
Targeting In-Kind Transfers Through Market Design:

A Revealed Preference Analysis of Public Housing Allocation∗

Daniel Waldinger, MIT†

Job Market Paper

November 2017

Click here for the most recent version

Abstract

In-kind transfer programs aim to provide valuable resources to beneficiaries while targeting those who most
need assistance. This problem is particularly challenging for public housing authorities (PHAs), which allocate
apartments to applicants who may differ in their outside options as well as their preferred apartment types. PHAs
in the U.S. differ widely in the priority systems they use and how much choice they afford potential tenants.
This paper evaluates how choice and priority systems used in public housing allocation affect two competing
objectives: efficiency and redistribution. I use data on the submitted choices of public housing applicants to
estimate a structural model of demand for public housing in Cambridge, MA. I find substantial heterogeneity
in applicants’ preferred housing developments and in their overall values of obtaining assistance, much of which
cannot be predicted using observed applicant characteristics. In counterfactual simulations, I show that the
range of choice and priority systems used by other PHAs would generate large changes in total welfare and
tenant characteristics if implemented in Cambridge. When applicants choose where they are assigned, tenants
enjoy welfare gains relative to their outside options equivalent to cash transfers of $7,000 per year. Removing
choice would house applicants with worse outside options but provide low match quality, causing cost-adjusted
welfare gains to fall by 30 percent. Prioritizing low-income applicants while allowing choice improves targeting
without lowering match quality. As a result, some mechanisms used by PHAs are strictly dominated for a broad
class of social welfare functions.
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1 Introduction

In the United States, 1.2 million low-income households live in public housing. Tenants receive a

permanent, place-based entitlement to a rent subsidy that can exceed $10,000 per year. However, this

assistance is rationed – in 2012, there were at least 1.6 million additional households on public housing

waiting lists nationwide (Collinson et al., 2015). Public Housing Authorities (PHAs) in each city have

wide discretion over how to allocate available apartments and differ in the choice afforded to applicants

and the priority systems used. Despite the range of policies, there is little empirical or theoretical work

on how to design efficient dynamic allocation mechanisms when redistribution is also an important

goal.

Because households with a wide range of incomes are eligible for public housing, the choice and

priority systems used in allocation can affect not only tenants’ values of their assignments, but also

whether the program targets the most disadvantaged applicants. In cities such as New York City and

Philadelphia, applicants may choose their preferred housing development; in other cities such as Los

Angeles and Miami, applicants do not have any choice over where they are assigned. Theoretical work

has shown that allowing choice can provide good match quality for those who receive apartments (Bloch

and Cantala, 2017; Leshno, 2017; Thakral, 2016). However, removing choice may induce applicants

with good outside options to reject mismatched offers and self-select out of the public housing program,

improving targeting (Arnosti and Shi, 2017; Nichols and Zeckhauser, 1982). PHAs also differ in whether

priority is given to more or less economically disadvantaged households. These priorities directly affect

targeting through observed characteristics that predict disadvantage, but may also limit the ability of

applicants to self-select based on unobserved differences. Ultimately, the effects of these policies on

efficiency and redistribution are an empirical question; they depend on the characteristics of public

housing applicants, and the degree of heterogeneity in outside options and preferred apartment types.

This paper provides empirical evidence on the roles of choice and priority in public housing alloca-

tion using application data from the Cambridge Housing Authority (CHA), which administers public

housing in Cambridge, MA. Using detailed data on applicants’ submitted development choices, I esti-

mate a structural model of public housing demand that quantifies heterogeneity in applicants’ preferred

developments and in their overall values of living in Cambridge public housing. In counterfactual sim-

ulations, I use the structural model to evaluate the welfare and distributional impacts of mechanisms

used by PHAs in other U.S. cities. When applicants may choose where they are assigned, tenants value

their assignments (relative to their outside options) more than they would value cash transfers of $7,000

per year. I find that the CHA could house more disadvantaged applicants by either removing choice or

simply prioritizing the lowest-income applicants, as is done in other cities. Both policies result in lower
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tenant welfare per dollar spent on the public housing program, but prioritizing low-income applicants

improves targeting without lowering match quality for tenants. As a result, some combinations of

choice and priority are strictly dominated in Cambridge for a broad class of social welfare functions.

While choice data have been used to analyze the behavior and preferences of agents in other cen-

tralized matching markets, this type of data is novel in the public housing context. The application

data from Cambridge provide a direct measure of which households expressed demand for Cambridge

public housing and contain rich development choice information. During the period of study, the CHA

allowed applicants to choose their preferred development in a two-stage process, which I refer to as

the Cambridge Mechanism. In the first stage, an applicant made an initial choice of up to three devel-

opments. The initial choice formed the applicant’s choice set in the second stage, when the applicant

made a final choice after learning their position on the waiting list for each development in their choice

set. This position information allowed applicants to update their beliefs about waiting time before

making their final choices.

The Cambridge Mechanism does not induce applicants to directly reveal their preferred housing

developments. Instead, applicants face a trade-off between being housed in their preferred development

and being housed more quickly. I propose a model of development choice that captures this trade-off.

Each applicant compares the flow indirect utility from living in each public housing development to

their outside option and chooses their preferred distribution of assignments and waiting times at each

stage of the application process, understanding that their initial choice may affect the conditions under

which the final choice is made. The resulting two-stage decision problem is a generalized version of the

simultaneous search problem considered in Chade and Smith (2006). An eligible household applies if

some public housing development is preferred to its outside option.

To interpret the distribution of flow indirect utilities, I propose a utility model that allows appli-

cants to have heterogeneous tastes for public housing developments and unobservably different outside

options. Households receive utility from consuming housing and a numeraire, and maximize utility

subject to a budget constraint. If utility is additively separable in housing and the numeraire, the

difference in flow payoffs between living in each public housing development and the outside option

is naturally decomposed into two parts. The first is the household’s value of assistance, a common

component across developments which captures the household’s value of the homogeneous aspects of

public housing. The second is the household’s match value for the specific development, which captures

the heterogeneous aspects of public housing and determines an applicant’s preferred developments. In

estimation, I make an assumption on the functional form of utility and restrict unobserved differences

in the value of assistance to be driven by households’ outside options rather than the value of public

housing itself. These assumptions lead to a natural parameterization of the value distribution and
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allow welfare gains from assignments to be compared to equivalent cash transfers.

The two types of preference heterogeneity – values of assistance and match values – are closely

related to the market design trade-off between providing good match quality for tenants and targeting

the most disadvantaged applicants. Values of assistance determine which applicants a PHA would like

to house, while match values determine how the PHA should match a fixed set of applicants to available

apartments. They also determine how applicants will behave under different allocation mechanisms.

Holding match values fixed, applicants with higher values of assistance will accept apartment offers

from more developments and select developments with shorter waiting times. Holding the value of

assistance fixed, applicants with high match values for specific developments will be willing to wait

longer for those developments. A mechanism which induces applicants to reject mismatched offers may

house more applicants with high values of assistance, with the potential cost that tenants enjoy lower

match values from their assignments. The effect of allocation policy on targeting, match quality, and

total welfare depends on the distribution of heterogeneity in each dimension.

The application data and structure of the Cambridge Mechanism provide crucial information about

both types of preference heterogeneity. Application rates by income and demographic groups are par-

ticularly informative about values of assistance. In Cambridge, lower-income and non-white households

are much more likely to apply for public housing than other eligible households, suggesting that these

groups have higher values of assistance. However, some very low-income households did not apply,

while some of the highest-income eligible households did, suggesting that there are also unobserved

differences in the value of assistance. The initial development choices of applicants are informative

about heterogeneity in match values. Since applicants choose up to three lists, initial choices reveal

not only which developments are more likely to be chosen overall, but also which developments tend

to be chosen together. These patterns reveal match value heterogeneity that can be predicted by ob-

served applicant and development characteristics, as well as unobserved heterogeneity in tastes. The

final choice stage informs sensitivity of development choices to waiting times since applicants receive

new information before making their choices. This allows me to estimate a discount factor in addition

to the parameters governing applicants’ flow payoffs.

To estimate the development choice model, I match observed choice patterns to those predicted

by the model using the method of simulated moments (McFadden, 1989; Pakes and Pollard, 1989).

Implementing the procedure requires two preliminary steps. First, to measure application rates by

income and demographic groups, I estimate the distribution of potential applicants – including eligible

households who did not apply – by combining American Community Survey data with administrative

data on current public housing tenants in Cambridge. Second, I estimate applicants’ beliefs about how

each sequence of development choices affects the distribution of assignments and waiting times in the
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Cambridge Mechanism. Estimating beliefs presents a challenge because the Cambridge Mechanism

created interdependence in the waiting time distributions across lists. As a result, the beliefs of

sophisticated applicants are high-dimensional while data on realized waiting times are sparse. To

overcome this problem, I assume that applicants have rational expectations of a specific form: their

beliefs match the long-run distributions that the Cambridge Mechanism would generate given observed

frequencies of applicant arrivals and departures, apartment vacancies, and initial and final choices of

applicants. This assumption allows me to exploit knowledge of the Cambridge Mechanism and construct

the high-dimensional belief objects by simulation, using the data to estimate a lower-dimensional set

of parameters governing simulation inputs.

Given these inputs, simulating the development choice model presents a computational challenge

because the two-stage development choice problem is computationally burdensome to solve and does

not yield closed-form choice probabilities. Standard simulation techniques would re-solve the model at

each proposed value of the parameter vector. This is computationally prohibitive in my application.

I use a technique proposed by Ackerberg (2009) that combines a change of variables with importance

sampling and allows me to solve the development choice model once. The optimization procedure

re-weights simulation draws at new parameter values and minimizes the objective function over a grid

of discount factors.

Estimates imply that applicants are fairly impatient and exhibit substantial heterogeneity in values

of assistance and match values. The point estimate of the annual discount factor ranges from 0.62 to

0.84 across specifications, suggesting that development choices will be sensitive to equilibrium waiting

times in mechanisms that allow choice. While observed characteristics strongly predict the value of

assistance – particularly income and race – households also have unobserved differences in their outside

options. Conditional on observed characteristics, the standard deviation of a household’s outside option

amounts to several thousand dollars of annual unobserved income. Applicants have strong preferences

for specific developments, and would require a median cash transfer of more than $1,700 per year to

provide the same welfare increase as moving from their second choice development to their first choice.

Given such large heterogeneity in match values and values of assistance, 32 percent of applicants

would accept any development, while an equal share would only be willing to live in three or fewer

developments. Applicants that would accept any development have much lower observed incomes than

other applicants as well as unobservably worse outside options. As a result, a development choice

system that induces offer rejections will filter out applicants with better outside options but have large

welfare costs in terms of match quality.

Given these estimates, I consider how the development choice and priority systems used by other

PHAs would perform in Cambridge. Since computing the equilibrium of the two-stage Cambridge
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Mechanism is challenging, the counterfactuals focus on a simpler class mechanisms in which applicants

make choices in one stage. The Cambridge Mechanism is closest to a one-stage mechanism in which

applicants apply for one development and all eligible households living or working in Cambridge have

equal priority. I consider what would happen if the CHA moved to other development choice systems,

including ones that induce offer rejections. I also consider priority systems that offer apartments to

either lower- or higher-income applicants before others. To show what could be achieved if incentive

compatibility constraints were relaxed, I also analyze a full-information benchmark in which the social

planner knows applicants’ preferences but has limited foresight about future apartment vacancies and

applicant arrivals and departures.

Under the current priority system in Cambridge, the range of development choice systems used in

practice would have large effects on match quality, targeting, and total welfare. Removing choice would

reduce the average value of an assigned unit, measured in equivalent cash transfers, from $7,514 to

$5,705 per year. Match quality would fall dramatically; the fraction of tenants living in their first choice

developments would fall from 36 percent to 9 percent. Since lower-income applicants are more likely to

accept a mismatched apartment offer, tenant incomes would fall from $17,272 to $13,882, and tenants

would have worse outside options conditional on their observed characteristics. Since lower-income

tenants pay lower rents in public housing, cost-adjusted welfare gains fall even more than welfare per

assigned unit. Based on a conservative estimate of the cost of maintaining each Family Public Housing

apartment, cost-adjusted welfare gains would by fall 30 percent if the CHA gave applicants no choice

over their assignment instead of allowing them to choose their preferred development. In contrast,

the effects of prioritizing higher- or lower-income applicants are mainly distributional: welfare per

apartment allocated and match quality are similar across priority systems, but income-based priorities

would dramatically change tenant incomes. As a result, cost-adjusted welfare gains are larger when

higher-income applicants are prioritized.

The measure used to summarize welfare gains from assignments – equivalent cash transfers – im-

plicitly places equal value on cash transfers to households of different incomes. To conclude the paper,

I show how one can decide which allocation mechanism to use based on one’s taste for income redistri-

bution. I argue that social welfare weights should be monotone in the value of a household’s outside

option. Following Atkinson (1970), I consider a class of social welfare functions with “constant relative

inequality-aversion” in which the strength of one’s taste (or distaste) for redistribution is summarized

by a single parameter. Values of assignments, measured in equivalent cash transfers, are transformed

by a function that depends on the value of a household’s outside option and the planner’s degree of

inequality aversion. This class of functions captures a wide range of distributional preferences and

has attractive properties for making interpersonal welfare comparisons. In addition, welfare gains from
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each counterfactual allocation can be adjusted for changes in total rent payments, allowing mechanisms

to be compared in terms of welfare gains per dollar of public expenditure.

Within this class of social welfare functions, certain combinations of choice and priority systems used

in other cities are strictly dominated in Cambridge. With a low taste for redistribution, it is best to

prioritize high-income applicants, since they are cheapest to house, and ask applicants to choose their

preferred development. With a moderate taste for redistribution, one should prioritize low-income

applicants but still allow choice. With very high tastes, one should keep low-income priority and

also remove choice in order to induce offer rejections. Although the preferred mechanism depends on

distributional preferences, it is never optimal to prioritize higher-income applicants while not allowing

choice. Intuitively, prioritizing lower-income applicants yields a targeting improvement comparable to

removing choice, but does so without lowering match quality. Inducing offer rejections is a policy of last

resort to improve targeting once observed characteristics have been used. This implies that mechanisms

used in other cities would not perform well in Cambridge. For example, Los Angeles prioritizes higher-

income applicants but does not give applicants choice. In Cambridge, there would be a better policy

whether one has a high or a low taste for redistribution. The one-stage mechanism closest to the

Cambridge Mechanism, choosing one development with equal priority, performs well under a moderate

taste for income redistribution. When this mechanism performs well, the social planner equally values

transferring just over two dollars to a household earning $20,000, and transferring one dollar to a

household earning $10,000.

The paper proceeds as follows. Section 1.1 discusses related literature. Section 2 provides institu-

tional background on the public housing program, discusses allocation policies used in practice, and

describes the CHA dataset. Section 3 presents descriptive facts about Cambridge public housing de-

velopments, applicants, and their choices. Section 4 proposes a model of household preferences and

development choice. Section 5 describes the estimation procedure used to recover the distribution of

preferences for public housing developments. Section 6 presents the estimation results, and Section 7

presents results from counterfactual simulations. Section 8 concludes.

1.1 Related Literature

This paper is related to several literatures on means-tested housing assistance, dynamic market design,

and the economics of in-kind transfers.

The empirical papers most closely related to this work estimate demand for public housing using

data on assignments (Geyer and Sieg, 2013; Sieg and Yoon, 2016; Van Ommeren and Van der Vlist,

2016). To my knowledge, this paper is the first to use individual-level waiting list data to estimate

demand for public housing. Other empirical work has argued that there is substantial misallocation in
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the public and rent-controlled housing sectors (Glaeser and Luttmer, 2003; Thakral, 2016). Consistent

with this work, I find that public housing allocation policy can dramatically affect how tenants are

matched to apartments. A complementary literature evaluates the causal effects of receiving housing

assistance, and has found that receiving housing assistance and living in higher socioeconomic status

neighborhoods as a child leads to improved economic outcomes as adults (Andersson et al., 2016; Chetty

et al., 2015; Jacob and Ludwig, 2012; Kling et al., 2007; Ludwig et al., 2013). The subjective values for

public housing estimated in this paper may include households’ beliefs about the program’s long-term

benefits in addition to immediate changes in disposable income and housing and neighborhood quality.

