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Abstrat

Two sellers engage in prie ompetition to attrat buyers loated on a net-

work. The value of the good of either seller to any buyer depends on the number

of neighbors on the network who onsume the same good. For a generi spei-

�ation of onsumption externalities, we show that an equilibrium prie equals

the marginal ost if and only if the buyer network is omplete or yli. When

the externalities are approximately linear in the size of onsumption, we iden-

tify the lass of networks in whih one of the sellers monopolizes the market,

or the two sellers segment the market.
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1 Introdution

Goods have network externalities when their value to eah onsumer depends on

the onsumption deisions of other onsumers. The externalities may derive from

physial onnetion to onsumers adopting the same good as in the ase of teleom-

muniation devies, from provision of omplementary goods as in the ase of oper-

ating systems and softwares for omputers, or from pure psyhologial fators as in

the ase of onsumption bandwagon. Despite their importane in reality, we only

have limited understanding of network externalities partiularly when those goods

are supplied ompetitively. The objetive of this paper is to study prie ompeti-

tion in the presene of onsumption externalities represented by a buyer network.

�
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Spei�ally, we formulate a model of prie ompetition under loal network external-

ities by supposing that two sellers ompete for a network of buyers who experiene

externalities when their neighbors in the network onsume the same good.

A more detailed desription of our model is as follows: Two sellers eah sell

goods that are inompatible with eah other. Consumers of either good experiene

larger positive externalities when more of his neighbors in the network onsume the

same good. In stage 1, the two sellers post pries simultaneously. The pries an

be perfetly disriminatory and an be negative. Upon publily observing the prie

vetors posted by both sellers, the buyers in stage 2 simultaneously deide whih

good to buy or not to buy. The sellers have no ost of serving the market, and their

payo�s simply equal the sum of pries o�ered to the buyers who hoose to buy their

goods.

In this framework, we �nd that the equilibrium outome of prie ompetition

subtly depends on the network struture. Our �rst observation onerns the validity

of marginal ost priing. When no network externalities are present, it is lear that

the unique subgame perfet equilibrium of this game has both sellers o�er zero to

all buyers. In the presene of externalities, however, we show that the marginal ost

priing is onsistent with equilibrium only if either the externalities are linear (in the

number of neighbors onsuming the same good), or the network is either a omplete

graph or a yle.

1

In any other network, if the externalities generi, there exists no

equilibrium in whih either seller aptures the entire market by o�ering the same

prie to all buyers. This is so even in networks where all buyers have symmetri

loations. Given this surprising result, we attempt to identify equilibrium pries

under non-linear externalities.

Positive identi�ation of equilibrium pries is possible when the externalities are

lose to linear and when the network satis�es ertain properties as follows. First, we

onsider bipartite networks. A network is bipartite if the set of buyers an be divided

into two subsets suh that for every buyer in either subset, all his neighbors belong

to the other subset. This is an important lass of networks given that it orresponds

to a two-sided market that has reeived muh attention in the literature as disussed

in the next setion. We show that in a bipartite network, there exists an equilibrium

in whih one of the sellers aptures the entire market (i.e., buyers on both sides) by

harging positive pries to all buyers on one side while subsidizing all buyers on the

1

A graph is omplete if any pair of buyers are neighbors. The linear externalities in partiular

imply that the value of the good is zero to a buyer when none of his neighbors onsumes it.
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other side.

Next, we identify the lass of networks for whih market segmentation takes plae

in equilibrium. We say that a network is separable if the buyer set an be divided

into two subsets suh that every buyer in eah subset has at least as many neighbors

in the same subset as in the other subset, and some buyer in eah subset has stritly

more neighbors in the same subset than in the other subset. In a separable network,

we show that market segmentation takes plae in equilibriumwith eah seller making

stritly positive pro�ts.

The paper is organized as follows: After disussing the related literature in the

next setion, we formulate a model of prie ompetition in Setion 3. Setion 4 on-

siders the subgame played by the buyers that follows the publi observation of pries

posted by both sellers. The ritial observations there are that this simultaneous-

move game is one of strategi omplementarity, and hene that there exist maximal

and minimal Nash equilibria in eah subgame. We present an algorithm to obtain

these extreme equilibria and use them in our onstrution of a subgame perfet equi-

librium of the entire game. We begin the analysis of a subgame perfet equilibrium

in Setion 5 and identify lower bounds on the sellers' payo� in suh equilibrium.

Setion 6 examines the validity of marginal ost priing in equilibrium. With the

de�nition of approximate linearity, Setion 7 disusses equilibrium in a bipartite

network, whih orresponds to a model of two-sided markets. Equilibrium market

segmentation in separable networks is disussed in Setion 8. We onlude in Se-

tion 9. All the proofs are olleted in the Appendix. The Appendix also ontains an

analysis of the game when the buyers oordinate their ations by playing a strong

Nash equilibrium in the stage 2 subgame.

2 Related Literature

Dybvig and Spatt (1983) are the �rst to theoretially study the provision of goods

with network externalities.

2

The problems of a single supplier of a good with network

externalities are subsequently studied by Cabral et al. (1999), Park (2004), Sekiguhi

(2009), Ohs and Park (2010), Aoyagi (2013), among others. These papers fous on

suh issues as the onstrution of eÆient or revenue maximizing adoption shemes

under omplete and inomplete information, intertemporal patterns of adoption

deisions, as well as the validity of introdutory priing.

2

Rohlfs (1974) provides a very early disussion of network externalities.
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Segal (2003), Winter (2004) and Bernstein and Winter (2012) study a losely

related problem of ontrating under externalities in whih a single prinipal o�ers

a ontrat to the set of agents whose partiipation deisions reate externalities to

other agents. They disuss the so-alled divide-and-onquer strategy used by the

prinipal: Aording to the strategy, the prinipal approahes agents one by one

in some order. The ontrat o�ered to the �rst agent indues him to partiipate

even if all other agents abstain. The ontrat o�ered to the seond agent indues

him to partiipate if all but the �rst agent abstain, and so on. In our analysis

of an equilibrium, we use exatly the same argument: Given some prie pro�le,

we examine if it is pro�table for either seller to approah the buyers one by one

in some order with pries that indue them to hoose the buyer provided that all

their predeessors do the same. We note that the argument is essentially that of

iterative elimination of stritly dominated strategies, and show that it an be used

very e�etively to examine if the given prie pro�le is part of an equilibrium.

Competition between suppliers of goods with network externalities was �rst for-

mulated by Katz and Shapiro (1985), and subsequently studied by Sundararajan

(2003), Ambrus and Argenziano (2009), Bernaji and Dutta (2009), and Jullien

(2011). These models are often ouhed in terms of two-sided markets, where the

sellers are providers of platforms who o�er a marketplae for agents on two sides

suh as sellers and buyers of some good. In suh models, the utility of an agent on

one side is an inreasing funtion of the number of partiipants from the other side.

3

Ambrus and Argenziano (2009) analyze Bertrand ompetition between platforms in

a two-sided market. Jullien (2011) applies the divide-and-onquer argument to his

analysis of multi-sided markets, and derives a bound on the platforms' payo�s when

they engage in Stakelberg prie ompetition. Both Ambrus and Argenziano (2009)

and Jullien (2011) formulate externalities di�erently from the present paper, and

impose some non-trivial restritions on the agents' strategies. Although these re-

stritions may appear natural under some prie pro�les, their full impliations are

not immediately lear. In ontrast, our analysis of a subgame perfet equilibrium

imposes no restrition on the buyers' strategies.

To the best of our knowledge, Banerji and Dutta (2009) are the only other paper

that introdues graph struture into a model of prie ompetition under network

externalities. They identify onditions under whih prie ompetition leads to mo-

nopolization and market segmentation. They assume, however, that eah seller sets

3
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the same prie for all buyers and also plae restritions on the buyers' strategies. Be-

ause of these di�erenes in assumptions, their onlusions are diÆult to ompare

with ours.

3 Model

Two sellers A and B ompete for the set I = f1; : : : ; Ng of N � 3 buyers. Con-

sumption of either seller's good generates externalities to the buyers aording to

a buyer network. Formally, a buyer network is represented by a simple undireted

graph G whose nodes orrespond to the buyers, and onsumption externalities exist

between buyers i and j if they are adjaent in the sense that there is a link between

i and j. When buyer j is adjaent to buyer i, we also say that j is i's neighbor.

The buyer network G is onneted in the sense that for any pair of buyers i and

j, there exists a path from i to j. That is, there exist buyers i

1

; i

2

; : : : ; i

m

, suh

that i

1

is adjaent to i, i

2

is adjaent to i

1

, . . . , and i

m

is adjaent to j. For any

buyer i in network G, denote by N

i

(G) (or simply N

i

) the set of i's neighbors in G.

The degree d

i

(G) = jN

i

(G)j of buyer i in network G is the number of i's neighbors.

De�ne also M to be the number of links in G. Sine eah link ounts twie when

aggregating the number of degrees in G, we have M =

1

2

P

i2I

d

i

.

For r = 2; : : : ; N � 1, the network G is r-regular if all buyers have the same

degree r, and regular if it is r-regular for some r. G is yli if it is onneted and

2-regular, and omplete if it is (N � 1)-regular, or equivalently, every pair of buyers

are adjaent to eah other. For any non-empty subset J � I of buyers, denote by

G[J ℄ the subnetwork indued from G: The set of nodes in G[J ℄ is J , and G[J ℄ has

a link between i 2 J and j 2 J if and only if i and j are adjaent in the original

network G.

The value of either seller's good to any buyer i is determined by the number of

neighbors of i who onsume the same good. We denote by v

n

the value of either good

to any onsumer when n of his neighbors onsume the same good. In partiular, v

0

denotes the stand-alone value, or the value to any buyer of either good when none of

his neighbors onsumes the same good. The value does not depend on the identity

of a buyer or the identity of the seller who supplies the good. The onsumption

externalities are non-negative in the sense that 0 � v

0

� v

1

� � � � � v

N�1

.

Eah seller produes his good at no �xed ost and a onstant marginal ost. For

simpliity, assume that the marginal osts also equals zero. Let p

i

and q

i

denote
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the pries o�ered to buyer i by seller A and seller B, respetively. The sellers an

perfetly prie disriminate the buyers. They simultaneously quote prie vetors

p = (p

i

)

i2I

2 R

N

and q = (q

i

)

i2I

2 R

N

. The buyers publily observe (p; q), and

then simultaneously deide whether to buy from either seller, or not buy. Buyer i's

ation x

i

is hene an element of the set fA;B; ;g, where ; represents no purhase.

Eah seller's strategy is hene an element of R

N

, whereas buyer i's strategy �

i

is a

mapping from the setR

2N

of prie vetors (p; q) to the set fA;B; ;g. Let � = (�

i

)

i2I

be the buyers' strategy pro�le, and for eah hoie pro�le x = (x

i

)

i2I

of buyers, let

I

A

(x) = fi 2 I : x

i

= Ag; and I

B

(x) = fi 2 I : x

i

= Bg

denote the set of buyers hoosing seller A and the set of buyers hoosing B, respe-

tively. If we denote by �

A

(p; q; �) and �

B

(p; q; �) the payo�s of sellers A and B,

respetively, under the strategy pro�le (p; q; �), then they are given by

�

A

(p; q; �) =

X

i2I

A

(�(p;q))

p

i

;

�

B

(p; q; �) =

X

i2I

B

(�(p;q))

q

i

:

Given the prie pro�le (p; q), buyer i's payo� under the ation pro�le x depends on

the number of his neighbors who onsume the same good, i.e.,

u

i

(x) =

8

>

>

>

<

>

>

>

:

v

jN

i

\I

A

(x)j

� p

i

if x

i

= A,

v

jN

i

\I

B

(x)j

� q

i

if x

i

= B,

0 if x

i

= ;,

(1)

and buyer i's payo� under the strategy pro�le (p; q; �) is written as:

�

i

(p; q; �) = u

i

(�(p; q)):

A prie vetor (p

�

; q

�

) and a strategy pro�le � = (�

i

)

i2I

together onstitute a

subgame perfet equilibrium (SPE) if given any prie vetor (p; q) 2 R

2N

, the ation

vetor (�

i

(p; q))

i2I

is a Nash equilibrium of the subgame following (p; q), and given

�, eah omponent of the prie vetor (p

�

; q

�

) is optimal against the other:

�

i

(p; q; �(p; q)) � �

i

(p; q; x

i

; �

�i

(p; q)) for every x

i

, i and (p; q),

�

A

(p

�

; q

�

; �(p

�

; q

�

)) � �

A

(p; q

�

; �(p; q

�

)) for every p,

�

B

(p

�

; q

�

; �(p

�

; q

�

)) � �

B

(p

�

; q; �(p

�

; q)) for every q.
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4 Nash Equilibrium in the Buyers' Game

In this setion, we �x the prie vetor (p; q), and onsider an equilibrium of the

buyers' subgame following (p; q). For the payo� funtion u

i

de�ned in (1), the

simultaneous-move game (I; S = fA;B; ;g

I

; (u

i

)

i2I

) among the buyers is a super-

modular game when the set of ations of eah buyer is endowed with the ordering

A � ; � B. It follows that the game has pure Nash equilibria that are maximal

and minimal with respet to the partial ordering on S indued by �.

