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Abstract

Two sellers engage in price competition to attract buyers located on a net-
work. The value of the good of either seller to any buyer depends on the number
of neighbors on the network who consume the same good. For a generic speci-
fication of consumption externalities, we show that an equilibrium price equals
the marginal cost if and only if the buyer network is complete or cyclic. When
the externalities are approximately linear in the size of consumption, we iden-
tify the class of networks in which one of the sellers monopolizes the market,
or the two sellers segment the market.
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1 Introduction

Goods have network externalities when their value to each consumer depends on
the consumption decisions of other consumers. The externalities may derive from
physical connection to consumers adopting the same good as in the case of telecom-
munication devices, from provision of complementary goods as in the case of oper-
ating systems and softwares for computers, or from pure psychological factors as in
the case of consumption bandwagon. Despite their importance in reality, we only
have limited understanding of network externalities particularly when those goods
are supplied competitively. The objective of this paper is to study price competi-

tion in the presence of consumption externalities represented by a buyer network.
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Specifically, we formulate a model of price competition under local network external-
ities by supposing that two sellers compete for a network of buyers who experience
externalities when their neighbors in the network consume the same good.

A more detailed description of our model is as follows: Two sellers each sell
goods that are incompatible with each other. Consumers of either good experience
larger positive externalities when more of his neighbors in the network consume the
same good. In stage 1, the two sellers post prices simultaneously. The prices can
be perfectly discriminatory and can be negative. Upon publicly observing the price
vectors posted by both sellers, the buyers in stage 2 simultaneously decide which
good to buy or not to buy. The sellers have no cost of serving the market, and their
payoffs simply equal the sum of prices offered to the buyers who choose to buy their
goods.

In this framework, we find that the equilibrium outcome of price competition
subtly depends on the network structure. Our first observation concerns the validity
of marginal cost pricing. When no network externalities are present, it is clear that
the unique subgame perfect equilibrium of this game has both sellers offer zero to
all buyers. In the presence of externalities, however, we show that the marginal cost
pricing is consistent with equilibrium only if either the externalities are linear (in the
number of neighbors consuming the same good), or the network is either a complete
graph or a cycle.! In any other network, if the externalities generic, there exists no
equilibrium in which either seller captures the entire market by offering the same
price to all buyers. This is so even in networks where all buyers have symmetric
locations. Given this surprising result, we attempt to identify equilibrium prices
under non-linear externalities.

Positive identification of equilibrium prices is possible when the externalities are
close to linear and when the network satisfies certain properties as follows. First, we
consider bipartite networks. A network is bipartite if the set of buyers can be divided
into two subsets such that for every buyer in either subset, all his neighbors belong
to the other subset. This is an important class of networks given that it corresponds
to a two-sided market that has received much attention in the literature as discussed
in the next section. We show that in a bipartite network, there exists an equilibrium
in which one of the sellers captures the entire market (i.e., buyers on both sides) by

charging positive prices to all buyers on one side while subsidizing all buyers on the

'A graph is complete if any pair of buyers are neighbors. The linear externalities in particular
imply that the value of the good is zero to a buyer when none of his neighbors consumes it.



other side.

Next, we identify the class of networks for which market segmentation takes place
in equilibrium. We say that a network is separable if the buyer set can be divided
into two subsets such that every buyer in each subset has at least as many neighbors
in the same subset as in the other subset, and some buyer in each subset has strictly
more neighbors in the same subset than in the other subset. In a separable network,
we show that market segmentation takes place in equilibrium with each seller making
strictly positive profits.

The paper is organized as follows: After discussing the related literature in the
next section, we formulate a model of price competition in Section 3. Section 4 con-
siders the subgame played by the buyers that follows the public observation of prices
posted by both sellers. The critical observations there are that this simultaneous-
move game is one of strategic complementarity, and hence that there exist maximal
and minimal Nash equilibria in each subgame. We present an algorithm to obtain
these extreme equilibria and use them in our construction of a subgame perfect equi-
librium of the entire game. We begin the analysis of a subgame perfect equilibrium
in Section 5 and identify lower bounds on the sellers’ payoff in such equilibrium.
Section 6 examines the validity of marginal cost pricing in equilibrium. With the
definition of approximate linearity, Section 7 discusses equilibrium in a bipartite
network, which corresponds to a model of two-sided markets. Equilibrium market
segmentation in separable networks is discussed in Section 8. We conclude in Sec-
tion 9. All the proofs are collected in the Appendix. The Appendix also contains an
analysis of the game when the buyers coordinate their actions by playing a strong

Nash equilibrium in the stage 2 subgame.

2 Related Literature

Dybvig and Spatt (1983) are the first to theoretically study the provision of goods
with network externalities.? The problems of a single supplier of a good with network
externalities are subsequently studied by Cabral et al. (1999), Park (2004), Sekiguchi
(2009), Ochs and Park (2010), Aoyagi (2013), among others. These papers focus on
such issues as the construction of efficient or revenue maximizing adoption schemes
under complete and incomplete information, intertemporal patterns of adoption

decisions, as well as the validity of introductory pricing.

2Rohlfs (1974) provides a very early discussion of network externalities.



Segal (2003), Winter (2004) and Bernstein and Winter (2012) study a closely
related problem of contracting under externalities in which a single principal offers
a contract to the set of agents whose participation decisions create externalities to
other agents. They discuss the so-called divide-and-conquer strategy used by the
principal: According to the strategy, the principal approaches agents one by one
in some order. The contract offered to the first agent induces him to participate
even if all other agents abstain. The contract offered to the second agent induces
him to participate if all but the first agent abstain, and so on. In our analysis
of an equilibrium, we use exactly the same argument: Given some price profile,
we examine if it is profitable for either seller to approach the buyers one by one
in some order with prices that induce them to choose the buyer provided that all
their predecessors do the same. We note that the argument is essentially that of
iterative elimination of strictly dominated strategies, and show that it can be used
very effectively to examine if the given price profile is part of an equilibrium.

Competition between suppliers of goods with network externalities was first for-
mulated by Katz and Shapiro (1985), and subsequently studied by Sundararajan
(2003), Ambrus and Argenziano (2009), Bernaji and Dutta (2009), and Jullien
(2011). These models are often couched in terms of two-sided markets, where the
sellers are providers of platforms who offer a marketplace for agents on two sides
such as sellers and buyers of some good. In such models, the utility of an agent on
one side is an increasing function of the number of participants from the other side.?
Ambrus and Argenziano (2009) analyze Bertrand competition between platforms in
a two-sided market. Jullien (2011) applies the divide-and-conquer argument to his
analysis of multi-sided markets, and derives a bound on the platforms’ payoffs when
they engage in Stackelberg price competition. Both Ambrus and Argenziano (2009)
and Jullien (2011) formulate externalities differently from the present paper, and
impose some non-trivial restrictions on the agents’ strategies. Although these re-
strictions may appear natural under some price profiles, their full implications are
not immediately clear. In contrast, our analysis of a subgame perfect equilibrium
imposes no restriction on the buyers’ strategies.

To the best of our knowledge, Banerji and Dutta (2009) are the only other paper
that introduces graph structure into a model of price competition under network
externalities. They identify conditions under which price competition leads to mo-

nopolization and market segmentation. They assume, however, that each seller sets

3See Armstrong (1998), and Laffont et al. (1998a,b).



the same price for all buyers and also place restrictions on the buyers’ strategies. Be-
cause of these differences in assumptions, their conclusions are difficult to compare

with ours.

3 Model

Two sellers A and B compete for the set I = {1,...,N} of N > 3 buyers. Con-
sumption of either seller’s good generates externalities to the buyers according to
a buyer network. Formally, a buyer network is represented by a simple undirected
graph G whose nodes correspond to the buyers, and consumption externalities exist
between buyers ¢ and j if they are adjacent in the sense that there is a link between
7 and 7. When buyer j is adjacent to buyer ¢, we also say that j is ¢’s neighbor.

The buyer network G is connected in the sense that for any pair of buyers 7 and
j, there exists a path from 4 to j. That is, there exist buyers i1,1s,...,%y,, such
that i1 is adjacent to i, 7o is adjacent to 41, ..., and i, is adjacent to j. For any
buyer 7 in network G, denote by N;(G) (or simply NV;) the set of i’s neighbors in G.
The degree d;(G) = |N;(G)| of buyer i in network G is the number of i’s neighbors.
Define also M to be the number of links in G. Since each link counts twice when
aggregating the number of degrees in GG, we have M = % Y icr di-

For r = 2,...,N — 1, the network G is r-regular if all buyers have the same
degree r, and regular if it is r-regular for some r. G is cyclic if it is connected and
2-regular, and complete if it is (N — 1)-regular, or equivalently, every pair of buyers
are adjacent to each other. For any non-empty subset J C I of buyers, denote by
G[J] the subnetwork induced from G: The set of nodes in G[J] is J, and G[J] has
a link between 7 € J and j € J if and only if 4 and j are adjacent in the original
network G.