The market design trade-off between match quality and targeting is motivated by the theoretical

literature on one-sided dynamic assignment (Arnosti and Shi, 2017; Bloch and Cantala, 2017; Leshno,

2017; Thakral, 2016). Arnosti and Shi (2017) show that the relationship between match quality and

total welfare is theoretically ambiguous and depends on the distribution of applicant preferences. This

paper provides empirical evidence on these primitives and their implications for allocation policy.

The trade-off between match quality and targeting is also connected to a literature on targeting and

ordeals in public assistance programs (Akerlof, 1978; Nichols and Zeckhauser, 1982). This literature

has highlighted the tension between providing valuable assistance to those who receive it (“productive

efficiency”) and restricting assistance to the households which need it most (“targeting efficiency”).

Several recent papers have studied this idea empirically in the context of means-tested transfer programs

of homogeneous items (Alatas et al., 2016; Deshpande and Li, 2017; Lieber and Lockwood, 2017). This

paper explores a related trade-off created by the heterogeneous nature of public housing and its limited

supply.1 I also analyze how applicant priorities, a version of the tags considered in Akerlof (1978),

interact with the screening properties of development choice in public housing allocation.

The structural model and estimation procedure used in this paper draw on techniques in discrete

choice demand estimation (Berry et al., 2004; McFadden, 1973, 1989; Pakes and Pollard, 1989). My

implementation of the method of simulated moments uses a change of variables and importance sam-

pling technique proposed by Ackerberg (2009) to reduce the computational burden in estimation. This

paper also joins a growing literature on revealed preference analysis in centralized matching markets

(Abdulkadirolu et al., 2017; Agarwal, 2015; Fack et al., 2015; Hastings et al., 2009; He, 2017; Narita,

2016). Along with Agarwal et al. (2017), this paper is among the first to conduct revealed preference

analysis using the choices of agents in a dynamic mechanism.

1The fact that public housing involves an in-kind transfer of housing rather than cash may also sacrifice productive efficiency by
distorting the housing consumption of those who receive assistance. Given that only one quarter of eligible households applied for
Cambridge public housing during the period of study, the targeting gains from public housing may be large compared to a cash transfer
of equal value.
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2 Institutional Background and Data

Section 2.1 provides an overview of the U.S. public housing program, surveys allocation policies used in

practice, and discusses the design trade-offs these policies entail. Section 2.2 describes the Cambridge

Housing Authority and the mechanism it used to allocate public housing during the period of study.

Section 2.3 describes the applicant dataset and sample criteria.

2.1 Public Housing in the U.S.

The U.S. public housing program subsidizes the rents of 1.2 million low-income households at an annual

cost of $8-10 billion. A Public Housing Authority (PHA) in each city maintains the stock of public

housing developments located in its jurisdiction using funds allocated by Congress and distributed by

the U.S. Department of Housing and Urban Development (HUD). A public housing tenant pays 30

percent of pre-tax income toward rent, and is permanently entitled to assistance as long as it complies

with the terms of its lease and remains in its assigned apartment. Public housing and its private market

counterpart, the Housing Choice Voucher program, are unusual in their benefit generosity: in 2013,

participants received an average annual subsidy of $8,000.2

Due to the combination of limited federal funding, generous per-household benefits, and broad

eligibility criteria, demand for public housing greatly exceeds supply. Congress does not set funding

levels to assist all eligible households, but rather to maintain existing services. New public housing

is not being built.3 The income limit for eligibility is 80 percent of Area Median Income (AMI),

which includes lower-middle income households as well as the poorest. As a result, in 2012 there were

approximately 1.6 million households on public housing waiting lists nationwide, and nearly 3 million

applicants on voucher waiting lists.4

2.1.1 Public Housing Allocation Mechanisms and Design Trade-Offs

The limited supply of public housing creates a dynamic assignment problem for each PHA. When

tenants move out, the PHA must assign vacant apartments to applicants on a waiting list. PHAs have

substantial autonomy over allocation policy. In particular, they control how applicants are ordered

2Based on per-household subsidy from tenant-based vouchers reported in HUD Congressional Justification for FY2015, available at
https://www.hud.gov/sites/documents/FY15CJ_PUB_HSNG_CAPTL_FND.PDF. In 2013, the public housing program served a population
with similar incomes.

3New affordable housing is being built through the Low-Income Housing Tax Credit (LIHTC), a federal tax expenditure that
subsidizes the construction of new affordable housing. This program is administratively separate from the public housing and voucher
programs, and tenants in tax credit apartments receive a smaller effective rent subsidy.

4Public and Affordable Housing Research Corporation (PAHRC), 2015. “Value of Home: 2015 PHARC Report.” Based on PAHRC
tabulation of the Public Housing Agency Homelessness Preferences Survey, 2012. https://www.housingcenter.com/sites/default/

files/waiting-list-spotlight.pdf
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on the waiting list and whether applicants can choose the developments to which they are assigned.

These policy levers – the priority system and development choice system – can affect which types of

applicants receive assistance and whether they are matched to their preferred developments. To my

knowledge, there is no resource that systematically documents the current waiting list policies of each

of the 3,300 U.S. PHAs. To summarize allocation policies used in practice, I examined most recent

available administrative plans of 24 PHAs falling into two categories: (1) those with the largest public

housing stocks, and (2) those with public housing stocks and city populations similar to Cambridge,

MA. The priority and development choice systems used by these PHAs are summarized in Table 1.

The allocation policies of surveyed PHAs share several common features. Applicants are ordered

on a waiting list by priority and then by date of application. If applicants are allowed to choose

a subset of developments to which they can be assigned, they are placed on waiting lists for their

chosen developments. PHAs offer apartments to applicants living or working in the jurisdiction before

other applicants. There are also federally mandated need-based priorities for certain groups, including

households displaced by natural disasters, victims of domestic violence, and veterans. Apartments are

offered to applicants at the top of the waiting list first; if an applicant rejects without good cause, they

are removed from the waiting list and the next applicant is offered the apartment. A few PHAs allow

one or two rejections before the applicant is removed from the waiting list, but most do not.

Despite these similarities, the development choice and priority systems used by PHAs exhibit im-

portant differences. The key difference across priority systems is whether households with higher or

lower socioeconomic status are given priority. Some PHAs, including New York City and Los Angeles,

give priority to households with a working member, that are economically self-sufficient, or that have

incomes above 30 percent of the Area Median Income (AMI), a regional income benchmark that adjusts

for household size. Others do just the opposite – the Seattle Housing Authority prioritizes households

below 30 percent AMI, and several other PHAs prioritize households that are severely rent burdened

or at risk of being displaced. Still other PHAs, including Cambridge, treat all applicants living or

working in the jurisdiction equally. Income-based priorities can have a large impact on the income

distribution among public housing tenants. This will determine whether housed applicants have the

highest values of living in public housing and, since lower-income households pay less rent, the fiscal

cost of the public housing program. They also make it harder for applicants to obtain assistance who

are not prioritized but have unusually high values of living in public housing.

The range of development choice systems across PHAs is equally wide. A development choice system

gives each applicant a choice set consisting of certain subsets of developments from which the applicant

can receive offers. Several PHAs, including those in New York City, Seattle, and New Haven as well

as Cambridge, require applicants to choose a limited number of developments (“Limited Choice”). As
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noted in the dynamic market design literature, asking applicants to commit to their preferred options

tends to achieve good match quality. Applicants will choose their preferred combinations of assignments

and waiting times, and applicants with the highest values of over-subscribed developments will be more

likely to apply for and occupy them. Other PHAs do not allow applicants to choose developments

(“No Choice”); in Miami, Los Angeles, and Minneapolis, applicants must accept the first offer from

any development. Such a mechanism will generate mismatch between tenants and their assigned

developments, but mismatched offers may filter out applicants with good outside options, allowing

applicants to self-select into public housing based on both observed and unobserved characteristics.

Other PHAs use intermediate development choice systems. Chicago allows applicants to select a

neighborhood but not a specific development, which reduces spatial mismatch but may still induce

offer rejections. In Boston, applicants may choose any subset of developments (“Any Subset”), allowing

them to hedge against waiting time uncertainty. Philadelphia and Baltimore present applicants with

a hybrid option (“Limited or All”): either commit to a few developments, or accept the first available

apartment offer.

PHAs combine development choice and priority systems in different ways. Los Angeles uses No

Choice, but prioritizes applicants that are economically self-sufficient (High SES). Seattle does the

reverse, allowing Limited Choice while prioritizing Low SES applicants. Minneapolis uses both de-

velopment choice (No Choice) and priorities (Low SES) to maximize targeting, while New Haven

prioritizes higher-income applicants and provides choice. In counterfactuals, I ask what would happen

if the Cambridge Housing Authority adopted different combinations of development choice and priority

systems used in practice.

2.2 The Cambridge Housing Authority

The Cambridge Housing Authority (henceforth, CHA) administers the Public Housing and Housing

Choice Voucher programs in Cambridge, MA. Its public housing stock consists of about 2,450 apart-

ments, evenly split between the Elderly/Disabled and Family Public Housing programs. Although

Cambridge is a low-poverty area compared to a nationally representative sample of public housing

sites, Cambridge public housing tenants are comparable to those nationwide in terms of socioeconomic

status and demographics. In 2014, 74 percent of Cambridge public housing tenants earned less than

30 percent AMI and 48 percent were headed by an African American, compared to 72 percent and 48

percent nationwide.

During the period of study – January 1st, 2010 to December 31st, 2014 – the CHA employed a

site-based waiting list system to allocate public housing. The waiting list for vouchers was closed from

2008 until 2016, while public housing waiting lists were open from 2008 until 2015. For this reason, I
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study the public housing program in isolation. The CHA used a two-stage development choice system

for public housing, which I will refer to as the Cambridge Mechanism.5

2.2.1 The Cambridge Mechanism

In the Cambridge Mechanism, applicants select their preferred development – they have Limited Choice

– and all applicants with a household member living or working in Cambridge receive Equal Priority.

The development choice system shares features with those used in New York City, Seattle, and New

Haven; the priority system is similar to those used in Chicago, Philadelphia, and Boston.

One of the key differences between the Cambridge Mechanism and many other development choice

systems is that applicants choose their preferred development in two stages.6 At initial application, a

household is assigned a program (Elderly/Disabled or Family) and bedroom size and makes an initial

choice of up to three developments from 9 to 13 alternatives. Each development is a building or

complex in a distinct geographic location, and apartments with the same number of bedrooms are

mostly homogeneous within a development. The initial choice forms the applicant’s choice set later

on, and the applicant is placed on a waiting list for each chosen development. At a later date, the

CHA sends the applicant a letter asking them to make a final development choice. The letter informs

the applicant of its current position on each list in its choice set, allowing the applicant to make its

final choice based on new information. Appendix B.1 provides a formal description of the Cambridge

Mechanism, including when the CHA sends these letters and how it calculates list position. After

making its final choice, the applicant remains on the waiting list for that development until the CHA

makes a single, take-it-or-leave-it offer of an apartment. If the applicant rejects, it is removed from the

waiting list and cannot reapply for one year. The applicant may also be removed if it fails to attend

its screening appointment, produce required documentation, or respond to mail from the CHA.

2.3 Dataset and Sample Selection

The main dataset used in this paper, provided by the CHA, contains anonymized records of all ap-

plicants for Cambridge public housing who were active on a waiting list between October 1st, 2009

and February 26th, 2016. The CHA maintains a database of applicants to manage its waiting lists

and comply with HUD regulations. For each applicant, the dataset records household characteristics,

development choices, and the timing and outcome of all events during the application process.

5Every year, each housing authority is required to publish an Admissions and Continued Occupancy Pol-
icy (ACOP). The CHA’s most recent ACOP for federal public housing can be found here: http://cambridge-
housing.org/civicax/filebank/blobdload.aspx?BlobID=23535

6The New York City Housing Authority uses a similar two-stage development choice system. Applicants first choose a preferred
borough, and later choose their preferred development from a subset of the developments in that borough.
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For analysis, I restrict my sample to applicants who had priority for Cambridge public housing; who

applied for 2 and 3 bedroom apartments in the Family Public Housing program; and who submitted an

application between 2010 and 2014. Non-priority applicants had virtually no chance of being housed,

and are therefore excluded. Family Public Housing applicants are a more homogeneous group than

Elderly/Disabled applicants. I restrict to 2 and 3 bedroom apartments for sample size reasons; most

Family Public Housing applicants apply for these apartments. Analyzing new applications between

2010 and 2014 avoids selection issues because not all pre-2010 applicants were still on the waiting list in

2010. These restrictions produce a sample of 1,752 applicants. After omitting 26 irregular applications,

1,726 applicants remain.

To estimate the distribution of potential applicants during the sample period, I augment the CHA

applicant dataset with a sample of eligible households from the American Community Survey (ACS).

I also use data provided by the CHA on Cambridge public housing tenants between 2012 and 2014.

Appendix A provides details of the CHA and ACS datasets, and Section 5.1 explains how they are

used to estimate the distribution of potential applicants.

3 Descriptive Evidence

This section presents descriptive statistics of Cambridge public housing applicants and their develop-

ment choices. These facts illustrate the key economic forces that will be quantified in the structural

model. Cambridge public housing developments differ in size, location, and expected waiting time. The

decision to apply and applicants’ initial development choices reveal heterogeneity in values of assistance

and match values. While observed characteristics strongly predict who applies and which developments

they prefer, much choice behavior is left unexplained. Final choices reveal that applicants are sensitive

to waiting time information, and will choose a less preferred development in exchange for a shorter

expected waiting time.

3.1 Cambridge Public Housing Developments

During the period of study, applicants for Family Public Housing in Cambridge chose among thirteen

developments located throughout the city. The location of each development is shown in Figure 1.

There are 3 developments in East Cambridge, 3 in North Cambridge, and 7 near Central Square.

Table 2 displays characteristics of these developments. The smallest developments contain just a few

apartments that blend in with the surrounding housing stock,7 while the largest developments are

complexes of several buildings containing hundreds of apartments. Developments also have different

7The “Scattered” waiting list represents three lists: one for scattered sites in Mid-Cambridge (Central), one for East-Cambridge,
and one for River Howard Homes (Central).
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expected waiting times. Average waiting times for housed applicants range from 1.58 to 3.75 years

across developments, with smaller developments tending to have longer waits. As a result, some appli-

cants faced a trade-off between their preferred assignment and a shorter expected wait. Developments

are less heterogeneous in terms the characteristics of their tenants, with similar average incomes and

proportions of African American tenants.8

3.2 Application Decisions and Initial Development Choices

Application rates by income and demographic groups reveal which types of households value public

housing the most. The first two columns of Table 3 show that only one in four eligible households

actually applied for Cambridge public housing during the sample period. Those who did apply had

much lower incomes and were more likely to be non-white and to already live in Cambridge. The

average income of eligible households is $41,205, while that of applicants is $18,477. This is to be

expected; since rent is 30 percent of pre-tax income, a lower-income household sees larger increases in

housing quality and disposable income in public housing compared to its outside option. Differences

by race are also striking: half of applicant households are headed by an African American, while only

one in six eligible households are. Although income and race strongly predict who applies, they are

not perfectly predictive. Figure 2 shows that while application rates fall steadily as income rises, some

of the lowest-income households did not apply and some high-income households did. Similarly, 20

percent of African American headed households did not apply.

The remaining columns of Table 3 show that most applicant characteristics are stable over time.

The rate of new applications fell from 415 per year in 2011 to 347 in 2014.9 Over time, new applicants

had higher incomes and were more likely to work in Cambridge and have a white head of household.

