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Abstract
This paper examines the issue of weak identi�cation in maximum likelihood, motivated by

problems with estimation and inference in a multi-dimensional, non-linear DSGE model. We

suggest a test for a simple hypothesis concerning the full parameter vector which is robust to

weak identi�cation. We also suggest a test for a composite hypothesis regarding a sub-vector of

parameters. The suggested test is shown to be asymptotically exact when the nuisance param-

eter is strongly identi�ed, and in some cases when the nuisance parameter is weakly identi�ed.

We pay particular attention to the question of how to estimate Fisher's information, and make

extensive use of martingale theory.
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1 Introduction

Recent years have witnessed the rapid growth of the empirical literature on the highly
parameterized micro-founded macro models known as Dynamic Stochastic General Equi-
librium (DSGE) models. A number of papers in this literature have considered estimating
these models by maximum likelihood (see for example Ingram, Kocherlakota and Savin
(1994), Ireland (2004), Lindé (2005), and McGrattan, Rogerson and Wright (1997)).
More recently, Bayesian estimation has become increasingly popular, due in large part to
the di�culty of maximum likelihood estimation in many DSGE models. As Fernández-
Villaverde (2010) points out in his survey of DSGE estimation, "likelihoods of DSGE
models are full of local maxima and minima and of nearly �at surfaces... the stan-
dard errors of the estimates are notoriously di�cult to compute and their asymptotic
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distribution a poor approximation to the small sample one." The poor performance of
maximum likelihood estimation has fueled growing concerns about poor identi�cation in
many DSGE models (see Canova and Sala (2009), Guerron-Quintana, Inoue and Kilian
(2009), and Iskrev (2010)).

In this paper, we consider the problem of weak identi�cation in dynamic models
estimated by maximum likelihood. Weak identi�cation arises when the amount of infor-
mation in the data about some parameter or group of parameters is small and is generally
modeled in such a way that information about parameters accumulates slowly along some
dimensions. This leads to the breakdown of the usual asymptotics for maximum likeli-
hood, with the asymptotic distributions for the maximum likelihood estimator and the
standard LR, LM, and Wald statistics providing a poor approximation to their �nite
sample behavior. This is distinct from loss of point identi�cation. We assume through-
out that the models we consider are point identi�ed, and thus that changing the value
of any parameter changes the distribution of the data, though the e�ect will be small for
some parameters.

We focus on the problem of testing and con�dence set construction in this context.
In our view there are two main approaches to inference in models where identi�cation
may be weak. One is to create a two-step procedure, where one �rst di�erentiates (via
a pre-test) between weakly and strongly identi�ed models and then chooses a procedure
based on the test result. We take the other approach. Rather than looking for a test for
weak identi�cation as such, we instead attempt to construct a test for parameters which
is robust to weak identi�cation. The ideal procedure should satisfy two conditions. First,
it should control size well if identi�cation is weak, and second, it should be asymptotically
equivalent to the classical MLE tests if identi�cation is strong. If such a procedure exists,
it renders pretests unnecessary and, in general, inferior given the size problems endemic
to multiple testing procedures.

We view this approach as analogous to the modern treatment of testing in the presence
of potential heteroscedasticity. While in the past it was common to use pretests for
heteroscedasticity, current empirical practice is to simply use standard errors (such as
those of White (1980)) which are correct asymptotically regardless of whether or not the
data is heteroscedastic. Likewise, in weak instrumental variables regression (weak IV)
there are tests available which have correct asymptotic size under weak identi�cation
and (at least for the case of one endogenous variable) at least as much power as the
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classical procedures under strong identi�cation. Unlike the case of heteroscedasticity,
where weighted least squares could potentially improve precision, in weak IV the outcome
of a pretest cannot be used to increase power, so there is even less reason to use a pretest-
based procedure.

We construct a robust test in two steps. First, we suggest a test for a simple hy-
pothesis on the full parameter vector. This test is robust to weak identi�cation and is
asymptotically equivalent to the classical Lagrange Multiplier (LM) test when identi�-
cation is strong. The assumptions needed for this result are extremely weak and cover a
large number of cases, including weak IV, an ARMA(1,1) with nearly canceling roots, a
weakly identi�ed binary choice model and weakly identi�ed exponential family models,
for example VARs with weakly identi�ed structural parameters. The proof for this test
makes extensive use of martingale theory, particularly the fact that the score (i.e. the
gradient of the log likelihood) is a martingale when evaluated at the true parameter value.

Next, we turn to the problem of testing a subset of parameters without restricting the
remaining parameters. Creation of such tests is critical for the construction of con�dence
sets, given that the common practice in applied work is to report a separate con�dence
interval for each element of the parameter vector. Constructing a test satisfying our �rst
requirement, that is, one that controls size well under weak identi�cation, is straightfor-
ward using our test for the full parameter vector and the projection method. However,
simultaneously satisfying the second condition, asymptotic equivalence to classical tests
under strong identi�cation, is a much more challenging problem which (to the best of
our knowledge) has not been fully solved even for many simpler models.

The test which we suggest for a subset of parameters is asymptotically equivalent
to Neyman's C(α) test when identi�cation is strong. We show that the suggested test
has a χ2 asymptotic distribution so long as the nuisance parameter (i.e. the part of the
parameter vector which we are not testing) is strongly identi�ed, without any assumption
about the strength of identi�cation of the tested parameter. We also show that the
suggested test has the correct asymptotic size in some cases where the nuisance parameter
is weakly identi�ed. In particular we consider the case of an exponential family model
where part of the nuisance parameter is weakly identi�ed and enters linearly while no
assumption is made on the strength of identi�cation of the tested parameter. As a special
case we examine weak IV with one endogenous variable when the nuisance parameter is
weakly identi�ed.
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In addition to these theoretical results, we report simulation results showing that our
proposed test maintains size well in a simple nonlinear model and an ARMA(1,1) model
with nearly canceling roots. We also show the applicability of our results to a basic
DSGE model.

Relation to the Literature on Weak Identi�cation The literature on weak iden-
ti�cation is quite large. The most-studied and best-understood case is that of weak
instrumental variables estimation. For a comprehensive survey of the literature on this
topic, see Stock, Wright, and Yogo (2002). The weak identi�cation framework was gen-
eralized to GMM by Stock and Wright (2000), who represented weak identi�cation using
an asymptotic embedding in which the objective function becomes �at along some di-
mensions as the sample grows. While we make use of a similar embedding to demonstrate
the applicability of our assumptions in an exponential family model, it is in no way nec-
essary for our results, and we remain quite agnostic about the process generating the
data. An alternative embedding for weak identi�cation is introduced in Andrews and
Cheng (2009).

Making use of their embedding, Stock and Wright (2000) introduce tests for GMM
which are robust to weak identi�cation. They consider two types of test: a test for the
full parameter vector (i.e. for a simple hypothesis) and a test for a sub-parameter for the
case where the nuisance parameter is well identi�ed. Kleibergen and Mavroeidis (2009)
suggest adaptations of the Stock and Wright (2000) S and Kleibergen (2005) KLM tests
for a sub-parameter for the case when the nuisance parameter is weakly identi�ed, which
yield conservative tests asymptotically. While the statistics we consider are in many
ways similar to those considered by Stock and Wright (2000), Kleibergen (2005), and
Kleibergen and Mavroeidis (2009), their results do not in general apply to the context
we consider as the variance of the moment condition (the score of the log likelihood)
becomes degenerate asymptotically, violating one of their assumptions.

The issue of weak identi�cation in DSGE models was �rst introduced by Canova and
Sala (2009), who point out that the objective functions implied by many DSGE models
are nearly �at in some directions. A weak identi�cation-robust inference procedure for
DSGE models based on likelihood analysis was introduced by Guerron-Quintana Inoue
and Killian (2009). Their approach makes extensive use of the projection method for
constructing con�dence sets for the structural parameters which, given the high dimension
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of the parameter space in many DSGEmodels, has the potential to introduce a substantial
amount of conservativeness in many applications. Dufour, Khalaf and Kichian (2009)
o�er another approach for Full-Information analysis of weakly identi�ed DSGE models,
based on the Anderson-Rubin statistic. Another paper on weak identi�cation in DSGE
models is Iskrev (2010), which attempts to asses the quality of identi�cation in DSGE
models by considering the degeneracy of the Hessian of the log likelihood. There are also
a few papers discussing point-identi�cation in DSGE models, which are unrelated to our
paper as we assume point-identi�cation. We refer the interested reader to Komunjer and
Ng (2009) for an example of this literature.

Relation to the Classical MLE Literature The other major literature to which our
paper is connected is the classical Statistics literature on maximum likelihood. This clas-
sical literature began in the i.i.d. context and was generalized considerably by Le Cam
(see Le Cam and Yang (2000)), allowing the use of MLE in a wide array of problems,
including those with dependent data. The application of ML to dependent data was
further explored by a number of other authors, including Silvey (1961), Crowder (1976),
Heijmans and Magnus (1986) and Jeganathan (1995). Our approach is particularly in-
formed by the strand of this literature which focuses on the martingale properties of the
log likelihood and their implications for the asymptotics of the MLE, and especially by
Bhat (1974) and Hall and Heyde (1980).

The weakly identi�ed dynamic models we consider di�er from those in this classical
literature in that the normalized second derivative of the log likelihood may not converge
to a constant (or, if normalized to converge to a constant, may be singular asymptoti-
cally). As a result, these models fall outside of the classes considered by the previous
literature (to take a non-dynamic example, it can be shown that the standard weak IV
model is not Locally Asymptotically Quadratic, and thus is not subject to the results
of Le Cam). Some additional complications in the DSGE context include the fact that
the parameter space is in general quite large and that analytic expressions for the log
likelihood are in general unavailable, though the likelihood can be evaluated numerically.

Structure of the paper Section 2 introduces our notation as well as some results
from martingale theory; it also discusses the di�erence between two alternative measures
of information and illustrates this di�erence in several examples. Section 3 suggests a
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test for the full parameter vector. Section 4 discusses the problem of testing a composite
hypothesis about a sub-parameter, and introduces a statistic for such a test. Section 5
proves that our sub-vector test is valid when the nuisance parameter is strongly identi�ed
without any assumption on the strength of identi�cation of the tested parameter. Section
6 shows that this result can be extended to some cases in which the nuisance parameter is
weakly identi�ed. Simulations supporting our theoretical results are provided in Section
7.

Proofs of secondary importance and demonstrations that the assumptions of the paper
hold in our examples are placed in the Supplementary Appendix, which can be found on
Anna Mikusheva's website.4 In particular, the proofs of the statement from Section 5.3
and Lemma 3 appear in the Supplementary Appendix.

Throughout the rest of the paper, Idk is the k×k identity matrix, I{·} is the indicator-
function, [·] stands for the quadratic variation of a martingale and [·, ·] for the joint
quadratic variation of two martingales, ⇒ denotes weak convergence (convergence in
distribution), while →p stands for convergence in probability.

