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Abstract

Inference procedures for noncausal autoregressive (AR) models have been well studied and applied
in a variety of applications from environmental to financial. For such processes, the observations
of time t may depend on both past and future shocks in the system. In this paper, we consider
extension of the univariate noncausal AR models to the vector AR (VAR) case. The extension
presents several interesting challenges since even a first-order VAR can possess both causal and
noncausal components. Assuming a non-Gaussian distribution for the noise, we show how to
compute an approximation to the likelihood function. Under suitable conditions, it is shown that
the maximum likelihood estimator (MLE) of the vector of AR parameters is asymptotically normal.
The estimation procedure is illustrated with a simulation study for a VAR(1) process and with two
real data examples.
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1 Introduction

An autoregressive process of order p (or AR(p)) is perhaps the best known and most studied process
in time series analysis. In the univariate case, such a process is defined through the recursions

Xt − φ1Xt−1 − · · · − φpXt−p = Zt,(1)

where {Zt} is an independent and identically distributed (iid) sequence of random variables with
mean zero, variance σ2. It is typically assumed that the AR(p) process is causal which is equivalent
to

φ(z) = 1− φ1z − φ2z
2 − · · · − φpz

p 6= 0,(2)

for all z ∈ C such that |z| ≤ 1. In such cases, the solution {Xt} to (1) exists and Xt can be expressed
as a function of only the present and past of the noise process, Zt, Zt−1, . . ., i.e., Xt =

∑∞
j=0 ψjZt−j

for some sequence of constants {ψj}. The solution is said to be noncausal if φ(z) has any roots
inside the unit circle. In particular, Xt is purely noncausal if all the roots of φ(z) are inside the
unit circle; in this case, Xt is a function of only the future of the noise process, Zt+1, Zt+2, . . ..
Finally, if φ(z) has roots both inside and outside the unit circle, we will say that Xt is mixed in
the sense that Xt can be expressed as a two-sided infinite moving average of the noise process.

It should be noted that if {Xt} is noncausal, then there exists a causal version of {Xt}, i.e.,
φ̃(B)Xt = Z̃t where B is the backward shift operator, φ̃(z) satisfies the causal condition 2, and {Zt}
uncorrelated with mean 0 and variance σ̃2. However, {Z̃t} is only independent in the Gaussian
case. Thus in estimating the AR parameters using the Gaussian likelihood, one needs to assume
causality to ensure identifiability of the parameters. Hence, Gaussian or any estimation method
based on second order properties of the process cannot be used for noncausal modeling. In the
non-Gaussian case, causal and noncausal models are identifiable (see [3]). [4] studied the inference
of MLE’s for noncausal AR processes using the Laplace likelihood. They provided a general method
for analyzing univariate noncausal AR processes. They started by reparameterizing the original
parameters. They expressed the AR polynomial φ(z) as a product of a causal component and a
purely noncausal component. Namely,

φ(z) = φc(z)φn(z) = (1− θ1z − · · · − θrz
r)(1− θr+1z − · · · − θpz

s),(3)

where r + s = p, φc(z) 6= 0 for |z| ≤ 1, and φn(z) 6= 0 for |z| ≥ 1. Then they showed that the
score function of the new set of parameters {θ1, . . . , θp} is asymptotically normal and provided
the explicit form of the Fisher information of the score. Finally the asymptotic distribution of
the original parameters {φ1, . . . , φp} were derived based on the distribution of the score. [10]
analyzed the noncausal AR in a similar way as in [4], although they had a slightly different model
specification. They assumed φ(z) has the form

φ(z) = ϕ(z−1)φc(z) = (1− ϕ1z
−1 − · · · − ϕsz

−s)(1− ψ1z − · · · − ψrz
r),(4)

where ϕ(z) 6= 0 and φc(z) 6= 0 for |z| ≤ 1. Furthermore, they considered a general class of
distributions for the noise process, which includes the univariate Laplace and t distributions.

When it comes to noncausal multivariate AR models, only a few references can be found in the
statistical literature. This may be due in part to the complicated nature of causality constraints
in the multivariate case. For example, a VAR(1) model can have both causal and noncausal
components. [11] tried to extend their ideas (4) to the multivariate case by assuming the AR
process has a representation given by

Π(B)Φ(B−1)Xt = Zt,(5)
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where Xt := (Xt,1, . . . , Xt,m)T is an m-dimensional stochastic process, Zt := (Zt,1, . . . , Zt,m)T is
an iid sequence of continuous random vectors with mean 0 and covariance matrix Σ∗0, and matrix
polynomials Π(z) = In − Π1z − · · · − Πrz

r and Φ(z) = In − Φ1z − · · · − Φsz
s, satisfy conditions

detΠ(z) 6= 0 and detΦ(z) 6= 0 for |z| ≤ 1. This is a natural extension of the model Lanne and
Saikkonen used in [10]. However, there are two major issues associated with this model specification.
First, in the vector case, all coefficients are matrices and hence Π(B) and Φ(B−1) may not be
commutative. In other words, one can also fit a model given by Φ̃(B−1)Π̃(B)Xt = Zt to the same
data and obtain completely different coefficients. Second, this model specification only covers a
subset of VAR models. For example, a VAR(p) model in its conventional representation given by

Φ(B)Xt = Xt − Φ1Xt−1 − · · · − ΦpXt−p = Zt,(6)

where {Φ1, . . . ,Φp} can be any arbitrary real matrices as long as detΦ(z) 6= 0 for |z| = 1, does not
always have a representation like (5). For instance, the simple AR(1) model

(
Xt,1

Xt,2

)
=

(
0.8 0.6
0.6 1.7

)(
Xt−1,1

Xt−1,2

)
+

(
Zt,1

Zt,2

)
,(7)

whose AR polynomial has two roots 0.5 and 2, is not included in model (5).
In this paper, we consider the general representation of VAR(p) given in (6) and derive the

asymptotic distributions for the estimates of the original parameters Φi’s directly. We also allow
our VAR models to be either causal, purely noncausal or mixed. In this way, we avoid the noncom-
mutative issue of the matrix multiplication mentioned earlier and are able to deal with situations
like (27).

In the univariate case, noncausal AR models have proven to be useful in a number of applica-
tions. For example, the Wal-Mart stock volume data in [1], the Microsoft stock volume data in [5]
and the U.S. inflation data in [10]. In the multivariate case, [11] fitted noncausal VAR models to
two economic data (US GDP data and US interest rate data) and argued that the noncausal fitting
is more appropriate. While a noncausal AR model may provide a better fit to the data, the lack
of causality could indicate that one needs to consider other exogenous information, such as news,
which may contain “predictive information” that is external from the past observations.

The rest of the paper is organized as follows. Section 2 provides details about mixed VAR(p)
models and includes a state-space representation for such models. This representation is useful
not only in generating realizations of the process but also in deriving the likelihood. We also show
that the nature of noncausality in model fitting can be examined through the impulse response
coefficients. Section 3 establishes the uniqueness of the representation (6) in the non-Gaussian case
using a key theorem from [6]. Section 4 develops the asymptotic theory for the MLE. The results
are similar to those provided in [11]. Section 5 provides methods to do model selection and model
fitting under the non-causality framework. Section 6 gives one simulation example and two real
data examples to further illustrate the results in Section 4. The impulse response analysis is applied
to the examples as well.

2 Model Specification

Consider the m-dimensional stationary process Xt := (Xt,1, . . . , Xt,m)T , t = 1, 2, . . . , n, generated
by (6). The conventional causal VAR models require that detΦ(z) 6= 0, for all z ∈ C, such that
|z| ≤ 1. Then the Xt can be written as

Xt =
∞∑

j=0

ΨjZt−j ,
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where the matrices Ψj are determined uniquely by

Ψ(z) :=
∞∑

j=0

Ψjz
j = Φ−1(z).

Here we drop the causality assumption and allow detΦ(z) to have roots inside the unit circle.
Without loss of generality, assume that detΦ(z) has l roots outside the unit circle (the causal
roots) and pm− l roots inside the unit circle (the noncausal roots). However, it is not clear how to
generate such a stationary process if we allow some of the roots to be noncausal. One possibility
is to use the state-space representation to first transform a VAR(p) process to a VAR(1) process.
Define two new processes Yt and Z∗t given by

Yt =




Xt

Xt−1
...
Xt−p+1




pm×1

and

Z∗t =




Zt

0
...
0




pm×1

.

