈E0 W (ε0, �ε0) both

in the benchmark case and in the original model. In addition, Π0 (ε0) = W (ε0, ε0) and, by
Lemma 6 of the Appendix, Π0 is Lipshitz continuous. Therefore, Theorem 1 in Milgrom and
Segal (2002) implies that

dΠ0 (ε0)
dε0

=
∂U (ε0, �ε0)

∂ε0

�

bε0=ε0

,

almost everywhere. Note that

∂U (ε0, �ε0)
∂ε0

�

bε0=ε0

= E
�
uε0

�
ε
T
,aT

�
ε
T
, s

T−1
�
, s

T
,xT

�
ε
T
, s

T
���� ε0

�

+E

�
T�

t=0

uat

�
ε
T
,aT

�
ε
T
, s

T−1
�
, s

T
,xT

�
ε
T
, s

T
��

�atε0

�
ε
t
, �ε0, s

t−1
��

bε0=ε0

����� ε0

�
.

Since Π0 is Lipshitz continuous, it can be recovered from its derivative, so the statement of
the proposition follows. �

By Proposition 1, for a given decision-action rule, incentive compatibility constraints pin
down the expected payments conditional on ε0 uniquely up to a constant in both the bench-
mark case and the original model. To see this, note that from (3) and (4) the expected
payment conditional on ε0 can be expressed as

E
�
p

�
ε
T
, s

T
��� ε0,aT

,xT
�

= E
�
u

�
ε
T
,aT

�
ε
T
, s

T−1
�
, s

T
,xT

�
ε
T
���� ε0

�
−Π0 (0)

− E

�ˆ ε0

0
uε0

�
y, ε

T
−0,a

T
�
y, ε

T
−0, s

T−1
�
, s

T
,xT

�
y, ε

T
−0, s

T
��

dy

���� ε0

�

− E

�ˆ ε0

0

T�

t=0

uat

�
y, ε

T
−0,a

T
�
y, ε

T
−0, s

T−1
�
, s

T
,xT

�
y, ε

T
−0, s

T
��

�atε0

�
y, ε

t
−0, y, s

t−1
�
����� ε0

�
.

An immediate consequence of this observation and Proposition 1 is the following

Remark 1 Suppose that
�
xT

,aT
,p

�
and

�
xT

,aT
,p

�
are incentive compatible mechanisms in

the original and in the benchmark case, respectively. Then

E
�
p

�
ε
T
, s

T
��� ε0,aT

,xT
�
− E

�
p

�
ε
T
, s

T
��� ε0,aT

,xT
�

= c,

where c ∈ R.
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3.2 Irrelevance of dynamic adverse selection

Now we show that the principal’s maximal revenue of implementing a decision rule is the
same as if he were able to observe the orthogonalized types of the agent after t = 0. That
is, whenever a decision rule is implementable, the agent only receives information rent for her
initial private information. This is our irrelevance result.

To state this result formally, suppose that the agent has an outside option, which we
normalize to be zero. This means that any mechanism must satisfy

Π0 (ε0) ≥ 0 (6)

for all ε0 ∈ E0. We call the maximum (supremum) of the expected payment of the agent
across all the mechanisms that implement

�
xT

,aT
�

and satisfy (6) the principal’s maximal
revenue from implementing this rule.7

Theorem 1 Suppose that the decision rule
�
xT

,aT
�

is implementable in the original model.

Then the principal’s maximal revenue from implementing this rule is the same as in the

benchmark case.

Proof. Consider first the benchmark case where the principal observes ε1, ..., εT and let p
denote the payment rule in a revenue-maximizing mechanism. Then the revenue of imple-
menting

�
xT

,aT
�

is just E
�
p

�
ε
T
, s

T
���aT

,xT
�
.

Of course, the principal’s revenue in the benchmark case is an upper bound on his rev-
enue in the original model. Therefore, it is enough to show that the principal can achieve
E

�
p

�
ε
T
, s

T
���aT

,xT
�

from implementing xT even if the he does not observe ε1, ..., εT . Sup-
pose that the direct mechanism

�
xT

,aT
, �p

�
is incentive compatible. Then, by Remark 1,

E
�
�p

�
ε
T
, s

T
��� ε0,aT

,xT
�

= E
�
p

�
ε
T
, s

T
��� ε0,aT

,xT
�
+ c

for some c ∈ R. Define p
�
ε
T
, s

T
�

to be �p
�
ε
T
, s

T
�
− c. Since adding a constant has

no effect on incentives, the mechanism
�
xT

,aT
,p

�
is incentive compatible. In addition,

E
�
p

�
ε
T
, s

T
��� ε0,aT

,xT
�

= E
�
p

�
ε
T
, s

T
��� ε0,aT

,xT
�
, that is, the principal’s revenue is the

same as in the benchmark case.
Finally, notice that the participation constraint of the agent, (6), is also satisfied because

7Requiring (6) for all ε0 implies that we restrict attention to mechanisms where the agent participates
irrespective of her type. This is without the loss of generality in many applications where there is a decision
which generates a utility of zero for both the principal and the agent. Alternatively, we could have stated
our theorem for problems where the participating types in the optimal contract of the benchmark case is an
interval.
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the agent’s expected payoff conditional on her initial type, ε0, is the same as that in the
benchmark case. �

The statement of Theorem 1 is about the revenue of the principal. Note that if the payoff
of the principal is also quasi-linear (affine in the payment), then the decision rule and the
expected payment fully determines his payoff. Hence, a consequence of Theorem 1 is,

Remark 2 Suppose that the decision-action rule
�
xT

,aT
�

is implementable in the original

model and the principal’s payoff is affine in the payment. Then the principal’s maximum

(supremum) payoff from implementing
�
xT

,aT
�

is the same as in the benchmark case.

It is important to point out that our dynamic irrelevance result does not imply that the
original problem (unobservable ε1, . . . , εT ) and the benchmark case (observable ε1, . . . , εT )
are equivalent. Theorem 1 only states that if an decision-action rule is implementable in the
original model, then it can be done so without revenue loss as compared to the benchmark
case. This result was obtained under very mild conditions regarding the stochastic process
governing the agent’s type, her payoff function and the structure of the public signals. The
obvious, next question is what type of decision-action rules can be implemented (under what
conditions) in the original problem. We find some answers to this question in the next section.

4 Implementation

This section establishes results regarding the implementability of certain decision rules.8 We
restrict attention to a Markov environment with time-separable, regular (monotonic and
single-crossing) payoff functions, formally stated in Assumptions 1 and 2 below.

First, we show that in the pure adverse selection model (where there are neither unob-
servable actions nor public signals) any monotonic decision rule is implementable. Then we
turn our attention to the general model with moral hazard. There the set of implementable
decision rules depends on the information content of the public signal. If the public signal
has no informational content, that is, the distribution of st is independent of ft (θt, at), then
naturally the agent cannot be given incentives to choose any action other than the one that
maximizes her flow utility in each period. In this case, we show that any decision-action
rule can be implemented if xT is monotonic and aT is determined by the agent’s per period
maximization problem.

The most interesting (and permissive) implementation result is obtained in the general
model with adverse selection and moral hazard in case the signal is informative and its dis-

8Throughout this section we require a type-invariant participation constraint for the agent with her outside
option normalized to zero payoff, that is, (6) to hold.
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tribution satisfies a genericity condition due to McAfee and Reny (1992). This condition
requires that the distribution of st conditional on any given yt = ft(θt, at) is not the average
of signal distributions conditional on other �yt �= yt’s such that �yt = ft(�θt,�at). In this case,
we show that any monotonic decision-action rule

�
xT

,aT
�

can be approximately implemented
(to be formally defined below).9 The result is based on arguments similar to the Full Sur-
plus Extraction Theorem of McAfee and Reny (1992) and exploits the property of the model
that ft is approximately contractible and the agent is risk neutral with respect to monetary
transfers. The main result of this section is that in our general model, in a regular Markovian
environment with transferable utility and generic public signals, the principal is able to im-
plement any monotonic decision-action rule while not incurring any agency cost apart from
the information rent due to the agent’s initial private information.

In order to state the regularity assumptions made throughout the section, we return to the
model without orthogonalization. Throughout this section, we assume that the public signal
does not directly affect the agent’s payoff directly and we remove s

T from the arguments of �u,
that is, �u : ΘT ×A

T ×X
T → R. We make two sets of assumptions regarding the environment.

The first set concerns the type distribution, the second one the agent’s payoff function.

Assumption 1. (Type Distribution)
(i) For all t ∈ {0, ..., T}, the random variable θt is distributed according to a continuous

c.d.f. Gt (·|θt−1) supported on an interval Θt =
�
θt, θt

�
.

(ii) For all t ∈ {1, ..., T}, Gt (·|θt−1) ≥ Gt(·|�θt−1) whenever θt−1 ≤ �θt−1.

Part (i) of Assumption 1 states that the agent’s type follows a Markov process, that is, the
type distribution at time t only depends on the type at t− 1. In addition, the support of θt

only depends on t, so any type on Θt can be realized irrespective of θt−1. Part (ii) states that
the type distributions at time t are ordered according to first-order stocahastic dominance.
The larger the agent’s type at time t− 1, the more likely it is to be large at time t.