2 Martingale Methods in Maximum Likelihood

Let XT be the data available at time T . In general, we assume that XT = (x1, ..., xT ). Let
Ft be a sigma-algebra generated by Xt = (x1, ..., xt). We assume that the log likelihood
of the model,

`(XT ; θ) = log f(XT ; θ) =
T∑

t=1

log f(xt|Ft−1; θ),

is known up to the k-dimensional parameter θ, which has true value θ0. We further
assume that `(XT ; θ) is twice continuously di�erentiable with respect to θ, and that
the class of likelihood gradients

{
∂

∂θ′ `(XT ; θ) : θ ∈ Θ
}
and the class of second derivatives{

∂2

∂θ∂θ′ `(XT ; θ)
}

are both locally dominated integrable.
Our main object of study will be the score function,

ST (θ) =
∂

∂θ′
`(XT , θ) =

T∑
t=1

∂

∂θ′
log f(xt|Ft−1; θ),

where st(θ) = St(θ)− St−1(θ) = ∂
∂θ′ log f(xt|Ft−1; θ) is the increment of the score. Under

4https://econ-www.mit.edu/�les/6648
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the assumption that we have correctly speci�ed the model, the expectation of st(θ0)

conditional on all information up to t− 1 is equal to zero,

E (st(θ0)|Ft−1) = 0 a.s. (1)

This in turn implies that the score taken at the true parameter value, St(θ0), is a martin-
gale with respect to �ltration Ft. One way to view (1) is as a generalization of the �rst
informational equality, which in i.i.d. models states that E [st(θ0)] = 0, to the dynamic
context. To derive this equality, note that st(θ0) = 1

f(xt|Ft−1;θ0)
∂

∂θ′f(xt|Ft−1; θ0),

E(st(θ0)|Ft−1) =

∫
st(θ0)f(xt|Ft−1; θ0)dxt =

∫
∂

∂θ′
f(xt|Ft−1; θ0)dxt = 0.

This observation is due to Silvey (1961).
Similarly, the second informational equality also generalizes to the dependent case.

In the i.i.d. case, this equality states that we can calculate Fisher's information using
either the Hessian of the log likelihood or the outer product of the score, i.e.

I(θ0) = −E

(
∂2

∂θ∂θ′
log f(xt; θ0)

)
= E

(
∂

∂θ′
log f(xt; θ0)

∂

∂θ
log f(xt; θ0)

)
. (2)

Fisher's information plays a key role in the classical asymptotics for maximum likelihood,
as it is directly related to the asymptotic variance of the MLE, and (2) suggests two di�er-
ent ways of estimating it which are asymptotically equivalent in the classical context. To
generalize (2) to the dynamic context, following Barndor�-Nielsen and Sorensen (1991),
we introduce two measures of information based on observed quantities:

• Observed information: the negative Hessian of the log-likelihood,

IT (θ) = − ∂2

∂θ∂θ′
`(XT ; θ) =

T∑
t=1

it(θ),

where it(θ) = − ∂2

∂θ∂θ′ log f(xt|Xt−1; θ);

• Incremental observed information: the quadratic variation of the score of the log
likelihood,

JT (θ) = [S(θ)]T =
T∑

t=1

st(θ)s
′
t(θ),

where as before st(θ) is the increment of ST (θ).
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Using these de�nitions, let AT (θ) = JT (θ) − IT (θ) be the di�erence between the two
measures of observed information. The second informational equality implies that At(θ0)

is a martingale with respect to Ft. Speci�cally, the increment of At(θ0) is at(θ0) =

At(θ0)− At−1(θ0),

at(θ0) =
∂2

∂θ∂θ′
log f(xt|Xt−1; θ0) +

∂

∂θ′
log f(xt|Xt−1; θ0)

∂

∂θ
log f(xt|Xt−1; θ0),

and an argument similar to that for the �rst informational equality gives us that
E(at|Ft−1) = 0 a.s.

In the classical context, IT (θ0) and JT (θ0) are asymptotically equivalent, which plays
a key role in the asymptotics of maximum likelihood. In the i.i.d. case, for example,
the law of large numbers implies that 1

T
IT (θ0) →p −E

(
∂2

∂θ∂θ′ log f(xt, θ0)
)

= I(θ0) and
1
T
JT (θ0) →p E

(
∂

∂θ′ log f(xt, θ0)
∂
∂θ

log f(xt, θ0)
)

= I(θ0). As a result of this asymptotic
equivalence, the classical literature in the i.i.d. context uses these two measures of infor-
mation more or less interchangeably.

The classical literature in the dependent context makes use of a similar set of con-
ditions to derive the asymptotic properties of the MLE, focusing in particular on the
asymptotic negligibility of AT (θ0) relative to JT (θ0). For example, Hall and Heyde (1980)
show that for θ scalar, if higher order derivatives of the log-likelihood are asymptotically
unimportant, JT (θ0) → ∞ a.s., and lim supT→∞ JT (θ0)

−1|AT (θ0)| < 1 a.s., then the
MLE for θ is strongly consistent. If moreover, JT (θ0)

−1IT (θ0) → 1 a.s., then the ML
estimator is asymptotically normal and JT (θ0)

1
2 (θ̂ − θ0) ⇒ N(0, 1).

We depart from this classical approach in that we consider weak identi�cation. Weak
identi�cation arises when information is small along some dimension, which we model by
using an embedding such that Fisher's information is degenerate asymptotically. Similar
embeddings have been used to study weak identi�cation in other contexts, including the
Weak Instrument asymptotics introduced by Staiger and Stock (1997), and the Weak
GMM asymptotics of Stock and Wright (2000). In such an embedding the di�erence
between our two measures of information is important, and AT (θ0) is no longer negligible
asymptotically compared to observed incremental information JT (θ0), as demonstrated
in the weak IV example below.
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Example 1 We assume a reduced form model with normal errors:




yt = βπ′zt + ut

xt = π′zt + vt

,


 ut

vt


 ∼ i.i.d. N(0, Id2),

We take zt to be a k−dimensional set of instruments, while β is the parameter of interest
and π is a k × 1 vector of nuisance parameters. Our assumption that the errors have
known covariance matrix equal to Id2 is not restrictive, since ut and vt are reduced
form (rather than structural) errors, and thus are well-estimable. The analysis is done
conditional on the instruments zt, and for simplicity we assume that the data generating
process for zt is such that it satis�es a law of large numbers. Following the approach laid
out by Staiger and Stock (1997), we represent weak identi�cation by modeling π as local
to zero, that is π = 1√

T
C, so π is drifting to zero as the sample grows.

Let Y = (y1, ..., yT )′, X = (x1, ..., xT )′ be T × 1 and Z = (z1, ..., zT )′ be T × k. In this
model, we have the following log-likelihood:

`T (β, π) = const− 1

2
(Y − βZπ)′(Y − βZπ)− 1

2
(X − Zπ)′(X − Zπ).

The score is

Sβ(θ) = π′Z ′(Y − βZπ); Sπ(θ) = βZ ′(Y − βZπ) + Z ′(X − Zπ).

Finally, the two measures of information are:

IT (θ0) = − ∂2

∂θ∂θ′
`T =


 π′Z ′Zπ βπ′Z ′Z − U ′Z

βZ ′Zπ − Z ′U (1 + β2)Z ′Z


 ;

JT (θ0) = [S]T =


 π′

∑
t u

2
t ztz

′
tπ π′

∑
t ut(βut + vt)ztz

′
t∑

t ut(βut + vt)ztz
′
tπ

∑
t(βut + vt)

2ztz
′
t


 .

Under the weak instrument embedding π = 1√
T
C, we can use normalizing matrix KT =

diag(1, 1√
T
, . . . , 1√

T
) to get a non-trivial limit for both information matrices:

KT JT (θ0)KT →p


 C ′QZC βC ′QZ

βQZC (1 + β2)QZ


 ;

KT IT (θ0)KT ⇒

 C ′QZC βC ′QZ − ξ′

βQZC − ξ (1 + β2)QZ


 .

To derive these expressions we have used a law of large numbers, 1
T
Z ′Z →p QZ , and
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a central limit theorem, 1√
T
Z ′U ⇒ ξ = N(0, QZ). Notice that, under weak instrument

asymptotics, there is a di�erence between the two information matrices (i.e. the addition
of the term −ξ to the o�-diagonal elements of KT JT (θ0)KT ), whereas for the strong IV
case (π 6= 0 and �xed) we have that J−1

T IT →p Id2. ¤
Example 2 Another well-known example of weak identi�cation is the ARMA model

with nearly canceling roots. Below we use the formulation of this model from Andrews
and Cheng (2009). The relevance of this model to DSGE estimation is discussed in
Schorfheide (2010).

Yt = (π + β)Yt−1 + et − πet−1, et ∼ i.i.d.N(0, 1).

The true value of parameter θ0 = (β0, π0)
′ satis�es the following restrictions |π0| < 1,

β0 6= 0 and |π0+β0| < 1, which guarantee that the process is stationary and invertible. For
simplicity we assume that Y0 = 0 and e0 = 0, though due to stationarity and invertibility
the initial condition should not matter asymptotically. One can re-write the model as
(1− (π +β)L)Yt = (1−πL)et. It is easy to see that if β = 0, then the parameter π is not
identi�ed. Assume that the model is point identi�ed, so β 6= 0, but that identi�cation is
weak. This can be modeled as β = C√

T
. If KT = diag(1/

√
T , 1), then:

KT JT (θ0)KT →p Σ and KT IT (θ0)KT ⇒ Σ +


 0 ξ

ξ Cη


 ,

where Σ is a positive de�nite matrix while ξ and η are two Gaussian random variables
(the derivation of this expression can be found in the Supplementary Appendix). That
is, the di�erence between the two information matrices is asymptotically non-negligible
compared with the information measure JT (θ0). ¤

Example 3 Another example is a weakly identi�ed binary model. Assume that we
observe an i.i.d. sample from the joint distribution of (Yt, Xt), where

Yt = I{Y ∗
t > 0}; Y ∗

t = βh(Xt, π)− Ut; Ut|Xt ∼ i.i.d.f(u).

Assume that the model is point-identi�ed, and that a standard list of smoothness and
moment existence conditions holds (see the Supplementary Appendix for details).

It is easy to see that if β = 0 then parameter π is unidenti�ed. The weak identi�cation
embedding considered in Andrews and Cheng (2009) takes β0 = C/

√
T . Again, for
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θ = (β, π′)′ and KT = diag(1/
√

T , 1, . . . , 1) we have that KT JT (θ0)KT converges in
probability to a non-degenerate matrix, while KT (JT (θ0)− IT (θ0))KT weakly converges
to a non-zero random matrix with Gaussian entries:

KT (JT (θ0)− IT (θ0))KT ⇒

 0 ξ′

ξ Cη


 ,

where (ξ′, vec(η)′)′ is a Gaussian vector. ¤
The di�erence between the two measures of information can be used to construct a

test to detect weak identi�cation. A potential test should compare the two observed
informations at the true parameter value. As argued in the introduction, however, tests
of identi�cation are less useful than weak identi�cation-robust procedures so we do not
pursue such tests here.

