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Abstract

I propose a �xed e�ects expectation-maximization (EM) estimator that can be ap-

plied to a class of nonlinear panel data models with unobserved heterogeneity, which

is modeled as individual e�ects and/or time e�ects. Of particular interest is the case

of interactive e�ects, i.e. when the unobserved heterogeneity is modeled as a factor

analytical structure. The estimator is obtained through a computationally simple, iter-

ative two-step procedure, where the two steps have closed form solutions. I show that

estimator is consistent in large panels and derive the asymptotic distribution for the

case of the probit with interactive e�ects. I develop analytical bias corrections to deal

with the incidental parameter problem. Monte Carlo experiments demonstrate that

the proposed estimator has good �nite-sample properties. I illustrate the use of the

proposed model and estimator with an application to international trade networks.
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1 Introduction

Panel data allow the possibility of controlling for unobserved heterogeneity. Such heterogene-

ity can be an important phenomenon, and failure to control for it can result in misleading

inference. For example, in demand estimation, unobserved individual heterogeneity is an

important source of variation.

In this paper, I model unobserved heterogeneity as individual-speci�c e�ects to control

for individual heterogeneity, and/or time speci�c e�ects to control for common shocks that

occur to each individual. The way I control for those individual and time e�ects in nonlinear

models is to treat each e�ect as a separate parameter to be estimated, and I propose a �xed

e�ects expectation-maximization (EM) estimator that can be applied to a class of nonlinear

panel data models with those individual and/or time e�ects. Of particular interest is the

case of interactive e�ects, i.e., when the unobserved heterogeneity is modeled as a factor

analytical structure. To the best of the author's knowledge, the current paper presents the

�rst �xed e�ects EM-type estimator for nonlinear panel data models.

Interactive e�ects relax the invariant heterogeneity assumption and allow a more general

model of time-varying heterogeneity. These interactive e�ects can be arbitrarily correlated

with the observable covariates, which accommodates endogeneity and, at the same time,

allows correlations between individual e�ects. As an example of why these interactive ef-

fects are important, Moon et al. (2014), in a demand estimation setting, demonstrate that

interactive �xed e�ects can capture strong persistence in market shares across products and

markets, and �nd evidence that the factors are indeed capturing much of the unobservable

product and time e�ects leading to price endogeneity.

The nonlinear panel data models with unobserved �xed e�ects that I consider in this

paper have the following latent representation:

Y ∗it = X
′

itβ + g(αi, γt) + εit, (1)

Yit = r(Y ∗it ), (2)

for t = 1, ..., T and i = 1, ..., N . The econometrian observes Yit, the dependent variable for

individual i at time t (or t can be a group), and Xit, the time-variant K×1 regressor matrix.

The econometrician does not observe Y ∗it (the latent dependent variable), αi (the unobserved

time-invariant individual e�ect), γt (the unobserved time e�ect), or εit (the unobserved error

term). The vector β contains the main structural parameters of interest. The function r(·) is
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a known transformation of the unobserved latent variable. The individual e�ects αi and time

e�ects γt are allowed to be correlated with the regressor matrix. I do not make parametric

assumptions on the distribution of either individual e�ects or time e�ects, hence the model

is semiparametric.1 The method proposed here can be applied to many functional forms

between αi and γt. The leading case I consider is when g(αi, γt) = α
′
iγt where both αi and

γt are R × 1 vectors; note that this includes the special case settings with only individual

e�ects or settings with additive individual and time e�ects.

Substantial theoretical and computational challenges are present in nonlinear panel mod-

els involving a large number of individual and time e�ects. In particular, in these models it

is in general not possible to remove the unobserved e�ects by di�erencing as is commonly

done in linear models. The incidental parameter problem, �rst pointed out by Neyman and

Scott (1948), may also be present due to the fact that an estimator of β will be a function

of the estimators of αi and γt, which converges to their limits at slower convergence rates

than that of β.

To deal with these problems, I propose a �xed e�ects expectation-maximization (EM)

type estimator, which I denote IF-EM when applied to the interactive e�ects case. The

estimator is obtained through an iterative two-step procedure, where the two steps have

closed-form solutions. The �rst step (the �E�-step) involves obtaining the expectation of the

mean utility function (the latent index) conditional on the observed dependent data.2 The

second step (the �M�-step) involves maximizing the resulting �linear� model. In practice, the

estimator is simple and straightforward to compute. Monte Carlo simulations demonstrate

it has good small-sample properties.

The incidental parameters problem might be present because estimates of �xed e�ects are

partially consistent, and structural parameters of interest are functions of these estimates.3

For example, I discuss a panel probit model with interactive �xed e�ects (which I denote

PPIF) and demonstrate that its estimator PPIF is biased. I develop analytical bias correc-

tions to deal with the incidental parameter problem. The correction is based on adapting

to my setting the general asymptotic expansion of �xed e�ects estimators with incidental

1Relaxing parametric assumptions on the distribution of unobserved heterogeneity in nonlinear models is
important, as often such restrictions cannot be justi�ed by economic theory.

2As shown later, this is essentially an inverse distribution approach. For the exponential class of distri-
butions, under Bregman loss, the conditional expectation is optimal in terms of MSE.

3The incidental parameters problem has di�erent e�ects in di�erent contexts and might not be present
in some nonlinear models, e.g., Poisson models or slope coe�cients in Tobit models. Additionally, marginal
e�ects in probit models with individual �xed e�ects might not have bias or might have small bias, as shown
in Fernandez-Val (2009).
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parameters in multiple dimensions under asymptotic sequences where both dimensions of the

panel grow with the sample size (as in Fernández-Val and Weidner (2014)). In addition to

model parameters, I provide bias corrections for average partial e�ects, which are functions

of the data, parameters, and individual and time e�ects in nonlinear models.

The proposed model and estimates can have wide applications in economics. For example,

factor structures have been used in a probit setting to represent market structure (as in Elrod

and Keane (1995)) or, in a linear setting, to explain labor and behavioral outcomes (Heckman

et al. (2006)) or estimate the evolution of cognitive and noncognitive skills (Cunha and

Heckman (2008); Cunha et al. (2010)). Another example where the �xed e�ects approaches

are used is the international trade partner choice (as in Helpman et al. (2008)). The estimator

is also particularly useful in empirical �nance and in the setting with long time series, such

as empirical work using PSID data. Furthermore, the estimation procedure can easily be

extended to multinomial choice models.

This paper is related to multiple strands of the literature. First, it is related to the litera-

ture on linear panel data models with factor structures. Bai (2009a) estimates factors using

the method of principal components. Moon et al. (2014) extend the standard BLP random

coe�cients discrete choice demand model and propose a two-step procedure to calculate the

estimator. Other related papers include Holtz-Eakin et al. (1988); Ahn et al. (2001); Bai

and Ng (2002); Bai (2003); Ahn et al. (2013); Andrews (2005); Pesaran (2006); Bai (2009b);

Moon and Weidner (2010a), and Moon and Weidner (2010b). Some of these papers (e.g.

Bai (2009b)) let N →∞ and T →∞ while others (e.g. Ahn et al. (2013)) have T �xed and

N →∞.

This paper is also related to the literature on nonlinear panel data models and bias

correction, such as Arellano and Hahn (2007); Hahn and Newey (2004); Hahn and Kuersteiner

(2002); Fernandez-Val (2009); Bester and Hansen (2009); Carro (2007); Fernández-Val and

Vella (2011); Bonhomme (2012); Chamberlain (1980), and Dhaene and Jochmans (2010).

Charbonneau (2012) extends the conditional �xed e�ects estimators to logit and Poisson

models with exogenous regressors and additive individual and time e�ects. Fernández-Val

and Weidner (2014) develop analytical and jackknife bias corrections for nonlinear panel data

models with additive individual and time e�ects. Freyberger (2012) studies nonparametric

panel data models with multidimensional, unobserved individual e�ects when T is �xed.

Chen et al. (2013) develop analytical and jackknife estimators for a class of nonlinear panel

data models with individual and time e�ects which enter the model interactively.

A �nal contribution of this paper is on the computation front, relating to the EM algo-
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rithm and latent back�ting procedure. Related work includes Orchard et al. (1972); Demp-

ster et al. (1977); Pan (2002); Meng and Rubin (1993); Laird (1985), and Pastorello et al.

(2003).

The remainder of the paper is structured as follows. Section 2 introduces the model,

the leading examples and their estimators. I also discuss the convergence of the estimation

procedure. Section 3 presents consistency and asymptotic results for probit with interactive

�xed e�ects. Section 4 presents some extensions and discussions. Section 5 contains Monte

Carlo simulation results and Section 6 presents the empirical examples. Section 7 concludes.

All proofs are contained in the Appendix.

2 Models and Estimators

In this section, I start with the panel probit with interactive individual and time e�ects case.

I �rst specify the model and present the parameters and functional of interest and then show

how the model can be estimated using the proposed EM procedure.

2.1 Panel probit with interactive �xed e�ects (PPIF)

2.1.1 Model

I consider the following interactive �xed e�ects probit model

Y ∗it = X ′itβ + α
′

iγt + εit,

Yit = 1{Y ∗it ≥ 0}, (3)

for i = 1, ..., N and t = 1, ...., T . Here, Yit is a scalar outcome variable of interest, Xit is a

vector of explanatory variables, and β is a �nite dimensional parameter vector. The variables

αi and γt are unobserved individual and time e�ects that in economic applications capture

individual heterogeneity and aggregate shocks, respectively. The model is semiparameteric

in that I do not specify the distribution of these e�ects nor their relationship with the

explanatory variables, but, given that I consider probit in this section, I do specify ε to be

normally distributed with unit variance.

Denoting the cumulative distribution function of εit as Φ(·), the standard normal distri-

bution, the conditional distribution of Yit can then be written using the single-index speci�-

cation

P (Yit = 1|Xit, β, αi, γt) = Φ(Xitβ + α
′

iγt).
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For estimation, I adopt a �xed e�ects approach, treating the unobserved individual

and time e�ects as parameters to be estimated. I collect all these e�ects in the vector

φNT = (α1, ..., αN , γ1, ..., γN)′. The model parameter β usually includes regression coe�-

cients of interest, while the unobserved e�ects φNT are treated as nuisance parameters. The

true values of the parameters are denoted by β0 and φ0
NT = (α0

1, ..., α
0
N , γ

0
1 , ..., γ

0
T )′. Other

quantities of interest involve averages over the data and unobserved e�ects, such as average

partial e�ects, which are often the ultimate quantities of interest in nonlinear models. These

can be denoted

δ0
NT = Eφ[∆NT (β0, φ0

NT )], ∆NT (β, φNT ) = (NT )−1
∑
i,t

∆(Xit, β, α
′

iγt), (4)

where ∆(Xit, β, α
′
iγt) represents some partial e�ect of interest and Eφ denotes the expectation

with respect to the distribution of the data, conditional on φ0
NT and β0.

Some examples of partial e�ects are the following:

Example 2.1. (Average partial e�ects) If Xit,k, the k-th element of Xit, is binary, its partial

e�ect for model speci�ed by (3) on the conditional probability of Yit is

∆(Xit, β, α
′

iγt) = Φ(βk +X
′

it,−kβ−k + α
′

iγt)− Φ(X
′

it,−kβ−k + α
′

iγt), (5)

where βk is the k-th element of β, and Xit,−k and β−k include all elements of Xit and β

except for the k-th element. If Xit,k is continuous, the partial e�ects of Xit,k for model (3)

on the conditional probability of Yit is

∆(Xit, αi, γt) = βkφf (X
′

itβ + α
′

iγt), (6)

here φf (·) is the derivative of Φ.

A particular application of this model is the study of international trade partner choice.

For example, Helpman et al. (2008) consider panel of unilateral trade �ows between 158

countries for the year 1986. They use a probit model for the extensive margin of a gravity

equation with exporter and importer country e�ects to allow for asymmetric trade.

Example 2.2. (International Trade)

Pr(Tradeij = 1|Xij, αiγj) = Φ(X ′ijβ + α
′
iγj), ∀i, j ∈ V, i 6= j,
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here V contains the identities of all the countries considered.

Here Tradeij is an indicator for positive trade from country j to country i, Xij includes log

of bilateral distance, and nine indicators for geography, institution and culture di�erences.4

In this setting, N ≈ T . The estimated �xed e�ects can be used for forecasting network

linkages or calculating average partial e�ects as well.

2.1.2 Estimator for panel probit with interactive �xed e�ects

In this section, I describe how the model with interactive �xed e�ects can be estimated using

the proposed EM procedure. I discuss the case where the model has a known number of

factors R.5 I will start with R = 1; the case for R > 1 will be discussed in Section 4. For full

identi�cation, I assume γ1 = 1, though di�erent normalization restrictions can be imposed

and will require di�erent maximization steps, but this does not a�ect the estimation of β as

the factor structure enters into the model jointly as αiγt.

De�nition 2.1. (PPIF) The EM procedure for estimating the panel probit model with

interactive �xed e�ects is as follows:

(1) Given initial (β(k), α
(k)
i , γ

(k)
t ), denote µ

(k)
it = X ′itβ

(k) + α
(k)
i γ

(k)
t ,

(2) E-step: Calculate

Ŷ
(k)
it : = E[Y ∗it |Yit, Xit, β

(k), α
(k)
i , γ

(k)
t ]

= µ
(k)
it + (Yit − Φ(µ

(k)
it )) · φf (µ(k)

it )/{Φ(µ
(k)
it )(1− Φ(µ

(k)
it )},

(3) M-step: This contains three conditional maximization (CM) steps

CM-step 1: Given αi and γt, the parameter β can be updated by

β(k+1) =

(
N∑
i=1

T∑
t=1

XitX
′

it

)−1{ N∑
i=1

T∑
t=1

Xit

(
Ŷ

(k)
it − α

(k)
i γ

(k)
t

)}
,

CM-step 2: Given β and γt, the parameter αi can be updated by

α
(k+1)
i =

{
T∑
t=1

(Ŷ
(k)
it −X

′

itβ
(k+1))γ

(k)
t

}/ T∑
t=1

{
γ

(k)
t

}2

,

4See Helpman et al. (2008) for additional details.
5Choosing the number of factors is beyond the scope of this paper.
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CM-step 3: Given β and αi, the parameter γt can be updated by

γ
(k+1)
t =

{
N∑
i=1

(Ŷ
(k)
it −X

′

itβ
(k+1))α

(k+1)
i

}/ N∑
i=1

{
α

(k+1)
i

}2

,

(4) Iterate the above steps until convergence.

Convergence and consistency, along with the asymptotic distribution of β will be dis-

cussed in the next sections.

Note that the estimation procedure can be adapted to linear panel data models with

interactive �xed e�ects, e.g. Bai (2009b). In a linear panel data model, Y ∗ is observed, and

hence the E-step described here will not be needed. However, the conditional maximization

procedure can still be applied to estimate a linear model.