4

We refer to

the maximal equilibrium as the A-maximal equilibrium and denote it by x

A

, and

the minimal equilibrium as the B-maximal equilibrium and denote it by x

B

. By

de�nition, for any NE y and buyer i, y

i

= A implies x

A

i

= A, and y

i

= B implies

x

B

i

= B.

We introdue some notation below in view of the fat that any NE must survive

the iterative elimination of stritly dominated ations.

De�ne T

0

= ; and reursively de�ne the subsets of buyers Y

k

, Z

k

, P

k

, Q

k

, R

k

,

and T

k

as follows. For k = 0; 1; 2; : : :, de�ne Y

k+1

� I n T

k

to be the maximal set

suh that

Y

k+1

=

n

i 2 I n T

k

:

u

i

�

x

�

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� 0

o

:

(2)

Given the ation pro�le x

�

T

k

of buyers in set T

k

, those buyers in Y

k+1

an olletively

hoose A to enjoy non-negative payo�s from it. In other words, if i =2 Y

k+1

, then

x

i

= A is stritly dominated by x

i

= ; for i. Note that maximality is well-de�ned

sine if Y and Y

0

both satisfy (2), then Y [ Y

0

also satis�es (2). If there is no suh

set, let Y

k+1

= ;. Likewise, de�ne Z

k+1

� I n T

k

to be the maximal set of buyers

who an olletively hoose B to enjoy non-negative payo�s from it:

Z

k+1

=

n

i 2 I n T

k

:

u

i

�

x

�

T

k

; x

Z

k+1

= (B; : : : ; B); x

�T

k

�Z

k+1

= (;; : : : ; ;)

�

� 0

o

:

(3)

If there is no suh set, let Z

k+1

= ;. Again, if i =2 Z

k+1

, then x

i

= B is stritly

dominated by x

i

= ; for i. De�ne

R

k+1

= (I n T

k

) n (Y

k+1

[ Z

k+1

)

4

See Topkis (1998).
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to be the set of buyers i for whom x

i

= ; is stritly dominant. Now de�ne P

k+1

�

I n T

k

by

P

k+1

=

n

i 2 I n T

k

: u

i

�

x

�

T

k

; x

i

= B; x

�T

k

�i

= (;; : : : ; ;)

�

> u

i

�

x

�

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

o

;

(4)

That is, if i 2 P

n+1

, buyer i is stritly better o� hoosing x

i

= B than hoosing

x

i

= A or ; even if seller A attrats all those buyers j for whom x

j

= A is not

stritly dominated by x

i

= ;. In other words, if i 2 P

k+1

, then x

i

= B is stritly

dominant for i. Likewise, de�ne Q

k+1

� I n T

k

to be the set of buyers i for whom

x

i

= A is stritly dominant:

Q

k+1

=

n

i 2 I n T

k

:u

i

�

x

�

T

k

; x

i

= A; x

�T

k

�i

= (;; : : : ; ;)

�

> u

i

�

x

�

T

k

; x

Z

k+1

= (B; : : : ; B); x

�T

k

�Z

k+1

= (;; : : : ; ;)

�

o

:

(5)

1) If P

k+1

= Q

k+1

= R

k+1

= ;, then set K = k and stop.

2) Otherwise, de�ne

x

�

i

=

8

>

>

>

<

>

>

>

:

B if i 2 P

k+1

,

A if i 2 Q

k+1

,

; if i 2 R

k+1

.

and

T

k+1

= T

k

[ (P

k+1

[Q

k+1

[R

k+1

) :

If T

k+1

= I, then set K = k + 1 and stop. Otherwise, inrease k by one and

start over.

Sine the above proess starts over only when at least one buyer has a stritly

dominant ation, the maximal number of rounds K must satisfy K � N . For any

NE x, we must have every buyer in T

K

hoosing his iteratively stritly dominant

ation so that

x

T

K

= x

�

T

K

:

Therefore the possible di�erene between any pair of NE arises only for buyers in

I n T

K

. The following proposition states that the A-maximal and B-maximal NE

an be onstruted by letting the maximal number of buyers hoose A or B among

those buyers.
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Proposition 1 Let x

A

and x

B

be de�ned by

x

A

= (x

�

T

K

; x

Y

K+1

= (A; : : : ; A); x

�T

K

�Y

K+1

= (;; : : : ; ;)); and

x

B

= (x

�

T

K

; x

Z

K+1

= (B; : : : ; B); x

�T

K

�Z

K+1

= (;; : : : ; ;)):

Then x

A

and x

B

are the A-maximal and B-maximal NE, respetively.

Of ourse, when T

K

= I so that every buyer has a iteratively stritly dominant

ation, the NE is unique and given by x

A

= x

B

.

5 Subgame Perfet Equilibrium

We now turn to the original two-stage game inluding the sellers. The proposition

below makes a simple observation that if a prie vetor (p

�

; q

�

) is sustained in some

SPE, then it must be sustained in an SPE in whih the buyers hoose an extreme

response to either seller's deviation: If seller A deviates from p

�

, then all buyers

oordinate on the B-maximal NE that least favors seller A, and vie versa. The

proposition hene presents a bang-bang property of an SPE.

Proposition 2 For any network G, (p

�

; q

�

) is an SPE prie vetor if and only if

there exists buyers' strategy pro�le � suh that (p

�

; q

�

; �) is an SPE and

�(p; q) =

8

<

:

�

B

(p; q) if p 6= p

�

and q = q

�

,

�

A

(p; q) if p = p

�

and q 6= q

�

.

Consider next seller A's best response p to B's prie q when the buyers play the

B-maximal strategy �

B

. Sine �

B

(p; q) is a B-maximal NE for any (p; q), seller A

an attrat buyer i if and only if x

i

= A is an iteratively stritly dominant ation

for buyer i: i 2 [

K

k=1

Q

k

, where Q

k

is as de�ned in (5). Hene,

�

A

(p; q:�

B

) =

K

X

k=1

X

i2Q

k

p

i

:

The following lemma shows that if seller A's prie vetor p is a best response to

(q; �

B

), then no two buyers inQ

k

de�ned under (p; q) are adjaent. In other words, in

order to attrat adjaent buyers i and j, seller A should approah them sequentially.

Intuitively, this is beause making hoie A dominant for both buyers simultaneously

9



requires o�ering lower pries to both of them than making x

i

= A dominant for buyer

i �rst, then making x

j

= A dominant for buyer j next onditional on the knowledge

that i hooses x

i

= A.

Lemma 3 Let (Q

k

)

k=1;:::;K

be as de�ned in (5) under the prie vetor (p; q). If p

is a best response to (q; �

B

), then for every k = 1; : : : ;K,

i; j 2 Q

k

) i and j are not adjaent.

We now derive a key result that establishes a lower bound for eah seller's equi-

librium payo� given the prie vetor of the other seller. As mentioned in the Intro-

dution, the argument is one of divide and onquer, where seller A, say, approahes

eah buyer sequentially aording to some ordered list, and presents them with a

prie whih makes the hoie A a dominant ation given all his predeessors in the

list hoose A.

Formally, �x the prie q

�

of seller B, and suppose that the buyers hoose A

only when it is an iteratively stritly dominated ation. Suppose further that seller

A makes an ordered list of all buyers i

1

; : : : ; i

N

. Seller A �rst targets buyer i

1

by

making it stritly dominant for him to hoose x

i

1

= A by o�ering a suÆiently low

prie. In fat, seller A needs to o�er p

i

1

suh that

v

0

� p

i

1

> v

d

i

1

� q

�

i

1

and v

0

� p

i

1

> 0;

or equivalently

p

i

1

< min

n

v

0

� v

d

i

1

+ q

�

i

1

; v

0

o

to make x

i

1

= A stritly dominant. Let H

1

= fi

1

g. Seller A next targets buyer i

2

by making x

i

2

= A stritly dominant. In this ase, seller A must o�er p

i

2

suh that

p

i

2

< min

n

v

s

i

2

� v

d

i

2

�s

i

2

+ q

�

i

2

; v

s

i

2

o

;

where s

i

2

= 1 if buyer i

2

is adjaent to i

1

, and = 0 otherwise. Let H

2

= fi

1

; i

2

g.

Proeeding iteratively, we see that against buyer i

k

, seller A must o�er p

i

k

suh that

p

i

k

< min

n

v

s

i

k

� v

d

i

k

�s

i

k

+ q

�

i

k

; v

s

i

k

o

; (6)

where s

i

k

is the number of neighbors of i

k

in the set H

k�1

= fi

1

; : : : ; i

k�1

g. s

i

k

an

be thought of the externalities buyer i

k

an enjoy by hoosing A when those buyers

10



in H

k�1

have already hosen A. On the other hand, d

i

� s

i

k

is the externalities i

k

an enjoy from B when those buyers in I nH

k�1

still hoose B. Note that for any

list i

1

; : : : ; i

N

of buyers,

N

X

k=1

s

i

k

=M;

where M is the total number of links in G. De�ne S by

S =

n

s = (s

i

)

i2I

: s

i

1

= 0 and s

i

k

= jN

i

k

\ fi

1

; : : : ; i

k�1

gj for k � 2

for some relabeling (i

1

; : : : ; i

N

) of buyers

o

:

(7)

Note that if s orresponds to the list i

1

; : : : ; i

N

, then d�s = (d

i

�s

i

)

i2I

orresponds

to the reversed list i

N

; : : : ; i

1

. Hene, if s 2 S, then d � s 2 S as well. We also

observe that

H

k

� [

k

`=1

Q

`

;

where Q

k

is as de�ned in (5) and equals the set of buyers i for whom x

i

= A is

iteratively stritly dominant in round k of the iteration proess under the prie

pro�le (p; q

�

). Hene, even if the buyers play the B-maximal equilibrium �

B

that

least favors seller A, A an at least seure the payo� implied by the pries in (6). We

hene have the following lemma that gives a lower bound for eah seller's equilibrium

payo�.