It is well-known that Yt has an VAR(1) representation given by

(8) Yt = ΦY Yt−1 + Z∗t ,

where

ΦY =




Φ1 Φ2 · · · · · · Φp

Im Om · · · · · · Om

Om Im
. . .

...
...

. . . . . .
...

Om Om · · · Im Om




pm×pm

,

and Om is the m ×m matrix of zeros. An immediate advantage of using (8) is that the roots of
detΦ(z) are now reciprocals of the eigenvalues of the matrix ΦY (see also [13]). Hence, the causal
roots of the AR polynomial correspond to the eigenvalues of ΦY that are inside the unit circle and
the noncausal roots correspond to those that are outside the unit circle. Notice that the matrix ΦY

can be further decomposed into its Jordan canonical form, i.e., there exists an invertible pm× pm
matrix A such that

ΦY A = AJ = A
(

J1

J2

)
,
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where J is given by



λ1

s1
. . .
. . . . . .

sl−1 λl

0 λl+1

sl+1
. . .
. . . . . .

spm−1 λpm




and |λ1| ≤ |λ2| ≤ · · · ≤ |λl| < 1 < |λl+1| ≤ · · · ≤ |λpm|. The sub diagonal elements {si} are either
0 or 1. Then from (8), we get

(I− JB)A−1Yt := (I− JB)Ỹt(9)
= A−1Z∗t := Z̃t.

Notice that Z̃t is still a sequence of iid noise. The factors Ỹt and Z̃t can also be further partitioned
according to J. That is Ỹt = (ỸT

t,1, Ỹ
T
t,2)

T and Z̃t = (Z̃T
t,1, Z̃

T
t,2)

T , where Ỹt,1 = (Ỹt,1, . . . , Ỹt,l)T ,
Ỹt,2 = (Ỹt,l+1, . . . , Ỹt,pm)T , Z̃t,1 = (Z̃t,1, . . . , Z̃t,l)T and Z̃t,2 = (Z̃t,l+1, . . . , Z̃t,pm)T . From (10), we
obtain,

{
Ỹt,1 − J1Ỹt−1,1 = Z̃t,1

Ỹt,2 − J2Ỹt−1,2 = Z̃t,2

,(10)

which implies that Ỹt,1 is a purely causal process and Ỹt,2 is a purely non-causal process. Therefore,
in order to generate the Xt process, one can first generate Zt and transform Zt to Z̃t; use the
standard forward (backward) method to generate Ỹt,1 (Ỹt,2); and finally, transform Ỹt back to Xt.
From (10), Ỹt,1 and Ỹt,2 can also be represented as infinite moving averages, i.e.,

{
Ỹt,1 =

∑∞
i=0 Ji

1Z̃t−i,1

Ỹt,2 = −∑∞
i=1 J−i

2 Z̃t+i,2

.

This representation also leads to the representation of Yt which is given by

Yt =
∞∑

i=−∞
AFiA−1Z∗t−i,(11)

where

Fi =





(
Ji

1

Opm−l

)
, i ≥ 0,

(
Ol

−Ji
2

)
, i ≤ −1.

Denote the upper-left m ×m sub-matrix of AFiA−1 by Mi, then the original time series Xt can
be written as

(12) Xt =
∞∑

i=−∞
MiZt−i.
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Because of the special structure of Fi, the coefficient matrices Mi decay to zero at a geometric rate
as i → ±∞. It can also be shown that (12) is the unique stationary solution of Xt specified by
model (6).

It should be noted that these matrix coefficients Mi’s in (12) are often referred to as the impulse
response coefficients of this linear filter. If the covariance matrix Σ∗0 of Zt is not diagonal, then it
is common to apply a transformation, so that the noise becomes uncorrelated. A popular choice
of such transformations comes from the Cholesky decomposition. Let PL be a lower triangular
matrix such that Σ∗0 = PLP ′

L. Then {MiPL; i = · · · ,−1, 0, 1, · · · } are the new impulse response
coefficients for a new sequence of noise {P−1

L Zt}. For instance, assuming we have a model given
in (27) and the covariance matrix of Zt is diagonal, the impulse response coefficients of model (27)
are plotted in Figure 1. If the linear filter were causal, the impulse response coefficients of the filter
would be zero for all negative lags. But, as shown in Figure 1, the four curves are non-zero for
t < 0 and this implies noncausality. It is also interesting to see that for this particular model, if
there is a shock Z0 = (−1, 1/2)′ at time 0 and other noise terms are 0, the response Xt will be zero
for t < 0. In other words, we would not anticipate this special kind of shocks before time 0. On the
other hand, if a large shock is not proportional to (−1, 1/2)′ at time 0, the response is essentially
non-zero for t < 0 and thus we would anticipate the shock before time 0.
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Figure 1: Impulse response coefficients of model (27).
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3 Identifiability Issues

A practical complication with noncausal AR models is the non-identifiability issue under the Gaus-
sian likelihood. To see this, note that the spectral density matrix of the process Xt defined by (6)
is given by

f(ω) =
1
2π

Φ
(
eiω

)−1
Var(Zt)

(
Φ

(
e−iω

)−1
)T

=
1
2π

[
Φ

(
e−iω

)T Σ∗−1
0 Φ

(
eiω

)]−1
.(13)

In the expression (13) above, the matrix in the square brackets is 2π times the spectral density
matrix of a vector MA(p) process. Furthermore, a slight modification of Theorem 10’ of [9] leads
to the representation

Φ
(
e−iω

)T Σ∗−1
0 Φ

(
eiω

)

=




p∑

j=0

Aje
−ijω




T 


p∑

j=0

Aje
ijω


 ,

where the m×m matricesA0, . . . ,Ap are real withA0 positive definite, and the zeros of det
(∑p

j=0Ajz
j
)

lie outside the unique disc. This implies the spectral density matrix of Xt has the representation

f(ω) =
1
2π




p∑

j=0

Aje
ijω



−1 


p∑

j=0

AT
j e−ijω



−1

,

which is the spectral density matrix of a causal vector AR(p) process.
The preceding discussion means that, under the Gaussian niose assumption where the distri-

bution of Xt is purely determined by the second order properties, one cannot distinguish between
a noncausal VAR process and a causal VAR process. Therefore, under the noncausal vector AR
framework, one has to consider non-Gaussianity for the innovation. The identifiability under non-
Gaussian errors can be established by Theorem 1 from [6]. We modify their theorem slightly to
adapt to our setup and state it as a lemma below.

Lemma 3.1. Let X and X̃ be two non-Gaussian m-dimensional linear processes defined by

Xt =
∞∑

j=−∞
CjZt−j , t = · · · ,−1, 0, 1, · · · ,

X̃t =
∞∑

j=−∞
C̃jZ̃t−j , t = · · · ,−1, 0, 1, · · · ,

where the coefficients Cj and C̃j are assumed to be square-summable, and the innovations {Zt}
and {Z̃t} are m-dimensional iid sequences. Then the processes {Xt} and {X̃t} are equivalent in
distribution if and only if there exist an integer q and a matrix H such that, for all t,

(14) Z̃t−q
d= HZt and Ct−q = C̃tH,

under the following two conditions:
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(1) The innovation sequence Zt admits an invertible BK for some K with an r ≥ 3, where K =
(k3, k4, . . . , kr) is a multi-index, 1 ≤ ki ≤ m for all 3 ≤ i ≤ r, and the matrix BK is the m×m
matrix where the (i, j)th entry of BK is the cumulant αijK = cum(Zt,i, Zt,j , Zt,k3 , . . . , Zt,kr),
where Zt,l means the l-th component of Zt.

(2) Any two linear combinations of Zt with non-zero coefficients must be stochastically dependent.

Remark 3.2. For the definition of cumulants, see Jammalamadaka, Rao and Terdik (2004).

Remark 3.3. The above lemma essentially points out an important fact that, under some regularity
conditions on the distribution of the innovation, then the linear representation of the non-Gaussian
process is unique aside from changes in scale and shifts in the time origin of the innovation series.

Remark 3.4. Chan and Ho (2004) argued that the two conditions of the innovation process are
rather mild and are satisfied by many distributions, including the multivariate t-distribution.

4 Asymptotic Theory

4.1 Approximate Likelihood

The discussion from Section 3 demonstrates that the only meaningful application of non-causal
VAR models requires that the distribution of Zt to be non-Gaussian. On the other hand, when the
innovation process satisfies the conditions of Lemma 3.1, then the coefficient matrices in the VAR
model are identifiable everywhere. Here, we adopt the assumptions made by Lanne and Saikkonen
in [11]. Suppose Zt follows some elliptical distribution, which has a density of the form

(15) fΣ(z;ν) = det(Σ)−1/2f(zT Σ−1z;ν).