The EM procedure proposed here is simple, easy to implement and has closed-form

solutions in each step. The conditional maximization steps involves replacing the functional

of the current estimates of the other parameters.6

Remark 2.1. Di�erent normalizations for the individual and time e�ects can lead to di�erent

estimation procedures, even for linear models. For example, with the normalization γ1 = 1,

the linear panel data model with interactive �xed e�ects

Yit = X ′itβ + αiγt + εit,

can be estimated as follows

CM-step 1: Given αi and γt, the parameter β can be updated by

β(k+1) =

(
N∑
i=1

T∑
t=1

XitX
′

it

)−1{ N∑
i=1

T∑
t=1

Xit

(
Yit − α(k)

i γ
(k)
t

)}
,

CM-step 2: Given β and γt, the parameter αi can be updated by

α
(k+1)
i =

{
T∑
t=1

(Yit −X
′

itβ
(k+1))γ

(k)
t

}/ T∑
t=1

{
γ

(k)
t

}2

,

6This is an expectation and conditional maximization (ECM) procedure, see Meng and Rubin (1993) for
more details about ECM.
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CM-step 3: Given β and αi, the parameter γt can be updated by

γ
(k+1)
t =

{
N∑
i=1

(Yit −X
′

itβ
(k+1))α

(k+1)
i

}/ N∑
i=1

{
α

(k+1)
i

}2

,

Iterate until convergence.

Since individual e�ects and additive individual and time e�ects are special cases of in-

teractive e�ects, I will present results for the individual e�ects case only.7 For the case with

additive individual and time e�ects, see Appendix A.1.

2.2 Panel probit with only individual �xed e�ects

In this setting, I consider the following model

Y ∗it = X ′itβ + αi + εit,

Yit = 1{Y ∗it ≥ 0}, (7)

for i = 1, ..., N and t = 1, ...., T . Here, Yit is a scalar outcome variable of interest, Xit is a

vector of explanatory variables, β is a �nite-dimensional parameter vector, αi are unobserved

individual e�ects.

Similarly to Section (2.1), I model the conditional distribution of Yit using the single-index

speci�cation

P (Yit = 1|Xit, β, αi) = Φ(Xitβ + αi),

and for estimation I adopt a �xed e�ects approach treating the unobserved individual e�ects

as parameters to be estimated. I collect all these e�ects in the vector φNT = (α1, ..., αN)′. The

true values of the parameters are denoted by β0 and φ0
NT = (α0

1, ..., α
0
N)′. Other quantities

of interest involve averages over the data and unobserved e�ects

δ0
NT = E[∆NT (β0, φ0

NT )], ∆NT (β, φNT ) = (NT )−1
∑
i,t

∆(Xit, β, αi), (8)

and examples of partial e�ects (∆) are the following:

7More precisely, when the unobserved individual and time e�ects are multidimensional, the additive
individual and time e�ects case is a special case of the interactive e�ects case.
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Example 2.3. (Average partial e�ects) If Xit,k, the k-th element of Xit, is binary, its partial

e�ect for model (7) on the conditional probability of Yit is

∆(Xit, β, αi) = Φ(βk +X
′

it,−kβ−k + αi)− Φ(X
′

it,−kβ−k + αi), (9)

where βk is the k-th element of β, and Xit,−k and β−k include all elements of Xit and β

except for the k-th element. If Xit,k is continuous, for model (7) the partial e�ects of Xit,k

on the conditional probability of Yit is

∆(Xit, αi) = βkφf (X
′

itβ + αi), (10)

where φf (·) is the derivative of Φ.

De�nition 2.2. The �xed e�ects EM estimator for panel probit with individual �xed e�ects

is de�ned by

(1) Given initial (β(k), α
(k)
i ), denote µ

(k)
it = X ′itβ

(k) + α
(k)
i ,

(2) E-step: Calculate

Ŷ
(k)
it : = E[Y ∗it |Yit, Xit, β

(k), α
(k)
i ]

= µ
(k)
it + (Yit − Φ(µ

(k)
it )) · φf (µ(k)

it )/{Φ(µ
(k)
it )(1− Φ(µ

(k)
it )},

(3) M-step: This contains two conditional maximization steps

CM-step 1: Given αi, the parameter β can be updated by

β(k+1) = (
N∑
i=1

T∑
t=1

XitX
′

it)
−1{

N∑
i=1

T∑
t=1

Xit(Ŷ
(k)
it − α

(k)
i )},

CM-step 2: Given β, the parameter αi can be updated by

α
(k+1)
i =

1

T

T∑
t=1

(Ŷ
(k)
it −X

′

itβ
(k+1)),

(4) Iterate until converge.

This is essentially the case γt = 1,∀t = 1, .., T . Note that the CM-step 2 here is just the

average over time using Ŷ
(k)
it as surrogate for Y ∗it . This estimation procedure does not involve

computing the inverse of the Hessian, unlike the Netwon's method described in Greene

(2004).
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2.3 Nonlinear panel models with multiple unobserved e�ects

In this section, I describe how a general nonlinear panel data model with individual and time

e�ects can be estimated using the proposed EM procedure.

De�nition 2.3. The �xed e�ect EM estimator for a class of nonlinear panel data model

with individual and time e�ects is de�ned by

(1) Given initial (β(k), α
(k)
i , γ

(k)
t );

(2) E-step: calculate Ŷ
(k)
it := E[Y ∗it |Yit, Xit, β

(k), g(α
(k)
i , γ

(k)
t )],

(3) M-step:

(β(k+1), α(k+1), γ(k+1)) ∈ arg min
β,α,γ

S(β(k), α(k), γ(k)) = (Ŷ
(k)
it −X

′

itβ − g(αi, γt))
2), (11)

(4) Iterate until convergence.

Convergence and consistency of β̂, de�ned as the output from the iteration, will be

discussed in the following sections. Note that this procedure is di�erent from the traditional

EM algorithm (discussed in Dempster et al. (1977)), which is used to maximize the expected

log-likelihood function when there are latent variables, and its E-step is to augment the

incomplete likelihood with conditional likelihood for Y ∗it |Yit; while here, the E-step is to

calculate a surrogate, Ŷit, for the unobserved Y
∗
it when there are unobserved individual and

time e�ects. This di�erence leads to a di�erent strategy of proof. Speci�cally, I adopt

the approach of using the conditional expectation of Y ∗it because under Bregman loss the

conditional expectation is optimal in terms of mean squared error. Under certain conditions,

e.g., the density of the error term is in the exponential class of distributions, as shown in

Section 3, as well as for probit, those two have the same score functions. This is due to the

quadratic loss function of the probit model.

Remark 2.2. Depending on the functional form of the individual and/or time e�ects, the

M-step can be as follows:

CM-step 1: Given αi and γt, the parameter β is updated via

β(k+1) = (
N∑
i=1

T∑
t=1

XitX
′

it)
−1{

N∑
i=1

T∑
t=1

Xit(Ŷ
(k)
it − g(α

(k)
i , γ

(k)
t ))},

CM-step 2: Given β, the parameters αi and γt are updated by maximizing
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−
N∑
i=1

T∑
t=1

(Ŷ
(k)
it −X

′

itβ − g(α
(k)
i , γ

(k)
t ))2,

and this step can be implemented by using the method of least squares (or principal com-

ponents).

2.3.1 Convergence

In this section, I show the resulting estimate from the estimation procedure converges to a

point that maximizes the observed log-likelihood function. I focus on the interactive �xed

e�ects case, which is more complex due to the high degree of nonlinearity of the unobserved

e�ects term (all the other cases are concave in the �xed e�ects, though the convergence rates

are di�erent). Consistency results are discussed in Section 4. The IF-EM for probit su�ers

from asymptotic bias because the �xed e�ects converge slowly, which I address in Section 3.

For a binary model, denote the negative log-likelihood function

−LNT = −
∑
i,t

logF (qit(X
′
itβ + α′iγt)),

where qit := 2Yit−1 and F is the cdf of Yit conditional onXit,αi and γt. For brevity, assume F

is symmetric. De�ne the hazard function h(θ1) := −∂logF (θ1)/∂θ1 for a particular argument

θ1.

Recall the quadratic loss function S(β(k), α(k), γ(k)) = (Ŷ
(k)
it − X

′
itβ − g(αi, γt))

2 of the

M-step that the proposed �xed e�ects EM-type estimator depends on. The strategy of

the proof is to show the negative log likelihood function of the model under consideration

is majorized by this quadratic function (up to some constant), which is satis�ed by the

following propositions

Proposition 2.1. Suppose X is a three-dimensional matrix with p sheets (N × T × p), β
and β̃ are p × 1 vectors, α and α̃ are N × R matrices, and γ and γ̃ are T × R matrices.

De�ne h̃it := h(qit(X
′
itβ̃ + α̃′iγ̃t)), then

−LNT (β, α, γ) ≤ −LNT (β̃, α̃, γ̃)− 1

2

∑
i,t

h̃2
it +

1

2

∑
i,t

(z̃it −X ′itβ − α′iγt)2.

Proof: See Appendix A.2.
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Proposition 2.2. (i) Up to a constant that depends on (β(k), α(k), γ(k)) but not on (β, α, γ),

the function S(β(k), α(k), γ(k)) majorizes −LNT (β, α, γ) at (β(k), α(k), γ(k)).

(ii) Let (β(k), α(k), γ(k)), k = 1, 2, ..., be a sequence obtained by the IF-EM procedure. Then

S(β(k), α(k), γ(k)) decreases as k increases and converges to a local minimum of −LNT (β, α, γ)

as k goes to in�nity.

The proof of part (i) follows by applying the result from Proposition 2.1. The proof of

part (ii) follows from the property of the quadratic majorization.

This proves the convergence of the general EM procedure. Note that although I show

it for an interactive �xed e�ects model, the same proof procedure can be adapted to other

single index models with individual and time �xed e�ects. I discuss consistency in Section 4.

Since the asymptotic distribution di�ers for di�erent models, in the next section I will show

the asymptotic distribution for the probit model, in which case the incidental parameter

problem occurs, and provide an analytical bias correction solution.

The EM procedure proposed here is simple, easy to implement, and has a closed form solu-

tion in each step. The method can be extended in a straightforward way to handle composite

data which consists of both binary and continuous variables. While the binary variables are

modeled with Bernoulli distributions, the continuous variables can be modeled with Gaussian

distributions. Including some continuous variables corresponds to adding some Gaussian log-

likelihood terms to the existing log-likelihood expression. Since the Gaussian log-likelihood

is quadratic, the ultimate function would still be majorized by a quadratic function.8

3 Asymptotic theory for panel probit with interactive �xed e�ects

In this section, I discuss consistency and asympototic bias of the proposed estimator. I do so

in the context of PPIF but my method of proof can be extended to a wider class of models.

3.1 Consistency

I show PPIF is consistent but su�ers from incidental parameters bias. I will also discuss bias

corrections to the parameter and average partial e�ects in the next section.

I consider a panel probit model with scalar individual and time e�ects that enter the

likelihood function interactively through πit = αiγt. In this model, the dimension of the

8When there are no �xed e�ects, convergence is proved by the contraction mapping theorem argument.
See Gourieroux et al. (1987)
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incidental parameters is dimφNT = N + T . I prove the consistency of PPIF under assump-

tions on the indexes. Since the proposed �xed e�ects EM estimator has the same score as

that of MLE, I derive its properties directly through the expansion of the score of its pro�le

likelihood function.

In this section, the parametric part of the model takes the form

logΦ(qit(X
′
itβ + πit)) = `it(β, πit).

Hence, the log-likelihood function is

LNT (β, φNT ) = LNT (β, π) =
1

NT

∑
i,t

`it(β, π) =
1

NT

∑
i,t

logΦ(qit(X
′
itβ + πit)).

I make the following assumptions:

Assumption 1. Let v > 0 and µ > 4(8 + v)/v. Let ε > 0 and let B0
ε be a subset of

Rdimβ+1that contains an ε-neighborhood of (β0, π0
it) for all i, t, N, T .

(i) Asymptotics: Consider limits of sequences where N/T → κ2, 0 < κ <∞, as N, T →
∞.

(ii) Sampling: Conditional on φ, {(Y T
i , X

T
i ) : 1 ≤ i ≤ N} is independent across i, and

for each i, {Yit, Xit : 1 < t ≤ T} is α-mixing with mixing coe�cients satisfying supi ai(m) =

O(m−µ) as m→∞, where

ai(m) := sup
t

sup
A∈Ait,B∈Bit+m

|P (A ∩B)− P (A)P (B)|

and for Zit = (Yit, Xit), Ait is the sigma �eld generated by (Zit, Zi,t−1, ...), and Bit is the sigma

�eld generated by (Zit, Zi,t+1, ...).

(iii) Moments: The partial derivatives of `it(β, π) w.r.t. the elements of (β, π) up to fourth

order are bounded in absolute value uniformly over (β, π) ∈ B0
ε by a functionM(Zit) > 0 a.s.,

and maxi,t Eφ[M(Zit)
8+v] is a.s. uniformly bounded over N, T . There exist constants bmin

and bmax such that for all (β, π) ∈ B0
ε , 0 < bmin ≤ −Eφ[∂π2`it(β, π)] ≤ bmax a.s. uniformly

over i,t, N , T .

(iv) Non-colinearity condition: ∃c > 0, such that w.p.a.1,

min
{α∈R,‖α‖=1}

min
Λ∈RN×2

1

NT
Tr[(α ·X)′Mα(α ·X)] > c

14



Assumption (i) de�nes the large-T asymptotic framework as in Hahn and Kuersteiner

(2002); Fernández-Val and Weidner (2014); Chen et al. (2013). Assumption (ii) de�nes the

data sampling conditions. Assumption (iii) de�nes the �nite moment condition. Assumption

(iv) states that no linear combination of the regressors converges to zero, even after projecting

any two-dimensional factor loading α. Note that this rules out time-invariant and cross-

sectional invariant regressors.

De�ne the �xed e�ects EM estimator for PPIF as β̂PPIF .

Lemma 3.1. Under Assumption 1, β̂PPIF = β0 + oP (1).

The proof is found in Appendix B.1 and contains two steps. I �rst show the consistency

of the index with the generalized residuals from the E-step. Then, in step two I show that

the residuals satisfy the conditions imposed on the linear panel data models with interactive

�xed e�ects as in Bai (2009b). The consistency of β̂PPIF follows.

3.2 Asymptotic results

De�ne the nonlinear di�erencing operator

Dβπq`it := ∂πq+1`it(Xit − Ξit), for q = 0, 1, 2

where Ξit is a dim β-vector including the least squares projections of Xit on the space of

incidental parameters spanned by α0
i γ

0
t (αi + γt) weighted by Eφ(−∂π2`it), i.e.,

Ξit,k = α0
i γ

0
t (α

∗
i,k + γ∗t,k), (12)

(α∗k, γ
∗
k) ∈ arg min

αi,k,γt,k

∑
i,t

Eφ[−∂z2`it(Xit − α0
i γ

0
t (αi,k + γt,k))

2].