Lemma 4 If (p

�

; q

�

; �) is an SPE, then

�

A

(p

�

; q

�

; �) � max

s2S

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

o

;

�

B

(p

�

; q

�

; �) � max

s2S

N

X

i=1

min

n

v

s

i

� v

d

i

�s

i

+ p

�

i

; v

s

i

o

:

(8)

Figures 1 and 2 illustrate the disussion for the line network of three buyers. In

Figure 1, seller A approahes the buyers in the order (i

1

; i

2

; i

3

) = (1; 3; 2) when seller

B o�ers q

�

= (q

�

1

; q

�

2

; q

�

3

): When buyers 1 and 3 swith to A, their valuation of A's

good is just v

0

(stand-alone value) sine at that point they don't expet that buyer

2 will swith as well. On the other hand, when buyer 2 swithes to A, he knows that

both his neighbors will hoose A, and he expets that A's good is worth v

2

. Hene,

11



v

0

� p

1

> max fv

1

� q

�

1

; 0g

1

2

3

v

0

� p

3

> max fv

1

� q

�

3

; 0g

, p

1

< min fv

0

� v

1

+ q

�

1

; v

0

g

, p

3

< min fv

0

� v

1

+ q

�

3

; v

0

g

v

2

� p

2

> max fv

0

� q

�

2

; 0g

1

2

3

, p

2

< min fv

2

� v

0

+ q

�

2

; v

2

g

)

Figure 1: Divide-and-onquer by seller A with (i

1

; i

2

; i

3

) = (1; 3; 2).

v

1

� p

1

> max fv

0

� q

�

1

; 0g

1

2

3 v

1

� p

3

> max fv

0

� q

�

3

; 0g

, p

1

< minfv

1

� v

0

+ q

�

1

; v

1

g

, p

3

< minfv

1

� v

0

+ q

�

3

; v

1

g

v

0

� p

2

> max fv

2

� q

�

2

; 0g

1

2

3

, p

2

< min fv

0

� v

2

+ q

�

2

; v

0

g

)

Figure 2: Divide-and-onquer by seller A with (i

1

; i

2

; i

3

) = (2; 1; 3).

even if the buyers play the B-maximal equilibrium �

B

, seller A's divide-and-onquer

strategy with (i

1

; i

2

; i

3

) = (1; 3; 2) is pro�table if

minfv

0

� v

1

+ q

�

1

; v

0

g+minfv

0

� v

1

+ q

�

3

; v

0

g

+minfv

2

� v

0

+ q

�

2

; v

2

g > 0:

(9)

Likewise, his divide-and-onquer strategy with (i

1

; i

2

; i

3

) = (2; 1; 3) illustrated in

Figure 2 is pro�table if

minfv

0

� v

2

+ q

�

2

; v

0

g+minfv

1

� v

0

+ q

�

1

; v

1

g

+minfv

1

� v

0

+ q

�

3

; v

1

g > 0;

(10)

and that with (i

1

; i

2

; i

3

) = (1; 2; 3) is pro�table if

minfv

0

� v

1

+ q

�

1

; v

0

g+minfv

1

� v

1

+ q

�

2

; v

1

g

+minfv

1

� v

0

+ q

�

3

; v

1

g > 0:
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6 Marginal Cost Priing

When there are no onsumption externalities 0 < v

0

= � � � = v

N�1

, it is lear that

a subgame perfet equilibrium prie (p

�

; q

�

) is unique and equal to the marginal

ost: (p

�

; q

�

) = (0; 0). In this setion, we will examine if and how this result an be

extended when there are externalities.

Let D = D(G) be the highest degree in G:

D(G) = max

i2I

d

i

(G):

For the network G, hene, the relevant levels of externalities are (v

0

; : : : ; v

D

). We

say that the externalities (v

0

; : : : ; v

D

) are linear if there exists h > 0 suh that

v

k

= kh for every k = 0; 1; : : : ;D.

Note in partiular that the stand-alone value v

0

is zero when the externalities are

linear. In this sense, linearity implies pure network externalities and violates the

formulation of weak externalities in Jullien (2011).

5

Proposition 5 Let G be an arbitrary buyer network. Under the linear externalities

(v

0

; : : : ; v

D

), (p

�

; q

�

) = (0; 0) is an SPE prie vetor.

We next onsider some generi property of externalities. As will be seen, whether

or not the marginal ost an be an equilibrium prie depends ruially on the on�g-

uration of the buyer network in this ase. Spei�ally, for S de�ned in (7), suppose

that the externalities (v

0

; : : : ; v

D

) satisfy the following ondition:

s 2 S and d� s is not a permutation of s )

N

X

i=1

v

s

i

6=

N

X

i=1

v

d

i

�s

i

. (11)

(11) implies that the sum of externalities over buyers are di�erent between the two

goods when seller A attrats buyers by o�ering pries as desribed in (6). The set

of (v

0

; : : : ; v

D

) satisfying (11) is generi in the set

�

(v

0

; : : : ; v

D

) : 0 < v

0

� � � � � v

D

	

of all externalities.

5

Assumption 1 of Jullien (2011).
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Lemma 4 implies that a seller's equilibrium payo� is losely linked to the value

of

max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

:

It turns out that whether this quantity is positive or not under (11) depends ruially

on the network on�guration as seen in the following lemma.

Lemma 6 Suppose that the externalities v = (v

0

; : : : ; v

D

) satisfy (11). If the buyer

network G is neither yli nor omplete, then

max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0: (12)

The following lemma, whih readily follows from Lemmas 4 and 6, provides some

key observations on equilibrium priing.

Lemma 7 Suppose that (p

�

; q

�

; �) is an SPE for the buyer network G whih is

neither omplete nor yli, and that the externalities v = (v

0

; : : : ; v

D

) satisfy (11).

Then

a) �

A

(p

�

; q

�

; �) = 0 ) min

i

q

�

i

< 0.

b) �

A

(p

�

; q

�

; �) �

P

i

q

�

i

) max

i

q

�

i

> v

0

.

) I

B

(�(p

�

; q

�

)) = I ) max

i

q

�

i

> v

0

, min

i

(v

d

i

� q

�

i

) � v

0

, and v

D

> 2v

0

.

While the �rst two statements of Lemma 7 are true regardless of whether the

market is monopolized or segmented in equilibrium, the impliations of the lemma

are seen most learly for a monopolization equilibrium. Suppose that G is neither

yli nor omplete, and that seller B aptures the entire market in equilibrium:

I

B

(�(p

�

; q

�

)) = I. Then seller B must subsidize at least one buyer, and must harge

some buyer stritly above the stand-alone value:

min

i

q

�

i

< 0 � v

0

< max

i

q

�

i

< v

D

� v

0

:

Furthermore, for any suh equilibrium to exist, the externalities annot be too small:

v

D

> 2v

0

. This is a non-trivial restrition for networks in whih every buyer has a

small degree as in line networks. We summarize this observation as a proposition

below.

14



Proposition 8 Let a buyer network G be given and the externalities v = (v

0

; : : : ; v

D

)

satisfy (11). Then there exists no SPE in whih one of the sellers monopolizes the

market by harging the same prie to every buyer.

The impossibility of uniform priing is ounter-intuitive in networks whih are

not yli or omplete, but are symmetri with respet to every buyer. For example,

buyer loations are exatly symmetri in the 4-regular network depited in Figure

3.

1

2

3

4

5

6

7

8

Figure 3: 4-regular network with eight buyers

We are now ready to state our main result on marginal ost priing. Suppose

that both sellers o�er zero to all the buyers. In this ase, both sellers' payo�s equal

zero regardless of whether or not they apture a positive portion of the market.

Hene, this prie pro�le annot be an equilibrium by Lemma 7(a) unless the network

is omplete or yli. The following proposition shows that when the network is

omplete or yli, there indeed exists an SPE of the type presented in Proposition

2 in whih both sellers o�er zero.

Proposition 9 Let a buyer network G be given and the externalities v = (v

0

; : : : ; v

D

)

satisfy (11). (p

�

; q

�

) = (0; 0) is an SPE prie vetor if and only if G is either yli

or omplete.

For illustration of the impossibility of marginal ost priing, return to the ex-

ample of the three-buyer line network depited in Figures 1 and 2. Suppose that
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q

�

= 0. In this ase, we have

(9) , 2v

1

� v

2

� v

0

< 0;

(10) , 2v

1

� v

2

� v

0

> 0:

Hene, if

2v

1

6= v

2

+ v

0

; (13)

seller A an pro�tably divide and onquer the buyers against q

�

= 0. Note that

(13) orresponds to (12) in Lemma 6: It fails under the linear externalities v

0

= 0,

v

1

= h and v

2

= 2h, but is true under generi spei�ations of v

0

, v

1

and v

2

.

7 Monopolization on a Bipartite Network

The results in the preeding setion suggest that some form of disriminatory priing

is inevitable in equilibrium. A natural question then is on the form of equilibrium

prie disrimination. Interesting related questions are (1) whih buyers are the

\weak link" in the network that need to be proteted, and (2) whih buyers an

be squeezed for more pro�ts. Sine it appears diÆult to provide general answers

to these questions, we will restrit attention to ertain lasses of networks for the

identi�ation of an equilibrium. In this setion, we identify a lass of networks in

whih monopolization takes plae in equilibrium.

Our analysis in what follows assumes that the externalities are approximately

linear in the following sense: For h > 0, the externalities (v

0

; : : : ; v

D

) are "-lose to

linear if

jv

k

� khj < " for k = 0; 1; : : : ;D.

Sine the ondition holds for any " > 0 when the externalities are exatly linear,

our onlusions under approximate linearity hold with no hange in models of linear

externalities. In onjuntion with Proposition 5, then, this implies the multipliity

of equilibria in these markets.

The buyer network is bipartite if the buyer set I is partitioned into two disjoint

subsets I

1

and I

2

suh that every neighbor of i 2 I

1

belongs to I

2

and every neighbor

of i 2 I

2

belongs to I

1

. Line and star networks are simple examples of a bipartite

network. For example, the line network in Figures 1 and 2 is bipartite with the

partition I

1

= f1; 3g and I

2

= f2g. A yle network with an even number of buyers

is also bipartite. A bipartite network is omplete if every buyer in I

1

is linked to

every buyer in I

2

.
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Bipartite networks are partiularly important in their onnetion to two-sided

markets. For example, we an think of I

1

as the set of sellers and I

2

as the set of

buyers of a ertain good. In this ase, the sellers A and B are interpreted as the

platforms that o�er marketplae to these sellers and buyers, and their pries are

interpreted as partiipation fees into their platforms. A omplete bipartite network

orresponds to a two-sided market in whih eah agent �nds more value in a given

platform whenever more agents on the other side partiipate in the same platform.

Our onlusion on a bipartite network translates to that on a two-sided market

where two platforms ompete.

Proposition 10 Suppose that the buyer network G is bipartite. For any h > 0,

there exists �" > 0 suh that if the externalities are "-lose to h-linear for " < �", then

there exists an SPE (p

�

; q

�

; �) in whih one seller aptures all the buyers.

The equilibrium onstruted in the proof is desribed as follows: Let I

1

and I

2

be the partition of the buyer set, and suppose that seller B aptures the market.

Seller B o�ers q

i

= v

d

i

� v

0

to eah buyer i in set I

1

and q

i

= v

0

� v

d

i

to eah

buyer i in set I

2

provided that these pries lead to a non-negative payo�.

6

In other

words, the monopolizing seller taxes every buyer on one side, and subsidizes every

buyer on the other side. Seller A o�ers the same prie to eah buyer as seller B.

When either seller deviates, the buyers play the extreme equilibrium whih is least

favorable to the deviating seller as in Proposition 2. It is shown that this prie vetor

leaves no room for seller A to pro�tably attrat any buyers. Figure 4 illustrates the

equilibrium priing of Proposition 10 in a star network with �ve buyers when the

externalities satisfy approximate linearity and

v

4

� v

0

� 4(v

1

� v

0

): (14)

It an be seen that the hub buyer 1 is harged a positive prie whereas all the

peripheral buyers are subsidized. In other words, the subsidies to the peripheral

buyers are a protetion against the induement by the other seller. Sine (14) holds

when the externalities are marginally inreasing, we an understand this priing

behavior from the fat that it is relatively more diÆult for the other seller to entie

the hub buyer. When the inequality (14) is reversed, then the pries are (�1) times

those listed in Figure 4. In this ase of marginally dereasing externalities, hene,

6

Reall that d

i

denotes the degree of buyer i. If these pries lead to a negative payo�, the

equilibrium pries are simply �q

i

for eah i.
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the hub buyer needs to be proteted as it is relatively easier for the other seller to

entie him. As seen in this example, the spei�ation of externalities determines

whih buyer(s) should be proteted with subsidies.

2

3

4

5

1

p

1

= q

1

= v

4

� v

0

p

2

= q

2

= v

0

� v

1

p

3

= q

3

= v

0

� v

1

p

4

= q

4

= v

0

� v

1

p

5

= q

5

= v

0

� v

1

Figure 4: Monopolization through disriminatory priing on a star network when

v

4

� v

0

� 4(v

1

� v

0

).

Dereasing or inreasing marginal externalities also have the following implia-

tions for the priing in a omplete bipartite network: Under inreasing marginal

externalities, any buyer in a omplete bipartite network is subsidized in equilibrium

if and only if his subset of buyers is larger than the other subset. The opposite holds

under dereasing marginal externalities.

