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Abstract

This paper proposes nonparametric and semi-nonparametric estimation of hazard models with var-

ious types of dependence between observations. The methods are designed to examine the impact that

di¤erent macroeconomic and �nancial conditions have on hazard rates. First, dependence between

time-varying covariate processes across observations is examined. Among other possibilities, covariate

processes that are common to all observations are permitted. This is motivated by situations where

macroeconomic variables such as the interest or unemployment rate a¤ect all hazard rates. Second, I

examine a global latent risk factor which increases clustering of defaults. This unobserved risk factor is

referred to as frailty. Finally, defaults of certain observations are allowed to directly a¤ect the hazard

rate of related observations. This phenomenon is given the general name contagion. The martingale

nature of default is preserved in the presence of these types of dependence. Martingale CLT and

FCLT results are derived. Two types of estimation are presented, both of which are based on the

derived martingale results. First, a kernel approach is taken. Asymptotic results are derived while

accounting for dependence between processes using mixing conditions. Second, a point process likeli-

hood approach is taken. Sieve estimation is possible in the presence of dependent process, contagion

and frailty. Again, mixing conditions are assumed. The path of the unobserved frailty component

and the parametric impact of covariates are consistently estimated. The estimate of the frailty path

is then used to estimate the underlying stochastic process the unobserved risk factor follows.

1 Introduction

The hazard rates of random economic events frequently depend on macroeconomic conditions. Just

a few examples include mortgage default, corporate default, retirement, investment decisions and labor

market decisions. If the macroeconomy impacts hazard rates, then dependence across observations is a

fundamental aspect of the analysis. If there were independence, the distribution of observations at risk
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of default1 during a recession would be the same as those at risk during an expansionary period. When

global economic conditions matter, this cannot be the case.

One approach to modeling the dependence of default on macroeconomic conditions is to include

macro variables as covariates in hazard analysis. From an estimation standpoint, these variables cause

problems because they are common to all observations observed at a particular calendar time. As a

result, observations cannot be i:i:d:When estimating the e¤ect of macro variables on the hazard rate, the

dependence that results from the use of covariates common to all observations must be incorporated into

the statistical analysis.2 Dependence of defaults may also be driven by correlation between observation-

speci�c covariates. These types of variables often have dependence with macro covariates. Economic

hazard models should account for all of these potential correlations.

In unemployment duration analysis, models often assume that global aspects of the economy a¤ect

hazard rates. The level of unemployment insurance bene�ts impacts all observations within a state or

country. Government support for the unemployed clearly a¤ects the hazard rate of becoming employed.

In the United States, there are interactions between state and federal unemployment bene�ts. This

causes dependence between support levels across states. Statewide unemployment rates are sometimes

used as covariates. These variables are identical for all observations within a state at a �xed calendar

time. This forces dependence across hazard rates. Other macro variables which impact unemployment

durations are the interest rate and GDP growth rate.

Another example with correlation between relevant covariates is mortgage default. Over 75 percent

of subprime mortgages originated in the US between 2003 and 2007 have an adjustable interest rate

component (see Mayer, Pence and Sherlund (2009)). Interest rates paid on these mortgages are tied to

other interest rates or indexes, such as the 3-month US treasury rate or LIBOR. As a result, payment

on these mortgages are determined by observable macroeconomic covariates. This causes dependence

among mortgage defaults. Other variables which impact mortgage defaults are unemployment rates and

housing values. These covariates are likely correlated geographically.

The considerations given above suggest a more general proposition: random economic events are

correlated and the econometric analysis of their hazard rates must account for this correlation. There is

surprisingly little statistical analysis of hazard rates where dependence between observations is considered.

One speci�cation which has received attention is cluster analysis. In these situation, covariates are allowed

to be dependent within groups while the groups are independent. See Martinussen and Scheike (2010),

Hougaard (2000) or Aalen, Borgan and Gjessing (2010) for an overview of these types of methods. This

assumption is not su¢ cient for our purposes. Hazard models using common macroeconomic variables

imply dependence between all observations. In economic situations, there may be no natural way to

place observations into groups with statistically independent covariates across groups.

In some situations, the available data will not be enough to explain the character of the observed

defaults. For example, in corporate default modeling, defaults may be clustered around recessions or

�nancial crashes. If the clustering is too severe, hazard models may capture the realized data poorly.

Some statistical support for the failure of standard hazard models in this context is given in Das, Du¢ e,

Kapadia and Saita (2007). In order to account for this potential time dependent model misspeci�cation,

1Throughout the paper, we will refer to random times which have corresponding hazard rates as "default".
2Throught the paper, we will refer to any global variables (such as macroeconomic variables) as common variables.
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Du¢ e, Eckner, Horel and Saita (2009) introduce a global latent risk factor into a standard hazard model.

This risk factor is similar to an unobserved macroeconomic covariate. As in Du¢ e et al. (2009), we

call this latent variable frailty. At time periods where frailty is high, there is clustering in default

beyond what can be explained by the observed covariates. When frailty is low, defaults are suppressed.

The additional time varying dependence improves model �t. Frailty has received attention elsewhere

(Azizpour, Giesecke and Schwenkler (2011), Koopman, Lucas and Schwaab (2011)). As it is unlikely

available data will ever contain all elements that are relevant to hazard rates, this model extension is

relevant for many applications.

The path of the frailty variable can be considered a given deterministic function of time. However,

without any additional structure on the latent risk factor, forecasting will be ruled out. This is because,

with no assumption on how frailty will propagate in the future, we have no probabilistic description of

what will happen next. Du¢ e et al. (2009) proposes assuming that frailty follows a di¤usion. If the

underlying di¤usion can be characterized, frailty can be used to improve default predictions.

While defaults may be correlated as a result of dependence in relevant variables (both observed and

unobserved), they may also be correlated as a result of other defaults themselves. The survival of a

business will depend on many economic variables, but it will also depend on the existence of rivals. If

a competitor fails, the probability of survivors failing will be a¤ected directly by that default. Another

prominent example is credit default. Models often assume if one contract defaults, the hazard rate for

remaining contracts increases. Other examples of this phenomenon potentially include the adoption of

new technology or the decision to retire, among others. I will refer to this phenomenon as contagion. A

rigorous de�nition is given in the sequel. This notion is well developed in the �nancial default literature.

See Giesecke and Kim (2010), Collin-Dufresne, Goldstein and Helwege (2009), Jarrow and Yu (2001) and

Davis and Lo (2001).

In this paper I investigate the econometric analysis of continuous-time hazard models whose obser-

vations are dependent in the ways outlined above. The single-spell situation is considered throughout.

The estimation approaches will generalize to the multiple-spell case. I focus on nonparametric and

semi-nonparametric estimation.

Nonparametric kernel estimation of a hazard model with single-spell data and time-varying covariates

is achieved in Nielsen and Linton (1995) and Linton, Nielsen and Van de Geer (2003) (hereafter NL (1995)

and LNV (2003)). These papers are leading examples in the kernel approach to hazard estimation.

However, they assume that covariate stochastic processes across observations are independent (although

these processes may be dependent within observations). Therefore, hazard estimation with common

covariates is not justi�ed by these papers.

I extend the results of NL (1995) and LNV (2003) to the case where covariate processes may be

dependent across observations. In particular, I assume speci�c �-mixing conditions outlined below.

�-mixing is chosen for concreteness and the ideas can be applied to other mixing conditions. This

dependence framework allows for global variables such as the S&P 500 or interest rates to a¤ect hazard

rates. Variables speci�c to observations are also possible.

In order to estimate the hazard function in this situation, a cross section of observations is not

su¢ cient. If all observations are observed over the same calendar time interval, then each observation

is impacted by the same portion of the common processes. The impact of macro variables can not
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be consistently estimated in this situation because there is e¤ectively no sampling of these variables.

Defaults and the covariates determining their hazard rates must be observed over periods with di¤erent

realizations of the common time series. When macro variables are of interest, this corresponds to observing

defaults over periods with di¤erent macroeconomic conditions. The proposed sampling scheme assumes

that observations potentially default over a �xed time interval which can be interpreted as the life of a

contract. This assumption may also be interpreted as censoring all observations with durations longer

than a �xed time length. By sampling from observations at risk of default over di¤erent blocks of calendar

time, we e¤ectively sample from the common process. From this sampling scheme we can asymptotically

recover hazard functions dependent on common variables. The �xed time length assumption may be

unreasonable in some situations. This is removed at the expense of stronger assumptions elsewhere.

The results for nonparametric kernel estimation include a derivation of asymptotic bias and con�dence

bands for an estimate of the hazard function. A uniform rate of convergence is presented. Finally, by

assuming a multiplicative or additive structure on the hazard function, the curse of dimensionality is

circumvented. In these results, we do not incorporate contagion or frailty. These dependence structures

are explored with a second estimator.

A second set of results in this paper extend the point process likelihood estimation approach presented

in Karr (1987). In this portion of the paper, we assume a Cox proportional hazard speci�cation. Karr

(1987) examines sieve estimation of the baseline hazard in a proportional hazard model. In that work,

the observations are assumed i:i:d: and the covariates�coe¢ cients are assumed known.

Frailty is a global unobserved risk factor which can be thought of as an unobserved macro covariate.

Frailty is de�ned as an unobserved, strictly positive function of time. In a proportional hazard speci�-

cation, frailty takes the place of the baseline hazard in the model. When observations are at risk over

di¤erent calendar time intervals their corresponding baseline hazards will be di¤erent. Their baseline

hazard will correspond to the portion of the frailty function coincident with the calendar time. When

the frailty path is above one, there is additional default above that explained by the covariates. When

the frailty path is below one, the opposite is true. Du¢ e et al. (2009) adds additional structure to

the situation by assuming the frailty path is determined by the realization of a mean-reverting di¤usion

process. The idea is that unobserved or di¢ cult to quantify common risk factors are driving default

clustering. These risk factors are mean reverting to a baseline level of risk.

In Du¢ e et al. (2009), a Bayesian approach is taken in estimating the di¤usion. The consistency

result in that paper relies on an i:i:d: assumption which is violated in situations that are the focus of

the current paper. Here, I derive consistent estimates using a point process likelihood approach. In a

�rst step, the realized path of the frailty di¤usion is estimated using sieves. Once the di¤usion path is

estimated, statistical methods which incorporate continuous observations of a di¤usion can be used to

estimate the underlying frailty dynamics. This estimation of the frailty process is done in the presence

of dependent covariates.

When common macro variables are present, sampling a single cross section over a block of calendar

time will not lead to consistent estimation. This is for reasons discussed above - there is e¤ectively no

sampling of the common processes in this case. All that is observed are the common processes over a single

block of time. Consistent estimation of the coe¢ cients for the common processes is a prerequisite for

recovering the frailty path. Therefore, cross sectional sampling does not recover the corresponding portion
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of the frailty path. We must observe common processes over an increasingly large number of calendar

time intervals in order to estimate the coe¢ cients of these covariates consistently. In order to estimate the

frailty function, the number of observations over each calendar time interval must also approach in�nity.

An appropriate sampling scheme for this situation incorporates both these requirements.

Assuming such a sampling scheme, I derive conditions under which the covariate coe¢ cients and the

portion of the frailty path coincident with each block of calendar time can be estimated consistently.

This produces an estimate of the frailty path. In addition, the current value of frailty is a by-product of

estimation. This is important for forecasting applications.

In a �nal model, a notion of contagion is allowed for in a likelihood estimation approach. Contagion

is present when observations have covariate stochastic processes which depend on the default of other

observations. Contagion is assumed to be con�ned within groups. Defaults of group members can

only a¤ect the covariates of other group members. The speci�cation also allows for covariates that do

not depend on other observations defaulting. These non-contagious covariates are not restricted to be

dependent only within groups. As a result, there is still dependence in defaults across groups. This

setup allows for a simple statement of the needed mixing conditions. When contagious e¤ects are not

con�ned within groups the needed mixing conditions become more complicated and di¢ cult to verify.

When contagion is present, I assume cross sectional sampling of observations that are at risk of

default over a �xed time interval [0; T ]. This sampling scheme is chosen for simplicity and rules out

common macroeconomic processes as covariates. The estimation in Karr (1987) is extended so the

covariate coe¢ cients are estimated instead of assumed known. This is done in the presence of dependence

across covariates and contagion. In this result, consistent estimates of the baseline hazard and covariate

coe¢ cients are obtained. Widely used results from Anderson and Gill (1982) are extended to this

dependence situation as well. From these results, we are able to derive con�dence bands for the covariate

coe¢ cients. Similar estimation can be conducted with common processes if frailty is not present. The

introduction of frailty rules out standard estimation approaches like Anderson and Gill (1982).

The remainder of the paper is organized as follows. Section 2 presents the model and derives martin-

gale results required for estimation. Section 3 presents extensions of the kernel methods of NL (1995) and

LNV (2003) to the dependent case. Section 4 presents sieve estimation using a point process likelihood

approach. Contagion and frailty are de�ned and incorporated into the analysis. Several other related

results are presented in this section. Section 5 concludes. Some results and proofs are presented in the

appendices.

2 Models and Martingale Preliminaries

This section describes how the random times used in this paper are constructed. Special attention is given

to incorporating common covariates across observations. In addition, dependence between observation-

speci�c variables is incorporated. Our focus will be on deriving the martingale nature of random times

with the appropriate dependence. A martingale CLT and FCLT are derived. These are preliminary

results needed to facilitate estimation in later sections. Throughout this section, the example of credit

default will be used to motivate the speci�cation. The results are general, but keeping an example in

mind makes the presentation easier to follow.
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I do not allow for frailty or contagion here. The same type of martingale structure holds in a similar

speci�cation with these forms of dependence. These notions of dependence are rigorously de�ned in

Section 4. Estimation with these model elements is postponed until that section.

First, I present the covariate processes which are assigned to each observation. Then, I show how those

processes are used to construct the random times at which observations default. The hazard function of

these random times will arise naturally in the construction. The hazard model given here has the same

distributional properties as almost all hazard models in the literature. However, the exact construction

is invaluable when dealing with mixing conditions, as we do throughout the paper.

The main sampling scheme considered will be referred to as block/step sampling. It has three

important elements for each observation: a set of covariate stochastic processes Xi (t) which are speci�c

to the observation i; a set of covariate stochastic processes which are common Y (t); and a calendar time

Gi at which observation i is "born" or becomes at risk of default. More speci�cs are given below. Related

sampling schemes are also discussed.

2.1 Block/Step Sampling

We index each observation by i 2 N0. In addition, each observation has a deterministic constant Gi

which corresponds to the calendar time at which it begins to be at risk of default. Each observation

is at risk of default over a �xed time interval of length T . However, the period over which they are at

risk corresponds to the calendar time interval
�
Gi; Gi + T

�
. These calendar time intervals are allowed to

overlap. Throughout, Gi are assumed to be deterministic.

The time interval
�
Gi; Gi + T

�
may be contractually speci�ed, such as the duration of a loan. The

default situation may also have a natural time interval. For example, a model for school dropout.

Another possibility is that observations are censored after a speci�ed time interval. In Section 3.2 below

we relax this assumption at the expense of stronger assumptions elsewhere.

Let
�
Xi (t)

�� t 2 [0; T ]	 be d covariate stochastic processes speci�c to each observation. Xi (t) for t 2
[0; T ] corresponds to the value of these covariates over the calendar time interval

�
Gi; Gi + T

�
. De�ning

Xi (t) on [0; T ] instead of
�
Gi; Gi + T

�
is done for notational simplicity. We make the important additional

assumption on Xi (t) that its paths are left-continuous with right-hand-limits (càglàd for short)3. Assume

the distribution of the variables Xi (t) has support equal to the compact set X = X1 � � � � � Xd for each
t 2 [0; T ]. I emphasize that we are not making any stationarity assumption on Xi (s) within observations.

We only assume the support of the covariates at each time is the same and rectangular. The length of

time the observation has been at risk of default t will also be a variable in the sequel.

In addition, there is another set of j covariate processes Y (t). Y (t) is assumed to be stationary with

càglàd paths and to have compact support Y = Y1 � � � � � Yj for each t 2 [0;1). For simplicity, the

support of all covariate processes can be thought of as [0; T ] � [0; 1]d+j . The covariate processes Y (t)

are common to all observations in that, for each observation i, the portion of Y (t) corresponding to the

calendar time the observation is at risk
�
Gi; Gi + T

�
a¤ects the hazard rate for that observation. The

process Y (t) correspond to macro or other global variables such as the S&P 500 or unemployment rate.

3Left continuity implies that the processes Xi (t) and processes based on Xi (t) used below are predictable, an important
technical property for our results. See Jacod and Shiryaev (2003) for a de�nition of predictability and discussion of its
importance.

6



The assumption that all processes have the same support through time could be relaxed. This

would be necessary for including variables such as total work experience in an employment hazard model.

However, the support of the hazard function would have to become irregular and this would complicate

notation. We focus on the rectangular case in the sequel. In section 4, we allow our covariate processes

to have discrete supports or supports that change through time. The required assumption is that the

covariates have support contained in a compact rectangle for all t 2 [0; T ].
To sum up, the relevant covariates for observation i are

�
Zi (t) =

�
t;Xi (t) ; Y

�
Gi + t

���� t 2 [0; T ]	.
Note that the entire analysis below can be conducted under the assumption that there are no common

Y (t) processes. Dependence between the covariate processes Xi (t) will be assumed. Therefore, even in

this simpler situation, the results that follow are an extension of the existing literature.

Although the martingale limit theorem we present below holds more generally, we focus on a particular

sampling structure. I will refer to this sampling structure as "block/step sampling". Assume that

Gi = ci� where ci 2 N, ci � ci+1 and k� = T for some k 2 N. The sampling corresponds to the following
diagram.

0

j________
T

j___________________________

____

1
2
T

j ________
3
2
T

j _____________________

________
T

j________
2T

j __________________

____________

3
2
T

j ________
5
2
T

j _____________

Here, � = T
2 . The calendar times where observations start are multiples of �. � is the "step". All

observations starting at the same time form a "block". There can be any �nite number of observations

in each block, including zero. The blocks are of equal length [0; T ] and are a distance � > 0 apart, where

� < T is possible. For asymptotic results to hold, we must assume ci !1 as i!1.
Block/step sampling corresponds to a number of relevant economic situations. The previously given

examples of unemployment duration, mortgage default and corporate default all �t into this sampling

scheme. This is because, in these examples, di¤erent observations begin to be a risk of default starting at

di¤erent calendar times. People become unemployed or sign a mortgage at di¤erent calendar times and

corporations take on debt at di¤erent calendar times. We gather more data as more relevant economic

relationships are started. As we get more observations, this happens at increasingly larger calendar

times. A large number of other economic situations fall into this setup. Because ci+1 � ci can take on
any positive integer, the sampling allows for �exibility in the spacing of observations. Observations can

start at any integer multiple of �. If � is taken to be small, most irregularly spaced sampling situations

can be captured by block/step sampling.

Another situation constitutes a second standard form of sampling that is examined below. This is

a standard cross section with no block/step structure. In this sampling, we consider a cross section

observed over a time interval [0; T ]. This corresponds to the situation where Gi = 0 for all i. Here, there

are no common processes Y (t). We assume observations are separated into groups of �nite size. Groups

are comprised of successive members of the sample ordering i. The size of the groups need not be equal.

Each group has its own set of m covariate processes Rl (t). Here, l indexes the group number. Assume
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the distribution of the variables Rl (t) has compact support R = R1 � � � � � Rm for each t 2 [0; T ]. The
covariates Rl (t) are allowed to be dependent across groups. In the sequel, we will abuse notation and

write Ri (t) for the group-speci�c covariates corresponding to observation i�s group.

This set up could be used, for example, in a spacial model where geographically speci�c covariates

are observed. Asymptotics would be interpreted as holding when the number of speci�c geographical

locations goes to in�nity. It is simple to extend block/step sampling to incorporate block speci�c covariate

processes Ri (t). Ri (t) could be used, for example, to account for covariates speci�c to cohorts. In this

extension, Ri (0) corresponds to the value of these covariates at calendar time Gi. The variables Ri (t)

are de�ned on [0; T ] instead of
�
Gi; Gi + T

�
for notational simplicity, similarly to Xi (t) described above.

For the most part, the variables Ri (t) are left out of the speci�cation to keep notation manageable.