Assumption 2. (Payoff Function)
(i) There exist {�ut}T

t=0, �ut : Θt ×At ×X
t → R continuously differentiable, such that

�u
�
θ

T
, a

T
, x

T
�

=
T�

t=0

�ut
�
θt, at, x

t
�
.

(ii) For all t ∈ {0, ..., T}, �ut is strictly increasing in θt.
(iii) For all t ∈ {0, ..., T}, θt ∈ Θt, at ∈ At: �utθt

�
θt, at, x

t
�
≥ �utθt

�
θt, at, �xt

�
whenever

x
t ≥ �xt.

9The approximation can be dispensed with if the public signal is the summary statistic ft(θt, at) itself.
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Part (i) of Assumption 2 says that the agent’s utility is additively separable over time, such
that her flow utility at time t only depends on θt and at (and not on any prior information
and action) besides all decisions taken at or before t. Part (ii) requires the flow utility to
be monotonic in the agent’s type. Part (iii) is the standard single-crossing property for the
agent’s type and the contractible decision.

We refer to the model as the one with pure adverse selection if �utat ≡ 0 for all t and the
distribution of st is independent of ft. Next, we state our implementation result for this case
(Proposition 2). Then, in Sections 4.1 and 4.2 we return to the general model with moral
hazard. In both scenarios regarding the informational content of the public signal discussed
above we reduce the problem of implementation to that in an appropriately-defined pure
adverse selection problem.

Proposition 2 Suppose that Assumptions 0,1 and 2 hold in a pure adverse selection model.

Then a decision rule, �xT
, �xt : Θt → Xt, is implementable if �xt is increasing for all t.

By Corollary 2 of Pavan, Segal and Toikka (2012), Assumptions 1-2 imply their integral
monotonicity condition; slight differences in their and our technical assumptions notwith-
standing, our Proposition 2 appears to be an implication of their Theorem 2. We present a
proof of this result in Section 4.3 relying on the techniques used in Eso and Szentes (2007a).

4.1 Uninformative public signal

Suppose that the public signal is uninformative (i.e. st is independent of ft). We maintain the
assumption that the payoff function of the agent is time-separable and satisfies Assumption
2, but now the flow utility at time t is allowed to vary with at.

Recall that the action space of the agent at time t, At, was assumed to be an open interval
of R in Section 2. We needed this assumption because we posited that for all θt,

�θt and at

there is a unique �at such that ft(θt, at) = ft(�θt,�at).10 Since there is no public signal in the
case considered here, we can relax the requirement that At is open. In fact, in order to discuss
the implementability of allocation rules which may involve boundary actions, we assume that
At = [at, at] is a compact interval throughout this subsection.

Assumption 3. For all t ∈ {0, ..., T} , for all θt ∈ Θt, at,�at ∈ At, x
t
, �xt ∈ X

t

(i) �uta2
t

�
θt, at, x

t
�
≤ 0,

(ii) �utθt

�
θt, at, x

t
�
≥ �utθt

�
θt,�at, �xt

�
whenever at ≥ �at, and

(iii) �utat

�
θt, at, x

t
�
≥ �utat

�
θt, at, �xt

�
whenever x

t ≥ �xt.

10If At was compact then there would be a pair, (θ�t, a
�
t), which maximizes ft. Therefore, if bθt /∈

arg maxθt [maxat ft (θt, at)], then there was no bat such that ft(θt, at) = ft(bθt, bat).
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Part (i) of the assumption states that the agent’s payoff is a concave function of her
action. This is satisfied in applications where the action of the agent is interpreted as an
effort, and the cost of exerting effort is a convex function of the effort. Part (ii) states that
the single-crossing assumption is also satisfied for the action. In the previous application, this
means that the marginal cost of effort is decreasing in the agent’s type. Part (iii) requires the
single-crossing property to hold with respect to actions and decisions.

In what follows, we turn the problem of implementation in this environment with adverse
selection and moral hazard into one of pure adverse selection. Since there is no publicly
available information about the agent’s action, her action maximizes her payoff in each period
and after each history. That is, if the agent has type θt and the history of decisions is x

t,
then she takes an action which maximizes �ut

�
θt, at, x

t
�
. Motivated by this observation, let

us define the agent’s new flow utility function at time t, vt : Θt ×X
t → R, to be

vt
�
θt, x

t
�

= max
at

�ut
�
θt, at, x

t
�
.

We will apply our implementation result for the pure adverse selection case (Proposition 2)
to the setting where the flow utilities of the agent are {vt}T

t=0 while keeping in mind that the
action of the agent in each period t maximizes �ut.

To this end, let at
�
θt, x

t
�

denote the generically unique arg maxat �ut
�
θt, at, x

t
�

for all
θt ∈ Θt and x

t ∈ X
t. By part (i) of Assumption 3, if at

�
θt, x

t
�

is interior, it is defined by the
first-order condition

�utat

�
θt,at(θt, x

t), xt
�

= 0. (7)

The next lemma states that the flow utilities, {vt}T
0 , satisfy the hypothesis of Proposition 2.

Lemma 1 Suppose that the functions {�ut}T
t=0 satisfy Assumptions 2 and 3. Then the func-

tions {vt}T
t=0 satisfy Assumption 2.

Suppose that the decision-action rule
�
xT

,aT
�

is implementable. Then, since the agent’s
action maximizes her payoff in each period, at

�
θ

t
�

= at
�
θt,xt

�
θ

t
��

. In addition, the decision
rule xT must be implementable in the pure adverse selection model, where the agent’s flow
utility functions are {vt}T

t=1. Hence, the following result is a consequence of Proposition 2
and Lemma 1.

Proposition 3 Suppose that Assumptions 0-3 hold. Then a decision rule,
�
�xT

, �aT
�
, �xt :

Θt → Xt and �at : Θt → At, is implementable if �xt is increasing and �at
�
θ

t
�

= at
�
θt, �xt

�
θ

t
��

for all t ∈ {0, ..., T}.
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Of course, the statement of this proposition is valid even if the public signal is informative
(st depends on ft) but the principal ignores it and designs a mechanism which does not
condition on s

T . However, if st is informative about ft (θt, at) the principal can implement
more decision rules which is the subject of the next subsection.

4.2 Informative public signal

We turn our attention to the case where public signal is informative. The next condition is due
to McAfee and Reny (1992); it requires that the distribution of the public signal conditional
of any given value of y0 = ft(θt, at) is not the average of the distribution of st conditional on
other values of ft. This condition is generic.

Assumption 4. Suppose that for all θt ∈ Θt and at ∈ At, ft (θt, at) ∈ Yt = [y
t
, yt]. Then, for

all µ ∈ ∆[y
t
, yt] and y0 ∈ [y

t
, yt], µ ({y0}) �= 1 implies h (·|y0) �=

´ 1
0 h (·|y) µ (dy).

Next, we make further assumptions on the agent’s flow utility, �ut, and on the shape of the
function ft.

Assumption 5. For all t ∈ {0, ..., T} , for all θt ∈ Θt, at ∈ At, x
t ∈ X

t

(i) �utat

�
θt, at, x

t
�

< 0,

(ii) there exists a K ∈ N such that ftat (θt, at) , ftθt (θt, at) > 1/K,
(iii) fta2

t
(θt, at) ftθt (θt, at) ≤ ftat (θt, at) ftatθt (θt, at) , and

(iv) �utθtxτ

�
θt, at, x

t
�
ftat (θt, at) ≥ �utatxτ

�
θt, at, x

t
�
ftθt (θt, at) .

Part (i) requires the agent’s flow utility to be decreasing in her action. This is satisfied in
applications where, for example, the agent’s unobservable action is a costly effort from which
she does not benefit directly. Part (ii) says that the function ft is increasing in both the
agent’s action and type. In many applications, the distribution of the public signal can be
ordered according to first-order stochastic dominance. In these applications, part (ii) implies
that an increase in either the action or the type improves the distribution of st in the sense of
first-order stochastic dominance. Part (iii) is a substitution assumption regarding the agent’s
type and hidden action in the value of ft. It means that an increase in at, holding the value of
ft constant, weakly decreases the marginal impact of at on ft.11 This assumption is satisfied,
for example, if ft (θt, at) = θt + at, but it is clearly more general. As will be explained later
part (iv) is a stregthening of the single crossing property posited in part (iii) of Assumption
2. It requires the marginal utility in type to be increasing in the contractible decision while

11To see this interpretation, note that the total differential of ftat (the change in the marginal impact of at)
is fta2

t
dat + ftatθtdθt. Keeping ft constant (moving along an “iso-value” curve) means dθt = (−ftat/ftθt)dat.

Substituting this into the total differential of ftat yields (fta2
t
− ftatθtftat/ftθt)dat. This expression is non-

positive for dat > 0 if part (iii) is satisfied.
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holding the value of ft fixed. This assumption is satisfied, for example, if the effort cost of
the agent is additively separable in her flow utility.

