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Abstra
t

Two sellers engage in pri
e 
ompetition to attra
t buyers lo
ated on a net-

work. The value of the good of either seller to any buyer depends on the number

of neighbors on the network who 
onsume the same good. For a generi
 spe
i-

�
ation of 
onsumption externalities, we show that an equilibrium pri
e equals

the marginal 
ost if and only if the buyer network is 
omplete or 
y
li
. When

the externalities are approximately linear in the size of 
onsumption, we iden-

tify the 
lass of networks in whi
h one of the sellers monopolizes the market,

or the two sellers segment the market.
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1 Introdu
tion

Goods have network externalities when their value to ea
h 
onsumer depends on

the 
onsumption de
isions of other 
onsumers. The externalities may derive from

physi
al 
onne
tion to 
onsumers adopting the same good as in the 
ase of tele
om-

muni
ation devi
es, from provision of 
omplementary goods as in the 
ase of oper-

ating systems and softwares for 
omputers, or from pure psy
hologi
al fa
tors as in

the 
ase of 
onsumption bandwagon. Despite their importan
e in reality, we only

have limited understanding of network externalities parti
ularly when those goods

are supplied 
ompetitively. The obje
tive of this paper is to study pri
e 
ompeti-

tion in the presen
e of 
onsumption externalities represented by a buyer network.

�
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Spe
i�
ally, we formulate a model of pri
e 
ompetition under lo
al network external-

ities by supposing that two sellers 
ompete for a network of buyers who experien
e

externalities when their neighbors in the network 
onsume the same good.

A more detailed des
ription of our model is as follows: Two sellers ea
h sell

goods that are in
ompatible with ea
h other. Consumers of either good experien
e

larger positive externalities when more of his neighbors in the network 
onsume the

same good. In stage 1, the two sellers post pri
es simultaneously. The pri
es 
an

be perfe
tly dis
riminatory and 
an be negative. Upon publi
ly observing the pri
e

ve
tors posted by both sellers, the buyers in stage 2 simultaneously de
ide whi
h

good to buy or not to buy. The sellers have no 
ost of serving the market, and their

payo�s simply equal the sum of pri
es o�ered to the buyers who 
hoose to buy their

goods.

In this framework, we �nd that the equilibrium out
ome of pri
e 
ompetition

subtly depends on the network stru
ture. Our �rst observation 
on
erns the validity

of marginal 
ost pri
ing. When no network externalities are present, it is 
lear that

the unique subgame perfe
t equilibrium of this game has both sellers o�er zero to

all buyers. In the presen
e of externalities, however, we show that the marginal 
ost

pri
ing is 
onsistent with equilibrium only if either the externalities are linear (in the

number of neighbors 
onsuming the same good), or the network is either a 
omplete

graph or a 
y
le.

1

In any other network, if the externalities generi
, there exists no

equilibrium in whi
h either seller 
aptures the entire market by o�ering the same

pri
e to all buyers. This is so even in networks where all buyers have symmetri


lo
ations. Given this surprising result, we attempt to identify equilibrium pri
es

under non-linear externalities.

Positive identi�
ation of equilibrium pri
es is possible when the externalities are


lose to linear and when the network satis�es 
ertain properties as follows. First, we


onsider bipartite networks. A network is bipartite if the set of buyers 
an be divided

into two subsets su
h that for every buyer in either subset, all his neighbors belong

to the other subset. This is an important 
lass of networks given that it 
orresponds

to a two-sided market that has re
eived mu
h attention in the literature as dis
ussed

in the next se
tion. We show that in a bipartite network, there exists an equilibrium

in whi
h one of the sellers 
aptures the entire market (i.e., buyers on both sides) by


harging positive pri
es to all buyers on one side while subsidizing all buyers on the

1

A graph is 
omplete if any pair of buyers are neighbors. The linear externalities in parti
ular

imply that the value of the good is zero to a buyer when none of his neighbors 
onsumes it.
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other side.

Next, we identify the 
lass of networks for whi
h market segmentation takes pla
e

in equilibrium. We say that a network is separable if the buyer set 
an be divided

into two subsets su
h that every buyer in ea
h subset has at least as many neighbors

in the same subset as in the other subset, and some buyer in ea
h subset has stri
tly

more neighbors in the same subset than in the other subset. In a separable network,

we show that market segmentation takes pla
e in equilibriumwith ea
h seller making

stri
tly positive pro�ts.

The paper is organized as follows: After dis
ussing the related literature in the

next se
tion, we formulate a model of pri
e 
ompetition in Se
tion 3. Se
tion 4 
on-

siders the subgame played by the buyers that follows the publi
 observation of pri
es

posted by both sellers. The 
riti
al observations there are that this simultaneous-

move game is one of strategi
 
omplementarity, and hen
e that there exist maximal

and minimal Nash equilibria in ea
h subgame. We present an algorithm to obtain

these extreme equilibria and use them in our 
onstru
tion of a subgame perfe
t equi-

librium of the entire game. We begin the analysis of a subgame perfe
t equilibrium

in Se
tion 5 and identify lower bounds on the sellers' payo� in su
h equilibrium.

Se
tion 6 examines the validity of marginal 
ost pri
ing in equilibrium. With the

de�nition of approximate linearity, Se
tion 7 dis
usses equilibrium in a bipartite

network, whi
h 
orresponds to a model of two-sided markets. Equilibrium market

segmentation in separable networks is dis
ussed in Se
tion 8. We 
on
lude in Se
-

tion 9. All the proofs are 
olle
ted in the Appendix. The Appendix also 
ontains an

analysis of the game when the buyers 
oordinate their a
tions by playing a strong

Nash equilibrium in the stage 2 subgame.

2 Related Literature

Dybvig and Spatt (1983) are the �rst to theoreti
ally study the provision of goods

with network externalities.

2

The problems of a single supplier of a good with network

externalities are subsequently studied by Cabral et al. (1999), Park (2004), Sekigu
hi

(2009), O
hs and Park (2010), Aoyagi (2013), among others. These papers fo
us on

su
h issues as the 
onstru
tion of eÆ
ient or revenue maximizing adoption s
hemes

under 
omplete and in
omplete information, intertemporal patterns of adoption

de
isions, as well as the validity of introdu
tory pri
ing.

2

Rohlfs (1974) provides a very early dis
ussion of network externalities.
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Segal (2003), Winter (2004) and Bernstein and Winter (2012) study a 
losely

related problem of 
ontra
ting under externalities in whi
h a single prin
ipal o�ers

a 
ontra
t to the set of agents whose parti
ipation de
isions 
reate externalities to

other agents. They dis
uss the so-
alled divide-and-
onquer strategy used by the

prin
ipal: A

ording to the strategy, the prin
ipal approa
hes agents one by one

in some order. The 
ontra
t o�ered to the �rst agent indu
es him to parti
ipate

even if all other agents abstain. The 
ontra
t o�ered to the se
ond agent indu
es

him to parti
ipate if all but the �rst agent abstain, and so on. In our analysis

of an equilibrium, we use exa
tly the same argument: Given some pri
e pro�le,

we examine if it is pro�table for either seller to approa
h the buyers one by one

in some order with pri
es that indu
e them to 
hoose the buyer provided that all

their prede
essors do the same. We note that the argument is essentially that of

iterative elimination of stri
tly dominated strategies, and show that it 
an be used

very e�e
tively to examine if the given pri
e pro�le is part of an equilibrium.

Competition between suppliers of goods with network externalities was �rst for-

mulated by Katz and Shapiro (1985), and subsequently studied by Sundararajan

(2003), Ambrus and Argenziano (2009), Bernaji and Dutta (2009), and Jullien

(2011). These models are often 
ou
hed in terms of two-sided markets, where the

sellers are providers of platforms who o�er a marketpla
e for agents on two sides

su
h as sellers and buyers of some good. In su
h models, the utility of an agent on

one side is an in
reasing fun
tion of the number of parti
ipants from the other side.

3

Ambrus and Argenziano (2009) analyze Bertrand 
ompetition between platforms in

a two-sided market. Jullien (2011) applies the divide-and-
onquer argument to his

analysis of multi-sided markets, and derives a bound on the platforms' payo�s when

they engage in Sta
kelberg pri
e 
ompetition. Both Ambrus and Argenziano (2009)

and Jullien (2011) formulate externalities di�erently from the present paper, and

impose some non-trivial restri
tions on the agents' strategies. Although these re-

stri
tions may appear natural under some pri
e pro�les, their full impli
ations are

not immediately 
lear. In 
ontrast, our analysis of a subgame perfe
t equilibrium

imposes no restri
tion on the buyers' strategies.

To the best of our knowledge, Banerji and Dutta (2009) are the only other paper

that introdu
es graph stru
ture into a model of pri
e 
ompetition under network

externalities. They identify 
onditions under whi
h pri
e 
ompetition leads to mo-

nopolization and market segmentation. They assume, however, that ea
h seller sets

3

See Armstrong (1998), and La�ont et al. (1998a,b).
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the same pri
e for all buyers and also pla
e restri
tions on the buyers' strategies. Be-


ause of these di�eren
es in assumptions, their 
on
lusions are diÆ
ult to 
ompare

with ours.

3 Model

Two sellers A and B 
ompete for the set I = f1; : : : ; Ng of N � 3 buyers. Con-

sumption of either seller's good generates externalities to the buyers a

ording to

a buyer network. Formally, a buyer network is represented by a simple undire
ted

graph G whose nodes 
orrespond to the buyers, and 
onsumption externalities exist

between buyers i and j if they are adja
ent in the sense that there is a link between

i and j. When buyer j is adja
ent to buyer i, we also say that j is i's neighbor.

The buyer network G is 
onne
ted in the sense that for any pair of buyers i and

j, there exists a path from i to j. That is, there exist buyers i

1

; i

2

; : : : ; i

m

, su
h

that i

1

is adja
ent to i, i

2

is adja
ent to i

1

, . . . , and i

m

is adja
ent to j. For any

buyer i in network G, denote by N

i

(G) (or simply N

i

) the set of i's neighbors in G.

The degree d

i

(G) = jN

i

(G)j of buyer i in network G is the number of i's neighbors.

De�ne also M to be the number of links in G. Sin
e ea
h link 
ounts twi
e when

aggregating the number of degrees in G, we have M =

1

2

P

i2I

d

i

.

For r = 2; : : : ; N � 1, the network G is r-regular if all buyers have the same

degree r, and regular if it is r-regular for some r. G is 
y
li
 if it is 
onne
ted and

2-regular, and 
omplete if it is (N � 1)-regular, or equivalently, every pair of buyers

are adja
ent to ea
h other. For any non-empty subset J � I of buyers, denote by

G[J ℄ the subnetwork indu
ed from G: The set of nodes in G[J ℄ is J , and G[J ℄ has

a link between i 2 J and j 2 J if and only if i and j are adja
ent in the original

network G.

The value of either seller's good to any buyer i is determined by the number of

neighbors of i who 
onsume the same good. We denote by v

n

the value of either good

to any 
onsumer when n of his neighbors 
onsume the same good. In parti
ular, v

0

denotes the stand-alone value, or the value to any buyer of either good when none of

his neighbors 
onsumes the same good. The value does not depend on the identity

of a buyer or the identity of the seller who supplies the good. The 
onsumption

externalities are non-negative in the sense that 0 � v

0

� v

1

� � � � � v

N�1

.

Ea
h seller produ
es his good at no �xed 
ost and a 
onstant marginal 
ost. For

simpli
ity, assume that the marginal 
osts also equals zero. Let p

i

and q

i

denote
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the pri
es o�ered to buyer i by seller A and seller B, respe
tively. The sellers 
an

perfe
tly pri
e dis
riminate the buyers. They simultaneously quote pri
e ve
tors

p = (p

i

)

i2I

2 R

N

and q = (q

i

)

i2I

2 R

N

. The buyers publi
ly observe (p; q), and

then simultaneously de
ide whether to buy from either seller, or not buy. Buyer i's

a
tion x

i

is hen
e an element of the set fA;B; ;g, where ; represents no pur
hase.