Let H be the (N+T )×(N+T ) expected value of the Hessian matrix of the log-likelihood

with respect to the nuisance parameters evaluated at the true parameters, i.e.,

H = Eφ[−∂φφ′L] =

 H(αα) H(αγ)

H
′

(αγ) H(γγ)

 ,
where H(αα) = diag(

∑
t(γ

0
t )

2Eφ[−∂π2`it])/(NT ), H(αγ)it = (α0
i γ

0
tEφ[−∂π2`it])/(NT ), and

H(γγ) = diag(
∑

i(α
0
i )

2Eφ[−∂π2`it])/(NT ). Furthermore, let H−1

(αα), H
−1

(αγ), H
−1

(γα), and H
−1

(γγ)
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denote the N ×N , N × T , T ×N and T × T blocks of the inverse H−1
of H. Then

Ξit = − 1

NT

N∑
j=1

T∑
τ=1

(H−1

(αα)ijγ
0
τγ

0
t +H−1

(αγ)iτα
0
jγ

0
t +H−1

(γα)tjα
0
i γ

0
τ +H−1

(γγ)tτα
0
iα

0
j )Eφ(∂βπ`jτ ).(13)

This nonlinear di�erencing operator generalizes to nonlinear models the partialing-out of

individual and time e�ects in linear models. For example, if the model is linear, ∂π2`it = −1,

∂βπ`it = −Xit, and

Ξit = T−1

T∑
t=1

Eφ[Xit] +N−1

N∑
i=1

Eφ[Xit]− (NT )−1

N∑
i=1

T∑
t=1

Eφ[Xit],

so that Dβ`it = −(Xit − Ξit)∂π`it, Dβπ`it = −(Xit − Ξit), and Dβπ2`it = 0.

Let E := plimN,T→∞. The following theorem establishes the asymptotic distribution of

the �xed e�ects EM estimator for PPIF, β̂PPIF .

Theorem 3.1. (Asymptotic distribution of β̂PPIF ). Suppose that Assumption 1 holds, that

the following limits exist

B∞ = −E

[
1

N

N∑
i=1

∑T
t=1

∑T
τ=t γ

0
t γ

0
τEφ[∂π`itDβπ`iτ ] + 1

2

∑T
t=1(γ0

t )
2Eφ(Dβπ2`it)∑T

t=1(γ0
t )

2Eφ(∂π2`it)

]
,

D∞ = −E

[
1

T

T∑
t=1

∑N
i=1(α0

i )
2Eφ(∂π`itDβπ`it + 1

2
Dβπ2`it)∑N

i=1(α0
i )

2Eφ(∂π2`it)

]
,

W∞ = −E

[
1

NT

N∑
i=1

T∑
t=1

Eφ(∂ββ′`it − ∂π2`itΞitΞ
′

it)

]
,

and that W∞ > 0. Then,

√
NT (β̂PPIF − β0)

d−→ W
−1

∞ N(κB∞ + κ−1D∞,W∞).

The detailed proof is in Appendix B.2.

Let X̃it = Xit−Ξit be the residual of the least squares projection of Xit on the space spanned by

the incidental parameters weighted by Eφ(ωit), for ωit = (φf (X
′
itβ+α0

i γ
0
t ))

2/[Φ(X
′
itβ

0+α0
i γ

0
t )(1−

Φ(X
′
itβ + α0

i γ
0
t ))].
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Remark 3.1. For the probit model with Xit strictly exogenous, observe that

B∞ = E[
1

2N

N∑
i=1

∑T
t=1(γ0

t )
2Eφ[ωitX̃itX̃

′
it]∑T

t=1(γ0
t )

2Eφ[ωit]
]β0,

D∞ = E[
1

2T

T∑
t=1

∑N
i=1(α0

i )
2Eφ[ωitX̃itX̃

′
it]∑N

i=1(α0
i )

2Eφ[ωit]
]β0,

W∞ = E

[
1

NT

N∑
i=1

T∑
t=1

Eφ[ωitX̃itX̃
′
it]

]
.

The asymptotic bias is therefore a positive-de�nite-matrix of the weighted average of the

true parameters as in the case of the probit model with additive e�ects (see Fernández-Val

and Weidner (2014)).

3.3 Asymptotic distribution of the average partial e�ects

In nonlinear models, the researcher is often interested in average partial e�ects in addition

to the model structural parameters. These e�ects are averages of the data, parameters and

unobserved e�ects as in equation (4). I impose the following sampling and moment conditions

on the function ∆ that de�nes the partial e�ects:

Assumption 2. (Partial e�ects). Let v > 0, ε > 0, and B0
ε all be as in Assumption 1

(i) Sampling: for all N , T ,{αi}N and {γt}T are deterministic;

(ii) Model: for all i, t, N , T , the partial e�ects depend on αi and γt through αiγt:

∆(Xit, β, αi, γt) = ∆it(β, αiγt).

The realizations of the partial e�ects are denoted by ∆it := ∆it(β
0, α0

i γ
0
t ).

(iii) Moments: The partial derivatives of ∆it(β, π) with respect to the elements of (β, π)

up to fourth order are bounded in absolute value uniformly over (β, π) ∈ B0
ε by a function

M(Zit) > 0 a.s., and maxi,t Eφ[M(Zit)
8+v] is a.s. uniformly bounded over N, T .

(iv) Non-degeneracy and moments: mini,t V ar(∆it) > 0 and maxi,t V ar(∆it) < ∞, uni-

formly over N , T .

Analogous to Ξit in equation (13), de�ne

Ψit = − 1

NT

N∑
j=1

T∑
τ=1

(H−1

(αα)ijγ
0
τγ

0
t +H−1

(αγ)iτα
0
jγ

0
t +H−1

(γα)tjα
0
i γ

0
τ +H−1

(γγ)tτα
0
iα

0
j )∂π∆jτ ,
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which is the population projection of ∂π∆it/Eφ[∂π2`it] on the space spanned by the incidental

parameters under the metric given by Eφ[−∂π2`it]. I use a analogous notation to the previous

section for the derivatives with respect to β and higher order derivatives with respect to π.

Let δ0
NT be the APE as de�ned in equation (4), and δ̂ be its estimator ∆NT (β̂, φ̂NT ) =

(NT )−1
∑

i,t∆(Xit, β̂, α̂iγ̂t). The following theorem establishes the asymptotic distribution

of δ̂.

Theorem 3.2. (Asymptotic distribution of δ̂). Suppose that the assumptions of Theorem

3.1 and Assumption 2 hold, and that the following limits exist:

(Dβ∆)∞ = E[
1

NT

N∑
i=1

T∑
t=1

Eφ(∂β∆it − Ξit∂π∆it)],

B
δ

∞ = (Dβ∆)
′

∞W
−1

∞ B∞ + E[
1

N

N∑
i=1

∑T
t=1

∑T
τ=t γ

0
t γ

0
τEφ(∂π`it∂π2`iτΨiτ )∑T

t=1(γ0
t )

2Eφ(∂π2`it)
]

−E[
1

2N

N∑
i=1

∑T
t=1(γ0

t )
2[Eφ(∂π2∆it)− Eφ(∂π3`it)Eφ(Ψit)]∑T

t=1(γ0
t )

2Eφ(∂π2`it)
],

D
δ

∞ = (Dβ∆)
′

∞W
−1

∞D∞ + E[
1

T

T∑
t=1

∑N
i=1(α0

i )
2Eφ(∂π`it∂π2`itΨit)∑N

i=1(α0
i )

2Eφ(∂π2`it)
]

−E[
1

2T

T∑
t=1

∑N
i=1(α0

i )
2[Eφ(∂π2∆it)− Eφ(∂π3`it)Eφ(Ψit)]∑N

i=1(α0
i )

2Eφ(∂π2`it)
],

V
δ

∞ = E{ 1

NT

N∑
i=1

[
T∑

t,τ=1

Eφ(∆̃it∆̃
′

iτ ) +
T∑
t=1

Eφ(ΓitΓ
′

it)]},

for some V
δ

∞ > 0, where ∆̃it = ∆it − E(∆it) and Γit = (Dβ∆)
′

∞W
−1

∞Dβ`it − Eφ(Ψit)∂π`it.

Then, √
NT (δ̂ − δ0

NT − T−1B
δ

∞ −N−1D
δ

∞)
d−→ N(0, V

δ

∞).

The bias and variance are of the same order asymptotically under the asymptotic sequence

of Assumption 1(i).

Remark 3.2. (Average e�ects from bias-corrected estimators). As in the case of the probit

with additive e�ects (Fernández-Val and Weidner (2014)), the �rst term in the expressions

of the biases B
δ

∞ and D
δ

∞ comes from the bias of the estimator of β. It drops out when

the APEs are constructed from asymptotically unbiased or bias-corrected estimators of the
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parameter β, i.e.,

δ̃ = ∆(β̃, φ̂(β̃)),

where β̃ is such that
√
NT (β̃− β0)

d→ N(0,W
−1

∞ ). The asymptotic variance of δ̃ is the same

as in Theorem 3.2.

In the following examples I assume that the APEs are constructed from asymptocially

unbiased estimators of the model parameters.

Example 3.1. Consider the partial e�ects de�ned in (5) and (6) with

∆it(β, αiγt) = Φ(βk +X
′

it,−kβ−k + αiγt)− Φ(X
′

it,−kβ−k + αiγt)

and

∆it(β, αiγt) = βkφf (X
′

itβ + αiγt).

Denote Hit = φf (X
′
itβ + α0

i γ
0
t )/[Φ(X

′
itβ

0 + α0
i γ

0
t )(1 − Φ(X

′
itβ + α0

i γ
0
t ))] and use notations

previously introduced, the components of the asymptotic bias of δ̃ are

B
δ

∞ = E[
1

2N

N∑
i=1

∑T
t=1[2

∑T
τ=t+1 Eφ(Hit(Yit − Φit)ωiτ Ψ̃iτ )− Eφ(Ψit)Eφ(Hit∂

2Φit) + Eφ(∂π2∆it)]∑T
t=1 Eφ(ωit)

],

D
δ

∞ = E[
1

2T

T∑
t=1

∑N
i=1[−Eφ(Ψit)]Eφ(Hit∂

2Φit) + Eφ(∂π2∆it)∑N
i=1 Eφ(ωit)

]

where Ψ̃it is the residual of the population regression of −∂π∆it/Eφ[ωit] on the space spanned

by the incidental parameters under the metric given by Eφ[ωit]. If all the components of Xit

are strictly exogenous, the �rst term in the numerator of B
δ

∞ is zero.

3.4 Bias-corrected estimators

The results of the previous sections show that the asymptotic distributions of the interactive

�xed e�ects estimators of the model parameters and APEs can have asymptotic bias under

sequences where T grows at the same rate as N , as also discussed in Chen et al. (2013).

This large-T version of the incidental parameters problem can invalidate any inference based

on the asymptotic distribution. In this section I discuss how to construct analytical bias

corrections for PPIF and give conditions for the asymptotic validity of the analytical bias

corrections. The proof strategy here is similar to Fernández-Val and Weidner (2014) which

is under the additive individual and time e�ects setting.
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The analytical corrections are constructed using sample analogs of the expressions in

Theorems 3.1 and 3.2, replacing the true values of β and φ by the estimated ones. To

describe these corrections, I introduce some additional notation. For any function of the

data, unobserved e�ects and parameters ϕitj(β, αiγt, αiγt−j) with 0 ≤ j < t, let ϕ̂itj =

ϕit(β̂, α̂iγ̂t, α̂iγ̂t−j) be its estimator, e.g., Eφ ̂[∂π2`it] denotes the estimator of Eφ[∂π2`it]. Let

Ĥ−1
(αα), Ĥ

−1
(αγ), Ĥ

−1
(γα) and Ĥ

−1
(γγ) denote the blocks of the matrix Ĥ−1, where

Ĥ =

 Ĥ(αα) Ĥ(αγ)

Ĥ′(αγ) Ĥ(γγ)

 ,

Ĥ(αα) = diag(−
∑

t(γ̂t)
2Eφ[∂̂π2`it])/(NT ), Ĥ(αγ)it = −α̂iγ̂tEφ[∂̂π2`it]/(NT ), and Ĥ(γγ) =

diag(−
∑

i(α̂i)
2Eφ[∂̂π2`it])/(NT ). Let

Ξ̂it = − 1

NT

N∑
j=1

T∑
τ=1

(Ĥ−1
(αα)ij γ̂τ γ̂t + Ĥ−1

(αγ)iτ α̂j γ̂t + Ĥ−1
(γα)tjα̂iγ̂τ + Ĥ−1

(γγ)tτ α̂iα̂j)Eφ(∂̂βπ`jτ ),

the kth component of Ξ̂it corresponds to a least square regression of Xit on the space spanned

by the incidental parameters weighted by −Eφ(∂̂βπ`it). The analytical bias-corrected esti-

mator of β0 is

β̃A = β̂ − B̂/T − D̂/N,

where

B̂ = − 1

N

N∑
i=1

∑L
j=0(T/(T − j))

∑T
t=j+1 γ̂tγ̂τE( ̂∂π`itDβπ`iτ ) + 1

2

∑T
t=1(γ̂t)

2E(D̂βπ2`it)∑T
t=1(γ̂t)2E(∂̂π2`it)

,

D̂ = − 1

T

T∑
t=1

∑N
i=1(α̂i)

2E( ̂∂π`itDβπ`it + 1
2
D̂βπ2`it)∑N

i=1(α̂i)2E(∂̂π2`it)
,

and L is a trimming parameter for estimation of spectral expectations such that L → ∞
and L/T → 0, see Hahn and Kuersteiner (2011).

Asymptotic (1− p)- con�dence intervals for the components of β0 can be formed as

β̃Ak ± z1−p

√
Ŵ−1
kk /(NT ), k = {1, ..., dim β0}.

where z1−p is the (1 − p) quantile of the standard normal distribution, and Ŵ−1
kk is the
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(k, k)-element of the matrix Ŵ−1 with

Ŵ = − 1

NT

N∑
i=1

T∑
t=1

Eφ ̂(∂ββ′`it)− Eφ( ̂∂π2`itΞitΞ′it).

