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Abstract: The objective of this paper is to identify multiple-prior (maxmin) ex-
pected utility functions that exhibit aversion to risk under some probability mea-
sure from among the priors. Risk aversion has profound implications on agents’
choices and on market prices and allocations. Our approach to risk aversion relies
on the theory of mean-independent risk of Werner (2005). We show that a nec-
essary and sufficient condition for risk aversion of concave multiple-rior expected
utility under probability measure π is that the set of probability priors be π-stable.
The property of π-stability is a new concept. We show that cores of convex distor-
tions of a probability measure have that property. Relative entropy neighborhoods
- used in the context of model uncertainty - have it, too, but Euclidean neighbor-
hoods fail to have it. We also show that the existence of a non-trivial unambiguous
event precludes risk aversion with respect to any prior.
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1. Introduction

Multiple-prior (or maxmin) expected utility is the most appealing alternative

to expected utility among the, so called, non-expected utilities. Instead of a single

probability measure over uncertain states, the decision maker has a set of proba-

bility measures. This multiplicity of probability measures reflects her ambiguous

information about the states, or uncertainty of her expectations. The decision cri-

terion is the minimum of expected utilities over the set of multiple priors. Taking

the minimum reflects the decision maker’s concern with the “worst case” scenario.

An axiomatic derivation of multiple-prior expected utility has been given by Gilboa

and Schmeidler (1989).

One motivation for multiple-prior expected utility comes from the Ellsberg

paradox. The pattern of preference over bets on balls drawn from an urn in the

Ellsberg experiment is incompatible with expected utility, but can be explained by

multiple-prior expected utility. For a single urn with 30 red balls and 60 green or

yellow balls with unknown proportions of the two colors, a multiple-prior expected

utility with the set of all probability measures that assign probability 1/3 to draw-

ing red ball and arbitrary probabilities (summing up to 2/3) to drawing yellow

or green ball leads to the desired pattern of preferences. Another motivation for

multiple-prior expected utility comes from applications of robust control theory.

Hansen et al (2002) (see also Maccheroni, Marinacci and Rustichini (2005)) show

that stochastic robust control with a certain measure of model misspecification can

be viewed as decision making with multiple-prior expected utility.

Risk aversion has significant implications on agents’ choices and on prices and

allocations in security markets. Examples are the positive premium on equilibrium

return on the market portfolio of risky securities and the comonotonicity of Pareto-

optimal risk sharing rules (see LeRoy and Werner (2001) for a textbook treatment).

These results are typically limited to expected utility (see however Chateauneuf,

Dana and Tallon (2000)) because the standard theory of risk aversion due to Arrow

(1965) and Pratt (1964) is limited to expected utility.

In the paper “Risk and Risk Aversion when States of Nature Matter” (Werner

(2005)) we proposed a new theory of risk aversion primarily aimed at applications

to non-expected utilities. The theory applies to utility functions that are defined

on contingent claims (i.e., random variables) instead of probability distributions.
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Many (but not all) multiple-prior expected utility functions are not distribution

invariant under any probabilities of states. The basic concept of our theory is

the mean-independent risk: for a probability measure π on a finite state space,

contingent claim ǫ is a mean-independent risk at another contingent claim z if the

conditional expectation Eπ(ǫ|z) of ǫ on z equals zero. Utility function U exhibits

aversion to mean-independent risk if there exists a probability measure π such that

U(x) ≥ U(y) whenever y differs from x by a mean-independent risk at π, that is,

if x = z + ǫ and y = z + λǫ for some ǫ and z such that ǫ is a mean-independent

risk at z and 0 ≤ λ ≤ 1. Aversion to mean-independent risk under π implies, in

particular, that U(z) ≥ U(z+ǫ) whenever ǫ is a mean-independent risk at z. Thus,

the agent whose initial position is a contingent claim z rejects a gamble given by

the mean-independent risk ǫ. If utility function U is concave, this last condition is

equivalent to aversion to mean-independent risk (see Werner (2005)). Arrow (1965)

and Pratt (1964) defined risk aversion under the expected utility hypothesis by this

condition restricted to risk-free initial claims. Under expected utility, risk aversion

in the Arrow-Pratt sense implies rejection of gambles with mean-independent risk.