The key observation is that due to Assumption 4, the value of ft becomes an approximately
contractible object in the following sense. For each value of ft, yt, the principal can design
a transfer scheme depending only on s

T that punishes the agent for taking an action which
results a value of ft which is different from yt. Perhaps more importantly, the punishment can
be arbitrarily large as a function of the distance between yt and the realized value of ft. We
use this observation to establish our implementation result in two steps. First, we treat ft (for
all t) as a contractible object, that is, we add another dimension to the contracible decisions
in each period. Since, conditional on θt, the value of ft is determined by at, we can express
the agent’s flow utility as a function of ft instead of at. These new flow utilities depend only
on types and decisions, so we have a pure adverse selection model. We then show that the
new flow utilities satisfy the requirements of Proposition 2 and hence, every monotonic rule
is implementable. The second step is to construct punishment-transfers mentioned above and
show that even if ft is not contractible, any monotonic decision rule can be approximately
implementable.

For each yt ∈ {ft (θt, at) : θt ∈ Θt, at ∈ At} and θt ∈ Θt, let at (θt, yt) denote the solution
to ft (θt, at) = yt in at. For each t = 0, ..., T , we define the agent’s flow utility as a function
of yt as follows:

wt
�
θt, yt, x

t
�

= �ut
�
θt,at (θt, yt) , x

t
�
.

Next, we show that the functions {wt}T
t=0 satisfy the hypothesis of Proposition 2.

Lemma 2 Suppose that Assumptions 2-5 are satisfied. Then the functions {wt}T
t=0 satisfy

Assumption 2.

By this lemma and Proposition 2 if the value of ft was contractible for all t, any increas-
ing decision rule was implementable. However, ft is not contractible; nevertheless we can
still implement increasing decisions rules approximiately in the sense that by following the
principal’s recommendation the agent’s expected utility is arbitrarily close to her equilibrium
payoff. Formally:

Definition 1 The decision rule
�
�xT

, �aT
�

is approximately implementable if for all δ > 0 there

exists a payment rule �p: ΘT × S
T → R such that for all θ0 ∈ Θ0,

EsT

�
T�

t=0

�ut
�
θt, �at

�
θ

t
�
, �xt

�
θ

t
��
− �p

�
θ

T
, s

T
�
|θ0

�
≥ Π0 (θ0)− δ, (8)

where Π0 (θ0) denotes the agent’s equilibrium payoff with initial type θ0.
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We are ready to state the implementation result of this subsection.

Proposition 4 Suppose that Assumptions 0-5 are satisfied. Then a decision rule,
�
�xT

, �aT
�
,

�xt : Θt → Xt and �at : Θt → At, is approximately implementable if �xt and �at are increasing

for all t ∈ {0, ..., T}.

4.3 The proof of Proposition 2

Since in a pure adverse selection model �utat ≡ 0 for all t, throughout this section, we remove
at from the arguments of �ut, that is, �ut : Θt × X

t → R. We first inspect the consequences
of Assumptions 1 and 2 on the orthogonalized model. Note that since θt does not depend on
xt−1, the inference functions defined in equation (1) do not depend on the decisions either,
so ψt : E t → Θt. The time-separability of the agent’s payoff (part (i) of Assumption 2) is
preserved in the orthogonalized model, except that the flow utility at t, ut : E t × X

t → R,
now depends on the history of types up to and including time t:

ut
�
ε
t
, x

t
�

= �ut
�
ψt

�
ε
t
�
, x

t
�
. (9)

Part (iii) of Assumption 1 implies that the larger the type history in the orthogonalized model
up to time t, the larger is the corresponding period-t type in the original model. This, coupled
with part (ii) of Assumption 2 implies that ut is weakly increasing in ε

t−1 and strictly in εt.
Monotonicy in x

t as well as single-crossing (part (iii) of Assumption 2) are also preserved in
the orthogonalized model. We state these properties formally in the following Lemma (see
the proof in the Appendix).

Lemma 3 (i) For all t ∈ {0, ..., T} and �εt
, ε

t ∈ E t,

�εt ≤ ε
t ⇒ ψt

�
�εt

�
≤ ψt

�
ε
t
�
, (10)

and the inequality is strict whenever �εt < εt.

(ii) The flow utility, ut defined by (9), is weakly increasing in ε
t−1 and x

t−1, and strictly

increasing in xt and εt.

(iii) For all t ∈ {0, ..., T}, utεt

�
ε
t
, x

t
�
≥ utεt

�
ε
t
, �xt

�
whenever x

t ≥ �xt.

Another important consequence of part (i) of Assumption 1 is that for all ε
t+1 and �εt, there

exists a type σt+1(εt+1
, �εt) ∈ Et such that, fixing the principal’s past and future decisions as

well as the realizations of the agent’s types beyond period t + 1, the agent’s utility flow from
period t + 1 on is the same with type history ε

t+1 as it is with
�
ε
t−1

, �εt, σt+1(εt+1
, �εt)

�
. We

will show below that σt+1, interpreted in Eso and Szentes (2007) as the agent’s “correction of
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a lie,” defines an optimal strategy for the agent at time t+1 after a deviation from truthtelling
in an incentive compatible direct mechanism at t. This is formally stated in the following

Lemma 4 For all t ∈ {0, . . . , T − 1}, ε
t+1 ∈ E t+1 and �εt ∈ Et, there exists a unique

σt+1
�
ε
t+1

, �εt
�
∈ Et+1 such that for all k = t + 1, . . . , T , all �εk ∈ Ek and �xk ∈ X

k,

uk(εt−1
, εt, εt+1, �εt+2, . . . , �εk, �xk) = uk(εt−1

, �εt, σt+1, �εt+2, . . . , �εk, �xk). (11)

The function σt+1 is increasing in εt, strictly increasing in εt+1 and decreasing in �εt.

The statement of the lemma might appear somewhat complicated at first glance, but
its meaning and its intuitive proof are quite straightforward. Part (i) of Assumption 1 re-
quires the support of θt to be independent of θt−1. Therefore, if the type of the agent is
ψt

�
ε
t−1

, �εt
�

at time t, there is a chance that the period-(t + 1) type will be ψ
t+1

�
ε
t+1

�
. The

type σt+1
�
ε
t+1

, �εt
�

denotes the orthogonalized information of the agent at t+1 which induces
the transition from ψt

�
ε
t−1

, �εt
�

to ψt+1
�
ε
t+1

�
, that is,

ψt+1
�
ε
t−1

, �εt, σt+1
�
ε
t+1

, �εt
��

= ψt+1
�
ε
t+1

�
.

This means that the inferred type in the original model is the same after the histories
�
ε
t−1

, �εt, σt+1
�
ε
t+1

, �εt
��

and ε
t+1. Part (i) of Assumption 1 and part (ii) of Assumption

2 imply that, given the decisions, the flow utilities in the future only depend on current type
which, in turn, imply (11).

The decision rule in the orthogonalized model,
�
xt : E t → Xt

�T
t=0

, which corresponds to
{�xt}T

t=0, is defined by xt
�
ε
t
�

= �xt
�
ψ

t
�
ε
t
��

for all t and ε
t. Note that, by (10), if {�xt}T

t=0 is
increasing in type (�xt is increasing in θ

t for all t) then the corresponding decision rule {xt}T
t=0

in the orthogonalized model is also increasing in type.12

In fact, the monotonicity of {�xt}T
t=0 implies a stronger monotonicity condition on {xt}T

t=0.
Consider the following two type histories, ε

k and
�
ε1, ..., εt−1, �εt, σt+1

�
ε
t+1

, �εt
�
, εt+2, ..., εk

�
.

Note that the inferred types in the original model are exactly the same along these histories
except at time t. At time t, the inferred type is smaller after ε

t if and only if εt ≤ �εt. Since
�xk is increasing in θt, the decision is smaller after ε

k if and only if εt ≤ �εt. Formally,

Remark 3 If {�xt}T
t=0 is increasing then for all k = 1, ..., T , t < k, ε

k ∈ Ek :

x
k(εk) ≤ x

k
�
ε
t−1

, �εt, σt+1
�
ε
t+1

, �εt
�
, εt+2, ..., εk

�
⇔ �εt ≥ εt. (12)

12To see this, note that if vt ≥ bvt then xt

`
bvt

´
= ext

`
ψt

`
bvt

´´
≤ ext

`
ψt

`
vt

´´
= xt

`
vt

´
, where the inequality

follows from the monotonicity of {ext}T
0 and (10).
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To simplify the exposition, we introduce the following notation for t = 0, . . . , T , k ≥ t:

ζ
k
t (εk

, y) =
�
ε
t−1

, y, εt+1, ..., εk

�
,

ρ
k
t (ε

k
, y, �εt) =

�
ε
t−1

, �εt, σt+1
�
ε
t−1

, y, εt+1, �εt
�
, εt+2, ..., εk

�
.

The vectors ζ
k
t (εk

, y) and ρ
k
t (εk

, y, �εt) are type histories up to period k, true or reported, which
are different from ε

k only at t or at t and t + 1. For k = t these are appropriately truncated,
e.g., ρ

t
t(εt

, y, �εt) =
�
ε
t−1

, �εt
�
.