Applicant income growth is consistent with median income growth in the Boston area following the

Great Recession. Despite the fact that only one in four eligible households applied for public housing

during the sample period, there were five applicants for each of the 327 apartment vacancies.10

Initial development choices suggest that applicants have strong tastes for specific developments and

that their preferences are correlated with observed characteristics. Table 4 presents statistics from

initial development choices for all applicants and broken out by household income and neighborhood

of current residence. Applicants that already live in Cambridge are much more likely to select develop-

8There are outliers. For example, Roosevelt Mid-Rise has an unusually low average tenant income and a small fraction of African
American tenants. This is because it is a mixed development, with some apartments for Elderly and Disabled households. Its tenants
are older, and as a result have lower incomes and are more likely to be white.

9The CHA closed its Family public housing waiting lists during the second and third quarters of 2010. As a result, 2010 saw fewer
new applications than subsequent years.

10The number of vacancies is below the long-run average because the CHA began renovating its public housing stock during the
sample period. For a plausible upper bound on the long-run average, an annual turnover rate of 10 percent per unit would raise the
expected number of vacancies to 540 over a five year period.
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ments in their own neighborhoods. The majority of applicants (84 percent) exhaust their initial choice

set and select three housing developments. This rate is lower for applicants with incomes over $32,000:

only 78 percent select three lists, compared to 85 percent for lower-income applicants. Higher-income

applicants also select developments with slightly longer average waiting times. These patterns are

consistent with a model in which applicants with better outside options are more selective in their

development choices. However, the fact that these differences are not larger suggests the presence of

unobserved heterogeneity in values of assistance.11 Similarly, specific chosen developments are not fully

predicted by observed characteristics. The structural model will quantify heterogeneity in both values

of assistance and match values, and determine how much can be explained by information available to

the CHA.

3.3 Response to Waiting Time Information

This section presents quasi-experimental evidence that applicant choices are sensitive to information

about waiting time. Between 2010 and 2014, Cambridge sent final choice letters to applicants who

were near the top of the list for one of their initial choice developments. The letter informed appli-

cants of their position on each list and asked them to make a final development choice. Because of

fluctuations in relative list lengths over time, and also due to Cambridge’s algorithm for calculating list

position and sending final choice letters, applicants who made the same initial development choices but

applied on different dates were given different position information when they made their final choices.

Final choices are sensitive to this information: when an applicant is told a lower list position for one

development relative to the others in their choice set, they are more likely to pick that development.

To test the null hypothesis of no response to waiting time information, I run a conditional logistic

regression that predicts an applicant’s final choice as a function of list position or expected continued

waiting time. The sample is applicants who made a final choice during the period of study, and

the outcome is which development they chose. Since each applicant chose their choice set at initial

application, I include as controls fixed effects for the interaction between each development and choice

set. This isolates the natural experiment in which applicants who made the same initial choices –

and whose development preferences are therefore drawn from the same distribution – are told different

waiting times for the same alternatives.

Table 5 displays coefficient estimates and implied marginal effects from the conditional logistic re-

gressions of final choice on waiting time information with no controls; with development fixed effects;

and with the full set of development and choice set interactions. For each set of controls, the spec-

11Note that higher-income households who applied for Cambridge public housing are already a selected sample. This should mute
any correlation between applicant characteristics and the selectivity of their development choices.
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ification is run for both list position and expected continued waiting time. Except for Column (2),

coefficient estimates are precise and show a negative response to list position and continued waiting

time. The response grows stronger with additional controls. The implied elasticities are large: with

full controls, the elasticity of final choice is -1.1 with respect to list position and -4.1 with respect to

continued waiting time.

For a test of the null hypothesis of no response to be valid, position information must be uncorrelated

with development preferences among applicants with the same choice set who made a final choice. Two

conditions are sufficient for this assumption to hold. The first is that the development preferences of

applicants who applied on different dates but made the same initial choice are drawn from the same

distribution. This would not be true if applicants anticipated fluctuations in waiting times, since

this would influence initial choices. However, given that waiting time fluctuations are determined by

randomness in when apartments become vacant and the decisions of other applicants, these fluctuations

would have been difficult to predict or influence. The second condition is that response to the final

choice letter is uncorrelated with the specific information in the letter, conditional on the elapsed time

since application. This will be true if applicants become unresponsive for exogenous reasons.

These results simply establish the existence of a response. In structural estimation, moments based

on responsiveness to waiting time information will identify the discount factor.

4 Model of Preferences and Development Choice

Section 4.1 presents a development choice model which predicts how eligible households behave at

each stage of the application process given the structure of the Cambridge Mechanism. This model

allows me to recover the distribution of preferences for Cambridge public housing developments based

on the application decisions and development choices of eligible households. Section 4.2 provides a

micro-foundation of preferences that links development preferences to households’ outside options.

4.1 Development Choice Model

The development choice model provides a rational benchmark through which to interpret the applica-

tion decisions of eligible households and development choices of applicants. In particular, it captures

the trade-off applicants may face between spending less time on the waiting list and being assigned to

their preferred housing development.

Knowing the structure of the Cambridge Mechanism, applicants solve a single-agent problem and

choose their preferred distribution of assignments and waiting times given their information at each

stage of the application process. They have limited information about the state of the waiting list when

making their initial choices, but update their beliefs based on the position information in their final
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choice letters. Because applicants make development choices in two stages and receive new information

in the second stage, the Cambridge Mechanism generates a portfolio choice problem. I assume that

applicants are sophisticated and solve this choice problem backwards, anticipating that the full set of

developments in their initial choice may jointly affect the timing of and position information received

in the final choice stage.

The following sections specify the sequence of decisions; information and beliefs about how choices

affect future states; payoffs; and the resulting portfolio choice problem.

4.1.1 Sequence and Timing of Decisions

An eligible household, indexed by i, makes decisions in the following sequence:

1. Application Decision: Household i receives the opportunity to apply on a random date.

2. Initial Choice: If i applies, it immediately chooses up to three developments, denoted C ⊂
{1, ..., J} with |C| ≤ 3. These developments form i’s choice set in the final choice stage, and

i is placed on a waiting list for each development in its initial choice.

3. Final Choice: At a later date, i receives a letter containing i’s position on the waiting list for each

development in its choice set. The letter asks i to make a final choice f ∈ C. Let s denote the

number of years between initial application and the final choice letter, and let p ≡ {pj}j∈C denote

the vector of list positions. If i responds to the letter and chooses development f , it remains on

the waiting list until it receives a take-it-or-leave-it apartment offer in f .

Household i may become unresponsive at any point during the application process and is removed

from the waiting list if this occurs. I will assume that attrition is exogenous to the model; that an

applicant cannot anticipate the date it will be removed; and that removal occurs at a poisson rate α

that is equal across applicants. Applicants may not fully anticipate the possibility of attrition, and

have a subjective attrition probability α̃ ≤ α.

4.1.2 Information at Each Stage

An applicant’s optimal initial and final choices will depend on its beliefs about how each possible

choice affects the joint distribution of assignments and continued waiting times. Based on institutional

features of the Cambridge Mechanism as well as descriptive evidence, I assume that applicants do not

know the state of the queue when they first apply, but update their beliefs about continued waiting

times based on the position information in their final choice letters.12 When applicant i makes its initial

12Descriptive evidence from the CHA dataset suggests that applicants are unaware of short and medium-term fluctuations in list
lengths. It is also consistent with the information they are given at initial application, and with conversations with the CHA. The CHA
generally knew which developments had longer waiting times than others but was unaware of fluctuations.
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choice, it does so with beliefs about the likely date s and position information p at the final choice

stage, which are unknown and whose joint distribution depends on i’s initial choice. Let GC(s, p)

denote the probability that the final choice letter is sent less than s years after initial application

and that the applicant’s list position is no greater than pj for each development j ∈ C. At the final

choice stage, s and p are realized, and i updates its beliefs about the continued waiting time for each

development j ∈ C. Let Fj,C(t | p) denote the probability that continued waiting time for list j ∈ C
is less than t years given position vector p. Importantly, these distributions depend on the full set of

lists C in an applicant’s initial choice. Due to the algorithm by which the CHA sent out final choice

letters, described in Appendix B.1.1, the full set of lists in C could affect the date and information at

the final choice stage. In addition, because applicants make their final choices based on new position

information, the full set of list positions p may be informative about the expected continued waiting

time for each list j ∈ C.

4.1.3 Preferences over Assignments and Waiting Times

Household i receives a payoff that is realized continuously over time and depends on where it lives. In

particular, i’s per-period flow indirect utility from living in development j is vij, and its flow indirect

utility from not living in Cambridge public housing is vi0. Section 4.2 provides a micro-foundation for

these indirect utilities based on a utility model in which households value both housing and non-housing

consumption and maximize utility subject to a budget constraint. I will refer to these indirect utilities

as flow payoffs understanding that they are derived from such a model. Assignments are believed to

be permanent, and anticipated flow payoffs are not time-dependent. This rules out learning about

characteristics of the developments over time or changing household circumstances. When making

development choices, the household discounts future payoffs at exponential rate ρ = r + α̃. This

includes both the household’s rate of time preference r, and its subjective attrition rate α̃. There is no

direct cost of remaining on the waiting list, and no fixed cost of beginning or continuing the application

process. The present discounted value to i of being assigned to development j in t years is

e−ρt
1

ρ
(vij − vi0) .

4.1.4 Choice Problem

Given beliefs and payoffs, an applicant solves the two-stage development choice problem backwards.

In the final choice stage, applicant i with initial choice C learns its list positions p and solves

max
j∈C

1

ρ
E
[
e−ρTj | p

]
(vij − vi0)
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= max
j∈C

∫
1

ρ
e−ρTj (vij − vi0)dFj,C(Tj | p) .

Anticipating the final choice stage, applicants make their initial choices to maximize the expected

discounted value of the final choice:

max
C∈{0,1,...,J}3

E

[
e−ρS max

j∈C

1

ρ
E
[
e−ρTj | P

]
(vij − vi0)

]

= max
C∈{0,1,...,J}3

∫
e−ρS max

j∈C

[∫
1

ρ
e−ρTj (vij − vi0)dFj,C(Tj | P )

]
dGC(S, P ) .

Finally, since there is no direct cost of applying or remaining on the waiting list, an eligible house-

hold applies for public housing if and only if some development is preferred to their outside option:

maxj vij > vi0. Applicants will also continue the application process if they have not already been

removed for exogenous reasons. As a result, counterfactual mechanisms will affect development choices

and waiting times, but not which households apply or when they would depart before being offered an

apartment.

4.2 Utility Model

Because development choices depend on a household’s value of living in each development relative to

their outside option, my empirical strategy will estimate the distribution of vi = (vi1−vi0, ..., viJ −vi0).
This section provides a micro-foundation of payoffs that explicitly links these payoff differences to the

value of a household’s outside option. The key assumptions are that utility is additively separable in

housing and non-housing consumption, and that differences in the value of living in public housing

are driven by outside options. In estimation, I add a restriction on the functional form of utility to

parameterize the distribution of vij−vi0 and to compare changes in utility to equivalent cash transfers.

4.2.1 Micro-Foundation of Flow Payoffs

Household i receives utility from consumption of housing h and a numeraire c. The utility function is

additively separable in the two goods:

u(c, h) = u1(c) + u2(h) .

Both u1 and u2 are strictly increasing, concave functions. The household has three characteristics:

observed income yi; unobserved income ηi; and development-specific preferences summarized in hedonic

indices di = (di1, ..., diJ). Outside of public housing, a household chooses how much to spend on each

good given its budget yi + ηi. The prices of both goods are normalized to one. The household’s flow
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indirect utility from its outside option is

vi0 ≡ max
c,h

u1(c) + u2(h) s.t. c+ h ≤ yi + ηi (1)

= v0(yi + ηi) . (2)

One can think of unobserved income as capturing resources that relax or tighten the household’s budget

constraint, shifting the value of its outside option. An extensive literature has shown that social ties and

alternative living arrangements are an important economic resource for many low-income households

(Desmond and An, 2015; Stack, 1974). By modeling these resources as part of the budget constraint,

I assume that they are substitutable between housing and the numeraire.

In public housing, household i only has access to observed income yi. Because it is assigned to a

particular apartment, it does not choose how much to spend on housing and the numeraire. Instead,

pays a fixed fraction τ (30%) of income in rent, spends the remainder on the numeraire, and enjoys

housing consumption dij in development j. The flow indirect utility from living in development j is

vij ≡ u1((1− τ)yi) + u2(dij) . (3)

The difference in flow payoffs is given by

vij − vi0 = u1((1− τ)yi)−
outside option︷ ︸︸ ︷
v0(yi + ηi)︸ ︷︷ ︸

value of assistance

+ u2(dij)︸ ︷︷ ︸
match value

. (4)

This expression decomposes the difference in flow payoffs into two components: the household’s value

of assistance and its match value. The value of assistance is common across developments and depends

only on household i’s observed and unobserved income. It can be thought of as the household’s value

of the homogeneous aspects of Cambridge public housing. The match value depends on i’s taste for

the characteristics of development j; it comes from the heterogeneous nature of public housing. These

two terms capture the mechanism design trade-off between providing better match quality for housed

applicants and housing applicants who want public housing the most. A mechanism that does not give

applicants choice over their assignment may induce low-value applicants to reject mismatched offers.

If this occurs, more high-value applicants will be housed, with the potential cost that tenants enjoy

lower match values.

This utility model embeds two key assumptions. The first is that utility is additively separable

in housing and the numeraire. This rules out complementarity between housing and non-housing

consumption, and assumes that the match quality a tenant enjoys from their apartment does not

affect the value of consuming other goods. The second assumption is that unobserved income is only

available outside of public housing, and that it is substitutable between housing and the numeraire.
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This implies that differences in the value of assistance are driven by households’ outside options rather

than the value of public housing itself, and that the value of the outside option determines the value

of cash transfers. Combined with an additional restriction on the functional form of utility, these two

assumptions make it possible to separately identify the value of the outside option from the financial

benefits of living in public housing.13

5 Empirical Strategy

This section describes the three steps in my estimation procedure. First, I estimate the distribution

of potential applicants for Cambridge public housing, including eligible households who did not apply.

Second, I estimate applicants’ beliefs about how their choices affect payoffs through the distribution

of assignments and waiting times. Third, given beliefs and the distribution of potential applicants, I

estimate preferences over assignments and waiting times by matching application decisions and devel-

opment choices using the method of simulated moments (McFadden, 1989; Pakes and Pollard, 1989).

Solving the two-stage development choice problem is computationally expensive, and a change of vari-

ables and importance sampling technique proposed by Ackerberg (2009) reduces the computational

burden. The final subsection shows how estimates from the utility model can be interpreted in terms

of equivalent cash transfers.

5.1 Distribution of Potential Applicants

The first decision an eligible household makes is whether to apply for public housing at all. Application

rates by income and demographic groups will be informative about heterogeneity in the value of

assistance. To measure application rates, I need to estimate the distribution of characteristics of

all households that could have applied for Cambridge public housing during the sample period. This

includes households that did apply and also eligible non-applicants – eligible households that did not

apply and were not already Cambridge public housing applicants or tenants at the beginning of 2010.

This section outlines the statistical procedure used to estimate the distribution of potential applicants.

Estimating the distribution of potential applicants is not straightforward. The CHA dataset contains

information on households who applied during the sample period, but it does not contain households

that could have applied but did not. Survey data can identify households whose characteristics made

them eligible for Cambridge public housing. However, some eligible households were already Cambridge

public housing tenants, and others were on the waiting list but applied before 2010. These households

13One would ideally obtain additional data on households’ outside options to separate unobserved differences in outside options and
taste for public housing, but such data were not available for this study.
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were not potential applicants during the sample period, and survey data do not distinguish them from

households that could have applied.14

My approach is to combine a sample of eligible households from the American Community Survey

(ACS) with the CHA dataset to determine the distribution of characteristics among eligible non-

applicants. I do this by assigning a probability to each household in the ACS for whether it appears in

the CHA dataset, either as a tenant or as a past or current applicant. The probabilities are estimated

to match the characteristics of households in the CHA dataset using minimum distance. One minus

each probability is an estimate of the probability that the corresponding ACS household could have

applied for Cambridge public housing during the sample period, but did not. Using these probabilities,

I draw a sample of eligible non-applicants and combine it with the applicant sample. This procedure

is agnostic about the process by which eligible households selected into the CHA dataset, which is

important because the CHA used different allocation polices prior to the period of study.