2.2 Construction and Martingale Structure

Our construction of the random times follows Bielecki and Rutkowski (2004) Example 9.1.5. We present

results for the general case of block/step sampling with block speci�c covariates. In this situation, the

relevant covariates for observation i are
�
t;Xi

t ; R
i
t; Yt+Gi

�
. Recall that we have de�ned Xi

t and R
i
t on [0; T ]

instead of
�
Gi; Gi + T

�
for notational simplicity. It is trivial to remove any of these groups of processes

and deal with a simpler model. In what follows, � (�) will be the hazard function in the construction,
with covariate stochastic processes taken as arguments. We make the following assumption

(A1): � : [0; T ]�X �R� Y ! R is a continuous function such that

inf
(t;x;r;y)2[0;T ]�X�R�Y

� (t; x; r; y) = C > 0;

sup
(t;x;r;y)2[0;T ]�X�R�Y

� (t; x; r; y) = C <1:

for all i 2 N0.

We assume A1 throughout the paper. Random times � i are de�ned as

�it �
Z t

0
�
�
s;Xi

s; R
i
s; Ys+Gi

�
ds

� i � inf
�
t 2 R+j�it � �i

	
where �i is an independent standard exponentially distributed random variable. The �i variables are

independent of all covariates and each other. Notice that the portion of the process Y (t) corresponding

to the calendar time the observation is at risk is used in the de�nition of �it. This is also true for
�
Xi
t ; R

i
t

�
because their time intervals are adjusted from

�
Gi; Gi + T

�
to [0; T ]. In this model, the function � (�) is

the hazard function. Speci�cally:

�
�
t;Xi

t ; R
i
t; Yt+Gi

�
= lim
�!0

1

�
P f t � � i < t+�j � i � tg :

The distributions of defaults in this model are equivalent to those in most hazard models encountered

in the literature, including all i:i:d: cases. A notable exception is models where dependence between
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observations is derived from copulas. One approach is to put a copula on the �i (see Cherubini et al.

(2004)). Here, this is ruled out by assuming �i are independent.

We observe the covariates
�
t;Xi

t ; R
i
t; Yt+Gi

�
and the random times � i. Conditionally independent

censoring can be added to the model. This type of censoring is independent of the random default

variable, conditional on the covariates. This is assumed in many papers which exploit the martingale

structure of default in estimation. Most stochastic processes shown to be martingales in the sequel retain

this martingale structure in the presence of conditionally independent censoring. See Martinussen and

Scheike (2010) or Anderson et al. (1994) for an overview of this type of censoring. We do not include

censoring in what follows for notational simplicity. All results in the sequel follow with conditionally

independent censoring unless speci�cally noted otherwise.

We need a little more notation:

�it =

Z t

0
�
�
s;Xi

s; R
i
s; Ys+Gi

�
1f� i�sgds;

M i
t = 1f� i�tg � �

i
t:

Many of the following asymptotic results depend on M i
t being continuous-time martingales. The needed

martingale structure is veri�ed below. �it is a "compensator". It is strictly increasing and ��it subtracts
o¤ just enough to make M i

t a mean-zero martingale under certain technical conditions. The relationship

betweenM i
t , 1f� i�tg and �

i
t is known as the Doob-Meyer decomposition. A brief account of the martingale

results needed for this paper are presented in Appendix D. In the notation from Appendix D, �it =

M i;M i

�
t
. See Fleming and Harrington (1991) for an excellent and very thorough account of the

martingale theory of counting processes used in this paper.

Those readers not interested in speci�cs about the required martingale structure of M i
t and related

asymptotic results should skip the rest of this section, perhaps taking a quick look at Lemma 1 and

Proposition 3. We de�ne the following sequence of �ltrations, which correspond to observations i =

1; : : : ; n.

Fn = �
�
Xi (u) ; Ri (v) ; Y (s)

�� 0 � u; v � T ; s 2 [0;1) ; i = 1; : : : ; n	 ;
Hit = �

�
1f� i�ug

�� 0 � u � t	 ;
Gnt = Fn _H1t _ � � � _ Hnt :

Notice also that the processes �it are adapted to the �ltration Gnt .4

These constructs are well known in the literature on point processes. However, what is di¤erent about

this set up is the temporal adjustment. Although the covariates relevant for observation i come from its

corresponding calendar time interval
�
Gi; Gi + T

�
, we shift these variables through time and de�neM i

t on

the interval [0; T ]. This is done for all observations. Because of the sampling structure, di¤erent M i
t are

derived from di¤erent portions of the common processes Y (t). The result is that portions of the Y (t)

processes corresponding to di¤erent calendar time intervals are put "on top of each other" in the interval

[0; T ]. Depending on the �ltration chosen, this may cause problems. It is not obvious that the needed

4For all t > T , we de�ne �it � �iT and Gnt � GnT . All other processes will be de�ned for t > T with the same convention
unless otherwise stated.
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martingale structure will hold. Our choice of �ltration will avoid these problems and a certain technical

issue discussed below.

A martingale structure for M i
t is a required preliminary result for many statistics regarding point

processes. We establish this property below. In addition, the "usual conditions" on the underlying

�ltration are necessary for many results related to martingales.5. We establish the usual conditions for

the completion of the �ltration Gnt for any n. This is a nontrivial property, particularly in the block/step
sampling situation where temporal adjustment is required.6 The usual conditions are a requirement for

the FCLT result we derive below. This FCLT is used to discuss speci�cation testing in Section 4.

What is critical about the following lemma is that, for each n, all M i
t = 1f� i�tg � �it, i = 1; : : : ; n are

martingales with respect to the same �ltration. This happens despite the fact that di¤erent blocks of

Y (t) are "on top of each other" in the block/step case.

Lemma 1 (1) The completion of the �ltration Gnt with respect to the null sets given by Gn1 = [t2[0;1)Gnt
and the underlying probability measure (we will write this as Gnt ) is a right continuous �ltration for all
n 2 N. (2) 1f� i�tg � �it are G

n
t -martingales for all i = 1; : : : ; n.

Proof. See Appendix B.

Remark 2 Lemma 1 is based on results from Brémaud (1981), which verify that �ltrations derived from

right continuous piecewise constant processes are right continuous. The right continuous and piecewise

constant processes used in the proof are 1f� i�tg. However, by including the entire paths of the covariates

Xi (s) and the common covariates Ri (s) ; Y (s) in Fnt = Fn, we are able to avoid the assumption that
these processes are right continuous and piecewise constant. As a result, we can consider examples where

the covariate processes follow di¤usions or other continuously changing processes. This is particularly

important given that we need to assume covariates have left-continuous paths for many of our arguments.

The Brémaud (1981) results do not follow from left-continuous piecewise constant processes. Frequently,

covariate processes will be left-continuous and piecewise constant in applications.

I modify the martingale CLT used in Nielsen and Linton (1995) in order to obtain results relevant

to the current setting. The martingale CLT used in NL (1995) is only justi�ed in the case where the

covariates are i:i:d:7 However, similar results follow from a Rebolledo-type martingale CLT which holds

for general martingales. Our construction of defaults will be important in verifying that these asymptotic

results hold in speci�c situations. This is the main reason for insisting on this construction.

Some of these results require the underlying �ltration to satisfy the usual hypothesis, which we es-

tablished in Lemma 1 for the derived �ltration. We follow the results of Liptser and Shiryayev (1980),

(1989) in deriving the martingale CLT presented below in Proposition 3. These results are related to

those in Hall and Heyde (1980). However, our approach allows for simple conditions under which a FCLT

holds.

The next result looks super�cially the same as the martingale CLT given in NL (1995). However, our

results allows for the type of dependence between covariates outlined above.
5A �ltration satis�es the usual conditions if it is right continuous and complete. Right continuoity of a �ltration Ft

means Ft = \h>0Ft+h for any t 2 [0;1). Completion means F0 contains all the P null sets of F . See any standard text
such as Protter (2005).

6Any �ltration can be made right continuous, but this may destroy the martingale nature of M i
t .

7This also rules out contagion as de�ned in Section 4.
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Proposition 3 Let
n
g
(n)
1 ; : : : ; g

(n)
n

o
be an array of predictable processes w.r.t. Gnt with a uniform bound

across rows over the interval [0; T ]. Suppose � is a constant. If, as n!1,

nX
i=1

Z T

0

h
g
(n)
i (s)

i2
d�it (s)!p �2; (1)

nX
i=1

Z T

0

h
g
(n)
i (s)

i2
1n���g(n)i (s)

���>�od�it (s)!p 0; 8� > 0: (2)

Then
nX
i=1

Z T

0
g
(n)
i (s) dMi (s)) N

�
0; �2

�
:

If (1) and (2) hold for all t 2 [0; T ], with �2 (t) a deterministic function, then

nX
i=1

Z T

0
g
(n)
i (s) dMi (s))D[0;T ] M (t)

where M (t) is a continuous Gaussian martingale with variance structure �2 (t). If (1) converges to a

random variable �2 instead of a constant, weak convergence will be to a mixed normal with mean zero and

variance �2.

Proof. See Appendix B.

3 Kernel Estimation

In this section, I derive kernel estimates which extend the results of Nielsen and Linton (1995) and Linton,

Nielsen and Van de Geer (2001) to the dependent case. I focus on the block/step sampling case with no

block speci�c covariate processes Ri (t). The model can easily be extended to account for the processes

Ri (t) and all results below hold when they are present. However, the notation is already complicated

and we remove Ri (t) to focus on the ideas.

Let k be a continuous one-dimensional probability density and kb (�) = 1
bk (�=b) for some bandwidth

b > 0. K (u) = �dj=1k (uj) where u = (u1; : : : ; ud) and Kb (u) = �dj=1kb (uj). We use product kernels

and a single bandwidth throughout. This can be modi�ed in practice. Assume we are in the block/step

sampling case. Recall that we write Zi (t) =
�
t;Xi (t) ; Y

�
Gi + t

��
. The following results will be

pointwise and we assume that z = (t; x; y) is an interior point in the support [0; T ] � X � Y. The

following notation is used

Kb
�
z � Zi (s)

�
=

1

b
k

�
t� s
b

�
� 1
bd
k

�
x1 �Xi1 (s)

b

�
� � � k

�
xd �Xid (s)

b

�
� 1
bj
k

 
y1 � Y 1

�
s+Gi

�
b

!
� � � k

 
yj � Y j

�
s+Gi

�
b

!
:
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In conducting estimation, NL (1995) and LNV (2003) are followed. The focus is on the di¤erences

between results due to the assumed dependence between observations. As much as possible, the notation

of these previous papers is used.

De�ne N i (t) as

N i (t) = 1f� i�tg:

The hazard rate � (t; x; y) is estimated by

b� (t; x; y) = 1
n

Pn
i=1

R T
0 Kb

�
z � Zi (s)

�
dNi (s)

1
n

Pn
i=1

R T
0 Kb (z � Zi (s))1f� i�sgds

� bo (z)be (z) :
De�ne

�� (t; x; y) =
1
n

Pn
i=1

R T
0 Kb

�
z � Zi (s)

�
�
�
Zi (s)

�
1f� i�sgds

1
n

Pn
i=1

R T
0 Kb (z � Zi (s))1f� i�sgds

;

and decompose b�� �0 as
(b�� �0) (z) = (b�� ��) (z) + (�� � �0) (z) = Vz

Ez
+
Bz
Ez
:

Here,

Ez � 1

n

nX
i=1

Z T

0
Kb
�
z � Zi (s)

�
1f� i�sgds; (3)

Vz � 1

n

nX
i=1

Z T

0
Kb
�
z � Zi (s)

�
dMi (s) ;

Bz � 1

n

nX
i=1

Z T

0
Kb
�
z � Zi (s)

� �
�
�
Zi (s)

�
� �0 (z)

�
1f� i�sgds:

We will also need the following

b�2z � 1

E2z
bd+j+1

n

nX
i=1

Z T

0
K2
b

�
z � Zi (s)

�
dNi (s) ; (4)

Kz � bd+j+1

n

nX
i=1

Z T

0
K2
b

�
z � Zi (s)

�
�
�
Zi (s)

�
1f� i�sgds;

Hz � b2(d+j+1)

n2

nX
i=1

Z T

0
K4
b

�
z � Zi (s)

�
�
�
Zi (s)

�
1f� i�sgds:

Assume that each observation

�
Zi (t) =

�
t;Xi (t) ; Y

�
Gi + t

���� t 2 [0; T ]	
has the same functional distribution. Speci�cally, let Xi (t+) and Y

�
Gi + t+

�
be the right continuous

versions of these processes8.

8The right continuous version of a process is de�ned as X (t+) = lims#tX (s) for each t 2 R.
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(A2): Assume, for each i �
Zi (t+) =

�
t;Xi (t+) ; Y

�
Gi + t+

���� t 2 [0; T ]	
has the same functional distribution.9 ;10

Additionally, we assume the following distributions and densities are the same for each observation.11

(A3): Each observation has the same mean functional

w (t) = E
�
1f� i�tg

�
;

and conditional distribution function

Ft (x; y) = P
�
Xi (t) � x; Y

�
Gi + t

�
� y
��1f� i�tg = 1� :

This distribution is assumed to have a corresponding density ft (x; y) with support equal to X1 �
� � � � Xd � Y1 � � � � � Yj , the compact support assumed above.

De�ne

e (z) = ft (x; y)w (t) :

Assumption (A3) is the main stumbling block to applying kernel estimation to hazard models with con-

tagion. I de�ne rigorously what is meant by contagion in Section 4. The assumption implies that the

covariates are continuously distributed for all t 2 [0; T ]. Many speci�cations of contagion will not satisfy
this. However, it may be possible to satisfy these conditions in some contagion situations.

We use assumption (A4) from LNV (2003) in the sequel. It is reproduced here for convenience.

(K2): The kernel k has support [�1; 1], is symmetric about 0 and is of order r, that is,
R 1
�1 k (u)u

rdu 2
(0;1), where r � 2 is an even integer. The kernel is also r � 1 times continuously di¤eren-
tiable on [�1; 1] with lipschitz remainder; that is, there exists a �nite constant klip such that��k(r�1) (u)� k(r�1) (u0)�� � klip ju� u0j for all u; u0. Finally, k(j) (�1) = 0 for j = 0; : : : ; r � 1.

In the following result, we follow NL (1995) Theorem 1. However, we add additional high level

assumptions necessary because of the dependence in our model. Later in this section, I discuss some

assumptions which imply those given in Theorem 4 below.

9Speci�cally, assume the observations i have the same distribution in the Skorokhod space. See Billingsley (1999) or
Jacod and Shiryaev (2003) for more on the Skorokhod space. We need to consider right continuous versions of the above
processes because the Skorokhod space is de�ned on D[0; T ], the space of all right continuous paths with left hand limits
on [0; T ]. We had previously assumed Zi (s) has càglàd paths. The purpose of A2 is to preserve the values of certain
expectations of integrals that arise in the i:i:d: case. Because the relevant processes are used in integrals, making them right
continuous does not a¤ect the expectation of those integrals. Consideration of the right continuous versions of the processes
is purely for the convenience of using the Skorohod space for functional distributions.
10Càglàd processes can only have a countable number of discontinuities. These are the only values that change when we

make the process right continuous. See Ethier and Kurtz (1986) pg.116 Lemma 5.1.
11This would follow directly from an assumption on the functional distribution of Zi on a space that contains càglàd paths.

Such a space is not standard, so we make the additional assumption.
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Theorem 4 Assume (A1)-(A3) and (K2). Assume (S): e (z) > 0 on a neighborhood of z; �; e 2 Cr in
a neighborhood of z where r � 2. De�ne the constants �1 =

R 1
�1 v

2k (v) dv and �2 =
R 1
�1 k

2 (v) dv. (B):

nbd+j+1 !1 and b! 0. Assume

Ez � E [Ez]!p 0: (5)

Kz � E [Kz]!p 0: (6)

Bz � E [Bz]!p 0: (7)

Hz � E [Hz]!p 0: (8)

Then the following holds. C (z) is a constant that depends on z.

n1=2b(d+j+1)=2 [b� (z)� �� (z)]) N

�
0; �d+j+12

� (z)

e (z)

�
; (9)

b�r [�� (z)� �0 (z)]!p C (z) (10)

b�2z !p �2z � �
d+j+1
2

� (z)

e (z)
(11)

In particular, if we choose the bandwidth such that b � n�1=(d+j+1+2r), then the asymptotic bias is given
by C (z).

Proof. See Appendix B.
The assumptions (5)-(8) each state that a particular array of mean zero random variables converges to

zero in probability. All of these arrays are derived from the underlying covariates and random variables

�i. As a result, an assumption on the dependence of the processes Zi (t) determines the dependence

properties for these arrays. The next lemma gives an important preliminary result to establishing mixing

conditions on the summands in (5)-(8).

Lemma 5 Let f (x; y; t) be a bounded continuous function on Rd+j+1. De�neW 1 =
R T
0 f (Xs;YGi+s; s) ds

and W 2 =
R T
0 f (Xs;YGi+s; s)1f� i�sgds. Then

�
�
W 1
�
; �
�
W 2
�
� �

�
�i; X

i (s) ; Y
�
Gi + s

��� 0 � s � T	 : (12)

Proof. See Appendix B.
Lemma 5 allows us to convert mixing conditions on the underlying covariate processes into mixing

conditions on the integrals we use for estimation. This will facilitate veri�cation of the conditions in

Theorem 4. Each of the arrays used in Theorem 4 will inherit the mixing conditions of the underlying

processes Zi (t), where mixing is in the dimension i = 1; : : : ; n. Therefore, (5)-(8) can all be established

with a single mixing condition on the covariates. This is far more natural an economic assumption

than directly making dependence or convergence assumptions on the rather complicated sums (5)-(8).

Directly assuming mixing conditions for the appropriate arrays will also verify (5)-(8). Below, we will

assume �-mixing for concreteness. However, Lemma 5 can accommodate a variety of di¤erent mixing

conditions.

The interpretation of Lemma 5 is simple. If we know the paths of the processes Xi (s), Y
�
Gi + s

�
14



and we know �i, then we can derive the values ofW
1 andW 2. If we only know the values ofW 1 andW 2,

we can not necessarily recover the paths of Xi (s), Y
�
Gi + s

�
or �i. Information is potentially lost in

the integration. Putting mixing conditions on the right hand side of (12) is stronger than needed for the

results of Theorem 4 to hold. Only the arrays in (5)-(8) need to satisfy the required mixing conditions.

Our approach to verifying the conditions in Theorem 4 is to make mixing assumption on the underlying

variables Zi (t) and �i. Then, by Lemma 5, these mixing assumptions are transferred onto the summands

of integrals in Ez, Kz, Bz and Hz. Once their expectations are subtracted o¤, the rows of these arrays

are sums of mean zero random variables which satisfy mixing conditions. Finally, we show (5)-(8) with

a Bernstein inequality based on the mixing properties.

The Bernstein inequality from Bosq (1999) pg. 27 will be used. This requires �-mixing. Di¤erent

Bernstein inequalities require other conditions. In particular, several other Bernstein inequalities which

can facilitate the proof require stationarity assumptions. In these situations, we need the rows of the

arrays Ez, Kz, Bz and Hz to be stationarity. This requires a stationary functional distribution assumption
on the underlying covariates. See Modha and Masry (1996) or Chen and Shen (1998) for alternate

Bernstein inequalities requiring stationarity. Other choices have various drawbacks and advantages.

Recall, for a sequence of random variables Wt which generate �-�elds

F ji = � fWtj t = i; : : : ; jg ;

the �-mixing coe¢ cients are

� (n) = sup
k2N

sup
n
jP (A \B)� P (A)P (B)j ;A 2 Fk1 ; B 2 F1k+n

o
:

Proposition 6 Assume (A1)-(A3). De�ne the sequence of �-�elds

Hml = _mi=l�
�
�i; X

i (s) ; Y
�
Gi + u

��� 0 � s; u � T	 :
Assume the system of �-�elds Hml has an �-mixing rate � (n) such that for some � > 0 and � > 0,

� (n) � �n��

If, for some 0 <  < 1,

b2(d+j+1)n ! 1;

n�(1�)��b�(d+j+1)=2 ! 0;

then the conditions (5)-(8) of Theorem 4 hold. Assume Hml has an �-mixing rate � (n) such that for

some � > 0 and c > 0,

� (n) � � exp (�cn) :
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If, for some 0 <  < 1,

b2(d+j+1)n ! 1;

b�(d+j+1)=2n exp
�
� c
2
n(1�)

�
! 0;

then the conditions (5)-(8) of Theorem 4 hold.

The variables �i do not a¤ect the mixing rate because they are i:i:d: and independent of the covariates.