Every utility function that is monotone decreasing with respect to the standard

Rothschild-Stiglitz (or stochastic dominance) order of more risky is averse to mean-

independent risk. The converse does not hold since aversion to mean-independent

risk does not require that utility function be distribution invariant.

Aversion to mean-independent risk, if it holds for multiple-prior expected util-

ity, identifies a probability measure in the set of priors such that the agent’s pref-

erences exhibit patterns discussed above under this probability measure. Thus

the role of probabilities bears some similarity to Machina and Schmeidler’s (1992)

probabilistic sophistication. Probabilistic sophistication requires that preferences

(or utility function) be distribution invariant under some probability measure on

states. Aversion to mean-independent risk requires that the utility preserve the

order induced by mean-independent risk under some probability measure.

Some multiple-prior expected utilities have a specific reference probability mea-

sure. Such are multiple-prior expected utilities obtained as representations of rank-

dependent expected utilities of Quiggin (1982) and Yaari (1987) with convex dis-

tortions of an (objective) probability measure. Sets of priors in multiple-prior

expected utilities of Hansen et al (2002) are neighbourhoods of a probability mea-
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sure. These reference measures are of special relevance in the question of aversion

to mean-independent risk.

The objective of this paper is to provide characterization of multiple-prior

expected utilities that are averse to mean-independent risk. More precisely, we

identify conditions on the set of probability priors (on a finite state space) and

the von Neumann-Morgenstern utility function that guarantee aversion to mean-

independent risk for some probability measure from the set of priors. The condition

on the set of priors is called π-stability and it requires that for every probability

measure P in the set of priors and every partition of states F , a probability measure

that coincides with P on elements of partition F and has conditional probabilities

of π within each element of F lies in the set of priors. Our main result, The-

orem 1, states that concave multiple-prior expected utility exhibits aversion to

mean-independent risk under π if and only if the set of priors is π-stable.

Which sets of priors are π-stable for some probability measure π in the set?

Sets obtained in the representation of rank-dependent expected utilities with con-

vex distortion of probability measure π are π-stable. [These are cores of con-

vex distortions of π]. Euclidean neighborhoods of a probability measure π in the

probability simplex are not π-stable unless π is the uniform probability. Most

remarkably, neighborhoods of π in the relative entropy distance are π-stable, for

arbitrary π. The latter are the sets of priors proposed by Hansen et al (2002), see

also Maccheroni, Marinacci and Rustichini (2005).

The set of priors in the Ellsberg experiment is not π-stable for any probability π

in the set. The reason is the existence of a unambiguous non-trivial event – red ball

drawn – to which all priors assign the same probability. We shaw that, in general,

the existence of non-trivial unambiguous event precludes mean-independent risk

aversion.

The paper is organized as follows: In Section 2 we provide definition and dis-

cussion of multiple-prior expected utilities with a finite state space. In Section

3 we introduce the notion of π-stable set of probability measures and prove our

main result on risk aversion of multiple-prior expected utility. We also provide

a characterization of π-stable sets of priors. Examples of π-stable sets including

relative entropy neighborhoods are discussed in Section 4. Section 5 is about risk

aversion and existence of unambiguous events.
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2. Multiple-Prior Expected Utility and Risk Aversion

There is a finite set S = {1, . . . , S} of states of nature (with S > 1.) The set

of all (additive) probability measures on the set of all subsets of S is denoted by

M, and can be identified with the unit simplex ∆ in RS. The subset of strictly

positive probability measures is denoted by M̊. Any S-dimensional vector x =

(x1, . . . , xS) ∈ RS is called contingent claim. The expected value
∑S

s=1 P (s)xs of

x under a probability measure P ∈ M is denoted by EP (x); the expected utility
∑S

s=1 P (s)v(xs) of x under P is denoted by EP [v(x)].