White (1982) shows in the context of quasi-MLE that the two measures of information
may be asymptotically di�erent if the likelihood is misspeci�ed. As we point out above,
even if the model is correctly speci�ed the two informations may di�er if identi�cation is
weak. While we are aware of one strand of the classical statistical literature which explores
the di�erence between these di�erent information measures, the literature on so-called
non-ergodic models, these models are usually part of the LAMN (locally asymptotically
mixed-normal) class, whereas the types of models which we consider in this paper are
not in general LAMN.

3 Test for Full Parameter Vector

In this section, we suggest a test for a simple hypothesis on the full parameter vector,
H0 : θ = θ0, which is robust to weak identi�cation. To allow for the possibility of an
embedding such as weak IV, we consider a so-called scheme of series. In a scheme of series
we assume that we have a series of experiments indexed by the sample size: the data XT

of sample size T is generated by distribution fT (XT ; θ0), which may change as T grows.
We assume that in the de�nition of all quantities in the previous section there is a silent
index T . For example, the log-likelihood is `T (θ) =

∑T
t=1 log fT (xT,t|XT,t−1; θ), where

the data is XT = (xT,1, ..., xT,T ) and XT,t = (xT,1, ..., xT,t). All scores and information
matrices also have this implied index T; for each �xed T the score ST,t is a process indexed
by t, ST,t(θ0) = ∂

∂θ′ log fT (XT,t; θ0) =
∑t

j=1 sT,j(θ0), and is a martingale with respect to
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the sigma-�eld FT,t generated by XT,t. All other statistics are de�ned correspondingly.
In this context, we introduce our �rst assumption:

Assumption 1 Assume that there exists a sequence of constant matrices KT such that:

(a) for all δ > 0,
∑T

t=1 E (‖KT st,T (θ0)‖I{‖KT st,T (θ0)‖ > δ}|Ft−1) → 0;

(b)
∑T

t=1 KT st,T (θ0)st,T (θ0)
′KT = KT JT (θ0)KT →p Σ, where Σ is constant positive-

de�nite matrix.

Discussion of Assumption 1
Assumption 1(a) is a classical in�nitesimality (or limit negligibility) condition. We

can, if we prefer, replace it with a version of Linderberg's condition:

T∑
t=1

E
(‖KT st,T‖2I{‖KT st,T (θ0)‖ > δ}

∣∣Ft−1

) → 0,

although this condition is stronger than 1(a). Assumption 1(b) imposes the ergodicity
of the quadratic variation JT (θ0) of martingale ST (θ0), which rules out some potentially
interesting models including persistent (unit root) processes and non-ergodic models.

Examples 1, 2 and 3 (cont.) Assumption 1 is trivially satis�ed for the weak IV
model, the ARMA (1,1) model with nearly canceling roots, and the weakly identi�ed
binary choice model (see the Supplementary Appendix for details).

Example 4 Assumption 1 can also be checked for an exponential family with weak
identi�cation. In particular, consider an exponential family with joint density of the form

fT (Xt|θ) = h(XT ) exp

{
ηT (θ)′

T∑
t=1

H(xt)− TAT (ηT (θ))

}
. (3)

Here, η is a p−dimensional reduced form parameter, while
∑T

t=1 H(xt) is a p−dimensional
su�cient statistic. Model (3) covers VAR models with η being a set of reduced form VAR
coe�cients and xt = (Y ′

t , ..., Y
′
t−p)

′, where Yt is a vector of data observed at time t, and
the su�cient statistics are the sample autocovariances of the Yt. Fernández-Villaverde et
al. (2007) discuss the relationship between linearized DGSE models and VARs.

Suppose that we can partition the structural coe�cient θ into sub-vectors α and β,
θ = (α′, β′)′. We consider an embedding similar to that of Stock and Wright (2000) for
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weak GMM, which we use to model β as weakly identi�ed. In particular, we assume that

ηT (θ) = m(α) +
1√
T

m̃(α, β),

where ∂
∂β′m(α0) and ∂

∂θ′ m̃(α0, β0) are matrices of full rank (dim(θ) = k = kα + kβ ≤ p).
This means that while θ is identi�ed for any �xed T , the likelihood is close to �at in direc-

tions corresponding to β. Assumption 1 is trivially satis�ed for KT =




1√
T
Idkα 0

0 Idkβ




so long as the in�nitesimality condition holds for the sequence
{

1√
T
H(xt)

}T

t=1
and a law

of large numbers holds for H(xt)H(xt)
′ (i.e. 1

T

∑T
t=1 H(xt)H(xt)

′ →p E [H(xt)H(xt)
′]).

¤
The following theorem is a direct corollary of the multivariate martingale Central

Limit Theorem (see Theorem 8, ch. 5 in Liptser and Shiryayev (1989)).

Theorem 1 If Assumption 1 holds, then KT ST (θ0) ⇒ N(0, Σ), and

LM(θ0) = ST (θ0)JT (θ0)
−1ST (θ0) ⇒ χ2

k, (4)

where k = dim(θ0).

Remark. There are a number of other ways to approach the problem of testing the
full parameter vector. Since we consider a fully parametric model, so long as one only
wishes to test hypotheses on the whole parameter vector, one could in principal obtain
an exact test by simulating any statistic under the null. Alternatively, one could replace
JT (θ0)

T
with I(θ0) = E[JT (θ0)/T ] (Fisher's information) in the expression for the LM

statistic. This would again produce an asymptotically χ2
k statistic, but we contend that

our original formulation is superior in many cases, since calculating JT (θ0) is much more
straightforward than calculating I(θ0) when we do not have an analytic expression for
the likelihood. In addition, if we weaken Assumption 1(b) to require only that Σ be
an almost surely positive de�nite random matrix, then statement (4) still holds. In this
sense, our formulation has the additional advantage of being robust to non-ergodicity,
a characteristic not shared by the formulation using I(θ0). Statistical examples of non-
ergodic models can be found in Basawa and Koul (1979).

Statement (4) of Theorem 1 suggests a test for simple hypotheses about the whole
parameter vector θ. Unlike the classical ML Wald and LR tests, the derivation of the
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asymptotic distribution of this statistic uses no assumptions about the strength of identi-
�cation. The statistic is a special form of the classical LM (score) test, which is formulated
as LM = 1

T
ST (θ0)

′Î−1ST (θ0), where Î is any consistent estimator of Fisher's information.
Our suggested statistic plugs in 1

T
JT (θ0) = 1

T
[S(θ0)]T for this estimator. It is important

to note that while the true Fisher information is asymptotically degenerate under weak
identi�cation, the appropriately de�ned LM statistic (as in (4)) nevertheless achieves a
χ2 distribution asymptotically.

As already discussed, this test for the full parameter vector allows us to directly
test the structural parameters in weakly identi�ed exponential family models, including
DSGE models which can be represented as VARs. In such models, our proposed test for
the full parameter vector o�ers a number of advantages relative to other procedures in
the literature. In particular, unlike the approach proposed by Guerron-Quintana, Inoue
and Killian (2009), we require no assumptions on the strength of identi�cation of the
reduced form parameters. The test statistic is quite straightforward to compute, and
maintains size well in simulation (see Section 7). Under strong identi�cation, this test is
asymptotically equivalent to the usual LM test, and thus inherits all of its properties. It
is important to note, however, that the LM statistic calculated with other estimators of
Fisher's information (for example 1

T
IT (θ0)) is not necessarily robust to weak identi�cation,

as can be seen in the example of weak IV. It is also a bad idea to estimate the information
matrix using an estimator of θ, i.e. to use 1

T
JT (θ̂). All of these alternative formulations

deliver asymptotically equivalent tests in strongly identi�ed models, but this equivalence
fails under weak identi�cation.

4 Test for a Subset of Parameters

4.1 The Problem

In applied economics, it is very common to report separate con�dence intervals for each
one-dimensional sub-parameter in the (often quite multidimensional) parameter vector θ.
Current standards require that each such con�dence interval be valid, that is, it should
have at least 95% coverage asymptotically (assuming the typical 95% con�dence level).
These one-dimensional con�dence sets need not be valid jointly: if dim(θ) = k, the k-
dimensional rectangle formed by the Cartesian product of the 1-dimensional con�dence
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intervals need not have 95% asymptotic coverage. Going the other direction, if one has a
95% con�dence set for θ and projects it on the one-dimensional subspaces corresponding
to the individual sub-parameters, the resulting con�dence sets for the one-dimensional
parameters will of course be valid. However, con�dence sets obtained in such a manner
(usually called the projection method) tend to be conservative.

Using our proposed test of the full parameter vector, which is robust to weak iden-
ti�cation, we have the option to produce robust con�dence sets for sub-parameters via
the projection method. This approach has been used many times in the literature, for
example by Dufour and Taamouti (2005) for weak IV and Guerron-Quintana, Inoue, and
Killian (2009) for DSGE. The typical DSGE model has a large number of parameters to
estimate (often between 20 and 60), which makes the projection method less attractive
as the degree of conservativeness may be very high, which in turn makes the resulting
con�dence sets less informative.

For some intuition on the source of this conservativeness, imagine for a moment
that we are concerned with a two-dimensional parameter θ = (θ1, θ2)

′, and have a t-
statistic for each θi. Suppose, moreover, that these two statistics are asymptotically
normal and asymptotically independent of each other. We can construct a con�dence
set for each parameter in two ways: the �rst and most commonly used is to invert
the t-test for the corresponding sub-parameter, which is equivalent to using the the
squared t-statistic and χ2

1 critical values and yields C1,θi
=

{
θi : (θ̂i−θi)

2

σ2
i

≤ χ2
1,.95

}
. As

an alternative, one may construct a joint con�dence set for θ, which in this case will be
an ellipse C2,θ =

{
θ : (θ̂1−θ1)2

σ2
1

+ (θ̂2−θ2)2

σ2
2

≤ χ2
2,.95

}
, and then use the projection method to

obtain C2,θ1 = {θ1 : ∃θ2 s.t. (θ1, θ2)
′ ∈ C2,θ} (and likewise for θ2). One can notice that C2,θi

ultimately uses the same t-statistic as C1,θi
, but compares this statistic to the critical

value of a χ2
2 rather than a χ2

1. As a result, in this example the projection method
produces unnecessarily wide (and conservative) con�dence sets for each sub-parameter.

The projection method, when applied to strongly identi�ed models, produces a less
powerful test than classical MLE. Thus, when using the projection method it is natural
to combine it with a pre-test procedure which �rst discriminates between weakly and
strongly identi�ed models and then, based on the results of the test, uses either classical
MLE or the projection method. There are two obstacles to such an approach: �rst,
we are unaware of procedures for e�ectively discriminating between weak and strong
identi�cation in maximum likelihood. Second, the size properties of two-step testing
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procedures are notoriously di�cult to asses. Our approach is di�erent, and instead
constructs a test which maintains correct asymptotic size under weak identi�cation, but
which is equivalent to the classical MLE tests under strong identi�cation.