As shown in [8], Zt also has the representation,

(16) Zt
d= Σ1/2εt

d= ρtΣ1/2vt,

where (ρt,vt) is an iid sequence such that ρt (scalar) and vt (m × 1) are independent, ρt is non-
negative, and vt is uniformly distributed on the unit ball (i.e., vT

t vt = 1). The vector ν (d × 1)
and the matrix Σ (m×m), which is assumed to be symmetric and positive definite, are parameters
associated with the distribution of Zt. Specifically, since E(vt) = 0 and Var(vt) = m−1Im, one
obtains from (16) that

(17) Var(Zt) =
E(ρ2

t )
m

Σ.

A convenient feature of elliptical distributions is that we can often work with the scalar random
variable ρt instead of the random vector Zt. As stated in [8] and [11], the density function of ρ2

t

denoted by φρ2(·;ν) is related to the function f(·;ν) in (15) via

ϕρ2(ζ;ν) =
πm/2

Γ(m/2)
ζm/2−1f(ζ;ν), ζ ≥ 0,

where Γ(·) is the gamma function. Similar notation as in [11] is used in this paper. For example
f ′(ζ;ν) is used to signify the partial derivative ∂f(ζ;ν)/∂ζ and f ′′(ζ;ν) is the second derivative
of f with respect to ζ. The following assumptions are imposed (see also [11], [4]) for a function
f(ζ;ν) in order to ensure the validity of the asymptotic theory.
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Assumptions:

A.1. The parameter space of ν, denoted by Λ, is an open subset of Rd and that of the parameter
matrix Σ is the set of symmetric positive definite m×m matrices.

A.2. The function f(ζ;ν) is positive and twice continuously differentiable on
(0,∞)×Λ. Furthermore, for all ν ∈ Λ, limζ→∞ ζm/2f(ζ;ν) = 0, and a finite and non-negative
right limit limζ→0+ f(ζ;ν) exists.

A.3.
∫∞
0 ζm/2−1f ′(ζ;ν0)dζ < ∞, limζ→∞ ζm/2+1f ′(ζ;ν0) = 0, and a finite right limit limζ→0+ f ′(ζ;ν0)

exists.

A.4. For all ν ∈ Λ, ∫ ∞

0
ζm/2+1f(ζ;ν)dζ < ∞

and ∫ ∞

0
ζm/2(1 + ζ)

(f ′(ζ;ν))2

f(ζ;ν)
dζ < ∞.

A.5. There exists a function f1(ζ) such that
∫∞
0 ζm/2−1f1(ζ)dζ < ∞ and in some neighborhood of

λ0, ||∂f(ζ;ν)/∂ν|| ≤ f1(ζ) for all ζ ≥ 0, where || · || is the maximum normal of a vector or a
matrix. Moreover, ∣∣∣∣∣

∣∣∣∣∣
∫ ∞

0

ζm/2−1

f(ζ;ν0)
∂2f(ζ;ν0)

∂ν∂νT
dζ

∣∣∣∣∣

∣∣∣∣∣ < ∞,

for all ζ ≥ 0.

A.6. There exists a function f2(ζ) such that
∫∞
0 ζm/2−1f1(ζ)dζ < ∞ and in some neighborhood of

ν0, ζ||∂f ′(ζ;ν)/∂ν|| ≤ f2(ζ) and ||∂2f(ζ;ν)/∂ν∂νT || ≤ f2(ζ) for all ζ ≥ 0.

A.7. For all ζ ≥ 0 and all ν in some neighborhood of ν0, the functions
(

f ′(ζ;ν)
f(ζ;ν)

)2

,

∣∣∣∣
f ′′(ζ;ν)
f(ζ;ν)

∣∣∣∣ ,
1

f2(ζ;ν)

∣∣∣∣
∣∣∣∣

∂

∂ν
f(ζ;ν)

∣∣∣∣
∣∣∣∣
2

,
1

f(ζ;ν)

∣∣∣∣
∣∣∣∣

∂

∂ν
f ′(ζ;ν)

∣∣∣∣
∣∣∣∣

and
1

f(ζ;ν)

∣∣∣∣
∣∣∣∣

∂2

∂ν∂νT
f(ζ;ν)

∣∣∣∣
∣∣∣∣

are dominated by a1 + a2ζ
a3 with a1, a2 and a3 being nonnegative constants and∫∞

0 ζm/2+1+a3f(ζ;ν)dζ < ∞.

Remark 4.1. All the assumptions above are given in [11]. As they pointed out, these assumptions
also have a connection to the assumptions used in the analysis of univariate non-Gaussian noncausal
AR processes, see also [2] and [4].
Remark 4.2. The first condition in A.4 implies E(ρ4

t ) is finite, and the second condition guarantees
finiteness of some expectations needed in the subsequent developments (the information matrix of
the score). More specifically, the second condition implies

E

[
ρ2

t

(
f ′(ρ2

t ;ν)
f(ρ2

t ;ν)

)2
]

=
πm/2

Γ(m/2)

∫ ∞

0
ζm/2 (f ′(ζ;ν))2

f(ζ;ν)
dζ < ∞;

E

[
ρ4

t

(
f ′(ρ2

t ;ν)
f(ρ2

t ;ν)

)2
]

=
πm/2

Γ(m/2)

∫ ∞

0
ζm/2+1 (f ′(ζ;ν))2

f(ζ;ν)
dζ < ∞.
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Remark 4.3. Assumptions A.5 and A.6 impose standard dominance conditions for f(·) and f ′(·)
which guarantee the interchangeability of limit operations and ensures the score vector and the
information matrix corresponding to ν behave in a desired fashion.

Remark 4.4. Assumption A.7 gives dominance conditions needed to establish the asymptotic nor-
mality of the MLE’s of the parameters.

From (10), it’s easy to see that




Ỹp,1

Z̃p+1,1
...

Z̃n,1


 =




Ipm

−J1 Ipm

. . . . . .
−J1 Ipm







Ỹp,1

Ỹp+1,1
...

Ỹn,1


 = T1




Ỹp,1

Ỹp+1,1
...

Ỹn,1


 ,

and



Ỹp,2

Ỹp+1,2
...

Ỹn,2


 =




−J−1
2 · · · · · · −J−(n−1)

2
. . .

...
−J−1

2 −J−1
2

Ipm







Z̃p+1,2
...

Z̃n,2

Ỹn,2


 = T−1

2




Z̃p+1,2
...

Z̃n,2

Ỹn,2


 .

Therefore, we have the relationship

P1




Ỹp,1

Z̃p+1
...

Z̃n

Ỹn,2




=




Ỹp,1

Z̃p+1,1
...

Z̃n,1

Z̃p+1,2
...

Z̃n,2

Ỹn,2




=
(

T1

T2

)




Ỹp,1

Ỹp+1,1
...

Ỹn,1

Ỹp,2
...

Ỹn−1,2

Ỹn,2




=
(

T1

T2

)
P2




Ỹp

Ỹp+1
...

Ỹn


 ,
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where P1 and P2 are permutation matrices with determinant 1. From (10), the likelihood of the
observed time series {Xt} can be written as

L(X1, . . . ,Xn)
= L(Yp,Yp+1, . . . ,Yn)

= L(Ỹp, Ỹp+1, . . . , Ỹn)|det(A)|−(n−p+1)

= p1(Ỹp,1)p2(Ỹn,2)|det(A)|−(n−p+1)
n∏

i=p+1

p(Z̃i) · |det(T1)| · |det(T2)|

= p1(Ỹp,1)p2(Ỹn,2)|det(A)|−(n−p+1)
n∏

i=p+1

p(Z̃i) · |det(J2)|n−p

= p1(Ỹp,1)p2(Ỹn,2) · |det(A)|−(n−p+1) ·
n∏

i=p+1

(fΣ(Zi;λ) · |det(A)|) · |det(J2)|n−p

= p1(Ỹp,1)p2(Ỹn,2) · |det(A)|−1
n∏

i=p+1

(fΣ(Zi;λ) · |det(J2)|) ,(18)

where p1(·), p2(·), and p(·) are density functions of Ỹp,1, Ỹn,2 and {Z̃i}, respectively. The third
equality follows from the facts that the Z̃i’s are independent, Ỹp,1 only depends on {Z̃−∞, . . . , Z̃p}
and Ỹn,2 only depends on {Z̃n+1, . . . , Z̃∞}. It is easy to see that the first part of the above
formula, p1(Ỹp,1)p2(Ỹn,2) · | det(A)|−1, remains bounded in probability and hence plays little role
in the asymptotics. This suggests approximating the joint density of {X1, . . . ,Xn} by the second
term in (18), namely

∏n
i=p+1 (fΣ(Zi;λ) · |det(J2)|).