Corollary 11 Suppose that the network is omplete bipartite with partition (I

1

; I

2

)

suh that jI

1

j � jI

2

j. For any h > 0, there exists �" > 0 suh that the following hold

for " < �":

a) (inreasing marginal externalities) If

h� " � v

1

� v

0

� v

2

� v

1

� � � � � v

D

� v

D�1

� h+ ";

then there exists an SPE (p; q; �) suh that p

i

= q

i

> 0 for every i 2 I

1

and

p

i

= q

i

< 0 for every i 2 I

2

.

b) (dereasing marginal externalities) If

h� " � v

D

� v

D�1

� � � � � v

2

� v

1

� v

1

� v

0

� h+ ";

then there exists an SPE (p; q; �) suh that p

i

= q

i

< 0 for every i 2 I

1

and

p

i

= q

i

> 0 for every i 2 I

2

.
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8 Segmentation on a Separable Network

Under the same assumption of approximately linear externalities as in the previous

setion, we now examine the possibility of an equilibrium in whih market segmen-

tation takes plae. For this, we onsider a lass of buyer networks that have roughly

the opposite property as the bipartite networks introdued in the previous setion:

In this lass of networks, the buyer set is again partitioned into two disjoint subsets,

but eah buyer has at least as many neighbors in the same subset than in the other

subset. Formally, the buyer network is separable if there exists a two-way partition

(I

1

; I

2

) of the set I of buyers suh that for m, n = 1, 2, and m 6= n,

jN

i

\ I

n

j � jN

i

\ I

m

j for every i 2 I

n

, and

jN

i

\ I

n

j > jN

i

\ I

m

j for some i 2 I

n

.

Intuitively, in a separable network with partition (I

1

; I

2

), we an lassify buyers in

I

1

or I

2

into ore and peripheral buyers: The ore buyers are those who have stritly

more neighbors in the same set than in the other set, while the peripheral buyers

have as many neighbors in the same set as in the other set. We an see that any

line network with four or more buyers is separable: For example, a line network of

four or more buyers is separable. The regular network in Figure 3 is also separable

when we take I

1

= f1; 2; 3; 4g and I

2

= f5; 6; 7; 8g. Buyer 2 and 3 are ore buyers

for I

1

and buyers 6 and 7 are ore buyers for I

2

.

Proposition 12 Suppose that G is separable. For any h > 0, there exists �" > 0

suh that if the externalities are "-lose to h-linear for " < �", there exists an SPE

in whih buyers in I

1

hoose seller A and buyers in I

2

hoose seller B.

The proof of this proposition onstruts an equilibrium in whih eah seller

harges a small but positive prie to one of the ore buyers in his segment of the

market. Spei�ally, realling that s is a sequene of degrees of externalities as

de�ned in (7), we speify the prie to be harged to this ore buyer by

Æ = max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

;

whih is stritly positive for generi externalities (Lemma 6), but is small for ap-

proximately linear externalities. Eah seller harges zero to all other buyers in their

segment of the market. Figure 5 illustrates the equilibrium for a line network of four
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2

3

4

1

(p

1

; q

1

) = (Æ;�Æ)

(p

4

; q

4

) = (�Æ; Æ)

(p

2

; q

2

) = (0; 0) (p

3

; q

3

) = (0; 0)

Figure 5: Segmentation on a line network (Æ = jv

2

+ v

1

� 2v

0

j > 0): A aptures

f1; 2g and B aptures f3; 4g.

buyers.

7

As in Proposition 2, any deviation by either seller results in the extreme

equilibrium that is least favorable to the deviating seller. Eah ore buyer who is

harged the positive prie will not swith to the other seller sine he enjoys stritly

higher externalities under the present seller. Furthermore, eah seller enjoys stritly

positive pro�ts in equilibrium, and has no inentive to engage in divide-and-onquer

taking advantage of the non-generi externalities as in the ase of marginal ost

priing.

9 Conlusion

In this paper, we formulate a model of prie ompetition between two sellers when

eah one of their goods exhibits loal network externalities as represented by a graph-

theoreti network of buyers. We show that whether a given prie pro�le is onsistent

with a subgame perfet equilibrium of the two-stage game depends ruially on

the exat spei�ations of network struture and externalities. In the non-generi

ase of linear externalities, the marginal ost priing of both sellers quoting zero to

every buyer is onsistent with an SPE for any network. In the generi spei�ation

of externalities, however, it is onsistent with an SPE if and only if the network

is either yli or omplete. That is, in any other networks, some form of prie

disrimination is expeted even if every buyer has exatly symmetri loations in

those networks. Given these results, we proeed to the identi�ation of an SPE when

the externalities are approximately linear. In a bipartite network whih orresponds

to a two-sided market, we show that there exists an SPE in whih one of the sellers

monopolizes the market by harging a positive prie to every buyer on one side, and

a negative prie to every buyer on the other side. The priing strategy there gives

us a hint as to whih buyer needs to be proteted from the induement by the other

7

As seen in Figure 5, eah seller harges �Æ to the ore buyer in the other segment who is

harged Æ by the other seller. This is to make the sum of the pries of eah seller equal to zero.
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seller. In a separable network in whih eah buyer has more neighbors on his side

than on the other side, on the other hand, we show that there exists an equilibrium

in whih the two sellers segment the market.

In the present model, the goods of the two sellers are assumed symmetri and

inompatible with eah other. A natural extension would involve introduing asym-

metry or a positive degree of ompatibility between them. It would also be in-

teresting to study endogenous determination of ompatibility levels by the sellers.

Although some of these issues are investigated in the literature,

8

it will be useful to

examine them under the alternative spei�ations of externalities and equilibrium

as in the present paper.

Appendix I: Proofs

Proof of Proposition 1. We show that x

A

is an A-maximal NE. The symmetri

argument shows that x

B

is a B-maximal NE. We begin with the following lemma.

Lemma 13 a) u

i

(x

A

) � 0 for every i.

b) For any n, fi 2 I n T

n

: x

A

i

= Ag � Y

n+1

and fi 2 I n T

n

: x

A

i

= Bg � Z

n+1

.

) For any n, J � I n T

n

, and y

J

suh that u

i

(y

J

; x

A

�J

) � 0 for every i 2 J ,

fi 2 J : y

i

= Ag � Y

n+1

and fi 2 J : y

i

= Bg � Z

n+1

: (15)

Proof of Lemma 13. a) Suppose that i 2 P

n+1

for some n. Then

u

i

(x

A

) = u

i

(x

A

T

n

; x

i

= B; x

A

�T

n

�i

)

� u

i

�

x

A

T

n

; x

i

= B; x

�T

n

�i

= (;; : : : ; ;)

�

> u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A);X

�T

n

�Y

n+1

= (;; : : : ; ;)

�

� 0:

The proof is similar if i 2 Q

n+1

. If i 2 R

n+1

or i 2 I n T

n

for n suh that P

n+1

=

Q

n+1

= R

n+1

= ;, then the inequality follows from the de�nition of x

A

.

8

See Jullien (2011).
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b) Denote K = fi 2 I n T

n

: x

A

i

= Ag. Then for any i 2 K, we have

u

i

�

x

A

T

n

; x

K[Y

n+1

= (A; : : : ; A); x

�T

n

�K�Y

n+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

n

; x

K

= (A; : : : ; A); x

�T

n

�K

= (;; : : : ; ;)

�

= u

i

(x

A

) � 0;

and for any i 2 Y

n+1

,

u

i

�

x

A

T

n

; x

K[Y

n+1

= (A; : : : ; A); x

�T

n

�K�Y

n+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

= (;; : : : ; ;)

�

� 0:

This ontradits the maximality of Y

n+1

.

) Denote K = fi 2 J : y

i

= Ag. Suppose that K 6� Y

n+1

. Then for i 2 K,

u

i

�

x

A

T

n

; x

K[Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

�K

= (;; : : : ; ;)

�

� u

i

�

x

A

T

n

; x

J

; x

A

�T

n

�J

�

= u

i

(x

A

�J

; x

J

)

� 0;

where the �rst inequality follows from Lemma 13(b), and for any i 2 Y

n+1

,

u

i

�

x

A

T

n

; x

K[Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

�K

= (;; : : : ; ;)

�

u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

= (;; : : : ; ;)

�

� 0:

This again ontradits the maximality of Y

n+1

. �

We now return to the proof of Proposition 1.

1) x

A

is a NE.

Sine u

i

(x

A

) � 0 by Lemma 13(a), x

0

i

= ; annot be a pro�table deviation for

any i, and moreover a pro�table deviation, if any, must yield a stritly positive

payo�.

Take any i 2 P

n+1

so that x

A

i

= B, and onsider a deviation x

0

i

= A. If

u

i

(x

0

i

; x

A

�i

) � 0, then i 2 Y

n+1

by Lemma 13() and hene

u

i

(x

0

i

; x

A

�i

) � u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A); x

�Y

n+1

= (;; : : : ; ;)

�

< u

i

�

x

A

T

n

; x

A

i

; x

�T

n

�i

= (;; : : : ; ;)

�

� u

i

(x

A

):
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Hene the deviation is not pro�table. Likewise, no pro�table deviation exists for

i 2 Q

n+1

. Suppose next that i 2 R

n+1

so that x

A

i

= ;. x

0

i

= A is not pro�table

sine i 2 R

n+1

implies that i =2 Y

n+1

and hene u

i

(x

0

i

; x

A

�i

) < 0 by Lemma 13().

Likewise, the deviation x

0

i

= B is not pro�table. Finally, suppose that i 2 I n T

n

and that P

n+1

= Q

n+1

= R

n+1

= ;. In this ase, x

A

i

= A if i 2 Y

n+1

and x

A

i

= ;

otherwise. If x

0

i

= B, then

u

i

(x

0

i

; x

A

�i

) = u

i

�

x

A

T

n

; x

0

i

; x

A

�T

n

�i

�

= u

i

�

x

A

T

n

; x

0

i

; x

�T

n

�i

= (;; : : : ; ;)

�

� u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

= (;; : : : ; ;)

�

= u

i

(x

A

);

where the inequality follows sine i =2 P

n+1

. Hene, x

0

i

= B is not a pro�table

deviation. If i 2 I n T

n

n Y

n+1

and x

0

i

= A, then u

i

(x

0

i

; x

A

�i

) < 0 by Lemma 13().

2) x

A

is A-maximal.

Take any NE y. Clearly, u

i

(y) � 0 for every i. We �rst show that y

i

= x

A

i

if

i 2 T

1

. To see that y

i

= B for any i 2 P

1

, suppose y

i

= A. Then by setting n = 0

and J = I in Lemma 13(), we see that fi : y

i

= Ag � Y

1

so that

u

i

(y

i

; y

�i

) � u

i

(x

Y

1

= (A; : : : ; A); x

�Y

1

= (;; : : : ; ;))

< u

i

(x

i

= B; x

�i

= (;; : : : ; ;))

� u

i

(x

i

= B; y

�i

);

where the seond inequality follows from the de�nition of P

1

. Hene x

i

= B is a

pro�table deviation. Likewise, y

i

= A holds for any i 2 Q

1

. If i 2 R

1

, then y

i

= ;

must hold sine i =2 Y

1

[ Z

1

.

As an indution hypothesis, suppose that y

i

= x

A

i

if i 2 T

n

. We show that

y

i

= x

A

i

if i 2 T

n+1

n T

n

. If i 2 P

n+1

, then y

i

= B: If y

i

= A, then fi 2 I n T

n

: y

i

=

Ag � Y

n+1

by Lemma 13() (set J = I n T

n

) so that

u

i

(y

i

; y

�i

) � u

i

�

x

A

T

n

; x

Y

n+1

= (A; : : : ; A); x

�T

n

�Y

n+1

= (;; : : : ; ;)

�

< u

i

�

x

A

T

n

; x

i

= B; x

�T

n

�i

= (;; : : : ; ;)

�

� u

i

(x

i

= B; y

�i

);

where the seond inequality follows from the de�nition of P

n+1

. Hene x

i

= B is a

pro�table deviation. Likewise, y

i

= A for any i 2 Q

n+1

. If i 2 R

n+1

, then y

i

= ;
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must hold sine i =2 Y

n+1

[Z

n+1

. Finally, if i 2 I nT

n

and P

n+1

= Q

n+1

= R

n+1

= ;,

then y

i

= A implies i 2 Y

n+1

by Lemma 13(), but x

A

i

= A for any suh i by

de�nition. We an therefore onlude that x

A

is an A-maximal NE. �

Proof of Proposition 2. If there exists suh a strategy pro�le � of buyers, then

(p

�

; q

�

) is learly an SPE prie vetor. Conversely, suppose that (p

�

; q

�

) is an SPE

prie vetor. Then there exists �̂ suh that (p

�

; q

�

; �̂) is an SPE. De�ne � as follows:

�(p; q) =

8

>

>

>

<

>

>

>

:

�̂(p; q) if (p; q) = (p

�

; q

�

), or p 6= p

�

and q 6= q

�

,

�

A

(p; q) if p = p

�

and q 6= q

�

,

�

B

(p; q) if p 6= p

�

and q = q

�

.