Multiple-prior or maxmin expected utility takes the form

min
P∈P

EP [v(x)], (1)

for some utility function v : R → R and some convex and closed set P ⊂ M of

probability measures. If the set P consists of a single probability measure, then

multiple-prior expected utility reduces to the standard expected utility. In the

other polar case, if P is the set of all probability measures M, then the multiple-

prior expected utility reduces to the Wald’s criterion mins∈S v(xs). Gilboa and

Schmeidler’s (1989) axiomatization of multiple-prior expected utility (1) does not

specify the set of multiple priors beyond closedness and convexity.

The multiple-prior expected utility with linear utility,

min
P∈P

EP (x), (2)

has been extensively studied in the context of coherent measures of risk (see Föllmer

and Schied (2002)).

Multiple-prior expected utility (1) with concave v is, of course, concave. It is

not differentiable unless the set of priors is a singleton (and v is differentiable),

that is, unless it is an expected utility. We shall consider its superdifferential. We

recall that the superdifferential of a concave function U : RS → R at x ∈ RS is

the set ∂U(x) consisting of all vectors φ ∈ RS that satisfy U(y) ≤ U(x)+φ(y−x)

for every y ∈ RS .

If function v is differentiable, then the superdifferential of utility function (1)

at x is (see Aubin (1998))

{φ ∈ RS : φs = v′(xs)P (s) for some P ∈ Pv(x)}, (3)
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where Pv(x) denotes the subset of priors on which the minimum expected utility

is attained. That is

Pv(x) = {P̄ : EP̄ [v(x)] = min
P∈P

EP [v(x)]}. (4)

For the linear multiple-prior expected utility (2) the subset of minimizing priors

is

P(x) = {P̄ ∈ P : EP̄ (x) = min
P∈P

EP (x)}, (5)

and the superdifferential of (2) coincides with P(x).

Multiple-prior expected utilities are often not distribution invariant under any

probability measure on states. That is, there may not exist a probability measure

such that the utility of a contingent claim depends only on its probability dis-

tribution.1 The Rothschild-Stiglitz (or stochastic dominance) theory of risk and

risk aversion applies only to distribution invariant utilities, and hence cannot be

used. We shall use the concepts of mean-independent risk and aversion to mean-

independent risk of Werner (2005).

Consider a probability measure π ∈ M̊. Contingent claim ǫ ∈ RS is a mean-

independent risk at z ∈ RS if Eπ(ǫ|z) = 0. For two contingent claims x, y ∈ RS

with the same expectation, Eπ(x) = Eπ(y), x differs from y by mean-independent

risk if there exist z, ǫ ∈ RS and 0 ≤ λ ≤ 1 such that ǫ is a mean-independent risk

at z, and x = z + ǫ and y = z + λǫ.

Utility function U on RS is averse to mean-independent risk if there exists

a probability measure π such that U(y) ≥ U(x) whenever x differs from y by

mean-independent risk. Every utility function that is decreasing with respect to

the relation of Rothschild-Stiglitz more risky is averse to mean-independent risk

(Werner (2005), Theorem 2.1). The converse is not true. Every concave expected

utility is averse to mean-independent risk.

Aversion to mean-independent risk is closely related to preference for condi-

tional expectations. Utility function U on RS exhibits preference for conditional

expectations under π if U(Eπ(x|F )) ≥ U(x), for every x ∈ RS and every partition

1An exception is when the set of priors is a convex distortion of a probability measure. Then,
the multiple-prior expected utility is a rank-dependent expected utility, and it is distribution
invariant under the underlying probability measure. Marinacci (2002) studies distribution in-
variance of multiple-prior expected utilities on a continuum state space.
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F of the set of states S. Equivalently, U exhibits preference for conditional expecta-

tions if the agent always rejects a mean-independent risk, that is, U(z) ≥ U(z + ǫ)

for every ǫ, z ∈ RS such that ǫ is mean-independent risk at z. It follows from

Theorem 5.1 in Werner (2005) that, if U is quasi-concave, then it is averse to

mean-independent risk under π if and only if it exhibits preference for conditional

expectations under π. Theorem 6.1 in Werner (2005) provides a characterization

of utility functions that are mean-independent risk averse and concave in terms

of superdifferentials: Concave utility function U is averse to mean-independent

risk if and only if for every x there exists φ ∈ ∂U(x) such that if xs = xs′ , then
φs