The value of either seller’s good to any buyer ¢ is determined by the number of
neighbors of 7 who consume the same good. We denote by v" the value of either good
to any consumer when n of his neighbors consume the same good. In particular, v°
denotes the stand-alone value, or the value to any buyer of either good when none of
his neighbors consumes the same good. The value does not depend on the identity
of a buyer or the identity of the seller who supplies the good. The consumption
externalities are non-negative in the sense that 0 < v <ol < ... < Nk

Each seller produces his good at no fixed cost and a constant marginal cost. For

simplicity, assume that the marginal costs also equals zero. Let p; and ¢; denote



the prices offered to buyer 7 by seller A and seller B, respectively. The sellers can
perfectly price discriminate the buyers. They simultaneously quote price vectors
p = (pi)icr € RN and ¢ = (¢;)ic; € RY. The buyers publicly observe (p,q), and
then simultaneously decide whether to buy from either seller, or not buy. Buyer 7’s
action z; is hence an element of the set {A, B, 0}, where () represents no purchase.
Each seller’s strategy is hence an element of RY, whereas buyer i’s strategy o; is a
mapping from the set R?Y of price vectors (p, q) to the set {A, B,0}. Let o = (0})icr
be the buyers’ strategy profile, and for each choice profile z = (z;);cs of buyers, let

In(z)={iel:x;=A}, and Ig(zx)={i€l: z;=DB}

denote the set of buyers choosing seller A and the set of buyers choosing B, respec-
tively. If we denote by wa(p,q,0) and 7(p,q,0) the payoffs of sellers A and B,
respectively, under the strategy profile (p,q, o), then they are given by

ﬂ-A(paqao-) = Z Pis

i€la(o(p,g))

TP 00) = Y, a4

i€lg(o(p,q))

Given the price profile (p, q), buyer i’s payoff under the action profile z depends on

the number of his neighbors who consume the same good, i.e.,

’U‘NimIA(I)‘ — Pi if Ty — A,
0 if ; = @,

and buyer 7’s payoff under the strategy profile (p, q, o) is written as:

7Ti(pa q, U) = Ui(O'(p, Q))

A price vector (p*,¢*) and a strategy profile 0 = (0;);er together constitute a
subgame perfect equilibrium (SPE) if given any price vector (p,q) € R*Y, the action
vector (o;(p, q))icr is a Nash equilibrium of the subgame following (p, ¢), and given

o, each component of the price vector (p*, ¢*) is optimal against the other:

v (paqaa(pa q)) Z v (pa aniaa—i(pa q)) for every I, ¢ and (pa q)a
T4 (p*, ", 0(p*,q%)) > ma (p,q",0(p,q")) for every p,
78 (p*,q", 0(p*,q¢")) > 7 (p*,q,0(p*, q)) for every q.



4 Nash Equilibrium in the Buyers’ Game

In this section, we fix the price vector (p,q), and consider an equilibrium of the
buyers’ subgame following (p,q). For the payoff function u; defined in (1), the
simultaneous-move game (I, S = {A, B,0}, (u;)icr) among the buyers is a super-
modular game when the set of actions of each buyer is endowed with the ordering
A = 0 = B. Tt follows that the game has pure Nash equilibria that are maximal
and minimal with respect to the partial ordering on S induced by =.* We refer to
the maximal equilibrium as the A-mazimal equilibrium and denote it by z#, and
the minimal equilibrium as the B-mazimal equilibrium and denote it by z”. By
definition, for any NE y and buyer 7, y; = A implies xf = A, and y; = B implies
a:ZB = B.

We introduce some notation below in view of the fact that any NE must survive
the iterative elimination of strictly dominated actions.

Define Ty = () and recursively define the subsets of buyers Yy, Z, Py, Qk, Ry,
and Ty as follows. For k = 0,1,2,..., define Y1 C I\ T to be the maximal set
such that

Yk+1:{iEI\Tk:

(2)
wi (5, 2y, = (Ao A)z oy, = (0,0, 0) > 0},

Given the action profile :v*Tk of buyers in set T}, those buyers in Yj;; can collectively
choose A to enjoy non-negative payoffs from it. In other words, if i ¢ Vi1, then
x; = A is strictly dominated by z; = () for 7. Note that maximality is well-defined
since if Y and Y’ both satisfy (2), then Y UY" also satisfies (2). If there is no such
set, let Yz11 = 0. Likewise, define Z;,.1 C I\ T} to be the maximal set of buyers

who can collectively choose B to enjoy non-negative payoffs from it:

Zk+1={ieI\Tk: N
wi (070, = By Byt 1y 7, = (0,...,0)) > o}.

If there is no such set, let Zy,1 = 0. Again, if ¢ ¢ Z;,, then z; = B is strictly
dominated by z; = () for i. Define

Rip1=(I\Tg) \ (Yiy1 U Zgy1)

*See Topkis (1998).



to be the set of buyers 7 for whom z; = () is strictly dominant. Now define Py, C
I'\ Ty by

Py = {z €I\Ty :u; (av*Tk,:er =B,z 7, =(0,... ,@)) n
> U (x;—’k’xYk—+1 = (Aa e aA)ax—Tk—Yk_H = (@, .. ,@))},

That is, if ¢+ € P,41, buyer ¢ is strictly better off choosing x; = B than choosing
z; = A or () even if seller A attracts all those buyers j for whom z; = A is not
strictly dominated by z; = (). In other words, if i € P4, then z; = B is strictly
dominant for i. Likewise, define Qi1 C I\ Tk to be the set of buyers i for whom

x; = A is strictly dominant:

Qr+1 = {Z €I\Ty :u; (27,7 = A,z_p,— = (0,...,0)) )
5

> uy; (,’IT%C,,’ITZ]hLl = (B, ,B),,’E,Tk,z]hLl = (@, ,@))}
1) If Pyyq = Qi1 = Rgy1 = 0, then set K =k and stop.

2) Otherwise, define

B ifi€ Ppyy,
x;k =4 ifie Qk-i—la
D ifi€ Rpy..

and
Tir1 =Tk U (Pry1 U Qpy1 U Rpyr) -

If Tyyq = I, then set K = k + 1 and stop. Otherwise, increase k£ by one and

start over.

Since the above process starts over only when at least one buyer has a strictly
dominant action, the maximal number of rounds K must satisfy K < N. For any
NE z, we must have every buyer in Tk choosing his iteratively strictly dominant

action so that

ITK = l'TK.
Therefore the possible difference between any pair of NE arises only for buyers in
I'\ Tx. The following proposition states that the A-maximal and B-maximal NE

can be constructed by letting the maximal number of buyers choose A or B among

those buyers.



Proposition 1 Let z and 2B be defined by

2t = (@ v, = (A Ao vie, = (0,...,0)),  and
xB = ($;“K7xZK+1 = (B7 7B)7x—TK—ZK+1 = (07 70) .

Then z? and =P are the A-mazimal and B-mazimal NE, respectively.

Of course, when T = I so that every buyer has a iteratively strictly dominant

action, the NE is unique and given by z* = z5.

5 Subgame Perfect Equilibrium

We now turn to the original two-stage game including the sellers. The proposition
below makes a simple observation that if a price vector (p*, ¢*) is sustained in some
SPE, then it must be sustained in an SPE in which the buyers choose an extreme
response to either seller’s deviation: If seller A deviates from p*, then all buyers
coordinate on the B-maximal NE that least favors seller A, and vice versa. The

proposition hence presents a bang-bang property of an SPE.

Proposition 2 For any network G, (p*,q*) is an SPE price vector if and only if
there exists buyers’ strategy profile o such that (p*,q*,o) is an SPE and

oB(

p,q) ifp#p* and q=q*,

o(p,q) =
o(p,q) ifp=0p* and q # q".

Consider next seller A’s best response p to B’s price ¢ when the buyers play the
B-maximal strategy . Since o®(p,q) is a B-maximal NE for any (p, q), seller A
can attract buyer ¢ if and only if z; = A is an iteratively strictly dominant action
for buyer i: i € US| Q, where Q is as defined in (5). Hence,

K

Ta(pao”) =Y " pi

k=1 i€Qy

The following lemma shows that if seller A’s price vector p is a best response to

(g,07)
order to attract adjacent buyers i and 7, seller A should approach them sequentially.

, then no two buyers in @ defined under (p, ¢) are adjacent. In other words, in

Intuitively, this is because making choice A dominant for both buyers simultaneously



requires offering lower prices to both of them than making z; = A dominant for buyer
i first, then making z; = A dominant for buyer j next conditional on the knowledge

that ¢ chooses z; = A.

Lemma 3 Let (Qp)k=1,. x be as defined in (5) under the price vector (p,q). If p

is a best response to (q,0®P), then for every k =1,..., K,

i,] €EQr = 1 and j are not adjacent.

We now derive a key result that establishes a lower bound for each seller’s equi-
librium payoff given the price vector of the other seller. As mentioned in the Intro-
duction, the argument is one of divide and conquer, where seller A, say, approaches
each buyer sequentially according to some ordered list, and presents them with a
price which makes the choice A a dominant action given all his predecessors in the
list choose A.

Formally, fix the price ¢* of seller B, and suppose that the buyers choose A
only when it is an iteratively strictly dominated action. Suppose further that seller
A makes an ordered list of all buyers i1,...,ix. Seller A first targets buyer i; by
making it strictly dominant for him to choose z;, = A by offering a sufficiently low

price. In fact, seller A needs to offer p;, such that
00— p;, > vl — q;, and 00 —pi, >0,
or equivalently
pi, < min {vo — it 4 a, vo}

to make z;, = A strictly dominant. Let Hy = {i;}. Seller A next targets buyer iy

by making z;, = A strictly dominant. In this case, seller A must offer p;, such that

d

where s;, = 1 if buyer iy is adjacent to 41, and = 0 otherwise. Let Hy = {i1,i2}.

Proceeding iteratively, we see that against buyer i, seller A must offer p;, such that
pij, < min {vSik —v% T 4 g vsik}, (6)

where s;, is the number of neighbors of i;, in the set Hy_y = {i1,...,44_1}. s;, can

be thought of the externalities buyer 7; can enjoy by choosing A when those buyers

10



in Hjy_q have already chosen A. On the other hand, d; — s;, is the externalities i,

k

can enjoy from B when those buyers in I\ Hj_; still choose B. Note that for any

list 41,...,%nx of buyers,
N
>, =
k=1
where M is the total number of links in GG. Define S by

S = {S = (Si)iel 185, =0 and Sip, = |le N {il, - ,ik,1}| for k > 2

for some relabeling (41,...,ix) of buyers}.