Then (p

�

; q

�

; �) is an SPE: The de�nition of �

B

and the equilibrium property of �̂

together imply

�

A

(p; q

�

; �) � �

A

(p; q

�

; �̂) � �

A

(p

�

; q

�

; �̂) = �

A

(p

�

; q

�

; �):

Likewise, the de�nition of �

A

and the equilibrium property of �̂ together imply

�

B

(p

�

; q; �) � �

B

(p

�

; q

�

; �). �

Proof of Lemma 3. For simpliity, let k = K and suppose to the ontrary that

1, 2 2 Q

K

and 1 and 2 are adjaent. Then it must be the ase that

v

�

K

1

� p

1

> max fv

d

1

��

K

1

� q

1

; 0g and v

�

K

2

� p

2

> max fv

d

2

��

K

2

� q

2

; 0g;

where

�

K

1

=

�

�

�

N

1

\ [

K�1

`=1

Q

`

�

�

�

; and �

K

2

=

�

�

�

N

2

\ [

K�1

`=1

Q

`

�

�

�

are the numbers of neighbors of 1 and 2, respetively, for whom x

i

is iteratively

stritly dominant in round K � 1 or earlier. Hene,

p

1

< v

�

K

1

�max fv

d

1

��

K

1

� q

1

; 0g and p

2

< v

�

K

2

�max fv

d

2

��

K

2

� q

2

; 0g:

On the other hand, let p

0

be suh that p

0

i

= p

i

for i 6= 2, and

p

2

< p

0

2

< v

�

K

2

+1

�max fv

d

2

��

K

2

�1

� q

2

; 0g:

Denote by Q

0

k

the set of buyers for whom x

1

= A is an iteratively dominant ation in

round k under (p

0

; q) as de�ned in (5). We then have Q

0

k

= Q

k

for k = 1; : : : ;K � 1

and Q

0

K

= Q

K

[ f1g so that �

K

2

+ 1 of 2's neighbors have hosen A in round K or

earlier. Sine

v

�

K

2

+1

� p

0

2

> max fv

d

2

��

K

2

�1

� q

2

; 0g;

Q

0

K+1

= f2g. Furthermore, sine p

0

2

> p

2

, �

A

(p

0

; q; �

B

) > �

A

(p; q; �

B

). �
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Proof of Lemma 4. Fix any relabeling of buyers i

1

; : : : ; i

N

. Let s = (s

i

)

i2I

be

de�ned by

s

i

1

= 0 and s

i

k

= jN

i

k

\ fi

1

; : : : ; i

k�1

gj for k = 2; : : : ; N .

Let " > 0 be given, and de�ne the prie vetor p = (p

i

)

i2I

by

p

i

= min fv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g � ": (16)

As explained in the text, by o�ering p, seller A makes x

i

1

= A a stritly dominant

ation for buyer i

1

, and in any subsequent step, x

i

k

= A an iteratively stritly

dominant ation for buyer i

k

under (p; q

�

). Hene, seller A's payo� under (p; q

�

; �)

satis�es

�

A

(p; q

�

; �) �

N

X

i=1

minfv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g �N":

Sine " > 0 and s 2 S are arbitrary, if (8) does not hold, then we would have a

ontradition

�

A

(p; q

�

; �) > �

A

(p

�

; q

�

; �):

The symmetri argument proves the inequality for seller B's payo�. �

Proof of Proposition 5. We �rst show that (p

�

; q

�

) = (0; 0) is an SPE prie. Let

�

A

and �

B

be the A-maximal and B-maximal equilibria as de�ned earlier, and let

� be the buyers' strategy pro�le suh that

�(p; q) =

8

>

>

>

<

>

>

>

:

(B; : : : ; B) if (p; q) = (0; 0),

�

B

(p; q) if p 6= 0 and q = 0,

�

A

(p; q) if p = 0 and q 6= 0.

Now onsider a deviation from p

�

= 0 to p 6= 0 by seller A. Let Q

k

(k = 1; : : : ;K)

be as de�ned in (5) under (p; q

�

). It then follows that

I

A

(�

A

(p; q

�

)) = [

K

k=1

Q

k

for some K � N . In other words, any buyer attrated by seller A with p must

hoose A as his iteratively stritly dominant ation. Hene, seller A's payo� under

(p; q

�

; �) an be written as:

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

: (17)
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Now let

�

k

i

=

�

�

�

N

i

\ [

k�1

`=1

Q

`

�

�

�

denote the number of neighbors of buyer i who have already hosen seller A in

rounds prior to k. If i 2 Q

k

, then x

i

= A must be a dominant ation in round k for

buyer i so that

v

�

k

i

� p

i

> v

d

i

��

k

i

, p

i

< v

�

k

i

� v

d

i

��

k

i

: (18)

Note now that

K

X

k=1

X

i2Q

k

�

k

i

=

K

X

k=1

�

#links between Q

k

and [

k�1

`=1

Q

`

�

� #links in the subnetwork G

�

[

K

k=1

Q

k

�

=

1

2

K

X

k=1

X

i2Q

k

d

i

�

G

�

[

K

k=1

Q

k

��

�

1

2

K

X

k=1

X

i2Q

k

d

i

:

(19)

Substituting (18), (19) and the linearity of the externalities into (17), we obtain

�

A

(p; q

�

; �) <

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

�

= h

K

X

k=1

X

i2Q

k

�

2�

k

i

� d

i

�

� 0:

Therefore, the deviation p is not pro�table. By the symmetri argument, no devia-

tion q by seller B is pro�table either. �

Proof of Lemma 6. Note that (12) follows if we show that d � s is not a per-

mutation of s for some s: (11) implies that either

P

N

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0 or < 0.

If the latter holds, then let i

0

k

= i

N�k+1

for k = 1; : : : ; N and de�ne t = (t

i

)

i2I

by

setting t

i

0

k

equal to the number of neighbors of i

0

k

in fi

0

1

; : : : ; i

0

k�1

g:

t

i

0

1

= 0 and t

i

0

k

= jN

i

0

k

\ fi

0

1

; : : : ; i

0

k�1

gj for k = 2; : : : ; N . (20)
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Then we an verify that

N

X

i=1

�

v

t

i

� v

d

i

�t

i

�

= �

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

> 0:

We will onsider the following two ases separately.

1) G is not regular.

Take a pair of buyers i and j suh that i is adjaent to j, d

i

= D and d

j

< D,

where D � 2 is the highest degree in G. Take another buyer k that is adjaent

to i but not to j. To see that there exists suh a buyer, suppose to the ontrary

that every buyer 6= j that is adjaent to i is also adjaent to j. Then j has at

least D neighbors, a ontradition. Let i

1

= k, i

2

= i and i

3

= j, and de�ne

i

4

; : : : ; i

N

=2 fi; j; kg arbitrarily. Then

(s

i

1

; s

i

2

; s

i

3

) = (0; 1; 1) ;

(d

i

1

� s

i

1

; d

i

2

� s

i

2

; d

i

3

� s

i

3

) = (d

k

;D � 1; d

j

� 1) :

If s is not a permutation of d � s, then we are done. Suppose then that s is a

permutation of d� s, and de�ne i

0

1

= k, i

0

2

= j, i

0

3

= i, and i

0

`

= i

`

for ` � 4, and let

t = (t

i

)

i2I

be de�ned by (20) for these i

0

1

; : : : ; i

0

N

. Then

�

t

i

0

1

; t

i

0

2

; t

i

0

3

�

= (0; 0; 2) ;

�

d

i

0

1

� t

i

0

1

; d

i

0

2

� t

i

0

2

; d

i

0

3

� t

i

0

3

�

= (d

k

; d

j

;D � 2) :

Sine i

0

`

= i

`

for ` � 4, we have

�

�

�

n

` � 4 : d

i

`

� s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

;

�

�

�

n

` � 4 : s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

:

(21)

a) d

j

= 1.

In this ase,

�

�

�

n

` � 3 : d

i

`

� s

i

`

= 0

o

�

�

�

=

�

�

�

n

` � 3 : s

i

`

= 0

o

�

�

�

= 1:

Hene, sine d� s is a permutation of s, we must have

jf` � 4 : d

i

`

� s

i

`

= 0gj = jf` � 4 : s

i

`

= 0gj :
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It then follows from (21) that

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

: (22)

However,

�

�

�

n

` � 3 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

� 1 < 2 =

�

�

�

n

` � 3 : t

i

0

`

= 0

o

�

�

�

: (23)

(22) and (23) together show that d� t annot be a permutation of t.

b) d

j

� 2.

In this ase, we have D � 3 sine D > d

j

� 2, and also

�

�

�

n

` � 3 : d

i

`

� s

i

`

= 0

o

�

�

�

= 0 < 1 =

�

�

�

n

` � 3 : s

i

`

= 0

o

�

�

�

:

Hene, sine d� s is a permutation of s,

jf` � 4 : d

i

`

� s

i

`

= 0gj = jf` � 4 : s

i

`

= 0gj+ 1:

It then follows from (21) that

�

�

�

n

` � 4 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 4 : t

i

0

`

= 0

o

�

�

�

+ 1: (24)

However,

�

�

�

n

` � 3 : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

=

�

�

�

n

` � 3 : t

i

0

`

= 0

o

�

�

�

� 2 (25)

(24) and (25) together imply that d� t is not a permutation of t.

2) G is r-regular with 2 < r < N � 1.

Sine G is onneted and not omplete, we an take a pair of buyers i

1

and i

2

suh that i

1

and i

2

are adjaent, and take another buyer i

3

who is adjaent to i

2

but not to i

1

. To see that this is possible, suppose to the ontrary that for any

pair of adjaent buyers i and j, any buyer k 6= i adjaent to j is also adjaent to

i. We then show that G must be omplete. Take any pair of buyers i and j. Sine

G is onneted, there is a path k

1

= i ! k

2

! � � � ! k

m�1

! k

m

= j. Sine k

2

is

adjaent to i = k

1

and k

3

is adjaent to k

2

, k

3

is adjaent to i as well by the above.

Now sine k

4

is adjaent to k

3

, it is also adjaent to i. Proeeding the same way, we

onlude that j = k

m

is adjaent to i = k

1

, implying that G is omplete.
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We now label buyers other than fi

1

; i

2

; i

3

g as i

4

; : : : ; i

N

in an arbitrary manner.

For our hoie of i

1

, i

2

and i

3

, we have

(s

i

1

; s

i

2

; s

i

3

) = (0; 1; 1) ;

(d

i

1

� s

i

1

; d

i

2

� s

i

2

; d

i

3

� s

i

3

) = (r; r � 1; r � 1) :

If d � s is a not permutation of s, then we are done. Suppose then that d � s is a

permutation of s. We then must have

�

�

�

f` : s

i

`

= 0g

�

�

�

=

�

�

�

f` : d

i

`

� s

i

`

= 0g

�

�

�

: (26)

Let i

0

1

= i

1

, i

0

2

= i

3

, i

0

3

= i

2

and i

0

`

= i

`

for ` � 4, and let t = (t

i

)

i2I

be de�ned by

(20) for these i

0

1

; : : : ; i

0

N

. Note that

�

t

i

0

1

; t

i

0

2

; t

i

0

3

�

= (0; 0; 2) ;

�

d

i

0

1

� t

i

0

1

; d

i

0

2

� t

i

0

2

; d

i

0

3

� t

i

0

3

�

= (r; r; r � 2) :

Sine r > 2, if (26) holds, then the same argument as in the non-regular ase shows

that

�

�

�

n

` : t

i

0

`

= 0

o

�

�

�

6=

�

�

�

n

` : d

i

0

`

� t

i

0

`

= 0

o

�

�

�

;

implying that d� t is not a permutation of t. �

Proof of Lemma 7. We �rst show that if (p

�

; q

�

; �) is an SPE, then

�

A

(p

�

; q

�

; �) >

N

X

i=1

min fq

�

i

; v

0

g and �

B

(p

�

; q

�

; �) >

N

X

i=1

min fp

�

i

; v

0

g: (27)

By Lemma 4, for any s 2 S, seller A's payo� under (p

�

; q

�

) satis�es

�

A

(p

�

; q

�

; �) �

N

X

i=1

minfv

s

i

� v

d

i

�s

i

+ q

�

i

; v

s

i

g:

Rearranging, we get for any s 2 S,

�

A

(p

�

; q

�

; �) �

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

+

X

i

minfq

�

i

; v

d

i

�s

i

g

�

N

X

i=1

(v

s

i

� v

d

i

�s

i

) +

N

X

i=1

minfq

�

i

; v

0

g:

When G is neither yli or omplete, there exists by Lemma 6 an s 2 S suh that

the �rst term on the right-hand side is > 0. Hene, the �rst inequality in (27) must

hold. The proof for the seond inequality is similar.
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a) If min

i

q

�

i

� 0, then �

A

(p

�

; q

�

; �) = 0 �

P

i

min fq

�

i

; v

0

g, ontraditing (27).

b) If max

i

q

�

i

� v

0

, then �

A

(p

�

; q

�

; �) �

P

i

q

�

i

=

P

i

minfq

�

i

; v

0

g, ontraditing

(27).

