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Abstract

This paper derives limit distributions of empirical likelihood estimators for models

in which inequality moment conditions provide overidentifying information. We show

that the use of this information leads to a reduction of the asymptotic mean-squared

estimation error and propose asymptotically valid confidence sets for the parameters

of interest. While inequality moment conditions arise in many important economic

models, we use a dynamic macroeconomic model as data generating process and il-

lustrate our methods with instrumental variable estimators of monetary policy rules.

The assumption that output does not fall in response to an expansionary monetary

policy shock leads to an inequality moment condition that can substantially increase

the precision with which the policy rule is estimated. The results obtained in this paper

extend to conventional GMM estimators.
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KEY WORDS: Empirical Likelihood Estimation, Generalized Method of Moments, Inequal-
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1 Introduction

This paper extends moment-based estimation techniques to models in which a subset of

moment conditions take the form of weak inequalities rather than equalities, that is,

IE[g1(Xi, θ)] = 0 and IE[g2(Xi, θ)] ≥ 0 (1)

if θ = θ0. Inequality moment conditions arise in many important economic models. For

instance, in an influential paper Zeldes (1989) studies whether the presence of borrowing

constraints can explain households’ violation of consumption Euler equations. Zeldes regards

households with a low wealth-to-income ratio as potentially borrowing constrained. These

households’ current marginal utility of consumption might exceed the discounted expected

future marginal utility, which leads to an inequality moment condition. Luttmer (1996,

1999) studies asset pricing in the presence of financial frictions, which turn conventional

asset pricing relationships into inequality conditions. Pakes, Porter, Ho, and Ishii (2005)

and Andrews, Berry, and Jia (2004) provide examples of inequality moment conditions

derived from models of industrial organization. These models share the basic assumption

that firms’ actual choices yield higher ex-ante expected profits than alternative feasible

choices.

Inequality moment conditions also arise in instrumental variable (IV) models in which

a subset of the instrumental variables is potentially correlated with the error term in the

regression equation, but the direction of this correlation is assumed to be known. Our

lead example involves the estimation of an interest-rate feedback rule that describes the

behavior of a central bank. A measure of output appears as endogenous regressor in the

policy reaction function and renders the OLS estimator inconsistent. While in this time

series setting lagged output and inflation can be used as instrumental variables, in practice

these instruments are often poorly correlated with the endogenous regressors and lead to

imprecise parameter estimates.1 The methods developed in this paper allow us to augment

the list of instruments by variables for which economic theory provides some guidance about

the sign of their potential correlation with the error term. For instance, most New Keynesian

dynamic stochastic general equilibrium (DSGE) models imply that output does not fall in

response to an expansionary monetary policy shock (see Woodford (2003)). This implication

leads to an inequality moment condition that can substantially increase the precision with

which the reaction function is estimated.

Formally, our paper focuses on the additional information that the inequality moment

condition IE[g2(Xi, θ)] ≥ 0 can provide in a model in which θ0 is in principle identifiable

based on the equality moment condition IE[g1(Xi, θ)] = 0 alone. If it is the case that some

1Since this problem of so-called weak instruments is widespread in both macro- and microeconomic

applications, there exists an extensive econometrics literature (see, for instance, Stock, Wright, and Yogo

(2002)) on how to conduct valid, albeit imprecise inference in such a setting.
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elements of the vector IE[g2(Xi, θ0)] are near zero, in the sense that IE[g2(Xi, θ0)] = u0/
√
n,

then the second set of moment conditions provides additional information, even asymptoti-

cally. The inequality condition constrains the limit objective function of the estimator of θ0

and hence reduces its variability. The larger u0, the less informative is the second set of mo-

ment conditions. As u0 tends to infinity the estimation and inference procedures proposed

in this paper are asymptotically equivalent to those that are based on g1(Xi, θ) only.

A variety of approaches exist to exploit the moment conditions (1) for the estima-

tion of θ0. While generalized method of moments (GMM) is currently the most widely

used procedure in practice, information-theoretic estimators such as empirical likelihood

(EL) estimators have emerged as an attractive alternative to GMM, e.g., Owen (1988),

Qin and Lawless (1994), Imbens (1997), Kitamura and Stutzer (1997), and Imbens, Spady,

and Johnson (1998). Kitamura (2001) showed that the empirical likelihood ratio test for

moment restrictions is asymptotically optimal under the Generalized Neyman-Pearson cri-

terion. Newey and Smith (2004) find that the asymptotic bias of EL estimators does not

grow with the number of moment conditions and that bias-corrected EL estimators have

higher-order efficiency properties. Although we do not extend higher-order optimality prop-

erties of EL procedures to the class of irregular models considered in this paper, we believe

that these results provide a good reason for studying EL estimators. In fact, since moment

conditions are imposed as parametric constraints on the empirical likelihood function, an

extension to inequality conditions is quite natural.

Throughout the paper we focus on first-order asymptotic approximations and make

three contributions. First, we derive the joint limit distribution of the EL estimators of θ0

and IE[g2(Xi, θ0)]. EL estimators are conveniently expressed as the solution to a saddlepoint

problem. We derive a quadratic approximation of the EL objective function and analyze

the distribution of its saddlepoint. The inequality moment conditions translate into sign

restrictions on the corresponding Kuhn-Tucker parameters. Second, for the (special) case

in which g2(Xi, θ) is a scalar, we show analytically that the asymptotic mean-squared error

(MSE) of our estimator is smaller than the MSE of an empirical likelihood estimator that

ignores the information contained in the inequality moment conditions. Third, we invert

empirical likelihood ratio test statistics to obtain confidence sets for θ0 and IE[g2(Xi, θ0)].

The near-zero slackness parameter u0 enters the limit distribution of the EL estimator of

θ0 and related empirical likelihood ratio statistics, which complicates statistical inference.

Since u0 cannot be consistently estimated, we construct a Bonferroni type confidence set

for θ0 that takes a union of confidence sets that are valid conditional on particular values

of u0.
2 The concentrated limit objective function of the EL estimator has the same first-

order asymptotic approximation as a GMM estimator that uses an optimal weight matrix

and handles the presence of inequality moment conditions through additional slackness

2The nuisance parameter dependence of the limit distributions resembles the difficulties encountered in

models with nearly integrated regressors, e.g., Cavanagh, Elliott, and Stock (1995).
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parameters. Hence, our large sample results, in particular the efficieny gain through the

inequality moment conditions, also apply to conventional GMM estimators.

Since we can rewrite the inequality moment condition as IE[g2(Xi, θ0)− ϑ0] = 0, where

ϑ0 ≥ 0, our work is related to the literature on estimation and inference in the presence

of inequality parameter constraints, e.g., Chernoff (1954), Kudo (1963), Perlman (1969),

Gourieroux, Holly and Monfort (1982), Shapiro (1985), Kodde and Palm (1986), and Wolak

(1991). Detailed literature surveys are provided in Gourieroux and Monfort (1995) and

Sen and Silvapulle (2002). EL inference subject to a constraint of the form ψ(θ, ϑ) ≥ 0

has been considered by El Barmi (1995), El Barmi and Dykstra (1995), and Owen (2001).

However, none of the EL papers provides a complete limit distribution theory, considers

the important case in which the inequalities stem directly from the moment conditions, and

analyzes confidence intervals.

The special case of IE[g2(Xi, θ0)] = 0 translates into ϑ0 = 0, which means that ϑ0 lies on

the boundary of its domain. Hence, our asymptotic analysis is closely related to Andrews’

(1999, 2001) work on estimation and testing when a parameter is on the boundary of the

parameter space. While Andrews (1999) considers estimators that are defined as extremum

of an objective function, we extend some of his results to estimators that are defined as a

saddlepoints. Moreover, Andrews (2001) focuses on inference for ϑ0 (using our notation),

whereas we are particularly interested in inference about θ0, treating the slackness in the

inequality moment condition, ϑ0, as a nuisance parameter.

In general, the use of inequality moment conditions may introduce identification prob-

lems, that is, there is a non-singleton subset of the parameter space that satisfies (1).

Estimation and inference in the context of set-identified models has recently been studied

by Andrews, Berry, and Jia (2004), Chernozhukov, Hong, and Tamer (2002), and Pakes,

Porter, Ho, and Ishii (2005), Rosen (2005), and Shaikh (2005) and is not considered in our

paper.

The plan of the paper is as follows. To illustrate how the methods proposed in this

paper can be used to solve an important practical estimation problem in macroeconomics,

we introduce our lead example of estimating a monetary policy rule in Section 2. Technical

assumptions as well as the estimators’ objective functions are stated in Section 3. Section 4

develops the asymptotic distribution theory for the EL estimator and its objective function

in the presence of inequality moment conditions. In Section 5 some implications of the

limit theory are discussed and the efficiency result is provided. Section 6 constructs interval

estimators for θ0 and IE[g2(Xi, θ0)]. Since the asymptotic distributions derived in this paper

are non-standard, we simulate the limit distributions of point estimators and confidence

intervals in the context of the policy rule example in Section 7. Moreover, we make a

comparison with the asymptotic properties of simple procedures that ignore the information

in the inequality moment condition. Section 8 concludes and the Appendix contains all

proofs and technical Lemmas.
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We use the following notation throughout the paper: “
p−→” and “=⇒” denote conver-

gence in probability and distribution, respectively. “≡” signifies distributional equivalence.

If A is an n×m matrix then ‖A‖ = (tr[A′A])1/2. I{x ≥ a} is the indicator function that is

one if x ≥ a and zero otherwise. We abbreviate the “weak law of large numbers” by WLLN,

the “uniform WLLN” by ULLN, and use w.p.a. 1 instead of “with probability approaching

one.” We denote R
n− = {x ∈ R

n | x ≤ 0} and R
n+ = {x ∈ R

n | x ≥ 0}.

2 An Example of Inequality Moment Conditions

In macroeconomics there is great interest in characterizing the behavior of central banks

through interest rate feedback rules (see for instance, Taylor (1999) and Clarida, Gaĺı, and

Gertler (2000)). Such rules are built into vector autoregressions (VAR) as well as dynamic

stochastic general equilibrium (DSGE) models. To illustrate our methods for inference with

inequality moment conditions we consider the following policy rule

R̃t = ρRR̃t−1 + (1 − ρR)ψ1π̃t + (1 − ρR)ψ2x̃t + εR,t, (2)

where R̃t is the nominal interest rate, controlled by the central bank through open-market

operations, π̃t is the inflation rate, and x̃t is a measure of real activity, such as output

deviations from trend or output growth. The shock εR,t captures unanticipated (by the

public) deviations from the systematic component of the policy rule. In equilibrium both

inflation and output are likely to be a function of the monetary policy shock, which causes

an endogeneity problem that can be addressed by IV estimation. Lagged values of inflation

and output are natural candidates for instrumental variables. According to large class

of monetary DSGE models, in particular New Keynesian models, output does not fall in

response to a expansionary monetary policy shock, implying that IE[x̃t(−εR,t)] ≥ 0. This

implication generates a moment inequality condition that can be exploited to sharpen the

inference about the policy rule coefficients.3

A prototypical New Keynesian DSGE model (see Woodford (2003)) can be described

by the following additional equations:

ỹt = IEt[ỹt+1] −
1

τ
(R̃t − IEt[π̃t+1]) + (1 − ρg)g̃t +

ρz

τ
z̃t (3)

π̃t = βIEt[π̃t+1] + κ(ỹt − g̃t) (4)

g̃t = ρg g̃t−1 + εg,t (5)

z̃t = ρz z̃t−1 + εz,t (6)

These equations can be derived as log-linearized equilibrium relationships from a fully-

specified DSGE model. Equation (3) represents an intertemporal Euler equation obtained

3In the VAR literature such sign restrictions are often used to identify monetary policy shocks, e.g., Faust

(1998), Canova and De Nicoló (2002), and Uhlig (2005).
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from the households’ optimal choice of consumption and bond holdings. Since the underlying

structural model has no investment, output ỹt (measured in percentage deviations from

stochastic trend At) is proportional to consumption up to an exogenous process g̃t that can

be interpreted as time-varying government spending or, more broadly, as preference change.

The parameter τ can be interpreted as households’ intertemporal substitution elasticity. The

exogenous process z̃t captures the stochastic growth of the level of total factor productivity,

At, in the economy.

The production sector in the underlying economy is characterized by a continuum of

monopolistically competitive firms, each of which faces a downward-sloping demand curve

for its differentiated product. Prices are sticky due to quadratic adjustment costs for nominal

prices or a Calvo-style rigidity that allows only a constant fraction of firms adjust their

prices. The resulting dynamics are described by the expectational Phillips curve (4). The

parameter β is the households’ discount factor.

In principle, one could estimate the entire model using likelihood-based techniques (see

An and Schorfheide (2005) for a survey) to obtain estimates of the policy rule coefficients.

However, since the full-information estimator exploits cross-coefficients restrictions it is sen-

sitive to model misspecification. For instance, the simple model abstracts from habit for-

mation, investment, and wage rigidities, which have been found to be important to capture

salient feature of U.S. and Euro Area data (see Smets and Wouters (2003) and Christiano,

Eichenbaum, and Evans (2005)). Nevertheless, many of the richer specifications proposed

in the literature share the basic property that unanticipated reductions of interest rates do

not lower output. Hence, the moment condition IE[x̃t(−εR,t)] ≥ 0 remains valid.

We will revisit the prototypical New Keynesian model in Section 7 when we conduct a

small-scale simulation exercise to illustrate the proposed estimation and inference methods.

The DSGE model will serve as a data generating mechanism. The slackness in the inequality

moment condition is a function of the slope of the Phillips curve κ. If κ is large, then

prices in the model economy are fairly flexible. Hence, monetary policy shocks have only

small real effects, IE[x̃t(−εR,t)] is near zero and there will be a substantial efficiency gain

associated with the use of the inequality moment condition. Vice versa, if there is a lot of

price stickiness in the economy, output responds strongly to monetary policy shocks and

the inequality moment condition does not generate much additional information about the

parameters of interest.

3 Moment-Based Estimation

The moment conditions that we are exploiting for estimation are given in Equation (1).

Let Θ be the domain of the parameter vector θ. The functions g1 and g2 are of dimension

h1 × 1 and h2 × 1, respectively. Let h = h1 + h2, g(Xi, θ) = [g1(Xi, θ)
′, g2(Xi, θ)

′]′, M =
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[0h2×h1
Ih2

], IE[g2(Xi, θ0)] = νn,0, and Zn = 1√
n

∑n
i=1 [g(Xi, θ0) −M ′νn,0]. K is used to

denote a large constant. We begin by stating some fundamental assumptions. Assumption 1

is used for the consistency proof and Assumptions 2 and 3 to derive the limit distributions

of estimators and empirical likelihood ratio statistics.

Assumption 1 (a) Xi, i = 1, . . . , n are strictly stationary and ergodic on a probability space

(Ωn,Fn, Pn) ; (b) Θ, the parameter space for θ, is an m-dimensional compact subset of R
m;

(c) g(x, θ) is continuous at each θ ∈ Θ with probability one; (d) IE[g1(Xi, θ0)] = 0, and

IE[g1(Xi, θ)] 6= 0 for θ 6= θ0; (e) νn,0 = ν0 +n−1/2u0 ≥ 0; (f) IE[g(Xi, θ0)g(Xi, θ0)
′] −→ J is

non-singular; (g) Zn = Op (1) ; (h) V =
{
ν ∈ R

h2 : ν ≥ 0 and ‖v‖ ≤ K
}

and {νn,0}n ⊂ V;

(i) IE

[
supθ∈Θ ‖g (Xi, θ)‖α

]
≤ K <∞ for some α > 2.

When the moment function g(Xi, θ) is differentiable with respect to θ, we use g
(1)
j (Xi, θ)

and g
(2)
j (Xi, θ) to denote the first and the second order partial derivatives of gj(Xi, θ), the

j’th element of the vector g(Xi, θ), with respect to θ. Moreover, we collect the first-order

derivatives in the matrix g(1)(Xi, θ) = [g
(1)
1 (Xi, θ), . . . , g

(1)
h (Xi, θ)].