Note that if s corresponds to the list i1,...,iy, then d—s = (d; — s;);er corresponds
to the reversed list in,...,%;. Hence, if s € S, then d — s € § as well. We also
observe that

Hy C UIE:1 Qe,

where @ is as defined in (5) and equals the set of buyers i for whom z; = A is
iteratively strictly dominant in round k of the iteration process under the price
profile (p,q*). Hence, even if the buyers play the B-maximal equilibrium o? that
least favors seller A, A can at least secure the payoff implied by the prices in (6). We
hence have the following lemma that gives a lower bound for each seller’s equilibrium

payoff.
Lemma 4 If (p*,q*,0) is an SPE, then
min {vsi A vsi} ,

' (8)

min {vsi — ptimsi + p;, vsi}.

ma(p*,q*,0) > max
seS

-

2

(P, q",0) > max

-

=1

Figures 1 and 2 illustrate the discussion for the line network of three buyers. In
Figure 1, seller A approaches the buyers in the order (i1,142,13) = (1,3, 2) when seller
B offers ¢* = (¢}, ¢5,q3): When buyers 1 and 3 switch to A, their valuation of A’s
good is just v° (stand-alone value) since at that point they don’t expect that buyer
2 will switch as well. On the other hand, when buyer 2 switches to A, he knows that
both his neighbors will choose A, and he expects that A’s good is worth v?. Hence,

11



I @ 4% —p; >max{v! —qf, 0} 1l
< p1 < min {00 — o' 4 ¢f, v°}

2 @ = 2 @ v’ —py>max{® g 0}

< py < min {v? — 00 + g3, v%}

3 @ v°—p3 > max{v' — g, 0} 3 A

< p3 < min {o° — v! + g3, 0}

Figure 1: Divide-and-conquer by seller A with (i1,19,43) = (1,3,2).

1 @ 1 @ o' —p; > max {+° — ¢F, 0}
< p1 < min{v! -0 + ¢, v!}

2 @ v°—py>max{v? g5, 0} = 2 |

< py < min {v° —v? + ¢35, 00}

3 @ 3 @ o' —p3 > max{v° - g}, 0}

< p3 < min{v! — 0% + g3, v'}

Figure 2: Divide-and-conquer by seller A with (i1,19,43) = (2,1, 3).

even if the buyers play the B-maximal equilibrium ¢ Z, seller A’s divide-and-conquer
strategy with (i1,142,13) = (1, 3,2) is profitable if
min {v° — v! 4+ ¢f, v°} + min {o° — o + ¢, v°} )

+ min {v? — o° + ¢}, v*} > 0.

Likewise, his divide-and-conquer strategy with (i1,i9,43) = (2,1, 3) illustrated in
Figure 2 is profitable if
min {0 — v* + ¢5, v*} + min {o! —° +¢f, v'} (10)
4+ min{v" — % + 45, v'} >0,
and that with (i1,19,43) = (1,2, 3) is profitable if
min {0 — v +¢f, v*} + min {o! — o' +¢5, v'}

+ min {o! —o° + ¢, v'} > 0.

12



6 Marginal Cost Pricing

When there are no consumption externalities 0 < v = -.- = vV ~1 it is clear that

a subgame perfect equilibrium price (p*,¢*) is unique and equal to the marginal
cost: (p*,q*) = (0,0). In this section, we will examine if and how this result can be
extended when there are externalities.

Let D = D(G) be the highest degree in G:

D(G) = max d,;(G).

1€l
For the network G, hence, the relevant levels of externalities are (v°,...,v"). We
say that the externalities (v°,...,v") are linear if there exists h > 0 such that

v* = kh for every k =0,1,...,D.

Note in particular that the stand-alone value v° is zero when the externalities are
linear. In this sense, linearity implies pure network externalities and violates the

formulation of weak externalities in Jullien (2011).5

Proposition 5 Let G be an arbitrary buyer network. Under the linear externalities
(@°,...,vP), (p*,q¢*) = (0,0) is an SPE price vector.

We next consider some generic property of externalities. As will be seen, whether
or not the marginal cost can be an equilibrium price depends crucially on the config-
uration of the buyer network in this case. Specifically, for S defined in (7), suppose

0 D)

that the externalities (v", ... ,v") satisfy the following condition:

N N
s € S and d — s is not a permutation of s = Z v # Z pdi=si, (11)
i=1 i=1
(11) implies that the sum of externalities over buyers are different between the two
goods when seller A attracts buyers by offering prices as described in (6). The set
P)

of (v9,...,v") satisfying (11) is generic in the set

{@%...,0vP):0<® < <P

of all externalities.

% Assumption 1 of Jullien (2011).
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Lemma 4 implies that a seller’s equilibrium payoff is closely linked to the value
of
N
max (vsi — vdi*si> .
seS
=1
It turns out that whether this quantity is positive or not under (11) depends crucially

on the network configuration as seen in the following lemma.

Lemma 6 Suppose that the externalities v = (v°,...,v"P) satisfy (11). If the buyer
network G is neither cyclic nor complete, then
N
max (vsi — vdi_s’) > 0. (12)
sES 1

The following lemma, which readily follows from Lemmas 4 and 6, provides some

key observations on equilibrium pricing.

Lemma 7 Suppose that (p*,q*,0) is an SPE for the buyer network G which is
neither complete nor cyclic, and that the externalities v = (v°,...,vP) satisfy (11).

Then
a) ma(p*,q*,0) =0 = min; ¢f <0.
b) ma(p*,q*,0) <>, ¢f = max; ¢f > Y.

c) Ig(o(p*,q*)) = I = max; ¢f > v°, min; (v¥ — ¢) > v°, and v? > 20°.

While the first two statements of Lemma 7 are true regardless of whether the
market is monopolized or segmented in equilibrium, the implications of the lemma
are seen most clearly for a monopolization equilibrium. Suppose that G is neither
cyclic nor complete, and that seller B captures the entire market in equilibrium:
Ip(o(p*,q*)) = I. Then seller B must subsidize at least one buyer, and must charge

some buyer strictly above the stand-alone value:

min ¢f < 0 <0® < max ¢f <o?” —°.
(3 (3

Furthermore, for any such equilibrium to exist, the externalities cannot be too small:
v” > 200, This is a non-trivial restriction for networks in which every buyer has a
small degree as in line networks. We summarize this observation as a proposition

below.

14



Proposition 8 Let a buyer network G be given and the externalities v = (v°, ..., vP)
satisfy (11). Then there exists no SPE in which one of the sellers monopolizes the

market by charging the same price to every buyer.

The impossibility of uniform pricing is counter-intuitive in networks which are
not cyclic or complete, but are symmetric with respect to every buyer. For example,
buyer locations are exactly symmetric in the 4-regular network depicted in Figure
3.

5
Figure 3: 4-regular network with eight buyers

We are now ready to state our main result on marginal cost pricing. Suppose
that both sellers offer zero to all the buyers. In this case, both sellers’ payoffs equal
zero regardless of whether or not they capture a positive portion of the market.
Hence, this price profile cannot be an equilibrium by Lemma 7(a) unless the network
is complete or cyclic. The following proposition shows that when the network is
complete or cyclic, there indeed exists an SPE of the type presented in Proposition
2 in which both sellers offer zero.

Proposition 9 Let a buyer network G be given and the externalities v = (v°,...,vP)
satisfy (11). (p*,q*) = (0,0) is an SPE price vector if and only if G is either cyclic

or complete.

For illustration of the impossibility of marginal cost pricing, return to the ex-

ample of the three-buyer line network depicted in Figures 1 and 2. Suppose that
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q* = 0. In this case, we have

9) < 20' —0?2 -2 <0,
(10) & 20! —v2 —2° > 0.

Hence, if
20t # v? + 0, (13)

seller A can profitably divide and conquer the buyers against ¢* = 0. Note that
(13) corresponds to (12) in Lemma 6: It fails under the linear externalities v* = 0,

v! = h and v? = 2h, but is true under generic specifications of v°, v! and v?.

7 Monopolization on a Bipartite Network

The results in the preceding section suggest that some form of discriminatory pricing
is inevitable in equilibrium. A natural question then is on the form of equilibrium
price discrimination. Interesting related questions are (1) which buyers are the
“weak link” in the network that need to be protected, and (2) which buyers can
be squeezed for more profits. Since it appears difficult to provide general answers
to these questions, we will restrict attention to certain classes of networks for the
identification of an equilibrium. In this section, we identify a class of networks in
which monopolization takes place in equilibrium.

Our analysis in what follows assumes that the externalities are approximately
linear in the following sense: For h > 0, the externalities (v°,...,v") are e-close to
linear if

¥ —kh| < e for k=0,1,...,D.

Since the condition holds for any ¢ > 0 when the externalities are exactly linear,
our conclusions under approximate linearity hold with no change in models of linear
externalities. In conjunction with Proposition 5, then, this implies the multiplicity
of equilibria in these markets.

The buyer network is bipartite if the buyer set I is partitioned into two disjoint
subsets I; and Is such that every neighbor of 7 € I belongs to I and every neighbor
of ¢ € Iy belongs to I1. Line and star networks are simple examples of a bipartite
network. For example, the line network in Figures 1 and 2 is bipartite with the
partition I} = {1,3} and Iy = {2}. A cycle network with an even number of buyers
is also bipartite. A bipartite network is complete if every buyer in I is linked to

every buyer in Is.
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Bipartite networks are particularly important in their connection to two-sided
markets. For example, we can think of I; as the set of sellers and I5 as the set of
buyers of a certain good. In this case, the sellers A and B are interpreted as the
platforms that offer marketplace to these sellers and buyers, and their prices are
interpreted as participation fees into their platforms. A complete bipartite network
corresponds to a two-sided market in which each agent finds more value in a given
platform whenever more agents on the other side participate in the same platform.
Our conclusion on a bipartite network translates to that on a two-sided market

where two platforms compete.

Proposition 10 Suppose that the buyer network G is bipartite. For any h > 0,
there exists € > 0 such that if the externalities are e-close to h-linear for e < &, then

there exists an SPE (p*,q*,0) in which one seller captures all the buyers.