The analytical bias-corrected estimator of δ0
NT is

δ̃A = δ̃ − B̂δ/T − D̂δ/N,

where I use δ̃, i.e., the APE constructed from a bias corrected estimator of β. Let

Ψ̂it = − 1

NT

N∑
j=1

T∑
τ=1

(Ĥ−1
(αα)ij γ̂τ γ̂t + Ĥ−1

(αγ)iτ α̂j γ̂t + Ĥ−1
(γα)tjα̂iγ̂τ + Ĥ−1

(γγ)tτ α̂iα̂j)∂̂π∆jτ ,

then the estimated asymptotic biases are

B̂δ =
1

N

N∑
i=1

∑L
j=0[T/(T − j)]

∑T
t=j+1 γ̂tγ̂τEφ(∂̂π`i,t−j ∂̂π2`itΨ̂it)∑T

t=1(γ̂t)2Eφ(∂̂π2`it)

− 1

2N

N∑
i=1

∑T
t=1(γ̂t)

2[Eφ(∂̂π2∆it)− Eφ(∂̂π3`it)Eφ(Ψ̂it)]∑T
t=1(γ̂t)2Eφ(∂̂π2`it)

D̂δ =
1

T

T∑
t=1

∑N
i=1(α̂i)

2[Eφ(∂π ̂`it∂π2`itΨit)− 1
2
Eφ(∂̂π2∆it) + 1

2
Eφ(∂̂π3`it)Eφ(Ψ̂it)]∑N

i=1(α̂i)2Eφ(∂̂π2`it)
].

The estimator of the asymptotic variance depends on the assumptions about the distribu-

tion of the unobserved e�ects and explanatory variables. Assumption 2(i) requires imposing

a homogeneity assumption on the distribution of the explanatory variables to estimate the

�rst term of the asymptotic variance. For example, if {Xit : 1 ≤ i ≤ N, 1 ≤ t ≤ T} is
identically distributed over i, this term is given by

V̂ δ =
1

NT

N∑
i=1

[
T∑

t,τ=1

ˆ̃
∆it

ˆ̃
∆
′

iτ +
T∑
t=1

Eφ(Γ̂itΓ
′
it)],

for
ˆ̃
∆it = ∆̂it − N−1

∑N
i=1 ∆̂it. Bias corrected estimators and con�dence intervals can be

constructed in the same fashion as for the model parameter.

The following theorems show that the analytical bias corrections eliminate the bias from

the asymptotic distribution of the �xed e�ects estimators of the model parameters and
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APEs without increasing the variance, and that the estimators of the asymptotic variances

are consistent. Those are the main results of this section.

Theorem 3.3. (Bias correction for β̂) Under the conditions of Theorem 3.1,

Ŵ
p−→ W∞,

and, if L→∞ and L/T → 0,

√
NT (β̃A − β0)

d−→ N(0,W∞
−1).

Theorem 3.4. (Bias correction for δ̂) Under the conditions of Theorems 3.1 and 3.2,

V̂ δ p→ V
δ

∞,

and, if L→∞ and L/T → 0,

√
NT (δ̃A − δ0

NT )
d→ N(0, V

δ

∞).

Remark 3.3. Split-panel jackknife as described in Chen et al. (2013); Fernández-Val and

Weidner (2014) can also be applied.

4 Discussions and Extensions

4.1 Comparison with the existing estimators: No �xed e�ects or only individual

e�ects

When there are no �xed e�ects, the model becomes

Y ∗it = X ′itβ + εit,

Yit = 1{Y ∗it ≥ 0}, (14)

where all objects are as de�ned previously. The conditional distribution of Yit is given by

P (Yit = 1|Xit, β) = Φ(Xitβ),
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and for estimation the following EM procedure can be used:

De�nition 4.1. (1) Given initial β(k), denote µ
(k)
it = X

′
itβ

(k);

(2) E-step: Calculate Ŷ
(k)
it := E[Y ∗it |Yit, Xit, β

(k)];

(3) M-step: The parameter β is updated via

β(k+1) = (
N∑
i=1

T∑
t=1

XitX
′

it)
−1{

N∑
i=1

T∑
t=1

XitŶ
(k)
it }.

(4) Iterate until convergence.

I start by comparing this estimation with existing methods.

Proposition 4.1. For panel probit models, the proposed EM-type estimator is asymptotically

equivalent to the MLE.

Proof: See Appendix C.1.1. When applying the proposed �xed e�ects EM-type esti-

mator to probit (or for the general exponential family), its E-step involves calculating the

conditional expectation of the error, which is exactly the score of expected, complete data,

log-likelihood function or the score of the observed log-likelihood (it also corresponds to the

notion of generalized residuals proposed in Gourieroux et al. (1987) for cross-sectional data).

Hence, the �xed e�ects EM-type estimator directly works with the observed score. For the

case when there are no unobserved e�ects, the EM method is asymptotically equivalent to

MLE and there is no asymptotic bias. For the cases when there are unobserved e�ects, and

when there are incidental parameter problems, an iterated bias correction to the score can

be easily implemented through the E-step.

Proposition 4.2. For the panel probit model with individual e�ects, the di�erence between

the proposed �xed e�ects EM-type estimator and Newton's method lies in whether inverting

the Hessian of the observed data log-likelihood function.

Proof: See Appendix C.1.2. I explicitly compare the two iterative steps of the �xed e�ects

EM-type estimator and the Netwon's method. Each iteration of the proposed �xed e�ects

EM-type estimator is a least squares calculation (with the generalized residual); it does not

use the inverse of the Hessian of the observed data log-likelihood function like Newton's

method.9

9See Greene (2004) for more about estimation of nonlinear panel data models with individual �xed e�ects.
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4.2 PPIF with multiple factors

In this setting, the model, written in matrix notation, is

Y = 1(Xβ + αγ′ + ε ≥ 0),

where Y = (Y1, ..., YN)′ (with Yi = (Yi1, ..., YiT )′, a T × 1 vector) is an N × T matrix and

X (with Xi = [Xi1, ..., XiT ]
′
is a T × p matrix) is a three-dimensional matrix with p sheets

(N × T × p), the `-th sheet of which is associated with the `-th element of β(` = 1, ..., p).

α = (α1, ..., αN)
′
is an N ×R matrix, while γ = (γ1, ..., γT )′ is a T ×R matrix. The product

Xβ is an N × T matrix and ε = (ε1, ..., εN) is an N × T matrix.

Since αγ′ = αA−1Aγ′ for any R × R invertible A, identi�cation is not possible without

restrictions.

Condition 1. (Normalization) (i) γ′γ/T = IR; (ii) α
′α = diagonal.

Under di�erent normalization conditions, the estimation procedure (the conditional max-

imization steps) for the factor is di�erent.

De�nition 4.2. The EM procedure for estimating a panel probit model with multi-dimensional

interactive �xed e�ects under Condition 1 is de�ned by the following:

(1) Given initial (β(k), α
(k)
i , γ

(k)
t ), denote µ

(k)
it = X ′itβ

(k) + (α
(k)
i )′γ

(k)
t ,

(2) E-step: Calculate

Ŷ
(k)
it : = E[Y ∗it |Yit, Xit, β

(k), α
(k)
i , γ

(k)
t ]

= µ
(k)
it + (Yit − Φ(µ

(k)
it )) · φf (µ(k)

it )/{Φ(µ
(k)
it )(1− Φ(µ

(k)
it )},

(3) M-step: This contains three conditional maximization (CM) steps

CM-step 1: Given αi and γt, the parameter β is updated via

β(k+1) =

(
N∑
i=1

X
′

iXi

)−1{ N∑
i=1

X
′

i(Ŷ
(k)
i − α(k)

i γ(k))

}
,

CM-step 2: Given β and αi, the parameter γ is updated via

γ(k+1) = eig[
1

NT

N∑
i=1

(Ŷ
(k)
i −Xiβ

(k+1))(Ŷ
(k)
i −Xiβ

(k+1))′],
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CM-step 3: Given β and γt, the parameter α is updated via

α(k+1) = T−1(Ŷ (k) −Xβ(k+1))γ(k+1),

(4) Iterate until convergence.

The CM-step 2 calculates the R largest eigenvector of the matrix in brackets, arranged

in decreasing order. It imposes the normalizations of Condition 1 by using eigenvectors.

An alternative estimation procedure based on a QR decomposition that does not impose

Condition 1(ii) is also proposed below.

De�nition 4.3. The QR-based decomposition EM procedure for estimating a panel probit

model with multi-dimensional interactive �xed e�ects is de�ned by the following:

(1) Given initial (β(k), α
(k)
i , γ

(k)
t ), denote µ

(k)
it = X ′itβ

(k) + (α
(k)
i )′γ

(k)
t ,

(2) E-step: Calculate

Ŷ
(k)
it : = E[Y ∗it |Yit, Xit, β

(k), α
(k)
i , γ

(k)
t ]

= µ
(k)
it + (Yit − Φ(µ

(k)
it )) · φf (µ(k)

it )/{Φ(µ
(k)
it )(1− Φ(µ

(k)
it )},

(3) M-step: This contains three conditional maximization (CM) steps

CM-step 1: Given αi and γt, the parameter β is updated via

β(k+1) =

(
N∑
i=1

X
′

iXi

)−1{ N∑
i=1

X
′

i(Ŷ
(k)
i − α(k)

i γ(k))

}
,

CM-step 2: Given β and αi, the parameter γ is updated via

γ(k+1) = (Ŷ (k) −Xβ(k+1))′α(k)((α(k))′α(k))−1.

Compute the QR decomposition γ(k+1) = γ̃(k+1)RM and replace γ(k+1) by γ̃(k+1),

CM-step 3: Given β and γ̃, the parameter α is updated via

α(k+1) = (Ŷ (k) −Xβ(k+1))γ̃(k+1),

(4) Iterate until convergence.

Through the iterations, the columns of the updated values of γ are made orthonormal via

the QR decomposition (imposing normalization, but other decomposition methods can also
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be used), i.e., (γ̃(k+1))′γ̃(k+1) is orthonormal (IR). The QR decomposition is often used to

solve the linear least squares problem, and is the basis for a particular eigenvalue algorithm.

With additional restrictions, such as a full rank condition on γ and a sign restriction on RM ,

the QR decomposition method can achieve unique values of α and γ.

Note that the orthogonalization does not alter the convergence property. Let γ(k+1) be the

optimizer before orthogonalization. Then S(β, γ(k+1), α(k)) ≤ S(β, γ(k), α(k)). Let γ(k+1) =

γ̃(k+1)RM be the QR decomposition of γ(k+1), and let α̃(k) = α(k)R
′
M . Then α̃

(k)(γ̃(k+1))′ =

α(k)(γ(k+1))
′
, so S(β, γ̃(k+1), α̃(k)) = S(β, γ(k+1), α(k)), and, consequently, S(β, γ̃(k+1), α̃(k)) ≤

S(β, γ(k), α(k)).

4.2.1 Consistency

In general, the consistency proof contains two steps as shown in the proof for PPIF. The

�rst step involves the consistency of the conditional expectation, and the second checks the

assumptions needed for the consistency of the �linearized� model.

Assumption 3. (Bounded second-order derivative) ∂π2LNT (β, π) ≥ bmin.

Lemma 4.1. Under Assumption 3 and Assumption 1(i), (ii), and (iv), β̂IF−EM = β0+op(1).

Proof: See Appendix C.2.

5 Simulations

This section reports evidence on the �nite sample behavior of �xed e�ects estimators in

static models with strictly exogenous regressors. This includes several cases: no unobserved

e�ects, individual e�ects, additive individual and time e�ects, and interactive individual and

time e�ects. I analyze the performance of the generalized least square (GLS) method using

the R-package glm, which is available on CRAN, and the �xed e�ects EM-type estimators

in terms of bias and inference accuracy based on their asymptotic distribution. I also ana-

lyze the performance of the uncorrected and bias-corrected interactive �xed e�ects EM-type

estimators in terms of bias and inference accuracy. In particular, I compute the biases,

standard deviations, and root mean squared errors (RMSE) of the estimators, the ratio of

averaged standard errors to the simulation standard deviations (SE/SD); and the empirical

coverages of con�dence intervals with 95% nominal value (p; .95). All results are based on

500 replications.

The data generating processes are:
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• DGP-1: Yit = 1{Xitβ + εit > 0}, (i = 1, ..., N ; t = 1, ..., T ),

• DGP-2: Yit = 1{Xitβ + αi + εit > 0}, (i = 1, ..., N ; t = 1, ..., T ),

• DGP-3: Yit = 1{Xitβ + αi + γt + εit > 0}, (i = 1, ..., N ; t = 1, ..., T ),

• DGP-4: Yit = 1{Xitβ + αiγt + εit > 0}, i = 1, ..., N ; t = 1, ..., T ,

where β = 1, αi ∼ N(0, 1), γt ∼ N(0, 1), and Xit ∼ N(0, 1) are strictly exogenous with

respect to εit with εit ∼ N(0, 1).

Throughout, �No FE� refers to the probit without �xed e�ects; �FE i� refers to the probit

with individual �xed e�ects; �FE 2� refers to the probit with additive individual and time

�xed e�ects; �IF� refers to the probit with interactive �xed e�ects; �glm� refers to the GLS

estimator in R, while �EM� refers to the �xed e�ects EM-type estimators proposed. For

interactive �xed e�ects, I also implement the bias correction procedure proposed here; �BC-

IF� refers to the bias-corrected estimator. All the results are reported in percentages of the

true parameter value.

The simulation results are summarized in Table 1 for N = 100 and T = 8, 12, 20, and

in Table 2 for N=52 and T = 14, 26, 52. They show that in all the cases analyzed EM has

smaller biases and variances and compares favorably to glm. For example, for the case with

additive individual and time e�ects, when N = 100 and T = 12, the bias for glm is 21%,

whereas the EM estimator is only 11%. Even for the case without unobserved e�ects, when

N = 100 and T = 20, the bias for glm is 0.52%, whereas the EM estimator is only 0.11%. In

terms of RMSE, for the case of individual e�ects, when N = 52 and T = 14, the RMSE for

glm is 16%, whereas for the EM estimator it is 15%. When there is a bias, the results also

show that it is of the same order of magnitude as the standard deviation for the uncorrected

EM and glm estimator, and this causes severe undercoverage of the con�dence intervals.

The analytical bias correction removes the bias without increasing dispersion and produces

substantial improvements in terms of RMSE and coverage probabilities. For example, the

analytical bias correction reduces the RMSE by more than 4% and increases coverage by

around 20% in the N = 100 and T = 12 case.
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6 Empirical example

6.1 A gravity equation and the extensive margins of trade

Understanding how di�erent trade barriers in�uence trade �ows is key when one wants to

study the impact of distance, trade agreements, and other trade frictions. See Helpman et al.

(2008); Bernard et al. (2007); Charbonneau (2012). For my application, I use the same data

set as in Helpman et al. (2008), which consists of information on who trades with whom for

a large set of countries.