We are aware of a number of papers dealing with this issue in the context of weak
identi�cation. In particular, Stock and Wright (2000) prove that for GMM, under some
assumptions, if θ = (α′, β′)′ and α is well identi�ed then it is possible to test the hypothe-
sis H0 : β = β0 by comparing the GMM objective function, minimized with respect to α,
to the critical values of a χ2

p−kα
distribution, where p is the number of moment conditions

used and kα = dim(α). Their result shows that it is possible to reduce the degrees of free-
dom for projection-based con�dence sets in weak GMM provided the nuisance parameter
is strongly identi�ed.

Kleibergen and Mavroeidis (2009) prove that it is possible to extend this result to
some models where the nuisance parameter may be weakly identi�ed. They consider a
test statistic, called H(θ0) here, for testing the simple hypothesis H0 : θ = θ0 (they use
the Anderson-Rubin and IV-LM tests). Assume again that θ = (α′, β′)′, and that the
hypothesis of interest is H0 : β = β0. Kleibergen and Mavroeidis (2009) demonstrate that
one can again use the quantiles of a χ2

p−kα
as critical values. This test is asymptotically

similar if identi�cation of the nuisance parameter is strong, and somewhat asymptotically
conservative if identi�cation of the nuisance parameter is weak. In this paper we consider
a class of models which, as discussed above, di�ers from those in the weak GMM liter-
ature in that the variance of the moment conditions may be degenerate asymptotically,
necessitating an alternative approach to eliminating nuisance parameters.

4.2 Classical LM Tests for Composite Hypotheses

We assume that θ = (α′, β′)′. We are interested in testing the composite hypothesis
H0 : β = β0, treating α as a nuisance parameter. The classical theory for maximum
likelihood considers two LM tests for such a setting: Rao's score test and Neyman's
C(α)-test.

Let ST (θ) = (Sα(θ)′, Sβ(θ)′)′, I(θ) =


 Iαα Iαβ

I ′αβ Iββ


 be Fisher's information, and θ̂0

be the restricted ML estimator of θ, under the restriction β̂ = β0. Assume, in addition,
that all martingales introduced in Section 2 are divided into sub-matrices corresponding
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to α and β. Rao's score test is based on the statistic Rao = 1
T
ST (θ̂0)

′I(θ̂0)
−1ST (θ̂0).

Neyman's C(α) test was developed as a locally asymptotically most powerful (LAMP)
test for composite hypotheses in the classical ML model (see Akritas (1988)). The statistic
is de�ned as

C(α) =
1

T

(
Sβ − I ′αβI−1

ααSα

)′ I−1
ββ,α

(
Sβ − I ′αβI−1

ααSα

)∣∣∣
θ=(α̂,β0)

,

where α̂ is any
√

T consistent estimator of α, and Iββ,α = Iββ − IβαI−1
ααIαβ.

Kocherlakota and Kocherlakota (1991) show that the two statistics are the same
asymptotically if one takes α̂ in Neyman's C(α) test to be the restricted MLE. If the
classical ML assumptions are satis�ed then both statistics are distributed χ2

kβ
asymptot-

ically. In this paper, we suggest a statistic which is asymptotically equivalent to both
Rao's score and Neyman's C(α) if the classical ML assumptions are satis�ed. In particu-
lar, we consider the same LM statistic de�ned in (4) but evaluated at θ = (α̂, β0), where
α̂ is the restricted MLE, that is, the solution to equation Sα(α̂, β0) = 0. One can easily
see that

L̃M(β0) = LM(α̂, β0) = S ′β
(
Jββ − JβαJ−1

ααJ ′βα

)−1
Sβ

∣∣∣
θ=(α̂,β0)

. (5)

5 Test for a Subset of Parameters- Strong Identi�ca-
tion

In this section, we establish that if the nuisance parameter α satis�es conditions implying
the asymptotic normality of its restricted MLE then the statistic de�ned in (5) has a
χ2

kβ
distribution asymptotically regardless of the strength of identi�cation of β. One

implication of these results is that when α is strongly identi�ed, our proposed subset test
has a χ2

kβ
distribution asymptotically.

5.1 Asymptotic Normality of α̂

When we test H0 : β = β0, under the null α is the only unknown parameter. Below,
we provide conditions which guarantee that the restricted maximum likelihood estimator
of α will be asymptotically normal. We adapt Baht's (1974) result on the consistency
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and asymptotic normality of the MLE for time series. We call α strongly identi�ed if, in
addition to the conditions below, information about α goes to in�nity as the sample size
grows. Let Aαα,T = Jαα,T − Iαα,T , where the last two quantities are the sub-matrices of
JT (θ0) and IT (θ0) corresponding to α.

Assumption 2 Assume that matrix KT from Assumption 1 is diagonal and Kα,T and
Kβ,T are the sub-matrices of KT corresponding to α and β, respectively.

(a) Kα,T Aαα,T Kα,T →p 0;

(b) for any δ > 0 we have

sup
‖K−1

α,T (α1−α0)‖<δ

‖Kα,T (Iαα(α1, β0)− Iαα(α0, β0))Kα,T‖ →p 0.

Lemma 1 If Assumptions 1 and 2 are satis�ed, then

K−1
α,T (α̂− α0) = K−1

α,T J−1
αα,T Sα,T + op(1) ⇒ N(0, Σ−1

αα). (6)

Discussion of Assumption 2. Assumption 2(a) may be formulated as J−1
αα,T Iαα,T →p

Idkα , which requires that the two information matrices be the same asymptotically. We
mentioned a condition of this nature in our discussion of weak identi�cation in Section 2.
One approach to checking 2(a) in many contexts is to establish a Law of Large Numbers
for Aαα,T . Indeed, Aαα,T is a martingale of the form

Aαα,T =
T∑

t=1

1

f(xt|Xt−1, θ0)

∂2

∂α∂α′
f(xt|Xt−1, θ0).

If the terms 1
f(xt|Xt−1,θ0)

∂2

∂α∂α′f(xt|Xt−1, θ0) are uniformly integrable and Kα,T converges to
zero no slower than 1√

T
, then the martingale Law of Large Numbers gives us Assumption

2(a).
Assumption 2(b) is an assumption on the smoothness of the log-likelihood. We can

reformulate it using the third derivatives:

Λαααi,T (θ) =
T∑

t=1

1

f(xt|Xt−1, θ)

∂3

∂αi∂α∂α′
f(xt|Xt−1, θ). (7)

An alternative to Assumption 2(b) is:
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Assumption 2 (b') for any i: Kαi,T sup‖K−1
α,T (α−α0)‖<δ ‖Kα,T Λαiαα,T Kα,T‖ →p 0.

Lemma 2 Assumptions 1, 2(a) and 2(b') imply assumption 2(b).

If we have Kα,T = 1/
√

TIdkα , as is often the case for strongly identi�ed α, then
Assumption 2(b') usually holds due to the Law of Large Numbers since the normalization
is excessive.

Strong Identi�cation If in addition to Assumption 2 we assume that Kα,T → 0, it
is clear that α̂ will be consistent for α0. In such instances we say that α is strongly
identi�ed, as information about α goes to in�nity as the sample grows and the MLE for
α is consistent and asymptotically normal (under the null hypothesis β = β0).

5.2 Result

As we show in Section 3, to test a simple hypothesis about the whole parameter vector
it is enough to have a CLT for the score function. Kleibergen and Mavroeidis (2009)
impose a stronger assumption for the their test of a subset of parameters, namely that
the CLT also hold for the derivative of the moment condition (in fact, they impose a
functional CLT). For our test of a subset of parameters, we likewise need an additional
assumption, speci�cally a CLT on the derivative of the score, which is directly related to
the martingale AT (the di�erence of the two information matrices).

Assumption 3 Consider the sequence of martingales MT = (ST (θ0)
′, vec(Aα,β,T (θ0))

′)′ =
∑T

t=1 mt,T . Assume that there exists a sequence of non-stochastic diagonal matrices KM,T

such that:

(a) for all δ > 0,
∑T

t=1 E (‖KM,T mt,T‖I{‖KM,T mt,T‖ > δ}|Ft−1) → 0;

(b)
∑T

t=1 KM,T mt,T m′
t,T KM,T →p ΣM , where ΣM is a constant matrix whose sub-matrix

Σ corresponding to the martingale ST is positive de�nite.

Let us de�ne the martingales associated with the third derivative of the likelihood
function:

Λαiαjβn =
T∑

t=1

1

f(xt|Xt−1, θ0)
· ∂3f(xt|Xt−1, θ0)

∂αi∂αj∂βn

.
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If we can interchange integration and di�erentiation three times then each entry of Λααβ,T

is a martingale. For the proof of the theorem below we will also need the following
assumptions:

Assumption 4 (a) limT→∞ Kαi,T K−1
αiβj ,T Kβj ,T = Cij, where C is some �nite matrix

(which may be zero).

(b) Kαi,T Kαj ,T Kβn,T

√
[Λαiαjβn ] →p 0 for any i, j, n.

(c) sup‖K−1
α,T (α−α0)‖<δ

∥∥∥Kβj ,T Kα,T ( ∂
∂βj

Iαα(α, β0)− ∂
∂βj

Iαα(α0, β0))Kα,T

∥∥∥ →p 0.

Discussion of Assumption 4
Assumptions 4(b) and (c) state that the higher order derivatives with respect to α

are not important for the analysis. If α is strongly identi�ed, then Assumptions 4(b)
and (c) generally hold, and can be checked using some Law of Large Numbers, since the
normalization K2

α,T or K3
α,T converges to zero very quickly. Finally, Assumption 4 holds

trivially for weak IV, as well as for the exponential family case discussed in section 3.

Theorem 2 If Assumptions 2, 3 and 4 are satis�ed then under the null H0 : β = β0 we
have L̃M(β0) ⇒ χ2

kβ
.

Examples 1, 2 and 3 (cont.) Assumptions 2, 3 and 4 trivially hold for the weak IV
model when we test the composite hypothesis H0 : β = β0. The resulting test is the K-test
introduced in Kleibergen (2002) and Moreira (2001). In the Supplementary Appendix,
we show that Assumptions 2, 3 and 4 hold in the ARMA(1,1) model with nearly canceling
roots and the weakly identi�ed binary choice model for testing a hypothesis H0 : π = π0

about the weakly-identi�ed parameter π. Thus, our subset test for this parameter is
robust to weak identi�cation. In Section 7 we show that the �nite sample properties of
the test are remarkably good in the ARMA(1,1) model.

5.3 How Our Result Di�ers from the Previous Literature

As discussed above, Stock and Wright (2000) develop a framework for weakly identi�ed
GMM and construct a test for the hypothesis H0 : β = β0 when the nuisance parameter
α is strongly identi�ed (Theorem 3 in Stock and Wright (2000)). They consider GMM
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with moment condition Em(xt, α, β) = 0 and construct a statistic based on

S(θ) = (
1√
T

T∑
t=1

m(xt; θ))
′W−1

T (θ)(
1√
T

T∑
t=1

m(xt; θ)),

where WT (θ) is a consistent estimator of the variance of the moment condition. They
show that, for α̂ = arg minα S(α, β0), their statistic S(α̂, β0) has an asymptotic χ2 distri-
bution with degrees of freedom equal to p−kα, where p = dim(m(xt, θ)) and kα = dim(α).