Ea
h seller's strategy is hen
e an element of R

N

, whereas buyer i's strategy �

i

is a

mapping from the setR

2N

of pri
e ve
tors (p; q) to the set fA;B; ;g. Let � = (�

i

)

i2I

be the buyers' strategy pro�le, and for ea
h 
hoi
e pro�le x = (x

i

)

i2I

of buyers, let

I

A

(x) = fi 2 I : x

i

= Ag; and I

B

(x) = fi 2 I : x

i

= Bg

denote the set of buyers 
hoosing seller A and the set of buyers 
hoosing B, respe
-

tively. If we denote by �

A

(p; q; �) and �

B

(p; q; �) the payo�s of sellers A and B,

respe
tively, under the strategy pro�le (p; q; �), then they are given by

�

A

(p; q; �) =

X

i2I

A

(�(p;q))

p

i

;

�

B

(p; q; �) =

X

i2I

B

(�(p;q))

q

i

:

Given the pri
e pro�le (p; q), buyer i's payo� under the a
tion pro�le x depends on

the number of his neighbors who 
onsume the same good, i.e.,

u

i

(x) =

8

>

>

>

<

>

>

>

:

v

jN

i

\I

A

(x)j

� p

i

if x

i

= A,

v

jN

i

\I

B

(x)j

� q

i

if x

i

= B,

0 if x

i

= ;,

(1)

and buyer i's payo� under the strategy pro�le (p; q; �) is written as:

�

i

(p; q; �) = u

i

(�(p; q)):

A pri
e ve
tor (p

�

; q

�

) and a strategy pro�le � = (�

i

)

i2I

together 
onstitute a

subgame perfe
t equilibrium (SPE) if given any pri
e ve
tor (p; q) 2 R

2N

, the a
tion

ve
tor (�

i

(p; q))

i2I

is a Nash equilibrium of the subgame following (p; q), and given

�, ea
h 
omponent of the pri
e ve
tor (p

�

; q

�

) is optimal against the other:

�

i

(p; q; �(p; q)) � �

i

(p; q; x

i

; �

�i

(p; q)) for every x

i

, i and (p; q),

�

A

(p

�

; q

�

; �(p

�

; q

�

)) � �

A

(p; q

�

; �(p; q

�

)) for every p,

�

B

(p

�

; q

�

; �(p

�

; q

�

)) � �

B

(p

�

; q; �(p

�

; q)) for every q.
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4 Nash Equilibrium in the Buyers' Game

In this se
tion, we �x the pri
e ve
tor (p; q), and 
onsider an equilibrium of the

buyers' subgame following (p; q). For the payo� fun
tion u

i

de�ned in (1), the

simultaneous-move game (I; S = fA;B; ;g

I

; (u

i

)

i2I

) among the buyers is a super-

modular game when the set of a
tions of ea
h buyer is endowed with the ordering

A � ; � B. It follows that the game has pure Nash equilibria that are maximal

and minimal with respe
t to the partial ordering on S indu
ed by �.

4

We refer to

the maximal equilibrium as the A-maximal equilibrium and denote it by x

A

, and

the minimal equilibrium as the B-maximal equilibrium and denote it by x

B

. By

de�nition, for any NE y and buyer i, y

i

= A implies x

A

i

= A, and y

i

= B implies

x

B

i

= B.

We introdu
e some notation below in view of the fa
t that any NE must survive

the iterative elimination of stri
tly dominated a
tions.

De�ne T

0

= ; and re
ursively de�ne the subsets of buyers Y

k

, Z

k

, P

k

, Q

k

, R

k

,

and T

k

as follows. For k = 0; 1; 2; : : :, de�ne Y

k+1

� I n T

k

to be the maximal set

su
h that

Y

k+1

=

n

i 2 I n T

k

:

u

i

�

x

�

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� 0

o

:

(2)

Given the a
tion pro�le x

�

T

k

of buyers in set T

k

, those buyers in Y

k+1


an 
olle
tively


hoose A to enjoy non-negative payo�s from it. In other words, if i =2 Y

k+1

, then

x

i

= A is stri
tly dominated by x

i

= ; for i. Note that maximality is well-de�ned

sin
e if Y and Y

0

both satisfy (2), then Y [ Y

0

also satis�es (2). If there is no su
h

set, let Y

k+1

= ;. Likewise, de�ne Z

k+1

� I n T

k

to be the maximal set of buyers

who 
an 
olle
tively 
hoose B to enjoy non-negative payo�s from it:

Z

k+1

=

n

i 2 I n T

k

:

u

i

�

x

�

T

k

; x

Z

k+1

= (B; : : : ; B); x

�T

k

�Z

k+1

= (;; : : : ; ;)

�

� 0

o

:

(3)

If there is no su
h set, let Z

k+1

= ;. Again, if i =2 Z

k+1

, then x

i

= B is stri
tly

dominated by x

i

= ; for i. De�ne

R

k+1

= (I n T

k

) n (Y

k+1

[ Z

k+1

)

4

See Topkis (1998).
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to be the set of buyers i for whom x

i

= ; is stri
tly dominant. Now de�ne P

k+1

�

I n T

k

by

P

k+1

=

n

i 2 I n T

k

: u

i

�

x

�

T

k

; x

i

= B; x

�T

k

�i

= (;; : : : ; ;)

�

> u

i

�

x

�

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

o

;

(4)

That is, if i 2 P

n+1

, buyer i is stri
tly better o� 
hoosing x

i

= B than 
hoosing

x

i

= A or ; even if seller A attra
ts all those buyers j for whom x

j

= A is not

stri
tly dominated by x

i

= ;. In other words, if i 2 P

k+1

, then x

i

= B is stri
tly

dominant for i. Likewise, de�ne Q

k+1

� I n T

k

to be the set of buyers i for whom

x

i

= A is stri
tly dominant:

Q

k+1

=

n

i 2 I n T

k

:u

i

�

x

�

T

k

; x

i

= A; x

�T

k

�i

= (;; : : : ; ;)

�

> u

i

�

x

�

T

k

; x

Z

k+1

= (B; : : : ; B); x

�T

k

�Z

k+1

= (;; : : : ; ;)

�

o

:

(5)

1) If P

k+1

= Q

k+1

= R

k+1

= ;, then set K = k and stop.

2) Otherwise, de�ne

x

�

i

=

8

>

>

>

<

>

>

>

:

B if i 2 P

k+1

,

A if i 2 Q

k+1

,

; if i 2 R

k+1

.

and

T

k+1

= T

k

[ (P

k+1

[Q

k+1

[R

k+1

) :

If T

k+1

= I, then set K = k + 1 and stop. Otherwise, in
rease k by one and

start over.

Sin
e the above pro
ess starts over only when at least one buyer has a stri
tly

dominant a
tion, the maximal number of rounds K must satisfy K � N . For any

NE x, we must have every buyer in T

K


hoosing his iteratively stri
tly dominant

a
tion so that

x

T

K

= x

�

T

K

:

Therefore the possible di�eren
e between any pair of NE arises only for buyers in

I n T

K

. The following proposition states that the A-maximal and B-maximal NE


an be 
onstru
ted by letting the maximal number of buyers 
hoose A or B among

those buyers.
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Proposition 1 Let x

A

and x

B

be de�ned by

x

A

= (x

�

T

K

; x

Y

K+1

= (A; : : : ; A); x

�T

K

�Y

K+1

= (;; : : : ; ;)); and

x

B

= (x

�

T

K

; x

Z

K+1

= (B; : : : ; B); x

�T

K

�Z

K+1

= (;; : : : ; ;)):

Then x

A

and x

B

are the A-maximal and B-maximal NE, respe
tively.

Of 
ourse, when T

K

= I so that every buyer has a iteratively stri
tly dominant

a
tion, the NE is unique and given by x

A

= x

B

.

5 Subgame Perfe
t Equilibrium

We now turn to the original two-stage game in
luding the sellers. The proposition

below makes a simple observation that if a pri
e ve
tor (p

�

; q

�

) is sustained in some

SPE, then it must be sustained in an SPE in whi
h the buyers 
hoose an extreme

response to either seller's deviation: If seller A deviates from p

�

, then all buyers


oordinate on the B-maximal NE that least favors seller A, and vi
e versa. The

proposition hen
e presents a bang-bang property of an SPE.

Proposition 2 For any network G, (p

�

; q

�

) is an SPE pri
e ve
tor if and only if

there exists buyers' strategy pro�le � su
h that (p

�

; q

�

; �) is an SPE and

�(p; q) =

8

<

:

�

B

(p; q) if p 6= p

�

and q = q

�

,

�

A

(p; q) if p = p

�

and q 6= q

�

.

Consider next seller A's best response p to B's pri
e q when the buyers play the

B-maximal strategy �

B

. Sin
e �

B

(p; q) is a B-maximal NE for any (p; q), seller A


an attra
t buyer i if and only if x

i

= A is an iteratively stri
tly dominant a
tion

for buyer i: i 2 [

K

k=1

Q

k

, where Q

k

is as de�ned in (5). Hen
e,

�

A

(p; q:�

B

) =

K

X

k=1

X

i2Q

k

p

i

:

The following lemma shows that if seller A's pri
e ve
tor p is a best response to

(q; �

B

), then no two buyers inQ

k

de�ned under (p; q) are adja
ent. In other words, in

order to attra
t adja
ent buyers i and j, seller A should approa
h them sequentially.

Intuitively, this is be
ause making 
hoi
e A dominant for both buyers simultaneously

9



requires o�ering lower pri
es to both of them than making x

i

= A dominant for buyer

i �rst, then making x

j

= A dominant for buyer j next 
onditional on the knowledge

that i 
hooses x

i

= A.

Lemma 3 Let (Q

k

)

k=1;:::;K

be as de�ned in (5) under the pri
e ve
tor (p; q). If p

is a best response to (q; �

B

), then for every k = 1; : : : ;K,

i; j 2 Q

k

) i and j are not adja
ent.

We now derive a key result that establishes a lower bound for ea
h seller's equi-

librium payo� given the pri
e ve
tor of the other seller. As mentioned in the Intro-

du
tion, the argument is one of divide and 
onquer, where seller A, say, approa
hes

ea
h buyer sequentially a

ording to some ordered list, and presents them with a

pri
e whi
h makes the 
hoi
e A a dominant a
tion given all his prede
essors in the

list 
hoose A.

Formally, �x the pri
e q

�

of seller B, and suppose that the buyers 
hoose A

only when it is an iteratively stri
tly dominated a
tion. Suppose further that seller

A makes an ordered list of all buyers i

1

; : : : ; i

N

. Seller A �rst targets buyer i

1

by

making it stri
tly dominant for him to 
hoose x

i

1

= A by o�ering a suÆ
iently low

pri
e. In fa
t, seller A needs to o�er p

i

1

su
h that

v

0

� p

i

1

> v

d

i

1

� q

�

i

1

and v

0

� p

i

1

> 0;

or equivalently

p

i

1

< min

n

v

0

� v

d

i

1

+ q

�

i

1

; v

0

o

to make x

i

1

= A stri
tly dominant. Let H

1

= fi

1

g. Seller A next targets buyer i

2

by making x

i

2

= A stri
tly dominant. In this 
ase, seller A must o�er p

i

2

su
h that

p

i

2

< min

n

v

s

i

2

� v

d

i

2

�s

i

2

+ q

�

i

2

; v

s

i

2

o

;

where s

i

2

= 1 if buyer i

2

is adja
ent to i

1

, and = 0 otherwise. Let H

2

= fi

1

; i

2

g.

Pro
eeding iteratively, we see that against buyer i

k

, seller A must o�er p

i

k

su
h that

p

i

k

< min

n

v

s

i

k

� v

d

i

k

�s

i

k

+ q

�

i

k

; v

s

i

k

o

; (6)

where s

i

k

is the number of neighbors of i

k

in the set H

k�1

= fi

1

; : : : ; i

k�1

g. s

i

k


an

be thought of the externalities buyer i

k


an enjoy by 
hoosing A when those buyers

10



in H

k�1

have already 
hosen A. On the other hand, d

i

� s

i

k

is the externalities i

k


an enjoy from B when those buyers in I nH

k�1

still 
hoose B. Note that for any

list i

1

; : : : ; i

N

of buyers,

N

X

k=1

s

i

k

=M;

where M is the total number of links in G. De�ne S by

S =

n

s = (s

i

)

i2I

: s

i

1

= 0 and s

i

k

= jN

i

k

\ fi

1

; : : : ; i

k�1

gj for k � 2

for some relabeling (i

1

; : : : ; i

N

) of buyers

o

:

(7)

Note that if s 
orresponds to the list i

1

; : : : ; i

N

, then d�s = (d

i

�s

i

)

i2I


orresponds

to the reversed list i

N

; : : : ; i

1

. Hen
e, if s 2 S, then d � s 2 S as well. We also

observe that

H

k

� [

k

`=1

Q

`

;

where Q

k

is as de�ned in (5) and equals the set of buyers i for whom x

i

= A is

iteratively stri
tly dominant in round k of the iteration pro
ess under the pri
e

pro�le (p; q

�

). Hen
e, even if the buyers play the B-maximal equilibrium �

B

that

least favors seller A, A 
an at least se
ure the payo� implied by the pri
es in (6). We

hen
e have the following lemma that gives a lower bound for ea
h seller's equilibrium

payo�.