I illustrate the estimation and di�erence when including di�ering degrees of �xed e�ects,

namely the cases with no �xed e�ects, only individual �xed e�ects, additive individual and

time �xed e�ects, and interactive �xed e�ects. The �xed e�ects are importer and exporter

�xed e�ects for a single year, the year 1986. I obtain a balanced panel of 158 countries that

account for the majority of world trade. The probability of country j exporting to country

i is

Prob[Tradeij = 1|Xij, g(αi, γj)] = Φ(X ′ijβ + g(αi, γj)).

Here Xij contains Dij, representing the distance between country i's and country j's

most populated cities; Borderij, a dummy that takes the value 1 if i and j share a border;

Legalij, a dummy that takes the value 1 if the two countries have the same legal system;

Languageij, a dummy that takes the value 1 if i and j have the same o�cial language;

Colonyij, a dummy that takes the value 1 if i and j were ever in a colonial relationship;

Currencyij, a dummy that takes the value of 1 if the two countries use the same currency;

RTAij, a dummy that takes the value 1 if i and j are in a regional trade agreement; and,

�nally, αi and γj, respectively representing importer and exporter �xed e�ects.

The results of the e�ects of trade barriers are summarized in Table 3. After accounting

for exporter �xed e�ects the e�ect of a common currency decreases in magnitude from about

-0.45 to -0.16. This suggests that excluding exporter e�ects may overstate the decrease in

the likelihood of trade when trading partners share a common currency. The changes of

magnitude on language and region suggest that excluding exporter e�ects may understate

the importance of having the same language and the same religion. Similarly, the magnitude

changes of distance, from about -0.19 to -0.29, suggesting that excluding exporter e�ects

may understate the importance of distance. Importantly, the magnitude of the coe�cient

for border changes from 0.16 to -0.03 suggests overstating the importance of sharing a border.
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Note also that the e�ect of free trade agreements is rather robust to the inclusion or complete

omission of �xed e�ects. This suggests that perhaps the e�ect of a free trade agreement on

the likelihood of trade between a pair of countries does not depend on the exact trade network

of those countries; FTAs appear to increase the likelihood of trade regardless of which �xed

e�ects are included.

7 Conclusion

This paper presents an EM type method of estimating nonlinear panel data models with

multiple unobserved e�ects, allowing for interactions between the unobserved individual and

time speci�c e�ects. The method can be applied to models with individual e�ects, additive

individual and time e�ects, interactive e�ects and other general functional form of unob-

served e�ects. In �nite-sample simulations, the method outperform the existing generalized

least square methods for the models with individual e�ects and additive individual and time

e�ects in terms of both bias and variance. Furthermore, I derive the asymptotic distribu-

tion of the proposed EM estimator for the panel probit model with interactive �xed e�ects.

Analytical bias corrections are developed to deal with the incidental parameter problem for

both the estimates of the coe�cients and its associated average partial e�ects. Simulations

demonstrate the correction works well in reducing the bias and root mean squared error and

improves coverage rates. Finally for purpose of illustration, I use the example of interna-

tional trade networks demonstrating that misspecifying the �xed e�ects model can over or

understate the importance of certain factors on the likelihood of trade. A wide range of

future theoretical and empirical work can build upon the results of this paper. For example,

sample selection models with interactive e�ects or models with strategic interactions, such

as binary game models, could bene�t from and build on the approach proposed here.
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A Results of Section 2

A.1 Panel probit with additive individual and time e�ects

In this setting, I consider the following model

Y ∗it = X ′itβ + αi + γt + εit,

Yit = 1{Y ∗it ≥ 0}, (15)

for i = 1, ..., N and t = 1, ...., T . Here, Yit is a scalar outcome variable of interest, Xit is

a vector of explanatory variables, β is a �nite-dimensional parameter vector, the variables

αi and γt are unobserved individual and time e�ects that in economic applications capture

individual heterogeneity and aggregate shocks respectively.

Similarly to Section (2.1), I model the conditional distribution of Yit using the single-index

speci�cation

P (Yit = 1|Xit, β, αi, γt) = Φ(Xitβ + αi + γt),

and for estimation I adopt a �xed e�ects approach treating the unobserved individual

and time e�ects as parameters to be estimated. I collect all these e�ects in the vector

φNT = (α1, ..., αN , γ1, ..., γN)′. The true values of the parameters are denoted by β0 and

φ0
NT = (α0

1, ..., α
0
N , γ

0
1 , ..., γ

0
T )′. Other quantities of interest involve averages over the data

and unobserved e�ects

δ0
NT = Eφ[∆NT (β0, φ0

NT )], ∆NT (β, φNT ) = (NT )−1
∑
i,t

∆(Xit, β, αi, γt), (16)

and examples of partial e�ects (∆) are the following:

Example A.1. (Average partial e�ects) If Xit,k, the k-th element of Xit, is binary, its partial

e�ect for model (15) on the conditional probability of Yit is

∆(Xit, β, αi + γt) = Φ(βk +X
′

it,−kβ−k + αi + γt)− Φ(X
′

it,−kβ−k + αi + γt), (17)

where βk is the k-th element of β, and Xit,−k and β−k include all elements of Xit and β

except for the k-th element. If Xit,k is continuous, for model (15) the partial e�ects of Xit,k

on the conditional probability of Yit is

∆(Xit, αi, γt) = βkφf (X
′

itβ + αi + γt), (18)
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where φf (·) is the derivative of Φ.

De�nition A.1. The �xed e�ect EM estimator for panel probit with additive �xed e�ects

is de�ned by

(1) Given initial (β(k), α
(k)
i , γ

(k)
t ), denote µ

(k)
it = X ′itβ

(k) + α
(k)
i + γ

(k)
t ,

(2) E-step: Calculate

Ŷ
(k)
it : = E[Y ∗it |Yit, Xit, β

(k), α
(k)
i , γ

(k)
t ]

= µ
(k)
it + (Yit − Φ(µ

(k)
it )) · φf (µ(k)

it )/{Φ(µ
(k)
it )(1− Φ(µ

(k)
it )},

(3) M-step: This contains three conditional maximization steps

CM-step 1: Given αi and γt, the parameter β can be updated by

β(k+1) = (
N∑
i=1

T∑
t=1

XitX
′

it)
−1{

N∑
i=1

T∑
t=1

Xit(Ŷ
(k)
it − α

(k)
i − γ

(k)
t )},

CM-step 2: Given β and γt, the parameter αi can be updated by

α
(k+1)
i =

1

T

T∑
t=1

(Ŷ
(k)
it −X

′

itβ
(k+1) − γ(k)

t ),

CM-step 3: Given β and αi, the parameter γt can be updated by

γ
(k+1)
t =

1

N

N∑
i=1

(Ŷ
(k)
it −X

′

itβ
(k+1) − α(k+1)

i )

(4) Iterate until convergence.

Note that the CM-step 2 and CM-step 3 here are just the average over time and individual

using Ŷ
(k)
it as surrogate for Y ∗it .

A.2 Proof of Proposition 2.1

By second-order Taylor expansion, for any two arguments θ1 and θ2,

−logF (θ1) = −logF (θ2)− ∂logF (θ2)

∂θ2

(θ1 − θ2)− 1

2

∂2logF (θ)

∂2θ
|θ∗(θ1 − θ2)2.
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Denote h(θ) = −∂logF (θ)
∂θ

. Using the fact that −logF (qitzit) is strictly convex on (0, 1) for

logit and probit, and simple calculation shows 0 < −∂2logF (θ)
∂2θ

|θ∗ < 1, one has

−logF (θ1) ≤ −logF (θ2) + h(θ2)(θ1 − θ2) +
1

2
(θ1 − θ2)2,

by completing the square, this can be written as

−logF (θ1) ≤ −logF (θ2) +
1

2
(θ1 − θ2 + h(θ2))2 − 1

2
h2(θ2).

Now substitute qit(X
′
itβ + α′iγt) for θ1 and qit(X

′
itβ̃ + α̃′iγ̃t) for θ2, one has

−logF (qit(X
′
itβ + α′iγt)) ≤ −logF (qit(X

′
itβ̃ + α̃′iγ̃t)−

1

2
h2(qit(X

′
itβ̃ + α̃′iγ̃t))

+
1

2
((X ′itβ + α′iγt)− (X ′itβ̃ + α̃′iγ̃t) + qith(qit(X

′
itβ̃ + α̃′iγ̃t)))

2

sum over i and t to obtain the required results.

B Proofs of Section 3

B.1 Proof of Consistency for β̂PPIF

The proof contains two steps. In Step 1, I show the estimated index z̃it is a good approxi-

mation to zit with some structural error (the generalized residuals). In Step 2, I show the

structural error satis�es the assumption in Bai (2009b) for linear panel data models with

interactive �xed e�ects. With a little abuse of notation, in this section I use β̂ to denote

β̂PPIF which is the estimate of the EM procedure for panel probit models.

Step 1. Denote qit = 2Yit − 1. I prove the consistence directly from the likelihood

function

`it(β, αi, γt) = logΦ(qit(X
′

itβ + αiγt)), LNT =
1

NT

∑
i,t

`it =
∑
i,t

logΦ(qitzit),
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for any θ1 and θ2, the following is an upper bound for the negative log-likelihood:

−logΦ(θ1) ≤ −logΦ(θ2)− φf (θ2)

Φ(θ2)
(θ1 − θ2) +

1

2
(θ1 − θ2)2

= −logΦ(θ2) +
1

2
(θ1 − θ2 −

φf (θ2)

Φ(θ2)
)2 − 1

2
(
φf (θ2)

Φ(θ2)
)2,

where φf (·) is the Gaussian density. Substitute qitzit for θ1 and qitz̃it for θ2, then

−logΦ(qitzit) ≤ −logΦ(qitz̃it) +
1

2
(zit − z̃it + qit

φf (qitz̃it)

Φ(qitz̃it)
)2 − 1

2
(
φf (qitz̃it)

Φ(qitz̃it)
)2. (19)

Note, from the proof here, one can also infer using z̃it = zit + qit
φf (qitz̃it)

Φ(qitz̃it)
= zit +

Yit−Φ(zit)
Φ(zit)(1−Φ(zit))

φf (qitzit) is a good next step approximation, as the quadratic loss is a surrogate

for the Bernoulli log-likelihood function.

Step 2. Denote the structural error (generalized residual) as eit =
Yit−φf (zit)

Φ(zit)Φ(zit)
φf (qitzit).

One has Eφ[eit] = 0. Since the estimated parameters minimize the objective function, with

equation (19) one has

0 ≥ LNT (β0, φ0)− LNT (β̂, φ̂) ≥ 1

2NT

∑
i,t

[(z0
it − ẑit + eit)

2 − e2
it]

The consistency proof for β̂ is equivalent to that for the linear regression model with inter-

active �xed e�ects. In matrix notation, as in Section 4, the above inequality would be

1

NT
Tr(e′e) ≥ 1

NT
Tr[(X ′(β̂ − β0) + α̂γ̂ − α0γ0 − e)′(X ′(β̂ − β0) + α̂γ̂′ − α0γ0 − e)]

≥ 1

NT
Tr[(X ′(β̂ − β0)− e)′M(α̂,α0)(X

′(β̂ − β0)− e)]

where M(α̂,α0) = 1T − (α̂, α0)[(α̂, α0)′(α̂, α0)]−1(α̂, α0)′ is the projector that projects orthog-

onal to (α̂, α0).

With Assumption 1 (iv), which says that no linear combination of the regressors converges

to zero, even after projecting any factor loading α, one has 1
NT
Tr(Xe′) = op(1), and E[eit] =

0. One can also check that ‖e‖ = op(
√
NT ). The assumption 1

NT
Tr(XX ′) = Op(1) is
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satis�ed from the distributional assumption on the regressors above. One then has

| 1

NT
Tr(e′M(α̂,α0)Xk)| ≤

1

NT
|Tr(e′Xk)|+

1

NT
|Tr(e′P(α̂,α0)Xk)|

≤ op(1) +
2

NT
‖e‖‖Xk‖ = op(1).

Under these, one has

0 ≥ c‖β̂ − β‖+ op‖β̂ − β0‖+ op(1),

from which it is concluded that β̂ = β0 + op(1).

B.2 Proofs of Theorems 3.1 and 3.2

In the section, I suppress the dependence on NT of all the sequences of functions and

parameters to lighten the notation, e.g. I write L for LNT and φ for φNT . It is also convenient
to introduce some notation that will be extensively used in the analysis. Let

S(β, φ) = ∂φL(β, φ) H(β, φ) = −∂φφ′L(β, φ),

where ∂xf denotes the partial derivative of f with respect to x, and additional subscripts

denote higher-order partial derivatives. I refer to the dim φ -vector S(β, φ) as the incidental

parameter score, and to the dim φ× dim φ matrix H(β, φ) as the incidental parameter

Hessian. I omit the argument of the functions when they are evaluated at the true parameter

values (β0, φ0), e.g. H = H(β0, φ0). I use a bar to indicate expectations, e.g. ∂βL̄ = E[∂βL],

and a tilde to denote that the variables are in deviation with respect to their expectations,

e.g. ∂βL̄ = ∂βL − ∂βL̄. For c ≥ 0, I de�ne the sets B(c, β0) = {β : ‖β − β0‖∞ ≤ c}, and
Bq(c, β0, φ0) = {(β, φ) : ‖β − β0‖ < c, ‖φ − φ0‖q < c}, which are closed balls of radius c

around the true parameters β0 and (β0, φ0), respectively, under the L2 norm and Lq-norm.

Analogous to Ξit de�ned in Eq (13), I de�ne

Λit = − 1

NT

N∑
j=1

T∑
τ=1

(H−1

(αα)ijγ
0
τγ

0
t +H−1

(αγ)iτα
0
jγ

0
t +H−1

(γα)tjγ
0
τα

0
i +H−1

(γγ)tτα
0
jα

0
i )∂π`jτ

and analogous to Dβ`it de�ned in the main text I also de�ne Dβ∆it = ∂β∆it − ∂π∆itΞit.

With a little abuse of notation, in this section I use β̂ to denote β̂PPIF which is the

estimate of the EM procedure for panel probit models.
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A close look at the iterative EM procedure yields

β̂(k+1) = (
∑
i,t

XitX
′

it)
−1
∑
i,t

Xit(Ŷ
(k)
it − α̂

(k)
i γ

(k)
t )

= β(k) + (X ′X)−1∂βL(β(k), φ̂(β(k))), (20)

which depends on the score of the pro�le likelihood function.

For r ≥ 0, de�ne the sets B(r, β0) = {β : ‖β−β0‖ ≤ r}, and Bq(r, φ0) = {φ : ‖φ−φ0‖q ≤
r}, which are closed balls of radius r around the true parameter values β0 and φ0, respectively.

Before going to the proof of Theorems 3.1 and 3.2, I �rst introduce two lemmas that will

be used.