Kleibergen (2005) considers an alternative statistic based on the LM test for GMM
and proves that this statistic, minimized over α, is also the basis of a valid test of
H0 : β = β0 when α is strongly identi�ed. In our context, however, if we use the score
of the log-likelihood as the GMM moment condition the system is just-identi�ed and
Kleibergen's KLM statistic is equal to Stock and Wright's S statistic.

Our result, though of a similar �avor, is quite di�erent and is not covered by these
previous results. First, the weak ML model does not satisfy the assumptions in the
above mentioned papers. Speci�cally, if we consider ML estimation as GMM using the
moment condition EST (θ0) = 0, the variance matrix of our moment condition (infor-
mation matrix) is directly linked to identi�cation. In particular, the matrix WT (θ) (to
use Stock and Wright's notation) becomes degenerate asymptotically, which is ruled out
by the assumptions of Stock and Wright (2000), Kleibergen (2005), and Kleibergen and
Mavroeidis (2009). Second, we apply a di�erent principle to go from a test of the full
parameter vector to a test for a subset of parameters. In the above mentioned papers
the authors minimize the statistic over the nuisance parameter, while we plug in the
restricted MLE. In fact, in our context minimizing the statistic over the nuisance param-
eter does not necessarily lead to a χ2 distribution, as illustrated in the following weak IV
example.

Example 1 (cont.) Let us return to the weak IV model and consider the LM statistic
for LM(β, π) for testing the whole parameter vector θ = (β, π′)′, de�ned as in equation
(4). Suppose we wish to test the composite hypothesis H0 : β = β0 by considering the
concentrated statistic:

LM c(β0) = min
π

LM(β0, π) = LM(β0, π̃).
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We can show (see proof in the Supplementary Appendix) that

LM c(β0) =
(QS + QT )−

√
(QS + QT )2 − 4Q2

ST

2
,

where QS, QT , and QST are de�ned as in Andrews, Moreira, and Stock (2006). If the
instruments are weak, that is if π = C/

√
T , then the asymptotic distribution of LM c(β0)

is stochastically dominated by a χ2
1, and the resulting test is conservative.

6 Test for a Subset of Parameters- Weak Identi�cation

In the previous section we show that our subset-test statistic L̃M(β0) for the composite
hypothesis H0 : β = β0 is asymptotically χ2

kβ
when the nuisance parameter α is strongly

identi�ed, without any assumptions about the identi�cation of β. Strong identi�cation,
however, is not necessary for the validity of our proposed test statistic. Below, we present
two examples in which the nuisance parameter is weakly identi�ed but L̃M(β0) nonethe-
less has a χ2

kβ
distribution asymptotically.

6.1 Weak IV Case

Example 1(cont.) Here we consider a weak IV model with one endogenous variable,
when the hypothesis tested is one about π, that is, H0 : π = π0, while the weakly
identi�ed parameter β is treated as a nuisance parameter. For simplicity we consider a
slightly di�erent version of the quadratic variation of S, namely the expected quadratic
variation.

J̃ = 〈S〉 =
T∑

t=1

E (sts
′
t|Ft−1) =


 π′Z ′Zπ βπ′Z ′Z

βZ ′Zπ (1 + β2)Z ′Z


 .

The di�erence between JT and J̃ doesn't matter asymptotically as J−1
T J̃ →p Idk+1 uni-

formly over the strength of instruments.
According equation (5) our statistic of interest is L̃M(π0) = LM(β̂, π0), where β̂ is

the restricted ML estimator of β, and LM(β, π0) is de�ned as in (4) with the slight
modi�cation that J̃ is used in place of J . Note that Sβ(β̂, π0) = 0, so we can explicitly
solve for β̂ as β̂ =

π′0Z′Y
π′0Z′Zπ0

. Simple calculations show that

LM
(
β̂, π0

)
=

(
β̂Û + V0

)′
Z

(
(1 + β̂2)Z ′Z − β̂2Z ′Zπ0π

′
0Z

′Z
π′0Z ′Zπ0

)−1

Z ′
(
β̂Û + V0

)
,
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where Û = Y − β̂Zπ0.

Lemma 3 If π0 = C/
√

T , we have LM(β̂, π0) ⇒ χ2
k.

The idea of the proof is the following. Under the weak instruments embedding, β̂ is
not consistent but is asymptotically normal. We can show that (Z ′Z)−1/2Z ′Û , β̂ and
(Z ′Z)−1/2Z ′V0 are asymptotically normal and asymptotically uncorrelated with each
other. If we consider statistic LM(β̂, π0), conditional on β̂ it becomes a correctly nor-
malized quadratic form of an asymptotically normal k−dimensional random variable
and thus conditionally asymptotically χ2

k. As a result, unconditional convergence holds
as well.

6.2 Case Where Score is Linear in α

The case considered in the previous subsection is interesting in that the nuisance param-
eter is weakly identi�ed, but is somewhat trivial since the parameter tested is strongly
identi�ed. We can to a limited extent generalize this result to more interesting contexts.
Below, we consider the problem of testing a hypothesis about a weakly identi�ed pa-
rameter in an exponential family model. The nuisance parameter will be divided into
two subsets, one of which is strongly identi�ed while the other is weakly identi�ed. We
will make the very restrictive assumption that the weakly identi�ed nuisance parameters
enter linearly.

Example 4 (cont.) Assume that the experiment at time T is generated by the
exponential family (3). As already discussed, model (3) covers VAR models, and many
linearized DGSE models can be represented as VARs (see Fernández-Villaverde et al.
(2007)). Assume that we are interested in structural parameters θ = (α′1, α

′
2, β

′)′, where
the relation between the structural and reduced form parameters is given by

ηT (θ) = m(α1) +
1√
T

n(α1, β)α2 +
1√
T

r(α1, β). (8)

We assume that the matrix
(

∂
∂α′1

m(α1), n(α1, β), ∂
∂β′n(α1, β)α2 + ∂

∂β′ r(α1, β)
)

has full
rank k = dim(θ) ≤ p and call this the rank assumption. That is, we assume that the
structural parameters are identi�ed, though only α1 is strongly identi�ed (parameters
α2 and β are weakly identi�ed). We are interested in testing a composite hypothesis
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H0 : β = β0, treating α = (α′1, α
′
2)
′ as a nuisance parameter. We use the L̃M(β0) statistic

de�ned in (5).

Theorem 3 Assume that in the model de�ned by equations (3) and (8) which satis�es
the rank assumption the following convergence holds at the true value of θ0:

(a) AT (η) → A(η), as T → ∞ in a neighborhood of η∞ and the �rst four derivatives
of AT at η∞ converge to those of A(·);

(b) 1
T

∑T
t=1 H(xt) →p Ȧ;

(c) 1
T

∑T
t=1

(
H(xt)− Ȧ

)(
H(xt)− Ȧ

)′
→p − ∂2

∂η∂η′A(η∞) = −Ä, where Ä is a positive-
de�nite matrix;

(d) 1
T

∑
t Hi(xt)H(xt)H(xt) = Op(1) for any i.

Then under the null we have L̃M(β0) ⇒ χ2
kβ

.

7 Simulation Results

We have a number of simulation results which both support our theoretical results and
suggest directions for further research. We focus on simulation results from three models:
a simple DSGE model based on Clarida, Gali, and Gertler (1999), a nonlinear extension
of the standard weak IV model discussed earlier in this paper, and the ARMA(1,1)
model with nearly canceling roots. In all cases, we simulate the behavior of our proposed
statistics and compare the �nite sample distributions of the statistics in question to their
limiting distributions. In the DSGE example, we argue that estimation in the model
behaves in a manner consistent with weak identi�cation, and that our proposed statistics
o�er a substantial improvement over the usual Wald-based statistics for testing in this
model. For the other two models, we use a standard speci�cation for weak identi�cation
and show that our proposed tests have good properties in simulations.

7.1 DSGE Model

We consider a simple DSGE model based on Clarida, Gali and Gertler (1999). For this
model, we �rst explore the properties of the ML estimator and the usual ML-based test
statistics, then discuss the properties of the information matrix, and �nally explore the
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behavior of our proposed test statistics, both for the full parameter vector and for subsets
of parameters.

The (log-linearized) equilibrium conditions for the model are

βEtπt+1 + κxt − πt + εt = 0,

−[rt − Etπt+1 − rr∗t ] + Etxt+1 − xt = 0,

αrt−1 + (1− α)φππt + (1− α)φxxt + ut = rt,

rr∗t = ρ∆at,

while the exogenous variables (∆at and ut) evolve according to

∆at = ρ∆at−1 + εa,t; ut = δut−1 + εu,t;

(εt, εa,t, εu,t)
′ ∼ iidN(0, Σ); Σ = diag(σ2, σ2

a, σ
2
u).

The model has ten parameters: the discount rate β, the structural parameters κ, φx, φπ,
and α, and the parameters describing the evolution of the exogenous variables. We cali-
brate the structural parameters at generally accepted values: β = .99, κ = (1−θ)(1+φ)(1−βθ)

θ
≈

.1717, φx = 0, φπ = 1.5 and α = 0. For the parameters describing the exogenous vari-
ables, we choose ρ = .2 and δ = .2, to introduce a degree of persistence while maintaining
stationarity, and set σa = 1, σu = 1, and σ = 1. Using this model, we generate sam-
ples of size 300 and then discard the �rst 100 observations. We use only the last 200
observations from each simulation draw for the remainder of the analysis. Given well-
documented problems with estimating β in many models, from this point forward we also
calibrate this parameter at its true value, and conduct the analysis using the remaining
9 parameters.5

7.1.1 MLE Monte-Carlo Results

We begin by examining the behavior of the maximum likelihood estimator for the nine
non-calibrated parameters in the model. We report histograms for the resulting esti-
mates in Figure 1 (based on 500 Monte-Carlo draws). As can be seen from the �gure, the
distribution of many of the estimates is quite far from the normal limiting distribution
of the maximum likelihood estimator under the usual assumptions. Moreover, it appears
that this non-normality is not purely the result of bad behavior on the part of one pa-
rameter: after experimenting with calibrating (to their true values) a number of di�erent

5We conducted extensive simulations, only some of which are presented here. Additional results are
available from the authors by request.
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Figure 1: Histogram of the unrestricted ML parameter estimates. The true value for each parameter is
given in parenthesis at the top of its subplot.
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parameters, it appears that we need to calibrate at least three parameters before the
distributions of the remaining parameters begin to appear well-approximated by normal
distributions.