The equilibrium constructed in the proof is described as follows: Let I and Iy
be the partition of the buyer set, and suppose that seller B captures the market.
Seller B offers ¢; = v% — v° to each buyer 4 in set I; and ¢; = v° — v% to each
buyer i in set I provided that these prices lead to a non-negative payoff.5 In other
words, the monopolizing seller taxes every buyer on one side, and subsidizes every
buyer on the other side. Seller A offers the same price to each buyer as seller B.
When either seller deviates, the buyers play the extreme equilibrium which is least
favorable to the deviating seller as in Proposition 2. It is shown that this price vector
leaves no room for seller A to profitably attract any buyers. Figure 4 illustrates the
equilibrium pricing of Proposition 10 in a star network with five buyers when the

externalities satisfy approximate linearity and
vt =00 > 4! —00). (14)

It can be seen that the hub buyer 1 is charged a positive price whereas all the
peripheral buyers are subsidized. In other words, the subsidies to the peripheral
buyers are a protection against the inducement by the other seller. Since (14) holds
when the externalities are marginally increasing, we can understand this pricing
behavior from the fact that it is relatively more difficult for the other seller to entice
the hub buyer. When the inequality (14) is reversed, then the prices are (—1) times

those listed in Figure 4. In this case of marginally decreasing externalities, hence,

®Recall that d; denotes the degree of buyer i. If these prices lead to a negative payoff, the
equilibrium prices are simply —g¢; for each i.
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the hub buyer needs to be protected as it is relatively easier for the other seller to
entice him. As seen in this example, the specification of externalities determines

which buyer(s) should be protected with subsidies.

2
@ n=qp=2" -
pr=q Fvt—2°
3@ o ®
p3=g3=1"—0l 1 ps=q5 =0’ —v'
@ pi=q=2" -

4

Figure 4: Monopolization through discriminatory pricing on a star network when
vt — 00 > 4wt —0).

Decreasing or increasing marginal externalities also have the following implica-
tions for the pricing in a complete bipartite network: Under increasing marginal
externalities, any buyer in a complete bipartite network is subsidized in equilibrium
if and only if his subset of buyers is larger than the other subset. The opposite holds

under decreasing marginal externalities.

Corollary 11 Suppose that the network is complete bipartite with partition (I, I5)
such that |Iy| < |Iz|. For any h > 0, there exists € > 0 such that the following hold
fore <eé:
a) (increasing marginal externalities) If
h—e<ovl =o' <o?—pl <. <P =Pt <h+e,
then there exists an SPE (p,q,0) such that p; = q; > 0 for every i € I; and
pi = q; <0 for every i € Is.
b) (decreasing marginal externalities) If
h—e<ol =P 1< o< —pl <ol =90 <h-+e,

then there exists an SPE (p,q,o0) such that p; = q; < 0 for every i € I and
pi = q; > 0 for every i € Is.
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8 Segmentation on a Separable Network

Under the same assumption of approximately linear externalities as in the previous
section, we now examine the possibility of an equilibrium in which market segmen-
tation takes place. For this, we consider a class of buyer networks that have roughly
the opposite property as the bipartite networks introduced in the previous section:
In this class of networks, the buyer set is again partitioned into two disjoint subsets,
but each buyer has at least as many neighbors in the same subset than in the other
subset. Formally, the buyer network is separable if there exists a two-way partition
(I1, I5) of the set I of buyers such that for m, n =1, 2, and m # n,

|N; N I,| > |N; N I,| for every i € I,, and
|N; N I,| > |N; N I,| for some i € I,.

Intuitively, in a separable network with partition (I, I3), we can classify buyers in
I, or I5 into core and peripheral buyers: The core buyers are those who have strictly
more neighbors in the same set than in the other set, while the peripheral buyers
have as many neighbors in the same set as in the other set. We can see that any
line network with four or more buyers is separable: For example, a line network of
four or more buyers is separable. The regular network in Figure 3 is also separable
when we take I} = {1,2,3,4} and I» = {5,6,7,8}. Buyer 2 and 3 are core buyers

for I; and buyers 6 and 7 are core buyers for I.

Proposition 12 Suppose that G is separable. For any h > 0, there exists € > 0
such that if the externalities are e-close to h-linear for € < &, there exists an SPE

in which buyers in Iy choose seller A and buyers in Iy choose seller B.

The proof of this proposition constructs an equilibrium in which each seller
charges a small but positive price to one of the core buyers in his segment of the
market. Specifically, recalling that s is a sequence of degrees of externalities as

defined in (7), we specify the price to be charged to this core buyer by

N

0 = max (vsi — vdi_si)
SES < ’
=1

which is strictly positive for generic externalities (Lemma 6), but is small for ap-
proximately linear externalities. Each seller charges zero to all other buyers in their

segment of the market. Figure 5 illustrates the equilibrium for a line network of four
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1 2 3 4

[ | | @ o
(p1,q1) = (6, —0) (p2,02) = (0,0)  (p3,q3) = (0,0)  (p4,q4) = (—0,9)

Figure 5: Segmentation on a line network (6 = |02 + ! — 20°| > 0): A captures
{1,2} and B captures {3,4}.

buyers.” As in Proposition 2, any deviation by either seller results in the extreme
equilibrium that is least favorable to the deviating seller. Each core buyer who is
charged the positive price will not switch to the other seller since he enjoys strictly
higher externalities under the present seller. Furthermore, each seller enjoys strictly
positive profits in equilibrium, and has no incentive to engage in divide-and-conquer
taking advantage of the non-generic externalities as in the case of marginal cost

pricing.

9 Conclusion

In this paper, we formulate a model of price competition between two sellers when
each one of their goods exhibits local network externalities as represented by a graph-
theoretic network of buyers. We show that whether a given price profile is consistent
with a subgame perfect equilibrium of the two-stage game depends crucially on
the exact specifications of network structure and externalities. In the non-generic
case of linear externalities, the marginal cost pricing of both sellers quoting zero to
every buyer is consistent with an SPE for any network. In the generic specification
of externalities, however, it is consistent with an SPE if and only if the network
is either cyclic or complete. That is, in any other networks, some form of price
discrimination is expected even if every buyer has exactly symmetric locations in
those networks. Given these results, we proceed to the identification of an SPE when
the externalities are approximately linear. In a bipartite network which corresponds
to a two-sided market, we show that there exists an SPE in which one of the sellers
monopolizes the market by charging a positive price to every buyer on one side, and
a negative price to every buyer on the other side. The pricing strategy there gives

us a hint as to which buyer needs to be protected from the inducement by the other

TAs seen in Figure 5, each seller charges —& to the core buyer in the other segment who is
charged § by the other seller. This is to make the sum of the prices of each seller equal to zero.
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seller. In a separable network in which each buyer has more neighbors on his side
than on the other side, on the other hand, we show that there exists an equilibrium
in which the two sellers segment the market.

In the present model, the goods of the two sellers are assumed symmetric and
incompatible with each other. A natural extension would involve introducing asym-
metry or a positive degree of compatibility between them. It would also be in-
teresting to study endogenous determination of compatibility levels by the sellers.
Although some of these issues are investigated in the literature,® it will be useful to
examine them under the alternative specifications of externalities and equilibrium

as in the present paper.

Appendix I: Proofs

Proof of Proposition 1. We show that z4 is an A-maximal NE. The symmetric
argument shows that 2% is a B-maximal NE. We begin with the following lemma.
Lemma 13 a) u;(z?) > 0 for every i.

b) For anyn, {i € I\T,: 2 = A} C Ypy1 and {i € I\ Ty : 3 = B} C Zpy1.

¢) For anyn, J C I'\T,, and yj such that ui(yj,x’i]) >0 for every i € J,

{ieJ:y=ACYp1 and {i€J:y,=B}C Zyy1. (15)

Proof of Lemma 13. a) Suppose that i € P, for some n. Then
A) = ’U,Z(IIT%L,IITZ = Bv‘réTn—i)

> u; ($ﬁ,xi =B,z_1,_i = (0,...,0))

> u; (27 2y = (Ao A Xy = (0,...,0))
> 0.

The proof is similar if i € Q1. If i € R,,11 or i € I\ T, for n such that P, =
Qns1 = Ryi1 = 0, then the inequality follows from the definition of z4.

8See Jullien (2011).
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b) Denote K = {i € I\ T}, : zi* = A}. Then for any i € K, we have

ui (77, , Uy = (A Ao kv, = (0,...,0))
> u; (2,2 = (A,...,A)yo_n i = (0,...,0))
= Uz(xA) >0,

and for any ¢ € Y, 41,

w; (Iﬁ,IKUYnH =(A,..., Az 1 Kk v, =(0,...,0)
> Uuj (I%naxyw-l = (Aa s 7A)7I*Tn7Yn+1 = (@, cee 7®))
> 0.

This contradicts the maximality of Y, ;1.

c) Denote K = {i € J: y; = A}. Suppose that K ¢ Y,,11. Then for i € K,

U (x%n,xKUynH =(A,..., Az 71, v, .-k =(0,... ,@))
> uy; (I%n,ﬁl,'],l'éTn_J)

= u;(z?;, z))

>0,

where the first inequality follows from Lemma 13(b), and for any i € Y}, 11,

ui (77 2 xove, = (A, Ao,y = (0,...,0))
U (I%n7IYn+1 = (Aa s ,A), T-T,—Ypy1 — (07 s 7®))
> 0.

This again contradicts the maximality of Y, ;. H
We now return to the proof of Proposition 1.

1) % is a NE.

Since u;(z) > 0 by Lemma 13(a), % = () cannot be a profitable deviation for

any ¢, and moreover a profitable deviation, if any, must yield a strictly positive

payoff.

Take any 7 € P,1; so that :1:;4 = B, and consider a deviation z; = A.

ui(xh, x4,) > 0, then i € Y,,;; by Lemma 13(c) and hence

ul(x;,xéz) <y (x%ﬂxﬁhq = (Aa s aA)ax—Yn+1 = (03 cee 7®))
< u; (a:é"’nax?ax—Tn—i = (@, s 7®))
< ui(z).
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Hence the deviation is not profitable. Likewise, no profitable deviation exists for
i € Qni1. Suppose next that i € R,41 so that z2 = (. 2! = A is not profitable
since i € Ry, implies that ¢ ¢ Y,y and hence u;(z},z4;) < 0 by Lemma 13(c).
Likewise, the deviation z; = B is not profitable. Finally, suppose that i € I\ T,
and that P,y1 = Qni1 = Rpy1 = 0. In this case, xf‘ =Aifi € Y, and xf‘ =10

otherwise. If z; = B, then

where the inequality follows since i ¢ P,;i. Hence, 2, = B is not a profitable
deviation. If i € I'\ T}, \ Yn41 and 2} = A, then u;(z, 74,) < 0 by Lemma 13(c).