) The inequality max

i

q

�

i

> v

0

follows from (b) above sine I

B

(p

�

; q

�

; �) = I implies

�

A

(p

�

; q

�

; �) = 0 and 0 � �

B

(p

�

; q

�

; �) =

P

i

q

�

i

. If v

d

i

� q

�

i

< v

0

for some i,

then any p suh that p

i

= v

0

� " and p

�i

= 0 for 0 < " < q

�

i

� v

d

i

+ v

0

would

indue buyer i to swith to A and hene is a pro�table deviation for seller A.

To see that v

D

> 2v

0

, note �rst that min

i

(v

d

i

� q

�

i

) � v

0

in partiular implies

that max

i

q

�

i

� v

D

� v

0

. Hene, if v

D

� 2v

0

, we have a ontradition to the �rst

statement sine max

i

q

�

i

� v

D

� v

0

� v

0

. �

Proof of Proposition 8. Suppose that G is neither yli or omplete, and sup-

pose that seller B attrats all the buyers in an SPE (p

�

; q

�

; �) suh that q

�

1

= � � � =

q

�

N

. Then sine �

A

(p

�

; q

�

; �) = 0, Lemma 7(1) implies that q

�

1

= � � � = q

�

N

=

min

i

q

�

i

< 0. Then, however, �

B

(p

�

; q

�

; �) < 0, a ontradition. �

Proof of Proposition 9 It suÆes to show that (p

�

; q

�

) = (0; 0) oupled with

the following strategy pro�le � of the buyers is an SPE in eah lass of networks:

�(p; q) =

8

>

>

>

<

>

>

>

:

(B; : : : ; B) if (p; q) = (p

�

; q

�

),

�

A

(p; q) if p = p

�

and q 6= q

�

,

�

B

(p; q) if p 6= p

�

and q q

�

.

In other words, all buyers hoose B under (p

�

; q

�

) = (0; 0), and when one of the

�rms deviates to a non-zero prie vetor, the buyers oordinate on the NE whih is

least favorable to the deviating seller. In what follows, we show that seller A has no

inentive to deviate. A symmetri argument shows that seller B has no inentive to

deviate.

1) G is a yle.

Suppose that seller A deviates to p 6= p

�

. Let Q

k

be as de�ned in (5) under

(p; q

�

). Sine

I

A

(�(p; q

�

)) = [

K

k=1

Q

k

for some K � N , if �

i

(p; q

�

) = A, then i 2 Q

k

for some k � K. Reall that N

i

is

the set of neighbors of i in G, and that d

i

= jN

i

j = 2 sine G is yli. Let

�

k

i

=

�

�

�

N

i

\ [

k�1

`=1

Q

`

�

�

�

2 f0; 1; 2g
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denote the number of i's neighbors who have hosen A in rounds prior to k. If

i 2 Q

k

, then x

i

= A is a dominant ation in round k for buyer i so that

v

�

k

i

� p

i

> v

2��

k

i

, p

i

< v

�

k

i

� v

2��

k

i

: (28)

In partiular, buyer i is attrated by seller A in round 1 if p

i

< v

0

�v

2

, and attrated

by A in round k > 1 either if (i) p

i

< 0 and exatly one of his two neighbors has

already hosen A (�

k

i

= 1), or (ii) p

i

< v

2

� v

0

and both his neighbors have already

hosen A (�

k

i

= 2). Note also that only in round 1 does any buyer hoose A when

neither of his neighbors have already hosen A.

Seller A's payo� under (p; q

�

; �) hene satis�es

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

< jQ

1

j(v

0

� v

2

) + (v

2

� v

0

)

K

X

k=2

�

�

�

fi 2 I n

�

[

k�1

`=1

Q

`

�

: �

k

i

= 2g

�

�

�

:

Sine no buyer hooses A in round k � 2 if neither of his neighbors has already

hosen A, the number of omponents in G[[

k�1

`=1

Q

`

℄ is less than or equal to that in

G[Q

1

℄ for any k. It follows that

K

X

k=2

jfi 2 I n

�

[

k�1

`=1

Q

`

�

: �

k

i

= 2gj � jQ

1

j:

We an therefore onlude that �

A

(p; q

�

; �) � 0 and hene that p is not a pro�tably

deviation.

2) G is omplete.

De�ne Q

k

(k = 1; : : : ;K) as above. Sine G is omplete, for any buyer i, the

number �

k

i

of i's neighbors who have hosen A equals the number �

k

of buyers who

have hosen A in rounds 1; : : : ; k � 1:

�

k

i

=

�

�

�

N

i

\ [

k�1

`=1

Q

`

�

�

�

=

k�1

X

`=1

jQ

`

j � �

k

:

Furthermore, by Proposition 3, we only need onsider p suh that eah Q

k

ontains

a single buyer. (If Q

k

ontains two or more buyers, then sine G is omplete,

those buyers are adjaent.) Hene, without loss of generality, Q

k

= fkg for eah

k = 1; : : : ; N . For k = 1; : : : ;K, we also have

p

k

< v

�

k

� v

N�1��

k

:

31



Seller A's payo� under (p; q

�

; �) hene satis�es

�

A

(p; q

�

; �) =

N

X

k=1

N

X

k=1

p

k

<

K

X

k=1

�

v

�

k

� v

N�1��

k

�

: (29)

It is then straightforward to verify that the right-hand side equals zero. Hene,

seller A has no pro�table deviation.

�

Proof of Proposition 10. We will onstrut an SPE (p

�

; q

�

; �) in whih seller B

aptures all the buyers: I

B

(�(p

�

; q

�

)) = I. Let the buyer set be partitioned into I

1

and I

2

so that links exist only between I

1

and I

2

. Suppose without loss of generality

that

X

i2I

1

(v

d

i

� v

0

)�

X

i2I

2

(v

d

i

� v

0

) � 0: (30)

Let

p

�

i

= q

�

i

=

8

<

:

v

d

i

� v

0

if i 2 I

1

,

v

0

� v

d

i

if i 2 I

2

,

and

�(p; q) =

8

<

:

�

B

(p; q) if q = q

�

,

�

A

(p; q) otherwise.

By (30), seller B's payo� under (p

�

; q

�

; �) is non-negative:

�

B

(p

�

; q

�

; �) =

X

i2I

q

�

i

� 0:

By the de�nition of the B-maximal NE, if seller A deviates to p, then the set of

buyers he aptures equals I

A

(�(p; q

�

)) = [

K

k=1

Q

k

, where Q

k

is the set of buyers i

for whom x

i

= A is a stritly dominant strategy in round k under (p; q

�

) as de�ned

in (5).

Suppose �rst that Q

1

� I

1

. we then have

X

i2Q

1

p

i

<

X

i2Q

1

minfv

0

� v

d

i

+ q

�

i

; v

0

g = 0:

Therefore, no p suh that K = 1 and Q

1

� I

1

under (p; q

�

) is pro�table. Sine

q

�

i

< 0 for i 2 I

2

, it is lear that no p suh that K = 1 under (p; q

�

) is pro�table

either.
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Suppose next that K = 2 and that Q

1

� I

1

. Then Q

2

\ I

1

= ; sine in round

2, every buyer i 2 Q

1

must be adjaent to some buyer in Q

1

� I

1

. (Otherwise, i

would have been in Q

1

.) It follows that q

�

i

< 0 for eah i 2 Q

2

, and hene that

X

i2Q

2

p

i

<

X

i2Q

2

min fv

�

2

i

� v

d

i

��

2

i

+ q

�

i

; v

�

2

i

g

=

X

i2Q

2

�

v

�

2

i

� v

d

i

��

2

i

� v

d

i

+ v

0

�

� 0;

where �

2

i

= jN

i

\Q

1

j is the number of i's neighbors in Q

1

. Therefore, no deviation

p is pro�table if K = 2, Q

1

� I

1

and Q

2

� I

2

under (p; q

�

). It is then also lear that

no deviation p is pro�table if K = 2 and Q

2

� I

2

.

We next show that no deviation p is pro�table if K � 2 and Q

k

\I

1

6= ; for some

k � 2. Together with the above observations, this would imply that no deviation p

is pro�table if K = 2. Furthermore, if K � 3, then it must be the ase that either

Q

2

\ I

1

6= ; or Q

3

\ I

1

6= ; sine G is bipartite, and sine every i 2 Q

3

is adjaent

to some buyer in Q

2

. It would hene follow that no deviation p is pro�table.

Let j 2 Q

k

\ I

1

for some k � 2. Then

�

A

(p; q

�

; �) =

K

X

`=1

X

i2Q

`

p

i

<

K

X

`=1

X

i2Q

`

min

n

v

�

`

i

� v

d

i

��

`

i

+ q

�

i

; v

�

`

i

o

�

K

X

`=1

X

i2Q

`

�

v

�

`

i

� v

d

i

��

`

i

+ q

�

i

�

+ v

�

k

j

�

�

v

d

j

� v

0

+ q

j

�

;

(31)

where

�

`

i

=

�

�

�

N

i

\

�

[

`�1

�=1

Q

�

�

�

�

�

is the number of i's neighbors who have hosen A prior to round `. We now use

approximate linearity to evaluate the right-hand side of (31) term by term. First,

sine q

�

j

= v

d

j

� v

0

,

v

�

k

j

�

�

v

d

j

� v

0

+ q

�

j

�

� �v

d

j

+ 2v

0

< �hd

j

+ 3": (32)
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Observe next that

K

X

`=1

X

i2Q

`

n

v

�

`

i

� v

d

i

��

`

i

o

=

K

X

`=1

X

i2Q

`

hn

v

�

`

i

� �

`

i

h

o

�

n

v

d

i

��

`

i

� (d

i

� �

`

i

)h

oi

�

K

X

`=1

X

i2Q

`

�

(d

i

� �

`

i

)� �

`

i

�

h

� 2"

�

�

[

K

`=1

Q

`

�

�

� hm;

(33)

where

m = #links between [

K

`=1

Q

`

and I n

�

[

K

`=1

Q

`

�

.