As we explained, the monotonicity of {�xt}T
t=0 implies both the monotonicity of {xt}T

t=0

and (12). Therefore, in order to prove Proposition 2, it is sufficient to show that any increasing
decision rule in the orthogonalized model which satisfies (12) can be implemented. In what
follows, fix a direct mechanism with an increasing decision rule {xt}T

t=0 that satisfies (12).
Let Πt(εt|εt−1) denote a truthful agent’s expected payoff at t conditional on ε

t. That is,

Πt(εt|εt−1) = E

�
T�

k=0

uk

�
ε
k
, x

k(εk)
�
− p(εT )

����� ε
t

�
. (13)

Define the payment function, p, such that for all t = 0, ..., T and ε
t ∈ E t,

Πt
�
εt|εt−1

�
= Πt

�
0|εt−1

�
+ E

�ˆ εt

0

T�

k=t

ukεt

�
ζ

k
t (εk

, y), xk
�
ζ

k
t (εk

, y)
��

dy

����� ε
t

�
. (14)

It is not hard to show that the integral on the right-hand side of (14) exists and is finite
because of part (ii) of Assumption 1, part (i) of Assumption 2 and the monotonicity of x

k. It
should be clear that it is possible to define p such that (14) holds.

In this mechanism, let πt
�
εt, �εt|εt−1

�
denote the expected payoff of the agent at time

t whose type history is ε
t and has reported

�
ε
t−1

, �εt
�
. This is the maximum payoff she

can achieve from using any reporting strategy from t + 1 conditional on the type history
ε
t and on the reports

�
ε
t−1

, �εt
�
. If the mechanism is incentive compatible then, clearly,

Πt(εt|εt−1) = πt(εt, εt|εt−1).
We call a mechanism IC after time t if, conditional on telling the truth before and at time

t − 1, it is an equilibrium strategy for the agent to tell the truth afterwards, that is, from
period t on. By Lemma 4, the continuation utilities of the agent with type ε

t+1 are the same
as those of the agent with type

�
ε
t−1

, �εt, σt+1
�
ε
t+1

, �εt
��

conditional on the reports and the
realization of types after t + 1. Therefore, if a mechanism is IC after t + 1, the agent whose
type history is ε

t+1 and reported
�
ε
t−1

, �εt
�

up to time t maximizes her continuation payoff
by reporting σt+1

�
ε
t+1

, �εt
�

at time t + 1 and reporting truthfully afterwards. If this were not
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the case then the agent with
�
ε
t−1

, �εt, σt+1
�
ε
t+1

, �εt
��

would have a profitable deviation after
truthful reports up to and including t, contradicting the assumption that the mechanism is
IC after t + 1. Therefore, in a mechanism that is IC after t + 1, we have

πt
�
εt, �εt|εt−1

�
= ut

�
ε
t
, x

t
�
ε
t−1

, �εt
��
− ut

�
ε
t−1

, �εt, x
t
�
ε
t−1

, �εt
��

(15)

+
ˆ

Πt+1
�
σt+1

�
ε
t+1

, �εt
�
|εt−1

, �εt
�
dεt+1.

We use (15) in the following Lemma to characterize the agent’s continuation payoff who
deviates at t in a mechanism that is IC after t.

Lemma 5 Suppose that the mechanism is IC after time t+1 and (14) is satisfied. Then, for

all ε
t and �εt,

πt
�
εt, �εt|εt−1

�
−πt

�
�εt, �εt|εt−1

�
=

T�

k=t

E

�ˆ εt

bεt

ukεt

�
ζ

k
t (εk

, y), xk
�
ρ

k
t (ε

k
, y, �εt)

��
dy

���� ε
t

�
. (16)

This lemma is a direct generalization of Lemma 5 of Eso and Szentes (2007a); its proof
can be found in the Appendix. We are now ready to prove Proposition 2.

Proof of Proposition 2. In order to prove that the transfers defined by (14) implement
{xt}T

t=0, it is enough to prove that the mechanism is IC after all t = 0, ..., T − 1. We prove
this by induction. For t = T − 1 this follows from the standard result in static mechanism
design with the observation that xT is monotone and (14) is satisfied for T . Suppose now
that the mechanism is IC after t + 1. We show that the mechanism is IC after t, that is, the
agent has no incentive to lie at t if she has told the truth before t.

Consider an agent with type history ε
t and report history ε

t−1 who is contemplating to
report �εt < εt. We have to show that πt

�
εt, �εt|εt−1

�
−πt

�
εt, εt|εt−1

�
≤ 0 which can be written

as
πt

�
εt, �εt|εt−1

�
− πt

�
�εt, �εt|εt−1

�
+ πt

�
�εt, �εt|εt−1

�
− πt

�
εt, εt|εt−1

�
≤ 0.

By (14) and (16), the previous inequality can be expressed as

T�

k=t

E

�ˆ εt

bεt

ukεt

�
ζ

k
t (εk

, y), xk
�
ζ

k
t (εk

, y)
��

dy

���� ε
t

�
(17)

≥
T�

k=t

E

�ˆ εt

bεt

ukεt

�
ζ

k
t (εk

, y), xk
�
ρ

k
t (ε

k
, y, �εt)

��
dy

���� ε
t

�
.
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In order to prove this inequality it is enough to show that the integrand on the left-hand side
is larger than the integrand on the right-hand side. By part (iii) of Lemma 3, in order to
show this, we only need that x

k
�
ρ

k
t

�
ε
k
, y, �εt

��
≤ x

k
�
ζ

k
t (εk

, y)
�

on y ∈ [�εt, εt], which follows
from Remark 3. An identical argument can be used to rule out deviation to �εt > εt.�

From the proof of Proposition 2 it is clear that in the environment satisfying Assumptions
1 and 2 (i.e., with Markov types and a well-behaved agent payoff function), a decision rule
{x̃t}T

t=0 is implemented by transfers satisfying (14) if, and only if, condition (17) holds in the
orthogonalized model.13 But (14) is also a necessary condition of implementation (differentiate
it in εt and compare that with (4) in Proposition 1), therefore condition (17) is indeed the
necessary and sufficient condition of implementability of a decision rule in the regular, Markov
environment. Formally, we state

Remark 4 Suppose that Assumptions 1 and 2 hold. Then a decision rule, {�xt}T
0 , is imple-

mentable if, and only if, (17) holds in the model with orthogonalized information.

Implementability in the Benchmark Case.— Suppose that the principal can observe ε1, ..., εT .
Then, using arguments in standard static mechanism design, a decision rule {xt}T

0 can be im-
plemented if, and only if, for all �ε0, ε0 ∈ E0, �ε0 ≤ ε0,

E

�
T�

k=0

ˆ ε0

bε0

ukε0

�
y, ε

k
−0, x

k
�
y, ε

k
−0

��
dy

����� ε0

�
≥ E

�
T�

k=0

ˆ ε0

bε0

ukε0

�
y, ε

k
−0, x

k
�
�ε0, ε

k
−0

��
dy

����� ε0

�
.

This inequality is obviously a weaker condition than (17), so the principal can implement
more allocations in the benchmark case.

5 Applications

We present three applications to illustrate how our techniques and results can be applied in
substantive economic problems. In each application we first solve the benchmark case, where
the the principal can observe the agent’s orthogonalized future types. (In the absence of a
contractible summary signal about the agent’s type and hidden action the action rule is taken
to be the agent-optimal one; in the presence of such a signal the action rule is also optimized.)
Then we verify the appropriate monotonicity condition regarding the decision-action rule and
conclude that the solution is implementable, hence optimal, in the original problem as well.

13Note that condition (17) is a joint restriction on {xt}T
0 and the marginal utility of the agent’s type, and

it is implied by the monotonicity of the decision rule in the environment of Assumptions 1-2.
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In all three applications we assume that the agent’s type follows the AR(1) process

θt = λθt−1 + (1− λ)εt, ∀t = 0, . . . , T,

where θ−1 = 0 and ε0, . . . , εT are iid uniform on [0, 1]. The exact specification is adopted for
the sake of obtaining a simple orthogonal transformation of the information structure:

θt = (1− λ)λt�t
k=0λ

−k
εk, ∀t = 0, . . . , T. (18)

The type process is Markovian. Assumption 1 is satisfied except that the support of θt

depends on the realization of θt−1. However, it is easy to make the support of θt the unit
interval for all t by mixing the distribution of θt in (18) with the uniform distribution on [0, 1];
our specification obtains in the limit as the weight on the uniform distribution vanishes.