2) 24 is A-maximal.

Take any NE y. Clearly, u;(y) > 0 for every i. We first show that y; = z* if
1 € Ty. To see that y; = B for any i € Py, suppose y; = A. Then by setting n =0
and J = I in Lemma 13(c), we see that {i : y; = A} C Y] so that

Uz(yzay—z) < u; (xYl = (Aa s aA)ax—Yl = (@, s 7®))

< Uy (xz = Bax—i = (@,,@))

<wi(zi = B,y-),
where the second inequality follows from the definition of P;. Hence z; = B is a
profitable deviation. Likewise, y; = A holds for any i € Q. If i € Ry, then y; = ()
must hold since 7 ¢ Y7 U Z;.

As an induction hypothesis, suppose that 1y; = :1:;4 if 1 € T,,. We show that

y; =z if i € Tpy1 \ Ty Ifi € Py, then y; = B: Ify; = A, then {i € I\ T}, : y; =
A} C Y41 by Lemma 13(c) (set J =1\ T,) so that

uz(ylayfl) <y (I%naIYn+1 = (Aa v 7A)7I7Tann+1 = (07 v 7®))
< uy; (I%,NIZ = BaIanf’i = (@, B 7®))
< wi(r; = B,y—i),

where the second inequality follows from the definition of P,,. Hence z; = B is a

profitable deviation. Likewise, y; = A for any i € Q,11. If i € Ry,11, then y; = ()
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must hold since i ¢ Y, 11 UZ, 1. Finally, ifi € I\ T, and P, 11 = Qn+1 = Ryy1 =0,
then y; = A implies i € Y;41 by Lemma 13(c), but 2! = A for any such i by

definition. We can therefore conclude that z is an A-maximal NE. B

Proof of Proposition 2. If there exists such a strategy profile o of buyers, then
(p*, ¢*) is clearly an SPE price vector. Conversely, suppose that (p*,¢*) is an SPE
price vector. Then there exists ¢ such that (p*, ¢*,5) is an SPE. Define o as follows:

6(p,q)  if (p.q) = (p*,q"), or p # p* and q # ¢*,

o(p,q) = ot (p,q) if p=p* and q # ¢,

oP(p,q) ifp#p* and ¢ =¢".
Then (p*, ¢*,0) is an SPE: The definition of o® and the equilibrium property of &
together imply

7TA(pa q*a U) < 7TA(pa q*a 6) < 71-A(p*a q*a &) = FA(p*a q*a U)'

Likewise, the definition of o and the equilibrium property of & together imply
T‘-B(p*a q, J) < ﬂ-B(p*a q*a U)' u

Proof of Lemma 3. For simplicity, let £ = K and suppose to the contrary that
1,2 € Qx and 1 and 2 are adjacent. Then it must be the case that

vt — p1 > max {vdl*o‘{{ —q,0} and 2 — Py > max {vdro‘g{ —q2,0},
where
aff = INiNUS Qel, and of = |NonU Qp
are the numbers of neighbors of 1 and 2, respectively, for whom z; is iteratively

strictly dominant in round K — 1 or earlier. Hence,
p1 < v — max {vdl_o‘{{ —q,0} and po < v — max {vdz_ag{ — q2,0}.
On the other hand, let p’ be such that p, = p; for i # 2, and
po < ph < v T —max {o®@= =1 — g, 0}

Denote by Q). the set of buyers for whom z; = A is an iteratively dominant action in
round k under (p', q) as defined in (5). We then have Q) = Qy for k=1,..., K —1
and Q% = Q U {1} so that af + 1 of 2’s neighbors have chosen A in round K or
earlier. Since

K K
p®2 +1 — ph > max {vd2 ay —1 _ q2,0},

IK+1 = {2}. Furthermore, since p, > pa, Ta(p',q,08) > 7a(p,q,08). B
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Proof of Lemma 4. Fix any relabeling of buyers 41,...,iy. Let s = (s;)ier be
defined by

sy, =0 and s;, =|N;, N{i1,... 01} for k=2,..., N.
Let € > 0 be given, and define the price vector p = (p;)icr by
pi = min {v% — %75 4 gF v} —e. (16)

As explained in the text, by offering p, seller A makes z;, = A a strictly dominant
action for buyer 41, and in any subsequent step, z;, = A an iteratively strictly
dominant action for buyer 75 under (p,¢*). Hence, seller A’s payoff under (p, ¢*, o)

satisfies
N

wa(p,q* o) > Z min {v* — pdi—si 4 qf,v%} — Ne.
i=1

Since € > 0 and s € S are arbitrary, if (8) does not hold, then we would have a

contradiction
7"-A(pa q*a U) > T‘-A(p*a q*a J)'

The symmetric argument proves the inequality for seller B’s payoff. B

Proof of Proposition 5. We first show that (p*,¢*) = (0,0) is an SPE price. Let
o4 and ¢P be the A-maximal and B-maximal equilibria as defined earlier, and let

o be the buyers’ strategy profile such that
(B,...,B) if (p,q) =(0,0),
o(p,q) = oB(p,q) if p#£0and ¢ =0,
Alp,q)  ifp="0andq#0.

Now consider a deviation from p* = 0 to p # 0 by seller A. Let Qx (k=1,...,K)
be as defined in (5) under (p,¢*). It then follows that

Ia(0*(p,q")) = Ut—, Q

for some K < N. In other words, any buyer attracted by seller A with p must
choose A as his iteratively strictly dominant action. Hence, seller A’s payoff under

(p,q*,0) can be written as:

Alpgho) =3 > p (17)



Now let

af = |N;NUZ Qo
denote the number of neighbors of buyer ¢ who have already chosen seller A in
rounds prior to k. If i € @, then 2; = A must be a dominant action in round & for
buyer 7 so that

k .k k .k
v —p >N o p < —phT (18)

Note now that

S o

k=1 i€Qp

K
3 (#links between Q and Ut~ Qg)

k=1
< #links in the subnetwork G [Uf | Q] (19)
K
1
=23 Y a (@ U )
k=1 i€Qy
K

Sy

k=1 i€Qy

<

N —

Substituting (18), (19) and the linearity of the externalities into (17), we obtain

K
k ok
Ta(p,q*,0) < Z Z (vai — o ai)

k=1 i€eQy,
K
) (204? —di) <0.
k=1 i€Qy

Therefore, the deviation p is not profitable. By the symmetric argument, no devia-

tion ¢ by seller B is profitable either. H

Proof of Lemma 6. Note that (12) follows if we show that d — s is not a per-
mutation of s for some s: (11) implies that either Zf\;l (vsi —v%=%) > 0 or < 0.
If the latter holds, then let i} = iy_jy1 for k =1,..., N and define ¢ = (¢;);cr by

setting t; equal to the number of neighbors of 4, in {i{,... 7 _,}:

ty =0 and t; =[Ny N {i\,... ij_} for k=2,...,N. (20)
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Then we can verify that

N N
Z (vti - vdi*ti> = —Z (vsi — vdi*si) > 0.

i—=1 i=1

We will consider the following two cases separately.

1) G is not regular.

Take a pair of buyers 7 and j such that 4 is adjacent to j, d; = D and d; < D,
where D > 2 is the highest degree in G. Take another buyer k that is adjacent
to 4 but not to 7. To see that there exists such a buyer, suppose to the contrary
that every buyer # j that is adjacent to ¢ is also adjacent to j. Then j has at
least D neighbors, a contradiction. Let i1 = k, 1o = ¢ and i3 = 7, and define
i4y...,iN & {i,7,k} arbitrarily. Then

(31;1,87;2,81;3) = (0, 1, 1),
(diy = siys diy = iy, dig — si3) = (dg, D —1,dj = 1).

If s is not a permutation of d — s, then we are done. Suppose then that s is a
permutation of d — s, and define ¢} =k, i, = j, i5 =4, and i} = iy for £ > 4, and let
t = (t;i)ier be defined by (20) for these 7/, ... 4. Then

(ti’l ) tifza tzg) = (07 0, 2) 3
Since i) = iy for £ > 4, we have

‘{624:diz—sn:OH:HEZéL:dif[—ti2=0}

‘{224: silzo}‘:‘{ZZZL:ti:[:OH.

a) dj=1.

In this case,

‘{Eg?): dil—snzo}‘ - ‘{433: sil:()}‘ = 1.
Hence, since d — s is a permutation of s, we must have

{e>4:d;, —s;, =0} =[|{{>4:s5;,=0}.
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It then follows from (21) that
H£24:difl—tizzo}‘z‘{ezzi:tizzo}‘. (22)
However,
‘{Zg?):d%—t%:OH§1<2:H€§3:t%:OH. (23)
(22) and (23) together show that d — ¢ cannot be a permutation of .
b) d; > 2.
In this case, we have D > 3 since D > d; > 2, and also
Heg3: diz—sn:OH —0<1= Heg3: si[=0}‘.
Hence, since d — s is a permutation of s,
{¢>4:dj, —s;, =0} =|{¢>4:s;, =0} +1.
It then follows from (21) that
‘{224:d%—t%:o}‘:‘{fzzl:t%:o}‘ﬂ. (24)

However,

Heg?}:d%—ti;:o}‘:‘{eg&tizzo}‘—2 (25)

(24) and (25) together imply that d — ¢ is not a permutation of ¢.

2) G is r-regular with 2 <r < N — 1.