Some matrix notation is adopted from [11] in the following discussion. By vec(A) we denote a
column vector obtained by stacking the columns of the matrix A one below another. If A is a square
matrix then vech(A) is a column vector obtained by stacking the columns of A from the principal
diagonal downwards (including elements on the diagonal), and A ⊗ B is used for the Kronecker
product of the matrices A and B. The ml ×ml commutation matrix and the m2 ×m(m + 1)/2
duplication matrix are denoted by Kml and Dm, respectively. Both of them are of full column rank.
The former is defined by the relation Kmlvec(A) = vec(AT ), where A is any m× l matrix, and the
latter by the relation vec(B) = Dmvech(B), where B is any symmetric m×m matrix.

In stacking the parameters into a vector, define

φ =




φ1

φ2
...

φpm2


 =




vec(Φ1)
vec(Φ2)

...
vec(Φp)




and

σ = vech(Σ).

Let θ be the parameter vector that contains all the unknown parameters, namely

(19) θ =




φ
σ
ν


 .
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It is also clear that |det(J2)| is a function of φ only. In fact, |det(J2)| =
|λl+1 · · ·λpm|, which is a product of all eigenvalues of ΦY that are outside the unit circle. Thus,
κ(φ) is used in the following discussion to represent log |det(J2)|.

4.2 Limiting Distribution of MLE

In this section, we discuss the asymptotic properties of the MLE’s of the parameters. First let l̃n(θ)
and ln(θ) be the complete and approximate log-likelihood of the time series {Xt}, i.e.,

l̃n(θ) = log(L(X1, . . . ,Xn))(20)

= log(p1(Ỹp,1)p2(Ỹn,2) · |det(A)|−1) +
n∑

i=p+1

(log fΣ(Zi(φ);ν) + κ(φ))

= log(p1(Ỹp,1)p2(Ỹn,2) · |det(A)|−1)

+
n∑

i=p+1

(−1/2 log det(Σ) + log f(ZT
i (φ)Σ−1Zi(φ);ν) + κ(φ)

)
,

ln(θ) =
n∑

i=p+1

(−1/2 log det(Σ) + log f(ZT
i (φ)Σ−1Zi(φ);ν) + κ(φ)

)
(21)

:=
n∑

i=p+1

gi(θ),

where Zt(φ) is defined through recursions Zt(φ) = Xt−Φ1Xt−1−· · ·−ΦpXt−p. Let θ0, φ0, σ0 and
ν0 be the true values of the parameters θ, φ, σ and ν. Therefore, Zi(φ0) = Zi. We first consider
the distribution of the score vector evaluated at the true value, i.e., ∂ln(θ0)/∂θ. For convenience,
also define

h(ζ; ν) =
f ′(ζ;ν)
f(ζ;ν)

and

ei(θ) = h(ZT
i (φ)Σ−1Zi(φ);ν)Σ−1/2Zi(φ).(22)

The first and second derivatives of the function gi(θ) can be computed analytically and are
presented in the appendix. We will then show in the following theorem that the score vector of the
approximate likelihood evaluated at the true value, i.e.,

∂ln(θ0)
∂θ

=
n∑

i=p+1

∂gi(θ0)
∂θ

=




∑n
i=p+1 ∂gi(θ0)/∂φ∑n
i=p+1 ∂gi(θ0)/∂σ∑n
i=p+1 ∂gi(θ0)/∂ν


 ,(23)

has a normal limit.

Theorem 4.5. Suppose that Assumptions A.1-A.6 hold and that Zt is non-Gaussian. Then,

1√
n− p

∂ln(θ0)
∂θ

=
1√

n− p

n∑

i=p+1

∂gi(θ0)
∂θ

d→ N(0, Iθθ(θ0)),(24)
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where the matrix Iθθ(θ0) is given by

(25) −E




∂2gp+1(θ0)

∂φ∂φT

∂2gp+1(θ0)
∂φ∂σT

∂2gp+1(θ0)
∂φ∂νT

∂2gp+1(θ0)

∂σ∂φT

∂2gp+1(θ0)
∂σ∂σT

∂2gp+1(θ0)
∂σ∂νT

∂2gp+1(θ0)

∂ν∂φT

∂2gp+1(θ0)
∂ν∂σT

∂2gp+1(θ0)
∂ν∂νT


 .

Further assume,

−E

(
∂2gp+1(θ0)

∂σ∂σT

∂2gp+1(θ0)
∂σ∂νT

∂2gp+1(θ0)
∂ν∂σT

∂2gp+1(θ0)
∂ν∂νT

)

is positive definite, then Iθθ(θ0) is positive definite.

The proof of the theorem is given in Appendix B.

Remark 4.6. Most previous studies (for example, [4] and [11]) about noncausal AR processes proved
(33) and (34) in a more indirect fashion. Our proof showed that these properties of the approximate
likelihood should follow naturally from those of the complete likelihood.

Next we argue that there there exists a sequence of solutions, θ̂n, to the likelihood equations,

∂ln(θ)
∂θ

= 0,

with ln(θ) given in (21), which is consistent and asymptotically efficient in the sense that

√
n− p · (θ̂n − θ0)

d→ N(0, I−1
θθ (θ0)),

where Iθθ(θ0) is the Fisher information matrix given in (25). In order to establish the asymptotic
normality of the estimator of the parameter, one needs to prove the local consistency, which usually
requires that the Hessian of the log-likelihood function satisfies

sup
θ∈Θ0

∣∣∣∣∣∣

∣∣∣∣∣∣
1

n− p

n∑

i=p+1

(
∂2gi(θ)
∂θ∂θT

− ∂2gi(θ0)
∂θ∂θT

)∣∣∣∣∣∣

∣∣∣∣∣∣
p→ 0,(26)

where Θ0 is some small enough compact neighborhood of θ0. With one additional assumption A.7
and following the same argument as in [11] (proof of Theorem 4), (26) and hence the following
theorem can be established.

Theorem 4.7. Suppose that Assumptions A.1-A.7 hold and that Zt is non-Gaussian and satisfies
the conditions given by Lemma 3.1. Then there exists a sequence of local maximizers θ̂ of ln(θ) in
(21) such that √

n− p · (θ̂ − θ0)
d→ N(0, I−1

θθ (θ0)).

Furthermore, Iθθ(θ0) can be consistently estimated by −(n− p)−1∂2ln(θ̂)/∂θ∂θT .

5 Model Selection and Model Fitting

In fitting a VAR model, causal or noncausal, to data. The first challenge is to identify the order
p. For causal models, one can use standard information criteria such as AIC or BIC. Since AIC
and BIC essentially rely only on second order properties of the model, which are indistinguishable
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between causal and noncausal models, this suggests that AIC and BIC will also be effective for
estimating p in the noncausal case. And if the underlying noise process does exhibit a heavier tail
than Gaussian, then BIC is expected to perform better than AIC, as the BIC generally penalizes
free parameters more strongly than does the AIC. This is supported by the following empirical
study.

Consider the process
(

Xt,1

Xt,2

)
=

( −7.64 12.62
−5.88 10.04

)(
Xt−1,1

Xt−1,2

)
+

(
3.6 −5.64
4.2 −6.63

)(
Xt−2,1

Xt−2,2

)
+

(
Zt,1

Zt,2

)
,

where Zt,1 and Zt,2 are two independent t-distributed noise sequences. In the simulation study, a
standard t-distribution with 4 degrees of freedom is used. This VAR model’s characteristic function
has 4 roots; three outside the unit circle (1.667, 2, 3.333) and one inside the unit circle (0.5).

In this simulation, we generated 10,000 realizations of the time series (X1, . . . ,Xn) with the
length n = 300. For each simulated time series, a causal VAR model was selected using either AIC
or BIC criterion. The following table summarizes the counts of different selected. As seen in this
table, BIC is extremely effective in identifying the order p for a noncausal model.

Model order 2 3 4 5 6 7 8 9 10 11 12
AIC 8726 828 270 92 42 25 6 9 1 0 1
BIC 9998 2 0 0 0 0 0 0 0 0 0

Table 1: Simulation results: order selection based by AIC and BIC criteria.