Assumption 2 (a) The true parameter θ0 exists in an interior of Θ; (b) g(Xi, θ) is twice

continuously differentiable; (c) The matrix IE[g
(1)
1 (Xi, θ0)

′] has full column rank;

(d) IE
[
supθ∈Θ ‖g(1)(Xi, θ)‖2

]
≤ K < ∞, IE

[
supθ∈Θ ‖g(2)

j (Xi, θ)‖
]
≤ K < ∞ for j =

1, ..., h.

Assumption 3 Zn =⇒ Z, where Z ∼ N (0, J −M ′ν0ν′0M).

In this paper, we assume that the sequence of observable random vectors Xi are strictly

stationary and ergodic. Assumption 3 is satisfied, if, for instance, {g(Xi, θ0)−M ′νn,0} is a

Martingale Difference Sequence with respect to the natural filtration. We also assume that

the parameter θ0 is identifiable based on the equality moment condition IE[g1(Xi, θ0)] = 0

(Assumption 1(d)). The expected value of g2(Xi, θ0) is denoted by νn,0 ≥ 0. The parameter

νn,0 measures the slackness of the inequality conditions and in order to be able to study

the local properties of our estimation and inference procedures we allow for n−1/2 drifts in

the slackness parameter as νn,0 = ν0 + n−1/2u0. To accommodate the drift in our notation

we indexed the probability space in Assumption 1(a) by the sample size n. We will show

in Section 5 that moment conditions for which the corresponding element of ν0 is strictly

greater than zero do not affect the asymptotic distribution of estimators and test statistics.

However, if ν0 = 0 and the expected value of the second set of moment conditions are close

to zero in the sense that u0 > 0 then it will influence the limit distributions.
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3.1 Empirical Likelihood Formulation

Among the various methods that could be used to estimate θ0 based on the moment restric-

tions (1) we consider the method of maximum empirical likelihood. The notion of empirical

likelihood was introduced by Owen (1988) and extended to incorporate moment restrictions

by Qin and Lawless (1994). In the case of iid observations the (constrained) empirical

likelihood function is

LEL(θ, p) =

{
n∏

i=1

pi

∣∣∣∣ pi > 0,
n∑

i=1

pi = 1,
n∑

i=1

pig1(Xi, θ) = 0,
n∑

i=1

pig2(Xi, θ) ≥ 0

}
, (7)

where pi is a probability mass on Xi and p = [p1, . . . , pn]′. The maximum empirical likeli-

hood estimator (MELE) of θ and p is defined as

{θ̂n,EL, p̂n,EL} = argmax
θ∈Θ, p

LEL(θ, p). (8)

3.2 Saddlepoint Formulation

The empirical likelihood estimator can be expressed as the saddlepoint

θ̂n = argmin
θ∈Θ

max
λ1, λ2≤0

Gn(θ, λ1, λ2) (9)

of the function

Gn(θ, λ1, λ2) =
1

n

n∑

i=1

ln (1 + λ′1g1(Xi, θ) + λ′2g2(Xi, θ)) . (10)

While in the conventional moment-based estimation based on equality conditions the Kuhn-

Tucker parameters are unconstrained, the inequality moment condition results in a non-

positivity constraint for λ2. Newey and Smith (2004) study a broader class of estimators,

called Generalized Empirical Likelihood (GEL) estimators, that are obtained by generalizing

the objective function Gn(θ, λ1, λ2). This class contains Kitamura and Stutzer’s (1997)

exponential tilting estimator as well as Hansen, Heaton, and Yaron’s (1996) continuous

updating GMM estimator. Our analysis has a straightforward extension to the GEL class,

but we do not pursue the extension in this paper.

In order to facilitate the large-sample analysis we re-write our estimator as the solution

of a modified saddle-point problem. Define λ = [λ′
1, λ

′
2]

′ and let

Λ̂n(θ) = {λ ∈ R
h | λ′g(Xi, θ) ≥ −1 + κ, i = 1, . . . , n},

for some κ > 0. Moreover, we use Gn(θ, λ) to abbreviate Gn(θ, λ1, λ2). We will subsequently

study the limit distribution of the saddlepoint

{θ̂n, ν̂n} = argmin
θ∈Θ, ν∈V

max
λ∈Λ̂n(θ)

G∗
n(θ, ν, λ) (11)

λ̂(θ, ν) = argmax
λ∈Λ̂n(θ)

G∗
n(θ, ν, λ),
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where

G∗
n(θ, ν, λ) = Gn(θ, λ) − ν′Mλ. (12)

Here ν plays the role of a Kuhn-Tucker parameter for the constraint that λ2 ≤ 0. We show

in Lemma 1 (Appendix A.1) that the saddlepoints of Gn(θ, λ) and G∗
n(θ, ν, λ) are equivalent.

Moreover, ν̂ will asymptotically capture the slackness in the inequality moment condition

IE[g2(Xi, θ0)].

3.3 GMM Formulation

As pointed out in the Introduction, one can introduce an additional h2×1 parameter vector

ϑ = IE[g2(Xi, θ)] that captures the slackness in the inequalities and express the second

moment condition as IE[g2(Xi, θ0) − ϑn,0] = 0, where ϑn,0 ≥ 0. A GMM estimator can be

obtained by solving

min
θ∈Θ,ϑ≥0

1

2

(
1

n

n∑

i=1

g(Xi, θ) −M ′ϑ

)′

Wn

(
1

n

n∑

i=1

g(Xi, θ) −M ′ϑ

)
, (13)

where {Wn} is a sequence of positive-definite h× h weight matrices. The subsequent large

sample analysis will focus on the saddlepoint problem (11) but we will return to the GMM

formulation in our discussion in Section 5.

4 Large Sample Analysis

The large sample analysis proceeds in three steps. First, we establish the consistency of

the saddlepoint estimator θ̂n. Second we construct a quadratic approximation, denoted by

G∗
nq(θ, ν, λ) of the objective function G∗

n(θ, ν, λ) in the neighborhood of θ = θ0, ν = ν0, and

λ = 0 and show that the saddlepoint estimators defined on G∗
n(θ, ν, λ) and G∗

nq(θ, ν, λ) are
√
n-consistent. Finally, we show that the estimators obtained from G∗

n and and its quadratic

approximation G∗
nq are distributionally equivalent in large samples and characterize their

limit distributions.

4.1 Consistency

It is well known that the MELE with equality moment conditions is consistent. Since

Assumption 1(d) guarantees that θ0 is identifiable from IE[g1(Xi, θ0)] = 0 it is not surprising

that θ̂n is also consistent in our framework. However, we can also show that the difference

between ν̂n, characterized in Lemma 1 (Appendix A.1) as derivative of Gn(θ, λ1, λ2) with

respect to λ2, and νn,0 = IE[g2(Xi, θ0)] converges to zero. The vector of estimated Kuhn-

Tucker parameters λ̂ also converges to zero. The consistency result is formally stated in the

following theorem.
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Theorem 1 Suppose that Assumption 1 is satisfied. Then θ̂n
p−→ θ0 and ν̂n − νn,0

p−→ 0.

Moreover, λ̂(θ̂n, ν̂n)
p−→ 0.

4.2 Quadratic Approximation of Objective Function

We proceed with a second-order Taylor approximation of the objective function G∗
n. Let

β = [θ′, ν′, λ′]′, βn,0 = [θ′0, ν
′
n,0, 01×h]′, and abbreviate G∗

n(θ, ν, λ) as G∗
n(β). The domain of

β is given by

Bn =

{
β = [θ′, ν′, λ′]′ | θ ∈ Θ, ν ∈ V, λ ∈ Λ̂n(θ) ∩ Λζ

n

}
,

where Λζ
n =

{
λ ∈ R

h : ‖λ‖ ≤ n−ζ
}
. For technical reasons it is convenient to impose that the

domain of λ shrinks at the rate n−ζ . We show in Lemmas A.1 and A.2 (Appendix A.3) that

this domain restriction asymptotically does not affect λ̂. According to Assumption 2, the

moment function g (X, θ) is twice continuously differentiable and we can write the objective

function as

G∗
n(β) = G∗

nq(β) +
1

n
Rn(β), (14)

where 1
nRn(β) is the remainder term of the Taylor approximation. We show in Lemma 2

(Appendix A.4) that the remainder term Rn(β) is uniformly ignorable in a shrinking neigh-

borhood of the true parameter βn,0.

It is convenient to re-parameterize the problem as follows. Let b = [s′, u′, l′]′ =
√
n(β −

β0), where β0 = [θ′0, ν
′
0, 01×h]′. The domain of b, denoted by Bn, is defined such that

s ∈ Sn =
√
n(Θ − θ0), u ∈ Un =

√
n (V − ν0) , l ∈ Ln(s) = {l | l/√n ∈ Λ̂n(θ0 + s/

√
n)}.

Notice that Sn expands to R
m and the j’th ordinate of Un expands to R if the j’th element

of ν0 is strictly positive. For notational convenience we will stack the parameters s and u

into the vector φ = [s′, u′]′ with domain Φn = Sn ⊗ Un and φ0 = [01×m, u
′
0]

′. The Taylor

series expansion of G∗
n(β) leads to the quadratic approximation

G∗
nq(φ, l) = −1

2
(l − J−1

n [Zn −R′
n(φ− φ0)])

′Jn(l − J−1
n [Zn −R′

n(φ− φ0)]) (15)

+
1

2
(Zn −R′

n(φ− φ0))
′J−1

n (Zn −R′
n(φ− φ0)),

where Rn = [−Q′
n,M

′]′ and

Qn =
1

n

n∑

i=1

g(1)(Xi, θ0), Jn =
1

n

n∑

i=1

g(Xi, θ0)g(Xi, θ0)
′.

We now consider two estimators: β̂n is the actual empirical likelihood estimator. The

second estimator is β̃nq = β0 + b̃q/
√
n, where b̃q = [φ̃′q, l̃q(φ̃q)

′]′ is obtained by solving a

saddlepoint problem based on the objective G∗
nq(φ, l) without restricting b to lie in Bn:

l̃q(φ) = argmaxl∈Rh G∗
nq(φ, l), φ̃q = argminφ∈Φ(ν0) G∗

nq(φ, l̃q(φ)),
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where

Φ(ν0) =

{
φ = [s′, u′] ∈ R

m ⊗ R
h2 | uj ≥ 0 if ν0,j = 0

}
. (16)

According to Assumption 3 Zn =⇒ Z. Moreover, we can deduce from Assumptions 1

and 2 and the Ergodic Theorem that Jn
p−→ J and Rn

p−→ R, where R = [−Q′,M ′]′ and

Q = IE[g(1)(Xi, θ0)]. We obtain the following theorem:

Theorem 2 Suppose Assumptions 1 – 3 are satisfied. Then, (i)
√
n(β̃nq − β0) = Op(1),

(ii)
√
n(β̂n−β0) = Op(1), (iii) nG∗

n(β̂n) = nG∗
nq(β̂n)+op(1), (iv) nG∗

nq(β̂n) = nG∗
nq(β̃nq)+

op(1), and (v) nG∗
n(β̂n) = nG∗

nq(β̃nq) + op(1).

Theorem 2 establishes that β̂n and β̃nq are
√
n-consistent. Moreover, the theorem states

that the discrepancy between G∗
n(β) evaluated at β̂n and G∗

nq(β) evaluated at β̃nq vanishes.

Thus, the large-sample behavior of likelihood ratios can be approximated by the behavior

of G∗
nq(β̃nq).

4.3 Limit Distribution

We begin by studying the limit distribution of b̃q. From (15) it follows immediately that

G∗
nq(φ, l) is maximized with respect to l ∈ R

h by

l̃q (φ) = J−1
n (Zn −R′

n(φ− φ0)) . (17)

According to Assumptions 1(f) and 1(c) the limit of Jn is non-singular and the function

g(x, θ) is continuous at each θ ∈ Θ. Hence, l̃q(φ) is well defined w.p.a. 1 and the concentrated

objective function is of the form

Ḡ∗
nq(φ) = G∗

nq(φ, l̃q (φ)) =
1

2
(Zn −R′

n(φ− φ0))
′J−1

n (Zn −R′
n(φ− φ0)). (18)

The limit distribution of φ̃q can be determined from Ḡ∗
nq(φ). We then use (17) to obtain the

distribution of l̃q(φ̃q). Finally, it can be shown that b̂ and b̃q are asymptotically equivalent.

The results are summarized in the following theorem.

Theorem 3 Suppose Assumptions 1 – 3 are satisfied. (i) Then

(φ̃q, l̃q(φ̃q)) =⇒ (P,L), and G∗
nq(φ̃q, l̃q(φ̃q)) =⇒ G∗

q (P,L),

where

P = argmin
φ∈Φ(ν0)

1

2
(Z −R′(φ− φ0))

′J−1(Z −R′(φ− φ0)),

L = J−1(Z −R′(P − φ0)),

G∗
q (P,L) =

1

2
(Z −R′(P − φ0))

′J−1(Z −R′(P − φ0)).

(ii) b̂ = b̃q + op(1).
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5 Implications of the Limit Distribution Results

We will now explore the limit distribution of b̂ in more detail. First, we discuss the relation-

ship between the conventional GMM method and the EL approach pursued in the previous

section. Second, we will show that the limit distribution of ŝ does not depend on the g2-

moment condition if ν0 > 0. In this case, our estimator is asymptotically equivalent to the

one that only uses the g1-moment condition. Third, if ν0 = 0 and IE[g2(Xi, θ0)] = n−1/2u0,

then the parameter u0 affects the shape of the limit distribution. The larger u0 the less

information about θ can be extracted from the inequality moment condition. Fourth, for

the case h2 = 1 we derive the asymptotic means and the variances of ŝ and û with a weakly

informative inequality restriction, and compare them to the means and variances of some

of benchmark estimators.

5.1 GMM with Inequality Moment Conditions

The limit distribution derived in Theorem 3 also applies to the GMM estimator defined

in (13). Let s =
√
n(θ − θ0), u =

√
n(ϑ − ν0), and φ = [s′, u′]′. Using definitions of Zn,

Rn, and Jn and assuming that Wn − J−1
n

p−→ 0 it follows from the arguments in Andrews

(1999) that the objective function of the GMM estimator has a quadratic approximation of

the form
1

2
(Zn −R′

n(φ− φ0))
′J−1

n (Zn −R′
n(φ− φ0)).

Thus, the approximation of the GMM objective function is equivalent to the concentrated

objective function Ḡ∗
nq(φ) of the empirical likelihood estimator in Equation (18). Therefore,

the analysis in the remainder of the paper applies not only to empirical likelihood estimators

but also to conventional GMM estimators.

5.2 Irrelevant Inequality Moment Conditions

We partition the random vector Z and the matrices R and J as follows:

Z =

[
Z1

Z2

]
, R′ =

[
−Q′

1 0

−Q′
2 I

]
, J =

[
J11 J12

J21 J22

]
.

The partitions conform with g(x, θ) = [g′1(x, θ), g
′
2(x, θ)]

′. Using the formulas for marginal

and conditional means and variances of a multivariate normal distribution it is straightfor-

ward to verify that

(Z −R′(φ− φ0))
′J−1(Z −R′(φ− φ0))

= (Z1 +Q′
1s)

′J−1
11 (Z1 +Q′

1s) (19)

+[Z2 +Q′
2s− (u− u0) − J21J

−1
11 (Z1 +Q′

1s)]
′

×(J22 − J21J
−1
11 J12)

−1[Z2 +Q′
2s− (u− u0) − J21J

−1
11 (Z1 +Q′

1s)].
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If ν0 > 0 then the limit distribution of û is obtained by minimizing (19) with respect to

u ∈ R
h2 . Hence,

U − u0 = Z2 +Q2S − J21J
−1
11 (Z1 +Q′

1S),

which implies that the second summand in (19) is zero. We can draw two important con-

clusions from this algebraic manipulation. First, since the first summand does not depend

on any partition of Z, Q, and J associated with g2(x, θ) we deduce that inequality mo-

ment conditions that hold with strict inequality do not influence the distribution of S and,

therefore, asymptotically do not provide any additional information on θ. Second, although

the distribution of the random vector Z depends on ν0, notice that Z1 ∼ N (0, J11). Thus,

neither the distribution of S, nor the distribution of G∗
q (P,L) depends on the specific values

of ν0 if ν0 > 0. In particular,

S = −(Q1J
−1
11 Q

′
1)

−1Q1J
−1
11 Z1 ≡ N

(
0, (Q1J

−1
11 Q

′
1)

−1

)
.