If �-mixing holds with the same inequalities given in Proposition 6, the results also holds because of the

well known inequality 2� (n) � � (n). The mixing rate needed for Proposition 6 reduces to controlling

the mixing rate for Y (t) if the processes Xi (t) are i:i:d: and independent of Y (t). Dependence between

the sets of variables Xi (t) and between Xi (t) and Y (t) is also possible. This allows for the most relevant

economic situation where all variables are correlated with each other. Continuous time mixing conditions

on Xi (t) and Y (t) easily transfer onto the relevant system of �-�elds Hml .
In order to have an asymptotically normal estimator with a �nite asymptotic bias, the requirements

for the bandwidth are n1=2b(d+j+1)=2 � b�r and those conditions given in Proposition 6. If the inequality
n1=2b(d+j+1)=2 � b�r is weak, there will be no asymptotic bias. Comparing b2(d+j+1)n ! 1 to the

analogous condition in the i:i:d: case b(d+j+1)n!1, we see that the rate at which b! 0 must be slowed

down in the dependence case. A similar reduced rate for the bandwidth is required if other Bernstein

inequalities are used. Successive observations in the ordering provide less additional information than in

the i:i:d: case because they are correlated with previous observations. Therefore, given a �xed data size,

observations further from the desired estimation point in pointwise estimation must be more intensively

incorporated into estimators compared with the i:i:d: case. This requires the bandwidth to converge

more slowly to zero.

Theorem 7 Let I be any compact set such that I � [0; T ] � X � Y. Make the assumptions (A1)-(A3)

and (K2). Assume Hml from Proposition 6 has an �-mixing rate � (n) such that for some � > 0 and

c > 0,

� (n) � � exp (�cn) :

In addition, we assume (B) from Theorem 4. Assume w (t) and ft (x; y) are continuous on [0; T ] for all

(x; y). Finally, assume � (�) and e (�) are r � 2 time continuously di¤erentiable and inf(t;x;y)2[0;T ]�X�Y [e (z)] >
0. Then, for any 0 <  < 1 which satis�es

n(9=4) exp
�
� c
2n

(1�)�
log n

! 0;

the following holds:

sup
x2I

jb� (x)� � (x)j = O (br) +Op(r log n

nb2(d+j+1)

)
(13)

Proof. See appendix B.
A similar theorem holds assuming polynomial alpha mixing decay as in Proposition 6. Comparing

the above theorem with Lemma 3 from LNV (2003), we see that the dependence slows down the uniform
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convergence rate by replacing nb(d+j+1) with nb2(d+j+1) in (13). This is a similar adjustment as required

for Proposition 6. The rate of uniform convergence (13) is the result of the particular Bernstein inequality

used in the proofs. Other Bernstein inequalities will facilitate the same proof with di¤erent assumptions

and resulting convergence rates.

The result (9) from Theorem 4 states that, provided all the regulatory conditions are satis�ed, the

asymptotic variance of the estimators is the same as in the i:i:d: case. The consistent estimator of the

asymptotic variance (11) is the same one used in the i:i:d: case. However, several simulation studies in

the literature show that when the same estimator of the asymptotic variance for the i:i:d: case is used in

the dependent case, the estimator preforms poorly in small samples. See Chen, Liao and Sun (2011) for

an overview of this problem and more citations. Other approaches to estimating the asymptotic variance

in �nite samples have been shown to preform better. Possible approaches include bootstrapping and long

run variance. Again, see Chen, Liao and Sun (2011). Incorporating these extensions into our estimation

methods is a topic of future research.

3.1 The Curse of Dimensionality

Throughout this section, we face a standard curse of dimensionality problem as the number of covariates

increases. As in LNV (2003), if we further restrict the form of the hazard function we are able to greatly

improve the rate of convergence in our dependent case. Speci�cally, we may assume the hazard is either

additively or multiplicatively separable:

� (z) = cA +

d+j+1X
l=1

gj (zj) (14)

� (z) = cM

d+j+1Y
l=1

hj (zj) (15)

where cA and cM are constants. We still assume (A1). In particular, 0 < C � � (z). The individual

functions in (14)-(15) are not separately identi�ed. We need to de�ne a probability measure over the

compact rectangle I in order to identify them. Let Q be an arbitrary cdf with probability only on I and

with marginal cdfs Ql (zl) = (1; : : : ;1; zl;1; : : : ;1) and Q�l (z�l) = (z1; : : : ; zl�1;1; zl+1; : : : ; zd+j+1).
The functions in (14)-(15) are identi�ed by assuming, for all l = 1; : : : ; d+ j + 1Z

gl (zl) dQl (zl) = 0; (16)

or Z
hl (zl) dQl (zl) = 1: (17)

LNV (2003) allow for very general Q and for Q to be estimated from data. For simplicity, we assume Q

is known with the following form

(A4): Q is continuous with respect to Lebesgue measure. Its has density equal to 1
q1
� � � 1

qd+j+1
where ql is

the length of the compact interval corresponding to variable l in the compact rectangle I. It has

marginal densities 1
ql
for Ql and 1

q�l
= 1

q1
� � � 1

ql�1
1
ql+1

� � � 1
qd+j+1

for Q�l.
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Under this assumption Q satis�es assumption (A2) from LNV (2003). The following results could be

extended to more complicated probability measures. Note also that
R
� (z) dQ (z) = cA and

R
� (z) dQ (z) =

cM in each model respectively. I write c generically when the speci�c model is unimportant.

Make the following de�nitions:

�Q�j (zj) =

Z
� (z) dQ�j (z�j) ;

�AQ�j (zj) = �Q�j (zj)� c = gj (zj) ;

�MQ�j (zj) =
�Q�j (zj)

c
= hj (zj) :

and de�ne the corresponding estimators

bc =

Z b� (z) dQ (z) ;
b�Q�j (zj) =

Z b� (z) dQ�j (z�j) ;
b�AQ�j (zj) = b�Q�j (zj)� bc;
b�MQ�j (zj) =

b�Q�j (zj)bc :

Theorem 8 Assume all the conditions of Theorem 7, (A4) and the identi�cation assumption (16) or

(17). Let C > 0 and 0 < � � r= (2r + 1). Assume

b =

"
n��1=2

C

#2
: (18)

With � = r= (2r + 1) and large enough  and r, all of the following conditions will hold assuming the form

of b in (18). Other bandwidth choices are possible. Note that it must be the case that  > 1=2.

n1=2b2r�(d+j+1)=2 ! 0; (19)

n1=2�=2 log1=2 (n) br�3(d+j+1)=2 ! 0;

n1=2� log (n) b�5(d+j+1)=2 ! 0;

log n

nb2(d+j+1)+1
! 0;

nb2(d+j+1)+1 !1:

If these conditions hold, there exists functions mj (�), vj (�) which are bounded and continuous on Ij such
that for all zj 2 Ij

n�
�b�Q�j (zj)� �Q�j (zj)�) N [mj (zj) ; vj (zj)] :

vj (zj) is equal to

vj (zj) = C
2�2

Z
I�j

� (z) 1
q�j

e (z)
dz�j :
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If � < r= (2r + 1), then the estimator is asymptotically unbiased (i.e. mj (zj) = 0). Assuming we computebc using bandwidths such that bc� c = Op �n�1=2�, then
n�
�b�AQ�j (zj)� gj (zj)� ) N [mj (zj) ; vj (zj)] ; (20)

n�
�b�MQ�j (zj)� hj (zj)� ) N

�
mj (zj) =c; vj (zj) =c

2
�
: (21)

All that is needed for (20)-(21) is that bc�c converges to zero faster than n�. 1=2 is an upper bound for
r= (2r + 1), which corresponds to in�nite di¤erentiability. The result always holds if bc� c = Op �n�1=2�,
which is what is presented in the theorem. The fact that we can always choose  and r such that the

conditions (19) hold shows how smoothness of the hazard function and weakening of dependence between

covariates facilitates the results. A similar theorem can be derived assuming polynomial mixing decay.

In this case, the trade o¤ is more important because the dependence is stronger.

Extending this result for di¤erent Bernstein inequalities is possible. Care needs to be taken in

modifying the proof as speci�cs of the inequality become entangled with the needed rates of convergence

for the bandwidth.

A problem in any implementation of these results is how to choose the bandwidth. A practical

approach is to use a version of cross validation. This has been considered in the hazard case in Ramlau-

Hansen (1981), Nielsen (1990), Anderson et al. (1994) and NL (1995). b is chosen to minimize the

criterion function

M (b) =

nX
i=1

Z 1

0
b�2�i �Zi (s)�1f� i�sgds� 2 nX

i=1

Z 1

0
b��i �Zi (s)� dN i

s

where b��i is the leave-one-out version of the estimator. Asymptotically, this is equivalent to minimizing
nX
i=1

Z �b��i �Zi (s)�� � �Zi (s)��2 1f� i�sgds:
3.2 Unbounded Estimation

The results above restrict the time interval for which observations are at risk to be bounded with length

T . In many situations, there is no natural upper bound on the time interval observations are at risk. In

this subsection, I discuss how to remove this restriction at the price of stronger assumptions.

Appendix A shows how to extend the construction given in Section 2 to allow for martingales de�ned

on [0;1]. Throughout this section, we assume the conditions needed for this extension are satis�ed. In
addition, we assume that time is not a covariate for simplicity.

All of the arrays in (3) and (4) can be de�ned at in�nity by taking pointwise limits as T !1. The
values b� (z) and �� (z) can similarly be de�ned by taking pointwise limits as T !1. For the remainder
of this section, we assume all relevant de�nitions have been extended to in�nity by taking pointwise limits.

We are now in a position to extend Theorem 4. Only a weak additional condition is required.

Proposition 9 Assume all of the conditions of Theorem 4. In particular, conditions (5)-(8) are assumed
directly. The corresponding arrays have been extended by taking pointwise limits as T ! 1. Assume,
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for all � > 0

Xni =

Z 1

0

1

n1=2b(d+j+1)=2
K
�
z � Zi (s)

�
dMi (s) ;

nX
i=1

X2
ni1 fjXnij > �g !p 0: (22)

Then the results (9)-(11) from Theorem 4 hold.

Proof. Simple extension of the proof of Theorem 4. See Appendix B.

Unbounded versions of Theorems 7 and 8 are possible with appropriate additional assumptions. These

results are omitted for brevity. The martingale central limit theorem used here is Hall and Heyde (1980)

Corollary 3.1. This is basically equivalent to the one used in Theorem 4. The additional Lindberg

condition (22) is needed because, when there is no upper bound T , (22) is not trivially satis�ed.

We directly assume conditions (5)-(8) instead of deriving them from mixing conditions on the un-

derlying processes. Another approach is to assume the rows of the relevant arrays satisfy the required

mixing conditions. For example, the mixing conditions from Proposition 6. This is weaker than making

assumptions on the underlying covariate processes.

More speci�c conditions on covariate processes that imply the required mixing conditions in the

unbounded case would be useful. One potential approach is to examine the information structure

Hml = _mi=l�
n
�i;
� eXi (s) ; Y (s)

�
1f� i�sg1fGi�sg

��� 0 � s � 1o ; (23)

where the notation is speci�ed in Appendix A. Here, eXi (s) is a version of Xi (s) which is de�ned on [0;1)
instead of just

�
Gi; Gi + T

�
.12 In (23), the indicators truncate the information before the observation is

at risk and after it has defaulted. This truncation is what will facilitate the convergence of the extended

versions of (5)-(8). Although it is possible that all observation are impacted by the entire right tail

of Y (t), this is not what happens. The information relevant for each observation is truncated by the

random default times. The values of Y (t) after the calendar time of default are not relevant for the

observation. Further examination of this information structure is beyond the scope of this paper.

4 Point Process Likelihood Estimation: Contagion and Frailty

In this section, contagion and frailty are rigorously de�ned and incorporated into a hazard model. I give

conditions under which a hazard model can be estimated in the presence of these additional sources of

dependence. As in previous sections, dependence between the covariate processes across observations

is also permitted. A point process likelihood approach is used to semi-nonparametrically estimate the

hazard model using sieves. I also discuss speci�cation testing.

A di¤erent approach to estimation than the kernel methods presented in Section 3 is considered

because those methods encounter di¢ culty when contagion and frailty are present. First, a standard

estimation approach based on Anderson and Gill (1982) is shown to hold when contagion is present.

12 In Appendix A, Hi is used instead of Gi in order to distinguish the case where Xi (t) is de�ned on [0;1) with the case
where it is de�ned on

�
Gi; Gi + T

�
.
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Second, I propose a di¤erent type of likelihood estimation which uses sieves. This method is similar to

Karr (1987). The second estimator can handle frailty.

There is already a large literature on likelihood estimation of point processes. See Martinussen and

Scheike (2010) or Anderson et al. (1994) for a review. Our model is also related to methods designed

for clustered failure time data. See Martinussen and Scheike (2010) or Hougaard (2000) for an outline

of these methods. The nature of dependence across observations in our model is di¤erent than in these

cases. Our estimation approach also di¤ers, as we consider sieves.

4.1 Contagion

In most of what follows, observations i 2 N0 are put into groups of equal size w. The sampling is sampling
of groups. The equal size assumption is not necessary for the results to hold. However, various issues

arise when groups are of di¤erent sizes. For simplicity of exposition and notation, focus is on groups of

the same size.

I now construct random times with contagion. Again, as in Section 3, a good example to keep in

mind is credit default. First I describe the covariate processes which are used to de�ne default. Each

observation i 2 N0 has a set of d covariate stochastic processes
�
Xi (t)

�� t 2 [0; T ]	. Unlike Section 2,

we do not include common processes Y (t) or the length of time an observations has been at risk of

default t in the covariates. The main situation we consider is a cross section over the time interval [0; T ],

corresponding to all observations having Gi = 0. Assume the distribution of the variables Xi (t) has

support contained in the compact set X = X1 � � � � � Xd for each t 2 [0; T ]. This allows for covariate

stochastic processes with discrete support. Each observation in a group also corresponds to a set of j

group speci�c covariate processes
�
Rl (t)

�� t 2 [0; T ]	 corresponding to group l. We continue to abuse

notation and write Ri (t) for Rl (t). Assume the distribution of the variables Ri (t) has support contained

in the compact set R = R1 � � � � � Rm for each t 2 [0; T ].
For each observation i 2 N0, we also de�ne a set of covariates which are derived from other defaults

in the group. This is where contagion originates. For each observation, de�ne the set of processes

V i (t) =
n
1f�j<sg

��� j 6= i; j in the same group as io :13
These are processes that indicate other members in the group have defaulted. Defaults have not been

de�ned yet, but will be shortly. The speci�cation is well de�ned.

Let g (�) be a known bounded measurable function used to de�ne another set of k covariates for
observation i: g

�
t;Xi

t ; X
�i
t ; R

i
t; V

i
t

�
. Here, X�i

t are the Xj
t covariate processes for the other members of

the group: j 6= i. The covariate processes de�ned by g (�) are functions of the processes corresponding
to the group ;

�
Xi
t ; X

�i
t ; R

i
t

�
, and the other defaults in the group; V it . Note that g

�
t;Xi

t ; X
�i
t ; R

i
t; V

i
t

�
is de�ned when V it = 0. Finally, assume that the paths of all covariates are left-continuous with right-

hand-limits (càglàd).

13We must use the processes 1f�j<sg instead of 1f�j�sg for technical reasons.
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Now I rigorously de�ne default. Random times � i are de�ned as in Section 2 by

�it �
Z t

0
h0 (t) exp

�
�001

�
Xi
s; R

i
s

�
+ �002g

�
t;Xi

t ; X
�i
t ; R

i
t; V

i
t

�	
ds

� i � inf
�
t 2 R+j�it � �i

	
where �i is an independent standard exponentially distributed random variable. h0 (t) is a continuous

strictly positive function. Because the hazard for each observation only depends on a �nite number of

other defaults, the speci�cation is well de�ned. At time zero, where there are no defaults, g (�) takes on
its value with V it = 0 until the �rst default arrives. Then, the remaining observations have their process

�it (and therefore their hazard) updated to re�ect the default. This recursive de�nition is not circular.

It is possible to make similar de�nitions without a group structure.

The hazard for this speci�cation is

h0 (t) exp
�
�001

�
Xi
s; R

i
s

�
+ �002g

�
t;Xi

t ; X
�i
t ; R

i
t; V

i
t

�	
:

This hazard has a Cox proportional hazard form, which is widespread in the literature. What I call

contagion is the set of covariates g
�
t;Xi

t ; X
�i
t ; R

i
t; V

i
t

�
which are updated based on other defaults. I

have written the model in some generality. Any or all of the covariates
�
Xi
t ; X

�i
t ; R

i
t

�
could be removed.

However, removing all the variables V it causes us to lose the interpretation of contagion.

Restricting contagion to be contained in groups is restrictive. However, this is a relatively simple

starting point for deriving asymptotic theory allowing for direct interactions between observations in

hazard analysis. More complicated interactions are the subject of future research. The generality

allowed for in the function g gives signi�cant leeway to researchers in how they choose to specify the

nature of contagion. In the simplest speci�cation, g
�
t;Xi

t ; X
�i
t ; R

i
t; V

i
t

�
= V it and contagion consists of

indicators that other group members have defaulted. The ability to incorporate other variables allows

for extension of V it . The initial impact of other defaults can be augmented by other available information�
t;Xi

t ; X
�i
t ; R

i
t

�
. For example, the impact of hazard rates could be proportional to information speci�c

to the defaulting observation Xj (t). This impact could decay through time, possibly deterministically

because of the inclusion of t in g. See subsection 4.3 for some speci�c examples of potential covariates

incorporating contagion.

Implicitly, groups are of equal size in the above outlined construction. We now formalize this in the

following assumption.

(B1): Observations are divided into groups of size w. Contagion is restricted to depend only on V it , the
other defaults in the same group. We additionally assume (A2) for the covariates Xi

s, R
i
s and

g
�
t;Xi

t ; X
�i
t ; R

i
t; V

i
t

�
. The variables are assumed to be càglàd. The true underlying coe¢ cients �0

are the same for each observation.

This assumption implies that the expectation of the likelihood presented below is the same for all

observations. (B1) also eases the presentation of the proofs. The most obvious way to satisfy assumption

A2 on the covariates is to impose symmetry on group members. I discuss how the assumptions of

symmetry and equal group sizes can be relaxed in the sequel. Dependence in the basic covariate processes
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�
Xi
t ; X

�i
t ; R

i
t

�
across and within groups is allowed in the asymptotics presented below. This di¤ers from

standard results. The direct modeling of contagion is also a point of departure.

The martingale nature of default can be shown to hold in the contagion situation. The following

martingale structure will be required for estimation. A proof similar to Lemma 1 will give this result.

It similarly follows from Bielecki and Rutkowski (2004) Example 9.1.5. The details of the �ltration and

the proof are omitted. Recall the de�nition of the compensator:

�it �
Z t

0
h0 (t) exp

�
�001

�
Xi
s; R

i
s

�
+ �002g

�
Xi
t ; X

�i
t ; R

i
t; V

i
t

�	
1f� i�sgds

Lemma 10 There exists �ltrations Gnt which satisfy the usual conditions such that M i
t = 1f� i�tg��it are

Gnt -martingales for all i = 1; : : : ; n.

The martingale nature of M i
t holds in great generality. In particular, it holds if common processes

and block/step sampling is added to the construction in this section. In the sequel, we freely assume the

martingale structure of defaults with contagion. In all cases, this is justi�ed. The details are omitted for

brevity. Conditionally independent censoring can violate the martingale structure in the contagion case.

However, if all members of the groups share a censoring time the martingale structure is preserved.

4.2 Standard Estimation With Dependence

Because we have veri�ed the martingale structure ofM i
t , we are able to apply certain standard estimation

methods to this Cox proportional hazard speci�cation. In particular, the martingale structure is a

prerequisite for applying the classic results of Anderson and Gill (1982) (hereafter AG (1982)). Part of

the contribution of this paper is to show the martingale structure holds, even with the type of contagious

variables described above, and stress that certain standard estimation approaches are justi�ed in this

situation.

This paper di¤ers from others in that we assume dependence in the covariates across all observations.

This includes dependence in covariates across groups as the variables
�
Xi
t ; X

�i
t ; R

i
t

�
are only required to

satisfy an �-mixing condition. The asymptotic results in AG (1982) hold in this dependent case, provided

the high level assumptions in that paper are satis�ed. To the best of my knowledge, no work has been

published that shows these high level assumptions hold in the case where there is dependence across all

observations. In this subsection, I show the required conditions hold under appropriate assumptions.

AG (1982) derive consistency and asymptotic distributions for estimators of �0 and
R t
0 h0 (s) ds. Their

estimation uses a point process likelihood approach. In what follows, we normalize [0; T ] to [0; 1]. We

make the following assumption.