To facilitate the maximization of the potentially noncausal AR model, we can select the order p
using BIC and fit a causal Gaussian model to the data. The parameter estimates and its maximized
likelihood will serve as a benchmark. It is easy to envision that the non-Gaussian likelihood of the
non-causal model will have many local maxima, which makes finding the global maximum difficult.
To avoid getting trapped in finding only local maxima and not the global maxima, one should
start the optimization from various starting points in the parameter set. The choice of starting
points can be guided by the estimates obtained from the fitting causal Gaussian model, allowing
for noncausal coefficients.

6 Examples

6.1 Simulation studies

In order to illustrate the theory from the previous section, first consider a bivariate (m = 2) vector
AR(1) process generated from bivariate t-distributed innovations, i.e.,

Xt = Φ1Xt−1 + Zt,

where Zt has the density function given by

fΣ0(z) = det(Σ0)−1f(zT Σ−1
0 z; ν)

= det(Σ0)−1 νν/2Γ ((ν + m)/2)
πm/2Γ (ν/2)

· 1
(
ν + zT Σ−1

0 z
)(ν+m)/2

.
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Therefore, the h(·) function defined in (22) and its derivative have a simple form given by

h(ζ; ν) = − ν + m

2(ν + ζ)
and h′(ζ; ν) =

ν + m

2(ν + ζ)2
.

Assume Φ1 has one eigenvalue inside the unit disc |λ1| < 1 and the other outside λ2 > 1 (the case
λ2 < −1 can be argued in a similar way) and has a decomposition

Φ1 = AJA−1 =

(
1 1

λ1−φ1

φ3

λ2−φ1

φ3

)(
λ1

λ2

) (
1 1

λ1−φ1

φ3

λ2−φ1

φ3

)−1

.

Notice that in this case λ2 is the bigger root, thus

λ1 =
φ1 + φ2 −

√
(φ1 + φ4)2 − 4(φ1φ4 − φ2φ3)

2
,

λ2 =
φ1 + φ2 +

√
(φ1 + φ4)2 − 4(φ1φ4 − φ2φ3)

2
.

Therefore, κ(φ) = log(λ2). From (11), one can write down the explicit infinite moving average
representation of Xt, i.e.,

Xt = C1

∞∑

i=0

λi
1Zt−i + C2

∞∑

j=1

λ−j
2 Zt+j ,(27)

where the constant matrix is given by

C1 =

(
λ2−φ1

λ2−λ1

−φ3

λ2−λ1
(λ1−φ1)(λ2−φ1)

φ3(λ2−λ1)
−(λ1−φ1)

λ2−λ1

)
,

and

C2 =

( −(λ1−φ1)
λ2−λ1

φ3

λ2−λ1−(λ1−φ1)(λ2−φ1)
φ3(λ2−λ1)

λ2−φ1

λ2−λ1

)
.

Note that the representations of C1, C2 and A are not unique. The expression in (27) essentially
characterizes the mixture series Xt as a sum of a purely causal AR(1) process (the first component)
and a purely noncausal AR(1) process (the second component).

In our simulation example, we generate the process Xt from the model (27) mentioned in Section
1. That is, we set (

φ1 φ3

φ2 φ4

)
=

(
0.8 0.6
0.6 1.7

)
,

which gives λ1 = 0.5, λ2 = 2,

A =
(

1 1
−0.5 2

)

and

A−1 =
(

0.8 −0.4
0.2 0.4

)
.

For simplicity, set Σ0 = I2, ν = degrees of freedom = 6. By Theorem 4.7, the asymptotic variance
of the MLE’s can be calculated using numerical methods. The simulation is conducted in two cases.
First, assume the covariance matrix and the degrees of freedom are given, and hence only φ is to
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be estimated. Second, consider a general case in which all parameters are to be estimated. In both
cases, the noncausal vector AR process is generated using the method stated in Section 2. Time
series of sizes 100, 200, 500 and 1000 are simulated respectively. For each time series, a vector
AR model is fitted with MLE of the parameter, and the resulting estimates and their associated
standard errors were computed. For each sample size, this procedure is replicated 15,000 times.
The results from this experiment are summarized in the following tables.

6.1.1 Case I: estimating only the AR coefficients

Table 2 compares the empirical mean of the MLE’s of φ with its true value. The empirical stan-
dard errors are also recorded in the parentheses. Table 3 compares the empirical variance of√

n− p(φ̂ − φ0) with its true value. The empirical variance is recorded in (·) and the subscripts
of the parentheses stand for the sample size (1 for 100, 2 for 200, etc.). From Theorem 4.7, we
know that the standard errors can also be calculated from the second derivative of the approximate
likelihood function. Thus, for each simulated time series, standard errors of the MLE’s can be es-
timated. The average of such estimates are recorded in [·]. From the results, we see that it is often
more accurate to use these estimates of the standard errors to describe the finite sample behavior
of the MLE’s than to use the asymptotic ones. It is also worth noticing that although Φ and Σ are
both symmetric, φ̂2 and φ̂3 have different asymptotic distributions.

True value n = 100 n = 200 n = 500 n = 1000
φ1 0.8 0.8002 (0.1373) 0.8000 (0.0932) 0.7995 (0.0568) 0.8001 (0.0400)
φ2 0.6 0.6084 (0.0986) 0.6047 (0.0669) 0.6025 (0.0423) 0.6010 (0.0293)
φ3 0.6 0.6113 (0.1818) 0.6065 (0.1260) 0.6014 (0.0775) 0.6013 (0.0545)
φ4 1.7 1.7161 (0.1707) 1.7072 (0.1150) 1.7041 (0.0729) 1.7019 (0.0509)

Table 2: The true and empirical mean (standard error) of the MLE’s of φ1, φ2, φ3 and φ4.

6.1.2 Case II: estimating all parameters

In this case, neither the covariance matrix nor the degrees of freedom is given. A complete model
is fitted to the simulated data. Table 3 is similar to Table 1 which compares the empirical av-
erages of the MLE’s with their corresponding true values. Since more parameters are included,
the asymptotic variance of φ̂ also increases. The theoretical standard errors of (θ̂ − θ0) are given
in (·)T . The empirical standard errors of (θ̂ − θ0) are given in (·). From Theorem 4.7, we can
also estimate the covariance matrix of

√
n− p(θ̂ − θ0) for any particular time series, and thus the

standard errors of parameters can be estimated as well. The empirical averages of such estimated
standard errors are given in [·]. Notice that the degree of freedom parameter ν has a very large
standard error compared to other parameters. This also implies that ν in some sense is the most
difficult to estimate and one should always be cautious about the estimation of ν. When the sample
size is small, ν̂ could potentially be very inaccurate (see also Figure 2).

There are several issues when more parameters are estimated. First, when−(n−p)−1∂2ln(θ̂)/∂θ∂θT

is used to estimate the covariance matrix of the MLE’s, there is no guarantee that the estimated
matrix is positive definite when the sample size is small. Second, there is no guarantee that the φ̂
are in the domain of mixed models. Meaning, when the sample size is not big enough, the MLE’s
may appear in the causal region or in the purely noncausal region. For example, in our simulation,
when the sample size is 100, we found 1078 of the 15,000 replications were in the causal region
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φ1 φ2 φ3 φ4

(1.613)T (0.109)T (1.530)T (−0.664)T

(1.865)1 [1.704]1 (0.086)1 [0.114]1 (1.642)1 [1.603]1 (−0.750)1 [−0.701]1
φ1 (1.728)2 [1.657]2 (0.136)2 [0.112]2 (1.645)2 [1.562]2 (−0.729)2 [−0.683]2

(1.609)5 [1.625]5 (0.095)5 [0.110]5 (1.531)5 [1.537]5 (−0.685)5 [−0.667]5
(1.599)10 [1.613]10 (0.117)10 [0.109]10 (1.508)10 [1.527]10 (−0.661)10 [−0.663]10

(0.860)T (0.247)T (0.529)T

(0.963)1 [0.935]1 (0.287)1 [0.272]1 (0.540)1 [0.570]1
φ2 (0.890)2 [0.896]2 (0.265)2 [0.260]2 (0.524)2 [0.548]2

(0.894)5 [0.875]5 (0.239)5 [0.252]5 (0.538)5 [0.539]5
(0.856)10 [0.867]10 (0.274)10 [0.248]10 (0.522)10 [0.535]10

(2.992)T (−0.887)T

(3.273)1 [3.180]1 (−1.010)1 [−0.917]1
φ3 (3.158)2 [3.074]2 (−0.953)2 [−0.902]2

(3.000)5 [3.017]5 (−0.929)5 [−0.888]5
(2.972)10 [2.996]10 (−0.878)10 [−0.883]10

(2.561)T

(2.884)1 [2.737]1
φ4 (2.634)2 [2.651]2

(2.655)5 [2.596]5
(2.591)10 [2.579]10

Table 3: The true and empirical variance of the MLE’s of φ1, φ2, φ3 and φ4. Results are already
normalized by their corresponding sample sizes.