In all three examples the agent’s utility is time-separable, and the flow utility, ũt(θt, at, xt),
only depends on the agent’s type, hidden action and the contractible decision.14 Denote the
flow utility in the orthogonally transformed model by ut(εt

, at, xt). By Proposition 1, in any
incentive compatible mechanism

�
xT

,aT
, p

�
the agent’s equilibrium payoff can be written as

Π0(ε0) = Π0(0) + E

�ˆ ε0

0

T�

t=0

utε0

�
y, ε

t
−0, at(y, ε

t
−0, s

t−1), xt(y, ε
t
−0, s

t)
�
dy

����� ε0

�

+ E

�ˆ ε0

0

T�

t=0

utat

�
y, ε

t
−0, at(y, ε

t
−0, s

t−1), xt(y, ε
t
−0, s

t)
�
�atε0(y, ε

t
−0, y, s

t−1) dy

����� ε0

�
, (19)

where �at(εt
, �ε0, s

t−1), defined by equation (2), is the period-t action of the Agent that “masks”
her initial misreport of �ε0 conditional on the history of types and public signals.

Next, we describe Applications 1–3, ordered according to increasing complexity of the
agent’s payoff function. The first application is a pure adverse selection model; the second
one is a variant that includes a hidden action as well, but no contractible signal about the
agent’s type and action. The third application has both adverse selection and moral hazard,
and the agent’s type and action generate a contractible summary signal.

Application 1. The principal is the seller of an indivisible good; the agent is a buyer with
valuation θt in period t. The contractible action, xt ∈ [0, 1], is the probability that the buyer
receives the good. The buyer has no hidden action; her flow utility is simply ũt(θt, xt) = θtxt,
or equivalently, in the orthogonalized model, ut(εt

, xt) = (1 − λ)λt
��t

k=0λ
−k

εk

�
xt. Note

that Assumption 2 holds and utε0 = (1− λ)λt
xt.

14Assumption 0 is also satisfied due to the boundedness of all relevant domains and the continuous differ-
entiability of all involved functions.
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Since the agent has no hidden action the second line in equation (19) is zero, and so

Π0(ε0) = Π0(0) + E

�ˆ ε0

0

T�

t=0

(1− λ)λt
xt(y, ε

t
−0) dy

����� ε0

�
. (20)

Suppose the buyer’s participation is guaranteed if she gets a non-negative payoff; by (20) this
is equivalent to Π0(0) ≥ 0.

In order to compute E [Π0(ε0)] we note that by Fubini’s Theorem,

ˆ 1

0

ˆ ε0

0
xt(y, ε

t
−0) dydε0 =

ˆ 1

0

ˆ 1

y
xt(y, ε

t
−0) dε0dy =

ˆ 1

0
(1− ε0)xt(εt) dε0,

therefore

E [Π0(ε0)] = Π0(0) + E

�
T�

t=0

(1− λ)λt(1− ε0)xt(εt)

�
. (21)

Assume the seller (principal) maximizes his expected revenue; there is no cost of produc-
tion. The expected revenue equals the expected social surplus generated by the mechanism
less the buyer’s expected payoff:

T�

t=0

E
�
θtxt(εt)− (1− λ)λt(1− ε0)xt(εt)

�
−Π0(0),

where θt is given by equation (18). Solve the seller’s problem by setting Π0(0) = 0 and
pointwise maximizing the objective in xt(εt): the solution is found by setting x

∗
t

�
ε
t
�

= 1 if
and only if θt ≥ (1− λ)λt(1− ε0) and x

∗
t

�
ε
t
�

= 0 otherwise. Equivalently, in the notation of
the original model,

x̃
∗(θt) = 1θt+λtθ0≥(1−λ)λt ,

where 1 is the indicator function. This decision rule in monotone in θ
t; therefore, by Propo-

sition 2, it is implementable in the original problem as well as in the benchmark case. Hence
it is the optimal solution in both.

In this multi-period trading (single-buyer auction) problem the first-best outcome would
be to trade the good whenever θt ≥ 0. In contrast, in the revenue-maximizing mechanism the
good is sold whenever θt ≥ λ

t(1 − λ − θ0). As in the one-period problem, this decision rule
corresponds to setting a reservation price in each period. The reservation price is always non-
negative because θ0 ≤ 1 − λ by (18). Interestingly, the reservation prices and the distortion
that they induce only depend on the buyer’s initial information (confirming our dynamic
irrelevance result) and disappear over time as t→∞.
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Application 2. In this application, as in the previous one, the principal is a seller and
the agent a buyer with period-t valuation θt. Assume the good is divisible, so xt ∈ [0, 1] is
interpreted as the amount bought by the buyer, and the seller has production cost x

2
t /2.

The important difference in this application (as compared to the previous one) is that
we assume the buyer takes a costly, hidden action interpreted as investment in every period,
which increases her valuation.15 The buyer’s flow utility is ũt(θt, at, xt) = (θt +at)xt−ψa

2
t /2,

or equivalently, in the orthogonalized model,

ut(εt
, at, xt) =

�
(1− λ)λt�t

k=0λ
−k

εk + at

�
xt − 1

2ψa
2
t .

Note that Assumptions 0–3 hold, and utε0 = (1− λ)λt
xt (same as in Application 1).

Assume that the seller cannot observe any signal about the buyer’s valuation and invest-
ment. Hence the second line in equation (19) is zero, and so Π0(ε0) is given by equation (20),
and E[Π0(ε0)] by equation (21). The seller’s (principal’s) expected profit is the expected
social surplus generated by the mechanism less the buyer’s (agent’s) expected payoff:

T�

t=0

E
��

θt + at(εt)
�
xt(εt)− 1

2ψat(εt)2 − 1
2xt(εt)2 − (1− λ)λt(1− ε0)xt(εt)

�
−Π0(0).

Since the seller can make no inference about at, moreover the buyer’s future valuations are not
affected by her current investment either, at is set by the buyer to maximize her current flow
utility: at(εt) ≡ xt(εt)/ψ. Substituting this into the seller’s expected payoff, the first-order
condition of pointwise maximization of the seller’s objective in xt(εt) is

θt +
xt(εt)

ψ
− xt(εt)− (1− λ)λt(1− ε0) = 0. (22)

Assuming that the buyer participates with non-negative payoff it is optimal to set Π0(0) = 0.
Using (18) in rearranging (22) yields, in terms of the original model,

x̃
∗
t (θ

t) =
ψ

ψ − 1
�
θt + λ

t
θ0 − (1− λ)λt

�
.

Assume ψ > 1. Then x̃
∗
t (θt) is strictly increasing; by Proposition 3 it is implementable both

in the original problem and the benchmark when coupled with investments ã
∗(θt) = x̃

∗
t (θt)/ψ.

Therefore this allocation rule is the optimal second-best solution in both problems.
In this application, in the first best (contractible θt, at), the relationship between the

15Interpreting at as a costly action taken right before θt is realized and shifting the distribution of θt,
this application can be thought of as a multi-period generalization (of a specific example) of Bergemann and
Välimäki (2002). Our focus is on the revenue-maximizing sales mechanism instead of the efficient one.
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buyer’s investment level and her anticipated purchase (trade) would be the same, a
FB
t ≡

x
FB
t /ψ. However, the first-best level of trade would be x

FB
t (θt) = ψθt/(ψ−1). The distortion,

which materializes in the decision rule in the form of less trade, and in the action rule as less
investment in comparison to the efficient levels, is again due to the buyer’s (agent’s) initial
private information and it disappears over time.

Application 3. The principal is an investor and the agent is an investment advisor (banker);
the contractible action xt is the amount invested. Assume that the agent invests κxt for
herself and (1−κ)xt for the principal. The proportion κ ∈ [0, 1] is fixed exogenously; κ > 0 is
realistic but κ = 0 is an interesting special case. The agent’s type θt represents her ability to
achieve a greater expected return. Her effort (hidden action at) is directed at finding assets
that fit the principal’s other (e.g., ethical) investment goals; it generates a payoff propotional
to the invested amount for the principal but imposes an up-front cost on the agent.

Let ũt = θtκxt − ψa
2
t /2 be the agent’s payoff and vt = (θt + at + ξt)(1 − κ)xt − rx

2
t /2

the principal’s; in the latter rx
2
t /2 represents the principal’s (convex) cost of raising funds

for investment, and ξt is a noise term (e.g., uncertainty in how the advisor’s effort affects the
investor’s non-pecuniary return on investment), included for the sake of generality. Assume
that vt (but not θt nor at) is contractible, and define st = θt +at +ξt as the contractible public
signal. The parties’ payoffs are transferable, i.e., they may contract on monetary transfers
as well. It is easy to check that in this application Assumptions 0–5 are all satisfied.16 This
is a parametric example of the model discussed in Section 4.2. Garrett and Pavan (2012)
solve a related problem where, using the notation of this example, κ = 0 and r = 0; the
decision xt ∈ {0, 1} corresponds to whether or not the principal employs the agent instead of
a continuous investment decision (which is more meaningful in our example).