(B2): For all t 2 [0; 1], Zi (t) =
�
Xi
t ; R

i
t; g
�
t;Xi

t ; X
�i
t ; R

i
t; V

i
t

��
has support contained in a compact rec-

tangle normalized to be [0; 1]q where q is the number of covariates. �0 is contained in a compact

rectangle [a1; b1]� � � � � [aq; bq].

This assumption is made to satisfy conditions in AG (1982). We make this assumption in the

remainder of this section. In addition, each observation has an i:i:d: right censoring time Ci. This
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is stronger than the conditional independent censoring assumed elsewhere in the paper. Let Ai (t) =

1 f� i � tg1 fCi � tg.
As in AG (1982), de�ne14

s(0) (�; t) = E
�
A (t) exp

�
�0Z (t)

��
;

s(1) (�; t) = E
�
A (t)Z (t) exp

�
�0Z (t)

��
;

s(2) (�; t) = E
h
A (t)Z (t)
2 exp

�
�0Z (t)

�i
;

e = s(1)=s(0);

v = s(2)=s(0) � e
2;

� =

Z 1

0
v (�0; t) s

(0) (�0; t)h0 (t) dt;

N (t) =

nX
i=1

N i (t)Ai (t)

The estimator b� is de�ned as the value of � which makes the following criterion function 0:
U (�) =

nX
i=1

�Z 1

0
Zi (s)Ai (s) dN i (s)

�
�
Z 1

0

"Pn
i=1A

i (s)Zi (s) exp
�
�0Zi (s)

�Pn
i=1A

i (s) exp
�
�0Zi (s)

� #
dN (s) :

The estimator b� (t) of R t0 h0 (s) ds is de�ned as
b� (t) = Z t

0

1Pn
i=1A

i (s) exp
�b�0Zi (s)�dN (s) :

Finally, we need the following additional functions derived from the data:

I (�) =

Z 1

0

8<:
Pn
i=1A

i (s)Zi (s)
2 exp
�
�0Zi (s)

�Pn
i=1A

i (s) exp
�
�0Zi (s)

� �
"Pn

i=1A
i (s)Zi (s) exp

�
�0Zi (s)

�Pn
i=1A

i (s) exp
�
�0Zi (s)

� #
29=; dN (s) :
J (�; t) = �

Z t

0

"Pn
i=1A

i (s)Zi (s) exp
�
�0Zi (s)

��Pn
i=1A

i (s) exp
�
�0Zi (s)

�	2
#
dN (s) :

Proposition 11 Assume A1-A2, B1-B2, � is positive de�nite,

P
�
Ai (t) = 1; 8t 2 [0; 1]

	
> 0

and the covariates satisfy

Hml = _mi=l�
�
�i; ��i; X

i (s) ; X�i (s) ; Ri (s)
�� 0 � s � T	 :X

n>0

n�1� (n) <1:

14For a column vector X, X
2 represents XX 0.
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Then the results of AG (1982) Section 3 hold. In particular

n1=2
�b� � �0�) N

�
0;��1

�
;

n�1I
�b�� p! �:

n1=2
�b� � �0� and the process

n1=2
hb� (t)� �0 (t)i+ n1=2 �b� � �0�0 Z t

0
e (�0; s)h0 (s) ds (24)

are asymptotically independent. (24) is asymptotically distributed as a Gaussian martingale with variance

function Z t

0

h0 (s)

s(0) (�0; s)
ds:

Finally,

sup
t2[0;1]

J �b�; t�� Z t

0
e (�0; s)h0 (s) ds

!p 0:

Proof. See Appendix C.

In the i:i:d: case, the estimates b� have asymptotic e¢ ciency properties - See Anderson et al. (1994).
The above result shows that, in the dependent case, the estimates have the same asymptotic variance as

in the independent case. This powerful result is driven by the martingale structure of the set up. How-

ever, this result shows that previous work assuming i:i:d: samples has asymptotically justi�ed con�dence

intervals when the dependence of covariates across observations satis�es the conditions in Proposition 11.

A block/step sampling setup with no contagion gives the same results as Proposition 11 with appropriate

adjustments in the assumptions. Therefore, con�dence bands using AG (1982) estimates are asymptot-

ically justi�ed when common processes are present. It is likely that in �nite samples dependence will

a¤ect the estimator�s performance. This is the same issue raised above in the kernel context. Deriving

di¤erent estimators of the variance is left to future research.

Proposition 11 shows that b� (t) converges to �0 (t) uniformly at a n1=2 rate. This is a strong result

and it is not possible to improve on the n1=2 rate. In a certain sense, b� (t) is the optimal estimator of
�0 (t) (see Johansen (1983)). It is possible to transform b� (t) to estimate h0 (t). This may slow down the
rate of convergence, see Anderson et al. (1994) pg. 507 for an example using kernels. b� (t) is piecewise
constant, which is not optimal for frailty estimation as outlined below. The AG (1982) estimates are not

justi�ed for the frailty case outlined in Section 4.4. The estimation approach of this subsection needs to

be modi�ed to accommodate frailty. I leave this to future research.

4.3 Point Process Likelihood Speci�cation

The estimators of the previous subsection are optimal in a number of ways. However, they estimate the

integral of the baseline hazard
R t
0 h0 (s) ds instead of h0 (s). If the main interest is in an estimate of �0,

this is not an issue. When frailty is introduced in the next subsection, we will see that an estimate of
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h0 (s) is of substantial interest. Ad hoc transforms of the previously presented estimator b� (t) may not
preserve e¢ ciency properties. There is little theoretical research on the e¢ ciency of such transformed

estimators. In addition, the estimation results of AG (1982) can not handle the case where observations

have di¤erent baseline hazards. This is also of interest when frailty is present. In this subsection,

estimators are developed which directly estimate h0 (s). The estimation approach and the related proofs

are then modi�ed to handle the frailty case in the next subsection. This subsection can be thought of as

a prelude to frailty.

In this subsection, the proportional hazard model described in subsection 4.1 is estimated using a point

process likelihood approach. The baseline hazard h0 (t) is estimated directly using sieves. The results of

Karr (1987) are extended to semi-nonparametric estimation where the impact of covariates is estimated

instead of assumed known. Point process likelihoods have been used elsewhere in the literature. See

Anderson et al. (1994) or Martinussen and Scheike (2010) for surveys. See Brémaud (1981) section IV.2

for more speci�cs on the following point process likelihood. Likelihood estimators often have e¢ ciency

properties. However, the e¢ ciency properties of the following estimator is an open question.

Let H be the set of strictly positive continuous functions on [0; 1] and � 2 [a1; b1] � � � � � [aq; bq].
The underlying probability space (
;F ; P ) supports a Poisson process with intensity 1, the covariate
processes Zi (s) and the corresponding standard exponential random variables �i. For any (h; �) 2
H � [a1; b1]� � � � � [aq; bq] the following is the Radon-Nikodym derivative which changes the measure on

an underlying point process which follows a standard Poisson process with � = 1, into a single-spell point

process with intensity h (s) exp
�
�0Zi (s)

�
1f� i�sg.

d eP
dP

(h; �) =

8<: exp
nR 1

0

�
1� h (s) exp

�
�0Zi (s)

�
1f� i�sg

�
ds
o

� i > 1

h (� i) exp
�
�0Zi (� i)

�
exp

nR 1
0

�
1� h (s) exp

�
�0Zi (s)

�
1f� i�sg

�
ds
o

� i � 1
: (25)

The log-likelihood is

log

"
d eP
dP

(h; �)

#
=

Z 1

0
log
�
h (s) exp

�
�0Zi (s)

��
dN i

s +

Z 1

0

�
1� h (s) exp

�
�0Zi (s)

�
1f� i�sg

�
ds:

Assume no covariate in Zi (t) is a linear combination of the remaining covariates and that all Zi (s)

are random. By standard arguments (see, for example, van der Vaart (1998) Lemma 5.35) the expected

value of the log-likelihood is uniquely maximized at (h0; �0) when the observed point process has the

hazard h0 (s) exp
�
�00Z

i (s)
�
1f� i�sg. This is because each choice of (h; �) 2 H � [a1; b1] � � � � � [aq; bq]

corresponds to a unique intensity process h (s) exp
�
�0Zi (s)

�
1f� i�sg and therefore a unique change of

measure. Speci�cally

H (h; �) = E(h0;�0)

(
log

"
d eP
dP

(h; �)

#)
;

H (h0; �0) > H (h; �) (h; �) 6= (h0; �0) :

This identi�cation allows us to make the log likelihood the basis of estimation. Let �n be a space of

functions depending on n. More speci�cs on the required sieve spaces �n are given below. De�ne our
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estimator as

Qn

�bh; b�� � sup
�;h2�n

Qn (h; �) + op (1)

where the criterion function is

Qn (h; �) =
1

n

nX
i=1

�Z 1

0
log
�
h (s) exp

�
�0Zi (s)

��
dN i

s +

Z 1

0

�
1� h (s) exp

�
�0Zi (s)

�
1f� i�sg

�
ds

�
:

We make the high level assumption B3 on the covariate processes. This assumption is presented in

Appendix C. Here, I give a number of examples of covariate processes which satisfy B3. Note that scaling

of the processes may be required to �t the supports into [0; 1]q, but this is not a substantive issue. Any

of the types of covariate processes presented below can be combined while still satisfying B3 (provided no

covariate process is a linear combination of the others and all processes are random). A weak additional

condition is needed when combining Examples. This is discussed in Example 16. There are many other

possible covariate processes that satisfy B3.

Example 12 Let �i be a continuously distributed random variable with compact support or a random

variable with �nite support. De�ne the covariate process as Zi (s) = �i + ct where c 2 R. This process

satis�es assumption B3. Note that we can choose c = 0. In this case, the covariate processes reduce

to the static covariate case. Assumption B3 can be seen as a natural extension of simple continuous or

discrete distribution assumptions in the case where covariates do not change through time.

Example 13 Let N i (s) be a point process constructed as in Section 2 but where there may be an in�nite

number of ordered random times. Each random time is represented by �j. Let the covariate process

have an initial distribution �i0 with support contained in [0; 1]. At each �j, a new value is drawn �
i
j

with support contained in [0; 1]. This distribution may be dependent on all previous draws �ij�1; : : : ; �
i
0

and/or the positions of the previous �j. We assume all �ij have either a continuous distribution or a

�nite distribution. The covariate process is

Zi (s) = �i01f0�s��1g +
1X
j=1

�ij1f�j<s��j+1g:

If, 0 < P
�
�j 2 (a; b)

	
< 1 for all j and all intervals (a; b) contained in [0; 1], then Assumption B3 holds.

Weaker assumptions are possible, but have more involved statements. An example of these types of

covariates is movement to and from employment. This type of covariate can be used to model movement

to and from any number of �nite states. Another simple example which satis�es B3 is covariates which

only change values at �xed times, such as weekly or quarterly.

Example 14 We consider the same underlying point process as in Example 13. Let N i (s) be a point

process constructed as in Section 2 but where there may be an in�nite number of ordered random times.

Each random time will be represented by �j. Let the covariate process have an initial distribution �
i
0 with

support contained in [0; 1]. For c 2 R, de�ne

Zi (s) =
�
�i0 + cs

�
1f0�s��1g +

1X
j=1

�
cs� �j

�
1f�j<s��j+1g:
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This could be used to model the length of time an observation spends in a particular state. When states

change at �j, then the length of time resets to zero. If, 0 < P
�
�j 2 (a; b)

	
< 1 for all j and all intervals

(a; b) contained in [0; 1], then Assumption B3 holds.

Example 15 Assume Xj (s) has a form taken from one of the previously given examples. De�ne the

covariate as

Zi (s) = exp (�� (s� � j)) f
�
Xj (� j)

�
1f�j<sg;

where f is a bounded continuous function and � 2 [0;1). If 0 < P f� j 2 (a; b)g < 1 for all intervals

(a; b) contained in [0; 1], then Assumption B3 holds. This form allows the a¤ect of other defaults to decay

through time. The size of the initial impact is allowed to depend on covariates of the other observation

j. This is of interest in, for example, credit default situations. This form is used in a credit default

context by Azizapour et al. (2011) and goes back to at least to Hawkes (1971). In the following theorem,

we must choose a �xed �. Further work must be done to allow for direct estimation of �. However, we

estimate a coe¢ cient for the process Zi (s), which improves the �exibility of the model. Note further we

can choose � = 0, so the e¤ect of another default has a �xed and permanent impact. The random time

may be more complicated, such as the kth element of a group to default.

Example 16 Assume Xi (t) is composed of d covariate processes, each of which has a form given in the

previous examples. Assume further that there is a set of k other random times 1f�j<tg, j = 1; : : : ; k.

Each of these additional random times has probability of default in between 0 and 1 over any subinterval

of [0; T ] = [0; 1]. Assume that over any time interval, there is a positive probability that one of the

covariate processes has a discontinuity while none of the others do. Similarly, we assume that over any

time interval there is a positive probability of no discontinuity. This will cause problems for variables

that only change at �xed times. We focus on the above assumptions for simplicity. If g is a bounded

continuous function, then �
Xi (t) ; g

�
Xi (t) ;1f�1<tg; : : : ;1f�k<tg

��
satis�es B3.

Proposition 17 We make Assumptions (B1)-(B3). Choose a sequence of sieve spaces �n with the

number of basis functions used being Jn for n observations. Let there exist a sequence hn 2 �n such that
hn !L1 h0. h0 � H where all functions in H are continuous and bounded above and below by known

�xed constants Cmin, Cmax. Assume further that for h 2 �n

Cmin � h � Cmax; (26)��h0�� � Kn; (27)

where Kn = O
�
n1=4��

�
for a small � > 0. For the system of �-�elds

Kml = _mi=l�
�
�i; ��i; X

i
t ; X

�i
t ; R

i
t

�� 0 � t � T	 ; (28)

assume the mixing condition X
n>0

n�1� (n) <1: (29)
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holds. Then b� ! �0bh!L1 h0

P�0 � a:s:

Proof. See appendix C.
The sieve space containing the largest number of potential functions for approximation is the set of

all functions satisfying (26)-(27). However, these functions do not have an obvious set of basis functions.

In applications, a sieve with know basis functions whose coe¢ cient can be constrained to satisfy (26)-(27)

would be used. Theoretically, we would simply take the intersection of a sieve space with the set of

functions satisfying (26)-(27). However, in applications there will be issues of implementation depending

on the chosen basis functions. Whatever sieves are chosen, the ability to control the �rst derivative will

be important in implementation. For example, Cardinal B-Splines can do this easily. See de Boor (2001)

or Chui (1992) for more on Cardinal B-Splines and Chen (2007) for a comprehensive account of sieve

estimation.

For any contagious variables in the set up of subsection 4.1, the following relationship holds

Hml = _mi=l�
�
�i; Z

i (s)
�� 0 � s � T	 � _mi=l� ��i; ��i; X i

t ; X
�i
t ; R

i
t

�� 0 � t � T	 : (30)

This is because, if we know the variables �i; ��i; X
i
t ; X

�i
t ; R

i
t, we can derive default times and therefore

V i (s). A consequence of (30) is that mixing conditions may be put on the covariates Xi
t ; X

�i
t ; R

i
t directly.

We avoid the need to assume mixing conditions on V i (s).

The relationship (30) is only useful because contagion is restricted to be within groups. If the

hazard rate of observation i is a¤ected by the defaults of all other observations, a similar upper bound

on information would need to contain all covariate process from all observations. This will prevent any

mixing condition from holding. In cases like these, mixing conditions have to be placed on Hml in (30).

The mixing properties of
�
V i (s)

	1
i=1

will be a direct consequence of more primitive underlying variables.

What type of mixing conditions
�
V i (s)

	1
i=1

inherits when contagion is not con�ned to be within groups

is beyond the scope of this paper.

Proposition 17 assumes both groups of equal size and covariates with equivalent distributions across

observations. Symmetry is also implicitly assumed by requiring the function g and the true underlying

�0 to be equivalent across observations. All of these conditions can be relaxed. For non-symmetric

groups, the values of the true coe¢ cients for each member and the contagious variables can be di¤erent

across group members. This situation violates assumption A2, but consistency will still hold because

corresponding members of di¤erent groups satisfy A2. If the members of the groups are not symmetric,

one must be able to tell who the corresponding members are across groups. For example, if the groups

correspond to an employer and employee pair, one must be able to tell which is which in each group

when conducting estimation. The groups may also be of di¤erent sizes. This can result in a violation

of assumption A2 as well. Consistency still holds provided the number of potential group sizes is �nite.

Each group size must constitute a �xed proportion of the sampled data asymptotically. Proofs of these

extensions are omitted for brevity.
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4.4 Frailty and Likelihood Estimation

The �nal model we examine contains our notion of frailty. This model was initially proposed as a way

to better explain the observed clustering of corporate defaults using hazard models. Corporate defaults

are clustered around periods of �nancial crisis and recession. This clustering is di¢ cult to explain with

standard hazard models. Das et al. (2007) provide some statistical evidence that hazard models with

common baseline hazard functions are rejected when using data on US corporate default. A solution

proposed in Du¢ e et al. (2009) is the frailty model described below. In this model, observations at risk

of default over di¤erent calendar time intervals have di¤erent baseline hazard functions. As a result, the

observed clustering can be captured. One interpretation of this model is that there is time dependent

model misspeci�cation. Another, more interesting interpretation is that a global unobserved risk factor

is impacting hazard rates. More on this interpretation below. There is no reason to restrict the use of

this model to corporate default. Any random economic event situation where changing macroeconomic

conditions are important could potentially use this notion of frailty.

The sampling set up in this situation is an extension of block/step sampling. Recall that in block/step

sampling observations begin to be at risk at calendar times k� where � > 0 and k 2 N0. Again, we allow
adjacent blocks to overlap. Previously, we assumed a �nite number of observations correspond to each

calendar time and therefore each k 2 N0. This allows for a natural ordering on observations. In the

frailty case, we need to assume an increasingly large number of observations for each k 2 N0 in the
sampling. We now index each observation by ji: j corresponds to the calendar time the observation

starts at j�; i is the number of the observation starting at j�. The situation is analogous to a panel. We

assume that both j and i approach in�nity in the sampling scheme.

I will write Gj for j� to keep consistent with previous notation. The sampling is indexed by n. We

assume n observations per Gj where we only observe the �rst k (n) calendar times. k (n)!1 as n!1.
The relevant covariates include observation speci�c covariates Xji (t) and common covariates Y (t). We

write Zji (t) =
�
Xji (t) ; Y

�
Gj + t

��
.

This sampling scheme is stringent, requiring a large number of observations per block. Situations

where observations start to be at risk of default at regular intervals are more likely to satisfy the required

conditions. Examples might include weakly, monthly or quarterly reported start times for observations.

The assumption that there are the same number of observations per block is made only for notational

simplicity. The somewhat rigid requirement that a large number of observations must start at precisely

the same time can likely be relaxed. A minimal requirement is that a large number of observations are

at risk of default over any �xed calendar time, but observations might not start at the same time. I leave

extensions of the sampling scheme to future research.

Now, I de�ne frailty and incorporate it into a Cox proportional hazard model. Frailty is a strictly

positive continuous real valued function h0 (t) de�ned on [0;1). Below, we will assume this path is

the realization of an independent stochastic process. This assumed stochastic process structure is not

required for estimation, but is needed for forecasting. The frailty function takes the place of the baseline

hazard in the block/step sampling case. For an observation ji, that observation�s baseline hazard is the

realization of the frailty process over the calendar time interval
�
Gj ; Gj + T

�
. As a result, observations at

risk over di¤erent calendar time intervals have di¤erent baseline hazards. This setup rules out standard

estimators, such as those in AG (1982), because they require all observations to have the same baseline
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hazard. We write the baseline hazard corresponding to the jth block as hj0. The hazard rate for

observation ji can now be written as

h0
�
Gj + t

�
exp

�
�00Z

ji (t)
	
: (31)

Random times with this hazard rate can easily be constructed as in Section 2 above. It can be shown,

with a proof almost identical to Lemma 1, that this set up has a martingale structure de�ned on [0;1].
The processes M ji

t are de�ned to be zero before Gj . They have the hazard rate (31) on the interval�
Gj ; Gj + T

�
. After Gj + T , M ji

t =M
ji
Gj+T

.

The path h0 (t) can be interpreted as a global latent risk factor. When the path has large values,

defaults are more prevalent. When h0 (t) is low, defaults are suppressed. With this interpretation, the

path of h0 (t) can be thought of as randomly propagating. Du¢ e et al. (2009) give the model additional

structure by assuming h0 (t) is the realization of a mean-reverting di¤usion. We �rst present the speci�c

Du¢ e et al. (2009) model. Then we show it can easily be generalized.