(≈ 7.2%) and 148 in the purely noncausal region (≈ 0.99%). When the sample size is 200, 179 out
of 15,000 replications are in the causal region (≈ 1.2%) and 4 are in the purely noncausal region
(≈ 0.03%); when the sample size is 500 or 1000, the MLE’s behaved well and are all in the domain
of mixed models.

Finally, Figure 2 shows the convergence to normality. We take the parameter ν as an example.
The histograms of the estimators for different sample sizes are plotted together with the corre-
sponding asymptotic normal density curves as reference. As shown in Figure 2, when sample size is
small, the empirical distribution of ν is highly skewed to the right. This skewness is corrected when
sample size increases. When the sample size is 1000, one can see that the empirical distribution
matches very well with the reference normal curve.
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True value n = 100 n = 200 n = 500 n = 1000
φ1 0.8 0.8435 (0.3851) 0.8220 (0.2394) 0.8068 (0.1345) 0.8026 (0.0932)

(0.2985)T [0.3380] (0.2106)T [0.2390] (0.1330)T [0.1399] (0.0940)T [0.0958]
φ2 0.6 0.5274 (0.2612) 0.5883 (0.1338) 0.5992 (0.0665) 0.5989 (0.0456)

(0.1487)T [0.2080] (0.1049)T [0.1263] (0.0662)T [0.0698] (0.0468)T [0.0476]
φ3 0.6 0.5359 (0.5491) 0.5938 (0.3695) 0.5988 (0.2102) 0.5989 (0.1444)

(0.4614)T [0.5126] (0.3254)T [0.3658] (0.2055)T [0.2167] (0.1452)T [0.1484]
φ4 1.7 1.6297 (0.5576) 1.6987 (0.3228) 1.7067 (0.1693) 1.7021 (0.1186)

(0.3839)T [0.4377] (0.2708)T [0.3034] (0.1710)T [0.1783] (0.1029)T [0.1226]
σ1 1 1.1382 (0.5579) 1.0561 (0.2693) 1.0159 (0.1421) 1.0075 (0.0987)

(0.3115)T [0.5939] (0.2197)T [0.3054] (0.1387)T [0.1552] (0.0980)T [0.1034]
σ2 0 -0.0663 (0.3529) -0.0115 (0.2060) -0.0024 (0.1130) -0.0024 (0.0770)

(0.2444)T [0.3866] (0.1724)T [0.2210] (0.1089)T [0.1188] (0.0769)T [0.0798]
σ3 1 1.0226 (0.5093) 1.0264 (0.3137) 1.0108 (0.1760) 1.0040 (0.1233)

(0.4063)T [0.5600] (0.2866)T [0.3410] (0.1810)T [0.1906] (0.1279)T [0.1295]
ν 6 6.7925 (3.5194) 6.4947 (2.2386) 6.1386 (1.1061) 6.0816 (0.7712)

(2.4436)T [6.5337] (1.7235)T [2.7905] (1.0884)T [1.2222] (0.7692)T [0.8119]

Table 4: The true and empirical mean of the MLE’s of φ1, φ2, φ3, φ4, σ1, σ2, σ3 and ν. The
empirical standard errors are given in (· · · ), the theoretical standard errors are given in (· · · )T and
the averages of the estimated standard errors are given in [· · · ].
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Figure 2: Comparison of empirical histogram of ν̂ and its asymptotic normal distribution.
19



6.2 Real data examples

In this subsection, we consider two datasets that were previously studied by [11]. Conventionally,
in many economic applications, VAR models are fitted under causality assumptions. Lanne and
Saikkonen argued that, it would be incorrect to base a test of theory on the assumption of causality
in the presence of noncausality. For the following two datasets, conventional causal VAR models
are first fitted to the data. Standard procedures for testing Gaussianity are then carried out. It is
shown that the residuals from these causal models present some non-Gaussian (heavy tail) behavior
(see also [11]). Then it makes sense to include both causal and noncausal models in our fitting
procedure, the model that maximizes the likelihood is selected as the best fit. For both examples,
multivariate t-distribution is used for the noise.

6.2.1 Fiscal foresight

First, a simple trivariate VAR model for the demeaned differences of U.S. GDP, total government
expenditure, and total government revenue (all in real per capita terms). The quarterly data
from 1955:1 to 2000:4 (184 observations) were previously used by [12], who also provide a detailed
description of the construction of the variables. Figure 3 contains time series plots of the three
series. [11] suggested using a VAR model of order 2 for this data based on AIC and BIC. Table 5
compares the log-likelihood function values of the best fit of casual Gaussian (CG) VAR(2), causal
non-Gaussian (CN) VAR(2), purely noncausal (PN) VAR(2) and the mixed (MX) VAR(2). The
estimators and their standard errors from the mixed model fit are summarized in Table 6.
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Figure 3: Time series plot of the GDP data.

Model assumption CG CN PN MX
Log-likelihood -819.230 -802.865 -800.355 -791.270

Table 5: Comparison of log-likelihood. (CG: Causal Gaussian; CN: Causal Non-Gaussian; PN:
Purely Noncausal; MX: Mixed)

Φ1 Φ2 Σ ν

3.516 3.710 -3.799 1.789 -6.268 -1.162 49.108 -12.746 -14.666
(1.226) (3.631) (1.527) (0.924) (2.946) (0.673) (9.654) (5.728) (7.215)
-0.512 -3.104 0.679 -0.586 2.658 0.295 -12.746 5.135 4.019 5.751
(0.456) (1.267) (0.625) (0.311) (1.081) (0.312) (5.728) (3.373) (3.494) (1.399)
-1.099 -1.811 2.918 -0.505 1.149 1.257 -14.666 4.019 9.376
(0.475) (1.889) (0.762) (0.435) (1.534) (0.314) (7.215) (3.494) (5.203)

Table 6: The MLE’s of the parameters and their associated standard errors for the GDP data.

Notice that the degrees of freedom parameter ν is estimated as 5.75 which confirms the heavy
tail behavior of the data. The AR polynomial det

(
I − Φ1z − Φ2z

2
)
, where Φ1 and Φ2 are given in
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Table 5, has three roots inside the unit circle and three roots outside the unit circle. In theory, one
could solve for Ψ1 and Ψ2 which satisfy

I − Φ1z − Φ2z
2 = (I −Ψ1z)(I −Ψ2z),

or Φ1 = Ψ1+Ψ2 and Φ2 = −Ψ1∗Ψ2. Unlike the univariate case, where there is a unique solution for
this decomposition, there are usually more than one solution in the multivariate case. For example,
in our case, one possible solution is

Ψ1 =




3.994 1.706 −3.719
−0.390 −3.740 0.661
−1.010 −2.569 3.309


 ,

Ψ2 =



−0.478 2.003 −0.080
−0.122 0.636 0.018
−0.089 0.758 −0.390


 .

It is also easy to check that Ψ1 has all of its eigenvalues outside the unit circle and Ψ2 has all of its
eigenvalues inside the unit circle. Thus this is similar to the setup of Lanne and Saikkonen’s model
(5), where one can perfectly separate the causal component and the purely noncausal component.
However, as mentioned above, we can also obtain other decompositions, for instance, another
possible solution would be

Ψ1 =




4.011 4.130 −7.087
−0.390 −3.730 0.646
−0.999 −1.053 1.202


 ,

Ψ2 =



−0.495 −0.420 3.288
−0.123 0.625 0.033
−0.099 −0.758 1.716


 .

In this case, Ψ1 has two eigenvalues outside the unit circle and one inside the unit circle, whereas Ψ2

has two eigenvalues inside the unit circle and one outside. This means that very different product
representations may correspond to the same VAR model. Therefore, any theory or interpretation
obtained from the product representation may be misleading. This also suggests that our model
setup is more general than the one Lanne and Saikkonen used.