Lemma 4 If (p

�

; q

�

; �) is an SPE, then

�

A

(p

�

; q

�

; �) � max

s2S

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

o

;

�

B

(p

�

; q

�

; �) � max

s2S

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ p

�

i

; v

s

i

o

:

(8)

Figures 1 and 2 illustrate the dis
ussion for the line network of three buyers. In

Figure 1, seller A approa
hes the buyers in the order (i

1

; i

2

; i

3

) = (1; 3; 2) when seller

B o�ers q

�

= (q

�

1

; q

�

2

; q

�

3

): When buyers 1 and 3 swit
h to A, their valuation of A's

good is just v

0

(stand-alone value) sin
e at that point they don't expe
t that buyer

2 will swit
h as well. On the other hand, when buyer 2 swit
hes to A, he knows that

both his neighbors will 
hoose A, and he expe
ts that A's good is worth v

2

. Hen
e,

11



v

0

� p

1

> max fv

1

� q

�

1

; 0g

1

2

3

v

0

� p

3

> max fv

1

� q

�

3

; 0g

, p

1

< min fv

0

� v

1

+ q

�

1

; v

0

g

, p

3

< min fv

0

� v

1

+ q

�

3

; v

0

g

v

2

� p

2

> max fv

0

� q

�

2

; 0g

1

2

3

, p

2

< min fv

2

� v

0

+ q

�

2

; v

2

g

)

Figure 1: Divide-and-
onquer by seller A with (i

1

; i

2

; i

3

) = (1; 3; 2).

v

1

� p

1

> max fv

0

� q

�

1

; 0g

1

2

3 v

1

� p

3

> max fv

0

� q

�

3

; 0g

, p

1

< minfv

1

� v

0

+ q

�

1

; v

1

g

, p

3

< minfv

1

� v

0

+ q

�

3

; v

1

g

v

0

� p

2

> max fv

2

� q

�

2

; 0g

1

2

3

, p

2

< min fv

0

� v

2

+ q

�

2

; v

0

g

)

Figure 2: Divide-and-
onquer by seller A with (i

1

; i

2

; i

3

) = (2; 1; 3).

even if the buyers play the B-maximal equilibrium �

B

, seller A's divide-and-
onquer

strategy with (i

1

; i

2

; i

3

) = (1; 3; 2) is pro�table if

minfv

0

� v

1

+ q

�

1

; v

0

g+minfv

0

� v

1

+ q

�

3

; v

0

g

+minfv

2

� v

0

+ q

�

2

; v

2

g > 0:

(9)

Likewise, his divide-and-
onquer strategy with (i

1

; i

2

; i

3

) = (2; 1; 3) illustrated in

Figure 2 is pro�table if

minfv

0

� v

2

+ q

�

2

; v

0

g+minfv

1

� v

0

+ q

�

1

; v

1

g

+minfv

1

� v

0

+ q

�

3

; v

1

g > 0;

(10)

and that with (i

1

; i

2

; i

3

) = (1; 2; 3) is pro�table if

minfv

0

� v

1

+ q

�

1

; v

0

g+minfv

1

� v

1

+ q

�

2

; v

1

g

+minfv

1

� v

0

+ q

�

3

; v

1

g > 0:
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6 Marginal Cost Pri
ing

When there are no 
onsumption externalities 0 < v

0

= � � � = v

N�1

, it is 
lear that

a subgame perfe
t equilibrium pri
e (p

�

; q

�

) is unique and equal to the marginal


ost: (p

�

; q

�

) = (0; 0). In this se
tion, we will examine if and how this result 
an be

extended when there are externalities.

Let D = D(G) be the highest degree in G:

D(G) = max

i2I

d

i

(G):

For the network G, hen
e, the relevant levels of externalities are (v

0

; : : : ; v

D

). We

say that the externalities (v

0

; : : : ; v

D

) are linear if there exists h > 0 su
h that

v

k

= kh for every k = 0; 1; : : : ;D.

Note in parti
ular that the stand-alone value v

0

is zero when the externalities are

linear. In this sense, linearity implies pure network externalities and violates the

formulation of weak externalities in Jullien (2011).

5

Proposition 5 Let G be an arbitrary buyer network. Under the linear externalities

(v

0

; : : : ; v

D

), (p

�

; q

�

) = (0; 0) is an SPE pri
e ve
tor.

We next 
onsider some generi
 property of externalities. As will be seen, whether

or not the marginal 
ost 
an be an equilibrium pri
e depends 
ru
ially on the 
on�g-

uration of the buyer network in this 
ase. Spe
i�
ally, for S de�ned in (7), suppose

that the externalities (v

0

; : : : ; v

D

) satisfy the following 
ondition:

s 2 S and d� s is not a permutation of s )

N

X

i=1

v

s

i

6=

N

X

i=1

v

d

i

�s

i

. (11)

(11) implies that the sum of externalities over buyers are di�erent between the two

goods when seller A attra
ts buyers by o�ering pri
es as des
ribed in (6). The set

of (v

0

; : : : ; v

D

) satisfying (11) is generi
 in the set

�

(v

0

; : : : ; v

D

) : 0 < v

0

� � � � � v

D

	

of all externalities.

5

Assumption 1 of Jullien (2011).

13



Lemma 4 implies that a seller's equilibrium payo� is 
losely linked to the value

of

max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

:

It turns out that whether this quantity is positive or not under (11) depends 
ru
ially

on the network 
on�guration as seen in the following lemma.

Lemma 6 Suppose that the externalities v = (v

0

; : : : ; v

D

) satisfy (11). If the buyer

network G is neither 
y
li
 nor 
omplete, then

max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0: (12)

The following lemma, whi
h readily follows from Lemmas 4 and 6, provides some

key observations on equilibrium pri
ing.

Lemma 7 Suppose that (p

�

; q

�

; �) is an SPE for the buyer network G whi
h is

neither 
omplete nor 
y
li
, and that the externalities v = (v

0

; : : : ; v

D

) satisfy (11).

Then

a) �

A

(p

�

; q

�

; �) = 0 ) min

i

q

�

i

< 0.

b) �

A

(p

�

; q

�

; �) �

P

i

q

�

i

) max

i

q

�

i

> v

0

.


) I

B

(�(p

�

; q

�

)) = I ) max

i

q

�

i

> v

0

, min

i

(v

d

i

� q

�

i

) � v

0

, and v

D

> 2v

0

.

While the �rst two statements of Lemma 7 are true regardless of whether the

market is monopolized or segmented in equilibrium, the impli
ations of the lemma

are seen most 
learly for a monopolization equilibrium. Suppose that G is neither


y
li
 nor 
omplete, and that seller B 
aptures the entire market in equilibrium:

I

B

(�(p

�

; q

�

)) = I. Then seller B must subsidize at least one buyer, and must 
harge

some buyer stri
tly above the stand-alone value:

min

i

q

�

i

< 0 � v

0

< max

i

q

�

i

< v

D

� v

0

:

Furthermore, for any su
h equilibrium to exist, the externalities 
annot be too small:

v

D

> 2v

0

. This is a non-trivial restri
tion for networks in whi
h every buyer has a

small degree as in line networks. We summarize this observation as a proposition

below.

14



Proposition 8 Let a buyer network G be given and the externalities v = (v

0

; : : : ; v

D

)

satisfy (11). Then there exists no SPE in whi
h one of the sellers monopolizes the

market by 
harging the same pri
e to every buyer.

The impossibility of uniform pri
ing is 
ounter-intuitive in networks whi
h are

not 
y
li
 or 
omplete, but are symmetri
 with respe
t to every buyer. For example,

buyer lo
ations are exa
tly symmetri
 in the 4-regular network depi
ted in Figure

3.

1

2

3

4

5

6

7

8

Figure 3: 4-regular network with eight buyers

We are now ready to state our main result on marginal 
ost pri
ing. Suppose

that both sellers o�er zero to all the buyers. In this 
ase, both sellers' payo�s equal

zero regardless of whether or not they 
apture a positive portion of the market.

Hen
e, this pri
e pro�le 
annot be an equilibrium by Lemma 7(a) unless the network

is 
omplete or 
y
li
. The following proposition shows that when the network is


omplete or 
y
li
, there indeed exists an SPE of the type presented in Proposition

2 in whi
h both sellers o�er zero.

Proposition 9 Let a buyer network G be given and the externalities v = (v

0

; : : : ; v

D

)

satisfy (11). (p

�

; q

�

) = (0; 0) is an SPE pri
e ve
tor if and only if G is either 
y
li


or 
omplete.

For illustration of the impossibility of marginal 
ost pri
ing, return to the ex-

ample of the three-buyer line network depi
ted in Figures 1 and 2. Suppose that
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q

�

= 0. In this 
ase, we have

(9) , 2v

1

� v

2

� v

0

< 0;

(10) , 2v

1

� v

2

� v

0

> 0:

Hen
e, if

2v

1

6= v

2

+ v

0

; (13)

seller A 
an pro�tably divide and 
onquer the buyers against q

�

= 0. Note that

(13) 
orresponds to (12) in Lemma 6: It fails under the linear externalities v

0

= 0,

v

1

= h and v

2

= 2h, but is true under generi
 spe
i�
ations of v

0

, v

1

and v

2

.

7 Monopolization on a Bipartite Network

The results in the pre
eding se
tion suggest that some form of dis
riminatory pri
ing

is inevitable in equilibrium. A natural question then is on the form of equilibrium

pri
e dis
rimination. Interesting related questions are (1) whi
h buyers are the

\weak link" in the network that need to be prote
ted, and (2) whi
h buyers 
an

be squeezed for more pro�ts. Sin
e it appears diÆ
ult to provide general answers

to these questions, we will restri
t attention to 
ertain 
lasses of networks for the

identi�
ation of an equilibrium. In this se
tion, we identify a 
lass of networks in

whi
h monopolization takes pla
e in equilibrium.

Our analysis in what follows assumes that the externalities are approximately

linear in the following sense: For h > 0, the externalities (v

0

; : : : ; v

D

) are "-
lose to

linear if

jv

k

� khj < " for k = 0; 1; : : : ;D.

Sin
e the 
ondition holds for any " > 0 when the externalities are exa
tly linear,

our 
on
lusions under approximate linearity hold with no 
hange in models of linear

externalities. In 
onjun
tion with Proposition 5, then, this implies the multipli
ity

of equilibria in these markets.

The buyer network is bipartite if the buyer set I is partitioned into two disjoint

subsets I

1

and I

2

su
h that every neighbor of i 2 I

1

belongs to I

2

and every neighbor

of i 2 I

2

belongs to I

1

. Line and star networks are simple examples of a bipartite

network. For example, the line network in Figures 1 and 2 is bipartite with the

partition I

1

= f1; 3g and I

2

= f2g. A 
y
le network with an even number of buyers

is also bipartite. A bipartite network is 
omplete if every buyer in I

1

is linked to

every buyer in I

2

.
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Bipartite networks are parti
ularly important in their 
onne
tion to two-sided

markets. For example, we 
an think of I

1

as the set of sellers and I

2

as the set of

buyers of a 
ertain good. In this 
ase, the sellers A and B are interpreted as the

platforms that o�er marketpla
e to these sellers and buyers, and their pri
es are

interpreted as parti
ipation fees into their platforms. A 
omplete bipartite network


orresponds to a two-sided market in whi
h ea
h agent �nds more value in a given

platform whenever more agents on the other side parti
ipate in the same platform.

Our 
on
lusion on a bipartite network translates to that on a two-sided market

where two platforms 
ompete.

Proposition 10 Suppose that the buyer network G is bipartite. For any h > 0,

there exists �" > 0 su
h that if the externalities are "-
lose to h-linear for " < �", then

there exists an SPE (p

�

; q

�

; �) in whi
h one seller 
aptures all the buyers.

The equilibrium 
onstru
ted in the proof is des
ribed as follows: Let I

1

and I

2

be the partition of the buyer set, and suppose that seller B 
aptures the market.

Seller B o�ers q

i

= v

d

i

� v

0

to ea
h buyer i in set I

1

and q

i

= v

0

� v

d

i

to ea
h

buyer i in set I

2

provided that these pri
es lead to a non-negative payo�.

6

In other

words, the monopolizing seller taxes every buyer on one side, and subsidizes every

buyer on the other side. Seller A o�ers the same pri
e to ea
h buyer as seller B.

When either seller deviates, the buyers play the extreme equilibrium whi
h is least

favorable to the deviating seller as in Proposition 2. It is shown that this pri
e ve
tor

leaves no room for seller A to pro�tably attra
t any buyers. Figure 4 illustrates the

equilibrium pri
ing of Proposition 10 in a star network with �ve buyers when the

externalities satisfy approximate linearity and

v

4

� v

0

� 4(v

1

� v

0

): (14)

It 
an be seen that the hub buyer 1 is 
harged a positive pri
e whereas all the

peripheral buyers are subsidized. In other words, the subsidies to the peripheral

buyers are a prote
tion against the indu
ement by the other seller. Sin
e (14) holds

when the externalities are marginally in
reasing, we 
an understand this pri
ing

behavior from the fa
t that it is relatively more diÆ
ult for the other seller to enti
e

the hub buyer. When the inequality (14) is reversed, then the pri
es are (�1) times

those listed in Figure 4. In this 
ase of marginally de
reasing externalities, hen
e,

6

Re
all that d

i

denotes the degree of buyer i. If these pri
es lead to a negative payo�, the

equilibrium pri
es are simply �q

i

for ea
h i.
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the hub buyer needs to be prote
ted as it is relatively easier for the other seller to

enti
e him. As seen in this example, the spe
i�
ation of externalities determines

whi
h buyer(s) should be prote
ted with subsidies.