Using the formula for the inverse of a partitioned matrix it can be verified that

L1 = J−1
11 (Z1 +Q′

1S), L2 = 0.

Finally,

2G∗
q (P,L) = Z ′

1[J
−1
11 − J−1

11 Q
′
1(Q1J

−1
11 Q

′
1)

−1Q1J
−1
11 ]Z1, (20)

which corresponds to a χ2 random variable with m−h1 degrees of freedom. Thus, the limit

distributions reduce to the well-known case in which estimation and inference is based only

on IE[g1(Xi, θ0)] = 0.

5.3 Weakly Informative Inequality Moment Conditions

Now suppose that IE[g2(Xi, θ0)] = n−1/2u0, where u0 > 0. Then the concentrated asymp-

totic objective function becomes

Ḡ∗
q ([s′, u′]′) =

1

2
(Z +Q′s−M ′(u− u0))

′J−1(Z +Q′s−M ′(u− u0)) (21)

and has to be minimized subject to the constraint that u ≥ 0. Using a change of variables

and defining ũ = u− u0 we obtain

Ḡ∗
q ([s′, u′0 + ũ′]′) =

1

2
(Z +Q′s−M ′ũ)′J−1(Z +Q′s−M ′ũ) (22)

where ũ ≥ −u0. Thus, the further IE[g2(Xi, θ0)] is apart from zero (in the local metric) the

less often the constraint on ũ is binding and the closer limit distribution to the one that is

obtained if the second set of moment conditions is ignored.
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5.4 Mean-Squared-Error Comparisons

The main goal of this section is to derive an analytic formula for the asymptotic mean-

squared-errors (MSE) of the estimator θ̂n and ν̂n for the special case of h2 = 1, when the

inequality moment conditions are weakly informative. We will compare θ̂n to the following

two alternative estimators: θ̂(1) is based only on IE[g1(Xi, θ)] = 0, and θ̂(12) is obtained by

imposing IE[g1(Xi, θ)] = 0 and IE[g2(Xi, θ)] = 0. A natural benchmark for the evaluation

of ν̂n can be obtained as follows: use the equality moment condition IE[g1(Xi, θ0)] = 0 to

calculate θ̂(1), then take a sample average of g2(Xi, θ̂(1)) to obtain the estimator ν̂(1).

Define P̃ = φ0 + (RJ−1R′)−1RJ−1Z. The concentrated limit objective function for φ

can be written as:

Ḡ∗
q (φ) =

1

2
(φ− P̃)′Υ−1(φ− P̃) +

1

2
Z ′(J−1 − J−1R′(RJ−1R′)−1RJ−1)Z,

where

Υ = (RJ−1R′)−1 =

[
Υss Υsu

Υus Υuu

]
.

The partitions of Υ conform with the partition φ = [s′, u′]′. Without loss of generality we

are re-normalizing the inequality moment condition such that Υuu = 1. Let fN (·) denote

the probability density function and FN (·) the cumulative density function of a N (0, 1). We

show in Appendix A.6 that

IE[S] = Υsu[fN (u0) − u0(1 − FN (u0))]

V [S] = Υss + ΥsuΥusFN (u0)

(
1 − f2

N (u0)

F 2
N (u0)

− u0fN (u0)

FN (u0)

+

(
u0 +

fN (u0)

FN (u0)

)2

[1 − FN (u0)]

)
− ΥsuΥus

and the mean-squared-error is given by

MSE(S) = Υss + ΥsuΥus[(u
2
0 − 1)(1 − FN (u0)) − u0fN (u0)].

The limit distributions of the estimator θ̂(1) and θ̂(12) can be expressed as

S(1) ∼ N
(

0,Υss

)
and S(12) ∼ N

(
(QJ−1Q′)−1QJ−1M ′u0,Υss − ΥsuΥus

)
. (23)

Since (see Pollard (2002, page 317))

(u2
0 − 1)(1 − FN (u0)) − u0fN (u0)

{
= − 1

2 if u0 = 0

< − 1
u0
fN (u0) if u0 > 0

we obtain the following efficiency result:

Theorem 4 Suppose Assumptions 1 – 3 are satisfied and h2 = 1. Then (i) MSE(S) ≤
MSE(S(1)) for all values of u0. (ii) If u0 = 0 then MSE(S(12)) ≤ MSE(S). (iii) There

exists a ū0 > 0 such that MSE(S) ≤MSE(S(12)) for u0 ≥ ū0.
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According to Theorem 4 the estimator that exploits the inequality moment condition

is always preferable, in an asymptotic MSE sense, to the estimator θ̂(1) that ignores this

additional information. If IE[g2(Xi, θ0)] = 0 then it is preferable to impose it. However, the

performance of θ̂(12) deteriorates as the slackness in the inequality constraint increases and

will be inferior to our proposed estimator θ̂n for large values of u0.

Next we consider the estimation of the slackness in the inequality moment condition, u.

In the special of h2 = 1 with a weakly informative moment restriction, we can deduce from

Theorem 3 that the limit distribution of û is a censored normal distribution

U = P̃uI{P̃u ≥ 0}

where

P̃u ∼ N
(
u0, (MΩM ′)−1

)
, Ω = J−1 − J−1Q′(QJ−1Q′)−1QJ−1.

The benchmark estimator ν̂(1) described above can be formally expressed as

ν̂(1) =
1

n

n∑

i=1

g2

(
Xi, θ̂(1)

)
I

{
1√
n

n∑

i=1

g2

(
Xi, θ̂(1)

)
≥ 0

}
.

This estimator has been used, for instance, by Zeldes (1989) to test whether low wealth-to-

income households are in fact borrowing constrained. It can be verified that

1√
n

n∑

i=1

g2

(
Xi, θ̂(1)

)
=⇒ U(1) ∼ N

(
u0,Ξ(1)

)
,

where

Ξ(1) = J22 +Q′
2(Q1J

−1
11 Q

′
1)

−1Q2 − 2Q′
2(Q1J

−1
11 Q

′
1)Q1J

−1
11 J12.

Hence, the limit distribution of the benchmark estimator ν̂(1) is also a truncated normal dis-

tribution. The following theorem states that the slackness estimator that uses the inequality

moment condition is more precise than the estimator that ignores it.

Theorem 5 Suppose Assumptions 1 – 3 are satisfied and h2 = 1, then MSE(U) ≤MSE(U(1)).

6 Inference

Based on the results obtained in Section 4, we will proceed by deriving asymptotically valid

confidence sets for θ and ν.
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6.1 Confidence Sets for θ

A confidence set for θ can be obtained by inverting the empirical likelihood ratio statistic

for the null hypothesis θ0 = θH . We will first study a joint confidence interval for all

elements of the parameter vector θ. An extension to confidence regions for subsets of

parameters is fairly straightforward and will be discussed at the end of this subsection. The

derivation of the confidence sets is complicated by the dependence of the limit distribution of

the maximized empirical likelihood function on the slackness associated with the inequality

moment condition. In the subsequent analysis we will assume that the second set of moments

is close to zero in the sense that ν0 = 0 and u0 ≥ 0.

The test statistic that is used to obtain the confidence set for θ is defined as the ratio of

the unrestricted maximum of the empirical likelihood function LEL(θ, p) and the constrained

maximum subject to the restriction θ = θH . We will express the test statistic in terms of

the function G∗
n(θ, ν, λ). Let

ν̂H
n = argminν∈V max

λ∈Λ̂n(θH)
G∗

n(θH , ν, λ).

The test statistic is given by

LRθ
n(θH) = 2n

(
G∗

n(θH , ν̂H
n , λ̂(θH , ν̂H

n )) −G∗
n(θ̂n, ν̂n, λ̂(θ̂n, ν̂n))

)
. (24)

Denote the concentrated limit objective function by

Ḡ∗
q (φ) =

1

2
(Z −R′(φ− φ0))

′J−1(Z −R′(φ− φ0)).

Define the set

ΦH(ν0) = {φ = [s′, u′]′ ∈ {0}m ⊗ R
h2 | uj ≥ 0 if ν0,j = 0}. (25)

The limit distribution under H0 can be easily obtained as a corollary from Theorem 3.

Corollary 1 Suppose Assumptions 1 – 3 are satisfied. Moreover, θH = θ0, ν0 = 0, u0 ≥ 0.

Then

LRθ
n(θ0) =⇒ LRθ(u0) ≡

(
min

φ∈ΦH(0)
2Ḡ∗

q (φ)

)
−
(

min
φ∈Φ(0)

2Ḡ∗
q (φ)

)
.

The asymptotic critical value cθα(u0) satisfies

Pu0

{
LRθ(u0) ≤ cθα(u0)

}
= 1 − α.

Suppose we knew the true value u0 of the slackness in the inequality constraint. Then a

confidence set for θ with asymptotic coverage probability 1 − α can be obtained as follows:

CSθ
n(u0, α) =

{
θ0 ∈ Θ | LRθ

n(θ0) ≤ cθα(u0)

}
. (26)

We can deduce from Corollary 1 that this set has the desired coverage probability.
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Corollary 2 Suppose Assumptions 1 – 3 are satisfied. Moreover, θH = θ0, ν0 = 0, u0 ≥ 0.

Then

Pu0

{
θ0 ∈ CSθ

n(u0, α)

}
= Pu0

{
LRθ

n(θ0) ≤ cθα(u0)

}
−→ 1 − α.

In practice the “true” slackness parameter u0 is, however, unknown. Since u0 cannot

be consistently estimated, we construct a Bonferroni confidence set for θ0. Let CSu
n(αu) be

a confidence set for u0 with coverage probability 1 − αu. Define,

CSθ
n(α) =

⋃

u∈CSu
n(αu)

CSθ
n(u, αs). (27)

Then,

Pu0

{
θ0 6∈ CSθ

n(α)

}
≤ Pu0

({
θ0 6∈ CSθ

n(α)

}
∩
{
u0 ∈ CSu

n(αu)

})
+ Pu0

{
u0 6∈ CSu

n(αu)

}

≤ Pu0

{
θ0 6∈ CSθ

n(u0, αs)

}
+ Pu0

{
u0 6∈ CSu

n(αu)

}
−→ αs + αu.

The Bonferroni confidence interval raises two questions. First, how should one construct

the confidence set CSu
n(αu), and second, how large should its coverage probability be. The

next subsection discusses confidence intervals for u0. The choice of αu will be discussed in

Section 7.

In order to obtain a confidence set for a subset of parameters one can proceed by

modifying the likelihood ratio statistic on which the confidence interval is based as follows.

Without loss of generality, partition θ = [θ′1, θ
′
2]

′ and denote the hypothesized value of θ1 by

θH
1 . Let

{θ̂H
2,n, ν̂

H
n } = argminθ2,ν∈V max

λ∈Λ̂n(θH
1 ,θ2)

G∗
n(θH

1 , θ2, ν, λ)

and redefine the test statistic as

LRθ
n(θH

1 ) = 2n

(
G∗

n(θH
1 , θ̂

H
2,n, ν̂

H
n , λ̂(θH

1 , θ̂
H
2,n, ν̂

H
n )) −G∗

n(θ̂n, ν̂n, λ̂(θ̂n, ν̂n))

)
. (28)

The subsequent steps remain unchanged.

6.2 Confidence Sets for u

As mentioned previously, we are most interested in the case in which the second set of

moment conditions is near zero, that is, ν0 = 0 and u0 ≥ 0. In particular, it is the local

slackness parameter u0 that affects the limit distribution of the likelihood ratios. To keep

the notation simple we will focus on a joint confidence set for u. An extension to confidence

sets for subsets of u is fairly straightforward. The confidence set is obtained by inverting

the empirical likelihood statistic for the null hypothesis u0 = uH . Let

θ̂H
n = argminθ max

λ∈Λ̂n(θ)
G∗

n(θ, n−1/2uH , λ)
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and define the test statistic

LRu
n(uH) = 2n

(
G∗

n(θ̂H
n , n

−1/2uH , λ̂(θ̂H
n , n

−1/2uH)) −G∗
n(θ̂n, ν̂n, λ̂(θ̂n, ν̂n))

)
. (29)

We summarize its limit distribution in the following theorem.

Theorem 6 Suppose Assumptions 1 – 3 are satisfied. Moreover, ν0 = 0, u0 ≥ 0, and

uH = u0. Then

LRu
n(u0) =⇒ LRu(u0) ≡ Z ′

uΛ−1Zu − (Ũ − Zu)′Λ−1(Ũ − Zu),

where

Ũ = argminũ≥−u0
(ũ− Zu)′Λ−1(ũ− Zu),

Λ = (M [J−1 − J−1Q′(QJ−1Q′)−1QJ−1]M ′)−1, and Zu ∼ N (0,Λ). The asymptotic critical

value cuα(u0) satisfies

Pu0

{
LRu(u0) ≤ cuα(u0)

}
= 1 − α.

If u0 = 0 then the limit distribution simplifies to Ũ ′Λ−1Ũ and the test-statistic has a

so-called χ̄2 limit distribution, e.g., Kudo (1963). As before, a confidence set for u0 with

asymptotic coverage probability 1−α can be obtained by inverting the test statistic LRu(u0)

as follows:

CSu
n(α) =

{
u ≥ 0 | LRu

n(u) ≤ cuα(u)

}
. (30)

We can deduce from Theorem 6 that the confidence set has the desired coverage probability.

Corollary 3 Suppose Assumptions 1 – 3 are satisfied. Moreover, ν0 = 0, u0 ≥ 0, and

uH = u0. Then

Pu0

{
u0 ∈ CSu

n(α)

}
= Pu0

{
LRu

n(u0) ≤ cuα(u0)

}
−→ 1 − α.

6.3 Implementation

The asymptotic critical value functions cθα(u0) and cuα(u0) that are needed for the construc-

tion of the confidence sets depend on the matrices Q and J . First, one has to calculate

the empirical likelihood estimator θ̂n. Second, a consistent estimate of J and R can be

computed as follows:

Ĵn =
1

n

n∑

i=1

g(Xi, θ̂n)g(Xi, θ̂n)′, Q̂n =
1

n

n∑

i=1

g(1)(Xi, θ̂n), R̂′
n = [−Q̂′

n,M
′]. (31)

Approximate asymptotic critical values ĉθα(u0) and ĉuα(u0) can be obtained by simulating

LRθ(u0) (Corollary 1) and LRu(u0) (Theorem 6) conditional on Ĵn and R̂n for a fine grid

of u0 values (see also Andrews (2001)). Finally, the confidence sets for θ0 and u0 can be

constructed according to Equations (26) and (30).
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7 Policy-Rule Estimation Revisited

In the remainder of this paper we provide a numerical example to illustrate the large sample

results that we derived previously. We also conduct a small-scale Monte Carlo experiment

to assess the finite-sample performance of our proposed estimation and inference proce-

dure. Since in the context of monetary policy rules the slackness in the inequality moment

condition IE[g2(Xi, θ0)] ≥ 0 is not of immediate interest, we focus on the estimation of θ0.

7.1 Data Generating Process

We consider two versions of the prototypical New Keynesian DSGE model discussed in

Section 2 as data generating processes. We refer to the first version, M1, as output growth

rule specification. For M1 the measure of output used in the monetary policy rule (2)

is x̃t = ỹt − ỹt−1 + z̃t, log total factor productivity has a stochastic trend and is given

by Ãt = Ãt−1 + z̃t, and ỹt measures percentage deviations of output from the level of

productivity. M1 consists of Equations (2) to (6).