π(s)
=

φ
s′

π(s′)
.

3. π-Stable Sets of Priors and Risk Aversion.

We first introduce the concept of a π-stable set of priors. Let π ∈ M̊ be a

strictly positive probability measure. For every partition F of states and every

probability measure P ∈ M, we define another probability measure P π
F ∈ M by

P π
F (A) =

k
∑

i=1

π(A|Ai)P (Ai) (6)

for every A ⊂ S, where sets Ai’s are elements of partition F, i = 1, . . . , k. Proba-

bility measure P π
F coincides with P on elements of partition F, but has conditional

probabilities of π within each element of partition F.

Two elementary properties of probability measure P π
F will be repeatedly used:

Lemma 1: For every π ∈ M̊, P ∈ M, x ∈ RS, and every partition F

(i) EP F
π
(x|F ) = Eπ(x|F ),

(ii) if x is F-measurable, then EP F
π

(x) = EP (x).

Set of probability measures P is said to be π-stable if P π
F ∈ P for every P ∈ P

and every partition F. Note that, if P is π-stable, then π ∈ P.

The simplest examples of π-stable sets are the singleton set {π} and the set

of all possible priors M. The latter is π-stable for every π ∈ M̊. Bounds on

probabilities of states give rise to π-stable sets of priors. The set

Pl = {P ∈ M : P (s) ≥ γs, ∀s}, (7)
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where γs ∈ [0, 1] are lower bounds on probabilities (such that
∑

s γs ≤ 1), is π-

stable for probability measure π defined by π(s) = γs/γ where γ =
∑

s γs. Note

that Pl = {P ∈ M : P ≥ γπ}, and also Pl = γπ + (1 − γ)∆. The set

Pu = {P ∈ M : P (s) ≤ λs, ∀s}, (8)

where λs ∈ [0, 1] are upper bounds on probabilities (such that
∑

s λs ≥ 1), is π-

stable for π defined by π(s) = λs/λ where λ =
∑

s λs, It holds Pu = {P ∈ M :

P ≤ λπ} and Pu = λπ + (1 − λ)∆.

Since the intersection (and the union) of any two π-stable sets is π-stable, it

follows that the (order) interval of probabilities

[γπ, λπ] = {P ∈ M : γπ ≤ P ≤ λπ}, (9)

where γ ≤ 1 ≤ λ, is π-stable.

Two important classes of π-stable sets - cores of convex distortions and neigh-

borhoods in statistical measures of distance - will be discussed in Sections 4 and

5. We state now our main theorem.

Theorem 1: Suppose that v is concave, P is closed and convex, and π ∈ M̊. The

following conditions are equivalent:

(i) multiple-prior expected utility (1) is averse to mean-independent risk under π,

(ii) P is π-stable,

(iii) for every x there exists P ∈ P(x) such that

if xs = xs′ , then
P (s)

π(s)
=

P (s′)

π(s′)
. (10)

Proof: We first prove that (ii) implies (i). Since P is convex and v is concave,

utility function (1) is concave. By Theorem 5.1 (Werner (2005)) it suffices to show

that it exhibits preference for conditional expectation under π.