In the orthogonalized model

ut(εt
, at, xt) = (1− λ)λt

��t
k=0λ

−k
εk

�
κxt − 1

2ψa
2
t ,

hence utε0 = κ(1 − λ)λt
xt and utat = −ψat. The period-t action of the agent that “masks”

her initial misreport of �ε0 conditional on the history of types and prior public signals is
�at(εt

, �ε0, s
t−1), formally defined by

�θt + at(�ε0, ε
t
−0, s

t−1) ≡ θt + �at(εt
, �ε0, s

t−1),
16If κ = 0 then Assumption 2(ii) only holds weakly. However, we will show that the optimal decision rule

is continuous in κ at κ = 0, and hence the approximate implementation result holds in the limit.
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where �θt = (1− λ)λt�ε0 + (1− λ)
�t

k=1 λ
t−k

εk, hence

�at(εt
, �ε0, s

t−1) = at(�ε0, ε
t
−0, s

t−1) + (1− λ)λt(�ε0 − ε0).

Note that �atε0(εt
, �ε0, s

t−1) = −(1− λ)λt.
By equation (19), the agent’s expected payoff with initial type ε0 is

Π0(ε0) = Π0(0) + E

�ˆ ε0

0

T�

t=0

(1− λ)λt
�
κxt(y, ε

t
−0, s

t) + ψat(y, ε
t
−0, s

t−1)
�

dy

����� ε0

�
.

Continue to use Π0(0) ≥ 0 as the participation constraint. Again, using Fubini’s Theorem as
in the previous applications we get

E [Π0(ε0)] = Π0(0) + E

�
T�

t=0

(1− λ)λt(1− ε0)
�
κxt(εt

, s
t) + ψat(εt

, s
t−1)

�
�

.

The principal’s ex-ante expected payoff is the difference between the expected social sur-
plus generated by the mechanism and the agent’s expected payoff:

T�

t=0

E
�
(θt + at + ξt) (1− κ)xt − 1

2rx
2
t + θtκxt − 1

2ψa
2
t − (1− λ)λt(1− ε0) (κxt + ψat)

�
−Π0(0),

(23)
where the arguments of at(θt

, s
t−1) and xt(θt

, s
t) are suppressed for brevity.

If the public signal st contained no noise term (i.e., in case ξt ≡ 0), then the principal
could infer at from the agent’s type report and the realized signal and indirectly enforce
any action. In this case, the first-order condition of (pointwise) maximization of (23) in
at is (1 − κ)xt − ψat − (1 − λ)λt(1 − ε0)ψ = 0, whereas the same with respect to xt is
θt + (1− κ)at − rxt − (1− λ)λt(1− ε0)κ = 0. Substitute the former into the latter and write
θ0/(1− λ) for ε0 to get

x̃
∗
t (θ

t) =
θt + λ

t
θ0 − (1− λ)λt

rψ − (1− κ)2
.

Assuming rψ > (1 − κ)2 the resulting x̃
∗
t is strictly increasing in θ

t, and so is the corre-
sponding optimal ã

∗
t , which is its positive affine transformation. Therefore, by Proposition

4, this decision-action rule is approximately implementable in the original model as well as
in the benchmark. It is easy to see that the first-best decision rule would be x

FB
t (θt) =

θt/
�
r − (1− κ)2/ψ

�
. Again, the distortion in x̃

∗(θt) is purely due to the agent’s initial pri-
vate information, illustrating our dynamic irrelevance theorem.
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6 Conclusions

In this paper we considered a dynamic principal-agent model with adverse selection and
moral hazard and proved a dynamic irrelevance theorem: In any implementable decision
rule the principal’s expected revenue and the agent’s payoff are the same as if the prin-
cipal could observe the agent’s future, orthogonalized types. We also provided results on
the implementability of monotonic decision rules in regular, Markovian environments. The
implementation results imply a straightforward method of solving a large class of dynamic
principal-agent problems with meaningful economic applications.

The model considered in this paper could be extended in two directions without much
difficulty, at the expense of additional notation and technical assumptions. First, it would
be possible to accommodate multiple agents in the principal-agent model by replacing the
agent’s incentive constraints with an appropriate (Bayesian) equilibrium. Second, the model
could be extended to have an infinite time horizon. In this case our main theorem still holds
assuming time-separable utility, discounting, and uniformly bounded felicity functions.
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Appendix

Lemma 6 If the mechanism
�
xT

,aT
,p

�
is incentive compatible, the equilibrium payoff func-

tion of the agent, Π0, is Lipshitz continuous.

Proof. Throughout the proof, let K denote an integer such that the inequalities in Assump-
tion 0 are satisfied and, in addition, for all t = 1, ..., T , τ < t, and for all θ

t
, a

t
, x

t

�����
Gtθτ

�
θ

t|θt−1
, a

t−1
, x

t−1
�

gt (θt|θt−1, at−1, xt−1)

����� < K.

First, we show that there exists a K ∈ N such that
��ψtε0

�
ε
t
, a

t−1
, x

t−1
��� < K. For t = 0,

ψ0ε0 (ε0) = G
−1
0ε0

(ε0) = 1/g0
�
G
−1
0 (ε0)

�
< K by part (ii) of Assumption 0. We proceed by

induction and assume that ψτε0

�
ε
τ
, a

τ−1
, x

τ−1
�

< K (τ) for τ = 0, ..., t− 1. Then

��ψtε0

�
ε
t
, a

t−1
, x

t−1
��� =

��G−1
tε0

�
εt|ψt−1

�
ε
t−1

, a
t−2

, x
t−2

�
, a

t−1
, x

t−1
���

=
����

1
gt (ψt (εt, at−1, xt−1) |ψt−1 (εt−1, at−2, xt−2) , at−1, xt−1)

����

+

�����

τ−1�

τ=0

G
−1
tψτ

�
εt|ψt−1

�
ε
t−1

, a
t−2

, x
t−2

�
, a

t−1
, x

t−1
�
ψτε0

�
ε
τ
, a

τ−1
, x

τ−1
�
�����

≤ K + max
τ≤t

K (τ)

�����

τ−1�

τ=0

G
−1
tψτ

�
εt|ψt−1

�
ε
t−1

, a
t−2

, x
t−2

�
, a

t−1
, x

t−1
�
����� ,

where the inequality follows from the inductive hypothesis and part (ii) of Assumption 0.

29



However,

K + max
τ≤t

K (τ)

�����

τ−1�

τ=0

G
−1
tψτ

�
εt|ψt−1

�
ε
t−1

, a
t−2

, x
t−2

�
, a

t−1
, x

t−1
�
�����

= K + max
τ≤t

K (τ)

�����

τ−1�

τ=0

Gtψτ

�
ψt

�
ε
t
, a

t−1
, x

t−1
�
|ψt−1

�
ε
t−1

, a
t−2

, x
t−2

�
, a

t−1
, x

t−1
�
�����×

× 1
gt (ψt (εt, at−1, xt−1) |ψt−1 (εt−1, at−2, xt−2) , at−1, xt−1)

≤ K + max
τ≤t

K (τ) K
2,

by Assumption 2. So, we can conclude that
��ψtε0

�
ε
t
, a

t−1
, x

t−1
��� < K + maxτ≤t K (τ)K

2.
We are ready to prove that Π0 is Lipshitz continuous. Suppose that Π0 (ε0) ≥ Π0 (�ε0). Let

π0 (�ε0, ε0) denote the payoff of an agent whose initial type is �ε0, reports ε0, then reports truth-
fully afterwards and takes action �at

�
ε
t
, �ε0, s

t−1
�

after history
�
ε
t
, s

t−1
�
. Since the mechanism

�
xT

,aT
,p

�
is incentive compatible, π0 (�ε0, ε0) < Π (�ε0) and hence,

Π0 (ε0)−Π0 (�ε0) < Π0 (ε0)− π0 (�ε0, ε0) .

So, it is enough to prove that

|Π0 (ε0)− π0 (�ε0, ε0)| < K |ε0 − �ε0| . (24)

In addition,

Π0 (ε0)− π0 (�ε0, ε0) = E
�
u

�
ε
T
,aT

�
ε
T
, s

T−1
�
, s

T
,xT

�
ε
T
���� ε0

�

−E
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ε
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�
ε
T
, �ε0, s
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�
, s

T
,xT

�
�ε0, ε

T
−0, s

T
���� ε0

�
.

In order to establish (24) it is sufficient to show that the absolute value of the difference be-
tween the terms whose expectations are taken on the right-hand side of the previous equation
is smaller than K |ε0 − �ε0|. Note that

u
�
ε
T
,aT

�
ε
T
, s

T−1
�
, s

T
, x

T
�
− u

�
�ε0, ε
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�
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T
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−0, s
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�
, s

T
, x

T
�
�atbε0
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ε
t
, y, s

t−1
�
dy.

We will show that both terms on the right-hand side of the previous equation is bounded by
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a constant times |ε0 − �ε0|. Note that
ˆ ε0

bε0

uε0

�
y, ε

T
−0, a

T
, s

T
, x

T
�
dy

=
ˆ ε0

bε0
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�uθt

�
ψ
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�
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−0, a

T−1
, x

T−1
�
, a

T
, s

T
, x

T
�
ψtε0

�
y, ε

T
−0, a

T−1
, x

T−1
�
dy ≤ TKK|ε0 − ε|,

by part (i) of Assumption 0 and since ψtε0,
�
ε
t
�

< K, as shown above. In addition,

ˆ ε0

bε0
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t=0

uat
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y, ε
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, s

T
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�
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t
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dy (25)

=
ˆ ε0

bε0

T�

t=0

�uat

�
ψ
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�
y, ε

T
−0, ·

�
,aT

�
y, ε
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, s

T
, x

T
�
�atbε0

�
ε
t
, y, s

t−1
�
dy.