2

3

4

5

1

p

1

= q

1

= v

4

� v

0

p

2

= q

2

= v

0

� v

1

p

3

= q

3

= v

0

� v

1

p

4

= q

4

= v

0

� v

1

p

5

= q

5

= v

0

� v

1

Figure 4: Monopolization through dis
riminatory pri
ing on a star network when

v

4

� v

0

� 4(v

1

� v

0

).

De
reasing or in
reasing marginal externalities also have the following impli
a-

tions for the pri
ing in a 
omplete bipartite network: Under in
reasing marginal

externalities, any buyer in a 
omplete bipartite network is subsidized in equilibrium

if and only if his subset of buyers is larger than the other subset. The opposite holds

under de
reasing marginal externalities.

Corollary 11 Suppose that the network is 
omplete bipartite with partition (I

1

; I

2

)

su
h that jI

1

j � jI

2

j. For any h > 0, there exists �" > 0 su
h that the following hold

for " < �":

a) (in
reasing marginal externalities) If

h� " � v

1

� v

0

� v

2

� v

1

� � � � � v

D

� v

D�1

� h+ ";

then there exists an SPE (p; q; �) su
h that p

i

= q

i

> 0 for every i 2 I

1

and

p

i

= q

i

< 0 for every i 2 I

2

.

b) (de
reasing marginal externalities) If

h� " � v

D

� v

D�1

� � � � � v

2

� v

1

� v

1

� v

0

� h+ ";

then there exists an SPE (p; q; �) su
h that p

i

= q

i

< 0 for every i 2 I

1

and

p

i

= q

i

> 0 for every i 2 I

2

.
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8 Segmentation on a Separable Network

Under the same assumption of approximately linear externalities as in the previous

se
tion, we now examine the possibility of an equilibrium in whi
h market segmen-

tation takes pla
e. For this, we 
onsider a 
lass of buyer networks that have roughly

the opposite property as the bipartite networks introdu
ed in the previous se
tion:

In this 
lass of networks, the buyer set is again partitioned into two disjoint subsets,

but ea
h buyer has at least as many neighbors in the same subset than in the other

subset. Formally, the buyer network is separable if there exists a two-way partition

(I

1

; I

2

) of the set I of buyers su
h that for m, n = 1, 2, and m 6= n,

jN

i

\ I

n

j � jN

i

\ I

m

j for every i 2 I

n

, and

jN

i

\ I

n

j > jN

i

\ I

m

j for some i 2 I

n

.

Intuitively, in a separable network with partition (I

1

; I

2

), we 
an 
lassify buyers in

I

1

or I

2

into 
ore and peripheral buyers: The 
ore buyers are those who have stri
tly

more neighbors in the same set than in the other set, while the peripheral buyers

have as many neighbors in the same set as in the other set. We 
an see that any

line network with four or more buyers is separable: For example, a line network of

four or more buyers is separable. The regular network in Figure 3 is also separable

when we take I

1

= f1; 2; 3; 4g and I

2

= f5; 6; 7; 8g. Buyer 2 and 3 are 
ore buyers

for I

1

and buyers 6 and 7 are 
ore buyers for I

2

.

Proposition 12 Suppose that G is separable. For any h > 0, there exists �" > 0

su
h that if the externalities are "-
lose to h-linear for " < �", there exists an SPE

in whi
h buyers in I

1


hoose seller A and buyers in I

2


hoose seller B.

The proof of this proposition 
onstru
ts an equilibrium in whi
h ea
h seller


harges a small but positive pri
e to one of the 
ore buyers in his segment of the

market. Spe
i�
ally, re
alling that s is a sequen
e of degrees of externalities as

de�ned in (7), we spe
ify the pri
e to be 
harged to this 
ore buyer by

Æ = max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

;

whi
h is stri
tly positive for generi
 externalities (Lemma 6), but is small for ap-

proximately linear externalities. Ea
h seller 
harges zero to all other buyers in their

segment of the market. Figure 5 illustrates the equilibrium for a line network of four
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2

3

4

1

(p

1

; q

1

) = (Æ;�Æ)

(p

4

; q

4

) = (�Æ; Æ)

(p

2

; q

2

) = (0; 0) (p

3

; q

3

) = (0; 0)

Figure 5: Segmentation on a line network (Æ = jv

2

+ v

1

� 2v

0

j > 0): A 
aptures

f1; 2g and B 
aptures f3; 4g.

buyers.

7

As in Proposition 2, any deviation by either seller results in the extreme

equilibrium that is least favorable to the deviating seller. Ea
h 
ore buyer who is


harged the positive pri
e will not swit
h to the other seller sin
e he enjoys stri
tly

higher externalities under the present seller. Furthermore, ea
h seller enjoys stri
tly

positive pro�ts in equilibrium, and has no in
entive to engage in divide-and-
onquer

taking advantage of the non-generi
 externalities as in the 
ase of marginal 
ost

pri
ing.

9 Con
lusion

In this paper, we formulate a model of pri
e 
ompetition between two sellers when

ea
h one of their goods exhibits lo
al network externalities as represented by a graph-

theoreti
 network of buyers. We show that whether a given pri
e pro�le is 
onsistent

with a subgame perfe
t equilibrium of the two-stage game depends 
ru
ially on

the exa
t spe
i�
ations of network stru
ture and externalities. In the non-generi



ase of linear externalities, the marginal 
ost pri
ing of both sellers quoting zero to

every buyer is 
onsistent with an SPE for any network. In the generi
 spe
i�
ation

of externalities, however, it is 
onsistent with an SPE if and only if the network

is either 
y
li
 or 
omplete. That is, in any other networks, some form of pri
e

dis
rimination is expe
ted even if every buyer has exa
tly symmetri
 lo
ations in

those networks. Given these results, we pro
eed to the identi�
ation of an SPE when

the externalities are approximately linear. In a bipartite network whi
h 
orresponds

to a two-sided market, we show that there exists an SPE in whi
h one of the sellers

monopolizes the market by 
harging a positive pri
e to every buyer on one side, and

a negative pri
e to every buyer on the other side. The pri
ing strategy there gives

us a hint as to whi
h buyer needs to be prote
ted from the indu
ement by the other

7

As seen in Figure 5, ea
h seller 
harges �Æ to the 
ore buyer in the other segment who is


harged Æ by the other seller. This is to make the sum of the pri
es of ea
h seller equal to zero.
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seller. In a separable network in whi
h ea
h buyer has more neighbors on his side

than on the other side, on the other hand, we show that there exists an equilibrium

in whi
h the two sellers segment the market.

In the present model, the goods of the two sellers are assumed symmetri
 and

in
ompatible with ea
h other. A natural extension would involve introdu
ing asym-

metry or a positive degree of 
ompatibility between them. It would also be in-

teresting to study endogenous determination of 
ompatibility levels by the sellers.

Although some of these issues are investigated in the literature,

8

it will be useful to

examine them under the alternative spe
i�
ations of externalities and equilibrium

as in the present paper.

Appendix I: Proofs

Proof of Proposition 1. We show that x

A

is an A-maximal NE. The symmetri


argument shows that x

B

is a B-maximal NE. We begin with the following lemma.

Lemma 13 a) u

i

(x

A

) � 0 for every i.

b) For any n, fi 2 I n T

n

: x

A

i

= Ag � Y

n+1

and fi 2 I n T

n

: x

A

i

= Bg � Z

n+1

.


) For any n, J � I n T

n

, and y

J

su
h that u

i

(y

J

; x

A

�J

) � 0 for every i 2 J ,

fi 2 J : y

i

= Ag � Y

n+1

and fi 2 J : y

i

= Bg � Z

n+1

: (15)

Proof of Lemma 13. a) Suppose that i 2 P

n+1

for some n. Then

u

i

(x

A

) = u

i

(x

A

T

n

; x

i

= B; x

A

�T

n

�i

)

� u

i

�

x

A

T

n

; x

i

= B; x

�T

n

�i

= (;; : : : ; ;)

�

> u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A);X

�T

n

�Y

n+1

= (;; : : : ; ;)

�

� 0:

The proof is similar if i 2 Q

n+1

. If i 2 R

n+1

or i 2 I n T

n

for n su
h that P

n+1

=

Q

n+1

= R

n+1

= ;, then the inequality follows from the de�nition of x

A

.

8

See Jullien (2011).
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b) Denote K = fi 2 I n T

n

: x

A

i

= Ag. Then for any i 2 K, we have

u

i

�

x

A

T

n

; x

K[Y

n+1

= (A; : : : ; A); x

�T

n

�K�Y

n+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

n

; x

K

= (A; : : : ; A); x

�T

n

�K

= (;; : : : ; ;)

�

= u

i

(x

A

) � 0;

and for any i 2 Y

n+1

,

u

i

�

x

A

T

n

; x

K[Y

n+1

= (A; : : : ; A); x

�T

n

�K�Y

n+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

= (;; : : : ; ;)

�

� 0:

This 
ontradi
ts the maximality of Y

n+1

.


) Denote K = fi 2 J : y

i

= Ag. Suppose that K 6� Y

n+1

. Then for i 2 K,

u

i

�

x

A

T

n

; x

K[Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

�K

= (;; : : : ; ;)

�

� u

i

�

x

A

T

n

; x

J

; x

A

�T

n

�J

�

= u

i

(x

A

�J

; x

J

)

� 0;

where the �rst inequality follows from Lemma 13(b), and for any i 2 Y

n+1

,

u

i

�

x

A

T

n

; x

K[Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

�K

= (;; : : : ; ;)

�

u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

= (;; : : : ; ;)

�

� 0:

This again 
ontradi
ts the maximality of Y

n+1

. �

We now return to the proof of Proposition 1.

1) x

A

is a NE.

Sin
e u

i

(x

A

) � 0 by Lemma 13(a), x

0

i

= ; 
annot be a pro�table deviation for

any i, and moreover a pro�table deviation, if any, must yield a stri
tly positive

payo�.

Take any i 2 P

n+1

so that x

A

i

= B, and 
onsider a deviation x

0

i

= A. If

u

i

(x

0

i

; x

A

�i

) � 0, then i 2 Y

n+1

by Lemma 13(
) and hen
e

u

i

(x

0

i

; x

A

�i

) � u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A); x

�Y

n+1

= (;; : : : ; ;)

�

< u

i

�

x

A

T

n

; x

A

i

; x

�T

n

�i

= (;; : : : ; ;)

�

� u

i

(x

A

):
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Hen
e the deviation is not pro�table. Likewise, no pro�table deviation exists for

i 2 Q

n+1

. Suppose next that i 2 R

n+1

so that x

A

i

= ;. x

0

i

= A is not pro�table

sin
e i 2 R

n+1

implies that i =2 Y

n+1

and hen
e u

i

(x

0

i

; x

A

�i

) < 0 by Lemma 13(
).

Likewise, the deviation x

0

i

= B is not pro�table. Finally, suppose that i 2 I n T

n

and that P

n+1

= Q

n+1

= R

n+1

= ;. In this 
ase, x

A

i

= A if i 2 Y

n+1

and x

A

i

= ;

otherwise. If x

0

i

= B, then

u

i

(x

0

i

; x

A

�i

) = u

i

�

x

A

T

n

; x

0

i

; x

A

�T

n

�i

�

= u

i

�

x

A

T

n

; x

0

i

; x

�T

n

�i

= (;; : : : ; ;)

�

� u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

= (;; : : : ; ;)

�

= u

i

(x

A

);

where the inequality follows sin
e i =2 P

n+1

. Hen
e, x

0

i

= B is not a pro�table

deviation. If i 2 I n T

n

n Y

n+1

and x

0

i

= A, then u

i

(x

0

i

; x

A

�i

) < 0 by Lemma 13(
).

2) x

A

is A-maximal.

Take any NE y. Clearly, u

i

(y) � 0 for every i. We �rst show that y

i

= x

A

i

if

i 2 T

1

. To see that y

i

= B for any i 2 P

1

, suppose y

i

= A. Then by setting n = 0

and J = I in Lemma 13(
), we see that fi : y

i

= Ag � Y

1

so that

u

i

(y

i

; y

�i

) � u

i

(x

Y

1

= (A; : : : ; A); x

�Y

1

= (;; : : : ; ;))

< u

i

(x

i

= B; x

�i

= (;; : : : ; ;))

� u

i

(x

i

= B; y

�i

);

where the se
ond inequality follows from the de�nition of P

1

. Hen
e x

i

= B is a

pro�table deviation. Likewise, y

i

= A holds for any i 2 Q

1

. If i 2 R

1

, then y

i

= ;

must hold sin
e i =2 Y

1

[ Z

1

.