Assume the frailty path h0 (t) is the realization of the following mean-reverting di¤usion,

dSt = ��Stdt+ �dBt;

h0 (t) = exp (St) :

15This is the speci�cation in Du¢ e et al. (2009). The di¤usion is initialized to be stationary. This

speci�c choice of di¤usion is not needed, others are possible. As a result, the idea is more general than

the speci�cation given above. Du¢ e et al. (2009) take a Bayesian approach to estimation with this type

of frailty. However, the consistency result in Du¢ e et al. (2009) depends on an i:i:d: assumption which

is not satis�ed in the cases we are interested in.

In our estimation, we consider h0 (t) as a realized path from some di¤usion speci�cation. We estimate

h0 (t) directly using point process likelihoods and sieves. This estimate recovers the entire path of h0 (t)

asymptotically. Consistency is achieved despite the fact that h0 (t) is nowhere di¤erentiable. Once a �rst

stage estimate of h0 (t) is obtained, it can be used in a second stage to estimate parameters characterizing

the underlying frailty di¤usion. There is an extensive literature on estimation of di¤usions from a

continuous record. See, for example, Prakasa Rao (1999) or Kutoyants (2004). Estimates of the frailty

process can be used to project default probabilities in the future.

We de�ne our estimator similarly to the one in Subsection 4.3. Again, �n are spaces of functions

increasing in size with n:

Qn

�bh; b�� � sup
�;hj2�n;j=1;:::;k(n)

Qn (h; �) + o (1)

15Below, we will assume the frailty path is bounded above and below. This di¤usion speci�cation will violate that
assumption. The reason for the boundedness assumption is to alleviate a technical condition. A more general result which
does not require boundedness is possible at the expense of stronger conditions on the covariates. Another possibility is to
assume a boundary on this di¤usion speci�cation at extremely small and large values. When the di¤usion hits the boundary,
it is re�ected back. Speci�cations of this type are shown to exist in the literature. See Stroock and Varadhan (1979).
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where the criterion function is

Qn (h; �) =

k(n)X
j=1

1

n

nX
i=1

�Z 1

0
log
�
hj (s) exp

�
�0Zji (s)

��
dN ji

s +

Z 1

0

h
1� hj (s) exp

�
�0Zji (s)

�
1f�ji�sg

i
ds

�
:

Portions of the realized frailty h0 which overlap in di¤erent calendar time blocks
�
Gi; Gi + T

�
are restricted

to be the same function in estimation. For example, if [0; T ] and
�
1
2T;

3
2T
�
are calendar time blocks, then

the estimate corresponding to the �rst block over
�
1
2T; T

�
must be the same function as the estimate

corresponding to the second block over the same interval. The ability to easily implement this restriction

depends on the chosen �n. Some choices of �n may not allow for this. We must rule these choices out.

Cardinal B-Splines can achieve this restriction easily. The estimator of h0 from the criterion function is

essentially an estimator of the entire frailty path over the observed blocks.

Corollary 18 We make Assumptions (B1)-(B3). Choose a sequence of sieve spaces �n with the number
of basis functions used being Jn for n observations. For all j 2 N, let there exist a sequence hjn 2 �n
such that hjn !L1 h0

�
Gj + t

�
where the relevant interval is [0; T ] normalized to [0; 1]. For all j 2 N,

h0 � H where all functions in H are continuous and bounded above and below by known �xed constants

Cmin, Cmax. Assume further that for h 2 �n

Cmin � h � Cmax; (32)��h0�� � Kn: (33)

Let k (n) and Kn be chosen such that the conditions (74)-(76) in Appendix C are satis�ed and Kn !1
at a rate slower than or equal to o

�
(k (n) =n)1=2

�
. Let there exist ehjn 2 �n for each j (where functions

with overlapping calendar times must agree on the overlapping intervals) such that

k(n)X
j=1

n
H
�
hj0; �0

�
�H

�ehjn; �0�o! 0: (34)

Then b� ! �0;bhj !L1 hj0;

for all j, P�0 � a:s:

Proof. See Appendix C.

Note that any sieve used must contain once di¤erentiable functions. This may seem like a contradiction

in the frailty case, where we are trying to estimate a nowhere di¤erentiable continuous function h0 (t).

However, in the limit, functions in the sieve space may have arbitrarily large derivatives. Paths of

di¤usions may be thought of as continuous functions with in�nite derivatives. So we are able to achieve

L1 convergence. We may assume h0 (t) = S (t) is itself the path of a di¤usion or that the observed

path in the hazard is h0 (t) = exp (S (t)). This may facilitate some parametric speci�cations of the
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unobserved di¤usion. We restrict the path h0 (t) to be bounded. The underlying di¤usion must likewise

be restricted.

The assumptions (74)-(76) are high level. To satisfy these conditions, we must consider the dependence

between Xij within blocks and across blocks. In addition, the temporal dependence of Y (t) and its

dependence with the processes Xij (t) must be accounted for. All of these interactions must be considered

because it is not possible to recover hj0 (t) by sampling only from block j. When we only sample within

one block
�
Gj ; Gj + T

�
, there is no sampling of the common processes Y (t). The e¤ect of the common

processes Y (t) obscures estimation of hj0 (t). Only by sampling across di¤erent blocks can we e¤ectively

sample from the common processes Y (t) and recover their coe¢ cients. In their current form, the methods

of AG (1982) do not apply to this situation.

In the point process likelihood approach, the needed conditions (74)-(76) are a natural extension of

those used in Theorem 32 from Appendix C. However, exact speci�cation of the types of dependence

between all processes that facilitate these conditions is not obvious. One issue is that there is no simple

ordering of the sample. Dependence has to be controlled in two dimensions, within blocks and across

blocks. As almost sure convergence is required and we are dealing with an array structure, almost sure

convergence of arrays will likely be necessary. See Liebscher (1996). I leave exact characterization of the

needed dependence to future research.

A mixed proportional hazard model with this type of frailty is not identi�ed. This is because a

scaling of h0 (s) is required for identi�cation (see Van den Berg (2001)). As h0 (s) is an unknown path

of a di¤usion, it is impossible to have such a scaling.

We do not derive a rate of convergence for the estimator in Proposition 17. Other assumptions on

the path, such as Hölder continuity, are required for a rate to be derived. We note that many di¤usion

paths are Hölder continuous (see Röckner and Zhang (1996)).

4.5 Speci�cation Testing

All of the hazard models given above satisfy the condition that M i
t or M

ji
t are martingales with �ltrations

equal to (or similar to) those derived in Section 2. As a result of this, all of these speci�cations can

potentially satisfy the conditions of Proposition 3 required for a martingale FCLT. In the following, we

choose g(n)i (s) = 1=
p
n in all cases.

Corollary 19 If, for all t 2 [0; T ] ;
1

n

nX
i=1

�it (t)!p �2 (t) ; (35)

then
1p
n

nX
i=1

M i (t))D[0;T ] M (t) ; (36)

where M (t) is a continuous Gaussian martingale with variance structure �2 (t).

Lemma 5 holds for the processes �it (t). Therefore, mixing conditions as outlined in Section 3 above

can be transferred to �it (t) and used to prove (35). This is further facilitated by the fact that, as t

decreases, the same �-�eld used to characterize dependence when t = T can be used to describe the
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mixing conditions on �it (t). The result only has to be proven for t = T . In the situation of Subsection

4.4 the result is further complicated by the fact that the �jit (t) are constructed using di¤erent baseline

hazards across blocks.

This result can be used as the basis of speci�cation testing. An approach would be �rst to estimate

the model. Then, (35) can be constructed from the data and used as the basis of con�dence intervals

for (36). Re�nements on this implementation are beyond the scope of this paper. See Martinussen and

Scheike (2010) for more discussion.

5 Conclusion

In this paper, I present hazard models with a number of dependence properties between observations.

These models are designed to capture the reality of dependence between random economic events which

manifest in countless di¤erent economic relationships. I �rst propose a model with dependent covariates

determining the hazard rate of observations. These covariates can be speci�c to observations, for example

housing prices in a model of mortgage default. The covariates can also be macroeconomic, and therefore

impact all observations at risk of default. This type of macroeconomic covariate captures dependence

between observations resulting from changing global economic conditions. Examples include the GDP

growth rate, unemployment rate or three-month US treasury rate.

I propose a form of sampling where observations are at risk of default starting at di¤erent calendar

times. I call this sampling "block/step" sampling. Assuming block/step sampling, conditions are derived

under which the underlying hazard function can be consistently estimated nonparametrically using a

kernel approach. A uniform rate of convergence and CLT are derived for the nonparametric estimator.

Under further assumptions, the curse of dimensionality is circumvented and estimates converge nearly

at a
p
n rate. These results show that, given appropriate sampling, �exible estimates of the impact of

macroeconomic conditions on hazard rates can be achieved under relatively weak conditions.

A second model proposed incorporates contagion into a hazard model. The covariates of one obser-

vation are allowed to depend on the defaults of other, related observations. This is intended to capture

direct economic relationships between observations. Variables can be more general than simple indica-

tors of other observations defaulting. Other observed covariates can augment indicators of default to

provide a better description of how hazard rates are a¤ected. These types of variables are used in a Cox

proportional hazard model. One goal of estimation is to recover the parametric impact of the variables

constituting contagion. This characterizes the magnitude that a default of one observation has on hazard

rates of observations that are still at risk.

Under suitable �-mixing assumptions, standard semi-nonparametric estimation techniques for the Cox

model are shown to hold. These results include a CLT for the coe¢ cients on the covariates, including

those covariates which de�ne contagion. I additionally show how to estimate the model using a point

process likelihood and sieves. This gives a direct estimator of the baseline hazard. The approach

developed here is the building block of the more complicated frailty situation.

A �nal model incorporates a global unobserved risk factor into a Cox proportional hazard model. The

baseline hazard function is no longer the same for observations at risk over di¤erent intervals of calendar

time. Instead, there is a strictly positive function of [0;1) called frailty. The interval of calendar
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time an observation is at risk corresponds to an interval of the frailty path. The portion of the frailty

path from the calendar time an observation is at risk of default corresponds to the baseline hazard of

that observation. This frailty path can be interpreted as a global unobserved risk factor. Frailty is

incorporated into hazard models to improve the ability to achieve signi�cant clustering of defaults. This

type of clustering is observed in applications.

By extending block/step sampling to allow for an increasingly large number of observations in cross

sections, I show how the frailty path can be estimated nonparametrically. This is done using point

process likelihoods and sieve estimation. In addition, the parametric impact of the covariates can also be

consistently estimated. These results hold in the presence of macroeconomic covariates described above.

Again, only a general �-mixing condition is needed to control dependence in covariates.

Finally, I assume that the frailty path is a realization of a di¤usion process. Once the frailty path is

estimated, methods which use a continuous record to estimate di¤usions can be used to characterize the

underlying stochastic process that frailty follows. Estimate of the frailty di¤usion can then be used in

forecasting. This will increase the accuracy of out-of-sample predictions.

6 Appendix

A Removing the Upper Bound T

Because we are conditioning on the entire path of Y (t) in the underlying �ltration Gnt used in Proposition
3, the processes g(n)i used to satisfy (1) above must be chosen carefully if we are to use the result in

estimation. However, it is possible to satisfy (1) in a block/step sampling context. The key is that each

g
(n)
i and M i

t are only a¤ected by the �xed portion of the Y (t) process
�
Y
�
Gi + t

��� t 2 [0; T ]	. As a

result, even though the underlying �ltration contains all the information from Y (t), the a¤ect of Y (t)

still washes out in the limit because di¤erent observations use di¤erent blocks of Y (t).

It can be shown that (1) is equivalent to a similar conditional variance assumption used in Hall and

Heyde (1980). These preliminary results are used in the next subsection. We assume the same notation

as Section 3. Recall that we write Zi (t) =
�
t;Xi (t) ; Y

�
Gi + t

��
and let z = (t; x; y) 2 [0; T ]�X �Y be

an interior point of the support. De�ne

g
(n)
i (s) =

b(d+j+1)=2

n1=2
Kb
�
z � Zi (s)

�
In order to use discrete time martingale methods as in Hall and Heyde (1980), we must de�ne more

�ltrations. We leave out the needed completions of the �ltrations for simplicity. These can easily be

added. De�ne

GnkT = Fn _H1T _ � � � _ HkT k = 1; : : : ; n;

Gnkt = Fn _H1T _ � � � _ Hk�1T _Hkt k = 1; : : : ; n;
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and the random variables

Snk =
kX
i=1

Z T

0

b(d+j+1)=2

n1=2
Kb
�
z � Zi (s)

�
dMi (s) k = 1; : : : ; n:

Lemma 20 For all n 2 N, for any i = 1; : : : ; n,
R t
0
b(d+j+1)=2

n1=2
Kb
�
z � Zi (s)

�
dMi (s) is a continuous-

time martingale w.r.t. the right-continuous �ltration Gnkt over the interval [0; T ]. This martingale has

right-continuous paths.

Proof. This follows from an application of Lemma 1 and Fleming and Harrington (1991) Theorem 2.4.4.

Proposition 21 For each n 2 N, Snk is a mean-zero discrete time martingale w.r.t. the �ltration GnkT .
In addition

E

24 Z T

0

b(d+j+1)=2

n1=2
Kb

�
z � Zk (s)

�
dMk (s)

!2������Gn(k�1)T

35
= E

24Z T

0

"
b(d+j+1)=2

n1=2
Kb

�
z � Zk (s)

�#2
d�i (s)

������Gn(k�1)T

35
=

Z T

0

"
b(d+j+1)=2

n1=2
Kb

�
z � Zk (s)

�#2
d�i (s)

Proof. It follows from Lemma 20 that

E

"Z T

0

b(d+j+1)=2

n1=2
Kb

�
z � Zk (s)

�
dMk (s)

�����Gn(k�1)T

#
= 0:

A similar result holds for an arbitrary number of lags. As a result, Snk is a mean-zero martingale with

respect to the given �ltration. The second result holds by Lemmas 1 and 20 and Fleming and Harrington

(1991) Corollary 1.4.2 and Theorem 2.4.3.

As a result of Proposition 21,

nX
k=1

E

24 Z T

0

b(d+j+1)=2

n1=2
Kb

�
z � Zk (s)

�
dMk (s)

!2������Gn(k�1)T

35!p �

is equivalent to
nX
k=1

Z T

0

"
b(d+j+1)=2

n1=2
Kb

�
z � Zk (s)

�#2
d�i (s)!p �

Therefore, condition (1) in Proposition 3 is equivalent to a Hall and Heyde (1980) type restriction on the

conditional variance in this situation.
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A.1 Another formulation

There is a second possible formulation of these ideas where we dispense with the restriction of default to

intervals of length T . Assume, as before, that each observation i corresponds to a calendar time H i at

which it becomes at risk of default. Again, assume H i is deterministic. We de�ne its covariate processes

on the interval [0;1) as eXi =

(
@ t < H i

Xi
�
t�H i

�
t � H i

.

Here, @ is an isolated point attached to R. The common processes Y (t) are de�ned as before on the

interval [0;1). We assume the hazard rate at @ satis�es � (@; y) = 0 for all values y. eXi being at

@ represents an observation not being "alive" before time H i. The covariates Xi (t) are de�ned on

t 2 [0;1), so there is no upper or lower bound on time.
I correspondingly de�ne random times e� i as

e�it �
Z t

0
�
� eXi

s; Ys

�
ds

e� i � inf
n
t 2 R+j e�it � �io

where �i is an independent standard exponentially distributed random variable. De�ne analogous �ltra-

tions to Section 2: eFnt = eFn = � n eXi (u) ; Y (v)
���u; v 2 [0;1) ; i = 1; : : : ; no ;

eHit = � �1fe� i�ug�� 0 � u � t	 ;eGnt = eFn _ eH1t _ � � � _ eHnt :
Finally, de�ne

e�it = Z t

0
�
� eXi

s; Ys

�
1fe� i�sgds:

Lemma 22 (1) The analogous results to Lemma 1 follow in this case. In particular, fM i
t = 1fe� i�tg � e�it

is a martingale on [0;1) with respect to the �ltration eGnt for all i = 1; : : : ; n. Here, eGnt is the completion
of the �ltration eGnt as done in Lemma 1.
Proof. Simple extension of Lemma 1.

Lemma 23 (1) Let g(n)i (s) be a locally bounded predictable process with respect to the �ltration eGnt .
Assume, for all t 2 [0;1)

E
�Z t

0

h
g
(n)
i (s)

i2
�
� eXi

s

�
1fe� i>sgds

�
<1:

Then Z t

0
g
(n)
i (s) dfM i (s)

is a mean-zero continuous time martingale in t over the interval t 2 [0;1) with respect to the �ltration
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eGnt . (2) Assume R t0 g(n)i (s) dfM i (s) is uniformly integrable16. Then, limt!1
R t
0 g

(n)
i (s) dfM i (s) exists a.s.

We will write this random variable as
R1
0 g

(n)
i (s) dfM i (s) and it is measurable with respect to eGn1 � F ,

the entire underlying �-�eld. Now,
R t
0 g

(n)
i (s) dfM i (s) is a martingale on t 2 [0;1] with respect to the

�ltration eGnt .
Proof. (1) Consequence of Fleming and Harrington (1991) Theorem 2.4.4. (2) Consequence of Protter

(2005) Chapter 1 Theorem 12.

Lemma 23 allows us to de�ne variables at in�nity. Thus, under certain conditions, we will be able

to dispense with restricting the time intervals over which default is possible. Again, we make analogous

de�nitions for our situation based on the previous subsection in this appendix. As before, we leave o¤

the needed completions for simplicity.

eGnkT = eFn _ eH11 _ � � � _ eHk1 k = 1; : : : ; n;

and the random variables

Snk =
kX
i=1

Z 1

0

b(d+j+1)=2

n1=2
Kb

�
z � eZi (s)� dfM i (s) k = 1; : : : ; n:

Proposition 24 For each n 2 N, Snk is a mean-zero discrete time martingale w.r.t. the �ltration eGnkT .
In addition

E

24 Z 1

0

b(d+j+1)=2

n1=2
Kb

�
z � eZk (s)� dfMk (s)

!2������ eGn(k�1)T

35
= E

24Z 1

0

"
b(d+j+1)=2

n1=2
Kb

�
z � eZk (s)�#2 de�i (s)

������ eGn(k�1)T

35
=

Z 1

0

"
b(d+j+1)=2

n1=2
Kb

�
z � eZk (s)�#2 de�i (s)

Proof. This follows from almost the same proof as Proposition 21.

Now, a standard discrete time martingale CLT result from Hall and Heyde (1980) can be used to

derive a CLT for the array Snk . In particular, we use Chapter 3, Corollary 3.1 from Hall and Heyde

(1980). In a sense, we have turned a continuous time martingale problem into a discrete time martingale

problem.

B Proofs for Sections 2 and 3

Proof (Lemma 1). Note that 1f� i�ug are right continuous processes. That Gnt is a right continuous
�ltration follows from a modi�cation of Brémaud (1981) A2, T26. In Brémaud�s proof of that theorem,

16A stochastic process Xt is uniformly integrable if limn!1 supt2[0;1)

R
fjXtj�ng

jXtj dP = 0. Here, P is the underlying
probability measure.
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with each application of A1, T7, if the additional �-�elds

Ds =
�
� fY (s)g ; �

�
Ri (v)

	
; �
�
Xi (u)

	�� 0 � u; v � T; s 2 [0;1) ; i = 1; : : : ; n	
are added to the class of �-�elds already used, the same proof holds exactly as before. That the completion

of Gnt is right continuous follows from Brémaud (1981) A2, T35.

That 1f� i�tg � �it are Gnt -martingales for all i = 1; : : : ; n is a straightforward application of Bielecki
and Rutkowski (2004) Lemma 9.1.1. Completion of the �ltration preserves the martingale property, see

Dellacherie and Meyer (1980) VI.3.

Proof (Proposition 3). Because we have established a �ltration that satis�es the usual conditions, we

can apply the results of Liptser and Shiryayev (1980) using arguments similar to Ramlau-Hansen (1983)

Proposition 4.2.1. Speci�cally, we need Corollary 2 and Remark 1 from Liptser and Shiryayev (1980).