The second version of the model, M2, will be called output gap rule version. The

measure of output used in the policy rule is x̃t = ỹt. Moreover, we regard log productivity

as trend stationary process Ãt = γt+ Ã∗ + z̃t, and define ỹt as percentage deviations from

a deterministic trend. Euler equation and Phillips curve are modified as follows:

ỹt = IEt[ỹt+1] −
1

τ
(R̃t − IEt[π̃t+1]) + (1 − ρg)g̃t (32)

π̃t = βIEt[π̃t+1] + κ(ỹt − g̃t − z̃t) (33)

Hence, M2 consists of Equations (2), (5), (6), (32), and (33).

Models M1 and M2 are written as linear rational expectations systems that can be

solved with standard techniques, e.g. Sims (2002), to derive a law of motion for interest

rates, inflation, and output. We assume that a time period corresponds to one quarter. The

models can be completed by defining a set of measurement equations that relate R̃t, π̃t,

and ỹt to a set of observables. For our analysis, we assume that we have observations on

annualized quarter-to-quarter inflation rates (INFL), and annualized nominal interest rates

(INT) in percentages. For specification M1 we observe quarter-to-quarter per capita GDP

growth rates (YGR) and for specification M2 we have observations of percentage deviations

of GDP from a deterministic trend (YGAP).

We will simulate samples of sizes n = 80 and n = 160 from models M1 and M2 and

estimate the coefficients of the monetary policy rule (2). The sample sizes are consistent

with the number of observations used in actual applications. Many industrial countries

experienced disinflation episodes and monetary policy shifts in the 1980s. Hence n = 80

can be thought of as a post-disinflation sample, whereas an n = 160 sample would contain
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observations from the 1960s to the present. The interest-rate feedback rule can be expressed

in terms of observables as (switching from t to i subscript)

INTi = ρRINTi−1 + (1 − ρR)ψ1INFLi + 4(1 − ρR)ψ2OUTPUTi + 4εR,i, (34)

where OUTPUT is either Y GR (M1) or Y GAP (M2). A common approach in practice is

to use lagged inflation and a measure of lagged output as instrumental variables. We define4

yi = INTi, xi = [INTi−1, INFLi, OUTPUTi]
′,

z1,i = [INTi−1, INFLi−1, Y GRi−1]
′, z2,i = −OUTPUTi

Let Xi = [yi, x
′
i, z

′
i]
′, where zi = [z′1,i, z

′
2,i]

′, and θ = [ρR, (1−ρR)ψ1, 4(1−ρR)ψ2]
′. Moreover,

we define gj(Xi, θ) = zj,t(yi − x′iθ), j = 1, 2 and obtain the desired moment conditions (1).

Both model specifications M1 and M2 have been used in empirical work with DSGE

models. In some applications, e.g. Lubik and Schorfheide (2006), aggregate output is

modelled as unit root process and output growth is included as argument in the monetary

policy rule (M1), whereas in other applications, e.g., Smets and Wouters (2003) and Del

Negro and Schorfheide (2005), output is detrended prior to estimation by either linear trend

extraction or HP-filtering and the monetary policy rule is written as a function of detrended

output (M2).
5

From an econometric perspective it is interesting to consider the two versions of the

DSGE model for the following reason. The serial correlation of output growth rates, for

instance, in U.S. data is fairly small, whereas output deviations from trends tend to be

highly autocorrelated. To capture these properties of the actual data we parameterize M1

using a value of ρz = 0.5, whereas under M2 ρz = 0.95. As a consequence, the correlation

between instruments and regressors is larger for M2 than it is for M1. This suggests that

MSE reductions due to the use of the inequality moment condition are potentially large for

the output growth rule version of the DSGE model.

Numerical values for the remaining structural parameters are provided in Table 1 and

are in general in line with estimates obtained from U.S. or Euro Area data. The parameter

κ controls the slackness in the inequality moment condition. If there is a low degree of price

stickiness in the economy the value of κ will be large, monetary policy shocks have little

effect on output and IE[g2(Xi, θ0)] will be close to zero. Vice versa, if κ is small the slackness

in the inequality moment condition tends to be large. IE[g2(Xi, θ0)], J and Q, which are

needed to simulate the limit distributions, can be calculated as a function of the structural

parameters from the solution of the log-linearized DSGE models.

4In principle we could include INFLi also in the definition of z2,i, which would introduce a second

nuisance parameter.
5The theoretical literature on New Keynesian models defines output gap as the deviation of actual output

from the level of output that would prevail in the absence of nominal rigidities. However, in the empirical

literature on the estimation of monetary policy rules it is common to define the output gap as deviations of

output from a smooth trend. For instance, the U.S. potential output series constructed by the Congressional

Budget Office closely resembles the trend that is extracted by HP-filtering U.S. GDP.
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7.2 Interpretation of Local-to-Zero Framework

In Sections 3 to 6 we assumed that the slackness in the inequality moment constraint,

IE[g2(Xi, θ0)], is asymptotically small in the sense that νn,0 = n−1/2u0. The local-to-zero

representation is a technical device that allows us to capture in the asymptotic calculation

the notion that in finite samples the slackness in the inequality moment condition may be

sufficiently small to provide overidentifying information about the parameters of interest. In

the context of the policy function estimation the local-to-zero setup should not be interpreted

as the belief that the price stickiness in the economy will vanish as the sample size tends

to infinity. In fact, all structural parameters, including the slope of the Phillips curve κ,

are fixed in the DSGE model. For the subsequent analysis we compute IE[g2(Xi, θ0)] as a

function of the parameter values reported in Table 1. We use the limit distribution obtained

under u0 =
√
nIE[g2(Xi, θ0)] to approximate the finite sample properties of estimators and

confidence intervals for sample sizes n = 80 and n = 160.

7.3 Alternative Estimators and Confidence Sets

To assess the performance of the proposed point estimator θ̂ we consider θ̂(1) and θ̂(12)

defined in Section 5.4 as alternatives. Inference with respect to θ0 is based on the following

two 90% confidence sets: (i) CSθ(α) is obtained from IE[g1(Xi, θ)] = 0 and IE[g2(Xi, θ)] ≥ 0

as described in Section 6. In computing the Bonferroni interval we use αu = 0.05 and

αu = 0. (ii) CSθ
(1) uses only IE[g1(Xi, θ)] = 0 and is the Wald confidence interval based on

estimates of the asymptotic standard errors. Our confidence intervals are constructed for

individual parameters, instead of jointly for the entire parameter vector.

7.4 Point Estimation Results

Tables 2 to 4 summarize the performance of the three point estimators θ̂, θ̂(1), and θ̂(12).

All results are reported in terms of the transformed parameter vector s =
√
n(θ − θ0). The

entries in the columns labelled Asymptotics are calculated based on 1,000,000 draws from

the limit distribution, where u0 =
√
nIE[g2(Xi, θ0)] as discussed above. The entries under

the heading Small Sample are obtained by applying the estimation procedures to 10,000

samples of size n, simulated from the DSGE model.

Since the estimation problem is linear and the number of inequality moment conditions

is h2 = 1 the computational problem simplifies considerably. Based on IE[g1(Xi, θ0)] the

parameters are exactly identified and the empirical likelihood estimator θ̂(1) corresponds to

the linear IV estimator. If we also impose that IE[g2(Xi, θ0)] then the model is overidentified.

For the small sample analysis we use a numerical optimization procedure to find the saddle

point

θ̂(12) = argminθ∈Θ max
λ1,λ2

Gn(θ, λ1, λ2)



21

without imposing a sign restriction on λ2.
6 If λ̂2(θ̂(12)) ≤ 0 we deduce that the estima-

tor θ̂ that treats the second moment condition as inequality equals θ̂(12). Alternatively,

if λ̂2(θ̂(12)) > 0 then θ̂ = θ̂(1). This insight can also be applied to the simulation of the

limit distribution. To characterize the performance of the estimators we consider the fol-

lowing three robust statistics7: the median of ŝ, the distance between the 5th and the 95th

percentile, and the median of the squared estimation error ŝ2.

Table 2 is based on a parameterization of M1 in which prices are nearly flexible and

the slackness in the inequality moment condition is small. Since the policy rule is specified

in terms of output growth, which is only weakly correlated with lagged output growth,

inflation, and interest rates, the estimator θ̂(1) performs poorly, in particular with respect to

the output growth coefficient. While imposing incorrectly that IE[g2(Xi, θ0)] = 0 introduces

a bias in the estimation of the output growth coefficient, the variability of the estimator

drops considerably. According to the limit distribution, the median of the squared error

drops from 5.62 to 0.11 for n = 80. Using the second moment condition as inequality also

leads to a considerable improvements in performance. Across the board, ŝ dominates ŝ(1)

both asymptotically and in finite samples. The median squared error of the output growth

coefficient is reduced by approximately 90%.

In the M1 example the best estimator is the one that incorrectly imposes IE[g2(Xi, θ0)] =

0. However, imposing invalid moment conditions can also generate very misleading estimates

as we will illustrate in our second simulation. Table 3 is based on a parameterization of M2

in which prices are sticky, implying that the slackness in the inequality moment condition

is large. It turns out that θ̂(12) is severely biased and performs very poorly. Our inequality

moment estimator, on the other hand, proves to be robust. However, since the inequal-

ity condition is not binding, we are unable to extract overidentifying information and θ̂ is

essentially equal to the estimator θ̂(1) which ignores IE[g2(Xi, θ0)].

At last, we consider a version of M2 in which prices are nearly flexible, which reduces the

slackness in the inequality moment condition compared to the second experiment. Results

are summarized in Table 4. Under this parameterization θ̂(1) and θ̂(12) perform about equally

well. The former estimator is slightly more variable, but the latter has a larger bias. For all

three parameters, our inequality-based estimator performs no worse than θ̂(1) and θ̂(12). In

fact, in some instances θ̂ beats its two competitors, albeit with a small margin.

6The optimization is carried out with a version of the BFGS quasi-Newton algorithm, written originally

by Chris Sims for the ML estimation of a DSGE model. The algorithm uses a fairly simple line search and

randomly perturbs the search direction if it reaches a cliff. We replace the ln-function in the definition of

Gn(θ, λ1, λ2) by the ln∗ function described in Owen (2001). Samples for which the numerical optimization

fails in an obvious manner are disregarded.
7Since the small sample distribution of all 3 estimators exhibits fat tails (see Mariano (1982) for the

non-existence of finite sample moments in the classical simultaneous equations model), we report robust

statistics.
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To summarize, both according to the limit distribution and the small sample simulation

results, the inequality-based estimator performs no worse than θ̂(1). In situations in which

there is additional information contained in the inequality moment condition, our estimator

is able to exploit that information. At the same time the estimator is robust to large values

of IE[g2(Xi, θ0)] and, unlike θ̂(12) its performance does not break down as u0 increases.

Despite the small sample sizes considered, the asymptotic results proved to be a fairly

reliable indicator of small sample performance.8

7.5 Interval Estimation Results

Table 5 presents coverage probabilities and average lengths for the confidence intervals

CSθ(α) and CSθ
(1)(α), where α = 0.1. Data are generated from the version of M2 in which

prices are nearly flexible. Recall from Table 4 that for this data generating process the

median squared error of ŝ approximately equals that of ŝ(1). However, the variability of ŝ

is smaller than the variability of ŝ(1) which essentially will translate into a reduction of the

length of the confidence interval that exploits the inequality moment condition.

The computations are implemented as follows. To simulate the asymptotic behavior of

CSθ(α) we begin by evaluating Q and J as a function of θ0. Second, we calculate the critical

value functions cθαs
(u0) and cuαu

(u0) for u0 on a grid U based on 100,000 draws from the limit

distribution of the likelihood ratio statistics. Third, we draw 1,000,000 Z’s and compute

confidence intervals. Specifically, for each Z we evaluate LRu(u) for u ∈ U and use the

previously calculated critical value function to obtain CSu(αu). To obtain the Bonferroni

interval CSθ(α) we determine the supremum of the critical values cθ
α = supu∈CSu(αu) c

θ
αs

(u)

and find the boundaries of the confidence set CSθ(α) by numerically solving LRθ(θ) = cθα.

Our small sample analysis is based on 1,000 samples of 160 observations. For each sample

we begin by computing the point estimator θ̂ as well as the estimates Ĵ and Q̂ described in

Section 6.3. We then calculate the critical value functions cθ
αs

(u0) and cuαu
(u0) conditional on

Ĵ and Q̂ and proceed with the computation of the confidence intervals as in the simulation

of the limit distribution.

The critical value function cθαs
(u0) for the three parameter of the monetary policy rule

is plotted in Figure 1. As u0 increases, the moment IE[g2(Xi, θ)] becomes irrelevant and

the critical value converges to the critical value of a χ2 distribution with one degree of

freedom. In our example the critical value function has an inverted hump shape. Since

the true value of u0 is
√

160 · 0.11 = 1.39 we expect the Bonferroni interval for the interest

rate and the inflation coefficients in the policy rule (Parameters 1 and 2) to be slightly

conservative, whereas the intervals for the output coefficient should have essentially the

8Indeed, if the sample size is increased to n = 500 or n = 1000 the finite sample behavior is well

approximated by the limit distribution, not just for the robust statistics reported in the tables, but also for

means, standard deviations, and MSEs.
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target coverage 1 − αs. It turns out that in our application the confidence intervals for the

slackness parameter are fairly large and tend to cover zero as well as values of u0 for which

the critical value essentially equals the χ2 critical value. Since the critical value function is

convergent as u0 increases it is preferable to set αu = 0. Nevertheless, we also report results

for αu = 0.05.

As expected, the simulation of the limit distribution implies that the coverage proba-

bilities of CSθ for the output coefficient is essentially equal to 1 − αs. For the other two

coefficients it is slightly larger: 0.96 and 0.91, respectively. If αu = 0.05 the CSθ intervals are

longer than the CSθ
(1) intervals because the Bonferroni approach leads to very conservative

intervals. If we set αu = 0 then the average length of CSθ decreases and the intervals that

take advantage of the inequality moment condition are shorter than the Wald confidence

intervals CSθ
(1), both asymptotically and in finite samples. On average, the asymptotic

confidence intervals are slightly shorter than the finite sample intervals, but the coverage

probabilities are very similar.

8 Conclusion

This paper developed a limit distribution theory for moment-based estimators when some

of the moment conditions take the form of inequalities. If the slackness in the inequality

moment condition is small our estimator is able to translate the additional information

provided by the inequality to a mean-squared-error reduction. If on the other hand, the

slackness in the inequality moment conditions is large, our estimator performs no worse than

an estimator that ignores the moment inequalities. The limit distribution of the parameter

estimators and empirical likelihood ratio statistics typically depend on a nuisance parameter

that measures the slack in the inequality conditions. This nuisance parameter complicates

statistical inference because it cannot be estimated consistently. We constructed Bonferroni

type confidence sets for the parameter of interest, θ, by taking a union of sets that are valid

for a particular value of the nuisance parameter.

Finally, throughout the paper we focused on models in which the parameter θ is iden-

tifiable based on the equality moment condition IE[g1(Xi, θ0)] = 0. We think that this is

an important class of models and provided a substantive illustration with the estimation of

monetary policy rules. Our procedures are especially attractive for instrumental variable

estimation problems in which there are only a few valid instruments available that suffer

from a small correlation with the endogenous regressors. Our procedures can also be used to

sharpen inference in the estimation of intertemporal optimality conditions in the presence

of financial frictions.
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A Appendix: Proofs and Derivations

The Appendix contains detailed proofs and derivations for the results presented in the main text.