By the Implicit Function Theorem,

�atbε0

�
ε
t
, y, s

t−1
�

= −
ftθt

�
ψ

t
�
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t
−0, ·
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, �at
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��
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t
−0, ·
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, �at (εt, y, st−1)

�ψtbε0

�
ε
T
−0, y, a

T−1
, x

T−1
�
,

which does not exceed KK by part (iii) of Assumption 0 and the argument above showing
that |ψtε0 | < K. Hence, (25) is smaller than

KK

ˆ ε0

bε0

T�

t=0

�uat

�
ψ

T
�
y, ε

T
−0, ·

�
,aT

�
y, ε
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−0, s
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�
, s

T
, x

T
�
dy ≤ TK

2
K|ε0 − ε|

by part (i) of Assumption 0. �

Proof of Lemma 1. Part (i) of Assumption 2 is satisfied by definition. To see part (ii),
notice that if at

�
θt, x

t
�

is interior then

vtθt (θt, xt) = �utθt

�
θt,at

�
θt, x

t
�
, x

t
�

+ �utat

�
θt,at

�
θt, x

t
�
, x

t
� ∂at

�
θt, x

t
�

∂θt
(26)

= �utθt

�
θt,at

�
θt, x

t
�
, x

t
�

> 0,

where the second equality follows from (7), and the inequality follows from part (ii) of As-
sumption 2. If at

�
θt, x

t
�

is not interior then, generically,

vtθt (θt, xt) = �utθt

�
θt,at

�
θt, x

t
�
, x

t
�

> 0, (27)

where the inequality again follows from part (ii) of Assumption 2.
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It remains to prove that v
t satisfies part (iii) of Assumption 2. To simplify notation, we

only prove this claim for the case when the contractible decision is unidimensional in each
period, that is, Xt ⊂ R for all t = 0, ..., T . Suppose first that at

�
θt, x

t
�

is interior. Note that
for all τ ≤ t,

vtθtxτ (θt, xt) = �utθtxτ

�
θt,at

�
θt, x

t
�
, x

t
�

+ �utθtat

�
θt,at

�
θt, x

t
�
, x

t
� ∂at

�
θt, x

t
�

∂xτ

= �utθtxτ

�
θt,at

�
θt, x

t
�
, x

t
�
− �utθtat

�
θt,at

�
θt, x

t
�
, x

t
� �utatxt

�
θt,at

�
θt, x

t
�
, x

t
�

�uta2
t
(θt,at (θt, x

t) , xt)
,

where first equality follows from (26) and the second one follows from (7) and the Implicit
Function Theorem. Note that �utθtxτ , �utθtat and �utatxt are all non-negative by part (iii) of
Assumption 2 and parts (ii) and (iii) of Assumption 3. In addition, �uta2

t
is negative by part

(i) of Assumption 3. Therefore, vtθtxτ (θt, xt) ≥ 0. Suppose now that at
�
θt, x

t
�

is not interior.
Then, for all τ ≤ t, generically,

vtθtxτ (θt, xt) = �utθtxτ

�
θt,at

�
θt, x

t
�
, x

t
�
≥ 0,

where the equality follows from (27) and the inequality follows from part (ii) of Assumption
3. �

Proof of Lemma 2. Part (i) of Assumption 2 is satisfied by definition. To see part (ii),
notice that

wtθt

�
θt, yt, x

t
�

= �utθt

�
θt,at (θt, yt) , x

t
�

+ �utat

�
θt,at (θt, yt) , x

t
� ∂at (θt, yt)

∂θt
. (28)

We apply the Implicit Function Theorem for the identity ft (θt,at (θt, yt)) ≡ yt to get

∂at (θt, yt)
∂θt

= −ftθt (θt,at (θt, yt))
ftat (θt,at (θt, yt))

,

which is negative by part (ii) of Assumption 5. Since �utθt > 0 by part (ii) of Assumption 2
and �utat < 0 by part (i) of Assumption 5, we conclude that wt is strictly increasing in θt.

Next, we prove that wt satisfies part (iii) of Assumption 2. First, we establish the single-
crossing property with respect to θt and yt. By (28),

wtθtyt
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In order to sign ∂at/∂yt and ∂
2at/∂θt∂yt, we appeal to the Implicit Function Theorem once

again,

∂at (θt, yt)
∂yt

=
1

ftat (θt,at (θt, yt))
and

∂
2at (θt, yt)
∂θt∂yt
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fta2

t
(θt,at (θt, yt))

ftθt (θt,at(θt,yt))
ftat (θt,at(θt,yt))

− ftatθt (θt,at (θt, yt))

f
2
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Therefore, wtθtyt

�
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can be rewritten as
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f
2
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.

The first term is positive by part (ii) of Assumption 2 and part (ii) of Assumption 5. The
second term is positive by part (i) of Assumption 3 and part (ii) of Assumption 5. The third
term is positive by parts (i) and (iii) of Assumption 5. Therefore, we conclude that wtθtyt ≥ 0.

It remains to show that the single crossing property in part (iii) of Assumption 2 also
holds with respect to θt and xτ for all τ ≤ t. To simplify notation, we only prove this claim
for the case when the contractible decision is unidimensional in each period, that is, Xt ⊂ R
for all t = 0, ..., T . By (28),
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which is positive by part (iv) of Assumption 5. �

Proof of Proposition 4. Fix an increasing decision rule
�
�xT

, �aT
�

and a δ > 0. Below, we
construct a transfer rule, �p, such that

�
�xT

, �aT
, �p

�
satisfies (8). To this end, define the function

�yT : ΘT → Y
T such that �yt

�
θ

t
�

= ft
�
θt, �at

�
θ

t
��

for all t and θ
t. Since �at is increasing in θ

t

and ft is strictly increasin in both θt and at (see part (ii) of Assumption 5), the function �yt

is also increasing in θ
t. Therefore, by Lemma 2 and Proposition 2, the decision rule

�
�xT

, �yT
�

is implementable in a pure adverse selection model where the agent flow utilities are {wt}T
t=0.

Let p : ΘT → R denote a transfer rule which implements
�
�xT

, �yT
�
.

Fix a K ∈ N such that |�utat | < K and ftat > 1/K. By part (i) of Assumption 0 and part
(ii) of Assumption 5, such a K exists. By Theorem 2 of McAfee and Reny (1992), for each
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t = 0, ..., T , exists a function pt : St×Yt → R such that Est (pt (st, yt) |f (θt, at) = yt) = 0 and

Est

�
pt (st, yt) |f (θt, at) = y

�
t

�
≥ K

2|yt − y
�
t|−
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. (29)

Let us now define �p : ΘT × S
T → R by
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T
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T
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= p
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θ
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pt
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θ
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. (30)

Next, we show that the agent cannot generate an excess payoff of δ by deviating from truth-
telling and obidience in the mechanism

�
�xT

, �aT
, �p

�
. First, note that the agent cannot benefit

from making her strategy at time t contingent on the history of public signals, s
t−1, because

her continuation payoff does not depend on these variables in the mechanism
�
�xT

, �aT
, �p

�
.

Therefore, we restrict attention to strategies which do not depend on past realizations of
the public signal. Any such strategy induces a mapping from type profile to reports and
actions in each period. Let ρt

�
θ

t
�

and αt
�
θ

t
�

denote the agent’s report and action at time t,
respectively, conditional on her type history θ

t. Let �αt
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in at. In other words, �αt
�
θ
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would is the agent’s action which generates the same value of ft

conditional on θ
t as if the agent’s true type was ρt
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. Then
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where the equality follows from (30).
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We first consider the first term on the right-hand side of the previous equality. Note that
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where the inequality follows from the assumption that the transfer rule p implements
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if the flow utilities are
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where the first and second inequalities follow from |�utat | < K and ftat > 1/K, the equality
follows from (31), and the last inequality follows from (29). Summing up these inequalities
for t = 0, ..., T and taking expactation with respect to θ

T ,

T�

t=0

EθT ,sT

�
�ut

�
θt, αt

�
θ

t
�
, �xt

�
ρt(θt

��
− �ut

�
θt, �at

�
ρt

�
θ

t
��

, �xt
�
ρt(θt

��
− pt

�
st, �yt

�
θ

t
��

|θ0
�
≤ δ.