These results imply that, if for all � > 0,

nX
i=1

Z T

0

h
g
(n)
i (s)

i2
1n���g(n)i (s)

���>�od hMii (s)!p 0

and if for some constant �2, with

Xn �
nX
i=1

Z T

0
g
(n)
i (s) dMi (s)

we have

hXniT !
p �2,

Then

Xn
T ) N

�
0; �2

�
:

For a de�nition of the angle bracket process


M i;M j

�
t
in this situation, see Appendix D, Fleming and

Harrington (1991) or Dellacherie and Meyer (1980) VII.39. By Fleming and Harrington (1991) Theorem

2.4.3 and Lemma 2, for i 6= j,�Z �

0
g
(n)
i (s) dMi (s) ;

Z �

0
g
(n)
j (s) dMj (s)

�
t

=

Z t

0
g
(n)
i (s) g

(n)
j (s) d hMi;Mjis ;

and for i = j,�Z �

0
g
(n)
i (s) dMi (s) ;

Z �

0
g
(n)
j (s) dMj (s)

�
t

=

�Z �

0
g
(n)
i (s) dMi (s)

�
t

=

Z t

0

h
g
(n)
i (s)

i2
d hMiis :

Recall the polarization identity for h�; �it (Protter (2005) pg. 125),

hX + Y;X + Y i = hX;Xi+ hY; Y i+ 2 hX;Y i :

Also, by linearity and the de�nition of the angle bracket process h�; �it, we have*
X1;

nX
i=1

Yi

+
= hX1; Y1i+ � � �+ hX1; Yni
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Therefore, using the above equalities,

hXniT =
nX
i=1

Z T

0

h
g
(n)
i (s)

i2
d hMii (s) :

This follows because


M i;M j

�
t
= 0 for all i 6= j by Fleming and Harrington (1991) Theorem 2.5.2 (see

also their proof of Theorem 2.5.1). This impliesZ t

0
g
(n)
i (s) g

(n)
j (s) d hMi;Mjis = 0;

which is used above. By Fleming and Harrington (1991) section 2.5

hMiit = �
i
t:

This gives the result. The mixed normal case follows from the same results in Liptser and Shiryayev

(1980). The FCLT result follows exactly the same arguments as the t = T case and uses Liptser and

Shiryayev (1980) corollary 2.

Proof (Theorem 4). Once Proposition 3 is veri�ed and the assumptions (5)-(8) hold, the restriction

of NL (1995) Theorem 1 to i:i:d: observations may be relaxed. Under (A2)-(A3), the expectations in

the assumptions (5)-(8) are the same as in the i:i:d: case. Therefore, these expectations converge to the

same values as those derived in NL (1995) Theorem 1. NL (1995) use the standard Bernstein inequality

to show (5)-(8). However, once Proposition 3 is available, as long as (5)-(8) hold the results (9)-(11)

continue to hold using the same proof as NL (1995) Theorem 1. In addition, the fact that

nX
i=1

Z t

0

bd+j+1

n
K2
b

�
x� Zi (s)

�
dM i

s

is a continuous time martingale in t is used to justify the use of Lenglart�s inequality in the proof (see

Shorack and Wellner (1986) pages 892-893). This holds in the dependent case using the information

structure outlined in section 2. Finally, the result (10) is modi�ed from the NL (1995) result by allowing

for r times continuous di¤erentiability of � and e. This allows for Taylor expansions with more terms.

The term b�r replaces the term b�2 which is found in the result from NL (1995). This type of modi�cation

is done in LNV (2003). Details are omitted.

Proof (Lemma 5). We show this only for the W 2 case. The W 1 case is simpler and the proofs

are omitted. We assume [0; T ] = [0; 1] for notational convenience. The following set is equivalent to�
W 2 < M

	
for any M 2 R.

[1k=1 [kq=1 [fCjg \
q�1
j=1

26666664

n
f
�
t;X (t) ; Y

�
Gi + t

��
< Cj

�� t 2 � j�1k ; jkio
\
n
f
�
t;X (t) ; Y

�
Gi + t

��
< Cq

�� t 2 � q�1k ; qkio
\
nR Pq

j=1Ci1f( j�1k ; j
k ]g (s) ds < �i

o
\
nR Pq+1

j=1 Ci1f( j�1k ; j
k ]g (s) ds � �i

o

37777775 :
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Here, [fCjgis the union over all sets of q elements Cj 2 Q such that

Z q+1X
j=1

Ci1f( j�1k ; j
k ]g (s) ds < M:

Because the sets
�
W 2 < M

	
generate �

�
W 2
�
, the result follows.

Proof (Proposition 6). This holds by Lemma 5 and a simple application of the Bernstein-type

inequality in Bosq (1996) pg. 27. I prove the result for polynomial mixing rates. The result for

exponential mixing rates holds with a similar argument. Let Wni be the observations corresponding to

Lemma 5 and the relevant array from conditions (5)-(8). De�ne

Xni =Wni � E [Wni] :

This array is �-mixing with bounded elements given our assumptions. Applying the Bernstein inequality

in Bosq (1998) for polynomial alpha mixing gives

P

 
1

n

nX
i=1

Xin � �
!

� C1 exp
h
�C2�2nb2(d+j+1)

i
+ C3n

(1�)��b(d+j+1)=2

By assumption, nb2(d+j+1) !1 and n(1�)��b(d+j+1)=2 ! 0. This implies

P

 
1

n

nX
i=1

Xin � �
!
! 0

and the result follows.

In this appendix I �rst provide preliminary results similar to those in LNV (2003). I follow their

approach to the proofs closely. The following lemma is a direct result of Dzhaparidze and van Zanten

(2001) Theorem 3.3.

Lemma 25 (Dzhaparidze and van Zanten) Let M (t) be a locally square integrable martingale. As-

sume j�M (s)j � K for all s 2 [0; T ]. Then, for all c; d > 0,

P
�
jMT j � c; hMiT � d

2
�
� 4 exp

�
� c2

2 (cK + d2)

�
Lemma 25 is almost identical to Lemma 2 from LNV. However, dependence between the processes is

accounted for. Note �iT are bounded by a nonrandom constant �. This follows from our assumptions.

Lemma 26 Let � be a bounded subset of Rd+1 and, for each � 2 �, consider predictable functions

g1;�; : : : ; gn;�. Suppose that for some constants Ln, Kn and �n � 1, we have���gi;� (t)� gi;e� (t)��� � Ln

���� � e���� for all �;e� 2 � and all i � 1 and t � 0,

jgi;� (t)j � Kn for all � 2 � and all i � 1 and t � 0,
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1

n

nX
i=1

Z T

0
jgi;� (t)j2 dt � �2n for all � 2 � and all n > 1;

Ln � n� for all � 2 � and some � <1,

and

Kn �
r

n

log n
�n for all n > 1.

Then, for some constants C1; C2; C3 and n > 1,

P

 
sup
�2�

1p
n

�����
nX
i=1

Z T

0
g
(n)
i;� dMi

����� � C1�nplog n
!
� C2 exp (�C3 log n) .

Proof. From Lemma 25, we know that for each � 2 �, a > 0 and R > 0,

P

 
1p
n

�����
nX
i=1

Z T

0
g
(n)
i;� dMi

����� � a; 1n
nX
i=1

Z T

0

h
g
(n)
i;�

i2
d�i � R2

!

� 4 exp

"
� a2

2
�
aKnn�1=2 +R2

�# :
This is exactly the same inequality as inequality (26) used in the proof of LNV Lemma 2 except the 2 is

replaced by a 4. The rest of the proof holds exactly as in LNV except the constants are adjusted because

of the 4.

Proof (Theorem 7). De�ne o (z) � � (z) e (z). Following LNV (2003), we divide be (z) � e (z) =be (z)�Ebe (z)+Ebe (z)�e (z) where be (z)�Ebe (z) is the "stochastic" part and Ebe (z)�e (z) is the "bias" part.
This is similarly done for bo (z). Because of (A2)-(A3), linearity and the integral nature of the random

variables, the bias term is the same as in the i:i:d: case. LNV (2003) show that supx2I jEbe (z)� e (z)j
and supx2I jEbo (z)� o (z)j are O (br) using Taylor expansions and r times continuous di¤erentiability of
� and e.

Again following LNV (2003), we write be (z)�Ebe (z) =Pn
i=1 �

c
n;i (z), where �

c
n;i (z) = �n;i (z)�E�n;i (z)

and

�n;i (z) =
1

n

Z T

0
Kb (z � Zj (s))1f�j�sgds:

Across rows, �cn;i (z) are bounded mean zero random variables with an �-mixing rate such that � (n) �
� (n) � � exp (�cn). Let fB (z1; �1) ; : : : ; B (zL; �L)g be an open cover of I. Here, B (zl; �l) is an open

ball of radius �l centered at zl. We can choose a constant c1 such that �L � c1=L. Using di¤erentiability
of the kernel k, LNV (2003) show that

sup
z2I

�����
nX
i=1

�cn;i (z)

����� � max
1�l�L

�����
nX
i=1

�cn;i (zl)

�����+ max
1�l�L

sup
x2B(xL;�l)

nX
i=1

���cn;i (zl)� �cn;i (z)��
� max

1�l�L

�����
nX
i=1

�cn;i (zl)

�����+ c2�L
b2(d+j+1)
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where c2 is a constant.

P

0@snb2(d+j+1)
log n

max
1�l�L

�����
nX
i=1

�cn;i (zl)

����� > �
1A

�
LX
l=1

P

 �����
nX
i=1

�cn;i (zl)

����� > �
r

log n

nb2(d+j+1)

!

Notice that
��n�cn;i (z)�� � c3b�(d+j+1) for some constant c3. Notice also, as in the proof of Theorem 9,

E
��n�cn;i (z)��2 = 1

bd+j+1
O (1)

This follows from change of variable and dominated convergence arguments similar to the proof of NL

(1995) Theorem 1. We can now apply the Bernstein-type inequality for bounded �-mixing random

variables from Bosq (1998).

LX
l=1

P

 �����
nX
i=1

�cn;i (zl)

����� > �
r

log n

nb2(d+j+1)

!

�
LX
l=1

(
C1 exp

�
�C2�2 log n

�
+ C3

n5=4 exp
�
� c
2n

(1�)�
log n

)
;

:

If we choose L = n and � large enough the above goes to zero. In additions
nb2(d+j+1)

log n

c2�L
nb2(d+j+1)

� c2c1p
log nn=2b(d+j+1)

! 0:

This implies uniform convergence of be (z).
LNV (2003) show that, once we establish uniform convergence for be (z), we have

sup
z2I

jb� (z)� � (z)j � �

C + op (1)
sup
z2I

jbo (z)� o (z)j
for some positive constants �, C. Recall that supz2I jEbo (z)� o (z)j = O (br).

sup
z2I

jbo (z)� Ebo (z)j
� sup

z2I

�����bo (z)� 1

n

nX
i=1

Z T

0
Kb (z � Zi (s)) d�i (s)

�����
+sup
z2I

����� 1n
nX
i=1

Z T

0
Kb (z � Zi (s)) d�i (s)� Ebo (x)

����� :
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Note that, by martingale arguments given above

E

"
1

n

nX
i=1

Z T

0
Kb (z � Zi (s)) d�i (s)

#
= E [bo (z)] :

We apply to bo (z) the same arguments given above to prove the uniform rate of convergence for be (z). By
boundedness and continuous di¤erentiability of �, we have

sup
z2I

����� 1n
nX
i=1

Z T

0
Kb (z � Zi (s)) d�i (s)� E [bo (z)]

�����
= sup

z2I

����� 1n
nX
i=1

Z T

0
Kb (z � Zi (s)) d�i (s)� E

�
1

n

Z T

0
Kb (z � Zi (s)) d�i (s)

������
= Op

(r
log n

nb2(d+j+1)

)
:

Therefore

With the above considerations, similarly to as shown in LNV (2003) Lemma 3, if for

Vn = n
�1

nX
i=1

Z T

0
Kb (z � Zi (s)) d (Ni (s)� �i (s)) = bo (z)� n�1 nX

i=1

Z T

0
Kb (z � Zi (s)) d�i (s)

we have

sup
z2I

jVnj = Op

(r
log n

nb2(d+j+1)

)
then the result holds. The exact same argument as in LNV (2003) holds (with di¤erent constants)

because we have updated their Lemma 1 and 2 above in this appendix. Therefore,

sup
z2I

jVnj = Op

(r
log n

nbd+j+1

)

which is faster than necessary. Because of this,

sup
z2I

jb� (z)� � (z)j = O (br) +Op(r log n

n�=(�+1)bd+j+1

)
:

Next, I present the proof of Theorem 8. I closely follow the proof of Theorem 1 from LNV (2003),

focusing on the modi�cations needed for dependence. I present here all the (extensive) notation, which
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is taken from LNV(2003),

(b�� �) (z) =
(Vn (z) +Bn (z))be (z)

Vn (z) =
1

n

nX
i=1

Z T

0
Kb (z � Zi (s)) dMi (s)

Bn (z) =
1

n

nX
i=1

Z T

0
Kb (z � Zi (s)) [� (Zi (s))� � (z)]Yi (s) ds

�b�Q�j � �Q�j� (zj) = VQ�j (zj) +BQ�j (zj)

VQ�j (zj) =
1

n

nX
i=1

Z T

0
H
(n)
i (zj ; s) dMi (s)

H
(n)
i (zj ; s) =

Z
I�j

Kb (z � Zi (s))be (z) dQ�j (z�j)

BQ�j (zj) =

Z
I�j

Bn (z)be (z) dQ�j (z�j)

eh(n)i (zj ; s) =

Z
I�j

Wni (z; s)

e (z)
dQ�j (z�j)

bh(n)i (zj ; s) =

Z
I�j

Wni (z; s)be (z) dQ�j (z�j)

�h
(n)
i (zj ; s) =

Z
I�j

Wni (z; s)be�i (z) dQ�j (z�j)

h
(n)
i (zj ; s) =

1

(nb)1=2
k

�
zj � Zji (s)

b

�
q2�j (Z�ji (s))

e (zj ; Z�ji (s))

Wni (z; s) =
b1=2

n1=2
Kb (z � Zi (s))

(nb)1=2 eVQ�j (zj) = nX
i=1

Z T

0

eh(n)i (zj ; s) dMi (s)

By the assumed form of the bandwidth, (nb)1=2 = n�=C. We wish to show

(nb)1=2
�b�Q�j (x)� �Q�j (x)� (xj)) N [mj (zj) ; vj (zj)] :

Note the decomposition

(nb)1=2
�b�Q�j (x)� �Q�j (x)� (xj) = (nb)1=2 �VQ�j (zj) +BQ�j (zj)� :

I show the result in three steps. First, prove

(nb)1=2 eVQ�j (zj)) N (0; vj (zj)) :
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Second, prove

(nb)1=2
neVQ�j (zj)� VQ�j (zj)o!p 0:

Finally, prove

n�BQ�j (zj)!p mj (zj) :

First step:

Lemma 27 (nb)1=2 eVQ�j (zj)) N (0; vj (zj)) :

Proof. eh(n)i (zj ; s) are left continuous and therefore predictable with respect to the �ltration outlined in

lemma 1 above. Therefore the martingale CLT derived in Proposition 3 holds in this situation. The

same proof as in LNV Lemma 4 now holds using the Bernstein-type inequality of Bosq (1998) because

the bandwidth satis�es nb2(d+j+1) !1.
Still following LNV, second step:

(nb)1=2
neVQ�j (zj)� VQ�j (zj)o!p 0:

(nb)1=2
���eVQ�j (zj)� VQ�j (zj)���

�
�����
nX
i=1

Z T

0

bh(n)i (zj ; s) dMi (s)�
nX
i=1

Z T

0

�h
(n)
i (zj ; s) dMi (s)

�����
+

�����
nX
i=1

Z T

0

�h
(n)
i (zj ; s) dMi (s)�

nX
i=1

Z T

0

eh(n)i (zj ; s) dMi (s)

�����
Lemma 28

Pn
i=1

R T
0
bh(n)i (zj ; s) dMi (s)�

Pn
i=1

R T
0
�h
(n)
i (zj ; s) dMi (s)!p 0:

Proof. Because we proved uniform convergence of be (z) in Theorem 7, the proof of Lemma 5 from LNV

(2003) holds here with the same proof. Here, we provide more details for the interested reader. See also

LNV (2003). ���bh(n)i (zj ; s)� �h(n)i
���

=

�����
Z
I�j

Wni (z; s)
be�i (z)� be (z)

infx2I jbe (z) be�i (z)jdQ�j (z�j)
�����

�

hR
I�j
W 2
ni (z; s) dQ�j (z�j) �

R
I�j
fbe�i (z)� be (z)g2 dQ�j (z�j)i1=2

infz2I jbe (z) be�i (z)j
where the last inequality follows from the Cauchy-Schwarz inequality. We assume Q is Lebesgue measure
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with constant weight CQ. By change of variables in z�jZ
I�j

W 2
ni (z; s) dQ�j (z�j) =

Z
I�j

b

n

1

b2(d+j+1)
k2
�
zj � Zji (s)

b

�
K2

�
zj � Z�ji (s)

b

�
dQ�j (z�j)

=
1

n

1

b(d+j+1)
k2
�
zj � Zji (s)

b

�Z
I�j

1

b(d+j)
K2

�
zj � Z�ji (s)

b

�
dQ�j (z�j)

=
1

n

1

b(d+j+1)
k2
�
zj � Zji (s)

b

�Z (Imax�j �Z�j(s))=b

(Imin�j �Z�j(s))=b
K2 (zj)CQdz�j :

This implies

sup
s

"Z
I�j

W 2
ni (z; s) dQ�j (z�j)

#
= O

�
n�1b�(d+j+1)

�
:

A similar change of variables argument impliesZ
I�j

fbe�i (z)� be (z)g2 dQ�j (z�j) = O �n�2b�2(d+j+1)� :
As shown in the proof of Theorem 7, supx2I jbe (z)� e (z)j !p 0. This implies, for some � > 0,

inf
z2I
jbe (z) be�i (z)j � �+ op (1) :

This gives the same result as in LNV:�����
nX
i=1

Z T

0

bh(n)i (zj ; s) dMi (s)�
nX
i=1

Z T

0

�h
(n)
i (zj ; s) dMi (s)

�����
� nOp

�
n�1b�(d+j+1)=2

�
Op

�
n�1=2b�(d+j+1)=2

�
:

This is op (1) because nb2(d+j+1) !1.

Lemma 29

M t =

nX
i=1

Z T

0

�h
(n)
i (zj ; s) dMi (s)�

nX
i=1

Z T

0

eh(n)i (zj ; s) dMi (s)!p 0: (37)

Proof. Again following LNV,

M t = M
1
t +M

2
t +M

3
t

=
nX
i=1

Z 1

0

(Z
I�j

Wni (z; s)
e (z)� E [be�i (z)]

e2 (z)
dQ�j (z�j)

)
dM i (s)

+
nX
i=1

Z 1

0

(Z
I�j

Wni (z; s)
E [be�i (z)]� be�i (z)

e2 (z)
dQ�j (z�j)

)
dM i (s)

+

nX
i=1

Z 1

0

(Z
I�j

Wni (z; s)
fe (z)� be�i (z)g2
e2 (z) be�i (z) dQ�j (z�j)

)
dM i (s) :

We deal with each piece individually. First consider M
1
t . This proof is similar to LNV but incorporates
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the Bernstein-type inequality used above. Details follow.

M
1
t �

nX
i=1

Z 1

0

Z
I�j

����Wni (z; s)
e (z)� E [be�i (z)]

e2 (z)

���� dQ�j (z�j) dM i (s)

Now consider Z
I�j

����Wni (z; s)
e (z)� E [be�i (z)]

e2 (z)

���� dQ�j (z�j)
�

Z
I�j

Wni (z; s)
je (z)� E [be�i (z)]j

e2 (z)
dQ�j (z�j)

� supx2I je (z)� E [be�i (z)]j
infx2I e2 (z)

Z
I�j

Wni (z; s) dQ�j (z�j)

= O (br)

Z
I�j

Wni (z; s) dQ�j (z�j) :

By change of variables

sup
s

Z
I�j

Wni (z; s) dQ�j (z�j)

= sup
s

1

n1=2b1=2
k

�
zj � Zj (s)

b

�Z (Imax�j �Z�j(s))=b

(Imin�j �Z�j(s))=b
K2 (zj)CQdz�j

� 1

n1=2b1=2
C:

nX
i=1

Z 1

0

Z
I�j

����Wni (z; s)
e (z)� E [be�i (z)]

e2 (z)

���� dQ�j (z�j) dM i (s)

� O (br)
nX
i=1

Z 1

0

1

n1=2b1=2
CdM i (s) (38)

Arguments using Proposition 3 show that (38) is a value that follows a martingale CLT multiplied by

O (br) = o (1). Therefore M
1
t = op (1).