Table 1: Size of Classical ML Tests for the 9-dimensional hypothesis H0 : θ = θ0.
LR Wald (I(θ0)) Wald (I(θ̂)) Wald (J(θ0)) Wald (J(θ̂)) LM∗(θ0)

Size of
5% Test 3.20% 65.45% 63.05% 68.05% 68.15% 6.55%
Size of

10% Test 7.05% 67.20% 64.30% 70.80% 71.00% 8.60%

While the results in Figure 1 show that the usual asymptotics for the ML estimator
provide a poor approximation to its �nite-sample distribution in this model, our theo-
retical results focus on questions of inference rather than estimation, so we also look at
the behavior of the usual maximum likelihood tests for this model. We consider each
of the trinity of classical tests (LR, Wald, and LM) in turn, focusing on tests of the
full parameter vector. Speci�cally, we test the hypothesis H0 : θ = θ0, where θ is the
vector consisting of all parameters other than β, and θ0 is its true value. Under the usual
assumptions for ML, all of these statistics should have a χ2

9 distribution asymptotically.
In simulations, however, the distribution of these statistics appears quite far from a χ2

9.
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To illustrate this fact, in Table 1 we list the size of a number of classical test statistics
which, under classical assumptions, should have asymptotic size 5% or 10% (for the left
and right columns, respectively, based on 2000 simulations). These sizes were generated
by calculating the appropriate test statistic in simulation and comparing it to the 95th
(or 90th) percentile of a χ2

9 distribution. The LM statistic listed in Table 1 is calcu-
lated as LM∗(θ0) = S(θ0)

′I−1
T (θ0)S(θ0) where I(θ0) = −῭(θ0) is the observed information

(rather than with JT (θ0) as our LM statistic, LM(θ0) = S(θ0)
′J−1

T (θ0)S(θ0)). Table 1
also lists four variations on the Wald statistic, corresponding to di�erent estimators of
the asymptotic variance used in (θ̂ − θ0)V̂

−1(θ̂ − θ0). In particular, Wald (I(θ̂)) is the
usual Wald statistic which uses the inverse of the observed information, evaluated at θ̂,
to estimate the asymptotic variance. Wald (I(θ0)), on the other hand, evaluates the ob-
served information at the true parameter value. Likewise, Wald (J(θ̂)) and Wald (J(θ0))
use J−1

T as the estimator of the asymptotic variance, calculated at θ̂ and θ0 respectively.
As can be seen in Table 1, the LR statistic is conservative. All versions of the Wald

statistic which we consider severely overreject. Finally, the usual LM statistic (calculated
using the negative hessian) somewhat overrejects at the 5% level and underrejects at the
10% level; however, additional simulation results show that the empirical distribution
of this LM statistic is extremely poorly approximated by a χ2

9, and that the seemingly
small size distortions reported in Table 1 are entirely due to the the fact that the two
cdfs cross near the 7% level. Taken together, these results strongly suggest that the
usual approaches to ML estimation and inference are poorly behaved when applied to
this model.

7.1.2 Behavior of the Information Matrix

Having examined the behavior of the usual ML estimator and tests in this model, we can
also look directly at the properties of the information matrix. In Section 2 we associated
weak identi�cation with the di�erence between two information measures AT (θ0) being
large compared to JT (θ0). We point out that observed incremental information JT (θ0)

is an almost surely positive-de�nite matrix by construction, while AT (θ0) is a mean zero
random matrix. If AT (θ0) is negligible compared to JT (θ0), then the observed information
IT (θ0) = JT (θ0) − AT (θ0) is positive de�nite for the majority of realizations. We can
check positive-de�niteness of IT (θ0) directly in simulations. Considering the observed
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information evaluated at the true value (IT (θ0) = − ∂2

∂θ∂θ′ `(θ0)), we see that it has at
least one negative eigenvalue in over 95% of simulation draws, and at least two negative
eigenvalues in over 40% of simulation draws (based on 2000 simulations). While this falls
far short of a formal test for weak identi�cation, it is consistent with the idea that weak
identi�cation is the source of the bad behavior of ML estimation in this model.

7.1.3 LM Test for Full Parameter Vector

Figure 2: CDF of simulated LM statistic introduced in Theorem 1 compared to χ2
9
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We now turn to the weak identi�cation-robust statistics discussed earlier in this pa-
per. We begin by considering the behavior of the the test for the full parameter vector
described in Section 3. As the reader will recall, under appropriate assumptions we have
that LM(θ0) ⇒ χ2

k under H0 : θ = θ0, where LM(θ) is de�ned in (4). In Figure 2, we
plot the CDF of the simulated distribution of LM(θ0), together with a χ2

9. If we use
χ2

9 critical values to construct a test based on this statistic, a 5% test rejects 9.84% of
the time, while a 10% test rejects 16.68% of the time: though this shows that the test
based on LM(θ0) and χ2

9 critical values is not exact, the χ2 approximation is far better
for LM(θ0) than for the usual Wald or LM statistics.
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Table 2: Simulated size of a test H0 : b = b0 treating vector a as a nuisance parameter. In both cases the
tested parameter is 6-dimensional. Statistic L̃M(b0) is de�ned in equation (5) and statistic LM(a, b) is
de�ned in (4).

b = (φx, φπ, κ, σa, σu, σ), b = (α, ρ, δ, σa, σu, σ)
a = (α, ρ, δ) a = (φx, φπ, κ)

Test Statistic 5% 10% 5% 10%
L̃M(b0) 7.99% 15.28% 8.95% 15.40%

mina LM(a, b0) 6.41% 12.99% 7.50% 13.30%

7.1.4 Subset Tests

Finally, we simulate tests for subsets of parameters. Speci�cally, as before we consider
a partition of the parameter vector, θ = (a′, b′)′, and consider the problem of testing
H0 : b = b0 without any restrictions on a. In this context, we simulate two tests. One is
based on the LM statistic evaluated at (â, b0) for â the restricted ML estimator, which
we have discussed extensively in this paper. The other is based on mina LM(a, b0),
suggested Stock and Wright (2000) for GMM when a is strongly identi�ed. If the results
of Kleibergen and Mavroeidis (2009) can be extended to the current DSGE setting, when
a is weakly identi�ed the asymptotic distribution of this statistic will be dominated by
that of a χ2

kb
. For both approaches, and for several subsets of parameters, we simulate

the distribution of the statistic and then construct tests using quantiles from the χ2
kb

distribution as critical values.
We �rst consider6 testing the six parameters other than α, ρ, and δ, (so we have

a = (α, ρ, δ) and b = (φx, φπ, κ, σa, σu, σ)). The size of 5% and 10% tests based on these
statistics using asymptotic (χ2

6) critical values is given in Table 2. As can be seen, while
the χ2

6 distribution does not provide a perfect approximation to the distribution of either
statistic, it is fairly close. Both statistics tend to over-reject, so since the test based on
mina LM(a, b0) is more conservative by construction it performs somewhat better.

We next consider testing the six parameters other than φx, φπ and κ (so a = (φx, φπ, κ),
while b = (α, ρ, δ, σa, σu, σ)). Again, the tests slightly over-reject compared to their
asymptotic size.

Finally, we may be interested in testing only one parameter at a time (for example
to generate con�dence sets). Based on 1000 simulations, we report test sizes for each
parameter separately in Table 3. The results for LM(α̂, β0) are similar to those in
the other parameter subsets, although the degree of over-rejection is larger for most

6Additional simulation results are available upon request.
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Table 3: Simulated Test Size for one dimensional hypotheses about each parameter separately
Parameter L̃M(β0) 5% L̃M(β0) 10% minα LM(α, β0) 5% minα LM(α, β0) 10%

φx 7.6% 13.7% 2.1% 7.1%
φπ 8.8% 15.8% 2.6% 7.1%
α 14.9% 27.1% 10.0% 19.5%
ρ 15.1% 27.5% 9.8% 19.8%
δ 12.6% 22.1% 5.5% 11.6%
κ 17.3% 27.3% 11.1% 19.7%
σa 15.2% 26.5% 10.4% 18.8%
σu 9.2% 16.2% 1.9% 7.3%
σ 16.4% 26.9% 10.1% 20.3%

parameters. Interestingly, when we consider the minimized statistic the tests we receive
are quite conservative for some parameters while somewhat over-rejecting for others.

7.2 Nonlinear Weak IV

Figure 3: CDF of L̃M(π0) for nonlinear weak IV, C = .01, T=100
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In Section 5 we prove that, provided α is well identi�ed, under appropriate assump-
tions L̃M(β0) converges to a χ2

kβ
distribution asymptotically, where kβ is the dimension

of β. As shown in Section 6, for the exponential family model where α is weakly identi�ed
but enters linearly we again have that L̃M(β0) converges to a χ2

kβ
. To understand the

extent to which this result relies on the fact that α, the nuisance parameter, enters the
expression linearly, we here consider a variation on the usual weak IV model in which β
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enters the equation for Y nonlinearly. In particular, the model is:

Y = π
(
β2Z2 + βZ

)
+ U ; X = πZ + V

with β, π scalar and (ut, vt)
′ ∼ iidN (0, Id2). As usual with weak IV, we take the �rst-

stage parameter to zero as the sample size grows, π = C√
T
. The log-likelihood for this

model is `(θ) = const− 1
2

∑
(yt − π (β2z2

t + βzt))
2− 1

2

∑
(xt − πzt). We consider testing

H0 : π = π0 using L̃M(π0) as de�ned in (5), and are interested in whether this statistic
has a χ2

1 distribution asymptotically. While we do not have any theoretical results for
this case, we have run a number of simulations, which suggest that a χ2

1 is a reasonable
approximation to the distribution of this statistic. In particular, we set β = 1 and,
c = .01, and consider T = 100 and T = 10, 000. For each value of T, we simulate 10,000
Monte-Carlo draws, and calculate the size of asymptotic 5% and 10% tests (using critical
values based on a χ2

1) for sample sizes 100 and 10,000, which we report in Table 4. We
also plot the CDF of L̃M(π0), together with that of a χ2

1, in Figure 3. These simulation
results show that the distribution of L̃M(π0) is close to a χ2

1 in this model, suggesting
that it may be possible to extend our theoretical results to this context.

Table 4: Size of 5% and 10% Tests based on L̃M(π0)for Nonlinear IV Model
Sample Size Rejection rate for 5% test Rejection rate for 10% test

100 6.49% 12.70%
10000 5.70% 11.34%

7.3 ARMA(1,1) with nearly canceling roots

Example 2 (cont.) We examine the performance of our proposed tests in the weak
ARMA(1,1) model. We simulate samples of size 50 from the model

Yt = (π + β)Yt−1 + et − πet−1, et ∼ i.i.d.N(0, 1).

taking π = .5, β = C√
T

and C = .01. The simulated cdfs for LM(θ0) and L̃M(π0) are
presented in �gures 4 and 5, respectively. As these results make clear, the simulated dis-
tributions of both tests in this model are quite close to the their asymptotic distributions,
even for moderate sample sizes.
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Figure 4: CDF of LM(β0, π0) for ARMA(1,1), C = .01, T=50
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Figure 5: CDF of L̃M(π0) for ARMA(1,1), C = .01, T=50
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9 Appendix with Proofs

We denote by super-script 0 quantities evaluated at θ0 = (α′0, β
′
0)
′. In the Taylor expan-

sions used in the proof for Theorem 2, the expansion is assumed to be for each entry of
the expanded matrix.