Finally, the ACF’s of the residuals can be used to show that the noncausal model is more
appropriate than the causal model. Figure 4 contains the ACF’s (including the cross ACF’s) of the
residuals from a noncausal model. It shows that the model effectively removes the serial dependence
of the original data. Although not included here, the ACF’s of the residuals from a causal Gaussian
model look very similar to Figure 4, which means the causal Gaussian model also does a good job
in removing the serial dependence structure of the data. However, the ACF’s of the squares of
the residuals (Figure 5) from the causal Gaussian model show serial correlation again. This is
evidence that the fitted residuals are uncorrelated but not independent. In comparison, Figure 6
contains the ACF’s of the squares of the residuals from a noncausal model. It can be seen that the
squares of the residuals from this noncausal model are also uncorrelated. This indicates that the
noncausal model is a better fit than the causal Gaussian model in the sense that the residuals are
more independent.
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Figure 4: Cross correlation of the residuals from the mixed non-Gaussian model.
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Figure 5: Cross correlation of the squares of the residuals from the causal Gaussian model.
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Figure 6: Cross correlation of the squares of the residuals from the mixed non-Gaussian model.

Figure 7 shows the impulse response coefficients of the noncausal model. Since the estimator of
Σ is not diagonal, the Cholesky decomposition, as discussed earlier in Section 2, is applied to make
the three components of the noise uncorrelated. From Figure 7, we can see that a large positive
shock in the first component of the transformed noise would contribute a big negative bump to
the noncausal element in the change of GDP and little to the noncausal components for changes
of total expenditure and total revenue. A large shock in the second component of the transformed
noise would have the most impact on the change of GDP in the noncausal part. It would have less
impact on the change of total expenditure and minimum impact on the change of total revenue.
Finally, a large shock in the third component of the transformed noise would mainly influence the
noncausal pieces of the GDP and revenue components of the response. As for the causal part of the
response, large shocks in the second and third components would contribute some reverberations
in the causal element of the change of GDP and the change of total revenue.

25



−5 0 5 10

M11

−10 −5 0 5 10

−1

−0.5

0

0.5

M12

−10 −5 0 5 10

−1

−0.5

0

0.5

M13

−5 0 5 10

M21

−10 −5 0 5 10

−1

−0.5

0

0.5

M22

−10 −5 0 5 10

−1

−0.5

0

0.5

M23

−5 0 5 10

M31

−10 −5 0 5 10

−1

−0.5

0

0.5

M32

−10 −5 0 5 10

−1

−0.5

0

0.5

M33

Figure 7: Impulse response coefficients of the noncausal model fitted to the GDP data.

6.2.2 Term structure of interest rates

For the second example, we concentrate on a bivariate VAR model for the demeaned change in
the three-month interest rate and the spread between the ten-year and three-month interest rates
(quarter-end yields on U.S. zero-coupon bonds) from 1970:1 to 1998:4 (116 observations). Figure 8
contains time series plots of the two series. The data was previously used by [7] and are provided
on his website. Lanne and Saikkonen suggested using a VAR model of order 3 for this data. Table
7 compares the log-likelihood function values of the best fit of casual Gaussian (CG) VAR(3),
causal non-Gaussian (CN) VAR(3), purely noncausal non-Gaussian (PN) VAR(3) and mixed (MX)
VAR(3). The estimators and their standard errors from the mixed model we found are summarized
in Table 8.
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Figure 8: Time series plot of the interest rate data.

Model assumption CG CN PN MX
Log-likelihood -256.624 -237.345 -235.481 -229.054

Table 7: Comparison of log-likelihood. (CG: Causal Gaussian; CN: Causal Non-Gaussian; PN:
Purely Noncausal; MX: Mixed)

Φ1 Φ2 Φ3 Σ ν

0.789 0.009 0.434 0.110 0.728 -0.268 0.774 -0.448 2.806
(0.289) (0.255) (0.202) (0.327) (0.128) (0.232) (0.245) (0.145) (0.715)
-0.548 0.818 -0.209 0.014 -0.552 0.136 -0.448 0.393
(0.170) (0.174) (0.128) (0.240) (0.079) (0.175) (0.145) (0.106)

Table 8: The MLE’s of the parameters and their associated standard errors for the interest rate
data.

Notice that the degrees of freedom ν is estimated to be 2.806, which is corresponding to a
very heavy tail distribution. In this case, the noise process Zt has not have a third moment,
which leads to the violation of some of the regularity conditions (for example, A.4.). Thus,
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one should be cautious in using these estimators. Despite the heavy-tailness, the AR polyno-
mial det

(
I − Φ1z − Φ2z

2 − Φ3z
3
)

has only one root inside the unit circle and the other five roots
are all outside the unit circle. Thus it is impossible to have a representation like Lanne and Saikko-
nen’s model, i.e., there is no way to separate the polynomial into a causal component and a purely
noncausal component.

Similar analyses as in the previous example can also be used to show that the noncausal model is
more appropriate than the causal model. By looking at the ACF’s of the residuals from the models,
we would see similar results as in the previous example. That is, both the causal Gaussian model
and the noncausal model do well in terms of removing the serial dependence structure of the original
data. However, the ACF’s of the squares of the residuals (Figure 9) from the causal Gaussian model
present serial correlation. On the other hand, the ACF’s of the squares of the residuals from the
noncausal model are also proved to be uncorrelated, see Figure 10. This indicates that the noncausal
model does a better job than the causal Gaussian model in terms of producing more independent
residuals.
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Figure 9: Cross correlation of the squares of the residuals from the causal Gaussian model.

28



0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

V1

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

V1 & V2

−15 −10 −5 0

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

A
C

F

V2 & V1

0 5 10 15

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Lag

V2

Figure 10: Cross correlation of the squares of the residuals from the mixed non-Gaussian model.

As before, we plot the impulse response coefficients for this noncausal model where the Cholesky
decomposition is used to de-correlate the noise components. From Figure 11, we can see the non-
causality mainly comes from the first component of the transformed noise. The second component
of the transformed noise barely contributes anything to the noncausal element. The first compo-
nent of the transformed noise also contributes some reverberation to the causal components of both
differenced short-term rates and rates spread while the second component only impacts the causal
component of the rates spread.
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Figure 11: Impulse response coefficients of the noncausal model fitted to the interest rate data.

7 Conclusion

A general noncausal non-Gaussian VAR model has been proposed in this paper. This process has
a state-space representation that neatly separate the causal and noncausal components. Model
simulation and model selection techniques are introduced. This representation is the backbone
for simulating realizations from a noncausal VAR model as well as providing a mechanism for the
likelihood function. In particular, maximum likelihoods can be computed. Allowing noncausality
in the VAR model opens doors to a much larger pool of models, and in many cases these noncausal
models provide a better fit to the data, in the sense that the residuals appear more “white”. The
models were fitted to two macro time series and gave an improved fit as compared to the traditional
causal VAR model.

APPENDIX
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A Derivatives of log-likelihood

This section contains the analytical form of the first and second derivatives of function gi(θ) from
Section (4.2). Straightforward calculations show that

∂gi(θ)
∂φ

= 2h(ZT
i (φ)Σ−1Zi(φ);ν) · ∂

∂φ
Zi(φ)Σ−1Zi(φ) +

∂κ(φ)
∂φ

= −2




Xi−1
...

Xi−p


⊗

(
Σ−1/2et(θ)

)
+

∂κ(φ)
∂φ

= −2Yi−1 ⊗
(
Σ−1/2et(θ)

)
+

∂κ(φ)
∂φ

;

∂gi(θ)
∂σ

= −h(ZT
i (φ)Σ−1Zi(φ);ν)DT

m · (Σ−1 ⊗ Σ−1)(Zi(φ)⊗ Zi(φ))− 1
2
DT

mvec(Σ−1)

= −DT
m(Σ−1 ⊗ Σ−1) ·

(
Zi(θ)⊗ Σ1/2ei(θ) +

1
2
vec(Σ)

)
;

∂gi(θ)
∂ν

=
1

f(ZT
i (φ)Σ−1Zi(φ);ν)

· ∂

∂ν
f(ZT

i (φ)Σ−1Zi(φ);ν).

Also notice that

∂

∂φT
et(θ) = −h(ZT

i (φ)Σ−1Zi(φ);ν)Σ−1/2(YT
i−1 ⊗ Im)

−2h′(ZT
i (φ)Σ−1Zi(φ);ν)Σ−1/2 · Zi(φ)ZT

i (φ)Σ−1(YT
i−1 ⊗ Im).