Now consider M
3
t . Z

I�j

Wni (z; s)
fe (z)� be�i (z)g2
infx2I je2 (z) be�i (z)jdQ�j (z�j)

�

hR
I�j
W 2
ni (z; s) dQ�j (z�j) �

R
I�j
fe (z)� be�i (z)g4 dQ�j (z�j)i1=2

infx2I je2 (z) be�i (z)j
Note that we previously showed

sup
s

"Z
I�j

W 2
ni (z; s) dQ�j (z�j)

#
= O

�
n�1b�(d+j+1)

�
:
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By the uniform rate of convergence for be�i (z) derived in Theorem 7, we have

sup
z

Z
I�j

fe (x)� be�i (x)g4 dQ�j (x�j)
�

(
O (br) +Op

(r
log n

n�=(�+1)bd+j+1

))4

M
3
t � nOp

�
n�1=2b�(d+j+1)=2

�(
O (br) +Op

(r
log n

nb2(d+j+1)

))2
:

= Op

�
n1=2b2r�(d+j+1)=2

�
+Op

�
n1=2�(�=2(�+1)) log1=2 (n) br�(d+j+1)

�
+Op

�
n1=2�(�=(�+1)) log (n) b�3(d+j+1)=2

�
Now consider M

2
t .

h
(n)
i (u) =

Z
I�j

����Wni (z; u)
be�i (z)� E [be�i (z)]

e2 (z)

���� dQ�j (z�j)
�

Z
I�j

Wni (z; u)
jbe�i (z)� E [be�i (z)]j

e2 (z)
dQ�j (z�j)

� supz2I jbe�i (z)� E [be�i (z)]j
infz2I e2 (z)

sup
u

Z
I�j

Wni (z; u) dQ�j (z�j)

First, recall

sup
u

Z
I�j

Wni (z; u) dQ�j (z�j) �
1

n1=2b1=2
C:

Next, recall we show in the proof of Theorem 7 that

P

0@snb2(d+j+1)
log n

sup
z2I

jbe�i (z)� E [be�i (z)]j > �
1A � n

n�
2O (1)

or

P

 
nb2(d+j+1)

log n

�
sup
z2I

jbe�i (z)� E [be�i (z)]j�2 > �2! � n

n�
2O (1) (39)

We follow Mammen and Nielsen (2007) Lemma (A1). Note that the cádlág assumptions made earlier in

Mammen and Nielsen (2007) are not needed. This is important for piecewise constant covariate processes.

Recall that � (z) is bounded above and below.

nX
i=1

E
Z T

0

n
h
(n)
i (u)

o2
�
�
s;Xi

u; YGi+u
�
1f� i>ugdu

� log n

nb2(d+j+1)
C 0

nb

nX
i=1

E

"
nb2(d+j+1)

log n

�
sup
z2I

jbe�i (z)� E [be�i (z)]j�2#
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supz2I jbe�i (z)� E [be�i (z)]j is bounded by C1=bd+j+1. Therefore
nb2(d+j+1)

log n

�
sup
z2I

jbe�i (z)� E [be�i (z)]j�2 � n

log n
C21

Using (39), we know

E

"
nb2(d+j+1)

log n

�
sup
z2I

jbe�i (z)� E [be�i (z)]j�2# � �2 + n

log n
C21 �

n

n�
2O (1)

If we choose � large enough,
n

log n
C21 �

n

n�
2O (1) = o (1) .

this implies

log n

nb2(d+j+1)
C 0

nb

nX
i=1

E

"
nb2(d+j+1)

log n

�
sup
z2I

jbe�i (z)� E [be�i (z)]j�2#

� log n

nb2(d+j+1)
C 0

nb

nX
i=1

�2 + o (1)

=
log n

nb2(d+j+1)+1
�
C 0�2 + o (1)

�
:

Therefore, by the assumptions of the theorem

nX
i=1

E
Z T

0

n
h
(n)
i (u)

o2
�
�
s;Xi

u; YGi+u
�
1f� i>ugdu! 0:

De�ne

h
(n)
i;j (u) =

Z
I�j

Wni (z; u)
be�i;j (z)� E [be�i;j (z)]

e2 (z)
dQ�j (z�j)

Therefore

h
(n)
i;j (u)� h

(n)
i (u) =

Z
I�j

Wni (z; u)
� 1
n

R T
0 Kb

�
z � Zi (s)

�
1f� i>sgds

e2 (z)
dQ�j (z�j)

� 1

nbd+j+1

supI

���R T0 K �z � Zi (s)�1f� i>sgds���
infI je2 (z)j

1

n1=2b1=2
C

� 1

nbd+j+1
1

n1=2b1=2
C 0.

E
Z T

0

n
h
(n)
i;j (u)� h

(n)
i (u)

o2
�
�
s;Xi

u; YGi+u
�
1f� i>ugdu �

1

n2b2(d+j+1)
1

nb
C 0

Clearly, by the assumptions of Theorem 8,

n

nX
i=1

1

n2b2(d+j+1)
1

nb
C 0 =

1

nb2(d+j+1)+1
C 0 ! 0:
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As a result of Mammen and Nielson (2007) Lemma (A1), we conclude E
h
M
2
t

i2
= o (1). Therefore,

M
2
t = op (1). Therefore, Lemma 29 is proven.

Putting the last three Lemmas together, we have proven (nb)1=2 VQ�j (zj) ) N (0; vj (z)). Now we

need to verify the third step: n�BQ�j (zj)!p mj (zj). As usual, we follow LNV.

BQ�j (zj) =

Z
I�j

Bn (z)

e (z)
dQ�j (z�j) +

Z
I�j

Bn (z)
be (z)� e (z)be (z) e (z) dQ�j (z�j)

�����
Z
I�j

Bn (z)
be (z)� e (z)be (z) e (z) dQ�j (z�j)

�����
� supz2I jBn (z)j supz2I jbe (z)� e (z)j

infz2I jbe (z) e (z)j
= Op (b

r)

�
Op (b

r) +Op

�
log n

n�=(�+1)bd+j+1

��
= br

�
Op (b

r) +Op

�
log n

n�=(�+1)bd+j+1

��
Note supz2I jBn (z)j = Op (b

r) by (K2), a Taylor expansion and the mixing conditions. See Nielsen

and Linton (1995) proof of Theorem 1 for more details. The same argument as in LNV holds and is

reproduced here:

E

"Z
I�j

Bn (z)

e (z)
dQ�j (z�j)

#
=
�r (k)

r!
br

dX
j=1

Z
I�j

�
(r)
j (z) dQ�j (z�j) f1 + o (1)g .

Notice that we can write things asZ
I�j

Bn (z)

e (z)
dQ�j (z�j) =

1

n

nX
i=1

Z T

0

Z
I�j

Kb (z � Zi (s))
e (z)

[� (Zi (s))� � (z)]Yi (s) dQ�j (z�j) ds

This representation, Lemma 5 and the assumed mixing conditions imply that.

n�

(Z
I�j

Bn (z)

e (z)
dQ�j (z�j)� E

"Z
I�j

Bn (z)

e (z)
dQ�j (z�j)

#)
!p 0.

C Proofs for Section 4

Proof (Proposition 11). We follow Anderson and Gill (1982) Appendix 3. Here, only the needed

alterations for dependence are sketched. Note that in the proof of Theorem III.1, the deterministic times

t
(n)
1 ; : : : ; t

(n)
n need not be in increasing order. The entire proof goes through as long as there exists a

distribution function y such that

sup
t2[0;1]

����� 1n
nX
i=1

1h
t
(n)
i ;1

i (t)� y (t)
�����! 0: (40)
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We will modify the proofs of Appendix 3 to show Condition B from AG (1982) is satis�ed in this sit-

uation for S(0) (�; t). Similar arguments will give the result for S(1) (�; t) and S(2) (�; t). s(0) (�; t) =

E
�
A (t) exp

�
�0Z (t)

�	
= y (t)E

�
1 f� � tg exp

�
�0Z (t)

�	
when the independent censoring times Ci have

distribution function y. By the mixing assumptions, for any �xed t 2 [0; 1] the random variables

1 f� i � tg exp
�
�0Zi (t)

�
have �-mixing coe¢ cients such thatX

n>0

n�1� (n) <1: (41)

Therefore, by Rio (1995) a SLLN holds for 1 f� i � tg exp
�
�0Zi (t)

�
for any �xed �. By Pollard (1984)

Theorem II.2, for any �xed t, we have

sup
�

����� 1n
nX
i=1

1 f� i � tg exp
�
�0Zi (t)

�
� E

�
1 f� � tg exp

�
�0Z (t)

�	�����! 0;

almost surely. In addition, the random variables
1 f� i � tg exp ��0Zi (t)�1�1 f� i � tg exp ��0Zi (t)� =2 K	

for any K compact set as speci�ed in AG (1982) also satisfy the mixing condition (41). Therefore, they

satisfy a SLLN by Rio (1995). With these extensions, the same basic argument as in AG (1982) Theorem

III.1 holds. Speci�cally

sup
t2[0;1];�

����� 1n
nX
i=1

1 f� i � tg exp
�
�0Zi (t)

�
1h
t
(n)
i ;1

i � E�1 f� � tg exp ��0Z (t)�	 y (t)�����! 0;

almost surely. Using the same idea as AG (1982) Corrollary III.2, we conclude

sup
t2[0;1];�

����� 1n
nX
i=1

1 f� i � tg exp
�
�0Zi (t)

�
1[Ci;1] � E

�
1 f� � tg exp

�
�0Z (t)

�	
y (t)

�����!p 0:

This is the required result. The remainder of the needed conditions follow from the same arguments as

AG (1982) Theorem 4.1.

The required conditions on the covariates Zi (t) are presented here.

(B3): Assume the following for each observation i 2 N0. Assume for each s 2 [0; 1], Zi (s) has support
contained in a compact rectangle normalized to be [0; 1]q for ease of notation. Zi (s) must be

random and no process in Zi (s) can be a linear combination of the other processes. Assume

E
�
1f� i�sg

��Zi (s) ; 0 � s � 1� �Mmin (s) > 0 8s 2 (0; 1], a.s. (42)

for some deterministic function Mmin (s) on s 2 [0; 1]. Let S � Dq [0; 1] and give S the relative

Skorokhod topology. Assume

P
�
Zi (s+) 2 S

	
= 1:

For all x0 (s) 2 S for all k 2 f1; : : : ; qg there exists x0 (s) + � (s) 2 S such that , �i (s) = 0 for i 6= j,
s 2 [0; 1] and �k (s) > 0 or �k (s) < 0 on some interval with positive Lebesgue measure contained in
[0; 1], �nally �k (s) = 0 for s outside of that interval. Let � 2 [a1; b1] � � � � � [aq; bq]. Either (1.)
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For all x0 2 S and all � > 0,

P
�
!jZi (s+) (!) 2 S; d

�
Zi (s+) (!) ; x0

�
< �
	
> 0;

9x00 2 S; x00 6= x0 s:t: d
�
x0; x

0
0

�
< �;

where d (�; �) is the Skorokhod metric. Or (2.) S consists of a �nite number of paths x, each with

positive probability.

Condition (42) will always be satis�ed because we can choose a point process with hazard�
inf

v2[0;1]
h0 (v)

�
(s) inf

�;z

�
exp

�
�0z
��
1f� i�sg

which will correspond to an Mmin (s) that satis�es the condition. We include this assumption for

completeness.

Lemma 30 Let f1, f2, ffng be bounded strictly positive functions de�ned on [0; 1]. IfZ 1

0

�
fn
f1
� 1� log

�
fn
f1

��
f1f2ds! 0;

then

fn !L1 f:

Proof. Note that the function f (x) = x � 1 � log (x) on the interval (0;1) is uniquely minimized at 1
where its value is 0. The result follows easily. This results is used in Karr (1987) and Grenander (1981).

Lemma 31 Under assumptions (B1)-(B3), if

H (h0; �0)�H (hn; �n)! 0;

then

hn !L1 h0;

�n ! �0:
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Proof. By a similar manipulation as in Karr�s (1987) proof of Theorem 3.3,

H (h0; �0)�H (hn; �n)

= E
�Z 1

0

�
hn (s) exp

�
�0nZ

i
�
� h0 (s) exp

�
�00Z

i
��
1f� i�sgds

�
�E

(Z 1

0
log

"
hn (s) exp

�
�0nZ

i
�

h0 (s) exp
�
�00Z

i
� # dN i

s

)

= E

(Z 1

0

"
hn (s) exp

�
�0nZ

i
�

h0 (s) exp
�
�00Z

i
� � 1#h0 (s) exp ��00Zi�1f� i�sgds

)

�E
(Z 1

0
log

"
hn (s) exp

�
�0nZ

i
�

h0 (s) exp
�
�00Z

i
� #h0 (s) exp ��00Zi�1f� i�sgds

)

= E

(Z 1

0

"
hn (s) exp

�
�0nZ

i
�

h0 (s) exp
�
�00Z

i
� � 1� log hn (s) exp ��0nZi�

h0 (s) exp
�
�00Z

i
� !#h0 (s) exp ��00Zi�1f� i�sgds

)

= E

8<:E
24 R 1

0

�
hn(s) exp(�0nZi)
h0(s) exp(�

0
0Z

i)
� 1� log

�
hn(s) exp(�0nZi)
h0(s) exp(�

0
0Z

i)

��
h0 (s) exp

�
�00Z

i
�
1f� i�sgds

������Zi (t) ; t 2 [0; 1]
359=;

= E

8<:
R 1
0

�
hn(s) exp(�0nZi)
h0(s) exp(�

0
0Z

i)
� 1� log

�
hn(s) exp(�0nZi)
h0(s) exp(�

0
0Z

i)

��
h0 (s) exp

�
�00Z

i
�
E
�
1f� i�sg

��Zi (t) ; t 2 [0; 1]� ds
9=;

� E

(Z 1

0

"
hn (s) exp

�
�0nZ

i
�

h0 (s) exp
�
�00Z

i
� � 1� log hn (s) exp ��0nZi�

h0 (s) exp
�
�00Z

i
� !#h0 (s) exp ��00Zi�Mmin (s) ds

)
(43)

Here, we note that we can convert the covariate processes in (43) to their right continuous cádlág versions

without changing the expectation. This is because of the integral in the expectation and that cáglád

processes can only have a countable number of discontinuities. From now on in the proof, we have

changed Zi (s) to Zi (s+) and therefore can deal with the Skorokhod space. This allows us to exploit

assumption (B3). By assumption, (43) converges to zero. Lemma 30 implies that, for a �xed x, if

Z 1

0

"
hn (s) exp

�
�0nx

�
h0 (s) exp

�
�00x

� � 1� log hn (s) exp ��0nx�
h0 (s) exp

�
�00x

� !#h0 (s) exp ��00x�Mmin (s) ds! 0; (44)

then

hn (s) exp
�
�0nx

�
!L1 h0 (s) exp

�
�00x

�
: (45)

Assume (45) does not hold for an open ball in S around a path x0 2 S. By assumption, this open ball

has positive probability. This implies (44) does not hold for this set. Because of the positive probability

of Zi having a realization in this set, (43) would fail to converge to zero if the assumption is true. So

(45) can not fail on an open ball in S. Therefore, (45) must hold for x 2 D where D is a dense set of

paths in S with the relative Skorokhod topology.

A consequence is that supn
R
jhn (s)j ds is bounded. This holds because � is restricted to a compact

interval. If it did not hold, (45) would fail at all paths x (s) 2 [0; 1]d. Similarly,
R
jhn (s)j ds9 0 because if

this happened hn (s) exp
�
�0nx

�
!L1 0 which can not happen because h0 (s) exp

�
�00x

�
is strictly positive.
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Assume there exists a path x0 2 S such that (45) fails. Because (45) must hold on a dense set, by

assumption (B3) and by the de�nition of the Skorokhod metric, for any � > 0 there exists a perturbation

� (s) such that (45) is satis�ed for x0 (s) + � (s) 2 S and

sup
t2[0;1]

k� (s)k < �

. Z ��hn (s) exp ��0nx0 (s)�� h0 (s) exp ��00x0 (s)��� ds
=

Z �������
hn (s) exp

�
�0nx0 (s)

�
� hn (s) exp

�
�0nx0 (s)

�
exp

�
�0n� (s)

�
+hn (s) exp

�
�0nx0 (s)

�
exp

�
�0n� (s)

�
� h0 (s) exp

�
�00x0 (s)

�
exp

�
�00� (s)

�
+h0 (s) exp

�
�00x0 (s)

�
exp

�
�00� (s)

�
� h0 (s) exp

�
�00x0 (s)

�
������� ds

�
Z ��hn (s) exp ��0nx0 (s)�� hn (s) exp ��0nx0 (s)� exp ��0n� (s)��� ds
+

Z ��hn (s) exp ��0nx0 (s)� exp ��0n� (s)�� h0 (s) exp ��00x0 (s)� exp ��00� (s)��� ds
+

Z ��h0 (s) exp ��00x0 (s)� exp ��00� (s)�� h0 (s) exp ��00x0 (s)��� ds
=

Z ��hn (s) exp ��0nx0 (s)��� ��1� exp ��0n� (s)��� ds+ o (1)
+

Z ��h0 (s) exp ��00x0 (s)��� ��exp ��00� (s)�� 1�� ds
� C1max sup

�;s

��1� exp ��0� (s)���+ o (1)
+C2max sup

s

��exp ��00� (s)�� 1�� :
Because we may choose � (s) such that (45) holds for any � > 0, for any  > 0 we can choose � (s) such

that these exists an N such thatZ ��hn (s) exp ��0nx0�� h0 (s) exp ��00x0��� ds < 
for all n � N . Therefore, (45) holds for x0 (s) and therefore (45) holds for all x 2 S.

Because (45) holds for all x 2 S, then if �n ! �0 this implies hn (s)!L1 h0 (s). We can see this from
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the followingZ ��hn (s) exp ��0nx0 (s)�� h0 (s) exp ��00x0 (s)��� ds
=

Z �����hn (s)
"
exp

�
�00x0 (s)

�
+

dX
i=1

xi0 (s) exp
�
c0x0 (s)

� �
�in � �i0

�#
� h0 (s) exp

�
�00x0 (s)

������ ds
�

Z �����hn (s) exp ��00x0 (s)�� h0 (s) exp ��00x0 (s)�+ hn (s)
dX
i=1

xi0 (s) exp
�
c0x0 (s)

� �
�in � �i0

������ ds
�

Z �������[hn (s)� h0 (s)] exp ��00x0 (s)����
�����hn (s)

dX
i=1

xi0 (s) exp
�
c0x0 (s)

� �
�in � �i0

������
����� ds

�
�����
Z ��[hn (s)� h0 (s)] exp ��00x0 (s)��� ds� Z

�����hn (s)
dX
i=1

xi0 (s) exp
�
c0x0 (s)

� �
�in � �i0

������ ds
����� (46)

We have proven that (46) converges to zero. If hn (s)9L1 h0 (s) and �n ! �0 we have a contradiction

because, as we showed above, supn
R
jhn (s)j ds is bounded.

Note that (46) must converge to zero for any x0 2 S and for x0 (s) + � (s) 2 S where � (s) perturbs
only one covariate as outlined in the assumptions. We can de�ne such a perturbation for each covariate

by the theorem assumptions. Above we have provenZ ��hn (s) exp ��0nx0 (s)�� h0 (s) exp ��00x0 (s)��� ds! 0 (47)

Z ��hn (s) exp ��0nx0 (s)� exp ��0n� (s)�� h0 (s) exp ��00x0 (s)� exp ��00� (s)��� ds! 0 (48)

We now use a Taylor expansion of the term exp
�
�0n� (s)

�
around �n in (48).Z ����� hn (s) exp

�
�0nx0 (s)

� �
exp

�
�00� (s)

�
+ �i (s) exp (c0� (s))

�
�in � �i0

��
�h0 (s) exp

�
�00x0 (s)

�
exp

�
�00� (s)

� ����� ds
=

Z �����
�
hn (s) exp

�
�0nx0 (s)

�
� h0 (s) exp

�
�00x0 (s)

��
exp

�
�00� (s)

�
+hn (s) exp

�
�0nx0 (s)

�
�i (s) exp (c0� (s))

�
�in � �i0

� ����� ds
�

Z �����
���hn (s) exp ��0nx0 (s)�� h0 (s) exp ��00x0 (s)�� exp ��00� (s)���

�
��hn (s) exp ��0nx0 (s)� �i (s) exp (c0� (s)) ��in � �i0���

����� ds
�

�����
R ���hn (s) exp ��0nx0 (s)�� h0 (s) exp ��00x0 (s)�� exp ��00� (s)��� ds

�
R ��hn (s) exp ��0nx0 (s)� �i (s) exp (c0� (s)) ��in � �i0��� ds

����� (49)

(47) shows that the �rst term in (49) converges to zero. Therefore, because
R
jhn (s)j ds 9 0 and by

the de�nition of � (s), �in ! �i0. Because we can de�ne an appropriate � (s) for each covariate by the

assumptions, we have �n ! �0. As a result, hn (s)!L1 h0 (s).