As an indu
tion hypothesis, suppose that y

i

= x

A

i

if i 2 T

n

. We show that

y

i

= x

A

i

if i 2 T

n+1

n T

n

. If i 2 P

n+1

, then y

i

= B: If y

i

= A, then fi 2 I n T

n

: y

i

=

Ag � Y

n+1

by Lemma 13(
) (set J = I n T

n

) so that

u

i

(y

i

; y

�i

) � u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

= (;; : : : ; ;)

�

< u

i

�

x

A

T

n

; x

i

= B; x

�T

n

�i

= (;; : : : ; ;)

�

� u

i

(x

i

= B; y

�i

);

where the se
ond inequality follows from the de�nition of P

n+1

. Hen
e x

i

= B is a

pro�table deviation. Likewise, y

i

= A for any i 2 Q

n+1

. If i 2 R

n+1

, then y

i

= ;
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must hold sin
e i =2 Y

n+1

[Z

n+1

. Finally, if i 2 I nT

n

and P

n+1

= Q

n+1

= R

n+1

= ;,

then y

i

= A implies i 2 Y

n+1

by Lemma 13(
), but x

A

i

= A for any su
h i by

de�nition. We 
an therefore 
on
lude that x

A

is an A-maximal NE. �

Proof of Proposition 2. If there exists su
h a strategy pro�le � of buyers, then

(p

�

; q

�

) is 
learly an SPE pri
e ve
tor. Conversely, suppose that (p

�

; q

�

) is an SPE

pri
e ve
tor. Then there exists �̂ su
h that (p

�

; q

�

; �̂) is an SPE. De�ne � as follows:

�(p; q) =

8

>

>

>

<

>

>

>

:

�̂(p; q) if (p; q) = (p

�

; q

�

), or p 6= p

�

and q 6= q

�

,

�

A

(p; q) if p = p

�

and q 6= q

�

,

�

B

(p; q) if p 6= p

�

and q = q

�

.

Then (p

�

; q

�

; �) is an SPE: The de�nition of �

B

and the equilibrium property of �̂

together imply

�

A

(p; q

�

; �) � �

A

(p; q

�

; �̂) � �

A

(p

�

; q

�

; �̂) = �

A

(p

�

; q

�

; �):

Likewise, the de�nition of �

A

and the equilibrium property of �̂ together imply

�

B

(p

�

; q; �) � �

B

(p

�

; q

�

; �). �

Proof of Lemma 3. For simpli
ity, let k = K and suppose to the 
ontrary that

1, 2 2 Q

K

and 1 and 2 are adja
ent. Then it must be the 
ase that

v

�

K

1

� p

1

> max fv

d

1

��

K

1

� q

1

; 0g and v

�

K

2

� p

2

> max fv

d

2

��

K

2

� q

2

; 0g;

where

�

K

1

=

�

�

�

N

1

\ [

K�1

`=1

Q

`

�

�

�

; and �

K

2

=

�

�

�

N

2

\ [

K�1

`=1

Q

`

�

�

�

are the numbers of neighbors of 1 and 2, respe
tively, for whom x

i

is iteratively

stri
tly dominant in round K � 1 or earlier. Hen
e,

p

1

< v

�

K

1

�max fv

d

1

��

K

1

� q

1

; 0g and p

2

< v

�

K

2

�max fv

d

2

��

K

2

� q

2

; 0g:

On the other hand, let p

0

be su
h that p

0

i

= p

i

for i 6= 2, and

p

2

< p

0

2

< v

�

K

2

+1

�max fv

d

2

��

K

2

�1

� q

2

; 0g:

Denote by Q

0

k

the set of buyers for whom x

1

= A is an iteratively dominant a
tion in

round k under (p

0

; q) as de�ned in (5). We then have Q

0

k

= Q

k

for k = 1; : : : ;K � 1

and Q

0

K

= Q

K

[ f1g so that �

K

2

+ 1 of 2's neighbors have 
hosen A in round K or

earlier. Sin
e

v

�

K

2

+1

� p

0

2

> max fv

d

2

��

K

2

�1

� q

2

; 0g;

Q

0

K+1

= f2g. Furthermore, sin
e p

0

2

> p

2

, �

A

(p

0

; q; �

B

) > �

A

(p; q; �

B

). �
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Proof of Lemma 4. Fix any relabeling of buyers i

1

; : : : ; i

N

. Let s = (s

i

)

i2I

be

de�ned by

s

i

1

= 0 and s

i

k

= jN

i

k

\ fi

1

; : : : ; i

k�1

gj for k = 2; : : : ; N .

Let " > 0 be given, and de�ne the pri
e ve
tor p = (p

i

)

i2I

by

p

i

= min fv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g � ": (16)

As explained in the text, by o�ering p, seller A makes x

i

1

= A a stri
tly dominant

a
tion for buyer i

1

, and in any subsequent step, x

i

k

= A an iteratively stri
tly

dominant a
tion for buyer i

k

under (p; q

�

). Hen
e, seller A's payo� under (p; q

�

; �)

satis�es

�

A

(p; q

�

; �) �

N

X

i=1

minfv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g �N":

Sin
e " > 0 and s 2 S are arbitrary, if (8) does not hold, then we would have a


ontradi
tion

�

A

(p; q

�

; �) > �

A

(p

�

; q

�

; �):

The symmetri
 argument proves the inequality for seller B's payo�. �

Proof of Proposition 5. We �rst show that (p

�

; q

�

) = (0; 0) is an SPE pri
e. Let

�

A

and �

B

be the A-maximal and B-maximal equilibria as de�ned earlier, and let

� be the buyers' strategy pro�le su
h that

�(p; q) =

8

>

>

>

<

>

>

>

:

(B; : : : ; B) if (p; q) = (0; 0),

�

B

(p; q) if p 6= 0 and q = 0,

�

A

(p; q) if p = 0 and q 6= 0.

Now 
onsider a deviation from p

�

= 0 to p 6= 0 by seller A. Let Q

k

(k = 1; : : : ;K)

be as de�ned in (5) under (p; q

�

). It then follows that

I

A

(�

A

(p; q

�

)) = [

K

k=1

Q

k

for some K � N . In other words, any buyer attra
ted by seller A with p must


hoose A as his iteratively stri
tly dominant a
tion. Hen
e, seller A's payo� under

(p; q

�

; �) 
an be written as:

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

: (17)
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Now let

�

k

i

=

�

�

�

N

i

\ [

k�1

`=1

Q

`

�

�

�

denote the number of neighbors of buyer i who have already 
hosen seller A in

rounds prior to k. If i 2 Q

k

, then x

i

= A must be a dominant a
tion in round k for

buyer i so that

v

�

k

i

� p

i

> v

d

i

��

k

i

, p

i

< v

�

k

i

� v

d

i

��

k

i

: (18)

Note now that

K

X

k=1

X

i2Q

k

�

k

i

=

K

X

k=1

�

#links between Q

k

and [

k�1

`=1

Q

`

�

� #links in the subnetwork G

�

[

K

k=1

Q

k

�

=

1

2

K

X

k=1

X

i2Q

k

d

i

�

G

�

[

K

k=1

Q

k

��

�

1

2

K

X

k=1

X

i2Q

k

d

i

:

(19)

Substituting (18), (19) and the linearity of the externalities into (17), we obtain

�

A

(p; q

�

; �) <

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

�

= h

K

X

k=1

X

i2Q

k

�

2�

k

i

� d

i

�

� 0:

Therefore, the deviation p is not pro�table. By the symmetri
 argument, no devia-

tion q by seller B is pro�table either. �

Proof of Lemma 6. Note that (12) follows if we show that d � s is not a per-

mutation of s for some s: (11) implies that either

P

N

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0 or < 0.

If the latter holds, then let i

0

k

= i

N�k+1

for k = 1; : : : ; N and de�ne t = (t

i

)

i2I

by

setting t

i

0

k

equal to the number of neighbors of i

0

k

in fi

0

1

; : : : ; i

0

k�1

g:

t

i

0

1

= 0 and t

i

0

k

= jN

i

0

k

\ fi

0

1

; : : : ; i

0

k�1

gj for k = 2; : : : ; N . (20)

26



Then we 
an verify that

N

X

i=1

�

v

t

i

� v

d

i

�t

i

�

= �

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0:

We will 
onsider the following two 
ases separately.

1) G is not regular.

Take a pair of buyers i and j su
h that i is adja
ent to j, d

i

= D and d

j

< D,

where D � 2 is the highest degree in G. Take another buyer k that is adja
ent

to i but not to j. To see that there exists su
h a buyer, suppose to the 
ontrary

that every buyer 6= j that is adja
ent to i is also adja
ent to j. Then j has at

least D neighbors, a 
ontradi
tion. Let i

1

= k, i

2

= i and i

3

= j, and de�ne

i

4

; : : : ; i

N

=2 fi; j; kg arbitrarily. Then

(s

i

1

; s

i

2

; s

i

3

) = (0; 1; 1) ;

(d

i

1

� s

i

1

; d

i

2

� s

i

2

; d

i

3

� s

i

3

) = (d

k

;D � 1; d

j

� 1) :

If s is not a permutation of d � s, then we are done. Suppose then that s is a

permutation of d� s, and de�ne i

0

1

= k, i

0

2

= j, i

0

3

= i, and i

0

`

= i

`

for ` � 4, and let

t = (t

i

)

i2I

be de�ned by (20) for these i

0

1

; : : : ; i

0

N

. Then

�

t

i

0

1

; t

i

0

2

; t

i

0

3

�

= (0; 0; 2) ;

�

d

i

0

1

� t

i

0

1

; d

i

0

2

� t

i

0

2

; d

i

0

3

� t

i

0

3

�

= (d

k

; d

j

;D � 2) :

Sin
e i

0

`

= i

`

for ` � 4, we have

�

�

�

n

` � 4 : d

i

`

� s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

;

�

�

�

n

` � 4 : s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

:

(21)

a) d

j

= 1.

In this 
ase,

�

�

�

n

` � 3 : d

i

`

� s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 3 : s

i

`

= 0

o

�

�

�

= 1:

Hen
e, sin
e d� s is a permutation of s, we must have

jf` � 4 : d

i

`

� s

i

`

= 0gj = jf` � 4 : s

i

`

= 0gj :
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It then follows from (21) that

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

: (22)

However,

�

�

�

n

` � 3 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

� 1 < 2 =

�

�

�

n

` � 3 : t

i

0

`

= 0

o

�

�

�

: (23)

(22) and (23) together show that d� t 
annot be a permutation of t.

b) d

j

� 2.

In this 
ase, we have D � 3 sin
e D > d

j

� 2, and also

�

�

�

n

` � 3 : d

i

`

� s

i

`

= 0

o

�

�

�

= 0 < 1 =

�

�

�

n

` � 3 : s

i

`

= 0

o

�

�

�

:

Hen
e, sin
e d� s is a permutation of s,

jf` � 4 : d

i

`

� s

i

`

= 0gj = jf` � 4 : s

i

`

= 0gj+ 1:

It then follows from (21) that

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

+ 1: (24)

However,

�

�

�

n

` � 3 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 3 : t

i

0

`

= 0

o

�

�

�

� 2 (25)

(24) and (25) together imply that d� t is not a permutation of t.

2) G is r-regular with 2 < r < N � 1.

Sin
e G is 
onne
ted and not 
omplete, we 
an take a pair of buyers i

1

and i

2

su
h that i

1

and i

2

are adja
ent, and take another buyer i

3

who is adja
ent to i

2

but not to i

1

. To see that this is possible, suppose to the 
ontrary that for any

pair of adja
ent buyers i and j, any buyer k 6= i adja
ent to j is also adja
ent to

i. We then show that G must be 
omplete. Take any pair of buyers i and j. Sin
e

G is 
onne
ted, there is a path k

1

= i ! k

2

! � � � ! k

m�1

! k

m

= j. Sin
e k

2

is

adja
ent to i = k

1

and k

3

is adja
ent to k

2

, k

3

is adja
ent to i as well by the above.

Now sin
e k

4

is adja
ent to k

3

, it is also adja
ent to i. Pro
eeding the same way, we


on
lude that j = k

m

is adja
ent to i = k

1

, implying that G is 
omplete.
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We now label buyers other than fi

1

; i

2

; i

3

g as i

4

; : : : ; i

N

in an arbitrary manner.