Lemma B.1. (Asymptotic expansions of β̂). Let Assumption 1 hold. Then

√
NT (β̂ − β0) = W

−1

∞ U + op(1),

where U = U (0) + U (1), W∞ := limN,T→∞W exists with W∞ > 0, and

W = − 1

NT

N∑
i=1

T∑
t=1

[Eφ(∂ββ′`it) + Eφ(−∂π2`it)ΞitΞ
′

it],

U (0) =
1√
NT

N∑
i=1

T∑
t=1

Dβ`it,

U (1) =
1√
NT

N∑
i=1

T∑
t=1

{−Λit[Dβπ`it − E(Dβπ`it)] +
1

2
Λ2
itE(Dβπ2`it)}.

Proof. The proof follows from using Theorem B.1 of Fernández-Val and Weidner (2014) and

applying Lemma D.1. From Theorem B.1 of Fernández-Val and Weidner (2014),

√
NT∂βL(β, φ̂(β)) = U −W

√
NT (β − β0) +R(β),

with

W = −(∂ββ′L+ [∂βφ′L]H−1
[∂φβ′L]),

hence applying Lemma D.1 (ii) yields

W = − 1

NT

N∑
i=1

T∑
t=1

[Eφ(∂ββ′`it) + Eφ(−∂π2`it)ΞitΞ
′

it]. (21)
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Similarly, applying Theorem B.1 of Fernández-Val and Weidner (2014) yields

U (0) =
√
NT (∂βL+ [∂βφ′L̄]H−1S),

U (1) =
√
NT ([∂βφ′L̃]H−1S − [∂βφ′L]H−1H̃H−1S)

+
√
NT

dimφ∑
g=1

(∂βφ′φgL+ [∂βφ′L]H−1
[∂φφ′φgL])[H−1S][H−1S]g/2.

By using Lemma D.1 (i),

U (0) =
1√
NT

N∑
i=1

T∑
t=1

(∂β`it − Ξit∂π`it) =
1√
NT

N∑
i=1

T∑
t=1

Dβ`it. (22)

Decompose U (1) = U (1a) + U (1b), with

U (1a) =
√
NT ([∂βφ′L̃]H−1S − [∂βφ′L]H−1H̃H−1S),

and

U (1b) =
√
NT

dimφ∑
g=1

(∂βφ′φgL+ [∂βφ′L]H−1
[∂φφ′φgL])[H−1S][H−1S]g/2.

By using Lemma D.1 (i) and (iii),

U (1a) = − 1√
NT

N∑
i=1

T∑
t=1

Λit(∂βπ ˜̀it + Ξit∂π2 ˜̀it) = − 1√
NT

N∑
i=1

T∑
t=1

Λit[Dβπ`it − Eφ(Dβπ`it)],

and

U (1b) =
1

2
√
NT

N∑
i=1

T∑
t=1

Λ2
it[Eφ(∂βπ2`it) + [∂βφ′L]H−1Eφ(∂φ∂π2`it)],

where for each i, t it is the case that ∂φ∂π2`it is a dim φ-vector, which can be written as

∂φ∂π2`it =

 A1T

A′1N

 for an N × T matrix A with elements Ajτ = ∂π3`jτ if j = i and τ = t,

and Ajτ = 0 otherwise. Thus, again applying Lemma D.1(i) yields [∂βφ′L̄]H−1
∂φ∂π2`it =
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−
∑

j,τ Ξjτδ(i=j)δ(t=τ)∂π3`it = −Ξit∂π3`it. Therefore

U (1b) =
1

2
√
NT

N∑
i=1

T∑
t=1

Λ2
itE(∂βπ2`it − Ξit∂π3`it) =

1

2
√
NT

N∑
i=1

T∑
t=1

Λ2
itEφ(Dβπ2`it),

hence

U (1) =
1√
NT

N∑
i=1

T∑
t=1

{−Λit[Dβπ`it − E(Dβπ`it)] +
1

2
Λ2
itE(Dβπ2`it)}. (23)

Lemma B.2. (Asymptotic expansion of δ̂). Let Assumptions 1 and 2 hold and let ‖β̂−β0‖ =

Op((NT )−1/2) = op(rβ). Then

√
NT (δ̂ − δ) = V

(0)
∆ + V

(1)
∆ + op(1),

where

V
(0)

∆ = [
1

NT

∑
i,t

Eφ(Dβ∆it)]
′W
−1

∞ U
(0) − 1√

NT

∑
i,t

Eφ(Ψit)∂π`it,

V
(1)

∆ = [
1

NT

∑
i,t

Eφ(Dβ∆it)]
′W
−1

∞ U
(1) +

1√
NT

∑
i,t

Λit[Ψit∂π2`it − Eφ(Ψit)Eφ(∂π2`it)]

+
1

2
√
NT

∑
i,t

Λ2
it[Eφ(∂π2`it)− Eφ(∂π3`it)Eφ(Ψit)].

Proof. The proof follows from using Theorem B.4 of Fernández-Val and Weidner (2014) and

applying Lemma D.1. Theorem B.4 of Fernández-Val and Weidner (2014) implies

δ̂ − δ = [∂β′∆ + (∂φ′∆)H−1
(∂φβ′L)](β̂ − β0) + U

(0)
∆ + U

(1)
∆ + op(1/

√
NT ), (24)

with

U
(0)
∆ = (∂φ′∆)H−1S,

U
(1)
∆ = (∂φ′∆̃)H−1S − (∂φ∆)H−1H̃H−1S

+
1

2
S ′H−1

[∂φφ′∆ +

dimφ∑
g=1

[∂φφ′φgL][H−1
(∂φ∆)]g]H

−1S.
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By using Lemma D.1,

√
NTU

(0)
∆ = − 1√

NT

∑
i,t

Eφ(Ψit)∂π`it, (25)

√
NTU

(1)
∆ =

1√
NT

∑
i,t

Λit[Ψit∂π2`it − Eφ(Ψit)Eφ(∂π2`it)]

+
1

2
√
NT

∑
i,t

Λ2
it[Eφ(∂π2∆it)− Eφ(∂π3`it)Eφ(Ψit)]. (26)

From the proof of Lemma B.1 and the following proof of Theorem 3.1, it follows that√
NT (β̂ − β0) = W

−1

∞ U + op(1) = Op(1), by Lemma D.1,

√
NT [∂β′∆ + (∂φ′∆)H−1

(∂φβ′L)](β̂ − β0) = [
1

NT

∑
i,t

Eφ(Dβ∆it)]
′
W
−1

∞ (U (0) + U (1)) + op(1).

(27)

Combining equations 24, 25, 26 and 27 gives the result.

B.2.1 Proof of Asymptotics for β̂PPIF

I characterize the asymptotic distribution of β̂ from the limit average Hessian W∞ and the

limiting distribution of the approximated score U . Next two steps are to get the eventual

result.

Step 1 shows U (0) d−→ N(0,W∞). In the likelihood setting E∂βL = 0, ES = 0, and, by the

Bartlett identities E(∂βL∂β′L) = − 1
NT
∂ββ′L, E(∂βLS ′) = − 1

NT
∂βφ′L̄ , and E(SS ′) = 1

NT
H.

Denote v = ((α0)′,−(γ0)′)′, S ′v = 0 and ∂βφ′L̄v = 0.

From the de�nitionsW = −(∂ββ′L+[∂βφ′L]H−1
[∂φβ′L]) and U (0) =

√
NT (∂βL+[∂βφ′L]H−1S),

E(U (0)) = 0, V ar(U (0)) = W (28)

which implies limN,T→∞V ar(U
(0)) = W∞.

According to Lemma B.1

U (0) =
1√
NT

N∑
i=1

T∑
t=1

Dβ`it, (29)
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where Dβ`it := ∂β`it−∂π`itΞit is a martingale di�erence sequence for each i and independent

across i, conditional on φ. Applying Theorem 2.3 in McLeish (1974) yields

U (0) d−→ N [0, lim
N,T→∞

V ar(U (0))] ∼ N(0,W∞) (30)

Step 2 shows that U (1) →P κB̄∞ + κ−1D̄∞. Since U (1) = U (1a) + U (1b), with

U (1a) = − 1√
NT

∑
i,t

Λit[Dβπ`it − Eφ(Dβπ`it)]

and

U (1b) =
1

2
√
NT

N∑
i=1

T∑
t=1

Λ2
itEφ(Dβπ2`it)

Plugging-in the de�nition of Λit, I decompose U
(1a) = U (1a,1) + U (1a,2) + U (1a,3) + U (1a,4),

where

U (1a,1) =
1

(NT )3/2

∑
i,j

H−1

(αα)ij(
∑
τ

∂π`jτγ
0
τ )
∑
t

(Dβπ`it − EφDβπ`it)γ
0
t ,

U (1a,2) =
1

(NT )3/2

∑
t,j

H−1

(γα)tj(
∑
τ

∂π`jτγ
0
τ )
∑
i

(Dβπ`it − EφDβπ`it)α
0
i ,

U (1a,3) =
1

(NT )3/2

∑
i,τ

H−1

(αγ)iτ (
∑
j

∂π`jτα
0
j )
∑
t

(Dβπ`it − EφDβπ`it)γ
0
t ,

U (1a,4) =
1

(NT )3/2

∑
t,τ

H−1

(γγ)tτ (
∑
j

∂π`jτα
0
j )
∑
i

(Dβπ`it − EφDβπ`it)α
0
i .

By the Cauchy-Schwarz inequality applied to the sum over t in U (1a,2),

(U (1a,2))2 ≤ 1

(NT )3
[
∑
t

(
∑
j,τ

H−1

(γα)tj∂π`jτγ
0
τ )

2][
∑
t

(
∑
i

(Dβπ`it − EDβπ`it)α
0
i )

2]

=
1

(NT )3
[
∑
t

Op(NT )][
∑
t

Op(N)] = Op(1/N) = op(1)

Using that bothH−1

(γα)∂π`jτγ
0
τ and (Dβτ`it−EDβπ`it)α

0
i are mean zero, independent across
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i.

Therefore, U (1a,2) = op(1). Analogously U (1a,3) = op(1).

According to Lemma B.5, it is the case thatH−1

(αα) = −diag[( 1
NT

∑T
t=1 Eφ(∂π2`it(γ

0
t )

2))−1]+

Op(1). Analogously to the proof of U (1a,2), the Op(1) part of H−1

(αα) has an asymptotically

negligible contribution to U (1a,1). Thus,

U (1a,1) =
1

(NT )3/2

∑
i,j

H−1

(αα)ij(
∑
τ

∂π`jτγ
0
τ )
∑
t

(Dβπ`it − EφDβπ`it)γ
0
t

= − 1

(NT )1/2

∑
i

(
∑
τ

∂π`iτγ
0
τ )
∑
t

(Dβπ`it − EφDβπ`it)γ
0
t∑T

t=1 Eφ(∂π2`it(γ0
t )

2)
+ op(1)

previous assumptions guarantee that Eφ[(U
(1a,1)
i )2] = Op(1), uniformly over i. Note that

both the denominator and the numerator of U
(1a,1)
i are of order T . For the denominator this

is obvious because of the sum over T . For the numerator there are two sums over T , but both

∂π`iτγ
0
τ and (Dβπ`it−Eφ(Dβπ`it))γ

0
t are mean zero weakly correlated processes, the sum over

which is of order
√
T each. By applying the WLLN over i, 1

N

∑
i

U
(1a,1)
i = 1

N
EφU (1a)

i + oP (1),

and therefore

U (1a,1) = −
√
N

T

1

N

N∑
i=1

T∑
t=1

T∑
τ=t

Eφ(∂π`itDβπ`iτγ
0
t γ

0
τ )∑T

t=1 Eφ(∂π2`it(γ0
t )

2)︸ ︷︷ ︸
≡
√

N
T
B

(1)

+ op(1).

Here, I use that Eφ(∂π`itDβπ`iτ ) = 0 for t > τ . Analogously,

U (1a,4) = −
√
T

N

1

T

T∑
t=1

N∑
i=1

Eφ(∂π`itDβπ`it(α
0
i )

2)

N∑
i=1

Eφ(∂π2`it(α0
i )

2)︸ ︷︷ ︸
≡
√

T
N
D

(1)

+ op(1).

hence U (1a) = κB
(1)

+ κ−1D
(1)

+ op(1).

Next, I analyze U (1b). I decompose Λit = Λ
(1)
it + Λ

(2)
it + Λ

(3)
it + Λ

(4)
it , where
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Λ
(1)
it = − 1

NT

N∑
j=1

H−1

(αα)ijγ
0
t

T∑
τ=1

∂π`jτγ
0
τ , Λ

(2)
it = − 1

NT

N∑
j=1

H−1

(γα)tjα
0
i

T∑
τ=1

∂π`jτγ
0
τ ,

Λ
(3)
it = − 1

NT

T∑
τ=1

H−1

(αγ)iτγ
0
t

N∑
j=1

∂π`jτα
0
j , Λ

(4)
it = − 1

NT

T∑
τ=1

H−1

(γγ)tτα
0
i

N∑
j=1

∂π`jτα
0
j .

This decomposition of Λit includes the following decomposition of U (1b)

U (1b) =
4∑

p,q=1

U (1b,p,q), U (1b,p,q) =
1

2
√
NT

∑
i,t

Λ
(p)
it Λ

(q)
it Eφ(Dβπ2`it).

Due to symmetry U (1b,p,q) = U (1b,q,p) this is a decomposition into 10 distinct terms.

Consider U (1b,1,2),

U (1b,1,2) = 1√
NT

N∑
i=1

U
(1b,1,2)
i , with

U
(1b,1,2)
i = 1

2T

T∑
t=1

γ0
tEφ(Dβπ2`it)

1
N2

N∑
j1,j2=1

H−1

(αα)ij1
H−1

(γα)tj2
α0
i (

1√
T

T∑
τ=1

∂π`j1τγ
0
τ )(

1√
T

T∑
τ=1

∂π`j2τγ
0
τ ).

Using Eφ(
∑
t

∂π`itγ
0
t ) = 0, Eφ(

∑
t

∂π`itγ
0
t

∑
j

∂jτγ
0
τ ) for i 6= j, and the properties of the inverse

expected Hessian from Theorem B.5 one �nds Eφ[U
(1b,1,2)
i ] = Op(1/N), uniformly over i, and

Eφ[(U
(1b,1,2)
i )2] = Op(1), uniformly over i, and Eφ[U

(1b,1,2)
i U

(1b,1,2)
j ] = Op(1/N), uniformly over

i 6= j. This implies that EφU (1b,1,2) = Op(1/N), and Eφ[(U (1b,1,2)−EφU (1b,1,2))2] = Op(1/
√
N),

and therefore U (1b,1,2) = op(1). By similar arguments one obtains U (1b,p,q) = op(1) for all

combinations of p, q = 1, 2, 3, 4, except for p = q = 1 and p = q = 4.