The ACS publishes a 5 percent sample of U.S. households covering 2010 through 2014, the same

period covered by the CHA applicant dataset.15 It contains information on household structure and

economic and demographic characteristics that determine eligibility and priority for Cambridge public

housing. In particular, I observe whether each ACS household lives or has a member working in

Cambridge; whether it meets the income and asset tests; and whether its household structure qualifies

it for a two or three bedroom apartment in Family Public Housing.

I estimate the probabilities for each eligible ACS household by minimum distance. Households are

indexed by b = 1, ..., B. The ACS assigns each surveyed household a weight wb based on household

b’s inverse probability of being sampled – in other words, wb is the expected number of households

that b represents. I assign probabilities {pb}b=1,...,B of appearing in the CHA dataset to match the

total number of households in the CHA dataset; the number of households in six income groups;

and the numbers of households from Cambridge and with African American or Hispanic household

heads. Denote these statistics by mdata for the CHA dataset, and denote the contribution of each ACS

household to the same statistics by mb. The minimum distance estimator solves

min
p

(macs(p)−mdata)
′(macs(p)−mdata)

where

macs(p) ≡
B∑
b=1

pbwbmb

14The American Community Survey (used here) does ask whether a household receives housing assistance. However, a number
of studies including Meyer and Mittag (2015) have shown that these questions tend to understate program participation. To my
knowledge, no large survey asks households whether they are on a waiting list for public housing.

15Samples from the ACS can be downloaded here: https://usa.ipums.org/usa-action/variables/group
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The distribution of estimated probabilities p̂ is shown in Figure 9. It has a large mass near zero,

with the remaining mass concentrated between 0.5 and 1. There were 401 households in the ACS which

had the required characteristics to be in the CHA dataset. 207 of these households have estimated

probabilities near zero; 165 households were assigned a probability greater than 0.5; and 50 were

assigned a probability greater than 0.9. Lower-income, non-white households are more likely to be

assigned high probabilities, while higher-income white households are more likely to be assigned zero.

The characteristics of potential applicants are summarized in Column (1) of Table 2 and discussed in

Section 3.2.

5.2 Belief Distributions over Assignments and Waiting Times

The information about preference heterogeneity contained in applicants’ development choices depends

on their beliefs about how choices affect payoffs. An applicant solving the two-stage development

choice problem of Section 4.1 has beliefs about how each initial choice affects the date and position

information at the final choice stage, and about continued waiting times for each development given

list positions:

{GC(S, P ) , {Fj,C(Tj | p)}j,p}C∈C

Because the final choice stage of the Cambridge Mechanism generates interdependence in waiting times

across developments, each possible initial choice may induce a different set of distributions over final

choice states and continued waiting times. A major challenge is that data on realized waiting times

are sparse, while the beliefs of sophisticated applicants are high-dimensional. To address this issue, I

assume that applicants have rational expectations of a particular form: their beliefs are consistent with

the steady-state distributions that the Cambridge Mechanism would generate given empirical vacancy

rates, applicant arrival and departure rates, and initial and final choice frequencies. These empirical

quantities can be estimated directly from application data. Combining these estimates with knowledge

of the Cambridge Mechanism, I simulate steady state outcomes which quantify interdependence across

lists and the option value of the timing and information of the final choice stage. I assume that

applicants have these beliefs when simulating the model in the final step of estimation.

The rest of this section describes the model of the Cambridge Mechanism, the construction of

simulation inputs, and the construction of belief distributions from simulation outputs.

5.2.1 Structure of Simulation Inputs

Appendix B.1.1 provides a formal model of the Cambridge Mechanism. This section explains the

structure placed on inputs that determine assignments. Each day, the following steps occur:

• New applicants enter the queue and make their initial development choices.
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• Vacant apartments are offered to applicants who have already made their final choices.

• If the number of applicants on a list who have made their final choices falls below a threshold, the

CHA sends final choice letters to a group of applicants on that list. Each letter tells the applicant

their current list positions and asks them to make a final choice.

• Applicants that do not respond to a final choice letter or to an apartment offer are removed from

all waiting lists.

Given this structure, outcomes in the Cambridge Mechanism are determined by apartment vacancies,

arrival and departure dates of applicants, initial and final choices of applicants, and the CHA’s policy

for sending final choice letters. Vacancies, applicant arrivals and departures, and initial choices do not

depend on the state of the waiting list and are modeled as independent exogenous processes; however,

the CHA’s policy for sending final choice letters and the final choices of applicants do depend on the

current state of the waiting list. I therefore place the following structure on inputs:

• Calendar time is indexed in days by t ∈ {1, ..., T}. Each list j ∈ {1, ..., J} represents a development

and bedroom size. There are Sj apartments represented by list j.

• Apartment Vacancies: each vacancy ν ∈ {1, ..., V } is associated with a calendar date tν and a

waiting list jν . Vacancies occur independently on each list at poisson rates. Vacancy rates were

unusually low during the period of study; according to the CHA, the long-run vacancy rate per

apartment is once every 10 years, so the vacancy rate of list j is set to 0.1 ∗ Sj.

• Applicant Arrivals and Exogenous Departures: each applicant i ∈ {1, ..., N} arrives on date

ti and becomes unresponsive after date ri if it has not been housed. Applicants arrive according

to a poisson process with arrival rate α. Each applicant becomes unresponsive immediately with

probability a0, and departs at an exponential rate a1 thereafter.

• Initial Choices: applicant i makes an initial choice Ci ⊂ {1, ..., J}, |Ci| ≤ 3 upon arrival. Since

applicants do not know the state of the waiting list when they apply, their initial choices are

independent of the current state.

• Final Choice Letters: the CHA sends final choice letters according to a rule that depends on

the state of each waiting list. For each list j, there is a sequence of trigger and batch size policies

{(Lj,l,Kj,l)}Ll=1 for sending letters. Each day, if fewer than Lj,l applicants on list j have made

a final choice, this triggers a batch of final choice letters to the next Kj,l applicants on list j

who have not yet made a final choice. After batch l of final choice letters is sent on list j, pair

(Lj,l+1,Kj,l+1) becomes the next trigger and batch policy.

• Final Choices: applicants who respond to the final choice letter make their final choice based

on their list positions. I use a reduced form model to capture the sensitivity of the final choice to
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this information. Applicant i selects list j ∈ Ci with probability

exp(βpij + ξj)∑
m∈Ci exp(βpim + ξm)

where pim is applicant i’s position on list m and ξm is a fixed effect for list m.

5.2.2 Construction of Simulation Inputs

The parameters governing inputs are estimated as follows. The annual probability each apartment

becomes vacant is calibrated to 10 percent per year.16 The applicant arrival rate is simply the mean

number of applicants per year during the period of study. Initial choice probabilities are also taken

directly from the data. Departure parameters were estimated by non-linear least squares using response

to the final choice letter as a function of time since application. The coefficients of the final choice

model were estimated using the specification in Column (2) of Table 5, replacing continued waiting

time with the list position number. Each list has its own distribution of trigger and batch policies, the

empirical distribution for the list during the sample period. Sequences of trigger and batch policies are

drawn with replacement from their empirical distributions on each list during the period of study.

Given these parameters, I draw sequences of inputs and run the Cambridge Mechanism until it

reaches a steady state. Sequences of apartment vacancies and applicant arrival and departure dates

are drawn independently. Each applicant’s departure date equals its arrival date with probability a0

and follows an exponential distribution with mean 1
a1

years otherwise. The applicant’s initial choice

is drawn with replacement from the empirical distribution. Finally, I draw a random number for each

applicant that determines which final choice it will make given the choice probabilities implied by its

list positions.

5.2.3 Construction of Belief Distributions from Simulation Outputs

To construct the relevant distributions from simulation results, I consider what would have happened

to an additional applicant given each choice the applicant could have made at each stage in the

development choice process. For each initial choice, I take the final choice states that would have

resulted from that initial choice on a random sample of application dates as the distribution ĜC(s, p).

To model the continued waiting time distributions given position information in the final choice stage,

Fj,C(Tj | p), I use a model of continued waiting time that is flexible across initial choices and parametric

in list position. For each list j and initial choice C, continued waiting time follows a beta distribution

16Due to renovations, the empirical vacancy rate during the sample period was below the long-run average. This approach also
assumes an equal vacancy rate per apartment across developments. In principle one could estimate a development-specific vacancy rate
based on observed tenant move-outs or the composition of tenants; however, the CHA tenant data do not cover a long enough period
for this approach to be effective.
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whose parameters depend on current list positions. These distributions are estimated separately for

each (j, C) pair using a sample of continued waiting times in the simulation. Appendix B.1 provides

details of how these distributions were constructed.

5.3 Preferences over Assignments and Waiting Times

Given the distribution of potential applicants and their beliefs, I estimate the discount factor and

parameters governing the distribution of flow payoffs using the method of simulated moments. This

section describes the parameterization of flow payoffs, the moments used in estimation, and the con-

struction and minimization of the objective function.

5.3.1 Parameterization of Flow Payoffs

For estimation, I choose a homothetic utility function:

u(c, h) = γ log c+ (1− γ) log h .

Here γ is the fraction of a household’s disposable income that it would spend on the numeraire if

unconstrained. I also parameterize the distribution of unobserved income ηi and tastes for specific de-

velopment characteristics di. Let Zi represent observed household characteristics other than income; let

Xj represent observed development characteristics; and let Xij represent interactions between applicant

and development characteristics. Flow payoffs take the form

vij − vi0 = δj + φ1 log yi −
outside option︷ ︸︸ ︷

φ2 log(yi + ηi) +g(Zi)︸ ︷︷ ︸
value of assistance

+
∑
k

Xijkβ
o
k +

∑
m

Xjmνimβ
u
m + εij︸ ︷︷ ︸

matching type

, (5)

where δj is a development fixed effect that is common across applicants and (νi, εi) are individual-

specific taste parameters not observed by the econometrician. Note that φ1/φ2 = γ. The unobserved

characteristics are parameterized as

ηi
iid∼ TN(0, σ2

η,−yi,∞) νim
iid∼ N(0, 1) εij

iid∼ N(0, 1) (6)

In addition to placing parametric structure on the unobservables, this parameterization adds develop-

ment fixed effects and demographic shifters to Equation 4. The development fixed effect δj captures

the component of development quality that is common across households, and can include both ob-

served and unobserved characteristics of the development. The value of assistance may depend on

other household characteristics Zi in addition to income. Unobserved income is parameterized so that

at each observed income yi, total income yi + ηi has full support on the positive real line and has a

conditional expectation that increases in yi. The matching type contains standard terms in discrete
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choice demand estimation: tastes for observed development characteristics that depend on observed

and unobserved household characteristics (vim), and idiosyncratic tastes for each development (εij).

The parametric restrictions in Equation 6 assume independence between values of assistance and

match values conditional on observed characteristics, and also place restrictions on the correlation

structure of match values across developments. These assumptions are not innocuous for separating

unobserved heterogeneity in values of assistance and match values. As a check for sensitivity to

restrictions on match value heterogeneity, in Section 6.2 I examine robustness of parameters governing

the value of assistance to adding random coefficients for development size and location.

5.3.2 Moments and Objective Function

The parameters to be estimated are the discount factor and the parameters governing flow payoffs:

θ ≡ {ρ, δ, g(.), φ, β, ση} .

I estimate θ based on moment conditions

E[(mi − E(mi | Zi, θ0)) | Zi] = 0 ,

where θ0 is the true parameter vector, mi contains features of household decisions, and Zi contains

household characteristics and choice conditions that are determined outside the model. The method

of simulated moments captures these conditions in a set of moments, indexed by q ∈ {1, ..., Q}, for

specific choice features m
(q)
i and household characteristics Z

(q)
i :

ĝ(q)(θ) =
1

N

N∑
i=1

(
m

(q)
i − Ê[m

(q)
i | Zi, θ]

)
Z

(q)
i .

In estimation, the conditional expectation Ê(mi | Zi, θ) is estimated by simulation, and the parameter

estimate θ̂MSM is chosen to solve

min
θ

ĝ(θ)′A ĝ(θ)

where ĝ(θ) ≡ (ĝ(1)(θ), ..., ĝ(Q)(θ))′ and A is a symmetric, positive-definite weight matrix. I match the

following choice features (m
(q)
i ) and applicant characteristics (Z

(q)
i ) in the data to those predicted by

the simulated model:

1. Application Rates by income and demographic groups:

m
(q)
i = 1{Ci 6= ∅}; Z

(q)
i = 1{(yi, Zi) ∈ Y(q) ×Z(q)}

2. Development Shares among applicants’ initial and final choices: for each list j,

m
(q)
i = 1{j ∈ Ci}, 1{j = fi}; Z

(q)
i = 1
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3. Covariances between applicant characteristics and characteristics of their initial development

choices:

m
(q)
i = 1{Ci 6= ∅}

1

|Ci|
∑
j∈Ci

X
(q)
j ; Z

(q)
i = 1{(yi, Zi) ∈ Y(q) ×Z(q)}

4. Means and Variances of chosen development size and location within and between applicants:

m
(q)
i =

1

|Ci|
∑
j∈Ci

X
(q)
j ,

(
1

|Ci|
∑
j∈Ci

X
(q)
j

)2

,
1

|Ci|
∑
j∈Ci

(
X

(q)
j

)2
; Z

(q)
i = 1

5. Means and Variances of Chosen Waiting Times within and between applicants, by income

and demographics. Let T̄j be the expected waiting time for development j from initial application

if an applicant’s initial choice was only j. I treat this as another development characteristic and

construct moments analogous to those for other development characteristics:

m
(q)
i =

1

|Ci|
∑
j∈Ci

T̄j,

(
1

|Ci|
∑
j∈Ci

T̄j

)2

,
1

|Ci|
∑
j∈Ci

(
T̄j
)2

;

Z
(q)
i = 1{(yi, Zi) ∈ Y(q) ×Z(q)}

6. Final Choice Moments: for all of these, Z
(q)
i = 1.

• The fraction of eligible households who made a final choice:

m
(q)
i = 1{fi 6= ∅}

• The mean expected continued waiting time of final choices, given an applicant’s position

information:

m
(q)
i = 1{fi 6= ∅}tfi

• The relative price index, as an expected continued waiting time ratio, of the final choice

compared to other developments in each applicant’s choice set. If C = {j, k,m}, and the

expected continued waiting times for the developments are {tj, tk, tm}, then the relative price

index for development j is defined

Rj,C =
1

2

[
tj
tk
/r̄jk,C +

tj
tm
/r̄jm,C

]
where r̄jk,C is the mean continued waiting time ratio between developments j and k for

applicants who made a final choice from choice set C. The resulting moments are

m
(q)
i = 1{fi 6= ∅}Rfi,Ci , 1{fi 6= ∅}1{Rfi,Ci > 1};

The relative price index captures whether an applicant faced a high or a low “price” for its

final choice fi, compared to other applicants who made their final choice from the same choice
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set Ci. This isolates the natural experiment created by the Cambridge Mechanism, where

applicants who made the same initial choices are given different waiting time information

when they make their final choices.

• The average and maximum difference in expected continued waiting time between the chosen

and alternative developments:

m
(q)
i = 1{fi 6= ∅}

(
tfi −

1

2
[tk + tm]

)
, 1{fi 6= ∅} (tfi −min{tk, tm}) ;

It is useful to consider which moments are most informative about which parameters. Application

rates by income and demographic groups reveal heterogeneity in the value of assistance (g(.), φ, ση).