Observe �nally that

K

X

`=1

X

i2Q

`

q

�

i

=

K

X

`=1

X

i2Q

`

\I

1

(v

d

i

� v

0

)�

K

X

`=1

X

i2Q

`

\I

2

(v

d

i

� v

0

)

=

K

X

`=1

X

i2Q

`

\I

1

(v

d

i

� v

0

� d

i

h)�

K

X

`=1

X

i2Q

`

\I

2

(v

d

i

� v

0

� d

i

h)

+ h

K

X

`=1

X

i2Q

`

\I

1

d

i

� h

K

X

`=1

X

i2Q

`

\I

2

d

i

:

(34)

Sine the externalities are "-lose to linear,

K

X

`=1

X

i2Q

`

\I

1

(v

d

i

� v

0

� d

i

h)�

K

X

`=1

X

i2Q

`

\I

2

(v

d

i

� v

0

� d

i

h) � 2"

�

�

[

K

`=1

Q

`

�

�

: (35)

We also have

K

X

`=1

X

i2Q

`

\I

1

d

i

= #links between [

K

`=1

Q

`

\ I

1

and I

2

K

X

`=1

X

i2Q

`

\I

2

d

i

= #links between [

K

`=1

Q

`

\ I

2

and I

1

� #links between [

K

`=1

Q

`

\ I

2

and [

K

`=1

Q

`

\ I

1
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so that

K

X

`=1

X

i2Q

`

\I

1

d

i

�

K

X

`=1

X

i2Q

`

\I

2

d

i

� #links between [

K

`=1

Q

`

and I

2

n

�

[

K

`=1

Q

`

�

� #links between [

K

`=1

Q

`

and I n

�

[

K

`=1

Q

`

�

= m:

(36)

Substituting (35) and (36) into (34), we obtain

K

X

`=1

X

i2Q

`

q

�

i

� 2"

�

�

[

K

`=1

Q

`

�

�

+ hm: (37)

Substituting (32), (33) and (37) into (31), we see that

�

A

(p; q

�

; �) < 2"

�

�

[

K

`=1

Q

`

�

�

� hm+ 2"

�

�

[

K

`=1

Q

`

�

�

+ hm� hd

j

+ 3"

= "

�

4

�

�

[

K

`=1

Q

`

�

�

+ 3

�

� hd

j

� " (4N + 3)� hd

j

:

Hene, if we set �" = h= (4N + 3), then �

A

(p; q

�

; �) < 0 when " < �". �

Proof of Proposition 12. Let

Æ = max

s2S

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

:

When the externalities are "-lose to h-linear,

N

X

i=1

�

v

s

i

� v

d

i

�s

i

�

=

N

X

i=1

n

(v

s

i

� s

i

h)�

�

v

d

i

�s

i

� (d

i

� s

i

)h

�

� h ((d

i

� s

i

)� s

i

)

o

< 2N";

and hene

Æ < 2N": (38)

Sine G is separable, let (I

1

; I

2

) be the partition of the buyer set I, and let i

A

2 I

1

and i

B

2 I

2

be suh that

jN

i

A

\ I

1

j > jN

i

A

\ I

2

j and jN

i

B

\ I

2

j > jN

i

B

\ I

1

j.
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We speify (p

�

; q

�

; �) as follows:

(p

�

i

; q

�

i

) =

8

>

>

>

<

>

>

>

:

(Æ;�Æ) if i = i

A

,

(�Æ; Æ) if i = i

B

,

(0; 0) otherwise,

and

�(p; q) =

8

>

>

>

>

>

<

>

>

>

>

>

:

(A; : : : ; A

| {z }

I

1

; B; : : : ; B

| {z }

I

2

) if (p; q) = (p

�

; q

�

),

�

B

(p; q) if p 6= p

�

,

�

A

(p; q) if p = p

�

and q 6= q

�

.

Note that �

A

(p

�

; q

�

; �) = �

B

(p

�

; q

�

; �) = Æ.

We �rst show that the buyers' ation pro�le following (p

�

; q

�

) is a NE. If i 2

I

1

n fi

A

g, then x

i

= A is a best response sine

v

jN

i

\I

1

j

� p

i

= v

jN

i

\I

1

j

� v

jN

i

\I

2

j

= v

jN

i

\I

2

j

� q

i

:

If i = i

A

, then jN

i

\ I

1

j > jN

i

\ I

2

j so that

v

jN

i

\I

1

j

� v

jN

i

\I

2

j

=

�

v

jN

i

\I

1

j

� hjN

i

\ I

1

j

�

�

�

v

jN

i

\I

2

j

� hjN

i

\ I

2

j

�

+ h fjN

i

\ I

1

j � jN

i

\ I

2

jg

� h� 2":

Hene, if we take

�" =

h

2(2N + 1)

; (39)

then for any " < �", (38) implies that

v

jN

i

\I

1

j

� p

i

= v

jN

i

\I

1

j

� Æ > v

jN

i

\I

2

j

+ Æ = v

jN

i

\I

2

j

� q

i

:

The symmetri argument shows that x

i

= B is a best response for eah i 2 I

2

following (p

�

; q

�

).

We will next show that seller A has no pro�table deviation. Let p be any

deviation by seller A, and denote by Q

k

the set of buyers who will hoose A as an

iteratively dominant ation in round k under (p; q

�

) as de�ned in (5). Sine the

buyers play �

B

following (p; q

�

), buyer i will hoose A only if x

i

= A is iteratively

dominant: i 2 [

K

k=1

Q

k

. By Proposition 3, we may assume that no buyers in Q

k

are

adjaent.
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If i 2 Q

k

, then

p

i

< min fv

�

k

i

� v

d

i

��

k

i

+ q

�

i

; v

�

k

i

g � v

�

k

i

� v

d

i

��

k

i

+ q

�

i

;

where

�

k

i

=

�

�

�

N

i

\

�

[

k�1

�=1

Q

�

�

�

�

�

is the number of i's neighbors who have hosen A prior to round k. Suppose �rst

that [

K

k=1

Q

k

( I. Sine the externalities are "-lose to h-linear, we have

v

�

k

i

� v

d

i

��

k

i

=

�

v

�

k

i

� �

k

i

h

�

�

�

v

d

i

��

k

i

� (d

i

� �

k

i

)h

�

�

�

(d

i

� �

k

i

)� �

k

i

�

h

< 2" �

�

(d

i

� �

k

i

)� �

k

i

�

h:

Hene,

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

�

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

+ q

�

i

�

<

K

X

k=1

X

i2Q

k

n

2"�

�

(d

i

� �

k

i

)� �

k

i

�

h

o

+

K

X

k=1

X

i2Q

k

q

�

i

= 2"

�

�

[

K

k=1

Q

k

�

�

� h

K

X

k=1

X

i2Q

k

�

(d

i

� �

k

i

)� �

k

i

�

+

K

X

k=1

X

i2Q

k

q

�

i

:

Sine [

K

k=1

Q

k

( I by assumption and sine G is onneted,

K

X

k=1

X

i2Q

k

�

(d

i

� �

k

i

)� �

k

i

�

= #links between [

K

k=1

Q

k

and I n [

K

k=1

Q

k

� 1:

It hene follows from (38) that

�

A

(p; q

�

; �) < 2"

�

�

[

K

k=1

Q

k

�

�

� h+ 2N" < 4N"� h;

whih is < 0 for " < �" when �" is given in (39).

Suppose next that [

K

k=1

Q

k

= I. In this ase,

P

K

k=1

P

i2Q

k

q

�

i

= 0. Hene the

de�nition of Æ implies that

�

A

(p; q

�

; �) =

K

X

k=1

X

i2Q

k

p

i

�

K

X

k=1

X

i2Q

k

�

v

�

k

i

� v

d

i

��

k

i

+ q

�

i

�

� Æ = �

A

(p

�

; q

�

; �):

In either ase, hene, the deviation p is not pro�table. �
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Appendix II: Strong Equilibrium in the Buyers' Game

Our disussion in the text has plaed no restrition on the buyers' strategies other

than that implied by a Nash equilibrium. In this Appendix, we ask what happens

when the buyers atively oordinate their ations. While there an be many di�erent

formulations of ation oordination, one simple and extreme way is to suppose that

any subset of the buyers may hoose a joint deviation whenever that yields eah

one of them a stritly higher payo� than adhering to the proposed ation pro�le.

In other words, we will require that in eah subgame, the buyers' ation pro�le

onstitutes a strong Nash equilibrium.

9

We �nd that the marginal ost priing is

not onsistent with a strong Nash equilibrium even if the network is omplete or

yli.

Formally, the buyers ation pro�le x

�

is a strong Nash equilibrium (strong NE)

if for any nonempty subset J � I of buyers, and for any x

J

,

u

i

(x

�

) � u

i

(x

J

; x

�

�J

) for some i 2 J . (40)

In other words, an ation pro�le is a strong NE if, whenever a oalition of buyers

ontemplate a joint deviation, there is a member in the oalition who annot stritly

bene�t from the deviation. If x

�

is a strong NE, then it is learly a NE. Note also

that x

�

is a strong NE if and only if (40) holds for any non-empty J � I and any

x

J

suh that x

j

6= x

�

j

for every j 2 J .

10

A strong NE x of the buyers' subgame is A-maximal if for any strong NE y,

y

i

= A implies x

i

= A, and B-maximal if y

i

= B implies x

i

= B. We an �nd these

maximal strong NE using the iteration proedure similar to that used to �nd the

A-maximal and B-maximal NE.

For any ation pro�les x and y, identify u

i

(x

;

; y) with u

i

(y). Let T

0

= ;, and

de�ne the subsets of buyers T

k

, P

k

, Q

k

, R

k

, Y

k

and Z

k

(n = 1; 2; : : :) reursively as

follows.

9

By the property of the payo� funtions of the buyers' game, we an verify that any strong Nash

equilibrium is a oalition-proof Nash equilibrium in the sense of Bernheim et al. (1987).

10

To see this, suppose that x

�

is not a strong NE. Then there exist J 6= ; and x

J

suh that

u

j

(x

�

) < u

j

(x

J

; x

�

�J

) for every j 2 J . Then J

0

� fj 2 J : x

j

6= x

�

j

g 6= ;. Moreover,

u

j

(x

J

0

; x

�

�J

0) = u

j

(x

J

0

; x

JnJ

0

; x

�J

) = u

j

(x

J

; x

�

�J

) > u

j

(x

�

)

for every j 2 J

0

sine j 2 J n J

0

implies x

j

= x

�

j

. Hene, the oalition J

0

also has a pro�table joint

deviation suh that x

j

6= x

�

j

for every j 2 J

0

.
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For k = 0; 1; 2; : : :, de�ne Y

k+1

� I n T

k

to be the maximal set suh that

Y

k+1

=

n

i 2 I n T

k

:u

i

�

x

�

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� 0

o

:

Y

k+1

is the set of buyers not in T

k

who, given x

�

T

k

, an olletively hoose A and

enjoy non-negative payo�s from it.

11

If there is no suh set, let Y

k+1

= ;. Likewise,

de�ne Z

k+1

� I n T

k

to be the maximal set suh that

Z

k+1

=

n

i 2 I n T

k

: u

i

�

x

�

T

k

; x

Z

k+1

= (B; : : : ; B); x

�T

k

�Z

k+1

= (;; : : : ; ;)

�

� 0

o

:

If there is no suh set, then let Z

k+1

= ;. Let also R

k+1

be de�ned by

R

k+1

= (I n T

k

) n (Y

k+1

[ Z

k+1

) :

As before, R

k+1

is the set of buyers i for whom x

i

= ; is iteratively stritly dominant

given x

�

T

k

. Now de�ne P

k+1

� I n T

k

to be the maximal set suh that

P

k+1

=

n

i 2 I n T

k

: u

i

�

x

�

T

k

; x

P

k+1

= (B; : : : ; B); x

�T

k

�P

k+1

= (;; : : : ; ;)

�

> u

i

�

x

�

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

o

:

If there exists no suh set, then let P

k+1

= ;. P

k+1

is the set of buyers whose payo�s

from olletively hoosing x

i

= B are stritly higher than those from the maximal

oordination on A or from ;. Likewise, de�ne Q

k+1

� I n T

k

to be the maximal set

of buyers whose payo�s from olletively hoosing x

i

= A are stritly higher than

those from the maximal oordination on B or from ;:

Q

k+1

=

n

i 2 I n T

k

:u

i

�

x

�

T

k

; x

Q

k+1

= (A; : : : ; A); x

�T

k

�Q

k+1

= (;; : : : ; ;)

�

> u

i

�

x

�

T

k

; x

Z

k+1

= (B; : : : ; B); x

�T

k

�Z

k+1

= (;; : : : ; ;)

�

o

:

Again, if there exists no suh set, then let Q

k+1

= ;.

1) If P

k+1

= Q

k+1

= R

k+1

= ;, then let k = K and stop.

2) Otherwise, let

T

k+1

= T

k

[ (P

k+1

[Q

k+1

[R

k+1

) ;

and

x

�

i

=

8

>

>

>

<

>

>

>

:

B if i 2 P

k+1

,

A if i 2 Q

k+1

,

; if i 2 R

k+1

.

11

With the possible di�erene in T

k

and x

T

k

, hene, the de�nition of Y

k+1

is the same as in (2).
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If T

k+1

= I, then set K = k + 1 and stop. Otherwise, inrease k by one and start

over.