For our 
hoi
e of i

1

, i

2

and i

3

, we have

(s

i

1

; s

i

2

; s

i

3

) = (0; 1; 1) ;

(d

i

1

� s

i

1

; d

i

2

� s

i

2

; d

i

3

� s

i

3

) = (r; r � 1; r � 1) :

If d � s is a not permutation of s, then we are done. Suppose then that d � s is a

permutation of s. We then must have

�

�

�

f` : s

i

`

= 0g

�

�

�

=

�

�

�

f` : d

i

`

� s

i

`

= 0g

�

�

�

: (26)

Let i

0

1

= i

1

, i

0

2

= i

3

, i

0

3

= i

2

and i

0

`

= i

`

for ` � 4, and let t = (t

i

)

i2I

be de�ned by

(20) for these i

0

1

; : : : ; i

0

N

. Note that

�

t

i

0

1

; t

i

0

2

; t

i

0

3

�

= (0; 0; 2) ;

�

d

i

0

1

� t

i

0

1

; d

i

0

2

� t

i

0

2

; d

i

0

3

� t

i

0

3

�

= (r; r; r � 2) :

Sin
e r > 2, if (26) holds, then the same argument as in the non-regular 
ase shows

that

�

�

�

n

` : t

i

0

`

= 0

o

�

�

�

6=

�

�

�

n

` : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

;

implying that d� t is not a permutation of t. �

Proof of Lemma 7. We �rst show that if (p

�

; q

�

; �) is an SPE, then

�

A

(p

�

; q

�

; �) >

N

X

i=1

min fq

�

i

; v

0

g and �

B

(p

�

; q

�

; �) >

N

X

i=1

min fp

�

i

; v

0

g: (27)

By Lemma 4, for any s 2 S, seller A's payo� under (p

�

; q

�

) satis�es

�

A

(p

�

; q

�

; �) �

N

X

i=1

minfv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g:

Rearranging, we get for any s 2 S,

�

A

(p

�

; q

�

; �) �

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

+

X

i

minfq

�

i

; v

d

i

�s

i

g

�

N

X

i=1

(v

s

i

� v

d

i

�s

i

) +

N

X

i=1

minfq

�

i

; v

0

g:

When G is neither 
y
li
 or 
omplete, there exists by Lemma 6 an s 2 S su
h that

the �rst term on the right-hand side is > 0. Hen
e, the �rst inequality in (27) must

hold. The proof for the se
ond inequality is similar.
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a) If min

i

q

�

i

� 0, then �

A

(p

�

; q

�

; �) = 0 �

P

i

min fq

�

i

; v

0

g, 
ontradi
ting (27).

b) If max

i

q

�

i

� v

0

, then �

A

(p

�

; q

�

; �) �

P

i

q

�

i

=

P

i

minfq

�

i

; v

0

g, 
ontradi
ting

(27).


) The inequality max

i

q

�

i

> v

0

follows from (b) above sin
e I

B

(p

�

; q

�

; �) = I implies

�

A

(p

�

; q

�

; �) = 0 and 0 � �

B

(p

�

; q

�

; �) =

P

i

q

�

i

. If v

d

i

� q

�

i

< v

0

for some i,

then any p su
h that p

i

= v

0

� " and p

�i

= 0 for 0 < " < q

�

i

� v

d

i

+ v

0

would

indu
e buyer i to swit
h to A and hen
e is a pro�table deviation for seller A.

To see that v

D

> 2v

0

, note �rst that min

i

(v

d

i

� q

�

i

) � v

0

in parti
ular implies

that max

i

q

�

i

� v

D

� v

0

. Hen
e, if v

D

� 2v

0

, we have a 
ontradi
tion to the �rst

statement sin
e max

i

q

�

i

� v

D

� v

0

� v

0

. �

Proof of Proposition 8. Suppose that G is neither 
y
li
 or 
omplete, and sup-

pose that seller B attra
ts all the buyers in an SPE (p

�

; q

�

; �) su
h that q

�

1

= � � � =

q

�

N

. Then sin
e �

A

(p

�

; q

�

; �) = 0, Lemma 7(1) implies that q

�

1

= � � � = q

�

N

=

min

i

q

�

i

< 0. Then, however, �

B

(p

�

; q

�

; �) < 0, a 
ontradi
tion. �

Proof of Proposition 9 It suÆ
es to show that (p

�

; q

�

) = (0; 0) 
oupled with

the following strategy pro�le � of the buyers is an SPE in ea
h 
lass of networks:

�(p; q) =

8

>

>

>

<

>

>

>

:

(B; : : : ; B) if (p; q) = (p

�

; q

�

),

�

A

(p; q) if p = p

�

and q 6= q

�

,

�

B

(p; q) if p 6= p

�

and q q

�

.

In other words, all buyers 
hoose B under (p

�

; q

�

) = (0; 0), and when one of the

�rms deviates to a non-zero pri
e ve
tor, the buyers 
oordinate on the NE whi
h is

least favorable to the deviating seller. In what follows, we show that seller A has no

in
entive to deviate. A symmetri
 argument shows that seller B has no in
entive to

deviate.

1) G is a 
y
le.

Suppose that seller A deviates to p 6= p

�

. Let Q

k

be as de�ned in (5) under

(p; q

�

). Sin
e

I

A

(�(p; q

�

)) = [

K

k=1

Q

k

for some K � N , if �

i

(p; q

�

) = A, then i 2 Q

k

for some k � K. Re
all that N

i

is

the set of neighbors of i in G, and that d

i

= jN

i

j = 2 sin
e G is 
y
li
. Let

�

k

i

=

�

�

�

N

i

\ [

k�1

`=1

Q

`

�

�

�

2 f0; 1; 2g
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denote the number of i's neighbors who have 
hosen A in rounds prior to k. If

i 2 Q

k

, then x

i

= A is a dominant a
tion in round k for buyer i so that

v

�

k

i

� p

i

> v

2��

k

i

, p

i

< v

�

k

i

� v

2��

k

i

: (28)

In parti
ular, buyer i is attra
ted by seller A in round 1 if p

i

< v

0

�v

2

, and attra
ted

by A in round k > 1 either if (i) p

i

< 0 and exa
tly one of his two neighbors has

already 
hosen A (�

k

i

= 1), or (ii) p

i

< v

2

� v

0

and both his neighbors have already


hosen A (�

k

i

= 2). Note also that only in round 1 does any buyer 
hoose A when

neither of his neighbors have already 
hosen A.

Seller A's payo� under (p; q

�

; �) hen
e satis�es

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

< jQ

1

j(v

0

� v

2

) + (v

2

� v

0

)

K

X

k=2

�

�

�

fi 2 I n

�

[

k�1

`=1

Q

`

�

: �

k

i

= 2g

�

�

�

:

Sin
e no buyer 
hooses A in round k � 2 if neither of his neighbors has already


hosen A, the number of 
omponents in G[[

k�1

`=1

Q

`

℄ is less than or equal to that in

G[Q

1

℄ for any k. It follows that

K

X

k=2

jfi 2 I n

�

[

k�1

`=1

Q

`

�

: �

k

i

= 2gj � jQ

1

j:

We 
an therefore 
on
lude that �

A

(p; q

�

; �) � 0 and hen
e that p is not a pro�tably

deviation.

2) G is 
omplete.

De�ne Q

k

(k = 1; : : : ;K) as above. Sin
e G is 
omplete, for any buyer i, the

number �

k

i

of i's neighbors who have 
hosen A equals the number �

k

of buyers who

have 
hosen A in rounds 1; : : : ; k � 1:

�

k

i

=

�

�

�

N

i

\ [

k�1

`=1

Q

`

�

�

�

=

k�1

X

`=1

jQ

`

j � �

k

:

Furthermore, by Proposition 3, we only need 
onsider p su
h that ea
h Q

k


ontains

a single buyer. (If Q

k


ontains two or more buyers, then sin
e G is 
omplete,

those buyers are adja
ent.) Hen
e, without loss of generality, Q

k

= fkg for ea
h

k = 1; : : : ; N . For k = 1; : : : ;K, we also have

p

k

< v

�

k

� v

N�1��

k

:
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Seller A's payo� under (p; q

�

; �) hen
e satis�es

�

A

(p; q

�

; �) =

N

X

k=1

N

X

k=1

p

k

<

K

X

k=1

�

v

�

k

� v

N�1��

k

�

: (29)

It is then straightforward to verify that the right-hand side equals zero. Hen
e,

seller A has no pro�table deviation.

�

Proof of Proposition 10. We will 
onstru
t an SPE (p

�

; q

�

; �) in whi
h seller B


aptures all the buyers: I

B

(�(p

�

; q

�

)) = I. Let the buyer set be partitioned into I

1

and I

2

so that links exist only between I

1

and I

2

. Suppose without loss of generality

that

X

i2I

1

(v

d

i

� v

0

)�

X

i2I

2

(v

d

i

� v

0

) � 0: (30)

Let

p

�

i

= q

�

i

=

8

<

:

v

d

i

� v

0

if i 2 I

1

,

v

0

� v

d

i

if i 2 I

2

,

and

�(p; q) =

8

<

:

�

B

(p; q) if q = q

�

,

�

A

(p; q) otherwise.

By (30), seller B's payo� under (p

�

; q

�

; �) is non-negative:

�

B

(p

�

; q

�

; �) =

X

i2I

q

�

i

� 0:

By the de�nition of the B-maximal NE, if seller A deviates to p, then the set of

buyers he 
aptures equals I

A

(�(p; q

�

)) = [

K

k=1

Q

k

, where Q

k

is the set of buyers i

for whom x

i

= A is a stri
tly dominant strategy in round k under (p; q

�

) as de�ned

in (5).

Suppose �rst that Q

1

� I

1

. we then have

X

i2Q

1

p

i

<

X

i2Q

1

minfv

0

� v

d

i

+ q

�

i

; v

0

g = 0:

Therefore, no p su
h that K = 1 and Q

1

� I

1

under (p; q

�

) is pro�table. Sin
e

q

�

i

< 0 for i 2 I

2

, it is 
lear that no p su
h that K = 1 under (p; q

�

) is pro�table

either.
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Suppose next that K = 2 and that Q

1

� I

1

. Then Q

2

\ I

1

= ; sin
e in round

2, every buyer i 2 Q

1

must be adja
ent to some buyer in Q

1

� I

1

. (Otherwise, i

would have been in Q

1

.) It follows that q

�

i

< 0 for ea
h i 2 Q

2

, and hen
e that

X

i2Q

2

p

i

<

X

i2Q

2

min fv

�

2

i

� v

d

i

��

2

i

+ q

�

i

; v

�

2

i

g

=

X

i2Q

2

�

v

�

2

i

� v

d

i

��

2

i

� v

d

i

+ v

0

�

� 0;

where �

2

i

= jN

i

\Q

1

j is the number of i's neighbors in Q

1

. Therefore, no deviation

p is pro�table if K = 2, Q

1

� I

1

and Q

2

� I

2

under (p; q

�

). It is then also 
lear that

no deviation p is pro�table if K = 2 and Q

2

� I

2

.

We next show that no deviation p is pro�table if K � 2 and Q

k

\I

1

6= ; for some

k � 2. Together with the above observations, this would imply that no deviation p

is pro�table if K = 2. Furthermore, if K � 3, then it must be the 
ase that either

Q

2

\ I

1

6= ; or Q

3

\ I

1

6= ; sin
e G is bipartite, and sin
e every i 2 Q

3

is adja
ent

to some buyer in Q

2

. It would hen
e follow that no deviation p is pro�table.

Let j 2 Q

k

\ I

1

for some k � 2. Then

�

A

(p; q

�

; �) =

K

X

`=1

X

i2Q

`

p

i

<

K

X

`=1

X

i2Q

`

min

n

v

�

`

i

� v

d

i

��

`

i

+ q

�

i

; v

�

`

i

o

�

K

X

`=1

X

i2Q

`

�

v

�

`

i

� v

d

i

��

`

i

+ q

�

i

�

+ v

�

k

j

�

�

v

d

j

� v

0

+ q

j

�

;

(31)

where

�

`

i

=

�

�

�

N

i

\

�

[

`�1

�=1

Q

�

�

�

�

�

is the number of i's neighbors who have 
hosen A prior to round `. We now use

approximate linearity to evaluate the right-hand side of (31) term by term. First,

sin
e q

�

j

= v

d

j

� v

0

,

v

�

k

j

�

�

v

d

j

� v

0

+ q

�

j

�

� �v

d

j

+ 2v

0

< �hd

j

+ 3": (32)
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Observe next that

K

X

`=1

X

i2Q

`

n

v

�

`

i

� v

d

i

��

`

i

o

=

K

X

`=1

X

i2Q

`

hn

v

�

`

i

� �

`

i

h

o

�

n

v

d

i

��

`

i

� (d

i

� �

`

i

)h

oi

�

K

X

`=1

X

i2Q

`

�

(d

i

� �

`

i

)� �

`

i

�

h

� 2"

�

�

[

K

`=1

Q

`

�

�

� hm;

(33)

where

m = #links between [

K

`=1

Q

`

and I n

�

[

K

`=1

Q

`

�

.