Since low-income and non-white households are more likely to apply for public housing, these groups

value living in public housing more on average. However, some observably high-value households do

not apply for public housing. To the extent that this behavior cannot be explained by heteroge-

neous match values, it reveals unobserved differences in the value of assistance. Initial choices reveal

heterogeneity in match values (βo, βu) by arguments similar to those in Berry et al. (2004). Covari-

ances between applicant and chosen development characteristics – for example, between an applicant’s

neighborhood of current residence and the neighborhoods of its chosen developments – reveal which

applicants systematically prefer which types of developments. The second moments of chosen develop-

ment characteristics capture unobserved differences in match values. For example, if some observably

identical applicants choose only large developments while others choose only small developments, this

is explained by unobserved tastes for development size. Development shares reveal which developments

are more desirable (δ) conditional on observed characteristics. Finally, combined with the other mo-

ments, moments capturing the sensitivity of the final choice to waiting time information inform the

discount factor ρ.

5.3.3 Change of Variables and Importance Sampling

Estimating the conditional expectation E[mi | Zi, θ] presents a computational challenge because the

two-stage development choice problem is computationally burdensome to solve. A standard simulation

procedure would draw unobserved characteristics {(ηis, νis, εis)}i=1,...,N
s=1,...,S once, re-solve the development

choice problem at each proposed value of θ given the implied flow payoffs for each simulation draw,

and construct the conditional expectations

Ê[mi | Zi, θ] =
1

S

S∑
s=1

mis(θ) .

This approach was computationally prohibitive in my setting because the development choice problem

would have to be re-solved thousands of times for each simulation draw. To alleviate this problem, I
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use a technique proposed by Ackerberg (2009) that combines a change of variables with importance

sampling. The key insight is that the optimal sequence of choices for an applicant depends only on their

flow payoffs vi = {vi0, vi1, ..., viJ} and discount factor ρ. The technique draws flow payoffs {vsi }
i=1,...,N
s=1,...,S

from an initial (proposal) distribution g(. | Zi); computes the optimal sequence of choices, yielding

features m(vsi , ρ); and re-weights the simulation draws according to the density implied by proposed

values of θ:

Ê[mi | Zi, θ] =
1

S

S∑
s=1

m(vsi , ρ)
p(vsi | Zi, θ)
g(vsi | Zi)

.

Because flow payoffs were drawn from g(. | Zi), each term in the sum is an unbiased estimate of the

true conditional expectation at θ. Evaluating the objective function at proposed values of θ amounts to

re-weighting the simulation draws. An additional computational benefit is that the objective function

has an analytical gradient in θ \ {ρ} when p(. | Zi, θ) is differentiable in θ. An outer grid search over

the discount factor minimizes the objective function in θ.

Details of the simulation, optimization procedure, weight matrix, and standard errors are provided

in Appendix B.2. The optimal weight matrix performed poorly in my application because the moment

functions are highly collinear; I used a diagonal weight matrix instead. Standard errors account for

sampling error in applicant decisions and simulation error from estimating the conditional expectation

Ê[mi | Zi, θ]. They do not yet account for estimation error in the distribution of potential applicants

or their beliefs.

5.4 Equivalent Cash Transfers

The micro-foundation of preferences provides a way to interpret estimates from the utility model in

terms of equivalent cash transfers. I use the concept of equivalent variation (EV), the cash transfer

that would produce a welfare change equal to that of a public housing assignment or re-assignment. In

counterfactuals, I use this concept to quantify welfare changes under alternative policies and to make

interpersonal comparisons based on the social value of cash transfers to different types of households.

If household i is assigned to development j, then the cash transfer EVij that would make i equally

well-off outside of public housing is defined implicitly by

vij − vi0 = v0(yi + ηi + EVij)− v0(yi + ηi) , (7)

where v0(.) is the indirect utility function defined in Equation 1. Note that concavity of v0 implies that

a household’s equivalent cash transfer is increasing in their total income yi + ηi, holding the change in

flow payoffs vij−vi0 fixed. This is intuitive – higher-income households should have greater willingness

to pay for the same change in housing quality, for example. Conversely, holding yi + ηi fixed, EV is
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convex in the change in flow payoffs vij − vi0. As a result, households with high flow indirect utility

from their assignments require large equivalent transfers.

Under homotheticity, EV has the following closed form expression:

EVij = (yi + ηi)
(
expvij−vi0 −1

)
. (8)

One can use similar logic to quantify the value of living in one public housing development instead

of another. Imagine giving an applicant a choice between living in two developments, A and B. The

applicant can either live in development A at their current income, or live in development B and receive

a (possibly negative) transfer each year. The transfer EVi,AB that would make household i indifferent

between the two options is defined by

viA − viB = u1((1− τ)yi + EVi,AB)− u1((1− τ)yi) , (9)

where u1 is utility from the numeraire as defined in Equation 3. Equation 9 differs from Equation 7

because in public housing, disposable income can only be spent on the numeraire. The EV measure still

depends on the household’s disposable income, which is (1−τ)yi instead of yi+ηi. The transformation

depends on its sub-utility function over the numeraire u1(.) rather than the indirect utility function

v0(.). With homothetic preferences, the closed form expression is

EVi,AB = (1− τ) yi
(

exp
viA−viB

γ −1
)
. (10)

6 Estimation Results

6.1 Applicant Beliefs

Selected parameters governing inputs to the Cambridge Mechanism simulation are shown in Table 6.

The annual vacancy rate per unit is calibrated to 10 percent, implying an average of 108 apartment

vacancies per year. The applicant arrival rate was 345 per year during the sample period. Based

on response to final choice letters, 24.3 percent of applicants become unresponsive immediately, and

attrition occurs at an annual rate of 24.5 percent thereafter. Coefficients from the final choice model

are also shown. Consistent with the analysis in Section 3.3, applicants are less likely to choose a

development with a higher list position.

Table 7 shows the mean and standard deviation of average waiting times for each development in

the simulation, and compares them to means in the data. Simulated waiting times are constructed

by averaging realized waiting times across applicants housed during the simulation. Simulated waiting

times match observed waiting times qualitatively. The largest developments – Jefferson Park, New-

towne Court, Putnam Gardens, and Washington Elms – have simulated average waiting times between
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1.0 and 3.2 years. The smaller developments, including Mid and East Cambridge, Lincoln Way, and

Jackson Gardens, have longer simulated waiting times of 3.9 to 6.2 years. Although the simulation

captures which developments have longer waiting times, the simulated average waiting times are more

dispersed than those observed in the data. The main reason for this is that the Cambridge Mechanism

was not in steady state during the sample period; list closures before and during the sample period

allowed some applicants to be housed quickly. In addition, since some developments housed only a

few applicants, observed average waiting times have considerable sampling noise. Since applicants had

limited information about list closures and current and future fluctuations in list lengths, a reasonable

policy would have been to form beliefs based on the long-run distribution of outcomes generated by

the Cambridge Mechanism in steady state.

6.2 Preferences over Assignments and Waiting Times

I estimated three specifications of the development choice model. All specifications estimate fixed effects

for each public housing development, for the race/ethnicity of the household head, and for whether

the household currently lives in Cambridge. They include the two terms that depend on income: the

value of non-housing consumption while in public housing, and the value of the household’s outside

option. They also include indicators for whether an applicant lives in the same neighborhood as

each development. Finally, both specifications include the random effect corresponding to unobserved

income available outside public housing. Specification (2) adds a random coefficient for development

size, and Specification (3) adds random coefficients for development location. Specifications with

random coefficients are less robust but provide a check for sensitivity to restrictions on match value

heterogeneity. For counterfactuals, I use the more stable estimates from Specification (1). I first

summarize the parameter estimates, and then describe features of the preference distribution that will

be relevant for counterfactuals.

6.2.1 Parameter Estimates

Estimates show that applicants are fairly impatient, and are therefore willing to trade a shorter waiting

time for a preferred assignment. The first row of Table 8 shows the estimated annual discount factor,

with estimates between 0.62 and 0.84 across specifications. If applicants anticipate the possibility of

attrition, these estimates imply low to moderate impatience; if they do not anticipate it, then they are

fairly impatient. Standard errors reject discount rates close to one at reasonable confidence levels in

all specifications.

The parameter estimates governing the value of assistance (Panel A of Table 8) show that while

income and demographic variables strongly predict the value of public housing, there are also large

32



unobserved differences. Households would like to spend just over half of income on non-housing con-

sumption; the point estimate on observed income ranges from 0.538 in Specification (1) to 0.610 in

Specification (2). These estimates are consistent with high rent burdens among very low-income house-

holds and imply that the value of assistance falls rapidly with observed income. Consistently across the

three specifications, households with a non-white head have higher values of living in public housing,

especially African American headed households. Finally, unobserved income makes a substantial con-

tribution to welfare. Specifications (1) and (3) estimate the scale parameter of the truncated normal

distribution to be $5,430 and $6,640.17 For households with high observed incomes, the scale parameter

is close to the standard deviation of the distribution of unobserved incomes; for households with low

observed incomes, the standard deviation is still a few thousand dollars.

The parameters governing match values (Panel B) show substantial heterogeneity in which develop-

ments are preferred. Location is an important source of predictable heterogeneity: applicants from East

and Central Cambridge prefer to remain in their neighborhoods. However, a substantial component of

match values cannot be predicted by observed characteristics, with estimated standard deviations of

the idiosyncratic shock between 0.103 and 0.152 across specifications. Adding random coefficients for

development size and location in Specifications (2) and (3) increases noise in the estimated match value

coefficients and lowers the standard deviation of the idiosyncratic shock, but implies similar amounts of

preference heterogeneity overall. They do not qualitatively change the coefficient estimates governing

the value of assistance, with the exception of the scale of unknown income in Specification (2).

6.2.2 Features of the Preference Distribution

In counterfactuals, this paper considers the welfare and distributional consequences of allocation policy,

focusing on the trade-off between matching applicants to their preferred apartments an identifying the

most disadvantaged households. This section summarizes two features of the preference distribution

that will drive these counterfactuals: the value of assigning each applicant to their preferred develop-

ment, and the number of developments for which applicants would accept a take-it-or-leave-it offer.

I report statistics based on a sample of applicants drawn from the preference distribution estimated

in Specification (1). The features are summarized for all eligible households, and for two sub-groups

with high values of assistance: African American households, and households with less than $15,000

of observed annual income.

There are large welfare gains from matching applicants to their most preferred developments. Table

9 displays medians and means of the Equivalent Variation (EV) from moving an applicant from a

17Specification (2) did not fit the data well when the objective function was minimized, even in sample. For example, the overall
application rate implied by the parameter estimates was 44% rather than 25% in sample. This is because importance sampling can
introduce large amounts of simulation error into estimation by re-weighting the simulation draws.
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lower-ranked choice to their first choice. Since this exercise involves a comparison between two public

housing developments, EV is calculated using Equation 10. Across all applicants, the median EV

between an applicant’s second and first choice is 13.9 percent of observed income, or $144 per month.

The mean is even larger, driven by a long right tail in the distribution. The proportional values are

similar among African American and low-income households, but the dollar values are much lower

for low-income households. Equivalent variation from moving an applicant from their last choice to

their first choice development is very large, with a median of $2,304 per month across all applicants

and $1,016 among low-income applicants. A mechanism that provides lower match quality will have a

substantial welfare cost.

Most applicants are only willing to live in some developments, and applicants with worse outside

options are more willing to accept mismatched offers. Table 10 tabulates applicants by the number

of developments they find acceptable, showing the total and observed incomes of each group. Some

applicants are quite selective – one in three would only be willing to live in three or fewer developments

– while an equal number would be willing to live in any development. The latter group has much lower

observed and unobserved incomes than other applicants. As a result, removing choice would induce

many applicants to reject mismatched offers, improving targeting on both observed and unobserved

characteristics. The patterns are qualitatively similar for African American and very low-income house-

holds, but applicants are less selective in these groups. 51.7 percent of very low-income applicants and

36 percent of African American applicants would accept any development.

Because the model fits substantial preference heterogeneity in both match values and values of as-

sistance, mechanisms that affect match quality and targeting may have large welfare and distributional

consequences. A development choice system that that gives applicants no choice over their assignments

will induce many applicants to reject offers, but the welfare loss from lower match quality for those

who are housed will be substantial.

7 Counterfactuals

Using the estimates from Section 6, I consider how the development choice and priority systems com-

monly used to allocate public housing would perform in Cambridge. I begin by analyzing the effects of

these mechanisms on total welfare and the distribution of housed applicants, and then show how one

can apply social welfare weights to decide which mechanism to use depending on one’s taste for income

redistribution. This exercise has non-trivial implications for which mechanisms the CHA should use,

ruling out some combinations of choice and priority within a broad class of social welfare functions.

Section 7.1 defines a class of one-stage choice mechanisms that incorporates the range of development

choice and priority systems used in practice, and describes the specific mechanisms considered. Section
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7.2 presents results from counterfactual simulations of these mechanisms and compares them to the

Cambridge Mechanism and to a full information benchmark in which the housing authority knows

applicants’ preferences.

7.1 Space of Mechanisms

This section formalizes a simple class of mechanisms – one-stage choice mechanisms – that capture the

key features of public housing allocation mechanisms used in practice. Applicants make development

choices once at initial application, and are ordered on the waiting list by priority group and then

application date. Compared to the two-stage development choice mechanism used by the CHA, one-

stage choice greatly simplifies equilibrium computation, and it is also more common in practice. To

isolate the long-run impacts of policy changes, I analyze counterfactual equilibria in long-run steady

state.

This rest of this section formalizes one stage choice mechanisms, defines equilibrium, explains how

allocations are evaluated, and describes the mechanisms explored in counterfactual simulations.

7.1.1 One-Stage Choice Mechanisms

A one-stage choice mechanism ϕ is defined by two objects:

1. A development choice system Cϕ ⊆ 2{1,...,J}. Each element of Cϕ is a subset of developments

from which the applicant may receive apartment offers.

2. A priority system ψϕ : Z −→ {1, ..., B} which maps applicant characteristics to a priority group.

Applicant i has higher priority than applicant i′ in ϕ if ψϕ(Zi) < ψϕ(Zi′).

The mechanism operates on sequences of apartment vacancies, applicant arrivals, and exogenous ap-

plicant departures. Each vacancy ν ∈ {1, ..., V } has a date tν and development jν . Each applicant

i ∈ {1, ..., N} has arrival date ti, departure date ri, observed characteristics Zi, and payoff vector

vi = (vi0, vi1, ..., vij). The mechanism ϕ runs according to the following algorithm. On each date t,

(i) Each arriving applicant (ti = t) chooses a set of developments Ci ∈ Cϕ and is placed on the

waiting list for each development j ∈ Ci. On each list, applicants are ordered lexicographically

by (ψϕ(Zi), ti).

(ii) Each vacancy ν with tν = t is offered to the first applicant on list jν . If the applicant accepts, it

is housed and removed from all lists j ∈ Ci. If the applicant rejects, it is removed from all waiting

lists and cannot reapply. This step is repeated until an applicant accepts or the waiting list is

empty. If the latter occurs, the vacancy is held until the next day.

(iii) Departing applicants (ri = t) are removed from all lists j ∈ Ci.
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7.1.2 Development Choice Problem, Information, and Equilibrium

In one stage choice mechanisms, an applicant’s choice problem is simpler than in a two-stage mecha-

nism. The applicant simply considers, for each possible subset of developments it can choose, which

development is likely to arrive first, and the distribution of waiting times for the first arrival. Let

Tj be the random variable for the waiting time for development j if an applicant were only on the

waiting list for j. The realization of Tj will depend on applicant i’s date of application. The joint

distribution FT1,...,TJ may depend on the applicant’s priority ψϕ(Zi). The applicant solves the following

choice problem:

max
C∈Cϕ

∑
j∈C

wCj (ψϕ(Zi))(vij − vi0) (11)

wCj (ψϕ(Zi)) ≡
1

ρ
Eψϕ(Zi)

[
e−ρTj | Tj = min

k∈Ci
Tk

]
Pψϕ(Zi)

[
Tj = min

k∈Ci
Tk

]
As in the Cambridge Mechanism, applicants do not know the state of the queue when they apply,

but they do know the distribution of outcomes that they face for each possible choice C ∈ Cϕ given

their priority group ψϕ(Zi). As a result, an applicant’s beliefs do not depend on its application date.