Consider an arbitrary partition F. Using Lemma 1, we have

EP [v(Eπ(x|F ))] = EP π

F
[v(EP π

F
(x|F ))]. (11)
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Applying conditional Jensen’s inequality, we obtain

EP π

F
[v(EP π

F
(x|F ))] ≥ EP π

F
[v(x)]. (12)

Combining (11) and (12) and applying the minimum over P to both sides, we

obtain

min
P∈P

EP [v(Eπ(x|F ))] ≥ min
P∈P

EP π

F
[v(x)]. (13)

Since P is π-stable, it follows that the right-hand side of inequality (13) is greater

than minP∈P EP [v(x)]. This shows that multiple-prior expected utility (1) exhibits

preference for conditional expectation under π.

Next we prove that (i) implies (iii). Since function v is concave, it is differen-

tiable except for at most countable many points on the real line. This implies that

for every x ∈ RS, there exists y ∈ RS and γ > 0 such that γxs = v(ys) and v is

differentiable at ys for every s. Using Theorem 6.1 in Werner (2005), condition (i)

implies that there exists P ∈ Pv(y) such that

if ys = ys′, then
P (s)

π(s)
=

P (s′)

π(s′)
. (14)

We note that Pv(y) = P(γx) and P(γx) = P(x). Further, ys = ys′ if and only if

xs = xs′ . Taking all these into account, (14) implies (iii).

Last, we prove that (iii) implies (ii). Since the superdifferential of linear

multiple-prior expected utility (2) at x is P(x), it follows from Theorem 6.1 in

Werner (2005) and condition (iii) that utility function (2) is averse to mean-

independent risk under under π. Suppose by contradiction that P is not π-stable,

so that P̄ π
F /∈ P for some P̄ ∈ P and some partition F . By the separation theorem,

there exists x̂ ∈ RS such that

EP̄ π

F

(x̂) < min
P∈P

EP (x̂) (15)

By Lemma 1, EP̄ π

F

(x̂) = EP̄ [Eπ(x̂|F )]. Further, since P̄ ∈ P, we obtain from (15)

that

min
P∈P

EP [Eπ(x̂|F )] < min
P∈P

EP (x̂) (16)

This contradict preference for conditional expectations under π of linear multiple-

prior expected utility (2). The latter is equivalent to mean-independent risk aver-

sion. This contradiction concludes the proof. 2
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The most important part of Theorem 1 is the equivalence of conditions (i) and

(ii). Condition (iii) should be viewed as a criterion for π-stability of a set of priors.

It will be frequently used in Section 4.

4. Cores of Convex Distortions

Important sets of priors are cores of convex distortions of probability measures.

Let f : [0, 1] → [0, 1] be an increasing and convex function satisfying f(0) = 0 and

f(1) = 1. Set function f ◦ π is the distortion of probability π by f. The core of

f ◦ π is

core(f ◦ π) = {P ∈ M : P (A) ≥ f(π(A)), ∀A} (17)

Multiple-prior expected utility (1) with the set of priors core(f ◦ π) for convex

distortion f can be written as

S
∑

i=1

v(x(i))[f(π{s : xs ≥ x(i)}) − f(π{s : xs ≥ x(i−1)})]. (18)

where we used x(i) to denote the i-th highest value from among all xs, so that

x(1) ≥ x(2) ≥ · · · ≥ x(S). Utility function (18) is the rank-dependent expected

utility axiomatized by Quiggin (1982) and, in the case of linear v, by Yaari (1987).

Proposition 1: If f is convex, then core(f ◦ π) is π-stable.

Proof: Every contingent claim x when treated as random variable on probability

space (S, 2S, π) dominates Eπ(x|F ) in the sense of second order stochastic domi-

nance for every partition F. It is well known (see Yaari (1987), or Lemma 2.2 in

Dana (2005)) that rank-dependent expected utility (18) with linear v and convex

f is monotone decreasing with respect to the second order stochastic dominance.

Therefore

min
P∈core(f◦π)

EP (x) ≤ min
P∈core(f◦π)

EP (Eπ(x|F )). (19)

We apply (19) to x = χA for A ⊂ S. The left-hand side equals f(π(A)) while the

right-hand side is min P π
F (A) over all P in core(f ◦ π). Thus

f(π(A)) ≤ P π
F (A) (20)

for every P ∈ core(f ◦π) and every A and F. This shows that core(f ◦π) is π-stable.