Since G is connected and not complete, we can take a pair of buyers ¢; and is
such that 41 and 79 are adjacent, and take another buyer i3 who is adjacent to i
but not to ¢;. To see that this is possible, suppose to the contrary that for any
pair of adjacent buyers ¢ and j, any buyer k # ¢ adjacent to j is also adjacent to
1. We then show that G must be complete. Take any pair of buyers ¢ and j. Since
G is connected, there is a path k1 =7 — ko = -+ = kyy_1 — k;, = 7. Since ko is
adjacent to 7 = k1 and k3 is adjacent to ks, k3 is adjacent to i as well by the above.
Now since k4 is adjacent to k3, it is also adjacent to . Proceeding the same way, we

conclude that j = k,, is adjacent to i = ky, implying that G is complete.
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We now label buyers other than {i1,49,i3} as i4,...,4x in an arbitrary manner.

For our choice of i1, is and i3, we have
(Si173i27 Sis) = (07 L, 1) )
(dil - Silvdlé - 3i27di3 - 52'3) = (7“,7“ - 1Lr— 1) .

If d — s is a not permutation of s, then we are done. Suppose then that d — s is a

permutation of s. We then must have
‘{z: 31[20}‘:‘{4: d;, — si, = 0}. (26)

Let ¢} = 4y, i5 = 43, i3 = i and i, = iy for £ > 4, and let ¢ = (t;);c; be defined by
(20) for these 7}, ...,4. Note that

(ti’latifzatig) = (0a07 2)7
(di’l — tig s diy — tig, diy, — ti%) =(rrr=-2).

Since r > 2, if (26) holds, then the same argument as in the non-regular case shows
that

bl

implying that d — ¢ is not a permutation of 7. W

Proof of Lemma 7. We first show that if (p*,¢*, o) is an SPE, then

N N
malp*,q*,0) > Y min{g;, v°} and 7p(p*,q*,0) > min{p;, v’} (27)
=1 =1

By Lemma 4, for any s € S, seller A’s payoff under (p*, ¢*) satisfies
N
ma(p*,q*,0) > Z min {v* — %% 4 ¢f, v},
i=1
Rearranging, we get for any s € S,

N
ﬂ'A(p*,q*,O') > Z <vsi _ ,Udi*si) + Z min{ql’-‘, ,Udifsi}

=

N
> 30 (0% — o) + 3 min{gf, "),
i=1 1=1

When G is neither cyclic or complete, there exists by Lemma 6 an s € S such that
the first term on the right-hand side is > 0. Hence, the first inequality in (27) must

hold. The proof for the second inequality is similar.

29



a) If min; ¢f > 0, then m4(p*,¢*,0) =0 < 3", min{q},v°}, contradicting (27).

b) If max; ¢f < v, then ma(p*,q*,0) < 3. ¢f = 3, min{qg},v"}, contradicting
(27).

¢) The inequality max; ¢ > v° follows from (b) above since I (p*, ¢*,0) = I implies
Ta(p*,q*,0) = 0 and 0 < 7p(p*,q¢*,0) = >, qf. If vl — qf < 00 for some i,
then any p such that p; = v° —e and p_; =0 for 0 < e < ¢} — v% 4+ v would
induce buyer i to switch to A and hence is a profitable deviation for seller A.
To see that v” > 200 note first that min; (v% — ¢*) > v in particular implies
that max; ¢; < vP — 0. Hence, if v < 20°, we have a contradiction to the first

statement since max; q;“ < oD — 0 < 0. |

Proof of Proposition 8. Suppose that G is neither cyclic or complete, and sup-
pose that seller B attracts all the buyers in an SPE (p*, ¢*, o) such that ¢f = --- =
¢rn- Then since m4(p*,¢*,0) = 0, Lemma 7(1) implies that ¢f = --- = ¢y =

min; ¢F < 0. Then, however, mg(p*,¢*,0) < 0, a contradiction. H

Proof of Proposition 9 It suffices to show that (p*,q¢*) = (0,0) coupled with

the following strategy profile o of the buyers is an SPE in each class of networks:

(B,...,B) if (p.q) = (p*,q"),
olp,q) = yot(p.g)  ifp=p*andq#q,

oP(p,q)  ifp#p*andqq".
In other words, all buyers choose B under (p*,¢*) = (0,0), and when one of the
firms deviates to a non-zero price vector, the buyers coordinate on the NE which is
least favorable to the deviating seller. In what follows, we show that seller A has no
incentive to deviate. A symmetric argument shows that seller B has no incentive to
deviate.
1) G is a cycle.

Suppose that seller A deviates to p # p*. Let Qi be as defined in (5) under

(p,q*). Since

La(o(p,q")) = Uiy Qu
for some K < N, if 0;(p,q*) = A, then 7 € Qi for some k < K. Recall that N; is
the set of neighbors of 7 in G, and that d; = |N;| = 2 since G is cyclic. Let

of = |IN;nUEZ Q] € {0,1,2}
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denote the number of i’s neighbors who have chosen A in rounds prior to k. If

1 € Qg, then z; = A is a dominant action in round & for buyer ¢ so that

« 2—ak

k k k
v —pp >N & pp <™ -0, (28)

In particular, buyer i is attracted by seller A in round 1 if p; < v° —v?, and attracted
by A in round k£ > 1 either if (i) p; < 0 and exactly one of his two neighbors has
already chosen A (af = 1), or (ii) p; < v2 —v" and both his neighbors have already
chosen A (a¥ = 2). Note also that only in round 1 does any buyer choose A when
neither of his neighbors have already chosen A.

Seller A’s payoff under (p,¢*, o) hence satisfies

K
Ta(p ¢ 0) = Z Z bi

k=1 1€Qy,
K
<1 =)+ (@0 =) 3 [{i € I\ (U2 Qu) : of = 2}].
k=2

Since no buyer chooses A in round & > 2 if neither of his neighbors has already
chosen A, the number of components in G [U]Z:_l1 Q] is less than or equal to that in
G[Q4] for any k. Tt follows that

K
S Hi eI\ (Ui Q) = of =2} < Qi
k=2

We can therefore conclude that w4 (p, ¢*, o) < 0 and hence that p is not a profitably

deviation.

2) G is complete.
Define Q (k = 1,...,K) as above. Since G is complete, for any buyer 4, the
number af of 7’s neighbors who have chosen A equals the number oy of buyers who

have chosen A in rounds 1,...,k — 1:
k—1
af = |NinUZ, Qé‘ =" 1Qd = oy
/=1

Furthermore, by Proposition 3, we only need consider p such that each Q) contains
a single buyer. (If Qj contains two or more buyers, then since G is complete,
those buyers are adjacent.) Hence, without loss of generality, Q; = {k} for each
k=1,...,N. For k=1,...,K, we also have

pp < 0% —pNT1Imak,
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Seller A’s payoff under (p, ¢*, o) hence satisfies

N N K
Alp,q*,0) Z Z P < Z (vak — UN_l_a’C) . (29)
k=1 k=1 k=1
It is then straightforward to verify that the right-hand side equals zero. Hence,
seller A has no profitable deviation.
|

Proof of Proposition 10. We will construct an SPE (p*, ¢*, o) in which seller B
captures all the buyers: Ig(o(p*,q*)) = I. Let the buyer set be partitioned into I
and I so that links exist only between I7 and Is. Suppose without loss of generality
that

>k =) =Y (% —0) >0. (30)

i€l i€l
Let
. . vt —o0 ifiel,
pl - qZ - d . .
o) — ol ifie I,
and
B if 0 = g*
o”(p,q) ifq=q",
opg) =4 _
o*(p,q) otherwise.

By (30), seller B’s payoff under (p*, ¢*, o) is non-negative:

B(p*,q",0) = ¢ >0

el

By the definition of the B-maximal NE, if seller A deviates to p, then the set of
buyers he captures equals I4(c(p,q*)) = UK_| Qk, where @y is the set of buyers i
for whom z; = A is a strictly dominant strategy in round k& under (p, ¢*) as defined
in (5).

Suppose first that ()1 C I1. we then have

Z pi < Z min {v° — % + ¢, 2"} = 0.
1€Q1 1€EQ1

Therefore, no p such that K = 1 and @y C I; under (p,q*) is profitable. Since
q; < 0 for i € Iy, it is clear that no p such that K = 1 under (p, ¢*) is profitable

either.
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Suppose next that K = 2 and that Q; C I;. Then Q2 N I; = () since in round
2, every buyer i € Q1 must be adjacent to some buyer in @ C I. (Otherwise, i
would have been in Q;.) It follows that ¢f < 0 for each i € )2, and hence that

S opi< Y min{vf —oh % 4 g, 007}

1€Q2 1€Q2

=3 (o7t =t ot —at ) <o,

1€Q2

where a? = |N; N Q1] is the number of i’s neighbors in Q. Therefore, no deviation
p is profitable if K = 2, Q1 C I} and Qo C I under (p, ¢*). Tt is then also clear that
no deviation p is profitable if K = 2 and Q2 C I>.

We next show that no deviation p is profitable if K > 2 and QN I; # () for some
k > 2. Together with the above observations, this would imply that no deviation p
is profitable if K = 2. Furthermore, if K > 3, then it must be the case that either
QaN1I; # 0 or Q3N I # () since G is bipartite, and since every i € Q3 is adjacent
to some buyer in Q2. It would hence follow that no deviation p is profitable.