In equilibrium, beliefs are consistent with the distributions generated by the mechanism in long-run

steady state given the distribution of potential applicants, the preference distribution p(vi | Zi, θ̂MSM),

and given that applicants choose developments according to Equation 11.

In the counterfactual simulations, the exogenous departure model is the same as in the Cambridge

Mechanism simulation, as are vacancy rates. Applicant arrivals are generated using the distribution of

potential applicants and preferences estimated in Section 6, and choices are computed given applicants’

preferences and beliefs. As before, potential applicants choose to apply if any development is preferable

to their outside option. Appendix C provides details of how the equilibrium is computed. The algorithm

iteratively updates applicant choices and their implied steady state waiting time distributions until a

fixed point is reached between choices and beliefs.

7.1.3 Evaluating Allocations

Given sequences of inputs, a mechanism ϕ produces an eventual assignment jϕ(i) ∈ {0, 1, ..., J} for each

applicant, with jϕ(i) = 0 if applicant i is not assigned an apartment. A natural way to summarize the

welfare and distributional impacts of a mechanism is to average characteristics of assigned applicants

and their values over assigned apartments. In long-run steady state, if applicants vacate apartments

at an exogenous, poisson rate, then this provides an estimate of the mean characteristics of public

housing tenants at any given time. A social planner interested in maximizing the expected discounted
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sum of future payoffs would be interested in these statistics. To summarize welfare, I use equivalent

cash transfers as a baseline measure:

W (ϕ) =
1∑N

i=1 1{jϕ(i) 6= 0}

N∑
i=1

EVi,jϕ(i) (12)

where EVi,jϕ(i) is as defined in Equation 8. To summarize characteristics of housed applicants, one can

do the same for transformations of applicant characteristics:

1∑N
i=1 1{jϕ(i) 6= 0}

N∑
i=1

h(Zi, vi, jϕ(i)) (13)

To incorporate social welfare weights into welfare calculations, one can transform equivalent variation

from assignments by a function f(Zi, vi, EV ) that depends on applicant characteristics:

W (ϕ; f) =
1∑N

i=1 1{jϕ(i) 6= 0}

N∑
i=1

f(Zi, vi, EVi,jϕ(i)) (14)

In particular, this formulation allows a social planner to have different marginal values of transferring

one dollar to different households.

Finally, one can compare welfare gains from different mechanisms adjusting for the total cost of the

public housing program under each. This is important when mechanisms affect the income distribution

of housed applicants; since rent in public housing is proportional to a tenant’s income, the CHA will

receive lower rent payments if it houses lower-income applicants. Administrative documents from

the CHA suggest that the cost of maintaining each Family Public Housing apartment was close to

c ≡ $14, 300 per year.18 Subtracting tenant rent payments from this cost measure provides a reasonable

lower-bound on the true economic cost of the public housing program in Cambridge. Adjusted for cost,

welfare gains are

W̃ (ϕ; f) =

∑N
i=1 f(Zi, vi, EVi,jϕ(i))∑N

i=1 1{jϕ(i) 6= 0}(c− 0.3yi)
(15)

7.1.4 Simulated Mechanisms

The mechanisms used by the 24 surveyed PHAs in Section 2 can be modeled using six development

choice systems and three priority systems. I computed the counterfactual equilibrium that would arise

in Cambridge under each combination. The development choice systems are

1. Choose One: C = {{1}, ..., {J}}. Applicants must select one development. This choice system

is closest to those used in Cambridge, New York City, New Haven, and Seattle, which allow

applicants to select a limited number of developments.

18http://www.cambridge-housing.org/civicax/filebank/blobdload.aspx?BlobID=22801
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2. Choose Any Subset: C = 2{1,...,J}. Applicants may choose any subset of developments, as in

Boston and San Antonio.

3. Choose All or One: C = {{1}, ..., {J}, {1, ..., J}}. Applicants may either wait for their pre-

ferred development or take the first available offer from any development. This choice system

approximates the policies used in Philadelphia, Baltimore, and Newark.

4. Choose Neighborhood: C = {Cnorth, Ceast, Ccentral}. Applicants choose a neighborhood from

which to receive an apartment offer. Importantly, an applicant cannot choose to wait for their

most preferred development.

5. Choose All or Neighborhood: C = {Cnorth, Ceast, Ccentral, {1, ..., J}}. Applicants may either

choose a neighborhood or receive the first offer city-wide. Chicago uses this development choice

system for family public housing.

6. No Choice: C = {{1, ..., J}}. Applicants must accept the first available apartment in any

development; they have no choice over their assignment.

For priority systems, I model priority for higher socioeconomic status households as a priority for

higher-income applicants, and lower socioeconomic status or need-based priorities as a priority for

low-income applicants:

1. Equal Priority: Applicants are treated equally and ordered only by application date. Apart

from emergency priorities that affect few applicants, several PHAs, including the CHA, use equal

priority.

2. Low-Income Priority: Applicants below 30% AMI are offered apartments first. Among the 24

sampled PHAs, only Seattle uses this exact policy. However, several PHAs used “need-based”

priorities for households that were severely rent burdened, faced involuntary displacement, or were

referred by other agencies that provide public assistance.

3. High-Income Priority: Applicants above 30% AMI are offered apartments first. This is the

explicit policy in New York City and New Haven, and also captures priorities for working or

economically self-sufficient households used by several other PHAs.

7.2 Welfare and Distributional Impacts of Allocation Policy

I begin by analyzing the effect of development choice systems under equal priorities and then consider

the effects of prioritizing higher- or lower-income applicants. Finally, I show how distributional prefer-

ences determine which mechanism should be adopted in Cambridge. In all cases, results are reported by

averaging payoffs and characteristics of housed applicants over apartments allocated in the simulated

equilibrium of each mechanism, as in Equations 12 - 15.
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7.2.1 Effect of Development Choice under Equal Priority

The range of development choice systems used in practice would have large welfare and distributional

impacts in Cambridge. To begin, compare Columns (1) and (6) of Table 11, which show the allocations

from “Choose One,” which forces applicants to choose their preferred development, and “No Choice,”

which does given applicants any choice over their assignment (other than the option to reject an

apartment offer and leave the waiting list). Under “Choose One,” the average housed applicant values

their assignment as much as a cash transfer of $7,514; under “No Choice,” the value falls to $5,705. Part

of this welfare loss is driven by a reduction in match quality. While 36 percent of housed applicants are

assigned to their first choice development under “Choose One,” only 9.4 percent are under “No Choice.”

By inducing applicants with higher incomes and better outside options to reject mismatched offers,

“No Choice” substantially improves targeting. The mean observed income of housed applicants falls

from $17,727 to $13,882, and housed applicants also have worse outside options conditional on their

observed characteristics. Due to lower tenant incomes, the CHA would receive lower rent payments and

therefore incur a higher cost per unit under “No Choice.” Adjusted for cost, “Choose One” produces

83 cents of welfare gains per dollar spent, while “No Choice” produces only 56 cents, a 30 percent

decrease.

The other development choice systems produce allocations in between “Choose One” and “No

Choice” in terms of match quality, targeting, and total welfare. “Choose Any Subset” and “Choose

All or One,” which allow applicants to select several developments as a hedge against waiting time

uncertainty, have virtually no effect on assignments. This is because in equilibrium, waiting time

uncertainty is small relative to differences in average waiting times across developments. Applicants

that choose several developments are very likely to be housed in the development with the shortest

expected waiting time, and would have picked that development under “Choose One.” In contrast,

“Choose Neighborhood” and “Choose All or Neighborhood,” which allow applicants to choose their

neighborhood but not a specific development, do impact assignments. Section 6.2 documented that

many applicants would only accept one or a few developments; in Cambridge, each neighborhood con-

tains at least three developments. As a result, neighborhood choice would still induce many applicants

to reject offers, lowering match quality while improving targeting.

7.2.2 Effect of Income-Based Priorities

Prioritizing higher- or lower-income applicants can dramatically affect targeting with almost no change

in match quality or in applicants’ values of their assigned apartments. Columns (1) - (6) of Table

12 summarize allocations under the three priority systems – “Low-Income Priority,” “High-Income

Priority,” and “Equal Priority” – each under “Choose One” and “No Choice.” Each choice system

39



produces nearly identical values of assigned apartments, measured in equivalent cash transfers as

defined in Equation 8, under the three priority systems. The priority system also has almost no

effect on match quality. Under “Choose One,” applicants are equally willing to wait for their preferred

developments under each priority system. With “No Choice,” applicants are equally likely to be offered

a mismatched apartment, and although low-income applicants are more willing to accept mismatched

offers, the overall effect on match quality is small.

As one would expect, income priorities most impact the incomes and outside options of housed ap-

plicants. Under “Choose One,” average incomes are $23,942 under “High-Income Priority” and $11,086

under “Low-Income Priority.” Due to the change in rents paid by tenants, priorities dramatically af-

fect welfare gains per dollar spent. Under “High-Income Priority, Choose One,” applicants value their

assignments as much as the cost of housing them; in contrast, they value it only two-thirds as much

under “Low-Income Priority, Choose One.”

Table 12 also illustrates how the priority and development choice systems interact. When higher-

income applicants receive priority, development choice has a large effect on targeting – applicants’

observed incomes fall by more than one third moving from “Choose One” to “No Choice,” driven by

the fact that higher-income applicants are willing to accept fewer developments. When lower-income

applicants are prioritized, moving to “No Choice” provides much smaller targeting gains, and more

of these gains come from unobserved differences in outside options. Using observed characteristics in

allocation policy affects the ability of choice design to screen on unobserved characteristics.

7.2.3 Incorporating a Preference for Redistribution

Measuring welfare gains in terms of equivalent cash transfers implicitly places equal value on trans-

ferring resources to households at different points in the income distribution. A housing authority or

social planner with a taste for redistribution would prefer to transfer dollars to a lower-income house-

hold. This section incorporates social welfare weights into comparisons among allocation mechanisms

and discusses implications for the policies of the CHA and other PHAs.

In the preference model presented in Section 4.2, a social planner with a distaste for inequality or

a preference for transferring resources to households with higher marginal utilities of income should

apply higher social welfare weights to households with worse outside options. A household’s utility

from its outside option is determined by its total income outside of public housing, ỹi ≡ yi + ηi. Any

monotonically increasing function f(ỹi) corresponds to a social welfare function that dislikes income

inequality. To capture these social preferences in one dimension, I consider a class of social welfare
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functions proposed by Atkinson (1970):

f(ỹi, EV ;λ) =
1

1− λ
[
(ỹi + EV )1−λ − ỹ1−λi

]
λ 6= 1

log(ỹi + EV )− log(ỹi) λ = 1

This class of functions captures “constant relative inequality-aversion.” It implies that the social value

of transferring one dollar to a household with 1 percent lower income is approximately λ percent greater.

An inequality-aversion parameter of λ = 0 implies no taste for redistribution; λ =∞ corresponds to a

social welfare function that only cares about welfare changes for the agent who is worst off. In addition

to capturing a wide range of social preferences, this class has desirable properties. For λ > 0, social

welfare increases whenever resources are transferred from higher- to lower-income households, and for

any λ ∈ R income distributions are ranked identically if all incomes are multiplied by a constant.

Within this class of social welfare functions, one can use Equation 15 to determine which mechanism

should be used given a PHA’s degree of inequality aversion.

Figure 4 shows that under the current CHA priority system (“Equal Priority”), the best choice

system is either “Choose One” or “No Choice” for any λ > 0. The figure plots the cost-adjusted

welfare measures from Equation 15 for each mechanism, normalized by welfare under “Equal Priority,

Choose One” at a range of inequality aversion parameters. Consistent with Table 11, “Choose One” is

preferred with a low taste for redistribution, while “No Choice” is preferred with a high taste. Appendix

Figure 5 shows a similar finding under “Low-Income Priority,” but “Choose One or All” and “Choose

Any Subset” perform slightly better than “Choose One” with moderate inequality aversion. There is

a gain from allowing very desperate applicants to choose as many developments as they would like,

even though the effect on the allocation is small. Figure 5 repeats this exercise for each priority system

under the “Choose One” development choice system, revealing that one of “High-Income Priority”

and “Low-Income Priority” is always better than “Equal Priority.” If allowing choice, CHA should

either prioritize high-income applicants since they can be housed at a low cost, or prioritize low-income

applicants to maximize targeting. However, at an intermediate inequality aversion parameter of 1.2,

“Equal Priority” is close to optimal.

Many of the mechanisms used by PHAs are strictly dominated in the Cambridge setting; there is

a better policy for any social welfare function in the class considered. Figure 6 plots the mechanisms

which form the upper envelope of the 18 mechanisms considered so far. Only three combinations

of choice and priority are ever optimal: “High-Income Priority, Choose One,” “Low-Income Priority,

Choose One or All,” and “Low-Income Priority, No Choice.” If the CHA wishes to improve targeting, it

should first prioritize low-income applicants but allow choice, and then, if its taste for redistribution is

sufficiently high, remove choice. Prioritizing low-income applicants targets disadvantaged households
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without distorting match quality, and as a result, removing choice is a policy of last resort. A mechanism

such as the one used in Los Angeles, which combines “No Choice” with priority for economically self-

sufficient households, is strictly sub-optimal in Cambridge within this class of social welfare functions.

Finally, the Cambridge Mechanism is likely to perform well under a moderate taste for redistribution.

As discussed in the next section, the mechanism “Equal Priority, Choose One” is most similar to the

Cambridge Mechanism, and is nearly optimal among the mechanisms considered at an inequality

aversion parameter of 1.2. If the CHA chose a welfare maximizing mechanism using this class of social

welfare functions, they placed equal social value on transferring 2.2 dollars to a household earning

$20,000 per year, and transferring one dollar to a household earning $10,000 per year.19

7.2.4 The Cambridge Mechanism and a Full-Information Benchmark

The development choice systems analyzed in the previous sections abstracted from the two-stage de-

cision problem in the Cambridge Mechanism. The effect of providing new waiting time information in

the second stage may impact total welfare and the distribution of housed applicants. Column (7) of

Table 11 summarizes the allocation that the Cambridge Mechanism would produce if applicants had the

waiting time beliefs estimated in Section 6.1 and the same preference distribution as in the other coun-

terfactuals. Since this computation does not enforce consistency between choices and implied waiting

times, the allocation should be viewed as an approximation to the actual equilibrium that the Cam-

bridge Mechanism would generate in steady state. Qualitatively, the Cambridge Mechanism is close to

“Equal Priority, Choose One,” providing good match quality for tenants and targeting applicants with

slightly worse outside options than the general applicant pool. Due to some inconsistencies between

the estimated preference distribution and the belief model, the Cambridge Mechanism performs even

better than one-stage choice mechanisms.20 The average value of assignments is $8,403, or 89 percent

of program cost, and 39 percent of housed applicants are assigned to their first choice development.

Another important question is how well the CHA could do if it obtained more information about

applicants. Columns (8) and (9) of Table 11 provide a lower bound on the welfare and targeting

gains that would be possible if the social planner knew applicants’ preferences and outside options.

The results show that private information sharply limits what can be achieved. The social planner

maximizes the equivalent variation from assignments in Column (8) and minimizes the outside options

of housed applicants in Column (9). In both cases, the planner uses a greedy algorithm, housing the

19Appendix Figure 6 shows that without adjusting for cost, the Cambridge Mechanism performs well under lower degrees of inequality
aversion.