For p = q = 1, U (1b,1,1) = 1√
NT

N∑
i=1

U
(1b,1,1)
i , and

U
(1b,1,1)
i = 1

2T

T∑
t=1

(γ0
t )

2Eφ(Dβπ2`it)
1
N2

N∑
j1,j2=1

H−1

(αα)ij1
H−1

(αα)ij2
( 1√

T

T∑
τ=1

∂π`j1τγ
0
τ )(

1√
T

T∑
τ=1

∂π`j2τγ
0
τ ).

Analogous to the result for U (1b,1,2) one �nds Eφ[(U (1b,1,1) − EφU (1b,1,1))2] = Op(1/
√
N),

and therefore U (1b,1,1) = EφU (1b,1,1) + op(1).
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Furthermore,

EφU (1b,1,1) =
1

2
√
NT

N∑
i=1

∑T
t=1(γ0

t )
2Eφ(Dβπ2`it)Eφ[(∂π`itγ

0
t )

2]

[
∑T

t=1(γ0
t )

2Eφ(∂π2`it)]2
+ o(1)

= −
√
N

T

1

2N

N∑
i=1

T∑
t=1

(γ0
t )

2Eφ(Dβπ2`it)

T∑
t=1

(γ0
t )

2Eφ(∂π2`it)︸ ︷︷ ︸
≡
√

N
T
B

(2)

+ o(1),

analogously,

U (1b,4,4) = EφU (1b,4,4) + op(1) = −
√
T

N

1

2T

T∑
t=1

∑N
i=1(α0

i )
2Eφ(Dβπ2`it)∑N

i=1(α0
i )

2Eφ(∂π2`it)︸ ︷︷ ︸
≡
√

T
N
D

(2)

+ op(1),

thus U (1b) = κB
(2)

+ κ−1D
(2)

+ op(1).

Since B∞ = limN,T→∞[B
(1)

+B
(2)

] and D∞ = limN,T→∞[D
(1)

+D
(2)

], then U (1) = κB∞+

κ−1D∞ + op(1).

I have shown U (0) d−→ N(0,W∞), and U (1) p−→ κB∞ + κ−1D∞. Using this and Lemma

B.1 I obtain √
NT (β̂ − β0)

d−→ W
−1

∞ N(κB∞ + κ−1D∞,W∞).

B.2.2 Proof of asymptotic distribution of APE

I consider the case of scalar ∆it to simplify the notation. Decompose

√
NT (δ̂ − δ0

NT −B
δ

∞/T −D
δ

∞/N) =
√
NT (δ − δ0

NT ) +
√
NT (δ̂ − δ −Bδ

∞/T −D
δ

∞/N).

# Part (1): Limit of
√
NT (δ̂ − δ − B

δ

∞/T − D
δ

∞/N). An argument analogous to the

proof of 3.1 using Lemma B.2 yields

√
NT (δ̂ − δ) d→ N(κB

δ

∞ + κ−1D
δ

∞, V
δ(1)

∞ ),

where V
δ(1)

∞ = E{(NT )−1
∑

i,t Eφ[Γ2
it]}, for the expressions of B

δ

∞, D
δ

∞, and Γit given in the
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statement of the theorem. Then, by Mann-Wald theorem

√
NT (δ̂ − δ −Bδ

∞/T −D
δ

∞/N)
d→ N(0, V

δ(1)

∞ ).

# Part (2): Limit of
√
NT (δ − δ0

NT ). Here I show that
√
NT (δ − δ0

NT )
d→ N(0, V

δ(2)

∞ )

and characterize the asymptotic variance V
δ(2)

∞ . I characterize V
δ(2)

∞ as V
δ(2)

∞ = E{NTE[(δ −
δ0
NT )2]}, because E[δ − δ0

NT ] = 0. Note, the rate
√
NT is determined through E[(δ − δ0

NT )2],

where

E[(δ − δ0
NT )2] = E[(

1

NT

∑
i,t

∆̃it)
2] =

1

N2T 2

∑
i,j,t,s

E[∆̃it∆̃js], (31)

for ∆̃it = ∆it − E(∆it). The order of E[(δ − δ0
NT )2] is equal to the number of terms of the

sums in equation (31) that are nonzero, which is determined by the sample properties of

{(Xit, αi, γt) : 1 ≤ i ≤ N, 1 ≤ t ≤ T}. Under Assumption 2(i)

E[(δ − δ0
NT )2] =

1

N2T 2

∑
i,t,s

E[∆̃it∆̃is] = O(N−1),

because {∆̃it : 1 ≤ i ≤ N ; 1 ≤ t ≤ T} is independent across i and α-mixing across t.
#Part(3): Limit of

√
NT (δ̂− δ0

NT − T−1B
δ

∞−N−1D
δ

∞).The conclusion of the Theorems

follows because (δ − δ0
NT ) and (δ̂ − δ − T−1B

δ

∞ − N−1D
δ

∞) are asymptotically independent

and V
δ

∞ = V
δ(2)

+ V
δ(1)

.

B.3 Proofs of Theorems 3.3 and 3.4

I start by stating a lemma that is going to be used for this section. It corresponds to Lemma

C.2 of Fernández-Val and Weidner (2014) and the proof is omitted for brevity.

Lemma B.3. Let G(β, φ) := 1
N(T−j)

∑
i,t≥j+1 g(Xit, Xi,t−j, β, αiγt, αiγt−j) for 0 ≤ j < T , and

B0
ε be a subset of Rdimβ+2 that contains an ε-neighborhood of (β, π0

it, π
0
i,t−j) for all i, t, j, N, T ,

and for some ε > 0. Assume that (β, π1, π2)→ gitj(β, π1, π2) := g(Xit, Xi,t−j, β, π1, π2) is Lip-

schitz continuous over B0
ε a.s., i.e. |gitj(β1, π11, π21)−gitj(β0, π10, π20)| ≤Mitj‖(β1, π11, π21)−

(β0, π10, π20)‖ for all (β1, π11, π21) ∈ B0
ε , (β0, π10, π20) ∈ B0

ε , and some Mitj = Op(1) for all

i, t, j, N, T . Let (β̂, φ̂) be an estimator of (β, φ) such that ‖β̂− β0‖ p→ 0 and ‖φ̂−φ0‖∞
p→ 0.

Then,

G(β̂, φ̂)
p→ E[G(β0, φ0)],

provided that the limit exists.
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This lemma shows the consistency of the estimators of averages of the data and param-

eters. I will use this result to show the validity of the analytical bias corrections and the

consistency of the variance estimators.

B.3.1 Proof of Theorem 3.3

I separate the proof in two parts corresponding to the two statements of the theorem.

Part I: Proof of Ŵ
p→ W∞. The asymptotic variance and its estimators can be expressed

as W∞ = E[W (β0, φ0)] and Ŵ = W (β̂, φ̂), where W (β, φ) has a �rst order representation as

a continuously di�erentiable transformation of terms that have the form of G(β, φ) in Lemma

B.3.The result then follows by the continuous mapping theorem noting that ‖β̂ − β0‖ p−→ 0

and ‖φ̂− φ0‖∞
p→ 0.

Part II: Proof of
√
NT (β̃A − β0)

d→ N(0,W
−1

∞ ). I show that B̂
p→ B∞ and D̂

p→ D∞.

These asymptotic biases and their �xed e�ects estimators are either time-series averages of

fractions of cross-sectional averages, or vice versa. The nesting of the averages makes the

analysis a bit more cumbersome than the analysis of Ŵ , but the results follows by similar

standard arguments, also using that L → ∞ and L/T → 0 guarantee that the trimmed

estimator in B̂ is also consistent for the spectral expectations; see Lemma 6 in Hahn and

Kuersteiner (2011).

B.3.2 Proof of Theorem 3.4

I separate the proof into two parts corresponding to the two statements of the theorem.

Part I: V̂ δ p→ V
δ

∞. V
δ

∞ and V̂ δ have a similar structure to W∞ and Ŵ in part I of the

proof of Theorem 3.3, so that the consistency follows by an analogous argument.

Part II:
√
NT (δ̃A − δ0

NT )
d→ N(0, V

δ

∞). As in the proof of Theorem 3.2, I decompose

√
NT (δ̃A − δ0

NT ) =
√
NT (δ − δ0

NT ) +
√
NT (δ̃A − δ).

Then, by Mann-Wald theorem,

√
NT (δ̃A − δ) =

√
NT (δ̂ − B̂δ/T − D̂δ/N − δ) d→ N(0, V

δ(1)

∞ ),

provided that B̂δ p→ B
δ

∞ and D̂δ p→ D
δ

∞, and
√
NTδ − δ0

NT )
d→ N(0, V

δ(2)

∞ ), where V
δ(1)

∞

and V
δ(2)

∞ are de�ned as in the proof of Theorem 3.2. The statement thus follows by using a
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similar argument to part II of the proof of Theorem 3.3 to show the consistency of B̂δand D̂δ,

and because (δ− δ0
NT ) and (δ̃A− δ) are asymptotically independent, and V δ

∞ = V
δ(2)

+V
δ(1)

.

B.4 Properties of the Inversed Expected Incidental Parameter Hessian

The following two lemmas would be used in the proof of asymptotic distributions of β and

δ.

Lemma B.4. Let Assumption 1 hold, then ‖H−1

(αα)H(αγ)‖∞ < 1− bmin

bmax
, and ‖H−1

(γγ)H(γα)‖∞ <

1− bmin

bmax
.

Proof. Let hit = E(−∂π2`it), Assumption 1 guarantees that bmin ≤ hit ≤ bmax, therefore

‖H−1

(αα)H(αγ)‖∞ = max
i

∑
t |α0

i γ
0
t hit|∑

t(γ
0
t )

2hit
= 1−max

i

∑
t((γ

0
t )

2 − |α0
i γ

0
t |)hit∑

t(γ
0
t )

2hit

≤ 1−
‖γ0‖2 −min

i
|α0
i |‖γ0‖1

‖γ0‖2

bmin

bmax

similar,

‖H−1

(γγ)H(γα)‖∞ = max
t

∑
i |α0

i γ
0
t hit|∑

i(α
0
i )

2hit
= 1−max

t

∑
i((α

0
i )

2 − |α0
i γ

0
t |)hit∑

i(α
0
i )

2hit

≤ 1−
‖α0‖2 −min

t
|γ0
t |‖α0‖1

‖α0‖2

bmin

bmax

Since ‖α0‖2 ≥ 1
N
‖α0‖2

1, as long as 1
N
‖α0‖1 ≥ min

t
|γ0
t |, ‖H

−1

(αα)H(αγ)‖∞ ≤ 1 − bmin

bmax
; similarly

since‖γ0‖2 ≥ 1
T
‖γ0‖2

1, as long as
1
T
‖γ0‖1 ≥ min

i
|α0
i |, ‖H

−1

(γγ)H(γα)‖∞ ≤ 1− bmin

bmax
.

Lemma B.5. Under Assumption 1,

‖H−1 − diag(H(αα),H(γγ))
−1‖max = Op(1).

Proof. By the inversion formula for partitioned matrices

H−1
=

 A −AH(αγ)H
−1

(γγ)

−H−1

(γγ)H(γα)A H−1

(γγ) +H−1

(γγ)H(γα)AH(αγ)H
−1

(γγ)

 ,
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with

A ≡ (H(αα) −H(αγ)H
−1

(γγ)H(γα))
−1 = H−1

(αα)(I−H
−1

(αα)H(αγ)H
−1

(γγ)H(γα))
−1

= H−1

(αα)

∞∑
n=0

(H−1

(αα)H(αγ)H
−1

(γγ)H(γα))
n.

De�ne

B ≡
∞∑
n=1

(H−1

(αα)H(αγ)H
−1

(γγ)H(γα))
n,

then A = H−1

(αα) +H−1

(αα)B. By using the matrix norm property that‖AB‖max ≤ ‖A‖∞‖B‖max

and Lemma B.4

‖B‖max ≤
∞∑
n=1

(H−1

(αα)H(αγ)H
−1

(γγ)H(γα))
n‖H−1

(αα)‖∞‖H(αγ)‖max‖H
−1

(γγ)‖∞‖H
−1

(γα)‖max

≤ [
∞∑
n=1

(1− bmin

bmax

)2n]T‖H−1

(αα)‖∞‖H
−1

(γγ)‖∞‖H(αγ)‖2
max = O(N−1).

From this I obtain

‖A‖∞ ≤ ‖H
−1

(αα)‖∞ +N‖H−1

(αα)‖∞‖B‖max = O(N).

From the di�erent blocks of

H−1 −D−1
=

 A−H−1

(αα) −AH(αγ)H
−1

(γγ)

−H−1

(γγ)H(γα)A H−1

(γγ)H(γα)AH(αγ)H
−1

(γγ)


it can be seen that

‖A−H−1

(αα)‖max = ‖H−1

(αα)B‖max ≤ ‖H
−1

(αα)‖∞‖B‖max = Op(1),

‖ − AH(αγ)H
−1

(γγ)‖max ≤ ‖A‖∞‖H(αγ)‖max‖H
−1

(γγ)‖∞ = Op(1)

‖H−1

(γγ)H(γα)AH(αγ)H
−1

(γγ)‖max ≤ ‖H−1

(γγ)‖2
∞‖H(γα)‖∞‖A‖∞‖H(αγ)‖max

≤ N‖H−1

(γγ)‖2
∞‖A‖∞‖H(γα)‖2

max = Op(1)

Having the bound Op(1) for the max-norm of each block of the matrix yields also the same

bound for the max-norm of the matrix itself, as desired.
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This result establishes that H−1
can be uniformly approximated by a diagonal ma-

trix, which is given by the inverse of the diagonal terms of H. The diagonal elements of

diag(H(αα),H(γγ))
−1 are of order N and T respectively, hence the order of di�erence estab-

lished by the lemma is relatively small.

With this result, ‖H−1‖∞ ≤ ‖H
−1 − D−1‖∞ + ‖D−1‖∞ ≤ (N + T )‖H−1 − D−1‖max +

‖D−1‖∞ = Op(N) which can be used to verify the assumption in the proof of Theorem B.1

of Fernández-Val and Weidner (2014).

C Proof of Section 4

C.1 Compare with existing methods

C.1.1 Proof of Proposition 4.1

The proof is mainly for the case without unobserved e�ects, but similarly argument can be

used to the proof of other cases.