Observe �nally that

K

X

`=1

X

i2Q

`

q

�

i

=

K

X

`=1

X

i2Q

`

\I

1

(v

d

i

� v

0

)�

K

X

`=1

X

i2Q

`

\I

2

(v

d

i

� v

0

)

=

K

X

`=1

X

i2Q

`

\I

1

(v

d

i

� v

0

� d

i

h)�

K

X

`=1

X

i2Q

`

\I

2

(v

d

i

� v

0

� d

i

h)

+ h

K

X

`=1

X

i2Q

`

\I

1

d

i

� h

K

X

`=1

X

i2Q

`

\I

2

d

i

:

(34)

Sin
e the externalities are "-
lose to linear,

K

X

`=1

X

i2Q

`

\I

1

(v

d

i

� v

0

� d

i

h)�

K

X

`=1

X

i2Q

`

\I

2

(v

d

i

� v

0

� d

i

h) � 2"

�

�

[

K

`=1

Q

`

�

�

: (35)

We also have

K

X

`=1

X

i2Q

`

\I

1

d

i

= #links between [

K

`=1

Q

`

\ I

1

and I

2

K

X

`=1

X

i2Q

`

\I

2

d

i

= #links between [

K

`=1

Q

`

\ I

2

and I

1

� #links between [

K

`=1

Q

`

\ I

2

and [

K

`=1

Q

`

\ I

1
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so that

K

X

`=1

X

i2Q

`

\I

1

d

i

�

K

X

`=1

X

i2Q

`

\I

2

d

i

� #links between [

K

`=1

Q

`

and I

2

n

�

[

K

`=1

Q

`

�

� #links between [

K

`=1

Q

`

and I n

�

[

K

`=1

Q

`

�

= m:

(36)

Substituting (35) and (36) into (34), we obtain

K

X

`=1

X

i2Q

`

q

�

i

� 2"

�

�

[

K

`=1

Q

`

�

�

+ hm: (37)

Substituting (32), (33) and (37) into (31), we see that

�

A

(p; q

�

; �) < 2"

�

�

[

K

`=1

Q

`

�

�

� hm+ 2"

�

�

[

K

`=1

Q

`

�

�

+ hm� hd

j

+ 3"

= "

�

4

�

�

[

K

`=1

Q

`

�

�

+ 3

�

� hd

j

� " (4N + 3)� hd

j

:

Hen
e, if we set �" = h= (4N + 3), then �

A

(p; q

�

; �) < 0 when " < �". �

Proof of Proposition 12. Let

Æ = max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

:

When the externalities are "-
lose to h-linear,

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

=

N

X

i=1

n

(v

s

i

� s

i

h)�

�

v

d

i

�s

i

� (d

i

� s

i

)h

�

� h ((d

i

� s

i

)� s

i

)

o

< 2N";

and hen
e

Æ < 2N": (38)

Sin
e G is separable, let (I

1

; I

2

) be the partition of the buyer set I, and let i

A

2 I

1

and i

B

2 I

2

be su
h that

jN

i

A

\ I

1

j > jN

i

A

\ I

2

j and jN

i

B

\ I

2

j > jN

i

B

\ I

1

j.
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We spe
ify (p

�

; q

�

; �) as follows:

(p

�

i

; q

�

i

) =

8

>

>

>

<

>

>

>

:

(Æ;�Æ) if i = i

A

,

(�Æ; Æ) if i = i

B

,

(0; 0) otherwise,

and

�(p; q) =

8

>

>

>

>

>

<

>

>

>

>

>

:

(A; : : : ; A

| {z }

I

1

; B; : : : ; B

| {z }

I

2

) if (p; q) = (p

�

; q

�

),

�

B

(p; q) if p 6= p

�

,

�

A

(p; q) if p = p

�

and q 6= q

�

.

Note that �

A

(p

�

; q

�

; �) = �

B

(p

�

; q

�

; �) = Æ.

We �rst show that the buyers' a
tion pro�le following (p

�

; q

�

) is a NE. If i 2

I

1

n fi

A

g, then x

i

= A is a best response sin
e

v

jN

i

\I

1

j

� p

i

= v

jN

i

\I

1

j

� v

jN

i

\I

2

j

= v

jN

i

\I

2

j

� q

i

:

If i = i

A

, then jN

i

\ I

1

j > jN

i

\ I

2

j so that

v

jN

i

\I

1

j

� v

jN

i

\I

2

j

=

�

v

jN

i

\I

1

j

� hjN

i

\ I

1

j

�

�

�

v

jN

i

\I

2

j

� hjN

i

\ I

2

j

�

+ h fjN

i

\ I

1

j � jN

i

\ I

2

jg

� h� 2":

Hen
e, if we take

�" =

h

2(2N + 1)

; (39)

then for any " < �", (38) implies that

v

jN

i

\I

1

j

� p

i

= v

jN

i

\I

1

j

� Æ > v

jN

i

\I

2

j

+ Æ = v

jN

i

\I

2

j

� q

i

:

The symmetri
 argument shows that x

i

= B is a best response for ea
h i 2 I

2

following (p

�

; q

�

).

We will next show that seller A has no pro�table deviation. Let p be any

deviation by seller A, and denote by Q

k

the set of buyers who will 
hoose A as an

iteratively dominant a
tion in round k under (p; q

�

) as de�ned in (5). Sin
e the

buyers play �

B

following (p; q

�

), buyer i will 
hoose A only if x

i

= A is iteratively

dominant: i 2 [

K

k=1

Q

k

. By Proposition 3, we may assume that no buyers in Q

k

are

adja
ent.
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If i 2 Q

k

, then

p

i

< min fv

�

k

i

� v

d

i

��

k

i

+ q

�

i

; v

�

k

i

g � v

�

k

i

� v

d

i

��

k

i

+ q

�

i

;

where

�

k

i

=

�

�

�

N

i

\

�

[

k�1

�=1

Q

�

�

�

�

�

is the number of i's neighbors who have 
hosen A prior to round k. Suppose �rst

that [

K

k=1

Q

k

( I. Sin
e the externalities are "-
lose to h-linear, we have

v

�

k

i

� v

d

i

��

k

i

=

�

v

�

k

i

� �

k

i

h

�

�

�

v

d

i

��

k

i

� (d

i

� �

k

i

)h

�

�

�

(d

i

� �

k

i

)� �

k

i

�

h

< 2" �

�

(d

i

� �

k

i

)� �

k

i

�

h:

Hen
e,

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

�

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

+ q

�

i

�

<

K

X

k=1

X

i2Q

k

n

2"�

�

(d

i

� �

k

i

)� �

k

i

�

h

o

+

K

X

k=1

X

i2Q

k

q

�

i

= 2"

�

�

[

K

k=1

Q

k

�

�

� h

K

X

k=1

X

i2Q

k

�

(d

i

� �

k

i

)� �

k

i

�

+

K

X

k=1

X

i2Q

k

q

�

i

:

Sin
e [

K

k=1

Q

k

( I by assumption and sin
e G is 
onne
ted,

K

X

k=1

X

i2Q

k

�

(d

i

� �

k

i

)� �

k

i

�

= #links between [

K

k=1

Q

k

and I n [

K

k=1

Q

k

� 1:

It hen
e follows from (38) that

�

A

(p; q

�

; �) < 2"

�

�

[

K

k=1

Q

k

�

�

� h+ 2N" < 4N"� h;

whi
h is < 0 for " < �" when �" is given in (39).

Suppose next that [

K

k=1

Q

k

= I. In this 
ase,

P

K

k=1

P

i2Q

k

q

�

i

= 0. Hen
e the

de�nition of Æ implies that

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

�

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

+ q

�

i

�

� Æ = �

A

(p

�

; q

�

; �):

In either 
ase, hen
e, the deviation p is not pro�table. �
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Appendix II: Strong Equilibrium in the Buyers' Game

Our dis
ussion in the text has pla
ed no restri
tion on the buyers' strategies other

than that implied by a Nash equilibrium. In this Appendix, we ask what happens

when the buyers a
tively 
oordinate their a
tions. While there 
an be many di�erent

formulations of a
tion 
oordination, one simple and extreme way is to suppose that

any subset of the buyers may 
hoose a joint deviation whenever that yields ea
h

one of them a stri
tly higher payo� than adhering to the proposed a
tion pro�le.

In other words, we will require that in ea
h subgame, the buyers' a
tion pro�le


onstitutes a strong Nash equilibrium.

9

We �nd that the marginal 
ost pri
ing is

not 
onsistent with a strong Nash equilibrium even if the network is 
omplete or


y
li
.

Formally, the buyers a
tion pro�le x

�

is a strong Nash equilibrium (strong NE)

if for any nonempty subset J � I of buyers, and for any x

J

,

u

i

(x

�

) � u

i

(x

J

; x

�

�J

) for some i 2 J . (40)

In other words, an a
tion pro�le is a strong NE if, whenever a 
oalition of buyers


ontemplate a joint deviation, there is a member in the 
oalition who 
annot stri
tly

bene�t from the deviation. If x

�

is a strong NE, then it is 
learly a NE. Note also

that x

�

is a strong NE if and only if (40) holds for any non-empty J � I and any

x

J

su
h that x

j

6= x

�

j

for every j 2 J .

10

A strong NE x of the buyers' subgame is A-maximal if for any strong NE y,

y

i

= A implies x

i

= A, and B-maximal if y

i

= B implies x

i

= B. We 
an �nd these

maximal strong NE using the iteration pro
edure similar to that used to �nd the

A-maximal and B-maximal NE.

For any a
tion pro�les x and y, identify u

i

(x

;

; y) with u

i

(y). Let T

0

= ;, and

de�ne the subsets of buyers T

k

, P

k

, Q

k

, R

k

, Y

k

and Z

k

(n = 1; 2; : : :) re
ursively as

follows.

9

By the property of the payo� fun
tions of the buyers' game, we 
an verify that any strong Nash

equilibrium is a 
oalition-proof Nash equilibrium in the sense of Bernheim et al. (1987).

10

To see this, suppose that x

�

is not a strong NE. Then there exist J 6= ; and x

J

su
h that

u

j

(x

�

) < u

j

(x

J

; x

�

�J

) for every j 2 J . Then J

0

� fj 2 J : x

j

6= x

�

j

g 6= ;. Moreover,

u

j

(x

J

0

; x

�

�J

0) = u

j

(x

J

0

; x

JnJ

0

; x

�J

) = u

j

(x

J

; x

�

�J

) > u

j

(x

�

)

for every j 2 J

0

sin
e j 2 J n J

0

implies x

j

= x

�

j

. Hen
e, the 
oalition J

0

also has a pro�table joint

deviation su
h that x

j

6= x

�

j

for every j 2 J

0

.
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For k = 0; 1; 2; : : :, de�ne Y

k+1

� I n T

k

to be the maximal set su
h that

Y

k+1

=

n

i 2 I n T

k

:u

i

�

x

�

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� 0

o

:

Y

k+1

is the set of buyers not in T

k

who, given x

�

T

k

, 
an 
olle
tively 
hoose A and

enjoy non-negative payo�s from it.

11

If there is no su
h set, let Y

k+1

= ;. Likewise,

de�ne Z

k+1

� I n T

k

to be the maximal set su
h that

Z

k+1

=

n

i 2 I n T

k

: u

i

�

x

�

T

k

; x

Z

k+1

= (B; : : : ; B); x

�T

k

�Z

k+1

= (;; : : : ; ;)

�

� 0

o

:

If there is no su
h set, then let Z

k+1

= ;. Let also R

k+1

be de�ned by

R

k+1

= (I n T

k

) n (Y

k+1

[ Z

k+1

) :

As before, R

k+1

is the set of buyers i for whom x

i

= ; is iteratively stri
tly dominant

given x

�

T

k

. Now de�ne P

k+1

� I n T

k

to be the maximal set su
h that

P

k+1

=

n

i 2 I n T

k

: u

i

�

x

�

T

k

; x

P

k+1

= (B; : : : ; B); x

�T

k

�P

k+1

= (;; : : : ; ;)

�

> u

i

�

x

�

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

o

:

If there exists no su
h set, then let P

k+1

= ;. P

k+1

is the set of buyers whose payo�s

from 
olle
tively 
hoosing x

i

= B are stri
tly higher than those from the maximal


oordination on A or from ;. Likewise, de�ne Q

k+1

� I n T

k

to be the maximal set

of buyers whose payo�s from 
olle
tively 
hoosing x

i

= A are stri
tly higher than

those from the maximal 
oordination on B or from ;:

Q

k+1

=

n

i 2 I n T

k

:u

i

�

x

�

T

k

; x

Q

k+1

= (A; : : : ; A); x

�T

k

�Q

k+1

= (;; : : : ; ;)

�

> u

i

�

x

�

T

k

; x

Z

k+1

= (B; : : : ; B); x

�T

k

�Z

k+1

= (;; : : : ; ;)

�

o

:

Again, if there exists no su
h set, then let Q

k+1

= ;.

1) If P

k+1

= Q

k+1

= R

k+1

= ;, then let k = K and stop.