The second derivatives can then be calculated as

∂2gi(θ)
∂φ∂φT

= −2Yi−1 ⊗ ImΣ−1/2 ∂

∂φT
et(θ) +

∂2κ(φ)
∂φ∂φT

;

∂2gi(θ)
∂φ∂σT

= 2h(ZT
i (φ)Σ−1Zi(φ);ν)

(
ZT

i (φ)⊗ (Yi−1 ⊗ Im)
)
(Σ−1 ⊗ Σ−1)Dm

+2h′(ZT
i (φ)Σ−1Zi(φ);ν) · (Yi−1 ⊗ Im)Σ−1Zi(φ) · (ZT

i (φ)⊗ ZT
i (φ)

)
(Σ−1 ⊗ Σ−1)Dm;

∂2gi(θ)
∂φ∂νT

= −2Yi−1 ⊗
(
Σ−1Zi(φ)

) · ∂

∂νT
h(ZT

i (φ)Σ−1Zi(φ);ν);

∂2gi(θ)
∂σ∂σT

= h(ZT
i (φ)Σ−1Zi(φ);ν) · (ZT

i (φ)⊗ ZT
i (φ)⊗DT

m) · (Im ⊗Kmm ⊗ Im)

· [Σ−1 ⊗ Σ−1 ⊗ vec(Σ−1) + vec(Σ−1)⊗ Σ−1 ⊗ Σ−1
]
Dm

+h′(ZT
i (φ)Σ−1Zi(φ);ν)DT

m · (Σ−1 ⊗ Σ−1)
(
Zi(φ)ZT

i (φ)⊗ Zi(φ)ZT
i (φ)

)
(Σ−1 ⊗ Σ−1)Dm

+
1
2
DT

m(Σ−1 ⊗ Σ−1)Dm;

∂2gi(θ)
∂σ∂νT

= −DT
m(Σ−1 ⊗ Σ−1)(Zi(φ)⊗ Zi(φ)) · ∂

∂νT
h(ZT

i (φ)Σ−1Zi(φ);ν);

∂2gi(θ)
∂ν∂νT

= −∂f(ZT
i (φ)Σ−1Zi(φ);ν)/∂ν

f2(ZT
i (φ)Σ−1Zi(φ);ν)

· ∂f(ZT
i (φ)Σ−1Zi(φ);ν)

∂νT

+
∂2f(ZT

i (φ)Σ−1Zi(φ);ν)/∂ν∂νT

f(ZT
i (φ)Σ−1Zi(φ);ν)

;
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B Proof for Theorem 4.5.

Proof. It is worth noting that, by the independence of Ỹp,1 and Ỹn,2 from Zp+1(φ0), . . . ,Zn(φ0),
l̃n(θ) in (20) is also a complete likelihood for any choice of initial distributions p1(·) and p2(·) for
Ỹp,1 and Ỹn,2. In fact, one can choose p1(·) and p2(·) independent of θ, then such a complete
likelihood will have the following properties:

(28) Ẽ

(
∂l̃n(θ0)

∂θ

)
= 0,

and

Ṽar

(
∂l̃n(θ0)

∂θ

)
= Ẽ

(
∂l̃n(θ0)

∂θ

)2

= −Ẽ

(
∂2 l̃n(θ0)
∂θ∂θT

)
.(29)

Here, Ẽ(·) denotes the expectation under the measure with the new choices of p1(·) and p2(·). For
convenience, we will call this the star measure in the following context, and we will continue to
use E(·) to denote the expectation under the measure when p1(·) and p2(·) are chosen to be the
stationary distribution. This will be referred to as the stationary measure. From (28), we have

0 =
1

n− p
Ẽ

(
∂l̃n(θ0)

∂θ

)

=
Ẽ

(
∂ log(p1(Ỹp,1)p2(Ỹn,2) · |det(A)|−1)/∂θ

)

n− p
+

1
n− p

Ẽ
(

∂ln(θ0)
∂θ

)

= o(1) +
1

n− p

n∑

i=p+1

Ẽ
(

∂gi(θ0)
∂θ

)
.

Next we show that the average of the expectations under the new measure would converge to a
constant which is E (∂gi(θ0)/∂θ). From the calculation in Appendix A, we know that {∂gi(θ0)/∂σ}
and {∂gi(θ0)/∂λ} are two iid sequences only depending on the true values of {Zi}. Since the Zi

have the same distribution under either the stationary measure or the star measure, the identities

Ẽ
(

∂gi(θ0)
∂σ

)
= E

(
∂gi(θ0)

∂σ

)
,

Ẽ
(

∂gi(θ0)
∂λ

)
= E

(
∂gi(θ0)

∂λ

)
,(30)

follow easily. Unfortunately, {∂gi(θ0)/∂φ} is not an iid sequence because of the Yi−1 term in
it. However, we can use a similar argument as in Section 2 equation (11) to derive a truncated
representation for Yi, i.e., for any p < i < n,

Yi = AFi−pA−1Yp +
i−p−1∑

j=i−n

AFjA−1Z∗i−j + AFi−nA−1Yn.(31)

Now let Y∗
p and Y∗

n be the initial values generated under the new choices of p1 and p2 and let Y∗
i

(p < i < n) be the random variables under the star measure. When i = bn/2c, we have

Y∗
bn/2c = AFbn/2c−pA

−1Y∗
p +

bn/2c−p−1∑

j=bn/2c−n

AFjA−1Z∗bn/2c−j + AFbn/2c−nA
−1Y∗

n.(32)
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By the definition of Fj → 0 as j → ±∞ at a geometric rate. Therefore, it is easy to show that,

regardless of the choice of Y∗
p and Y∗

n, Y∗
bn/2c and Ybn/2c

d= Yp+1 have the same distribution as
n →∞. Using stationarity of {∂gi(θ0)/∂θ} under the stationary measure, we obtain the following
relationship,

E
(

∂gi(θ0)
∂θ

)
= lim

n→∞E
(

∂gbn/2c(θ0)
∂θ

)
= lim

n→∞ Ẽ
(

∂gbn/2c(θ0)
∂θ

)

= lim
n→∞

1
n− p

n∑

i=p+1

Ẽ
(

∂gi(θ0)
∂θ

)
= 0(33)

Similarly, for the variance of the score, we have

Ẽ

(
1√

n− p

∂ log(p1(Ỹp,1)p2(Ỹn,2) · |det(A)|−1)
∂θ

+
1√

n− p

∂ln(θ0)
∂θ

)2

=
1

n− p
Ṽar

(
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∂θ

)

= − 1
n− p

Ẽ

(
∂2 l̃n(θ0)
∂θ∂θT

)

= − 1
n− p

Ẽ

(
∂2 log(p1(Ỹp,1))

∂θ∂θT

)
− 1

n− p
Ẽ

(
∂2 log(p2(Ỹn,2))

∂θ∂θT

)

− 1
n− p

Ẽ
(

∂2 log(|det(A)|−1)
∂θ∂θT

)
− 1

n− p
Ẽ

(
∂2ln(θ0)
∂θ∂θT

)

= o(1)− 1
n− p

n∑

i=p+1

Ẽ
(

∂2gi(θ0)
∂θ∂θT

)
.

Using a similar argument as for the expectation of the score, we can establish

Iθθ = lim
n→∞E

(
1√

n− p

∂ln(θ0)
∂θ

)2

= lim
n→∞ Ẽ

(
1√

n− p

∂ln(θ0)
∂θ

)2

= − lim
n→∞

1
n− p

n∑

i=p+1

Ẽ
(

∂2gi(θ0)
∂θ∂θT

)
= − lim

n→∞ Ẽ

(
∂2gbn/2c(θ0)

∂θ∂θT

)

= − lim
n→∞E

(
∂2gbn/2c(θ0)

∂θ∂θT

)
= −E

(
∂2gi(θ0)
∂θ∂θT

)
.(34)

Therefore, (24) is proved. A similar argument as in Lanne and Saikkonen can be applied here to
establish the positive definiteness of the matrix Iθθ.

The asymptotic normality can be shown in a standard manner as in the previous papers, see
[4] and [11]. The idea is to truncate the infinite moving average representations of Yt and Xt in
(11) and (12) at some large number. Then a standard central limit theorem for finite dependent
stationary sequences can be applied to establish the asymptotic normality of the truncated score
vector. Making use of the coefficient matrices in (11) and (12) decaying to zero at a geometric rate,
a standard result can be used to deal with the approximation error made by truncation and thus
prove the stated asymptotic normality. Details are omitted here.
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