Section A.1 shows the equivalence of the three formulations of the saddlepoint problem discussed in

Section 2. Section A.2 contains the consistency proof. By and large, we follow the structure of the

proofs in Kitamura, Tripathi, and Ahn (2004) and Newey and Smith (2004), making the necessary

adjustments for the presence of the inequality moment conditions. In Section A.3 the quadratic

approximation of the objective function is obtained. We use Lemma 1(a) of Andrews (1999) to

bound the remainder term in the second-order Taylor approximation of the objective function. The

proof of
√

n consistency differs from Andrews (1999) because he studied an extremum estimator

and we are studying a saddlepoint estimator. The proof also differs from Newey and Smith (2004),

who expand the first-order condition associated with the saddlepoint, whereas we work with the

quadratic approximation of the objective function. Based on the asymptotic approximation of the

empirical likelihood objective function, we derive limit distributions for point and interval estimators

in Sections A.4 and A.5.

A.1 Equivalence of Saddlepoint Problems

One could also rewrite the second moment condition as

IE[g2(Xi, θ0) − ϑn,0] = IE[g̃2(Xi, θ0, ϑn,0)] = 0

and restrict the auxiliary parameter ϑn,0 to be nonnegative. The estimators θ̂ and ϑ̂ can be defined

as the saddlepoint

min
θ∈Θ, ϑ≥0

max
λ1∈Λ̂n,1(θ), λ2∈Λ̂n,2(θ)

G̃n(θ, ϑ, λ1, λ2), (A.1)

where

G̃n(θ, ϑ, λ1, λ2) =
1

n

n�
i=1

ln(1 + λ′
1g1(Xi, θ) + λ′

2[g2(Xi, θ) − ϑ]). (A.2)

The partition of Λ̂n(θ) into Λ̂n,1(θ) and Λ̂n,2(θ) conforms with the partition of λ = [λ′
1, λ

′
2]

′. As

in (11) the vector λ2 is not constrained to be less than or equal to zero. The following lemma states

that the three functions Gn (Equation 10), G∗
n (Equation (12), and G̃n have the same saddlepoints.

Lemma 1 θ̂, λ̂1, λ̂2 are a saddlepoint of Gn(θ, λ1, λ2) and solve (9),

(i) if and only if θ̂, λ̂1, λ̂2, and ν̂ are a saddlepoint of G∗
n(θ, ν, [λ′

1, λ
′
2]

′) and solve (11);

(ii) if and only if θ̂, λ̂1, λ̂2, and ϑ̂ are a saddlepoint of G̃n(θ, ϑ, λ1, λ2) and solve (A.1).

The elements of the h2 × 1 vectors ν̂ and ϑ̂ are defined as

ν̂j = ϑ̂j =

�� � ∂Gn(θ,λ1,λ2)
∂λ2,j ���� θ̂,λ̂1,λ̂2

if λ̂2,j = 0

0 if λ̂2,j < 0, j = 1, . . . , h2.
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Proof of Lemma 1: We will verify the saddlepoint properties directly. (i) Suppose θ̂, ν̂, λ̂1, λ̂2 is a

saddlepoint of G∗
n. If λ̂2,j = 0 it lies in the interior of Λ̂n,2(θ) and satisfies the first-order condition

ν̂j =
∂Gn(θ, λ1, λ2)

∂λ2,j ���� θ̂,λ̂1,λ̂2

.

If λ̂2,j 6= 0 then ν̂j minimizes G∗
n with respect to νj ≥ 0. Moreover, it is straightforward to verify

that λ̂2 cannot be strictly positive. Hence, ν̂ ′λ̂2 = 0 and

Gn(θ̂, λ̂1, λ̂2) = G∗
n(θ̂, ν̂, λ̂1, λ̂2) ≤ G∗

n(θ, ν̂, λ̂1, λ̂2) = Gn(θ, λ̂1, λ̂2)

for all θ ∈ Θ. Moreover,

Gn(θ̂, λ̂1, λ̂2) = G∗
n(θ̂, ν̂, λ̂1, λ̂2) ≥ G∗

n(θ̂, ν̂, λ1, λ̂2) = Gn(θ̂, λ1, λ̂2)

for all λ1 ∈ Λ̂n,1(θ̂). Using the same argument as above it follows for λ̂2,j < 0 and ν̂j = 0 that

Gn(θ̂, λ̂1, λ̂2) ≥ Gn(θ̂, λ̂1, λ2,(j)),

where λ2,(j) ∈ Λ̂n,2(θ̂) is obtained by replacing the j’th element of λ̂2 by λ2,j ≤ 0. Finally, if

λ̂2,j = 0 then
∂Gn(θ, λ1, λ2)

∂λ2,j ���� θ̂,λ̂1,λ̂2

= ν̂j ≥ 0.

Since the function Gn(θ, λ1, λ2) is globally concave in λ2 we deduce that

Gn(θ̂, λ̂1, λ̂2) ≥ Gn(θ, λ̂1, λ2,(j)).

As before, λ2,(j) ∈ Λ̂n,2(θ̂) is obtained by replacing the j’th element of λ̂2 by λ2,j ≤ λ̂2,j = 0.

Hence, we have established that θ̂, λ̂1, λ̂2 is a saddlepoint of Gn.

Now suppose θ̂, λ̂1, λ̂2 is a saddlepoint of Gn. The following inequalities are straightforward to

verify:

G∗
n(θ̂, ν̂, λ̂1, λ̂2) ≤ G∗

n(θ, ν̂, λ̂1, λ̂2)

G∗
n(θ̂, ν̂, λ̂1, λ̂2) ≥ G∗

n(θ̂, ν̂, λ1, λ̂2).

Recall that ν̂′λ̂2 = 0 and ν′λ2 ≤ 0. Therefore,

G∗
n(θ̂, ν̂, λ̂1, λ̂2) = Gn(θ̂, λ̂1, λ̂2) − ν̂′λ̂2

≤ Gn(θ̂, λ̂1, λ̂2) − ν′λ̂2

= G∗
n(θ̂, ν, λ̂1, λ̂2).

If λ̂2,j < 0 then ν̂j = 0 and

G∗
n(θ̂, ν̂, λ̂1, λ̂2) = Gn(θ̂, λ̂1, λ̂2) − ν̂′λ̂2

≥ Gn(θ̂, λ̂1, λ2,(j)) − ν̂′λ2,(j)

= G∗
n(θ̂, ν̂, λ̂1, λ2,(j)),

where λ2,(j) is defined as above. Now suppose that λ̂2,j = 0. Then

∂G∗
n(θ, ν, λ1, λ2)

∂λ2,j ���� θ̂,ν̂,λ̂1,λ̂2

=
∂Gn(θ, λ1, λ2)

∂λ2,j ���� θ̂,λ̂1,λ̂2

− ν̂2,j = 0
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Since G∗
n is globally concave in λ2,j we deduce that

G∗
n(θ̂, ν̂, λ̂1, λ̂2) ≥ G∗

n(θ̂, ν̂, λ̂1, λ2,(j)),

because Gn attains at λ̂2,j its maximum with respect to λ2,j .

The proof of (ii) is very similar to (i) and therefore omitted. �

A.2 Preliminaries

Throughout the appendix we are frequently using the following results. Notice that Assump-

tions 1(a), (b), (c), and (i) imply that

max
1≤i≤n

sup
θ∈Θ

‖g (Xi, θ)‖ = Op � n1/α � , (A.3)

1

n

n�
i=1

sup
θ∈Θ

‖g (Xi, θ)‖α = Op (1) , (A.4)

sup
θ∈Θ

����� 1

n

n�
i=1 � g (Xi, θ) g (Xi, θ)

′ − IE � g (Xi, θ) g (Xi, θ)
′ ��� ����� = op (1) . (A.5)

According to Lemma 2.4 of McFadden and Newey (1994), under Assumptions 1 and 2,

IE � g(1)(Xi, θ)	 and IE � g(2)
j (Xi, θ)	 are uniformly continuous, (A.6)

and

sup
θ∈Θ

����� 1

n

n�
i=1



g(1)(Xi, θ) − IE � g(1)(Xi, θ)	��

����� = op (1) (A.7)

sup
θ∈Θ

����� 1

n

n�
i=1



g
(2)
j (Xi, θ) − IE � g(2)

j (Xi, θ)	��
����� = op (1) for all j = 1, ..., h.

A.3 Consistency

A.3.1 Main Result

Proof of Theorem 1: We have to show that for any δ > 0

lim
n−→∞

P


θ̂n ∈ B(θ0, δ), ν̂n ∈ B(νn,0, δ) � = 1,

where

B(θ, δ) = {θ̃ ∈ Θ �� ‖θ − θ̃‖ < δ}, B(ν, δ) = {ν̃ ∈ V �� ‖ν − ν̃‖ < δ}.

Define

Θc
0 = Θ ∩ B (θ0, δ)

c and Nc
0 = V ∩ B (νn,0, δ)

c .

To simplify the notation we omit the subscript n from the set N c
0 . Recall that according to

Assumption 1(i), the constant α > 2 is such that IE[supθ∈Θ ‖g(Xi, θ)‖α] < K. We show the

following two statements are true: (i) For a given ε, δ > 0 and ζ such that 1
α

< ζ < 1
2
, there exist

positive constants η and κ and n̄ such that for n ≥ n̄

P


Ḡ∗

n (θ0, νn,0) ≥ n−ζ−κη � <
ε

2
, (A.8)
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where

Ḡ∗
n(θ0, νn,0) = max

λ∈Λ̂n(θ0)
G∗

n(θ0, νn,0, λ),

and (ii)

P � min
θ∈Θc

0
, ν∈Nc

0

Ḡ∗
n (θ, ν) ≤ n−ζη � <

ε

2
. (A.9)

Then, from (A.8) and (A.9) we deduce that there exists an η > 0 such that for n ≥ n̄:

P


θ̂n ∈ B (θ0, δ) , ν̂n ∈ B(νn,0, δ) �

≥ P � Ḡ∗
n (θ0, νn,0) < n−ζ−κη, min

θ∈Θc
0
, ν∈Nc

0

Ḡ∗
n (θ, ν) > n−ζη � ≥ 1 − ε.

Proof of (i): By Lemma A.2 Ḡ∗
n(θ0, νn,0) ≤ Op(1/n). Choose κ > 0 such that ζ + κ < 1. Then

nζ+κḠ∗
n(θ0, νn,0) ≤ Op(nζ+κ−1) = op(1)

as required.

Proof of (ii): To obtain a lower bound for Ḡ∗
n(θ, ν) we will evaluate the function G∗

n(θ, ν, λ) at

λ = n−ζu(θ, ν), where the function u(θ, ν) is defined as

u(θ, ν) = � 0 if θ = θ0, ν = νn,0

IE[g(Xi,θ)]−M ′ν
‖IE[g(Xi,θ)]−M ′ν‖ otherwise

such that ‖u(θ, ν)‖ ≤ 1. Strictly speaking, the function u(θ, ν) depends through νn,0 on the sample

size n, but for notational convenience the n subscript is omitted.

Moreover, we truncate the function g(x, θ) as follows. Since α > 2, we can choose a positive

constant ξ such that
1

α2
< ξ <

1

2α
.

Let

Xn = � x : sup
θ∈Θ

‖g (x, θ)‖ ≤ nξ � and gn (x, θ) = I {x ∈ Xn} g (x, θ) .

We then replace the terms

ln(1 + λ′g(x, θ)) − λ′M ′ν

in the definition of the objective function G∗
n(θ, ν, λ) by

qn(x, θ, ν) = ln � 1 + n−ζu′(θ, ν)gn(x, θ) � − n−ζu′(θ, ν)M ′ν.

In what follows, we deduce the required result for (ii) by showing that

(ii)-(a): min
θ∈Θc

0
,ν∈Nc

0

1

n

n�
i=1

qn (Xi, θ, ν) ≤ min
θ∈Θc

0
,ν∈Nc

0

Ḡ∗
n (θ, v) + op � n−ζ �

and

(ii)-(b): P � min
θ∈Θc

0
,ν∈Nc

0

1

n

n�
i=1

qn (Xi, θ, ν) < n−ζη � ≤ ε

2
.
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Proof of (ii)-(a): Notice that n−ζu (θ, ν) ∈ Λζ
n ⊂ ∩θ∈ΘΛ̂n (θ) w.p.a.1 by Lemma A.1. Then, by

Lemma A.4 and by the definition of λ̂n (θ, v) ,

min
θ∈Θc

0
,ν∈Nc

0

1

n

n�
i=1

qn (Xi, θ, ν)

= min
θ∈Θc

0
,ν∈Nc

0 � 1

n

n�
i=1

ln � 1 + n−ζu′ (θ, ν) g (Xi, θ)
� − n−ζu′ (θ, ν) M ′ν � + op � n−ζ �

≤ min
θ∈Θc

0
,ν∈Nc

0 � 1

n

n�
i=1

ln � 1 + λ̂′
n (θ, v) g (Xi, θ)

� − λ̂′
n (θ, v) M ′ν � + op � n−ζ �

= min
θ∈Θc

0
,ν∈Nc

0

Ḡ∗
n (θ, v) + op � n−ζ � ,

as required.

Proof of (ii)-(b): A second-order Taylor expansion of qn around u (θ, ν) = 0 yields

nζqn(x, θ, ν) = u(θ, ν)′(gn(x, θ) − M ′ν) − 1

2

n−ζu′(θ, ν)gn(x, θ)gn(x, θ)′u(θ, ν)

(1 + n−ζu′∗(θ, ν)gn(x, θ))2
, (A.10)

where u∗(θ, ν) lies between zero and u(θ, ν). The second-order term of the Taylor approxima-

tion (A.10) can be bounded as follows. For given x, θ, and ν

sup
θ∈Θ, ν ��� n

−ζu
′

∗ (θ, ν) gn (x, θ) ��� ≤ n−ζ sup
θ∈Θ

‖gn (x, θ)‖ ≤ n−ζ+ξ ≤ n−ζ/2

since ξ < 1
2α

< ζ
2
. Therefore,

sup
θ∈Θ, ν

n−ζ u(θ, ν)′gn(x, θ)gn(x, θ)′u(θ, ν)

(1 + n−ζu∗(θ, ν)′gn(x, θ))2
≤ sup

θ∈Θ, ν
n−ζ ‖gn(x, θ)‖2‖u(θ, ν)‖2

(1 − n−ζ/2)2
≤ n−ζ+2ξ = o (1) .

(A.11)

Now consider the expected value of nζqn(x, θ, ν). From (A.10), (A.11), and by the dominated

convergence theorem, we have

nζIE [qn (Xi, θ, ν)] = u′(θ, ν)(IE[gn(Xi, θ)] − M ′ν) + o(1) (A.12)

= � o(1) if θ = θ0, ν = νn,0

‖IE[g(Xi, θ)] − M ′ν‖ + o(1) > 0 otherwise
.

The o(1) terms absorb the second-order term of the Taylor approximation and the discrepancy

between IE[gn(X, θ)] and IE[g(X, θ)], which vanishes as Xn expands. From (A.12) and the monotone

convergence theorem we can deduce that

lim
n→∞

nζ lim
δ↓0

IE � inf
θ∗∈B(θ,δ), ν∗∈B(ν,δ)

qn (Xi, θ
∗, ν∗)� � = 0 if θ = θ0, ν = νn0

> 0 otherwise
.

Since Θ and V are compact by assumption, the sets Θ∩B(θ0, δ)
c and V∩B(νn,0, δ)

c are compact.