Let j € Q NI for some k > 2. Then

K
Ta(p, ¢ 0) = Z Z Di

(=1 i€Qy
K l L l
<303 min (o ottt o) o
(=1 i€Qy
K l l k
<> (vo‘i — % q;‘) + 0% — (vdj — 0+ qj) :
(=1 i€Qy

where
of = ‘Ni N (Uﬁ;ll Qn>

is the number of i’s neighbors who have chosen A prior to round ¢. We now use

approximate linearity to evaluate the right-hand side of (31) term by term. First,

since ¢; = vh — 0,

v — (vdf — 00+ q}‘) < —vb 4200 < —hdj + 3e. (32)
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Observe next that

{ L pti—ad
; lEzQ:[ {va ) @ }
K
— Ez_; 2 [{vaf — afh} — {vd’_o‘t — (d; — af)h}] (33)
S (- ay—al)n
1=1 i€Qy
K

where
m = #links between U;j_; Q and I\ (Uf"; Qp).
Observe finally that

K
> 2
1=1 i€Qy
K K
551D SRTIUI S Syt
(=1 i€QNIy (=1 i€QyNIz
K e (34)
-y (b =0 —dih) = (v% —v° — d;h)
(=1 i€QNIy (=1 i€Q,NIa
K K
hY DL di=h)y Y d
(=1 i€eQNIy =1 i€Q,NIa

Since the externalities are e-close to linear,

K K
Yoo E =" —dih) = > Y (= —dih) <26 |UL, Q| (35)

=1 1€Q,NI =1 1€QNI>

We also have

K

> > di = #links between U, QN Ty and T
(=1 ieQ,N;

K

> > di = #links between U, QN T, and Ty
(=1 i€eQ,NI

> #links between UK, Q, N I and UK, Q,n 1,

34



so that

S Y 4y Y

=1 i€eQ,nl1 {=1 ieQ,NI2
< #links between U;_; Q¢ and I \ (UiS; Q) (36)
< #links between U, Q¢ and T\ (U;"; Q)

=m.

Substituting (35) and (36) into (34), we obtain

K
SN qf <26 |UL, Qe| + hm. (37)

=1 i€Qy

Substituting (32), (33) and (37) into (31), we see that

wa(p,q*, o) < 2e ‘Uﬁil Qg‘ — hm + 2¢ ‘Uﬁil Qg‘ + hm — hd; + 3¢
= (4|Ull; Qe| +3) — hd;
< 8(4N+3) —hdj.

Hence, if we set &€ = h/ (4N + 3), then w4(p,q¢*,0) <0 whene < 2. B

Proof of Proposition 12. Let
N
0 = max (vsi - vdi_si) .
SES <

=1

When the externalities are e-close to h-linear,

and hence
d < 2Ne. (38)

Since G is separable, let (1, I2) be the partition of the buyer set I, and let i4 € I
and 75 € Iy be such that

|NiA ﬂIl| > |NiA ﬂIQ| and |N2'B ﬂIQ| > |N2'B ﬂIl|.
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We specify (p*, ¢*, o) as follows:
(5,—0) ifi=1ig,
(pi a;) = (=6,0) ifi=ig,
(0,0)  otherwise,

and

(Aﬂ"'7A7B7"'7B) if(p7q):(p*7q*)7

( ) I I
a\p,q9) = 3 *
aB(p,q) if p # p*,
o4(p,q) if p=p* and q # ¢*.

Note that 74(p*, ¢*,0) = 75(p*, q*,0) = 0.
We first show that the buyers’ action profile following (p*, ¢*) is a NE. If ¢ €

I \ {ia}, then z; = A is a best response since

,U|Nim'1| ‘Niﬂfﬂ > ,U|Nim'2 |Nir1[2\

—bi=v = — i

If i = i4, then |]\/vZ ﬂ[1| > |Nz ﬂIQ| so that

U‘Niﬂll‘ _ U‘Niﬂfﬂ

= (oM — RN ) = (VOB = BN N D) 4+ RN T = N0 D}
> h — 2¢.

Hence, if we take

_ h
= m, (39)

then for any € < £, (38) implies that

,U‘Niﬂll‘ —p; = U|Nimll‘ _ 6 > U|Niml2| + (5 — ,U‘Niﬂ12| — g;.

The symmetric argument shows that z; = B is a best response for each 7 € I,
following (p*, ¢*).

We will next show that seller A has no profitable deviation. Let p be any
deviation by seller A, and denote by Q) the set of buyers who will choose A as an
iteratively dominant action in round & under (p,q¢*) as defined in (5). Since the
buyers play o? following (p, ¢*), buyer i will choose A only if z; = A is iteratively
dominant: ¢ € Uszl Q- By Proposition 3, we may assume that no buyers in ()i are

adjacent.

36



If i € Qk, then

d;—ak

. k
pi<m1n{vai_v l+qzav }</Ul_lvd 0‘1+qz,

where
- an(ie.)
is the number of 7’s neighbors who have chosen A prior to round k. Suppose first

that Uszl Qr C I. Since the externalities are e-close to h-linear, we have

k Ak
0% — Udl—ai

= (vai'c — afh) — (v”li_o‘i‘c —(d; — af)h) — ((dZ —af) - af) h
<2 - ((di — by - af) h.

Hence,

7TA(paq)kao-) = pi

M=

Eal
Il
—
<.
m
O
B

M~

k _ak
(Uai _Udl ay -I-q;‘)

k=1 i€Qy
K K
<Z {28—(d—af)—af)h}+22q;~k
k=1 i€Qy k=1 i€Qp
K
:2e\u,§:1Qk\—hZZ(d—a a)-l-z g
k=1 icQy k=1 icQp

Since UkK_1 Qr € I by assumption and since G is connected,

Z 3 (( ( d; — af f) — #links between UK, Qp and I\ UK, Q; > 1.

k=1 i€Qy
It hence follows from (38) that
wa(p,q*,0) < 2¢ ‘Ule Qk‘ —h+2Ne <4Ne — h,

which is < 0 for ¢ < & when £ is given in (39).
Suppose next that UX | Qr = I. In this case, Zszl Zier g; = 0. Hence the
definition of 0 implies that

K K
Tapd o)=Y > p<Y > (vaf — el +QZ‘) <6 =malp*,¢",0).

k=1 1€Q} k=1 1€Qy,

In either case, hence, the deviation p is not profitable. B
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Appendix II: Strong Equilibrium in the Buyers’ Game

Our discussion in the text has placed no restriction on the buyers’ strategies other
than that implied by a Nash equilibrium. In this Appendix, we ask what happens
when the buyers actively coordinate their actions. While there can be many different
formulations of action coordination, one simple and extreme way is to suppose that
any subset of the buyers may choose a joint deviation whenever that yields each
one of them a strictly higher payoff than adhering to the proposed action profile.
In other words, we will require that in each subgame, the buyers’ action profile
constitutes a strong Nash equilibrium.® We find that the marginal cost pricing is
not consistent with a strong Nash equilibrium even if the network is complete or
cyclic.

Formally, the buyers action profile z* is a strong Nash equilibrium (strong NE)

if for any nonempty subset J C I of buyers, and for any z;,
wi(z*) > ui(z s, z* ;) for some i € J. (40)

In other words, an action profile is a strong NE if, whenever a coalition of buyers
contemplate a joint deviation, there is a member in the coalition who cannot strictly
benefit from the deviation. If z* is a strong NE, then it is clearly a NE. Note also
that z* is a strong NE if and only if (40) holds for any non-empty J C I and any
zy such that z; # z for every j € J.10

A strong NE z of the buyers’ subgame is A-mazimal if for any strong NE g,
y; = A implies z; = A, and B-mazimal if y; = B implies z; = B. We can find these
maximal strong NE using the iteration procedure similar to that used to find the
A-maximal and B-maximal NE.

For any action profiles z and y, identify u;(zg,y) with u;(y). Let Ty = ), and
define the subsets of buyers Ty, Py, Qk, Rk, Y and Z; (n = 1,2,...) recursively as

follows.

By the property of the payoff functions of the buyers’ game, we can verify that any strong Nash

equilibrium is a coalition-proof Nash equilibrium in the sense of Bernheim et al. (1987).
10To see this, suppose that z* is not a strong NE. Then there exist .J # () and zs such that

wj(z*) <wj(ws,z” ;) for every j € J. Then J' = {j € J: z; # zj} # 0. Moreover,
wj (g, aly) = wj(zy,epng,x-5) = uwi(zs,zl ) > ui(z”)

for every j € J' since j € J\ J' implies z; = z;. Hence, the coalition J' also has a profitable joint
deviation such that z; # z for every j € J'.
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For k =0,1,2,..., define Y41 C I\ T} to be the maximal set such that

Yk-l—l = {7’ € I\Tk FUy (I%kaIYk+1 = (Aa B 7A)7I7Tk7Yk+1 = (07 s 70)) > 0}

Yi41 is the set of buyers not in T} who, given x’:}k, can collectively choose A and
enjoy non-negative payoffs from it.!! If there is no such set, let Y, = (). Likewise,
define Zy 1 C I\ T} to be the maximal set such that

Zk+1 = {Z 6 I\Tk ul ($;“k,xzk+1 = (BJ tee 7B)’x—Tk—Zk+1 = (®7 tee 7®)) Z 0}
If there is no such set, then let Z 1 = (). Let also Ry be defined by

Ry = (I\NT) \ (Ya1 U Zgs1) -
As before, Ry 1 is the set of buyers 7 for whom z; = () is iteratively strictly dominant
given z7, . Now define Py C T \ T} to be the maximal set such that
Pk-i-l = {7’ € I\Tk FUy (I;“kaka+1 = (Ba B 7B)7I7kapk+1 = (07 s 7®))
> ul (a:;ﬂkﬂxyk—_i_l = (A7 st 7A)’x—Tk—Yk+1 = (®7 tt 7®)) }

If there exists no such set, then let P11 = (). Py is the set of buyers whose payoffs
from collectively choosing z; = B are strictly higher than those from the maximal
coordination on A or from (. Likewise, define Q1 C I\ T} to be the maximal set
of buyers whose payoffs from collectively choosing xz; = A are strictly higher than

those from the maximal coordination on B or from {):
Qri1 = {z €I\Ty :u; (I*TkaQkH =(A,...,A),z_1,_q.,, = (0,...,0))
> ui (2%, 070, = (Byeo s B2y, = (0. ,@))}.
Again, if there exists no such set, then let Qg1 = 0.

1) If Pry1 = Qi1 = Rpr1 =0, then let £ = K and stop.
2) Otherwise, let

Tip1 =Tk U (Pry1 UQpy1 URp11),

and
B ifi € Pyyq,
x;k =44 ifie Qk+11
0 ifi€ Rpyq.