Given that the above proess starts over only when there is a buyer who has a

joint dominant ation, the maximal number of iteration K � N .

Proposition 14 Let x

A

and x

B

be de�ned by

x

A

= (x

�

T

K

; x

Y

K+1

= (A; : : : ; A); x

�T

K

�Y

K+1

= (;; : : : ; ;)); and

x

B

= (x

�

T

K

; x

Z

K+1

= (B; : : : ; B); x

�T

K

�Z

K+1

= (;; : : : ; ;)):

Then x

A

and x

B

are the A-maximal and B-maximal strong NE, respetively.

(p

�

; q

�

; �) is a strong SPE if for every (p; q), �(p; q) is a strong NE of the buyers'

subgame, and �

A

(p

�

; q

�

; �) � �

A

(p; q

�

; �) and �

B

(p

�

; q

�

; �) � �

B

(p

�

; q; �) for every

p and q.

Proposition 15 Let a buyer network G be given and the externalities v = (v

0

; : : : ; v

D

)

satisfy (11). There exists no buyers' strategy pro�le � suh that for p

�

= q

�

= 0

(p

�

; q

�

; �) is a strong SPE.

Proof of Proposition 14. We show that x

A

is an A-maximal strong NE. The

symmetri argument shows that x

B

is a B-maximal strong NE. We begin by making

some preliminary observations as follows:

Lemma 16 a) u

i

(x

A

) � 0 for every i.

b) For any k = 1; : : : ;K,

fi 2 I n T

k

: x

A

i

= Ag � Y

k+1

; and fi 2 I n T

k

: x

A

i

= Bg � Z

k+1

: (41)

) For any k, J � I n T

k

and x

J

, if u

i

(x

J

; x

A

�J

) � 0 for every i 2 J , then

fi 2 J : x

i

= Ag � Y

k+1

and fi 2 J : x

i

= Bg � Z

k+1

: (42)

In partiular, for any y

�T

k

suh that u

i

(y

�T

k

; x

A

T

k

) � 0 for every i 2 I n T

k

,

fi 2 I n T

k

: y

i

= Ag � Y

k+1

and fi 2 I n T

k

: y

i

= Bg � Z

k+1

: (43)
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Proof of Lemma 16. a) Suppose i 2 P

k+1

. Then

u

i

(x

A

) = u

i

�

x

A

T

k

; x

P

k+1

= (B; : : : ; B); x

A

�T

k

�P

k+1

�

� u

i

�

x

A

T

k

; x

P

k+1

= (B; : : : ; B); x

�T

k

�P

k+1

= (;; : : : ; ;)

�

> u

i

�

x

A

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� 0;

where the last inequality holds trivially if i 2 (I n T

k

) n Y

k+1

and by the de�nition

of Y

k+1

if i 2 Y

k+1

. u

i

(x

A

) � 0 holds also when i 2 Q

k+1

, R

k+1

or I n T

K

.

b) Let Y = fi 2 I n T

k

: x

A

i

= Ag. If Y 6� Y

k+1

, then

u

i

�

x

A

T

k

; x

Y [Y

k+1

= (A; : : : ; A); x

�T

k

�Y�Y

k+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

k

; x

Y

= (A; : : : ; A); x

�T

k

�Y

= (;; : : : ; ;)

�

= u

i

(x

A

) � 0

for i 2 Y , and

u

i

�

x

A

T

k

; x

K[Y

k+1

= (A; : : : ; A); x

�T

k

�K�Y

k+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� 0

for i 2 Y

k+1

. This ontradits the maximality of Y

k+1

.

) Let Y = fi 2 J : x

i

= Ag. If Y 6� Y

k+1

, then

u

i

�

x

A

T

k

; x

Y [Y

k+1

= (A; : : : ; A); x

�Y �Y

k+1

= (;; : : : ; ;)

�

� u

i

�

x

J

; x

A

�J

�

� 0

for every i 2 Y beause of (41), and

u

i

�

x

A

T

k

; x

Y [Y

k+1

= (A; : : : ; A); x

�Y�Y

k+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� 0

for every i 2 Y

k+1

. This ontradits the maximality of Y

k+1

. Hene (42) holds. (42)

implies (43) if we set J = I n T

k

. �

We now return to the proof of Proposition 14.

In what follows, denote by J the deviating oalition of buyers. We �rst show

that x

A

is a strong NE by verifying (40) for eah hoie of J spei�ed below.
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1) First take J suh that J \ T

1

6= ;.

If J \ P

1

6= ;, take i 2 J \ P

1

. Then x

A

i

= B by the de�nition of x

A

. If x

J

is

suh that x

i

= A and u

j

(x

J

; x

A

�J

) � 0 for every j 2 J , then

u

i

(x

J

; x

A

�J

) � u

i

(x

Y

1

= (A; : : : ; A); x

�Y

1

= (;; : : : ; ;))

< u

i

(x

P

1

= (B; : : : ; B); x

�P

1

= (;; : : : ; ;))

� u

i

(x

A

);

where the �rst inequality follows from (41) and (42). Likewise, (40) holds

for any J suh that J \ Q

1

6= ;. If J is suh that J \ R

1

6= ;, then take

i 2 J \ R

1

. By de�nition, x

A

i

= ;. If x

A

i

= A, then sine i =2 Y

1

, we have

u

i

(x

J

; x

A

�J

) < 0 = u

i

(x

A

). We also have u

i

(x

J

; x

A

�J

) < 0 = u

i

(x

A

) if x

i

= B

sine i =2 Z

1

.

2) As an indution hypothesis, suppose that (40) holds for any J suh that J \

T

k

6= ;.

Suppose that we take J suh that J \ T

k

= ; but J \ T

k+1

6= ;.

If J \ P

k+1

6= ;, take i 2 J \ P

k+1

. Then x

A

i

= B by the de�nition of x

A

. If

x

J

is suh that x

i

= A and u

j

(x

J

; x

A

�J

) � 0 for every j 2 J , then

u

i

(x

J

; x

A

�J

) = u

i

�

x

A

T

k

; x

J

; x

A

�J�T

k

�

� u

i

�

x

A

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

< u

i

(x

A

T

k

; x

P

k+1

= (B; : : : ; B); x

�T

k

�P

k+1

= (;; : : : ; ;))

� u

i

(x

A

);

where the seond line follows from (41) and (42). By the similar argument, (40)

holds for any J suh that J\Q

k+1

6= ;. If J\R

k+1

6= ;, take i 2 J\R

k+1

. Then

x

A

i

= ; by de�nition. If x

i

= A, then sine i =2 Y

k+1

, u

i

(x

J

; x

A

�J

) < 0 = u

i

(x

A

).

We also have u

i

(x

J

; x

A

�J

) < u

i

(x

A

) if x

i

= B sine i =2 Z

k+1

.

3) Finally, suppose that J � I n T

K

. Sine P

K+1

= ;, if x

J

= (B; : : : ; B), there

exists i 2 J suh that

u

i

(x

A

) = u

i

�

x

A

T

K

; x

Y

K+1

= (A; : : : ; A); x

�T

K

�Y

K+1

= (;; : : : ; ;)

�

� u

i

�

x

A

T

K

; x

J

= (B; : : : ; B); x

�T

K

�J

= (;; : : : ; ;)

�

= u

i

(x

J

= (B; : : : ; B); x

A

�J

);
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where the last equality holds beause x

A

i

6= B for any i 2 I n T

K

by de�nition.

Clearly, no other joint deviation x

J

by J yields a higher payo� for i than

u

i

(x

J

= (B; : : : ; B); x

A

�J

). Hene, (40) holds for any J suh that J � I n T

K

.

We next show that the strong NE x

A

is A-maximal. Take any strong NE y.

Clearly, u

i

(y) � 0 for every i 2 I. If i 2 P

1

, then y

i

= B: If y

i

6= B, then

u

i

(x

P

1

= (B; : : : ; B); y

�P

1

) > u

i

(x

Y

1

= (A; : : : ; A); x

�Y

1

= (;; : : : ; ;))

� u

i

(y);

where the last inequality from (43) for k = 0. Hene, y violates (40). Likewise, we

an onlude that

y

i

=

8

<

:

A if i 2 Q

1

,

; if i 2 R

1

.

Hene, y

T

1

= x

A

T

1

. As an indution hypothesis, suppose that y

T

k

= x

A

T

k

. If i 2 P

k+1

then y

i

= B: If y

i

6= B, then

u

i

�

y

T

k

; x

P

k+1

= (B; : : : ; B); y

�T

k

�P

k+1

�

> u

i

�

y

T

k

; x

Y

k+1

= (A; : : : ; A); x

�T

k

�Y

k+1

= (;; : : : ; ;)

�

� u

i

(y

T

k

; y

�T

k

);

where the last inequality follows from (43) sine y

T

k

= x

A

T

k

by the indution hypoth-

esis. Hene, y violates (40). We also have

y

i

=

8

<

:

A if i 2 Q

k+1

,

; if i 2 R

k+1

.

Hene, y

T

k+1

= x

A

T

k+1

. Suppose �nally that i 2 I n T

K

. Sine fi 2 I n T

K

:; y

i

=

Ag � Y

K+1

by (43), y

i

= A implies x

A

i

= A, showing that x

A

is A-maximal. �

Proof of Proposition 15. In view of Proposition 9, it suÆes to hek the exis-

tene of a strong NE when G is either yli or omplete.

1) G is a yle.

Suppose that for " > 0 small, p is given by

p

i

=

8

>

>

>

<

>

>

>

:

v

1

� v

2

� " if i = 1, N � 1,

�" if i = 2; : : : ; N � 2,

v

2

� v

0

� " if i = N .
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We an then verify that under (p; q

�

), Q

1

= f1; : : : ; N � 1g: For i = 1 and N � 1,

u

i

(x

Q

1

= (A; : : : ; A); x

N

= ;) = v

1

� p

i

= v

2

+ "

> u

i

(x = (B; : : : ; B)) ;

and for i = 2; : : : ; N � 2,

u

i

(x

Q

1

= (A; : : : ; A); x

N

= ;) = v

2

� p

i

= v

2

+ "

> u

i

(x = (B; : : : ; B)) ;

but for i = N ,

u

N

(x = (A; : : : ; A)) = v

2

� p

N

= v

0

+ "

< u

N

(x = (B; : : : ; B)) :

We an also verify that P

1

= R

1

= ;. Given T

1

= I n fNg, Q

2

= fNg:

u

N

(x

T

1

; x

N

= A) = v

2

� p

N

= v

0

+ " > u

N

(x

T

1

; x

N

= B):

Therefore, Q

1

[Q

2

= I and seller A's payo� under (p; q

�

) equals

�

A

(p; q

�

; �) = 2(v

1

� v

2

� ") + v

2

� v

0

� " = 2v

1

� v

0

� v

2

� 3";

whih is stritly positive if 2v

1

�v

0

�v

2

> 0 and " is suÆiently small. If 2v

1

�v

0

�

v

2

< 0, then we an verify that �

A

(p; q

�

; �) > 0 if we take " > 0 small and p suh

that

p

i

=

8

>

>

>

<

>

>

>

:

v

2

� v

1

� " if i = 1, N � 1,

�" if i = 2; : : : ; N � 2,

v

0

� v

2

� " if i = N .

2) Suppose next that G is omplete.

Consider p suh that

p

i

=

8

<

:

v

N�2

� v

N�1

� " if i = 1; : : : ; N � 1,

v

N�1

� v

0

� " if i = N .
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Then Q

1

= f1; : : : ; N � 1g and Q

2

= fNg, and

�

A

(p; q

�

; �) = (N � 1)(v

N�2

� v

N�1

� ") + v

N�1

� v

0

� "

= (N � 1)v

N�2

� (N � 2)v

N�1

� v

0

�N";

whih is stritly positive if (N �1)v

N�2

� (N �2)v

N�1

�v

0

> 0 and " is suÆiently

small. If (N � 1)v

N�2

� (N � 2)v

N�1

� v

0

< 0, then �

A

(p; q

�

; �) > 0 if " > 0 is

small and p is given by

p

i

=

8

<

:

v

N�1

� v

N�2

� " if i = 1; : : : ; N � 1,

v

0

� v

N�1

� " if i = N .

In either ase, hene, seller A an pro�tably deviate from p

�

= 0 against q

�

= 0. �
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