2) Otherwise, let

T

k+1

= T

k

[ (P

k+1

[Q

k+1

[R

k+1

) ;

and

x

�

i

=

8

>

>

>

<

>

>

>

:

B if i 2 P

k+1

,

A if i 2 Q

k+1

,

; if i 2 R

k+1

.

11

With the possible di�eren
e in T

k

and x

T

k

, hen
e, the de�nition of Y

k+1

is the same as in (2).
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If T

k+1

= I, then set K = k + 1 and stop. Otherwise, in
rease k by one and start

over.

Given that the above pro
ess starts over only when there is a buyer who has a

joint dominant a
tion, the maximal number of iteration K � N .

Proposition 14 Let x

A

and x

B

be de�ned by

x

A

= (x

�

T

K

; x

Y

K+1

= (A; : : : ; A); x

�T

K

�Y

K+1

= (;; : : : ; ;)); and

x

B

= (x

�

T

K

; x

Z

K+1

= (B; : : : ; B); x

�T

K

�Z

K+1

= (;; : : : ; ;)):

Then x

A

and x

B

are the A-maximal and B-maximal strong NE, respe
tively.

(p

�

; q

�

; �) is a strong SPE if for every (p; q), �(p; q) is a strong NE of the buyers'

subgame, and �

A

(p

�

; q

�

; �) � �

A

(p; q

�

; �) and �

B

(p

�

; q

�

; �) � �

B

(p

�

; q; �) for every

p and q.

Proposition 15 Let a buyer network G be given and the externalities v = (v

0

; : : : ; v

D

)

satisfy (11). There exists no buyers' strategy pro�le � su
h that for p

�

= q

�

= 0

(p

�

; q

�

; �) is a strong SPE.

Proof of Proposition 14. We show that x

A

is an A-maximal strong NE. The

symmetri
 argument shows that x

B

is a B-maximal strong NE. We begin by making

some preliminary observations as follows:

Lemma 16 a) u

i

(x

A

) � 0 for every i.

b) For any k = 1; : : : ;K,

fi 2 I n T

k

: x

A

i

= Ag � Y

k+1

; and fi 2 I n T

k

: x

A

i

= Bg � Z

k+1

: (41)


) For any k, J � I n T

k

and x

J

, if u

i

(x

J

; x

A

�J

) � 0 for every i 2 J , then

fi 2 J : x

i

= Ag � Y

k+1

and fi 2 J : x

i

= Bg � Z

k+1

: (42)

In parti
ular, for any y

�T

k

su
h that u

i

(y

�T

k

; x

A

T

k

) � 0 for every i 2 I n T

k

,

fi 2 I n T

k

: y

i

= Ag � Y

k+1

and fi 2 I n T

k

: y

i

= Bg � Z

k+1

: (43)
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Proof of Lemma 16. a) Suppose i 2 P

k+1

. Then

u

i

(x

A

) = u

i

�

x

A

T

k

; x

P

k+1

= (B; : : : ; B); x

A

�T

k

�P

k+1

�

� u

i

�

x

A

T

k

; x

P

k+1

= (B; : : : ; B); x

�T

k

�P

k+1

= (;; : : : ; ;)

�

> u

i

�

x

A

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� 0;

where the last inequality holds trivially if i 2 (I n T

k

) n Y

k+1

and by the de�nition

of Y

k+1

if i 2 Y

k+1

. u

i

(x

A

) � 0 holds also when i 2 Q

k+1

, R

k+1

or I n T

K

.

b) Let Y = fi 2 I n T

k

: x

A

i

= Ag. If Y 6� Y

k+1

, then

u

i

�

x

A

T

k

; x

Y [Y

k+1

= (A; : : : ; A); x

�T

k

�Y�Y

k+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

k

; x

Y

= (A; : : : ; A); x

�T

k

�Y

= (;; : : : ; ;)

�

= u

i

(x

A

) � 0

for i 2 Y , and

u

i

�

x

A

T

k

; x

K[Y

k+1

= (A; : : : ; A); x

�T

k

�K�Y

k+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� 0

for i 2 Y

k+1

. This 
ontradi
ts the maximality of Y

k+1

.


) Let Y = fi 2 J : x

i

= Ag. If Y 6� Y

k+1

, then

u

i

�

x

A

T

k

; x

Y [Y

k+1

= (A; : : : ; A); x

�Y �Y

k+1

= (;; : : : ; ;)

�

� u

i

�

x

J

; x

A

�J

�

� 0

for every i 2 Y be
ause of (41), and

u

i

�

x

A

T

k

; x

Y [Y

k+1

= (A; : : : ; A); x

�Y�Y

k+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� 0

for every i 2 Y

k+1

. This 
ontradi
ts the maximality of Y

k+1

. Hen
e (42) holds. (42)

implies (43) if we set J = I n T

k

. �

We now return to the proof of Proposition 14.

In what follows, denote by J the deviating 
oalition of buyers. We �rst show

that x

A

is a strong NE by verifying (40) for ea
h 
hoi
e of J spe
i�ed below.
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1) First take J su
h that J \ T

1

6= ;.

If J \ P

1

6= ;, take i 2 J \ P

1

. Then x

A

i

= B by the de�nition of x

A

. If x

J

is

su
h that x

i

= A and u

j

(x

J

; x

A

�J

) � 0 for every j 2 J , then

u

i

(x

J

; x

A

�J

) � u

i

(x

Y

1

= (A; : : : ; A); x

�Y

1

= (;; : : : ; ;))

< u

i

(x

P

1

= (B; : : : ; B); x

�P

1

= (;; : : : ; ;))

� u

i

(x

A

);

where the �rst inequality follows from (41) and (42). Likewise, (40) holds

for any J su
h that J \ Q

1

6= ;. If J is su
h that J \ R

1

6= ;, then take

i 2 J \ R

1

. By de�nition, x

A

i

= ;. If x

A

i

= A, then sin
e i =2 Y

1

, we have

u

i

(x

J

; x

A

�J

) < 0 = u

i

(x

A

). We also have u

i

(x

J

; x

A

�J

) < 0 = u

i

(x

A

) if x

i

= B

sin
e i =2 Z

1

.

2) As an indu
tion hypothesis, suppose that (40) holds for any J su
h that J \

T

k

6= ;.

Suppose that we take J su
h that J \ T

k

= ; but J \ T

k+1

6= ;.

If J \ P

k+1

6= ;, take i 2 J \ P

k+1

. Then x

A

i

= B by the de�nition of x

A

. If

x

J

is su
h that x

i

= A and u

j

(x

J

; x

A

�J

) � 0 for every j 2 J , then

u

i

(x

J

; x

A

�J

) = u

i

�

x

A

T

k

; x

J

; x

A

�J�T

k

�

� u

i

�

x

A

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

< u

i

(x

A

T

k

; x

P

k+1

= (B; : : : ; B); x

�T

k

�P

k+1

= (;; : : : ; ;))

� u

i

(x

A

);

where the se
ond line follows from (41) and (42). By the similar argument, (40)

holds for any J su
h that J\Q

k+1

6= ;. If J\R

k+1

6= ;, take i 2 J\R

k+1

. Then

x

A

i

= ; by de�nition. If x

i

= A, then sin
e i =2 Y

k+1

, u

i

(x

J

; x

A

�J

) < 0 = u

i

(x

A

).

We also have u

i

(x

J

; x

A

�J

) < u

i

(x

A

) if x

i

= B sin
e i =2 Z

k+1

.

3) Finally, suppose that J � I n T

K

. Sin
e P

K+1

= ;, if x

J

= (B; : : : ; B), there

exists i 2 J su
h that

u

i

(x

A

) = u

i

�

x

A

T

K

; x

Y

K+1

= (A; : : : ; A); x

�T

K

�Y

K+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

K

; x

J

= (B; : : : ; B); x

�T

K

�J

= (;; : : : ; ;)

�

= u

i

(x

J

= (B; : : : ; B); x

A

�J

);
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where the last equality holds be
ause x

A

i

6= B for any i 2 I n T

K

by de�nition.

Clearly, no other joint deviation x

J

by J yields a higher payo� for i than

u

i

(x

J

= (B; : : : ; B); x

A

�J

). Hen
e, (40) holds for any J su
h that J � I n T

K

.

We next show that the strong NE x

A

is A-maximal. Take any strong NE y.

Clearly, u

i

(y) � 0 for every i 2 I. If i 2 P

1

, then y

i

= B: If y

i

6= B, then

u

i

(x

P

1

= (B; : : : ; B); y

�P

1

) > u

i

(x

Y

1

= (A; : : : ; A); x

�Y

1

= (;; : : : ; ;))

� u

i

(y);

where the last inequality from (43) for k = 0. Hen
e, y violates (40). Likewise, we


an 
on
lude that

y

i

=

8

<

:

A if i 2 Q

1

,

; if i 2 R

1

.

Hen
e, y

T

1

= x

A

T

1

. As an indu
tion hypothesis, suppose that y

T

k

= x

A

T

k

. If i 2 P

k+1

then y

i

= B: If y

i

6= B, then

u

i

�

y

T

k

; x

P

k+1

= (B; : : : ; B); y

�T

k

�P

k+1

�

> u

i

�

y

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� u

i

(y

T

k

; y

�T

k

);

where the last inequality follows from (43) sin
e y

T

k

= x

A

T

k

by the indu
tion hypoth-

esis. Hen
e, y violates (40). We also have

y

i

=

8

<

:

A if i 2 Q

k+1

,

; if i 2 R

k+1

.

Hen
e, y

T

k+1

= x

A

T

k+1

. Suppose �nally that i 2 I n T

K

. Sin
e fi 2 I n T

K

:; y

i

=

Ag � Y

K+1

by (43), y

i

= A implies x

A

i

= A, showing that x

A

is A-maximal. �

Proof of Proposition 15. In view of Proposition 9, it suÆ
es to 
he
k the exis-

ten
e of a strong NE when G is either 
y
li
 or 
omplete.

1) G is a 
y
le.

Suppose that for " > 0 small, p is given by

p

i

=

8

>

>

>

<

>

>

>

:

v

1

� v

2

� " if i = 1, N � 1,

�" if i = 2; : : : ; N � 2,

v

2

� v

0

� " if i = N .
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We 
an then verify that under (p; q

�

), Q

1

= f1; : : : ; N � 1g: For i = 1 and N � 1,

u

i

(x

Q

1

= (A; : : : ; A); x

N

= ;) = v

1

� p

i

= v

2

+ "

> u

i

(x = (B; : : : ; B)) ;

and for i = 2; : : : ; N � 2,

u

i

(x

Q

1

= (A; : : : ; A); x

N

= ;) = v

2

� p

i

= v

2

+ "

> u

i

(x = (B; : : : ; B)) ;

but for i = N ,

u

N

(x = (A; : : : ; A)) = v

2

� p

N

= v

0

+ "

< u

N

(x = (B; : : : ; B)) :

We 
an also verify that P

1

= R

1

= ;. Given T

1

= I n fNg, Q

2

= fNg:

u

N

(x

T

1

; x

N

= A) = v

2

� p

N

= v

0

+ " > u

N

(x

T

1

; x

N

= B):

Therefore, Q

1

[Q

2

= I and seller A's payo� under (p; q

�

) equals

�

A

(p; q

�

; �) = 2(v

1

� v

2

� ") + v

2

� v

0

� " = 2v

1

� v

0

� v

2

� 3";

whi
h is stri
tly positive if 2v

1

�v

0

�v

2

> 0 and " is suÆ
iently small. If 2v

1

�v

0

�

v

2

< 0, then we 
an verify that �

A

(p; q

�

; �) > 0 if we take " > 0 small and p su
h

that

p

i

=

8

>

>

>

<

>

>

>

:

v

2

� v

1

� " if i = 1, N � 1,

�" if i = 2; : : : ; N � 2,

v

0

� v

2

� " if i = N .

2) Suppose next that G is 
omplete.

Consider p su
h that

p

i

=

8

<

:

v

N�2

� v

N�1

� " if i = 1; : : : ; N � 1,

v

N�1

� v

0

� " if i = N .
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Then Q

1

= f1; : : : ; N � 1g and Q

2

= fNg, and

�

A

(p; q

�

; �) = (N � 1)(v

N�2

� v

N�1

� ") + v

N�1

� v

0

� "

= (N � 1)v

N�2

� (N � 2)v

N�1

� v

0

�N";

whi
h is stri
tly positive if (N �1)v

N�2

� (N �2)v

N�1

�v

0

> 0 and " is suÆ
iently

small. If (N � 1)v

N�2

� (N � 2)v

N�1

� v

0

< 0, then �

A

(p; q

�

; �) > 0 if " > 0 is

small and p is given by

p

i

=

8

<

:

v

N�1

� v

N�2

� " if i = 1; : : : ; N � 1,

v

0

� v

N�1

� " if i = N .

In either 
ase, hen
e, seller A 
an pro�tably deviate from p

�

= 0 against q

�

= 0. �
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