Proof of Lemma 1
The proof follows closely the argument of Bhat (1974), starting with the Taylor ex-

pansion:

0 = Sα(α̂, β0) = S0
α − I0

αα(α̂− α0)− (Iαα(α∗, β0)− I0
αα)(α̂− α0),

where α∗ is a convex combination of α̂ and α0. We may consider di�erent α∗ for di�erent
rows of Iαα. Assumption 2(b) helps to control the last term of this expansion, while
Assumption 2(a) allows us to substitute Jαα,T for Iαα,T in the second term. Assumption
1 gives the CLT for Kα,T Sα,T . ¤

Lemma 4 Let MT =
∑T

t=1 mt be a multi-dimensional martingale with respect to sigma-
�eld Ft, and let [X]t be its quadratic variation. Assume that there is a sequence of
diagonal matrices KT such that MT satis�es the conditions of Assumption 3. Let mi,t be
the i-th component of mt, and Ki,T the i-th diagonal element of KT . For any i, j, l:

Ki,T Kj,T Kl,T

T∑
t=1

mi,tmj,tml,t →p 0.

Proof of Lemma 4 Take any ε > 0,
∣∣∣∣∣Ki,T Kj,T Kl,T

T∑
t=1

mi,tmj,tml,t

∣∣∣∣∣ ≤ max
t
|Ki,T mi,t|

∣∣∣∣∣Kj,T Kl,T

T∑
t=1

mj,tml,t

∣∣∣∣∣ =

= max
t
|Ki,T mi,t| |Kj,T Kl,T [Mj,Ml]T | .

35



Assumption 3(b) implies that Kj,T Kl,T [Mj,Ml]T →p Σj,l is bounded in probability.

E
(
max

t
|Ki,T mi,t|

)
≤ ε + E

(
Ki,T max

t
|mi,t|I{|Ki,T mi,t| > ε}

)
≤

≤ ε +
∑

t

E (Ki,T |mi,t|I{|Ki,T mi,t| > ε}) .

The last term converges to 0 by Assumption 3(a). ¤
Proof of Lemma 2 Notice �rst that

− ∂

∂αi

Iαα = −[Aααi
, Sα]− [Aαα, Sαi

]− [Sα, Aααi
] + 2

T∑
t=1

sα,ts
′
α,tsαi,t + Λαααi

, (9)

where Λαααi
is as de�ned in (7), and [M,N ] =

∑T
t=1 mtn

′
t.

Denote by ft = f(xt|Xt−1; θ) the (valid) pdf, while fα,t, fαα,t etc. are its partial
derivatives with respect to α. Notice that the increments of Sα,T , Aαα,T and Λαααi

are
sα,t = fα,t

ft
, aαα,t = fαα,t

ft
, and λαααi,t =

fαααi,t

ft
respectively. By de�nition

− ∂

∂αi

Iαα =
∂3

∂α∂α′∂αi

T∑
t

log ft =
T∑
t

fαααi,t

ft

−
T∑
t

fααi,t

ft

f ′α,t

ft

−

−
T∑
t

fαα,t

ft

fαi,t

ft

−
T∑
t

fα,t

ft

f ′ααi,t

ft

+ 2
T∑
t

fα,t

ft

f ′α,t

ft

fαi,t

ft

,

so (9) follows.
Now consider the quantity of interest from Assumption (2b)

∣∣Kα,T (Iαα(α1, β0)− I0
αα)Kα,T

∣∣ =
∑

i

Kα,T

∣∣∣∣
∂

∂αi

I∗αα

∣∣∣∣ Kα,T |α1,i − α0,i|.

It su�ces to show that Kαi,T Kα,T

∣∣∣ ∂
∂αi

I∗αα

∣∣∣ Kα,T →p 0, using identity (9). Assumption
(2b') implies that the last term converges to zero in probability. Lemma 4 implies that
the second term is negligible. And �nally, Assumption (2a) gives us that the �rst term
also converges to zero in probability. ¤

Proof of Theorem 2 For simplicity of notation we assume in this proof that Cij = C

for all i, j. The generalization of the proof to the case with di�erent Cij's is obvious but
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tedious. According to the martingale CLT, Assumption 3 implies that

(Kα,T S0
α, Kβ,T S0

β, Kαβ,T vec(A0
αβ)′) ⇒ (ξα, ξβ, ξαβ), (10)

where the ξ's are jointly normal with variance matrix ΣM .
We Taylor expand Sβj

(α̂, β0), the j-th component of vector Sβ(α̂, β0), keeping in mind
that I0

βjα = − ∂2

∂βj∂α
`(α0, β0), and receive

Kβj ,T Sβj
(α̂, β0) = Kβj ,T S0

βj
−Kβj ,T I0

βjα(α̂− α0) +
1

2
Kβj ,T (α̂− α0)

′(I0
ααβj

)(α̂− α0) + R̃j,

with residual
R̃j = Kβj ,T

1

2
(α̂− α0)

′(I∗ααβj
− I0

ααβj
)(α̂− α0),

where I0
ααβj

= ∂3

∂α∂α′∂βj
`(α0, β0), I∗ααβj

= ∂3

∂α∂α′∂βj
`(α∗, β0), and α∗ is again a point between

α̂ and α0. From Lemma 1 we have that K−1
α,T |α̂− α0| = Op(1). As a result, Assumption

4 (c) makes the Taylor residual negligible:

Kβj ,T Sβj
(α̂, β0) = Kβj ,T S0

βj
−Kβj ,T I0

βjα(α̂− α0) +
1

2
Kβj ,T (α̂− α0)

′(I0
ααβj

)(α̂− α0) + op(1).

We plug asymptotic statement (6) into this equation and get

Kβj ,T Sβj
(α̂, β0) = Kβj ,T S0

βj
−Kβj ,T I0

βjα(I0
αα)−1S0

α +
1

2
Kβj ,T S0′

α (I0
αα)−1(I0

ααβj
)(I0

αα)−1S0
α + op(1).

Recall that by de�nition I0
βα = J0

βα − A0
βα. We use this substitution in the equation

above, and receive:

Kβj ,T Sβj
(α̂, β0) = Kβj ,T S0

βj
−Kβj ,T J0

βjα(I0
αα)−1S0

α + Kβj ,T A0
βjα(I0

αα)−1S0
α+

+
1

2
Kβj ,T S0′

α (I0
αα)−1(I0

ααβj
)(I0

αα)−1S0
α + op(1). (11)

One can notice that we have the following informational equality:

I0
ααβj

= −[A0
αα, S0

βj
]− [A0

αβj
, S0

α]− [S0
α, A0

αβj
] + 2

T∑
t=1

sα,ts
′
α,tsβj ,t + Λααβj

. (12)

It can be obtained in the same manner as (9). Assumption 4(b) implies that
Kβj ,T Kα,T Λααβj

Kα,T →p 0. Assumption 2(a) and Assumption 3 together imply that
(Kα,T ⊗Kα,T )K−1

αα,T → 0. Using Assumption 2(a) and Lemma 4, we notice that

Kβj ,T Kα,T I0
ααβj

Kα,T = −Kβj ,T Kα,T [A0
αβj

, S0
α]Kα,T −Kβj ,T Kα,T [S0

α, A0
αβj

]Kα,T + op(1).

(13)
According to Assumption 4(a), Kβj ,T Kα,T [A0

αβj
, S0

α]Kα,T is asymptotically bounded so

37



Kβj ,T Kα,T I0
ααβj

Kα,T = Op(1). By Assumption 2(a) Kα,T I0
ααKα,T = Kα,T JααKα,T + op(1);

Assumption 4(a) implies that Kα,T AαβKβ,T is bounded. Taken together, these statements
imply that we can substitute J0

αα for I0
αα everywhere in (11). Doing so gives us:

Kβj ,T Sβj
(α̂, β0) = Kβj ,T S0

βj
−Kβj ,T J0

βjα(J0
αα)−1S0

α + Kβj ,T A0
βjα(J0

αα)−1S0
α+

+
1

2
Kβj ,T S0′

α (J0
αα)−1(I0

ααβj
)(J0

αα)−1S0
α + op(1),

Kβj ,T Sβj
(α̂, β0) = Kβj ,T S0

βj
−Kβj ,T J0

βjα(J0
αα)−1S0

α + D′
j(J

0
ααKα,T )−1S0

α + op(1), (14)

where
Dj = Kα,T Kβj ,T A0

αβj
+

1

2
Kα,T Kβj ,T (I0

ααβj
)(J0

αα)−1S0′
α .

Notice that D, a kα×kβ random matrix, is asymptotically normal (though it may have
zero variance, i.e. it may converge to zero) and asymptotically independent of Kα,T S0

α.
Indeed, using (13) we have:

Dj =Kα,T Kβj ,T K−1
αβj ,T

(
Kαβj ,T A0

αβj
− (Kαβj ,T [A0

αβj
, S0

α]Kα,T )(Kα,T J0
ααKα,T )−1Kα,T S0′

α

)
+ op(1) ⇒

⇒C
(
ξαβj

− cov(ξαβj
, ξα)V ar(ξα)−1ξα

)
,

where variables (ξ′α, ξ′αβj
) = lim(Kα,T S0′

α , Kαβj ,T A0′
αβj

) are as described at the beginning
of the proof.

Plugging the last statement and (10) into equation (14) we have:

Kβj ,T Sβj
(α̂, β0) ⇒ ξβj

− cov(ξβj
, ξα)V ar(ξα)−1ξα+

+C
(
ξαβj

− cov(ξαβj
, ξα)V ar(ξα)−1ξα

)
V ar(ξα)−1ξα. (15)

Conditional on ξα, Kβ,T Sβ(α̂, β0) is an asymptotically normal vector with mean zero.
Now we turn to the inverse variance term in formula (5) for L̃M(β0),

(
Jββ − JβαJ−1

ααJ ′βα

)∣∣
(α̂,β0)

.
Below we prove the following lemma:

Lemma 5 Under the Assumptions of Theorem 2 we have:

(a) Kβi,T Kβj ,T Jβiβj
(α̂, β0) ⇒ cov(ξβi

, ξβj
) + C · cov(ξαβi

, ξβj
)′V ar(ξα)−1ξα +

+ C · cov(ξαβj
, ξβi

)′V ar(ξα)−1ξα + C2ξ′αV ar(ξα)−1cov(ξαβi
, ξαβj

)V ar(ξα)−1ξα;

(b) Kα,T Kβj ,T Jαβj
(α̂, β0) ⇒ cov(ξα, ξβj

) + C · cov(ξαβj
, ξα)V ar(ξα)−1ξα;

(c) Kα,T Jαα(α̂, β0)Kα,T →p V ar(ξα).
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Lemma 5 implies that

Kβi,T Kβj ,T

(
Jβiβj

− JβiαJ−1
ααJ ′βjα

)∣∣∣
(α̂,β0)

⇒

⇒ cov(ξβi
, ξβj

) + C · cov(ξαβi
, ξβj

)′V ar(ξα)−1ξα + C · cov(ξαβj
, ξβi

)′V ar(ξα)−1ξα

+ C2ξ′αV ar(ξα)−1cov(ξαβi
, ξαβj

)V ar(ξα)−1ξα−
− (

cov(ξα, ξβi
) + C · cov(ξαβi

, ξα)V ar(ξα)−1ξα

)′
V ar(ξα)−1×

× (
cov(ξα, ξβj

) + C · cov(ξαβj
, ξα)V ar(ξα)−1ξα

)
.