I prove the following theorem below. This theorem implies Proposition 17 presented in subsection

4.3. I prove this implication later in this appendix.

Theorem 32 We make Assumptions (B1)-(B3). Assume we choose a sequence of sieve spaces �n with
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the number of basis functions used being Jn for n observations. Let there exist a sequence hn 2 �n such
that hn !L1 h0. Assume further that for h 2 �n

Cnmin � h � Cnmax (50)����h0h
���� � Kn: (51)

In addition, the constants Cnmin, C
n
max and Kn must satisfy the following P�0 � a:s::

Kn

Z 1

0

����� 1n
nX
i=1

�
E
�Z s

0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

�
�
Z s

0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

������ ds! 0;

(52)

Cnmax sup
�

 Z 1

0

����� 1n
nX
i=1

�
E
�
exp

�
�0Zi (s)

�
1f� i�sg

�
� exp

�
�0Zi (s)

�
1f� i�sg

	����� ds
!
! 0 (53)

jlog (Cnmin)j _ jlog (Cnmax)j sup
�

�����
1
n

Pn
i=1

�
�0Zi (1)

� R 1
0 h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

�E
h�
�0Zi (1)

� R 1
0 h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

i �����! 0 (54)

Assume Cn = Cn�1=4+� for a small � > 0, where C is an arbitrary constant. Assume

1

, 
jlog (Cnmin)j _ jlog (Cnmax)j+ sup

�;x

���0x��! = Cn; (55)

and
1

Kn
= Cn: (56)

Then b� ! �0bh!L1 h0

P�0 � a:s:

The bound facilitated by the Burkholder inequality in the following proof is crude. In one instance, we

bound a martingale at time t = 1 by its supremum over the interval t 2 [0; 1], then apply the Burkholder
inequality. In another, we bound the integral of a martingale over t 2 [0; 1] by its supremum over the

same interval, and again apply the Burkholder inequality. These bounds can likely be improved upon.

This could improve the choice of the sequences Kn, Cnmin and C
n
max.

Proof (Theorem 32). We will show that H (h0; �0) � H
�bh; b�� ! 0 almost surely and the result

follows from Lemma 31. Again we follow Karr (1987) Theorem 3.3. De�ne e� = �eh; �0� whereZ ���eh� h0��� ds � inf
h2�n

Z
jh� h0j ds+ o (1) :
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The minima need not be unique because we are dealing with L1.

H (�0)�H (b�) = H (�0)�H (e�)
+H (e�)�Qn (e�)
+Qn (e�)�Qn (b�)
+Qn (b�)�H (b�)

� o (1) (57)

+H (e�)�Qn (e�)
+o (1)

+Qn (b�)�H (b�)
If we show the second and fourth terms in (57) converge to zero a.s., then H (�0) �H (b�) ! 0 a.s. and

therefore b� ! �0. Note that the third line in (57) is o (1) provided the other lines are o (1). This is

because b� is chosen to maximize Qn (�) and 0 � H (�0)�H (b�). Consider the fourth term
Qn (b�)�H (b�) � 1

n

nX
i=1

Z 1

0
log
hbh (s) exp�b�0Zi (s)�i dN i

s +

Z 1

0

h
1� bh (s) exp�b�0Zi (s)�1f� i�sgi ds

�E(�0)
�Z 1

0
log
hbh (s) exp�b�0Zi (s)�i dN i

s +

Z 1

0

h
1� bh (s) exp�b�0Zi (s)�1f� i�sgi ds�

= E
�Z 1

0

bh (s) exp�b�0Zi (s)�1f� i�sgds�� 1

n

nX
i=1

Z 1

0

bh (s) exp�b�0Zi (s)�1f� i�sgds (58)

+
1

n

nX
i=1

Z 1

0
log
hbh (s) exp�b�0Zi (s)�i dN i

s � E(�0)
�Z 1

0
log
hbh (s) exp�b�0Zi (s)�i dN i

s

�
:

We will from now on suppress the �0 on the expectations with the understanding that expectations are
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taken with respect to the true underlying measure. Using integration by parts, (58) becomes

(58) = E
�Z 1

0

bh (s) exp�b�0Zi (s)�1f� i�sgds�� 1

n

nX
i=1

Z 1

0

bh (s) exp�b�0Zi (s)�1f� i�sgds
� 1
n

nX
i=1

Z 1

0
N i (s)

bh0 (s)bh (s) ds+ log
hbh (1) exp�b�0Zi (1)�iN i (1)� 0(a:s:)

�E
"
�
Z 1

0
N i (s)

bh0 (s)bh (s) ds
#
� E

h
log
hbh (1) exp�b�0Zi (1)�iN i (1)

i
= E

�Z 1

0

bh (s) exp�b�0Zi (s)�1f� i�sgds�� 1

n

nX
i=1

Z 1

0

bh (s) exp�b�0Zi (s)�1f� i�sgds (59)

� 1
n

nX
i=1

Z 1

0
N i (s)

bh0 (s)bh (s) ds+ 1

n

nX
i=1

Z 1

0

"bh0 (s)bh (s)
Z s

0
h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

#
ds (60)

+
1

n

nX
i=1

log
hbh (1) exp�b�0Zi (1)�iN i (1)� E

h
log
hbh (1) exp�b�0Zi (1)�iN i (1)

i
(61)

+E

"Z 1

0
N i (s)

bh0 (s)bh (s) ds
#
� 1

n

nX
i=1

Z 1

0

"bh0 (s)bh (s)
Z s

0
h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

#
ds: (62)

After this expansion, we need to consider the absolute value of (59) + (60) + (61) + (62). Therefore, we

consider the absolute value of each of the lines from (59)-(62) individually as an upper bound.

j(59)j =

����� 1n
nX
i=1

�Z 1

0

bh (s)nE hexp�b�0Zi (s)�1f� i�sgi� exp�b�0Zi (s)�1f� i�sgo ds�
�����

�
�����
Z 1

0

 bh (s) 1
n

nX
i=1

n
E
h
exp

�b�0Zi (s)�1f� i�sgi� exp�b�0Zi (s)�1f� i�sgo
!
ds

�����
� Cnmax

Z 1

0

����� 1n
nX
i=1

n
E
h
exp

�b�0Zi (s)�1f� i�sgi� exp�b�0Zi (s)�1f� i�sgo
����� ds

� Cnmax sup
�

 Z 1

0

����� 1n
nX
i=1

�
E
�
exp

�
�0Zi (s)

�
1f� i�sg

�
� exp

�
�0Zi (s)

�
1f� i�sg

	����� ds
!
:

j(60)j =

����� 1n
nX
i=1

Z 1

0
N i (s)

bh0 (s)bh (s) ds� 1

n

nX
i=1

Z 1

0

"bh0 (s)bh (s)
Z s

0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

#
ds

�����
=

�����
Z 1

0

"bh0 (s)bh (s)
(
1

n

nX
i=1

�
N i (s)�

Z s

0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

�)#
ds

�����
� Kn

Z 1

0

����� 1n
nX
i=1

�
N i (s)�

Z s

0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

������ ds
� Kn sup

s2[0;1]

����� 1n
nX
i=1

�
N i (s)�

Z s

0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

������ : (63)

The term in the supremum of (63) is a martingale by arguments given in Section 2. As noted in Karr
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(1987), this term is subject to the Burkholder inequality and therefore can be bounded in probability. A

similar term will arise again, so we wait to give a speci�c bound.

j(61)j =

����� 1n
nX
i=1

log
hbh (1) exp�b�0Zi (1)�iN i (1)� E

h
log
hbh (1) exp�b�0Zi (1)�iN i (1)

i�����
�

����� 1n
nX
i=1

log
hbh (1) exp�b�0Zi (1)�i�N i (1)�

Z 1

0
h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

������ (64)

+

������
1
n

Pn
i=1 log

hbh (1) exp�b�0Zi (1)�i R 10 h0 (t) exp ��00Zi (t)�1f� i�tgdt
�E

h
log
hbh (1) exp�b�0Zi (1)�iN i (1)

i ������ : (65)

We handle the terms (64) and (65) separately

j(64)j =

����� 1n
nX
i=1

log
hbh (1) exp�b�0Zi (1)�i�N i (1)�

Z 1

0
h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

������
�

 
jlog (Cnmin)j _ jlog (Cnmax)j+ sup

�;z

���0z��! ����� 1n
nX
i=1

�
N i (1)�

Z 1

0
h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

������
�

 
jlog (Cnmin)j _ jlog (Cnmax)j+ sup

�;z

���0z��! (66)

� sup
s

����� 1n
nX
i=1

�
N i (s)�

Z s

0
h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

������ :

j(65)j =

������
1
n

Pn
i=1 log

hbh (1) exp�b�0Zi (1)�i R 10 h0 (t) exp ��00Zi (t)�1f� i�tgdt
�E

h
log
hbh (1) exp�b�0Zi (1)�iN i (1)

i ������
=

������
1
n

Pn
i=1 log

hbh (1) exp�b�0Zi (1)�i R 10 h0 (t) exp ��00Zi (t)�1f� i�tgdt
�E

h
log
hbh (1) exp�b�0Zi (1)�i R 10 h0 (t) exp ��00Zi (t)�1f� i�tgdti

������
� jlog (Cnmin)j _ jlog (Cnmax)j

������
1
n

Pn
i=1

�b�0Zi (1)� R 10 h0 (t) exp ��00Zi (t)�1f� i�tgdt
�E

h�b�0Zi (1)� R 10 h0 (t) exp ��00Zi (t)�1f� i�tgdti
������

� jlog (Cnmin)j _ jlog (Cnmax)j sup
�

�����
1
n

Pn
i=1

�
�0Zi (1)

� R 1
0 h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

�E
h�
�0Zi (1)

� R 1
0 h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

i ����� : (67)
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j(62)j =

�����E
"Z 1

0
N i (s)

bh0 (s)bh (s) ds
#
� 1

n

nX
i=1

Z 1

0

"bh0 (s)bh (s)
Z s

0
h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

#
ds

�����
=

������
E
hR 1
0

hbh0(s)bh(s) R s0 h0 (t) exp ��00Zi (t)�1f� i�tgdti dsi
� 1
n

Pn
i=1

R 1
0

hbh0(s)bh(s) R s0 h0 (t) exp ��00Zi (t)�1f� i�tgdti ds
������

=

����� 1n
nX
i=1

Z 1

0

bh0 (s)bh (s)
"
E
�R s
0 h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

	
�
R s
0 h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

#
ds

�����
� Kn

Z 1

0

����� 1n
nX
i=1

"
E
�R s
0 h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

	
�
R s
0 h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

#
ds

����� : (68)

As outlined in Section 2, the terms

Mn
t =

nX
i=1

�
N i (s)�

Z s

0
h0 (t) exp

�
�00Z

i (t)
�
1f� i�tgdt

�
(69)

are martingales even when the covariates Zi are dependent. Therefore, the Burkholder inequality can be

used to bound the supremum of (69), even with dependence. See Appendix D for the relevant statement

of Burkholder�s inequality and Dellacherie and Meyer (1980) for a more general statement. For any

� > 0,

P�0
�

1

nCn
sup jMn

t j > �
�

� 1�
nCn�

�4Ensup jMn
t j
4
o

(70)

� 1�
nCn�

�4C2En[Mn]21

o
The �rst inequality of (70) comes from Markov�s inequality. The quadratic covariation map (A;B) !
[A;B] is bilinear (Protter (2005) pg. 66). Therefore

[Mn]t =

nX
j=1

 
nX
i=1

�
M i;M j

�
t

!

The semimartingales M i are "quadratic pure jump" (Protter (2005) pg. 70-71). By Protter (2005)

Theorem 28 pg. 75, this implies
�
M i;M j

�
1
= 0 a.s. because jumps in both processes only happen at the

same time with probability zero. We note that
�
M i
�
1
= N i

1 (Protter (2005) pg. 70). Therefore,

[Mn]1 =

nX
i=1

N i
1:

Because 0 � N i
1 � 1,

E
n
[Mn]21

o
=

nX
i=1

E
n�
N i
1

�2o
+ 2

X
i6=j

E
n
N i
1N

j
1

o
� n+ 2n (n� 1)

61



This implies
1�

nCn�
�4C2En[Mn]21

o
= O

�
n2C

4
n�
4
�

Therefore, we need nC
2
n !1 and Cn = n�1=4+�. Above, Cn takes the following two values:

Cn = 1

, 
jlog (Cnmin)j _ jlog (Cnmax)j+ sup

�;x

���0x��! ;
Cn =

1

Kn
:

By the assumptions of the theorem, a Borel-Cantelli argument gives

1

nCn
sup jMn

t j ! 0; P�0 � a:s:

Therefore, by the assumptions of the theorem, jQn (b�)�H (b�)j ! 0. Notice that throughout the

proof the exact value of b� was irrelevant and the results hold for an arbitrary sequence �n 2 �n under
the assumptions on �n. Therefore, jH (e�)�Qn (e�)j ! 0 and by (57), H (�0)�H (b�)! 0. By Lemma

31, b� ! �0bh!L1 h0

P�0 � a:s:
Proof (Proposition 17). For � small, set

p = 1=

�
3

4
+ �

�
For each �xed s, let

Bi;1s =

Z s

0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

satisfy the mixing condition X
n>0

np�2� (n) <1:

For all � 2 [a1; b1]� � � � � [aq; bq] and all �xed s, let the variables

Bi;2s = exp
�
�0Zi (s)

�
1f� i�sg

Bi;3 =
�
�0Zi (1)

� Z 1

0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

satisfy the mixing condition X
n>0

n�1� (n) <1: (71)

The theorem holds under these assumptions and the assumptions stated in the proposition. We make

mixing conditions on the underlying covariates instead of Bi;1s , B
i;2
s and Bi;3. A proof similar to Lemma
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5 shows that mixing conditions on the covariate processes Zi (s) are transferred to mixing conditions on

the relevant sequences of random variables Bi;1s , B
i;2
s and Bi;3. These proofs are omitted for brevity. As

in Karr (1987), we apply a Marcinkiewicz-Zygmund type strong law of large numbers to show (52)-(54)

are satis�ed. That paper is not as speci�c about the argument as I would like, so I provide more details

here. The Marcinkiewicz-Zygmund strong law we comes from Rio (1995). This strong law allows for

dependence between and within covariate processes in our application. Note that the random variables

Bi;1s , B
i;2
s and Bi;3 are bounded. This simpli�es the results in Rio (1995) as discussed in that paper.

As a result of the speci�ed strong law, there exists a set 
0 of probability 1 such that, for a countable

dense set S � [0; 1] if s 2 S the following holds for all ! 2 
0:

Kn

����� 1n
nX
i=1

�
E
�Z s

0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

�
�
Z s

0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

������! 0. (72)

Let es =2 S and es+ � 2 S with � arbitrarily small. This can always be done because S is dense in [0; 1].
Kn

����� 1n
nX
i=1

"
E

(Z es
0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

)
�
Z es
0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

#�����
� Kn

����� 1n
nX
i=1

"
E

(Z es
0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

)
� E

(Z es+�
0

h0 (t) exp
�
�00Z

i (s)
�
1f� i�tgdt

)#�����
+Kn

����� 1n
nX
i=1

"
E

(Z es+�
0

h0 (t) exp
�
�00Z

i (s)
�
1f� i�tgdt

)
�
Z es+�
0

h0 (t) exp
�
�00Z

i (s)
�
1f� i�tgdt

#�����
+Kn

����� 1n
nX
i=1

"Z es+�
0

h0 (t) exp
�
�00Z

i (s)
�
1f� i�tgdt�

Z es
0
h0 (t) exp

�
�00Z

i (s)
�
1f� i�tgdt

#�����
= KnC

1 (�) + oa:s: (1) +KnC
2 (�) . (73)

A sequence � can be chosen to converge to 0 fast enough so KnC1 (�) = o (1) and KnC2 (�) = o (1). This

implies (72) holds for all s 2 [0; 1]. Therefore, condition (52) from Theorem 32 holds. Along with the

assumptions in Proposition 17, a simple bracketing argument implies conditions (53) and (54) in Theorem

32. See Pollard (1984) Section II.2 for the required bracketing results. This needs to be coupled with

an argument similar to that given above for condition (52). The details are omitted.

The same decomposition into terms as done in the proof of Theorem 32 can be done with the extended

form of block/step sampling outlined in Subsection 4.4. The di¤erence now is we additionally have to

sum over k (n). We still must show the terms of the decomposition converge to zero almost surely. The

terms handled by the Burkholder inequality can still be handled the same way as the martingale structure

is preserved. Provided Kn !1 at a rate slower than or equal to o
�
(k (n) =n)1=2

�
, the martingale terms

converge to zero almost surely with the same proof. The remaining terms that need to be handled are:

Kn

Z 1

0

������
k(n)X
j=1

1

n

nX
i=1

"
E
nR s

0 h
j
0 (t) exp

�
�00Z

ji (s)
�
1f�ji�tgdt

o
�
R s
0 h

j
0 (t) exp

�
�00Z

ji (s)
�
1f�ji�tgdt

#������ ds! 0 a:s:; (74)
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sup
�

0@Z 1

0

������
k(n)X
j=1

1

n

nX
i=1

n
E
h
exp

�
�0Zji (s)

�
1f�ji�sg

i
� exp

�
�0Zji (s)

�
1f�ji�sg

o������ ds
1A! 0 a:s:; (75)

sup
�

������
k(n)X
j=1

1

n

nX
i=1

" �
�0Zji (1)

� R 1
0 h

j
0 (t) exp

�
�00Z

ji (s)
�
1f�ji�tgdt

�E
n�
�0Zji (1)

� R 1
0 h0 (t) exp

�
�00Z

ji (s)
�
1f�ji�tgdt

o #������! 0 a:s: (76)

Proof. The result follows by a slight modi�cation of the proof of Theorem 32. It can be shown that

k(n)X
j=1

n
Hj
�
hj0; �0

�
�Hj

�bhj ; b��o! 0; (77)

a:s: and the result follows. The main di¤erence between the proof is that in (77) there is a sum over the

number of blocks k (n). Note that the Burkholder inequality applies to martingales de�ned on [0;1] as
in this extension. See Dellacherie and Meyer (1980).

D Background Martingale Theory

In this appendix, I brie�y present some martingale theory used in this paper. For far more comprehensive

accounts see Fleming and Harrington (1991), Protter (2005) or Dellacherie and Meyer (1980). Processes

are de�ned on a probability space (
;F ;P) equipped with a �ltration of sub-�-�elds (Ft; t � 0).

Proposition 33 (Fleming and Harrington (1991) Corollary 1.4.2.) Let Mt be a right continuous

martingale with respect to a right continuous �ltration and assume EM2 (t) < 1 for any t � 0. Then

there exists a unique increasing right-continuous predictable process hM;Mit such that hM;Mi0 = 0 a:s:,
E hM;Mit <1 for each t and M2

t � hM;Mit is a right-continuous martingale.

Proposition 34 (Fleming and Harrington (1991) Theorem 1.4.2.) Let M1 (t) and M2 (t) be two

right continuous martingale with respect to a right continuous �ltration and assume EM2
i (t) < 1 for

any t � 0, i = 1; 2. Then there exists a unique right-continuous predictable process hM1;M2it such that
hM1;M2i0 = 0 a:s:, E hM1;M2it <1 for each t and M1M2 � hM1;M2i is a martingale.

The left-continuous version of a process X (t) is given by X (�t) = lims"tX (s) and by de�nition

X (�0) = 0.

De�nition 35 (Quadratic Variation Process, Protter (2005)) Let M (t) be a martingale with �-

nite variation. The quadratic variation process is denoted [M;M ]t and de�ned as

[M;M ]t =M
2
t � 2

Z
M (�t) dM (t) :

This de�nition is equivalent to the following de�nition. Let ftni g denote a sequence of partitions of [0; T ].
Each successive partition if �ner than the previous one and assume

sup
��tni � tni�1��! 0
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as n!1. Then
M2
0 +

X
i

�
M (tni )�M

�
tni�1

��2 !p [M;M ]T .

This de�nition de�nes a process on [0; T ], as the previous one does, by using partitions constrained to

[0; t] with t � T .

The following is a version of the Burkholder inequality used in this paper. More general versions

exist.

Theorem 36 (Burkholder Inequality) There exists a universal constant C such that for every mar-

tingale M (t) and every �nite time T ,

E

(
sup
t2[0;T ]

jMtj4
)
� CE

n
[Mn]2T

o
:
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