We can cover both Θ ∩ B(θ0, δ)
c and V ∩ B(νn,0, δ)

c with Θj = B(θj , δj) and Nj = B(νj , δj)’s,

j = 1, . . . , J taking each δj small enough such there exist ηj ’s such that

nζIE � inf
θ∈Θj , ν∈Nj

qn (Xi, θ, ν) � ≥ 2ηj , n ≥ nj (A.13)
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for some positive numbers ηj = ηj (δ), j = 1, . . . , J . By the WLLN9 and (A.13) , for a given ε > 0,

we can find n̄′
js such that n ≥ n̄j implies that

ε

2J
≥ P � �����

1

n

n�
i=1

nζ inf
θ∈Θj , ν∈Nj

qn (Xi, θ, ν) − IE � nζ inf
θ∈Θj , ν∈Nj

qn (Xi, θ, ν) � �����
> ηj �

≥ P � 1

n

n�
i=1

inf
θ∈Θj , ν∈Nj

qn (Xi, θ, ν) < IE � inf
θ∈Θj , ν∈Nj

qn (Xi, θ, ν)� − n−ζηj �
≥ P � 1

n

n�
i=1

inf
θ∈Θj , ν∈Nj

qn (Xi, θ, ν) < n−ζηj �
≥ P � inf

θ∈Θj , ν∈Nj

1

n

n�
i=1

qn (Xi, θ, ν) < n−ζηj �
for j = 1, . . . , J . Now let letting η = min {η1, . . . , ηJ} and n̄ = maxj=1,...,J n̄j , we have for n ≥ n̄

P � min
θ∈Θc

0
, ν∈Nc

0

1

n

n�
i=1

qn (Xi, θ, ν) < n−ζη �
≤ P � min

j=1,...,J
� inf

θ∈Θj , ν∈Nj

1

n

n�
i=1

qn(Xi, θ, ν) � < n−ζη �
≤

J�
j=1

P � inf
θ∈Θj , ν∈Nj

1

n

n�
i=1

qn(Xi, θ, ν) < n−ζηj � ≤ ε

2
,

as required part (ii)-(b).

Combining (ii)-(a) and (ii)-(b) we have

P � min
θ∈Θc

0
,ν∈Nc

0

Ḡ∗
n (θ, ν) < n−ζη � ≤ ε

2
,

as required for (ii).

Since θ̂n
p−→ θ0 and ν̂n − νn,0

p−→ 0 we can deduce from Lemmas A.2 and A.3 that λ̂(θ̂n, ν̂n)
p−→ 0.

�

A.3.2 Technical Lemmas

Lemma A.1 Suppose that Assumption 1 is satisfied. Then,

(i) sup

θ∈Θ,λ∈Λ
ζ
n,1≤i≤n

|λ′g (Xi, θ)| −→p 0,

(ii) Λζ
n ⊆ � θ∈Θ Λ̂n(θ) w.p.a. 1.

Proof of Lemma A.1: See proof of Lemma A1 in Newey and Smith (2004). �

Lemma A.2 Suppose that Assumption 1 is satisfied. Let θ̄ ∈ Θ and ν̄ ≥ 0 be sequences such that
θ̄

p−→ θ0, and ν̄−νn,0
p−→ 0. Moreover, 1√

n � n
i=1 g1(Xi, θ̄) = Op(1) and 1√

n � n
i=1 � g2(Xi, θ̄)− ν̄ � =

Op(1). Then,

9Notice that

IE

����
nζ inf

θ∈Θj , ν∈Nj

qn (Xi, θ, ν) � 2 	

≤ IE � sup

θ∈Θ
2 ‖g (Xi, θ)‖

2 � + 2K + n−2ζ+4ξ < ∞. (A.14)
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(i) λ̂(θ̄, ν̄) exists w.p.a. 1,

(ii) λ̂(θ̄, ν̄) = Op(n−1/2),

(iii) G∗
n � θ̄, ν̄, λ̂(θ̄, ν̄) � ≤ Op � 1

n
� .

Proof of Lemma A.2: The proof is similar to that of Lemma A2 in Newey and Smith (2004).

Proof of (i): Define

λ̃(θ̄, ν̄) = arg max
λ∈Λ

ζ
n

G∗
n(θ̄, ν̄, λ)

Since Λζ
n is compact and ln � 1 + λ′g(Xi, θ̄) � − ν̄′Mλ is continuous and strictly concave in λ the

optimal solution λ̃(θ̄, ν̄) exists and is unique. Statement (i) then follows from Lemma A.1.

Proof of (ii) and (iii): Write ḡi = g(Xi, θ̄). For some constant C

0 = G∗
n(θ̄, ν̄, 0) ≤ G∗

n(θ̄, ν̄, λ̃(θ̄, ν̄))

=
1

n

n�
i=1

ln � 1 + λ̃′(θ̄, ν̄)ḡi
� − ν̄′Mλ̃(θ̄, ν̄)

= λ̃′(θ̄, ν̄) � 1

n

n�
i=1

ḡi − M ′ν̄ � − 1

2
λ̃′(θ̄, ν̄) � 1

n

n�
i=1

ḡiḡ
′
i

(1 + λ′∗ḡi)2
� λ̃(θ̄, ν̄)

≤ λ̃′(θ̄, ν̄) � 1

n

n�
i=1

ḡi − M ′ν̄ � − C

4
λ̃′(θ̄, ν̄)λ̃(θ̄, ν̄),

where λ∗ lies on the line joining λ̃(θ̄, ν̄) and 0. The last inequality holds because

max
1≤i≤n

|λ′
∗ḡi| = op(1)

according to Lemma A.1 and 1
n � n

i=1 ḡiḡ
′
i converges in probability to J , a positive definite matrix,

by (A.5) and Assumption 1(f). The remainder of the proof follows the proof of Lemma A2 in Newey

and Smith (2004). �

Lemma A.3 Suppose Assumption 1 is satisfied. Then,

1√
n

n�
i=1

� g � Xi, θ̂
� − M ′v̂ 	 = Op (1) .

Proof of Lemma A.3: The proof is similar to that of Lemma A.3 in Newey and Smith (2004).

Let ĝi = g � Xi, θ̂
� − M ′ν̂ and ĝ = 1

n � n
i=1 � g � Xi, θ̂

� − M ′ν̂ 	 . Define û � θ̂, ν̂ � = n−ζ ĝ
‖ĝ‖ .

(Recall the definition of u (θ, ν) in the proof of consistency.) Approximation G∗
n (θ, ν, λ) with respect

to λ around λ = 0 at (θ, ν, λ) = � θ̂, ν̂, û � θ̂, ν̂ � � . Then,

G∗
n � θ̂, ν̂, û � θ̂, ν̂ � �
= G∗

n � θ̂, ν̂, 0 � +
∂G∗

n � θ̂, ν̂, 0 �
∂λ′ û � θ̂, ν̂ � +

1

2
û′ � θ̂, ν̂ � ∂2G∗

n � θ̂, ν̂, λ̈ �
∂λ∂λ′ û � θ̂, ν̂ �

= ĝ′û � θ̂, ν̂ � − 1

2
û′ � θ̂, ν̂ ����� 1

n

n�
i=1

ĝiĝ
′
i

� 1 + λ̈′ĝi
� 2 ���	 û � θ̂, ν̂ � ,

where λ̈ is located between 0 and û(θ̂, ν̂).
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Notice that max1≤i≤n ��� û
′(θ̂, ν̂)ĝi ��� →p 0 and û � θ̂, ν̂ � ∈ Λ̂n � θ̂ � by Lemma A.1 w.p.a.1. Also,

under Assumption 1
�� 1

n � n
i=1 ĝiĝ

′
i

�� ≤ 2 � 1
n � n

i=1 supθ∈Θ ‖g (Xi, θ)‖2 + K � = Op (1) . Then, w.p.a.1,

for some constant C,

ĝ′û � θ̂, ν̂ � − 1

2
û′ � θ̂, ν̂ � ��� 1

n

n�
i=1

ĝiĝ
′
i

� 1 + λ̈′ĝi
� 2 � �	 û � θ̂, ν̂ �

= n−ζ ‖ĝ‖ − 1

2
û′ � θ̂, ν̂ � ��� 1

n

n�
i=1

ĝiĝ
′
i

� 1 + λ̈′ĝi
� 2 � �	 û � θ̂, ν̂ �

≥ n−ζ ‖ĝ‖ − 1

2
max

1≤i≤n

��� 1

� 1 + λ̈′ĝi
� 2 � �	 û′ � θ̂, ν̂ � � 1

n

n�
i=1

ĝiĝ
′
i � û � θ̂, ν̂ �

≥ n−ζ ‖ĝ‖ − Cn−2ζ . (A.15)

Then,

n−ζ ‖ĝ‖ − Cn−2ζ ≤ G∗
n � θ̂, ν̂, û � θ̂, ν̂ � � ≤ G∗

n � θ̂, ν̂, λ̂ � ≤ sup
λ∈Λ̂n(θ0)

G∗
n (θ0, νn,0, λ) ≤ Op � 1

n � ,

(A.16)

where the first inequality is from (A.15), the second and third inequalities hold because � θ̂, ν̂, λ̂ �
is a saddle point, and the last inequality is from Lemma A.2 with

1√
n

n�
i=1

� g (Xi, θ0) − M ′νn,0
� = Op (1)

by Assumption 1(g). Also, by ζ < 1
2
, ζ − 1 < − 1

2
< −ζ. Solving (A.16) for ‖ĝ‖ gives

‖ĝ‖ ≤ Op � n−ζ � . (A.17)

For a given sequence εn −→ 0, let λ̄ = εnĝ. According to (A.17) λ̄ = op � n−ζ � . Hence, λ̄ ∈ Λζ
n

w.p.a.1. Then, as in (A.16) , we have

λ̄′ĝ − C
�� λ̄ �� 2 = εn ‖ĝ‖2 − Cε2

n ‖ĝ‖2 ≤ εn ‖ĝ‖2 (1 − Cεn) ≤ Op � 1

n � .

For large enough n the term 1−Cεn is bounded away from zero and it follows that εn ‖ĝ‖2 = Op � 1
n
� .

Since εn is an arbitrary sequence that tends to zero, we deduce that

‖ĝ‖ = Op � 1√
n � ,

as required. �

Lemma A.4 Suppose that Assumption 1 is satisfied. Let gn(x, θ) = I{x ∈ Xn}g(x, θ) where

Xn = � x : sup
θ∈Θ

‖g (x, θ)‖ ≤ nξ � ,

where 1
α2 < ξ < 1

2α
and α > 2 as in Assumption 1(i). Define

qn (Xi, θ, ν) = ln � 1 + n−ζu′(θ, ν)gn(Xi, θ)	 − n−ζu′(θ, ν)M ′ν

q̃n (Xi, θ, ν) = ln � 1 + n−ζu′(θ, ν)g(Xi, θ)	 − n−ζu′(θ, ν)M ′ν
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and assume that ‖u(θ, ν)‖ ≤ 1. Then,

sup
θ∈Θ, ν≥0

�����
1

n

n�
i=1

� qn (Xi, θ, ν) − q̃n (Xi, θ, ν) � �����
= op � n−ζ � .

Proof of Lemma A.4: By the mean value theorem,

sup
θ∈Θ, ν≥0

�����
1

n

n�
i=1

{qn (Xi, θ, ν) − q̃n (Xi, θ, ν)} �����
= sup

θ∈Θ, ν≥0
�����
1

n

n�
i=1

� n−ζu′(θ, ν)g (Xi, θ)

1 + n−ζu′∗ (θ, ν) g (Xi, θ) � I {Xi /∈ Xn} �����
(A.18)

≤ max
1≤i≤n

sup
θ∈Θ, ν≥0

����
n−ζu′ (θ, ν) g (Xi, θ)

1 + n−ζu′∗ (θ, ν) g (Xi, θ) ����
1

n

n�
i=1

I � sup
θ∈Θ

‖g (Xi, θ)‖ > nξ �
≤ 1

nαξ � max
1≤i≤n

sup
θ∈Θ, ν≥0

����
n−ζu′ (θ, ν) g (Xi, θ)

1 + n−ζu′∗ (θ, ν) g (Xi, θ) ���� � � 1

n

n�
i=1

sup
θ∈Θ

‖g (Xi, θ)‖α �
where u∗(θ, ν) is located between 0 and u(θ, ν). The second term on the right-hand side of (A.18)

can be bounded as follows. According to (A.3)

n−ζ max
1≤i≤n

sup
θ∈Θ

‖g (Xi, θ)‖ = n−ζ+1/αOp (1) .

Moreover, ‖u(θ, ν)‖ ≤ 1. Therefore,

max
1≤i≤n

sup
θ∈Θ, ν≥0

����
n−ζu′ (θ, ν) g (Xi, θ)

1 + n−ζu′∗ (θ, ν) g (Xi, θ) ����
≤ 2n−ζ max1≤i≤n supθ∈Θ ‖g (Xi, θ)‖

1 − 2n−ζ max1≤i≤n supθ∈Θ ‖g (Xi, θ)‖

=
n−ζ+1/αOp (1)

1 − n−ζ+1/αOp (1)
= n−ζ+1/αOp (1) .

By Assumption 1(i) and the Markov inequality, the third term on the right-hand side of (A.18) is

Op(1). Since 1
α2 < ξ < 1

2α
, we are able to deduce that

nζ sup
θ∈Θ, ν≥0

�����
1

n

n�
i=1

� qn (Xi, θ, ν) − q̃n (Xi, θ, ν) � �����
= n−αξ+ 1

α Op (1) = op (1) ,

as required. �

A.4 Quadratic Approximation of the Objective Function

We begin by deriving the coefficient matrices for the quadratic approximation of the objective

function

G∗
nq (β) = G∗

n (βn,0) + G∗(1)
n (βn,0)

′ (β − βn,0) +
1

2
(β − βn,0)

′ G∗(2)
n (βn,0) (β − βn,0) . (A.19)

A direct calculation shows that

G∗(1)
n (β) = � G∗(1)

n (β)′θ , G∗(1)
n (β)′ν , G∗(1)

n (β)′λ 	 ′ , (A.20)
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where

G∗(1)
n (β)θ =

1

n

n�
i=1

� g(1) (Xi, θ) λ

1 + λ′g(Xi, θ) � ,

G∗(1)
n (β)ν = −Mλ,

G∗(1)
n (β)λ =

1

n

n�
i=1

� g(Xi, θ)

1 + λ′g(Xi, θ) � − M ′v.

At βn,0 the first derivatives simplify to

G∗(1)
n (βn,0) = [0, 0, n−1/2Z′

n]. (A.21)

We proceed by partitioning the matrix of second derivative as follows

G∗(2)
n (β) =

���� G
∗(2)
n (β)θθ′ G

∗(2)
n (β)θν′ G

∗(2)
n (β)θλ′

G
∗(2)
n (β)νθ′ G

∗(2)
n (β)νν′ G

∗(2)
n (β)νλ′

G
∗(2)
n (β)λθ′ G

∗(2)
n (β)λν′ G

∗(2)
n (β)λλ′

����	 , (A.22)

where

G∗(2)
n (β)θθ′ =

1

n

n�
i=1

� � h
j=1 λjg

(2)
j (Xi, θ)

1 + λ′g(Xi, θ)
− g(1) (Xi, θ) λλ′g(1) (Xi, θ)

′

(1 + λ′g(Xi, θ))2
� ,

G∗(2)
n (β)θν′ = 0, G∗(2)

n (β)νν′ = 0, G∗(2)
n (β)λν′ = −M ′,

G∗(2)
n (β)λθ′ =

1

n

n�
i=1

� g(1) (Xi, θ)
′

1 + λ′g(Xi, θ)
− g (Xi, θ) λ′g(1)(Xi, θ)

′

(1 + λ′g(Xi, θ))2 � ,

G∗(2)
n (β)λλ′ = − 1

n

n�
i=1

g(Xi, θ)g(Xi, θ)
′

(1 + λ′g(Xi, θ))2
.

At βn,0 the second derivatives simplify to

G∗(2)
n (βn,0) = ���� 0 0 Qn

0 0 −M

Q′
n −M ′ −Jn

� ��� . (A.23)

In addition to the estimators b̂ and b̃q defined in the main text, we will introduce a third estimator,

b̂q, based on the quadratic approximation G∗
nq(φ, l) subject to the restriction that b̂q ∈ Bn. Formally,

l̂q(φ) = argmaxl∈Ln(φ) G∗
nq(φ, l), φ̂q = argminφ∈Φn

G∗
nq(φ, l̂q(φ)).

A.4.1 Main Results

Lemma 2 Suppose Assumptions 1 to 2 are satisfied, then for all γn −→ 0

sup
β∈Bn:‖β−βn,0‖≤γn

|Rn(β)|
(1 + ‖√n(β − βn,0)‖2)

= op(1), (A.24)

where Rn(β) is the remainder term in (14).