(34)
Therefore, plugging (33) and (34) into (32) we get that

EθT ,sT

�
T�

t=0

�ut
�
θt, αt

�
θ

t
�
, �xt

�
ρt(θt

��
− �p

�
ρ

T
�
θ

T
�
, s

T
�
|θ0

�

≤ EθT

�
T�

t=0

�ut
�
θt, �at

�
θ

t
�
, �xt

�
θ

t
��
− p

�
θ

T
�
|θ0

�
+ δ

= EθT ,sT

�
T�

t=0

�ut
�
θt, �at

�
θ

t
�
, �xt

�
θ

t
��
− �p

�
ρ

T
�
θ

T
�
, s

T
�
|θ0

�
+ δ,

where the equality follows from Est [pt (st, yt) |f(θt, at) = yt] = 0. This implies that the agent
cannot gain more than δ by deviating from truth-telling and obedience in the mechanism
�
�xT

, �aT
, �p

�
. �
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Proof of Lemma 3. Part (i) εt = H
−1
t (θt|θt−1), therefore ψ0 (ε0) = H

−1
0 (ε0) and ψt for

t > 0 is defined recursively by ψt
�
ε
t
�

= H
−1
t

�
ε
t|ψt−1

�
ε
t−1

��
. We prove the statement of

this part by induction. For t = 0, we have H
−1
0 (ε0) ≥ H

−1
0 (�ε0) whenever ε0 ≥ �ε0 and the

inequality is strict if ε0 > �ε0.
Suppose that (10) holds for t, that is, ψt

�
�εt

�
≤ ψt

�
ε
t
�

whenever �εt ≤ ε
t and the

inequality is strict whenever �εt
< εt. Note that ψt+1 (�εt+1) = H

−1
t+1

�
�εt+1|ψt

�
�εt

��
and

ψt+1
�
ε
t+1

�
= H

−1
t+1

�
εt+1|ψt

�
ε
t
��

. Since ψt
�
�εt

�
≤ ψt

�
ε
t
�

by the inductive hypothesis, part
(ii) of Assumption 1 implies that ψt+1

�
�εt+1

�
≤ ψt+1

�
ε
t+1

�
. In addition, if εt+1 > �εt+1 then

H
−1
t+1

�
εt+1|ψt

�
ε
t
��

> H
−1
t+1

�
ε
�
t+1|ψt

�
�εt

��
.

Part (ii): The function ut is strictly increasing in xt and weakly increasing x
t−1 because

of part (ii) Assumption 2 and (9). Equalities (9) and (10) imply that ut is strictly increasing
in εt and weakly increasing in ε

t−1.
Part (iii): Fix a t ∈ {0, ..., T} and note that by (9),

utεt

�
ε
t
, x

t
�

= �utθt

�
ψt

�
ε
t
�
, x

t
� ∂ψt

�
ε
t
�

∂εt
.

The result follows from (10) and part (iii) of Assumption 2. �

Proof of Lemma 4. Fix a t ∈ {0, . . . , T − 1}, ε
t+1 ∈ E t+1 and �εt ∈ Et. Let

σt+1 = Ht+1
�
ψt+1

�
ε
t+1

�
|ψt

�
ε
t−1

, �εt
��

. (35)

By the full support assumption in part (i) of Assumption 1, it follows that

ψt+1
�
ε
t+1

�
= ψt+1

�
ε
t−1

, �εt, σt+1
�
,

that is, the computed time-(t + 1) type of the original model is the same after ε
t+1 and

�
ε
t−1

, �εt, σt+1
�
. Therefore the inferred type in the original model is also the same after any

future observations, that is,

ψk

�
ε
t−1

, εt, εt+1, �εt+2, . . . , �εk

�
= ψk(εt−1

, �εt, σt+1, �εt+2, . . . , �εk),

for all k = t + 1, . . . , T , all �εk ∈ Ek. This equality and (9) imply (11). Also note that
σt+1

�
ε
t+1

, �εt
�
, defined by (35), is increasing in εt, strictly increasing in εt+1 by part (i) of

Lemma 3 and decreasing in �εt by part (i) of Lemma 3 and part (iii) of Assumption 1.
It remains to show that there does not exist any other σt+1 which satisfies (11). This

follows from part (ii) of Lemma 3, which states that ut+1 is strictly increasing in εt+1, which
implies that (11) with k = t + 1 cannot hold for two different σt+1’s. �
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Proof of Remark 3. Recall from the proof of Lemma 4 that for all k = t + 1, ..., T ,

ψk

�
ε
t+1

, εt+2..., εk

�
= ψk

�
ε
t−1

, �εt, σt+1
�
ε
t+1

, �εt
�
, εt+2, ..., εk

�
.

By (10), ψt
�
ε
t
�
≤ ψt

�
ε
t−1

, �εt
�

if and only if �εt ≥ εt. Then (12) follows from the monotinicity
of {�xt}T

0 and the definition of {x}T
0 . �

Proof of Lemma 5. Let γ
k
t

�
ε
k
, �εt, y

�
denote

�
ε
t−1

, �εt, y, εt+2, ..., εk

�
for k = t + 1, ..., T .

Suppose first that εt > �εt. Then σt+1
�
ε
t+1

, �εt
�

> εt+1, and

πt
�
εt, �εt|εt−1

�
= ut

�
ε
t
, x

t
�
ε
t−1

, �εt
��
− ut

�
ε
t−1

, �εt, x
t
�
ε
t−1

, �εt
��

+
ˆ

Πt+1
�
σt+1

�
ε
t+1

, �εt
�
|εt−1

, �εt
�
dεt+1

= ut
�
ε
t
, x

t
�
ε
t−1

, �εt
��
− ut

�
ε
t−1

, �εt, x
t
�
ε
t−1

, �εt
��

+ Πt
�
�εt|εt−1

�

+
T�

k=t+1

ˆ
...

ˆ ˆ σt+1(εt+1,bεt)

εt+1

u
k
εt+1

�
γ

k
t

�
ε
k
, �εt, y

�
, x

k
�
γ

k
t

�
ε
k
, �εt, y

���
dydεt+1...dεk

= ut
�
ε
t
, x

t
�
ε
t−1

, �εt
��
− ut

�
ε
t−1

, �εt, x
t
�
ε
t−1

, �εt
��

+ πt
�
�εt, �εt|εt−1

�

+
T�

k=t+1

ˆ
...

ˆ ˆ σt+1(εt+1,bεt)

εt+1

ukεt+1

�
γ

k
t

�
ε
k
, �εt, y

�
, x

k
�
γ

k
t

�
ε
k
, �εt, y

���
dydεt+1...dεk

where the first equality is just (15), the second one follows from (14), and the third one from
Πt

�
�εt|εt−1

�
= πt

�
�εt, �εt|εt−1

�
. So, in order to prove (16), we only need to show that

ut
�
ε
t
, x

t
�
ε
t−1

, �εt
��
− ut

�
ε
t−1

, �εt, x
t
�
ε
t−1

, �εt
��

=
ˆ εt

bεt

utεt

�
ε
t
−t, y, x

t
�
ρ

t
t(ε

t
, �εt)

��
dy. (36)

and

T�

k=t+1

ˆ
...

ˆ ˆ σt+1(εt+1,bεt)

εt+1

ukεt+1

�
γ

k
t

�
ε
k
, �εt, y

�
, x

k
�
γ

k
t

�
ε
k
, �εt, y

���
dydεt+1...dεk

=
T�

k=t+1

ˆ
...

ˆ ˆ εt

bεt

utεt

�
ζ

k
t (εk

, y), xk
�
ρ

k
t (ε

k
, y, �εt)

��
dydεt+1...dεk. (37)

Equation (36) directly follows from the Fundamental Theorem of Calculus. We now turn our
attention to (37). By Lemma 4, σt+1 is continuous and monotone. The image of σt+1

�
ε
t+1

, y
�

on y ∈ [�εt, εt] is
�
εt+1, σt+1

�
ε
t+1

, �εt
��

. Hence, after changing the variables of integration, for
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all k = t + 1, ..., T :

ˆ σt+1(εt+1,bεt)

εt+1

ukεt+1

�
γ

k
t

�
ε
k
, �εt, y

�
, x

k
�
γ

k
t

�
ε
k
, �εt, y

���
dy =

ˆ εt

bεt

ukεt+1

�
γ

k
t

�
ε
k
, �εt, σt+1

�
ε
t−1

, y, εt+1, �εt
��

, x
k
�
γ

k
t

�
ε
k
, �εt, σt+1

�
ε
t−1

, y, εt+1, �εt
����

∂σt+1
�
ε
t−1

, y, εt+1, �εt
�

∂y
dy. (38)

Recall that by (11) the following is an identity in y:

uk

�
ε
t−1

, y, εt+1, ..., εk, x
k
�
≡ uk

�
γ

k
t

�
ε
k
, �εt, σt+1

�
ε
t−1

, y, εt+1, �εt
��

, x
k
�

,

so, by the Implicit Function Theorem,

ukεt

�
ε
t−1

, y, εt+1, ..., εk, x
k
�

= ukεt+1

�
ε
t−1

, �εt, σt+1
�
ε
t−1

, y, εt+1, �εt
�
, ..., εk, x

k
�

σt+1
�
ε
t−1

, y, εt+1, �εt
�

∂y
. (39)

Plugging (39) into (38) and noting that γ
k
t

�
ε
k
, �εt, σt+1

�
ε
t−1

, y, εt+1, �εt
��

= ρ
k
t

�
ε
k
, y, �εt

�
yields

(37).
An identical argument can be used to deal with the case where �εt > εt.�
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