Note that the last expression is the same as the variance the right side of equation
(15) conditional on random variable ξα. That is, Kβ,T

(
Jββ − JβαJ−1

ααJ ′βα

)
Kβ,T

∣∣
(α̂,β0)

is
asymptotically equal to the asymptotic variance of Kβ,T Sβ(α̂, β0) conditional on ξα. As
a result statistic L̃M(β0), conditional on ξα, is distributed χ2

kβ
asymptotically and thus

is asymptotically χ2
kβ

unconditionally as well. This completes the proof of Theorem 2.
Proof of Lemma 5
(a) We can Taylor expand Jβiβj

(α̂, β0) as:

Jβiβj
(α̂, β0) = J0

βiβj
+

∂

∂α
J0

βiβj
(α̂− α0) +

1

2
(α̂− α0)

′ ∂2

∂α∂α′
J0

βiβj
(α̂− α0) + Rij, (16)

where

Kβi,T Kβj ,T Rij = Kβi,T Kβj ,T
1

2
(α̂− α0)

′
(

∂2

∂α∂α′
J0

βiβj
− ∂2

∂α∂α′
J∗βiβj

)
(α̂− α0)

is negligible asymptotically due to Assumption 4(c). Consider the �rst term of the Taylor
expansion above:

∂

∂α
Jβiβj

=
∂

∂α

∑
t

sβi,tsβj ,t = [Aα,βi
, Sβj

] + [Aα,βj
, Sβi

]− 2
∑

sα,tsβi,tsβj ,t.

Using Lemma 4 and Assumption 4(a) we have

Kα,T Kβi,T Kβj ,T
∂

∂α′
Jβiβj

→p C · cov(ξαβi
, ξβj

) + C · cov(ξαβj
, ξβi

). (17)
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Now let us consider the normalized second derivative of Jβiβj
:

Kβi,T Kβj ,T Kα,T
∂2

∂α∂α′
Jβiβj

Kα,T =

= Kβi,T Kβj ,T Kα,T

(
[Λααβi

, Sβj
] + [Λααβj

, Sβi
] + [Aαβi

, Aαβj
] + [Aαβj

, Aαβi
]
)
Kα,T + op(1).

The op(1) term appears due to Lemma 4, applied to the remaining terms. Assumption
4(b) implies that Kα,T Kβi,T Kβj ,T [Λααβi

, Sβj
]Kα,T →p 0. Finally using Assumption 3(b)

we get

Kβi,T Kβj ,T Kα,T
∂2

∂α∂α′
Jβiβj

Kα,T →p C2cov(ξαβi
, ξαβj

) + C2cov(ξαβj
, ξαβi

). (18)

Putting the expressions for derivatives (17) and (18) into equation (16), and also noticing
that due to Lemma 1 K−1

α,T (α̂− α0) ⇒ V ar(ξα)−1ξα, we get statement (a).
(b) Again we use Taylor expansion:

Jαβj
(α̂, β0) = J0

αβj
+

∂

∂α
J0

αβj
(α̂− α0) +

1

2

∑
n

∂2

∂α∂αn

J∗αβj
(α̂− α0)(α̂n − α0,n). (19)

From assumption 3(b)

Kα,T Kβj ,T J0
αβj

→p cov(ξα, ξβj
). (20)

Taking the derivative we see

∂

∂α
Jαβj

=
∂

∂α

∑
t

sα,tsβj ,t = [Aαα, Sβj
] + [Sα, Aαβj

]− 2
∑

sα,ts
′
α,tsβj ,t.

According to Lemma 4 Kα,T Kβj ,T

∑
sα,ts

′
α,tsβj ,tKα,T → 0. Assumptions 2(a) and 3 imply

that Kα,T Kβj ,T [Aαα, Sβj
]Kα,T →p 0. We have

Kα,T Kβj ,T
∂

∂α
Jαβj

Kα,T = Kα,T Kβj ,T [Sα, Aαβj
]Kα,T + op(1) →p C · cov(ξα, ξαβj

).

Similarly, we can show that the residual term in (19) is asymptotically negligible. Putting
the last equation, together with (20), into (19) and using Lemma 1 we get statement (b)
of Lemma 5.
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(c) As before we use Taylor expansion

Kα,T Jαα(α̂, β0)Kα,T = Kα,T J0
ααKα,T +

∑
n

Kα,T
∂

∂αn

J∗αα(α̂n − α0,n)Kα,T ;

∂

∂αn

Jαα = [Aααn , Sα] + [Sα, Aααn ] + 2
∑

sα,ts
′
α,tsαn,t.

By the same argument as before Kα,T Kαn,T [Aααn , Sα]Kα,T →p 0, and according to Lemma
4, Kα,T Kαn,T

∑
sα,ts

′
α,tsαn,tKα,T →p 0. Given the result of Lemma 1 we arrive at state-

ment (c). ¤
Proof of Theorem 3. Whenever a function is given with no argument, it means

it is evaluated at the true θ0. For the functions `,m, n and r only, subscript 1 stands
for the partial derivative with respect to α1, subscript 2 for the partial derivative with
respect to α2, and subscript β for the partial derivative with respect to β. M ′ denotes
the transpose of M . For simplicity of notation this proof assumes that α1 and α2 are
scalars. The generalization to the multidimensional case is obvious but tedious.

Let H1 =
∑T

t=1

(
H(xt)− Ȧ

)
be a p×1 vector, H2 =

∑T
t=1

(
H(xt)− Ȧ

)(
H(xt)− Ȧ

)′

be a p×p matrix. According to the conditions of Theorem 3, 1
T
H1 →p 0 and 1

T
H2 →p −Ä,

and a Central Limit Theorem holds for 1√
T
H1.

Consider the following normalization: Kα1,T = 1√
T
; Kα2,T = 1; Kβ,T = Idkβ

. Below
we check Assumptions 1, 2, 3 and 4 for the exponential model.

Assumption 1 One can check that

ST =




(m1 + 1√
T
n1α2 + 1√

T
r1)

′H1

n′√
T
H1

(nβα2+rβ)′√
T

H1


 =

∂η

∂θ

′
H1,

where ∂η
∂θ

= ((m1 + 1√
T
n1α2 + 1√

T
r1),

n√
T
,

(nβα2+rβ)√
T

) is p× k matrix, k = dim(β) + 2. It is
easy to show that JT = ∂η

∂θ

′
H2

∂η
∂θ
. Using the normalization KT we have:

KT JT KT →p −




m′
1

n′

(nβα2 + rβ)′


 Ä(m1, n, nβα2 + rβ) = Σ.

Due to the rank assumption, Σ is positive-de�nite.

41



Assumption 2(a) We calculate Iαα,T :

Iαα,T =


 m′

11H1 − Tm′
1Äm1

n′1√
T
H1 − T n′√

T
Äm1

n′1√
T
H1 − T n′√

T
Äm1 −T n′√

T
Ä n√

T


 + op(1).

Now it is straightforward to show that Kα,T Iαα,T Kα,T converges to the same limit as
Kα,T Jαα,T Kα,T . This means that J−1

αα,T Iαα,T →p Id2.

Assumption 2(b) We can prove by tedious di�erentiation that

Kαi,T Kαj ,T Kαl,T
∂3`

∂αi∂αj∂αk

→p 0. (21)

Below we drop all terms that are of obviously smaller order:
1

T 3/2
`111 =

1

T 3/2

(
H ′

1m111 − 3Tm′
1Äm11 − T

∑
i

m′
1

...
Aim1(m1)i

)
+ op(1) →p 0;

1

T
`112 =

1

T

(
H ′

1

n11√
T
− Tm′

11Ä
n√
T
− 2Tm′

1Ä
n1√
T
− T

∑
i

m′
1

...
Ai

n√
T

(m1)i

)
→p 0;

1√
T

`122 =
1√
T

(
T

∑
i

n′√
T

...
Ai

n√
T

(m1)i − 2T
n′√
T

Ä
n1√
T

)
→ 0;

`222 = −T
∑

i

n√
T

...
Ai

n√
T

(n)i√
T
→ 0,

here
...
Ai = ∂

∂ηi
Ä, (x)i is the i-th component of vector x, and the summation runs over

all components of η in the term involving the third derivative. The last two statements
employ that α2 enters linearly, so any time we di�erentiate with respect to α2 a term
including n√

T
appears. Given the third informational equality stated in (9) and Lemma

4, equation (21) implies that Assumption 2(b) holds.
Assumption 3 From the de�nition of Aαβ one can see that:

Aβα1√
T

=
1√
T

n′β1√
T

H1 + op(1), Aβα2 =
n′β√
T

H1 + op(1).

From the assumptions of Theorem 3 we get that Aβα1√
T
→p 0 and that Aβα2 satis�es the

Central Limit Theorem jointly with ST (θ0), where we use Kβα1 = 1√
T
and Kβα2 = 1.

Assumption 4 Assumption 4(a) holds trivially. For Assumption 4(b) we check
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that
1

T
`11β →p 0, (22)

1√
T

(`β1α2 − [Aβα2 , Sα1 ]) →p 0, (23)

`22β − 2[Aβα2 , Sα2 ] →p 0. (24)

Equation (22) comes from di�erentiation:

1

T
`11β =

1

T

((
n11βα2 + r11β√

T

)′
H1 − T

(
nβα2 + rβ√

T

)′
Äm11−

−2T

(
n1βα2 + r1β√

T

)′
Äm1 − T

∑
i

(
nβα2 + rβ√

T

)′ ...
Aim1(m1)i

)
→p 0.

Taking derivatives one can check that 1√
T
`12β →p −n′βÄm1 and Aβα2 =

(
nβ√

T

)′
H1+op(1).

As a result,
[Aβα2 ,

Sα1√
T

] =
1

T
n′βH2m1 →p −n′βÄm1,

and statement (23) holds. We also have

[Aβα2 , Sα2 ] =
n′βj√

T
H2

n√
T

+ op(1) →p −n′βj
Än.

One can easily check that `22 = −n′Än, so we have `22β →p −2n′βÄn. Together, these
results imply (24). According to the third informational equality (a version of which is
given in (12)) and Lemma 4 statements (22), (23) and (24) imply Assumption 4(b).

Assumption 4(c) It is enough to check that

1

T 3/2
`111β →p 0;

1

T
`112β →p 0;

1√
T

`122β →p 0; `222β →p 0.

The idea here is that since ηT is linear in α2, each additional derivative with respect
to α2 generates n√

T
. If the derivative is taken with respect to α1, then the additional nor-

malization 1/
√

T is added. In any case the normalization of all terms will be excessively
strong, so they will be asymptotically negligible.

We have shown that Assumptions 1-4 hold for the exponential model described in
Theorem 3. Thus, applying Theorem 2, the conclusion of Theorem 3 holds. ¤
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