20The initial choice shares of a couple of developments were not matched perfectly in structural estimation. These developments are
under-subscribed in the counterfactual simulation of the Cambridge Mechanism, but applicants believe at the initial choice stage that
those developments have long waiting times. In equilibrium, applicants would substitute toward the under-subscribed developments in
the initial choice stage, leading to lower match quality. This does not occur in the simulation because the equilibrium is not recomputed.
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applicant with the highest social value when an apartment becomes available without taking dynamic

considerations into account. In the welfare-maximizing allocation, assignments are valued more than

50 percent more highly than under Choose One. The social planner achieves this by selecting non-

white households, which have high values of assistance, with moderately high incomes that make

them require large equivalent cash transfers. The targeting-maximizing allocation sacrifices match

quality and the value of assistance in order to house applicants with the worst outside options. Many

PHAs already use need-based priorities that affect a small set of applicants. For example, some PHAs

prioritize victims of domestic violence, the homeless, or households that are severely rent burdened or

have been involuntarily displaced. An important question for future research is whether PHAs could

obtain additional information about applicants that strongly predicts their outside options or preferred

developments.

8 Conclusion

The allocation of scarce public resources often involves trading off efficiency and other policy goals,

such as fairness or redistribution. This paper empirically studies such a trade-off in the allocation of

public housing. Using data on the choices of public housing applicants in Cambridge, MA, I estimate a

structural model of demand that quantifies heterogeneity in applicants’ preferred developments and in

their overall values of living in Cambridge public housing. The empirical strategy exploits a trade-off

faced by applicants between shorter waiting times and preferred assignments. I use the estimated

model to simulate counterfactual equilibria under allocation policies that housing authorities use in

different U.S. cities.

In Cambridge, applicants exhibit substantial heterogeneity in their preferred developments and

outside options. As a result, the range of choice and priority systems used in practice would dramatically

affect efficiency and targeting. Mechanisms allowing applicants to choose their preferred development

provide large welfare gains to tenants, comparable to cash transfers of $7,000 per year. Mechanisms

that do not allow choice would induce many applicants to reject mismatched apartment offers, allowing

more disadvantaged applicants to be housed. This would produce lower match quality for tenants,

and cost-adjusted welfare gains would fall by 30 percent. The CHA could achieve the same goal by

prioritizing low-income applicants without lowering match quality. As a result, some of the mechanisms

used in other cities are strictly dominated in Cambridge within a broad class of social welfare functions.

Prioritizing high-income applicants without allowing choice, as is done in some cities, is never optimal.
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9 Tables and Figures
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Figure 1: Locations of Cambridge Family Public Housing Developments
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Figure 2: Application Rates by Income
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Figure 3: Distribution of the estimated probabilities that each ACS household was a CHA applicant or tenant
during the sample period.
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Figure 4: Comparison of cost-adjusted welfare gains produced by development choice systems used in practice,
defined in Section 7.1. Applicants have Equal Priority in all mechanisms. Each point on the x-axis corresponds to
a degree of relative inequality aversion. Cost-adjusted welfare gains from each mechanism are normalized by the
value for Equal Priority, Choose One.
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Figure 5: Comparison of cost-adjusted welfare gains produced by different priority systems used in practice. Low-
Income Priority offers apartments to applicants below 30% AMI before other applicants, while High-Income Priority
first offers apartments to applicants above 30% AMI. Applicants choose one development in all mechanisms. Each
point on the x-axis corresponds to a degree of relative inequality aversion. Cost-adjusted welfare gains from each
mechanism are normalized by the value for Equal Priority, Choose One.
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Figure 6: Cost-adjusted welfare gains from choice and priority systems that perform well for different degrees
of relative inequality aversion. Each point on the x-axis corresponds to a degree of relative inequality aversion.
Cost-adjusted welfare gains from each mechanism are normalized by the value for Equal Priority, Choose One.
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Table 1: Allocation Policies Used in Practice

Panel A: PHA's with Largest Public Housing Stock

New York City, NY 8,537,673 175,000 Mixed Limited Choice
Chicago, IL 2,704,958 21,150 Equal Limited or All
Philadelphia, PA 1,567,872 15,000 Equal Limited or All
Baltimore, MD 614,664 11,250 High SES Limited or All
Boston, MA 673,184 10,250 Equal Any Subset
Cleveland, OH (Cuyahoga Metro Area) 385,809 10,000 High SES Limited Choice
Miami, FL 453,579 9,400 Equal No Choice
Washington, D.C. * 681,170 8,350 -- --
Newark, NJ 281,764 7,750 High SES Limited or All
Los Angeles, CA 3,976,322 6,900 High SES No Choice
Seattle, WA 704,352 6,300 Low SES Limited Choice
Minneapolis, MN 413,651 6,250 Low SES No Choice
San Antonio, TX 1,492,510 6,200 Low SES Any Subset

Panel B: PHA's comparable to Cambridge, MA
(2000-3000 public housing units, 100-200K population)

Cambridge, MA 110,650 2,450 Equal Limited Choice
Rochester, NY * 114,011 2,500 Equal No Choice
New Haven, CT 129,934 2,600 High SES Limited Choice
Columbia, SC 134,209 2,140 Equal No Choice
Dayton, OH 140,489 2,750 High SES Any Subset
Syracuse, NY * 143,378 2,340 High SES No Choice
Bridgeport, CT * 145,936 2,600 Equal --
Kansas City, KS 151,709 2,050 Mixed No Choice
Macon, GA * 152,555 2,250 High SES No Choice
Providence, RI 179,219 2,600 Equal No Choice
Worcester, MA * 184,508 2,470 Low SES No Choice
Augusta, GA * 197,081 2,250 Equal No Choice
Yonkers, NY 200,807 2,080 Equal Any Subset

Notes: features of allocation mechanisms used by PHAs in 25 cities. PHAs were chosen based on city population and/or the size of 
their public housing stocks. * indicates that the PHA's administrative plan was not available online. In these cases, information was 
gleaned from the PHA website and application forms. A High SES priority system favors households above 30% of Area Median 
Income (AMI), or which are economically self-sufficient or have a working member. A Low SES priority system prioritizes 
households below 30% AMI, or which are severely rent burdened or have been involuntarily displaced. A Mixed priority system 
prioritizes both types of households, and an Equal priority system prioritizes neither. Under Limited Choice, applicants must choose 
a small number of developments from which to receive offers. Under Any Subset, applicants may choose any subset of the 
developments. Under No Choice, applicants must accept the first available apartment in any development. Under Limited or All, 
applicants may either commit to taking the first available apartment or select a limited number of developments. 

City Population, 
2016

# Public Housing 
Units, 2013

Priority 
System

Development Choice 
SystemPublic Housing Authority (PHA) Jurisdiction
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Table 6: Inputs to Waiting Time Simulation

Parameter Value

Apartment Vacancies

Annual Vacancy Rate per Unit 0.10

Annual Vacancy Rate Total 108

Applicant Arrivals and Departures

Daily Applicant Arrival Rate 0.945

Annual Applicant Arrival Rate 345

Instant Departure Probability 0.243

Annual Departure Rate 0.245

Final Choice Model

List Position Coefficient -0.019

Fixed Effects

Corcoran Park 0.347

East Cambridge -0.130

Jackson Gardens 0.292

Jefferson Park -0.434

Lincoln Way 0.690

Mid Cambridge 0.265

Newtowne Court 0.073

Putnam Gardens -0.299

River Howard Homes 0.000

Roosevelt Low-Rise -0.604

Washington Elms -0.321

Woodrow Wilson -0.260

Roosevelt Mid-Rise -0.876
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Table 7: Simulated Waiting Times from Initial Application

Development Mean S.D. Mean # Obs.

Corcoran Park 2.74 1.20 3.05 45

East Cambridge 5.11 1.98 3.52 11

Jackson Gardens 6.14 1.84 3.75 9

Jefferson Park 0.98 1.11 2.16 62

Lincoln Way 3.90 2.19 3.72 2

Mid Cambridge 5.35 2.08 3.52 11

Newtowne Court 2.07 0.95 2.33 95

Putnam Gardens 3.25 1.02 2.98 36

River Howard Homes 6.18 2.17 3.52 11

Roosevelt Low-Rise 2.22 0.87 3.55 21

Washington Elms 2.30 1.39 2.92 26

Woodrow Wilson 4.13 1.69 1.98 2

Roosevelt Mid-Rise 5.03 1.85 1.58 18

DataSimulation

Simulated Waiting Time Realizations

Notes: realized waiting times are averaged across all housed applicants in each 

development.
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A Datasets

A.1 CHA Dataset and Sample Selection

The Cambridge Housing Authority maintains a database of applicants and tenants to manage its

programs and comply with HUD regulations. The dataset used in this paper is based on an extract

made on February 26th, 2016. It contains anonymized records of all applicants for Cambridge public

housing who were active on a waiting list between October 1st, 2009 and February 26th, 2016. This

includes all households who submitted an application after October 2009, and a selected sample of

households who applied before late 2009 and were still on the waiting list.

For each applicant, I observe household characteristics, development choices, and the timing and

outcome of all events during the application process. Household characteristics include family size;

the age, gender, and race/ethnicity of each household member; zip code of current residence; and

self-reported household income. The data also record whether an applicant had priority. Development

choices and waiting list events come from a time-stamped status log that records the status of each

application over time. This includes the applicant’s initial application date; the date it joined each

waiting list; the date it was sent a final choice letter, and if it responded, its final choice; and the date

the applicant was offered an apartment. I also observe the date and reason if a household was removed

from the waiting list.

From the application data, I construct several objects that allow me to interpret development

choices. I infer the set of developments for which each applicant was eligible based on household

structure and application date.21 I observe waiting times for applicants who were offered apartments,

both from initial application and from the date the applicant made its final choice. I also infer the

information each applicant received in their final choice letter by computing the applicant’s list position

on the date CHA sent the letter.

For analysis, I restrict my sample to priority applicants for 2 and 3 bedroom apartments in the

Family public housing program who submitted an application between January 1st, 2010 and December

31st, 2014. Non-priority applicants had virtually no chance of being housed, so it is unclear how to

interpret their development choices. Family public housing applicants are a more homogeneous group

than Elderly/Disabled households, and families with children are of substantial policy interest. I

restrict to 2 and 3 bedroom apartments for sample size; the vast majority of Family public housing

applicants apply for these units, and data on choices, waiting times, and list positions are too sparse for

other bedroom sizes. Analyzing new applications between 2010 and 2014 avoids selection issues with

pre-2010 applicants since some pre-2010 applicants were no longer on the waiting list at the beginning

21To reduce waiting time uncertainty, CHA merged four small waiting lists with larger lists in 2013. As a result, an applicant’s initial
choice set depended on its application date.
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of the sample period. These restrictions produce a sample of 1,752 applicants. 26 of these applicants

selected more than three developments; omitting them leaves 1,726 applicants for structural estimation.

A.2 American Community Survey

The American Community Survey (ACS) publishes anonymized, household-level micro-data covering

1 percent of the U.S. population each year. The years 2010-2014 form a 5 percent sample of U.S.

households. The survey collects detailed information on each household’s structure, geography, and

economic and demographic characteristics. Data can be downloaded at https://usa.ipums.org/

usa-action/variables/group.

The ACS contains key household-level information that determines whether a household could

have appeared in my applicant sample, which contains applicants with priority for 2 and 3 bedroom

apartments in Cambridge Family Public Housing. I begin with the universe of ACS households living in

the state of Massachusetts. I then determine whether each household lived or worked in Cambridge.22

Cambridge has its own city code since its population is greater than 100,000. The CITY field identifies

whether each household lives in Cambridge, and place of work for each working household member

comes from the PWPUMA00 field. To determine a household’s bedroom size, I apply the rule used

by the CHA based on the age and gender of each member and their relation to the household head.

I also identify whether households would have been eligible for the Elderly/Disabled or the Family

Public Housing program based on the age of the oldest household member. For households composed

of three or more generations, I created separate households for the elderly members and the younger

members.23 For income eligibility, I divide the household’s total income by the Area Median Income

for their household size and survey year. Other characteristics of eligible ACS households, such as the

race, ethnicity, and gender of the household head, are determined using ACS demographic variables.

22There are tens of thousands of households with veteran status in Massachusetts, so veteran status is not counted to determine
which households would have had priority for Family Public Housing in Cambridge. Only a small number of applicants have veteran
status, and most already live in Cambridge.

23According to the CHA, it is common for family public housing applicants to apply with a two-generation subset of their current
multi-generational household.
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B Estimation Details

B.1 Waiting Time Beliefs

This section provides details of the simulation-based procedure to estimate applicant beliefs using

knowledge of the Cambridge mechanism and waiting list data. Since applicants choose developments

in two stages, select multiple developments in the first stage, and make choices based on new infor-

mation in the second stage, the waiting lists for different developments move interdependently. A

sophisticated applicant will account for the fact that the combination of developments selected in the

first stage will jointly affect the conditions under which they make their final development choice in

the second stage. They will also update their beliefs about continued waiting times given their posi-

tions on all three lists at the final choice stage. This poses a challenge for estimation since data on

realized waiting times given initial choices and final choice states are sparse. A parsimonious model of

dependence across lists may not be realistic or feasible.

I assume that beliefs are consistent with the steady-state distributions that the Cambridge Mechanism

would generate given applicant arrival and departure rates, initial and final choice frequencies, and

empirical vacancy rates. These empirical quantities can be estimated directly from application data.

Combining these estimates with knowledge of the Cambridge Mechanism, I simulate steady state out-

comes which quantify interdependence across lists and the option value of the timing and information

of the final choice stage.

B.1.1 Cambridge Mechanism

Between 2010 and 2014, Cambridge ran its public housing waiting lists according to the following

algorithm. Calendar time is indexed t = 1, ..., T . Waiting lists are indexed by j = 1, ..., J , where a list

corresponds to a specific bedroom size apartment (2 or 3 bedrooms) in a specific development. Appli-

cants are indexed i = 1, ..., N , vacancies by ν = 1, ..., V . Applicant i has an arrival date ti and a latent

departure date ri, and makes initial choice Ci. Vacancy ν occurs on date tν on list jν . For each list j,

there is a sequence of trigger and batch size policies {(Lj,l,Kj,l)}Ll=1 for sending final choice letters. If

fewer than Lj,l applicants on list j have made a final choice, Cambridge sends final choice letters to the

next Kj,l applicants on list j who have not yet made a final choice. The pair (Lj,l+1,Kj,l+1) become

the next trigger and batch policy for list j. xij is applicant i’s list j position in its final choice letter,

computed as the total number of applicants on list j with an earlier application date on the date the

letter is sent. Finally, the coefficients for the final choice model are (β, {ξj}Jj=1).
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The Cambridge mechanism proceeds as follows. The simulation begins at t = 0 with empty lists, no

vacant units, and an initial trigger and batch policy (Lj,1,Kj,1) for each list. The following occurs in

each period t:

(i) Each applicant i with arrival date ti = t is added to the lists in its initial choice set (j ∈ Ci).

(ii) Each vacancy ν with tν = t is offered to the first applicant on list jν who has made a final choice.

Applicant i is housed in jν and removed from the waiting list. If no applicants are available, the

vacancy is pushed to next period (tν is moved to tν + 1).

(iii) For each list j, if the number of applicants who are on list j and have made their final choice is

less than the current trigger Lj,k, the following steps occur:

(a) Cambridge sends final choice letters to the first Kj,k applicants on list j who have not made

their final choice.

(b) Applicant i responds to the final choice letter if ri ≥ t

(c) If i responds, it chooses list j with probability

exp(βxij + ξj)∑
m∈Ci exp(βxim + ξm)

(d) If i does not respond, it is removed from all lists m ∈ Ci
(e) The next trigger and batch policy, (Lj,k+1,Kj,k+1), is drawn for next period

Otherwise, (Lj,l,Kj,l) is held for the next period.