Proof of Lemma 2: By Lemma 1(a) of Andrews (1999), it is sufficient to prove

sup
β∈Bn:‖β−βn,0‖≤γn

��� G∗(2)
n (β) − G∗(2)

n (βn,0)
��� = op (1) ,

for every sequence γn −→ 0. G
∗(2)
n is defined in (A.22). To verify this sufficient condition we will

subsequently show that
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(i) supβ∈Bn:‖β−βn,0‖≤γn

��� G∗(2)
n (β)θθ′ − G

∗(2)
n (βn,0)θθ′

��� = op (1),

(ii) supβ∈Bn:‖β−βn,0‖≤γn

��� G∗(2)
n (β)λθ′ − G

∗(2)
n (βn,0)λθ′

��� = op (1) ,

(iii) supβ∈Bn:‖β−βn,0‖≤γn

��� G∗(2)
n (β)λλ′ − G

∗(2)
n (βn,0)λλ′

��� = op (1).

We begin by showing that

sup
β∈Bn

����
1

1 + λ′g (Xi, θ) ����
= Op(1). (A.25)

For any given 0 < δ < 1
2
, set K = 1

1−δ
. Then, since sup1≤i≤n, β∈Bn

|λ′g (Xi, θ)| ≤ δ implies

sup1≤i≤n, β∈Bn ���
1

1+λ′g(Xi,θ) ��� ≤ K,

P � sup
1≤i≤n, β∈Bn

����
1

1 + λ′g (Xi, θ) ����
> K � ≤ P � sup

1≤i≤n, β∈Bn �� λ′g (Xi, θ) �� > δ � −→ 0,

which proves (A.25). The convergence result for the upper bound can be deduced from Lemma A.1.

(i) Notice that

sup
β∈Bn:‖β−βn,0‖≤γn

����� 1

n

n�
i=1

� λjg
(2)
j (Xi, θ)

1 + λ′g (Xi, θ)
� �����

≤ sup
λ∈Λ

ζ
n

|λj | � sup
β∈Bn,1≤i≤n

����
1

1 + λ′g (Xi, θ) ���� � � sup
θ∈Θ

1

n

� ��� g(2)
j (Xi, θ)

��� �
= O(n−ζ)Op(1)Op(1) = op(1),

where the last inequality holds by the definition of Λζ
n, (A.25) and (A.7). Moreover,

sup
β∈Bn:‖β−βn,0‖≤γn

����� 1

n

n�
i=1

� g(1) (Xi, θ)
′ λλ′g(1) (Xi, θ)

(1 + λ′g (Xi, θ))
2 �

�����
≤ sup

λ∈Λ
ζ
n

‖λ‖2 � sup
β∈Bn, 1≤i≤n

1

(1 + λ′g (Xi, θ))
2 � � sup

θ∈Θ

1

n

n�
i=1

��� g(1) (Xi, θ)
��� �

= O � n−2ζ � Op (1) Op (1) = op (1) .

The last inequality holds by the definition of Λζ
n, (A.25) and (A.7).

(ii) Apply the triangle inequality to

sup
β∈Bn:‖β−βn,0‖≤γn

����� 1

n

n�
i=1

� g(1) (Xi, θ)

1 + λ′g (Xi, θ)
− g(1) (Xi, θ0) �

�����
≤ sup

β∈Bn:‖β−βn,0‖≤γn

����� 1

n

n�
i=1

� g(1) (Xi, θ)

1 + λ′g (Xi, θ)
− g(1) (Xi, θ) �

�����
+ sup

θ∈Θ

����� 1

n

n�
i=1

� g(1) (Xi, θ) − IE � g(1) (Xi, θ) 	 �
�����

+ sup
θ∈Θ:‖θ−θ0‖≤γn

��� IE � g(1) (Xi, θ) 	 − IE � g(1) (Xi, θ0)	 ���
+

����� 1

n

n�
i=1

� g(1) (Xi, θ0) − IE � g(1) (Xi, θ0)	 �
�����

= Id + op (1) + op (1) + op (1) ,
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where the last equality holds by (A.7) and (A.6) . Next,

Id ≤ sup
β∈Bn �� λ′g (Xi, θ) �� � sup

β∈Bn
����

1

1 + λ′g (Xi, θ) ���� � � sup
θ∈Θ

1

n

n�
i=1

��� g(1) (Xi, θ)
��� �

= op (1) Op (1) Op (1) Op (1) = op (1)

by Lemma A.1, (A.25), and (A.7). Moreover,

sup
β∈Bn:‖β−βn,0‖≤γn

����� 1

n

n�
i=1

g (Xi, θ)

1 + λ′g (Xi, θ)

λ′g(1) (Xi, θ)

1 + λ′g (Xi, θ)

�����
≤ sup

λ∈Λ
ζ
n

‖λ‖ � sup
β∈Bn,1≤i≤n

1

(1 + λ′g (Xi, θ))
2 � � 1

n

n�
i=1

sup
θ∈Θ

‖g (Xi, θ)‖2 � 1/2

× � 1

n

n�
i=1

sup
θ∈Θ

��� g(1) (Xi, θ)
��� 2 � 1/2

= O � n−ζ � Op (1) Op (1) = op (1) .

(iii) Similar as before, we have

sup
β∈Bn:‖β−βn,0‖≤γn

����� 1

n

n�
i=1

� g (Xi, θ) g (Xi, θ)
′

(1 + λ′g (Xi, θ))
2 − g (Xi, θ0) g (Xi, θ0)

′ �
�����

≤ sup
β∈Bn:‖β−βn,0‖≤γn

����� 1

n

n�
i=1

� g (Xi, θ) g (Xi, θ)
′

(1 + λ′g (Xi, θ))
2 − g (Xi, θ) g (Xi, θ)

′ �
�����

+ sup
Θ

����� 1

n

n�
i=1

� g (Xi, θ) g (Xi, θ)
′ − IE � g (Xi, θ) g (Xi, θ)

′ � � �����
+ sup

Θ

�� IE � g (Xi, θ) g (Xi, θ)
′ � − IE � g (Xi, θ0) g (Xi, θ0)

′ � ��
+ sup

Θ

����� 1

n

n�
i=1

� g (Xi, θ0) g (Xi, θ0)
′ − IE � g (Xi, θ0) g (Xi, θ0)

′ � � �����
= sup

β∈Bn:‖β−βn,0‖≤γn

����� 1

n

n�
i=1

� g (Xi, θ) g (Xi, θ)
′

(1 + λ′g (Xi, θ))
2 − g (Xi, θ) g (Xi, θ)

′ �
����� + op (1) .

Next,

sup
β∈Bn:‖β−βn,0‖≤γn

����� 1

n

n�
i=1

� g (Xi, θ) g (Xi, θ)
′

(1 + λ′g (Xi, θ))
2 − g (Xi, θ) g (Xi, θ)

′ �
�����

≤ sup
β∈Bn,1≤i≤n �� λ′g (Xi, θ) �� � sup

β∈Bn,1≤i≤n

1

|1 + λ′g (Xi, θ)| �
× � sup

β∈Bn,1≤i≤n

1

|1 + λ′g (Xi, θ)|
+ 1 � � sup

θ∈Θ

1

n

n�
i=1

‖g (Xi, θ)‖2 �
= op (1) Op (1) Op (1) Op (1) = op (1) . �

Proof of Theorem 2: (i) Follows from Lemma A.6.

(ii) According to Lemma A.2, λ̂(θ̂, ν̂) = Op(n−1/2). It remains to show that φ̂ =
√

n[(θ̂ − θ0)
′, (ν̂ −

ν0)
′]′ is stochastically bounded. The saddlepoint property implies that

0 = G∗
n(φ̂, 0) ≤ G∗

n(φ̂, l̂(φ̂)) ≤ G∗
n(0, l̂(0)). (A.26)
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Then using the quadratic approximation (14), the bound for the remainder term given in Lemma 2

and the definition of l̂ and φ̂ we obtain

G∗
n(φ̂, l̂(φ̂)) = G∗

nq(φ̂, l̂(φ̂)) + (1 + ‖φ̂ − φ0‖2 + ‖l̂(φ̂)‖2)op(1) (A.27)

=
1

2
(Zn − R′

n(φ̂ − φ0))
′J−1

n (Zn − R′
n(φ̂ − φ0))

−1

2
(l̂(φ̂) − J−1

n [Zn − R′
n(φ̂ − φ0)])

′Jn(l̂(φ̂) − J−1
n [Zn − R′

n(φ̂ − φ0)])

+(1 + ‖φ̂ − φ0‖2 + ‖l̂(φ̂)‖2)op(1)

=
1

2
(Zn − R′

n(φ̂ − φ0))
′J−1

n (Zn − R′
n(φ̂ − φ0)) + (1 + ‖φ̂ − φ0‖2 + ‖l̂(φ̂)‖2)op(1),

where φ0 = [0, u′
0]

′. The last equality is a consequence of Lemma A.7. Similarly, we can deduce

from Lemmas A.2, 2, and Assumptions 2 and 3 that

G∗
n(0, l̂(0)) = −1

2
l̂ (0)′ Jn l̂ (0) + Z ′

n l̂ (0) + (1 + ‖l̂(0)‖2)op(1) = Op (1) . (A.28)

Hence, from (A.26), (A.27), and (A.28) we obtain the inequality

0 ≤ 1

2
(Zn + op(1) − R′

n(φ̂ − φ0))
′J−1

n (Zn + op(1) − R′
n(φ̂ − φ0)) ≤ Op(1). (A.29)

Notice that Zn + op(1) = Op (1). According to Assumption 1, Rn is full rank and Jn is positive

definite w.p.a. 1. Therefore, (A.29) implies that φ̂ − φ0 is stochastically bounded.

(iii) We deduce from Lemma 2 and Part (ii) that

nG∗
n(β̂n) = G∗

nq(
√

n(β̂n − βn,0)) + (1 + ‖√n(β̂n − βn,0)‖2)op(1)

= nG∗
nq(β̂n) + Op(1)op(1).

(iv) We proceed by establishing op(1) bounds for nG∗
nq(β̂n) − nG∗

nq(β̃nq).

We begin with the upper bound. Using (iii) we can rewrite the differential as

nG∗
nq(β̂n) − nG∗

nq(β̃nq) = G∗
n(φ̂, l̂(φ̂)) + op(1) − G∗

nq(φ̃q, l̃q(φ̃q)) (A.30)

≤ G∗
n(φ̂q, l̂(φ̂q)) − G∗

nq(φ̃q, l̂(φ̃q)) + op(1).

Replacing φ̂ by φ̂q raises G∗
n, whereas substituting l̃q with l̂ lowers G∗

nq. Using Lemma 2 the first

term on the right-hand side of (A.30) can be rewritten as

G∗
n(φ̂q, l̂(φ̂q)) = G∗

nq(φ̂q, l̂(φ̂q)) + op(1) � 1 + ‖φ̂q − φ0‖2 + ‖l̂(φ̂q)‖2 � (A.31)

= G∗
nq(φ̂q, l̂(φ̂q)) + op(1).

The second equality in (A.31) is a consequence of Lemmas A.2 and A.6. According to Lemma A.7

l̂(φ̄) = (Jn + op(1))−1[Zn − (R′
n + op(1))(φ̄ − φ0)]

for φ̄ = Op(1). Hence,

l̂(φ̃q) − l̂(φ̂q) = −(Jn + op(1))−1[(R′
n + op(1))](φ̃q − φ̂q) = op(1)

by Lemma A.6. Since G∗
nq(φ, l) is continuous in its arguments we can now express the second term

on the right-hand side of (A.30) as

G∗
nq(φ̃q, l̂(φ̃q)) = G∗

nq(φ̂q, l̂(φ̂q)) + op (1) (A.32)
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Plugging (A.31) and (A.32) into (A.30) we obtain the upper bound

nG∗
nq(β̂n) − nG∗

nq(β̃nq) ≤ op(1).

Using similar arguments, we can establish a lower bound as follows:

nG∗
nq(β̂n) − nG∗

nq(β̃nq) = G∗
n(φ̂, l̂(φ̂)) − G∗

nq(φ̃q, l̃q(φ̃q)) + op(1)

≥ G∗
n(φ̂, l̂q(φ̂)) − G∗

nq(φ̂, l̃q(φ̂)) + op(1)

= G∗
n(φ̂, l̂q(φ̂)) − G∗

nq(φ̂, l̂q(φ̂)) + op(1)

= op(1)

which proves (iv). �

(v) Follows from parts (iii) and (iv).

A.4.2 Technical Lemmas

Lemma A.5 Suppose Assumptions 1 to 3 are satisfied. Then, b̃q exists uniquely w.p.a. 1.

Proof of Lemma A.5: The subsequent statements are true w.p.a. 1. Notice that Ḡ∗
nq(φ),

defined in (18), is strictly convex function of φ because R′
n = [−Q′

n, M ′] is a full rank matrix

under Assumption 2(c) and J−1
n is positive definite. Hence, RnJ−1

n R′
n is a positive definite matrix.

Moreover, the domain Φ is convex. Therefore, φ̃q is unique. Finally, from (17) we deduce that l̃q

exists uniquely. �

Lemma A.6 Suppose Assumptions 1 to 3 are satisfied. Then

(i) b̃q = Op(1),

(ii) b̂q = b̃q + op(1).

Proof of Lemma A.6:

Proof of (i): We will show that φ̃q = Op (1). For notational simplicity, denote

A1n = RnJ−1
n R′

n, A2n = A−1
1n RnJ−1

n Zn, and A3n = Z′
nJ−1

n Zn − A′
2nA1nA2n,

and write the concentrated quadratic objective function (18) as

Ḡ∗
nq(φ) =

1

2
(φ − φ0 + A2n)′ A1n (φ − φ0 + A2n) +

1

2
A3n.

Observe that Jn, Rn, and Zn converge weakly according to Assumptions 2 and 3. Moreover based

on Assumption 1, A1n is positive definite w.p.a. 1. Let

φ̄q = argminφ∈R
m+h2 Ḡ∗

nq(φ) = φ0 − A2n = Op(1).

Notice that φ̃q is the projection of φ̄q onto the set Φ with respect to the inner product 〈x, y〉 =

x′A1ny. Then,

‖φ̃q‖ ≤ λ−1
min(A1n)〈φ̃q, φ̃q〉1/2 ≤ λ−1

min(A1n)〈φ̄q, φ̄q〉1/2 = Op(1)
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where λmin(A1n) denotes the smallest eigenvalue of A1n and is strictly positive w.p.a. 1. Finally,

from (17) we can deduce that l̃q(φ̃q) = Op(1).

Proof of (ii): According to Lemma A.5 the saddlepoint problem minφ∈Φ maxl∈Rh G∗
nq(φ, l) has

a unique solution b̃q on the domain B = Φ ⊗ R
h. Since Bn ⊂ B for any ε > 0

P


‖b̂q − b̃q‖ > ε � ≤ P



b̃q ∈ B\Bn �

≤ P{b̃q ∈ B\(Φn ⊗√
nΛζ

n)} + o (1) ,

where the o (1) term in the last line holds by Lemma A.1(ii). The set
√

nΛζ
n consists of the elements

in Λζ
n multiplied by

√
n and expands to R

h because ζ < 1/2. Since the true parameter θ0 is in the

interior of Θ, the first m ordinates of Φn expand to R
m. Ordinate m + j expands to R if ν0,j > 0

and to R
+ otherwise. Since b̃q = Op(1), we deduce P{b̃q ∈ B\(Φn ⊗ √

nΛζ
n)} = o(1). Therefore

b̂q = b̃q + op (1), as required. �

Lemma A.7 Suppose that Assumptions 1 to 3 are satisfied. Let θ̄ ∈ Θ and ν̄ ≥ 0 be sequences
such that θ̄

p−→ θ0 and ν̄−νn,0
p−→ 0. Let l̂ � φ̄ � =

√
nλ̂ � θ̄, ν̄ � , and φ̄ = [s̄′, ū′], where s̄ =

√
n(θ̄−θ0)

and ū =
√

n(ν̄ − ν0). Then

0 = Zn − (R′
n + op(1))(φ̄ − φ0) − (Jn + op(1))l̂(φ̄).