""With the possible difference in Ty and zr, , hence, the definition of Y;41 is the same as in (2).
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If Tyy1 = I, then set K = k + 1 and stop. Otherwise, increase k£ by one and start
over.
Given that the above process starts over only when there is a buyer who has a

joint dominant action, the maximal number of iteration K < N.

Proposition 14 Let z* and zP be defined by

= (x%K,xYKH =(A,... A,z 1 vi, = @,...,0)), and
B = (@7 Tz = (B, B)x 1740, = (0,...,0)).

Then = and =P are the A-mazimal and B-mazimal strong NE, respectively.

(p*,q*,0) is a strong SPE if for every (p,q), o(p,q) is a strong NE of the buyers’
subgame, and 74 (p*,q*,0) > ma(p,q*,0) and 7p(p*,¢*,0) > mp(p*,q,0) for every
p and gq.

Proposition 15 Let a buyer network G be given and the externalities v = (0, ..., v")

satisfy (11). There exists no buyers’ strategy profile o such that for p* = ¢* = 0
(p*,q*,0) is a strong SPE.

Proof of Proposition 14. We show that 2* is an A-maximal strong NE. The
symmetric argument shows that 2? is a B-maximal strong NE. We begin by making

some preliminary observations as follows:
Lemma 16 a) u;(z?) > 0 for every i.
b) For any k=1,...,K,
(i eI\ Ty: 2 =A} CYey1, and {i €I\Ty: z]' = B} C Zpy1.  (41)
¢) For any k, J C I\ Ty, and z;, if ui(zs,z*;) > 0 for every i € J, then
{iedJ:z;=A}CYy1 and {i€J:z; =B} C Zgy. (42)
In particular, for any y_7, such that ui(y_Tk,x‘fwk) >0 for every i € I\ Ty,

{’iEI\Tk:inA}CYk+1 and {iEI\Tk:yizB}CZk+1. (43)
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Proof of Lemma 16. a) Suppose i € Pyy1. Then

ul(a:A) = UZ (x%k.7xpk-+1 = (B7' .. ,B),$éTk_Pk+1>
A
> (ﬂka,:Epk+1 =(B,....,B),z 1, p,, = (0,... ,(Z)))
> Uy (I%c,xyﬂl = (A, .. ,z‘l),,’IT,Tk,YH1 = (@, e ,@))
>0,

where the last inequality holds trivially if i € (I \ T)) \ Y41 and by the definition
of Yiy1 if i € Yiy1. ui(xz®) > 0 holds also when i € Qp41, Rppq or I\ Tk.

b)Let Y ={i € I\T}: o' = A}. f Y ¢ Y341, then

7

u; (IE%C,!EYUYHI =(A,...,A) 21, _v_v,,, = (0,...,0))
> U (:E%MIY = (Aa s 7A)7I7kaY = (wa s 7®)) = U’L(IA) >0

fori €Y, and

Uj (I%kaIKUYk+1 = (Aa s 7A)7x7kaKfYk+1 = (@, s 7(0))
> (ﬂv%c,gtryk+1 =(A,.. A r 1 v, = ((D,...,@)) >0

for ¢ € Y 1. This contradicts the maximality of Yj.1.
c)Let Y ={ieJ: z;=A} IfY ¢ Y41, then
ui (24, oy, = (A, A) 2y v, = (0,...,0)) > u; (z7,225) >0

for every i € Y because of (41), and

UZ (x%k7$YUYk+1 = (A7 cee JA)ﬂa;—Y—Yk.J,_l = (®7 tee 7®))
> (,’IT%IC,IYIC+1 =(A,...,A),z 7, v, = ((Z),...,(B))
>0

for every ¢ € Yiy1. This contradicts the maximality of Y;;. Hence (42) holds. (42)
implies (43) if we set J =1\T;. B

We now return to the proof of Proposition 14.

In what follows, denote by J the deviating coalition of buyers. We first show
that =/ is a strong NE by verifying (40) for each choice of .J specified below.
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1) First take J such that J NTy # 0.

If JN P # 0, take 4 € JN Py. Then 2! = B by the definition of 2. If z; is
such that z; = A and uj-(xj,x’i]) > 0 for every j € J, then

UZ'(J?J, l‘éj)

< uy (a,‘yl = (A,...,A),J}_Yl = (@,,@))
< u; (a,‘p1 = (B,...,B),a,‘_p1 = (@,,@))
S’U,i(l’A),

where the first inequality follows from (41) and (42). Likewise, (40) holds
for any J such that J N Q; # 0. If J is such that J N Ry # (), then take
i € JN Ry. By definition, z* = §. If /' = A, then since i ¢ Y7, we have
ui(zy, 4 ;) < 0 = u;(z). We also have u;(zs,24;) < 0 = u;(z1) if z; = B

since i ¢ Zj.

As an induction hypothesis, suppose that (40) holds for any J such that J N
Ty # 0.

Suppose that we take J such that JNTy =0 but J N Ty 1 # 0.

If JN Ppyy # 0, take i € J N Ppyq. Then z' = B by the definition of z. If
x s is such that z; = A and uj(a:J,fo) > 0 for every j € .J, then

wi(zy,zt ;) = u; (x%k,xj,fo_Tk)
S ul (a:%kaxyk_i_l = (A7 st 7A)’x—Tk—Yk.+1 = (®7 ct 70))
< Ui(xék,xpk+l = (Ba s 7B)7I7kapk+1 = (@, . 7®))

S ui(xA)a

where the second line follows from (41) and (42). By the similar argument, (40)
holds for any J such that JNQy1 # 0. If JNRy1 1 # 0, takei € JNRy11. Then
zt = () by definition. If z; = A, then since i ¢ Vi1, ui(z7,72;) < 0 = u;(z4).
We also have ui(xj,:cfj) < ui(z4) if z; = B since i ¢ Zp4 1.

Finally, suppose that J C I\ Tk. Since Pk =0, if z; = (B,..., B), there
exists ¢ € J such that

ui(a:A) = u; (a:ﬁ(,:z:;q,{+1 =(A,... A, o vy, = (0,... ,@))
> u; («Té"’;(ax!] = (Ba"'aB)ax—TK—J = (@,,0))

= ui(IJ = (Ba 7B)7IéJ)a
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where the last equality holds because xf‘ # B for any i € I \ Tk by definition.
Clearly, no other joint deviation z; by J yields a higher payoff for ¢ than
ui(ry = (B,...,B),z" ;). Hence, (40) holds for any .J such that J C T\ Tk.

We next show that the strong NE 24 is A-maximal. Take any strong NE g.
Clearly, u;(y) > 0 for every ¢ € I. If 1 € Py, then y; = B: If y; # B, then
U; (Ip1 = (B, ,B),y,pl) > U (:l?yl = (A, ,A),I,Y1 = (@, ,@))
> ui(y),

where the last inequality from (43) for k¥ = 0. Hence, y violates (40). Likewise, we

can conclude that
A ifi e Qq,

1] if 1 € Ry.

Yi =

Hence, yr, = x%. As an induction hypothesis, suppose that yr, = x%k. Ifi e Pyyy
then y; = B: If y; # B, then

Uj (ka7$Pk+1 = (B7 s 7B)’y—Tk_Pk+1)

> U; (kaaxYk+1 = (Aa cee 7A)7 LT, —Yiey1 = (@, cee 7®))

> ui(yr,, Y13 ),

where the last inequality follows from (43) since y7, = x%k by the induction hypoth-

esis. Hence, y violates (40). We also have

A ifi € Qpya,
0 ifie Rk+1.

Yi =

Hence, y1,,, = :L"%c“. Suppose finally that ¢ € I\ Tx. Since {i € I \ Tx :,y; =
A} C Y41 by (43), yi = A implies z' = A, showing that z* is A-maximal. B

Proof of Proposition 15. In view of Proposition 9, it suffices to check the exis-

tence of a strong NE when G is either cyclic or complete.

1) G is a cycle.
Suppose that for € > 0 small, p is given by
vl —v? —¢ ifi=1,N—-1,
pi={ —¢ ifi=2,...,N—2,

v2 -9 —¢ ifi=N.
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We can then verify that under (p,q*), @1 ={1,...,N —1}: Fori=1and N — 1,

ui (zg, = (A,...,A),zn = 0) =ol —p;

and fori=2,...,N — 2,

ui (zg, = (A,...,A),zn = 0) =02 —p;

but for s = N,

UN(:B:(Aa---aA)):Ilﬂ_pN
=00 4¢

<uy(z=(B,...,B)).
We can also verify that Py = Ry = (0. Given T} =T\ {N}, Q2 = {N}:
un (e, zxy = A) =v? —py =0 + & > un(er,, zn = B).

Therefore, Q1 U Q2 = I and seller A’s payoff under (p,¢*) equals

0 0

wa(p.q*,0) =200t — v — &) + 07 — 0 —e = 20! — 00 — 0% - 3¢,

0 0

which is strictly positive if 20! —v% —v? > 0 and ¢ is sufficiently small. If 20! —2° —
v? < 0, then we can verify that m(p,q*, o) > 0 if we take ¢ > 0 small and p such
that
vP—vl —¢ ifi=1N—-1,
pi = —¢ ifi=2,...,N —2,

W —v2—¢ ifi=N.

2) Suppose next that G is complete.
Consider p such that
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Then @Q; ={1,...,N — 1} and Q2 = {N}, and
Ta(p,q*,0) = (N = 1) (V2 =0Vt —g) 4N —0 —¢
= (N = 1)V ™2 — (N —2)oV " =% — Ne,
which is strictly positive if (N —1)oV =2 — (N —2)o¥ =t —2% > 0 and ¢ is sufficiently
small. If (N — D)oV=2 — (N — 2)oV=1 — 40 < 0, then ma(p,q*,0) > 0ife > 0 is
small and p is given by
oVl N2 _¢ ifi=1,...,N—1,

0 —pN=1 ¢ ifi =N.

In either case, hence, seller A can profitably deviate from p* = 0 against ¢* = 0. B
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