The model looks Yit = 1{X ′itβ + εit ≥ 0}, and εit is normally distributed with variance

1. When estimating the structural parameter of probit using MLE,

β ∈ arg max
β∈Θ

LNT =
∑
i,t

`it =
∑
i,t

YitlogΦ(X
′

itβ) + (1− Yit)log(1− Φ(X
′

itβ)),

and then the score of β is

∑
i,t

Xit{Yit
φf (X

′
itβ)

Φ(X
′
itβ)

− (1− Yit)
φf (X

′
itβ)

1− Φ(X
′
itβ)︸ ︷︷ ︸

g̃it(β)

} = 0⇔
∑
i,t

Xit{
Yit − Φ(X

′
itβ)

Φ(X
′
itβ)(1− Φ(X

′
itβ))

φf (X
′

itβ)} = 0,

which relates to the generalized residuals part of EM,

Ŷit = Xitβ + Yit · φf (Xitβ)/Φ(Xitβ)− (1− Yit) · φf (Xitβ)/{1− Φ(Xitβ)}︸ ︷︷ ︸
git(β)

,

= Xitβ + (Yit − Φ(Xitβ)) · φ(Xitβ)/{Φ(Xitβ)(1− Φ(Xitβ))},

and

β = (
N∑
i=1

T∑
t=1

XitX
′

it)
−1{

N∑
i=1

T∑
t=1

X
′

itŶit}.
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Denote µ
(k)
it = X

′
itβ

(k), the score function is of β is zero, i.e. the unique �xed-point

property, means that,

N∑
i=1

T∑
t=1

X
′

it((Yit − Φ(X
′

itβ)) · φf (X
′

itβ)/{Φ(X
′

itβ)(1− Φ(X
′

itβ))}) = 0⇒ β(k) = β0,

this is due to the identi�cation condition that

E0[git(β
0)|Xit] = E0[E[εit|Yit, Xit, β

0]|Xit] = E0[εit|Xit] = 0.

By central limit theory for the score

√
NTE[∇βlit] =

√
NTE[

∑
i,t

Xitgit(β)]
d→ N(0, E

φ2
it

Φit(1− Φit)
XitX

′
it),

with V ar(
∑
i,t

Xitg̃it(β)) = V ar(
∑
i,t

Xit
Yit−Φ(Xitβ)

Φ(Xitβ)(1−Φ(Xitβ))
φf (X

′
itβ)). Since V ar(Yit−Φ(X ′itβ)|Xit) =

Φ(X ′itβ)(1− Φ(X ′itβ)),

√
NT (β̂ − β)

d−→ N(0, [E
φ2
it

Φit(1− Φit)
XitXit]

−1)

for both EM and MLE.

C.1.2 Proof of Proposition 4.2

This is to show the di�erence between the proposed �xed e�ects EM-type estimator and the

Newton's method as described in Greene (2003).

From the E-step, one has Ŷ
(k)
it = X

′
itβ

(k) + α
(k)
i +

Yit − Φ(µ
(k)
it )

Φ(µ
(k)
it )(1− Φ(µ

(k)
it ))

φit(µ
(k)
it )︸ ︷︷ ︸

g
(k)
it

.

For �xed e�ects EM-type estimator, given αi, parameter β can be updated by

β(k+1) = (
N∑
i=1

T∑
t=1

XitX
′

it)
−1{

N∑
i=1

T∑
t=1

Xit(Ŷ
(k)
it − α

(k)
i )} = β(k) + (

N∑
i=1

T∑
t=1

XitX
′

it)
−1{

N∑
i=1

T∑
t=1

Xitg
(k)
it }︸ ︷︷ ︸

∆
(k)
βEM

,
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hence αi can be updated by

α
(k+1)
i =

1

T

T∑
t=1

(Ŷ
(k)
it −X

′

itβ
(k+1)) = α

(k)
i + g

(k)
ii −

1

T

T∑
t=1

X
′

it∆
(k)
βEM

.

For Newton's method as described in Greene (2003) Chapter 21

β(k+1) = β(k) − {
N∑
i=1

T∑
t=1

hit(Xit −X i)(Xit −X i)
′}−1{

N∑
i=1

T∑
t=1

g
(k)
it (Xit −X i)} = β(k) + ∆

(k)
βNR

,

and

α
(k+1)
i = α

(k)
i − g

(k)
ii /h

(k)
ii −X

′

i∆
(k)
βNR

,

here hit = g
′
it =

φf (zitqit)

Φ(zitqit)
− (

φf (zitqit)

Φ(qitzit)
)2, zit = X ′itβ + αi, qit = 1 − 2Yit, hii =

T∑
t=1

hit, and

gii =
T∑
t=1

git. The sign di�erence is due to that hit is negative for all values of zitqit.

C.2 Proof of Consistency for general β̂

In general, the consistency proof will contain two steps as shown in the proof of PPIF.

Denote zit = X ′itβ + αiγt, under the bounded from below of the second order derivatives

assumption

∀y ∈ Y , z ∈ Z : bmin < ∂z2L(y, z),

also assume that Z is convex, i.e. since Z ⊂ R it is an interval (either open or closed). From

this it follows that for all z1, z2 ∈ Z one has

L(y, z1)− L(y, z2) = [∂zL(y, z1)](z1 − z2) +
1

2
[∂z2L(y, z̃)](z1 − z2)2

≥ [∂zL(y, z1)](z1 − z2) +
bmin

2
(z1 − z2)2

=
bmin

2
(z1 − z2 +

1

bmin
[∂zL(y, z1)])2 − 1

2bmin
[∂zL(y, z1)]2,

where z1 ≤ z̃ ≤ z2. De�ne ẑit = zit(β̂, α̂i, γ̂t), and eit = 1
bmin

[∂zLit]. Note that E(eit) = 0.

Since the estimated parameters minimize the objective function, observe that
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0 ≥ LNT (β0, φ0)− LNT (β̂, φ̂) =
1

NT

∑
i,t

[Lit(z0
it)− Lit(ẑit)]

≥ bmin
2NT

∑
i,t

[(z0
it − ẑit + eit)

2 − e2
it] =

bmin
2NT

∑
i,t

{[X ′it(β̂ − β0) + α̂iγ̂t − α0
i γ

0
t − eit]2 − e2

it}.

Once the last inequality is obtained, the consistency proof for β̂ is equivalent to that

for the linear regression model with interactive �xed e�ects. In matrix notation, the above

inequality reads

1

NT
Tr(e′e) ≥ 1

NT
Tr[(X ′(β̂ − β0) + α̂γ̂ − α0γ0 − e)′(X ′(β̂ − β0) + α̂γ̂′ − α0γ0 − e)]

≥ 1

NT
Tr[(X ′(β̂ − β0)− e)′M(α̂,α0)(X

′(β̂ − β0)− e)]

where M(α̂,α0) = 1T − (α̂, α0)[(α̂, α0)′(α̂, α0)]−1(α̂, α0)′ is the projector that projects orthog-

onal to (α̂, α0).

The assumptions on the panel model already guarantee that 1
NT
Tr(Xe′) = oP (1). One

can furthermore show that ‖e‖ = oP (
√
NT ), also the assumption 1

NT
Tr(XX ′) = Op(1) is

satis�ed from the distribution assumption on the regressors above. Then,

| 1

NT
Tr(e′M(α̂,α0)Xk)| ≤

1

NT
|Tr(e′Xk)|+

1

NT
|Tr(e′P(α̂,α0)Xk)|

≤ op(1) +
2

NT
‖e‖‖Xk‖ = op(1).

Under these, one has

0 ≥ c‖β̂ − β‖+ op‖β̂ − β0‖+ op(1)

from which β̂ = β0 + op(1).

D Some useful algebraic results

For any N × T matrix A, de�ne the N × T matrix PA as follows
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(PA)it = α0
i γ

0
t (α

∗
i + γ∗t ), (α∗, γ∗) ∈ argmin

αi,γt

∑
i,t

E(−∂π2`it)(Ait − α0
i γ

0
t (αi + γt))

2.

Here, the minimization is over α ∈ RN and γ ∈ RT , and P is the projection operator. It

is a linear projection, i.e. PP = P. It is also convenient to de�ne

P̃A = PÃ, where Ãit =
Ait

E(−∂π2`it)
. (32)

P̃ is a linear operator, but not a projection. Note that Ξ and Λ de�ned before can be written

as Ξk = P̃Bk and Λ = P̃C, where Cit = −∂π`it and Bk,it = −Eφ(∂βkπ`it), for k = 1, ..., dim β.
10

The linear operator P̃ is closely related to the projection operator P. The following lemma
shows how in the context of panel probit model some expressions that regularly appear in

the general expansions can conveniently be expressed by using the operator P̃.

Lemma D.1. Let A, B and C be N ×T matrices, and let the expected incidental parameter

Hessian H be invertible. De�ne the N + T vectors A and B and the (N + T ) × (N + T )

matrix C as follows

A =
1

NT

 Aγ0

A′α0

 , B =
1

NT

 Bγ0

B′α0

 ,

and

C =
1

NT

 diag(C(γ0 ◦ γ0)) C ◦ (α0(γ0)′)

(C ◦ (α0(γ0)′))′ diag(C ′(α0 ◦ α0))


where ◦ denotes the Hadamard product, i.e., element-by-element product. Then

(i) A′H−1B = 1
NT

∑
i,t

(P̃Ait)Bit = 1
NT

∑
i,t

(P̃B)itAit,

(ii) A′H−1B = 1
NT

∑
i,t

E(−∂π2`it)(P̃A)it(P̃B)it,

(iii) A′H−1CH−1B = 1
NT

∑
i,t

(P̃A)itCit(P̃B)it.

10Bk and Ξk are N × T matrices with entries Bk,it and Ξk,it respectively, while Bit and Ξit are
dimβ-vectors with entries Bk,itand Ξk,it.
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Proof. Let α0
i γ

0
t (α̃

∗
i + γ̃∗t ) = (PÃ)it = (P̃A)it, with Ã as de�ned in eq (32). The FOC of

the minimization problem in the de�nition of (PÃ)it can be written as H

 α0 ◦ α̃∗

γ0 ◦ γ̃∗

 = A.

One solution to this is

 α0 ◦ α̃∗

γ0 ◦ γ̃∗

 = H−1A. Therefore,

A′H−1B =

 α0 ◦ α̃∗

γ0 ◦ γ̃∗


′

B =
1

NT

∑
i,t

α0
i γ

0
t (α̃

∗
i + γ̃∗t )Bit =

1

NT

∑
i,t

(P̃A)itBit.

This is the �rst equality of the Statement (i) in the lemma. The second equality of Statement

(i) follows by symmetry. Statement (ii) is a special case of Statement (iii) with C = H, so
Statement (iii) needs to be proved.

Let α0
i γ

0
t (α

∗
i + γ∗t ) = (PB̃)it = (P̃B)it, where B̃it = Bit

E(−∂π2`it)
. Analogous to the above,

choose

 α0 ◦ α∗

γ0 ◦ γ∗

 = H−1B as one solution to the minimization problem. Then

A′H−1CH−1B =
1

NT

∑
i,t

(α0
i γ

0
t )

2[α̃∗iCitα
∗
i + γ̃∗tCitα

∗
i + α̃∗iCitγ

∗
t + γ̃∗tCitγ

∗
t ] =

∑
i,t

(P̃A)itCit(P̃B)it
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Table 1: Finite Sample Properties of Static Probit Estimators, N=100

Model Estimator Bias Std.Dev. RMSE SE/SD P;.95

T=8

No FE EM 0.26 7.48 7.49 1.03 0.97

glm 0.69 7.59 7.61 1.02 0.96

FE i EM 20.74 10.37 23.18 0.73 0.29

glm 22.38 11.73 25.26 0.85 0.39

Add-FE EM 20.73 9.24 22.69 0.86 0.28

glm 29.21 13.95 32.36 0.83 0.32

IF 8.95 10.08 13.47 0.72 0.69

BC-IF -4.69 8.91 10.06 0.81 0.84

T=12

No FE EM -0.10 6.01 6.02 1.04 0.96

glm 0.31 6.09 6.09 1.03 0.96

FE i EM 12.53 7.61 14.65 0.79 0.45

glm 13.43 8.11 15.68 0.89 0.53

Add-FE EM 10.88 6.62 12.73 0.99 0.64

glm 20.81 10.20 23.17 0.89 0.38

IF 7.64 6.94 10.32 0.83 0.73

BC-IF -0.45 6.42 6.43 0.9 0.92

T=20

No FE EM 0.11 4.93 4.94 0.98 0.94

glm 0.52 5.00 5.02 0.97 0.95

FE i EM 6.44 5.22 8.28 0.85 0.67

glm 7.20 5.50 9.06 0.95 0.70

Add-FE EM 3.56 4.60 5.82 1.02 0.89

glm 10.88 6.57 12.71 0.93 0.60

IF 4.03 4.86 6.31 0.90 0.83

BC-IF -0.99 4.62 4.72 0.95 0.94

Notes: All the entries are in percentage of the true parameter value. 500 replications.
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Table 2: Finite Sample Properties of Static Probit Estimators, N=52

Model Estimator Bias Std.Dev. RMSE SE/SD P;.95

T=14

No FE EM -0.02 7.83 7.84 1.03 0.94

glm 0.43 7.97 7.98 1.01 0.95

FE i EM 11.3 9.55 14.79 0.81 0.68

glm 12.47 10.53 16.31 0.9 0.77

Add-FE EM 2.92 7.74 8.27 1.02 0.94

glm 24.05 15.28 28.48 0.8 0.53

IF 4.8 9.28 10.44 0.79 0.83

BC-IF -3.56 8.52 9.22 0.86 0.87

T=26

No FE EM -0.13 5.92 5.92 0.99 0.94

glm 0.27 5.99 5.99 0.99 0.94

FE i EM 4.88 6 7.73 0.88 0.85

glm 5.33 6.21 8.17 0.98 0.89

Add-FE EM 0.53 5.63 5.65 1 0.95

glm 10.94 8.08 13.59 0.93 0.7

IF 3.43 6.28 7.16 0.85 0.87

BC-IF -1.3 5.96 6.09 0.9 0.92

T=52

No FE EM -0.18 4.22 4.22 0.98 0.95

glm 0.22 4.27 4.27 0.98 0.95

FE i EM 2.2 4.07 4.62 0.91 0.89

glm 2.48 4.2 4.88 1 0.92

Add-FE EM 1.21 3.97 4.15 1 0.94

glm 6.99 5.17 8.69 0.96 0.71

IF 1.5 3.91 4.18 0.96 0.91

BC-IF -1.48 3.78 4.05 0.99 0.94

Notes: All the entries are in percentage of the true parameter value. 500 replications.
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Table 3: Coe�cients of Static Probit Model for Trade

(1) (2) (3) (4)

Distance -0.185 -0.177 -0.294 -0.297

Border 0.161 0.152 -0.027 -0.041

Island -0.175 -0.178 -0.153 -0.16

Landlock -0.357 -0.358 -0.471 -0.474

Legal -0.308 -0.309 -0.208 -0.212

Language 0.08 0.079 0.166 0.173

Colony 2.222 2.245 2.06 1.962

Currency -0.446 -0.449 -0.158 -0.19

FTA 1.685 1.629 1.645 1.648

Religion 0.2 0.191 0.367 0.36

Importer e�ects Yes Yes Yes

Exporter e�ects Yes Yes

Interactive Yes
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