Proof of Lemma A.7: In view of Lemmas A.1(ii) and A.2, we deduce that λ̂(θ̄, v̄) is in the interior

of Λ̂(θ̄) w.p.a. 1. Hence, λ̂ satisfies the first-order conditions associated with maxλ∈Λ̂(θ̄) G∗
n � θ̄, ν̄, λ � :

0 =
1

n

n�
i=1

g(Xi, θ̄)

1 + λ̂′g(Xi, θ̄)
− M ′ν̄.

We now apply the mean-value theorem and multiply by
√

n:

0 =
√

nG∗(1)
n (βn,0)λ + G∗(2)

n (β∗)λθ′ s̄ − M ′(ū − u0) + G∗(2)
n (β∗)λλ′ l̂,

where β∗ lies on the line joining βn,0 and β̄ = [θ̄′, ν̄′, λ̂(θ̄, ν̄)′]′. The matrices G
∗(1)
n (β) and G

∗(2)
n (β)

and their partitions are defined in (A.20) and (A.22). Using the same arguments as in the proof of

Lemma 2 and the definitions of Jn, Qn, Rn, and Zn we obtain the desired result. �

A.5 Limit Distribution

Proof of Theorem 3: (i) By the theorem of the maximum (e.g., see Berge, 1963) φ̃q is a continuous

function of Zn, Jn, and Rn. Moreover, from direct inspection we know that l̃q is continuous in Zn,

Jn, Rn, and φ̃n. The statement of the theorem then follows from the continuous mapping theorem.

(ii) According to Theorem 2(iv):

G∗
nq(φ̂, l̂(φ̂)) = G∗

nq(φ̃q, l̃q(φ̃q)) + op(1). (A.33)

Since φ̂ = Op(1) we can deduce from Lemma A.7 that

l̂(φ̂) = l̃q(φ̂) + op(1). (A.34)

and

G∗
nq(φ̂, l̂(φ̂)) = G∗

nq(φ̂, l̃q(φ̂)) + op(1). (A.35)
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Recall that Ḡ∗
nq(φ) = G∗

nq(φ, l̃q(φ)). Combining (A.33), (A.34), and (A.35) then yields

Ḡ∗
nq(φ̂) = Ḡ∗

nq(φ̃q) + op(1). (A.36)

The required result φ̂ = φ̃q + op(1) follows from an argument similar to the one used in the proof

of Theorem 3(i) in Andrews (1999). Using (A.34) once more we conclude that

l̂(φ̂) = l̃q(φ̃q) + op(1)

which completes the proof. �

A.6 MSE Derivations

Partition �P = [ �P ′
s, �P ′

u]′ and use the formula for the factorization of a joint normal pdf into a

conditional and a marginal pdf to verify that

(φ − P̃)′Υ−1(φ − P̃)

= [s − P̃s − Υsu(u − P̃u)]′(Υss − ΥsuΥus)
−1[s − P̃s − Υsu(u − P̃u)]

+(u − P̃u)′(u − P̃u)

Hence, we can write

S = �PsI{ �Pu ≥ 0} + ( �Ps − Υsu �Pu)I{ �Pu < 0} = Υsu �PuI{ �Pu ≥ 0} + �Ps.uu,

where

�Pu ∼ N (u0, 1) and �Ps.uu = �Ps − Υsu �Pu ∼ N (−Υsuu0, Υss − ΥsuΥus).

From the formulas for moments of a censored normal distribution (e.g. Greene (2003, p. 763) we

obtain

IE[ �PuI{ �Pu ≥ 0}] = u0[1 − FN (−u0)] + fN (−u0)

V [ �PuI{ �Pu ≥ 0}] = [1 − FN (−u0)] � 1 − f2
N (−u0)

[1 − FN (−u0)]2
− u0fN (−u0)

1 − FN (−u0)

+ � u0 +
fN (−u0)

1 − FN (−u0) � 2

FN (−u0) � .

We then use the facts that �Pu and �Ps.uu are independent, fN (−u0) = fN (u0), and 1−FN (−u0) =

FN (u0) to compute the mean and variance of S reported in the text.

Proof of Theorem 4: Provided in main text. �

Proof of Theorem 5: It can be verified by direct calculation that (MΩM ′)−1 ≤ Ξ(1). Hence, it

suffices to prove the following: if Y = Y ∗1 {Y ∗ ≥ 0} , where Y ∗ ∼ N � µ, σ2 � , then the MSE of Y

is an increasing function of σ2. Using the formulas for moments of a censored normal distribution

once more we have

MSE [Y ] = σ2FN (x) � x2 + x
fN (x)

FN (x)
+ 1 � ,

where x = µ/σ. First, for µ = 0,

MSE [Y ] = σ2FN (0)
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is an increasing function of σ2. Next, for µ > 0

∂MSE [Y ]

∂σ2
= µ2 � fN (x) − 1

x2
fN (x) +

1

x
f ′
N (x) +

1

x2
fN (x) − 2

x3
FN (x) � � − µ2

(σ2)2 �
=

2µ4

x3(σ2)2
FN (x) > 0,

since x > 0, which completes the proof. �

A.7 Inference

Proof of Corollary 1: omitted. �

Proof of Corollary 2: omitted. �

Proof of Theorem 6: The asymptotics of θ̂H
n and λ̂H(θ̂H

n , n−1/2u0) are well known (e.g., Newey

and Smith (2004)) and follow from straightforward modifications of the proofs of Theorems 2 and

3. We will denote the limit distribution of [ŝH′

n , uH′

]′ by PH and begin by characterizing P and

PH . The concentrated limit objective function is of the form

Ḡ∗
q (φ) =

1

2
(Z − R′(φ − φ0))

′J−1(Z − R′(φ − φ0))

=
1

2
[(φ − φ0) − (RJ−1R′)−1RJ−1Z]′RJ−1R′[(φ − φ0) − (RJ−1R′)−1RJ−1Z]

+g(J, R, Z),

where the function g(J, R, Z) does not depend on φ. Define the matrix partitions

(RJ−1R′)−1RJ−1Z = � Zs

Zu

� = � QJ−1Q′ −QJ−1M ′

−MJ−1Q′ MJ−1M ′ � −1 � −QJ−1Z

MJ−1Z
�

and

Ω = J−1 − J−1Q′(QJ−1Q′)−1QJ−1.

Using the formula for the inverse of a partitioned matrix it can be verified that

Zu = (MΩM ′)−1MΩZ. (A.37)

We can express Ḡ∗
q (φ) = Ḡ∗

q (s, u) as

Ḡq(s, u) =
1

2
[(s − Zs) − (QJ−1Q′)−1(QJ−1M ′)(u − u0 − Zu)]′

× QJ−1Q′[(s − Zs) − (QJ−1Q′)−1(QJ−1M ′)(u − u0 − Zu)]

+
1

2
(u − u0 − Zu)′MΩM ′(u − u0 − Zu) + g(J, R, Z).

Under the assumption that uH = u0 we can deduce that

SH = Zs − (QJ−1Q′)−1QJ−1M ′Zu (A.38)

S = Zs − (QJ−1Q′)−1QJ−1M ′(Zu − �U)

�U = argmin
ũ≥−u0

(ũ − Zu)′Λ−1(ũ − Zu),

where ũ = u−u0, �U = U −u0, and Λ−1 = MΩM ′. Then let PH = [SH′

, u′
0]

′ and P = [S ′, u′
0 + �U ′]′.

The limit distribution of the likelihood ratio statistic then becomes

2 � Ḡ∗
q (PH) − Ḡ∗

q (P) � = Z′
uΛ−1Zu − ( �U − Zu)′Λ−1( �U − Zu).
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We deduce from Theorem 3

LRu
n(u0) =⇒ 2 � Ḡ∗

q (PH) − Ḡ∗
q (P) � . �

Proof of Corollary 3: omitted. �
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Table 1: Parameterization of DGP

Name M1-flex M2-sticky M2-flex

κ 0.60 0.01 0.60

β .995 .995 .995

τ 2.00 2.00 2.00

ψ1 1.50 1.50 1.50

ψ2 0.50 0.50 0.50

ρR 0.70 0.70 0.70

ρG 0.95 0.85 0.85

ρZ 0.50 0.95 0.95

σR 0.10 0.20 0.20

σG 0.30 1.00 1.00

σZ 1.00 1.00 1.00

IE[g2(Xi, θ0)] 0.03 0.16 0.11

Notes: The slackness of the inequality moment constraint, ν0, is calculated as a function of

the DSGE model parameters.
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Table 2: M1 – Prices Are Nearly Flexible

Asymptotics Small Sample

Statistic Parameter ŝ ŝ(1) ŝ(12) ŝ ŝ(1) ŝ(12)

Sample Size n = 80

Median ρR -0.39 0.00 0.08 -0.23 -0.08 0.27

(1 − ρR)ψ1 0.28 0.00 -0.05 0.26 -0.13 0.35

4(1 − ρR)ψ2 0.35 0.00 -0.23 0.43 0.12 -0.16

Range ρR 4.84 5.75 4.24 12.38 21.63 8.83

(1 − ρR)ψ1 6.92 7.22 6.75 20.51 31.02 14.63

4(1 − ρR)ψ2 6.56 11.57 1.41 12.39 30.52 2.16

Median(SE) ρR 1.01 1.39 0.76 1.96 2.95 1.13

(1 − ρR)ψ1 2.05 2.19 1.92 4.45 6.46 2.95

4(1 − ρR)ψ2 0.47 5.62 0.11 0.54 5.90 0.15

Sample Size n = 160

Median ρR -0.37 0.00 0.11 -0.26 0.04 0.27

(1 − ρR)ψ1 0.27 0.00 -0.07 0.34 0.13 0.24

4(1 − ρR)ψ2 0.29 0.00 -0.32 0.50 0.24 -0.26

Range ρR 4.86 5.75 4.24 10.59 15.47 6.71

(1 − ρR)ψ1 6.93 7.22 6.75 15.13 19.65 10.96

4(1 − ρR)ψ2 6.65 11.57 1.41 13.43 28.10 1.80

Median(SE) ρR 1.02 1.39 0.76 1.85 2.75 1.08

(1 − ρR)ψ1 2.05 2.19 1.92 4.04 5.17 2.80

4(1 − ρR)ψ2 0.55 5.62 0.14 0.68 6.56 0.17

Notes: Range refers to the distance between the 5th and the 95th percentile. Median(SE)

is the median of the squared estimation error ŝ2. The entries in the columns labelled

Asymptotics are calculated based on 1,000,000 draws from the limit distribution where

u0 =
√
nIE[g2(Xi, θ0)]. The entries in the columns labelled Small Sample are calculated

based 10,000 samples of size n, simulated from the DSGE model.
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Table 3: M2 – Prices Are Sticky

Asymptotics Small Sample

Statistic Parameter ŝ ŝ(1) ŝ(12) ŝ ŝ(1) ŝ(12)

Sample Size n = 80

Median ρR 0.00 0.00 0.38 -0.26 -0.26 0.04

(1 − ρR)ψ1 0.00 0.00 -1.07 0.35 0.35 -0.71

4(1 − ρR)ψ2 0.00 0.00 -2.80 0.47 0.47 -2.84

Range ρR 2.10 2.10 2.05 2.48 2.48 2.66

(1 − ρR)ψ1 3.26 3.26 2.99 4.15 4.15 4.37

4(1 − ρR)ψ2 5.30 5.30 4.08 6.90 6.90 5.09

Median(SE) ρR 0.19 0.19 0.25 0.25 0.25 0.27

(1 − ρR)ψ1 0.45 0.45 1.20 0.63 0.63 1.01

4(1 − ρR)ψ2 1.18 1.18 7.87 1.62 1.63 8.08

Sample Size n = 160

Median ρR 0.00 0.00 0.54 -0.24 -0.24 0.19

(1 − ρR)ψ1 0.00 0.00 -1.52 0.34 0.34 -1.14

4(1 − ρR)ψ2 0.00 0.00 -3.97 0.42 0.42 -3.96

Range ρR 2.10 2.10 2.05 2.35 2.35 2.56

(1 − ρR)ψ1 3.26 3.26 2.99 3.79 3.79 4.04

4(1 − ρR)ψ2 5.30 5.30 4.08 6.17 6.17 4.80

Median(SE) ρR 0.19 0.19 0.35 0.23 0.23 0.29

(1 − ρR)ψ1 0.45 0.45 2.31 0.59 0.59 1.57

4(1 − ρR)ψ2 1.18 1.18 15.73 1.47 1.47 15.64

Notes: See Table 2.
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Table 4: M2 – Prices Are Nearly Flexible

Asymptotics Small Sample

Statistic Parameter ŝ ŝ(1) ŝ(12) ŝ ŝ(1) ŝ(12)

Sample Size n = 80

Median ρR 0.02 0.00 -0.18 -0.01 -0.05 -0.20

(1 − ρR)ψ1 -0.02 0.00 0.21 0.01 0.05 0.22

4(1 − ρR)ψ2 -0.02 0.00 0.09 0.02 0.03 0.10

Range ρR 0.94 1.07 0.64 1.13 1.42 0.87

(1 − ρR)ψ1 1.18 1.33 0.87 1.37 1.73 1.18

4(1 − ρR)ψ2 3.88 3.89 3.87 5.25 5.52 5.58

Median(SE) ρR 0.04 0.05 0.04 0.05 0.06 0.05

(1 − ρR)ψ1 0.06 0.07 0.06 0.07 0.09 0.07

4(1 − ρR)ψ2 0.63 0.64 0.63 0.95 1.03 1.06

Sample Size n = 160

Median ρR 0.01 0.00 -0.26 -0.01 -0.02 -0.26

(1 − ρR)ψ1 -0.01 0.00 0.30 0.03 0.05 0.33

4(1 − ρR)ψ2 -0.01 0.00 0.13 0.04 0.06 0.17

Range ρR 0.98 1.07 0.64 1.07 1.22 0.81

(1 − ρR)ψ1 1.23 1.33 0.87 1.33 1.51 1.08

4(1 − ρR)ψ2 3.89 3.89 3.87 4.70 4.78 5.05

Median(SE) ρR 0.04 0.05 0.07 0.05 0.06 0.07

(1 − ρR)ψ1 0.06 0.07 0.10 0.07 0.08 0.11

4(1 − ρR)ψ2 0.64 0.64 0.64 0.85 0.87 0.95

Notes: See Table 2.
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Table 5: M2 – Prices Are Nearly Flexible

Asymptotics Small Sample

(αu, αs) Parameter CSθ CSθ
(1) CSθ CSθ

(1)

Lgth Cov Lgth Cov Lgth Cov Lgth Cov

Sample Size n = 160

(0.05, 0.05) ρR 1.17 (0.96) 1.07 (0.90) 1.33 (0.96) 1.24 (0.90)

(1 − ρR)ψ1 1.48 (0.96) 1.33 (0.90) 1.69 (0.96) 1.49 (0.92)

4(1 − ρR)ψ2 4.66 (0.95) 3.89 (0.90) 5.79 (0.94) 4.83 (0.90)

(0.00, 0.10) ρR 0.99 (0.91) 1.07 (0.90) 1.12 (0.91) 1.24 (0.90)

(1 − ρR)ψ1 1.24 (0.91) 1.33 (0.90) 1.37 (0.90) 1.50 (0.92)

4(1 − ρR)ψ2 3.90 (0.90) 3.89 (0.90) 4.75 (0.90) 4.83 (0.90)

Notes: Lgth refers to the average length of the confidence interval (scaled by
√
n) across

repetitions. Cov is the coverage probability. The target coverage probability of the intervals

is 90%. Asymptotics are based on 1,000,000 draws from the limit distribution; Small Sample

results are based 10,000 samples of size n, simulated from the DSGE model.

Figure 1: Critical Value Function cθα(u0) for α = 0.10