(iv) Each applicant with ti = t who has already made its final choice is removed from the list.

B.1.2 Inputs to Simulation

Simulation of the Cambridge Mechanism requires a sequence of applicant arrival dates ti and the initial

choice Ci and departure date ri of each arrival; a sequence of apartment vacancies with dates tν on

list jν ; and a sequence of batch and trigger policies {Lj,k,Kj,k}Kk=1 for each list j. I assume that all

sequences are drawn independently and make the following parametric assumptions:

• Applicants arrive at a poisson rate α

• Each applicant departs immediately with a non-zero probability a1 and at exponential rate a2

after.

• Applicant choices are drawn uniformly from the empirical distribution in the Cambridge dataset

• Vacancies on each list occur at poisson rate vj = 0.1 ∗ Sj, where Sj is the number of units

corresponding to list j. The sequences occur independently across developments and bedroom

sizes.
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• The sequence of trigger and batch policies is drawn with uniform probability from its empirical

distribution in the Cambridge dataset.

• Final choice probabilities are determined by Specification (3) in Table 4, in which the latent utility

of each option depends on list position and a development fixed effect.

Given these primitives, I draw inputs for a 500 year simulation and run the Cambridge mechanism.

Waiting times converged after about 10 years. I used the last 490 years of the simulation to construct

beliefs.

B.1.3 Constructing Belief Objects

The simulation produces the state of all Cambridge waiting lists every day for 490 years. To estimate

the relevant distributions governing beliefs, I consider what would have happened to an additional

applicant arriving on each simulation date, for each sequence of choice the applicant could have made.

To estimate {GC(SC , PC)}C∈C, the distribution of final choice states for each initial choice C, I sample

1000 dates t1, ..., t1000 from the simulation. For every C, I compute the date sC and position vector

pC that an applicant who applied on date ts would have received, for s = 1, ..., 1000. These states –

{(ssC , psC)}s=1,...,1000 – form an empirical measure ĜC .

Constructing beliefs {Fj,C(. | pC)}j,C,pC for continued waiting time at final choice is more complicated.

There are over 1800 possible (j, C) initial and final choice combinations, and for each combination, each

position vector pC induces a different continued waiting time distribution. Even using the simulation

results, there is a limit to how flexibly these distributions can (and should) be estimated. My approach

is to specify a hierarchical parametric model for the continued waiting time distribution. I assume that

continued waiting time follows a beta distribution

Tj | j, C, pC ∼ Beta(αj,C(pC), βj,C(pC))

whose parameters depend flexibly on choices j and C and parametrically on positions pC . For a (j, C)

pair with |C| = 3, the position vector pC enters the beta distribution parameters as

αj,C(pC) = exp{π1p1 + π2 log(p1) + π3 log(p2) + π4 log(p3)}

βj,C(pC) = exp{π5p1 + π6 log(p1) + π7 log(p2) + π8 log(p3)}

where the π parameters are (j, C)-specific. p1 is the position on list j, and p2 and p3 are the other

positions. I found that this parametric specification did a good job fitting the distribution of realized
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waiting times from the simulation. The range of each beta distribution is [0, dmaxTj,Ce].

The hierarchical parameters of each beta distribution are estimated as follows: for computational speed,

I take a 5% sample of application dates from the simulation denoted {td}d=1,...,D. For each initial choice

C, I calculate the position vector an applicant would have received in their final choice letter, as well

as the continued waiting time for each list. From this dataset of position vectors and continued waiting

times {pC,d, tC,d}d=1,...,D, π and the upper bound of the support of the beta distribution for each j ∈ C
are estimated by maximum likelihood.
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B.2 Development Preferences

B.2.1 Distribution of Flow Payoffs

For household i, the difference in flow payoffs between living in public housing development j and the

outside option is given by

vij − vi0 = δj + φ1 log yi − φ2 log(yi + ηi) + g(Zi) +
∑
k

Xijkβ
o
k +

∑
m

Xjmνimβ
u
m + εij.

where

ηi
iid∼ TN(0, σ2

η,−yi,∞) νim
iid∼ N(0, 1) εij

iid∼ N(0, 1)

The parameters governing flow payoffs, along with the discount factor, are

θ ≡ {ρ, δ, β, g(.), ση, φ}

B.2.2 Moments

To estimate the parameter vector θ = {ρ, δ, β, g(.), ση}, I match the following sets of moments:

• Application Rates by income and demographics: I currently use the following characteristics

Zi: an indicator equal to 1 for all households; indicators for annual household income in the

ranges of [X,X + 20, 000] for X in $5,000 intervals from $0 to $40,000; indicators for whether the

household head is black and hispanic; and an indicator for whether the household currently lives

in Cambridge. I also match the rate at which all households and households earning $0-$20,000

and $20,000-$40,000 choose three developments in their initial choice.

• Development Shares: There is one moment for the initial and final choice shares of each of the

thirteen developments.

• Covariances between applicant characteristics and characteristics of their initial development

choices. I match the rates at which Cambridge residents select developments in their current

neighborhood of residence. There are separate moments for Central, North, and East Cambridge.

• Means and Variances of chosen development characteristics within and between applicants.

Each of these moments is constructed for development size (# units) and whether the development

is in North, East, or Central Cambridge. For households that do not apply, all moments are zero.

• Means Variances of Chosen Waiting Times within and between applicants, by income and

demographics. The first and second time moments are interacted with income bins for $0-$20,000,

$20,000-40,000, and $40,000+.

• Final Choice Moments are as described in the main text.
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B.2.3 Importance Sampling and Change of Variables

I estimate the parameter vector θ based on moment conditions

E[(mi − E(mi | Zi, θ0)) | Zi] = 0 ,

where θ0 is the true parameter vector, mi contains features of household decisions, and zi are household

characteristics. A standard way to simulate Ê(mi | zi, θ) in my setting would be the following:

(i) For each sampled household i, draw preference shocks {ηis, νims, εis}Ss=1 and realized final choice

states given each possible initial choice.

(ii) At each proposed value of θ, compute vis given zi and the simulation draws . Then calculate

the optimal choice at each stage given preferences (ρ, vis) and beliefs. This requires solving the

two-stage choice problem for each simulation draw at each proposed value of θ.

(iii) Use choices to construct the conditional expectations

Ê(mi | zi, θ) =
1

S

S∑
s=1

mis

and form moment conditions.

The problem with this procedure is that Step (ii) is computationally expensive. The optimal choice

must be calculated for every simulation draw at each value of the parameter vector θ. In my application,

Step (ii) takes several minutes for a reasonable number of simulation draws. Furthermore, since the

objective function has no analytical gradient, an effective optimization procedure would need to evaluate

the objective function thousands of times.

I use importance sampling and a change of variables proposed by Ackerberg (2009) to avoid repeating

Step (ii) for each value of θ. The key insight is that an applicant’s optimal decision sequence only

depends on (ρ, vi) given a choice environment. This permits a change of variables where instead of

drawing {ηis, νims, εijs}Ss=1, I draw (vis, ηis) from a proposal distribution g(v, η | zi) and compute the

optimal choice for each vis once for each value of ρ. Then, to estimate E(mi | zi, θ), I re-weight the

simulation draws at new parameter vectors θ−ρ:

Ê(mi | zi, θ) =
1

S

S∑
s=1

mis(ρ, vis)
p(vis, ηis | zi, θ−ρ)
g(vis, ηis | zi)

Since the flow payoffs and unknown income are drawn according to g(. | zi), the above formula provides

an unbiased estimate of E(mi | zi, θ). This formulation has two desirable properties. First and most

importantly, once choices mis(ρ, vis) are computed, the objective function can be evaluated quickly at

each parameter vector θ. Second, the objective function is now differentiable in θ−ρ, which improves
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the speed and accuracy of optimization.24 A grid search over ρ minimizes the objective function in a

few hours.

My application satisfies the Constant Support assumption required for this simulation procedure to

yield valid conditional expectation estimates. Each payoff vector has full support on RJ , and unknown

income has full support on [0,∞) for all household characteristics Z and parameter vectors θ.

B.2.4 Simulation Procedure

Constructing the simulated moments involves the following steps:

1. For each eligible household i, draw S flow payoffs {vis, ηis}Ss=1 from proposal distribution g(. | zi)

2. Compute the optimal initial choice Cis for each simulation draw given vis, waiting time beliefs,

and discount factor ρ.

3. Draw the following objects pertaining to the final choice stage:

• The date and position information of final selection (sis, pis), drawn from the distribution

GCis(SCis , PCis)

• Whether the simulated applicant makes a final choice. To determine this, I compute the

probability that a household would survive until date sis. Each simulation draw makes a final

choice with this probability.

4. If the simulation draw makes a final choice, the choice is computed given (ρ, vis) and the continued

waiting time distributions Fj,Cis(Tj | pis) for j ∈ Cis.

This procedure is repeated for each candidate value of ρ. Since initial choices may change as ρ changes,

I must draw final choice states and response indicators for each value of ρ, which will determine whether

each simulation draw makes a final choice and, if it does, which development is chosen. To minimize

simulation error, for each simulation draw I draw one final choice state for each possible initial choice

and hold those draws fixed across values of ρ. This way, if a simulation draw vis makes the same initial

choice for two different discount factors, it will make its final choice under the same conditions (and

will have the same response indicator).

It is worth emphasizing that the flow payoffs {vis} are only drawn once. Then, initial and final choices

are computed once for each value of the discount factor. These choices yield choice features m(ρ, vis, xis)

which do not need to be re-calculated. I will often use mis for convenience, keeping in mind that choice

features may depend not only on preferences but also on the conditions under which the final choice is

made.
24Evaluating the objective function and computing the gradient takes about two seconds for S = 20, and minimizing the objective

function for one value of ρ takes between 5 and 15 minutes.
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B.2.5 Objective Function and Optimization

Because the moments used in estimation are highly correlated, the optimal weight matrix performed

poorly. The model failed to match moments key for identifying need parameters and the discount factor

such as overall application rates and the mean waiting times of initial development choices. Instead,

I used a diagonal weight matrix with elements inversely proportional to the sampling variance of the

corresponding moment functions. I also placed more weight on moments that are important to match

precisely such as application rates, variances of chosen development characteristics within and between

applicants, and the final choice moments.

The proposal distribution was chosen to broadly fit choice patterns in the data, such as application

rates by group. Large values were chosen for ση ($7,000) and σε (
√

2). Using a proposal distribution

that is moderately dispersed and centered near the estimated distribution limits the variance of the

importance sampling weights, and hence simulation error.

The objective function was minimized using the Knitro optimization package in Matlab. A gradient-

based search over the parameters governing flow payoffs was conducted for a grid of annual discount

factors β ∈ {1, 0.98, 0.96, ..., 0.5}. To limit numerical instability in specifications with several random

coefficients, the variance of each random coefficient was constrained to be less than one million.

B.2.6 Inference

The standard errors in Table 6 account for sampling error in the choices of eligible households and

simulation error in constructing the simulated moments. They do not correct correct for statistical

error in the minimum distance procedure used to estimate the distribution of eligible households, or

for statistical error in the estimated distributions governing applicant beliefs.

The asymptotic variance of the method of simulated moments estimator is

(G′AG)−1G′AΩAG(G′AG)−1

where G = E[∇θgi(θ0)], Ω = E[gi(θ0)gi(θ0)
′], and A is the symmetric positive-definite weight matrix

used in estimation. For a consistent estimate of G, I evaluate the gradient of the moment functions at

θ̂:

Ĝ =
1

N

N∑
i=1

∇θĝi(θ̂)

Variance in the moment functions comes from two components: sampling error in applicant choice
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features mi, and simulation error in Ê[mi | zi, θ]:

Ω = Ωm +
1

S
Ωs

The empirical variance of the moment functions evaluated at θ̂ provides a consistent estimate of Ωm:

Ω̂m =
1

N

N∑
i=1

ĝi(θ̂)ĝi(θ̂)
′

Ωs can be estimated consistently by

Ω̂s =
1

N

N∑
i=1

1

S − 1

S∑
s=1

(mis(θ̂)− m̂i(θ̂))(mis(θ̂)− m̂i(θ̂))
′

where

mis(θ̂) = m(vis, ρ̂)
p(vis | zi, θ̂)
g(vis | zi)

⊗ h(zi) m̂i(θ̂) =
1

S

S∑
s=1

mis(θ̂)

The variance estimate is

(Ĝ′AĜ)−1Ĝ′A

(
Ω̂m +

1

S
Ω̂s

)
AĜ(Ĝ′AĜ)−1
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C Counterfactuals: Computational Details

To compute counterfactual equilibria, I drew one sequence of applicant arrivals along with their de-

parture dates, characteristics, and payoffs, and one sequence of apartment vacancies. For the arrival

sequence, I first drew a sequence of characteristics of potential applicants from the distribution esti-

mated in Section 5.1, and then drew flow payoffs given those characteristics using the estimates from

Specification (1) of the structural model. Apartments vacancies and exogenous departure dates are

drawn from the distributions estimated in Section 5.2.

These sequences are used to compute counterfactual allocations under all mechanisms. In computing

features of the equilibrium and allocation, the first 10 years were discarded to allow the waiting list

to approach steady state. All applicants were eligible for all 13 public housing developments, and all

waiting lists remained open during the entire simulation. This abstracts from temporary list closures

(which are common in practice) in order to characterize the long-run effects of these mechanisms in

steady state.

To compute equilibria of lottery mechanisms allowing choice, I searched for a fixed point between

applicants’ choices and the implied weights {wCj (ψϕ(yi))}j=1,...,J
C∈Cϕ . The algorithm worked as follows.

Iteration q begins with a vector of proposed weights w(q). The following steps then occur:

1. Each applicant’s optimal choice is calculated when the applicant believes offer rates are given by

w(q).

2. The waiting list is run, yielding predicted weights w(q)′ with distance D(q) = ‖w(q)′ − w(q)‖

3. Weights are updated as a convex combination of the proposed and implied weights:

w(q+1) = λ(q)w(q)′ + (1− λ(q))w(q) .

The factor λ determines how aggressively the offer rates are updated. If λ = 1, then the rates implied

by applicant choices (r(q)
′
) are taken as the new proposal. If λ = 0, the rates are not updated at all. I

began with λ(0) = 1 and lowered it by 50% each time the Euclidean distance between the proposed and

implied offer rates was higher than in the previous iteration (D(q+1) > D(q)). This algorithm converged

quickly, requiring no more than 50 iterations before implied offer rates were less than 0.1% different

than proposed rates in every mechanism.

For the Cambridge Mechanism, I did not recompute the equilibrium. Finding a fixed point of

choices and implied waiting time distributions in the two-stage development choice problem would

have required re-estimating the full waiting time model every iteration, which was computationally

prohibitive. Instead, I use the fact that the waiting time model used in estimation was generated by the

Cambridge Mechanism to justify simulating outcomes in the Cambridge Mechanism when applicants
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have the beliefs used in estimation. This can be viewed as an approximation to the long-run equilibrium;

given preference estimates, the actual equilibrium may differ if there was misspecification or estimation

error in either the waiting time or development choice models.

In the full-information allocations, the social planner uses a greedy algorithm to house applicants

from the waiting list. When maximizing equivalent variation from assignments, the planner assigns

each vacancy to the applicant with the highest value currently on the waiting list. This is not the

strictly optimal policy because each applicant has different values for each development; it may be

better to save the highest-value applicant for later and house a lower-value one. Nevertheless, it is still

a useful benchmark. The targeting-maximizing allocation also uses a greedy algorithm, assigning each

vacancy to the applicant with the worst outside option who is willing to accept the unit.
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Figure 7: Comparison of cost-adjusted welfare gains produced by development choice systems used in practice,
with priority for households with income below 30% AMI. Welfare gains are normalized by the value for Equal
Priority, Choose One.
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Figure 8: Comparison of welfare gains produced by development choice and priority systems used in practice.
Welfare gains are not adjusted for cost, and are normalized by the gains from Equal Priority, Choose One.
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