2
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The sets of priors Pl and Pu of Section 3 are examples of cores. It is easy to

see that Pl is the core of fl ◦ π for any convex function fl such that fl(t) = λt for

every t ≤ maxA⊂S,A 6=S π(A) and fl(1) = 1. Pu is the core of fu ◦ π for a convex

function fu given by fu(t) = max{λ(t − 1) + 1, 0} for every t ∈ [0, 1]. Also the

interal [γπ, λπ] is the core of f ◦ π for convex function f = max{fl, fu}.

Proposition 1 and Theorem 1 imply that every rank-dependent expected utility

with concave utility and convex distortion is averse to mean-independent risk.

Yaari (1987) proved (using an inequality of Hardy, Litlewood and Polya) that

rank-dependent expected utility (18) with linear utility v and convex distortion f is

decreasing with respect to the relation of Rothschild-Stiglitz more risky. Therefore

it is also averse to mean-independent risk. Chew, Karni and Safra (1987) proved

that rank-dependent expected utility on the set of all distributions on a real interval

is decreasing with respect to the relation of R-S more risky if and only if utility v

is concave and distortion f is convex. The proof in Chew, Karni and Safra (1987)

(see also Chew and Mao (1995)) relies on Gateaux differentiability of RDEU utility

on the space of distribution.

5. Neighborhoods in Statistical Measures of Distance

For a convex function Φ : R+ → R such that Φ(1) = 0 the statistical Φ-measure

of distance between probability measures P ∈ M and π ∈ M̊ is

dΦ(P, π) =

S
∑

s=1

π(s)Φ
(P (s)

π(s)

)

. (21)

It can be shown that the Φ-measure dΦ is non-negative and a convex function of

P. If Φ is strictly convex, then dΦ(P, π) equals zero if and only if P = π. In general

dΦ is not a metric for it is asymmetric and violates triangle inequality.

A neighborhood of probability measure π ∈ M̊ in Φ-measure of distance is the

set

NΦ = {P ∈ M : dΦ(P, π) ≤ ǫ} (22)

for ǫ > 0. We restrict our attention of neighborhoods that are contained in the

interior of the probability simplex.
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Proposition 2: If Φ is strictly convex and differentiable, then the neighorhood

NΦ of π is π-stable.

Proof: We verify that condition (10) of Theorem 1 holds. For non-deterministic

x the set of minimizing probabilities NΦ(x) consists of unique probability measure

P ∗
x . The first-order conditions for P ∗

x as a solution to the minimization in (5) imply

that

xs − xs′ = λ[Φ′
(P ∗

x (s)

π(s)

)

− Φ′
(P ∗

x (s′)

π(s′)

)

], (23)

for every s, s′ ∈ S, and some λ > 0. From this we obtain that if xs = xs′ , then
P ∗

x (s)
π(s)

= P ∗

x (s′)
π(s′)

, so that condition (10) holds. If x is deterministic, then NΦ(x) = NΦ.

In particular, π ∈ NΦ(x), and hence (10) holds. 2

Example 5.1 (Kullback-Leibler relative entropy.) For Φ(t) = t ln(t),

the Φ-measure of distance is the relative entropy

dΦ(P, π) =
S

∑

s=1

P (s) ln
(P (s)

π(s)

)

. (24)

Neighborhoods in the relative entropy distance have been used as sets of priors in

applications of multiple-prior expected utility by several authors, see Hansen et al

(2002) and Kogan and Wang (2002) and Cao, Wang and Zhang (2003).

Example 5.2 (Gini χ2-index.) For Φ(t) = (t − 1)2, the Φ-measure of distance

is the Gini χ2-index
S

∑

s=1

(P (s) − π(s))2

π(s)
. (25)

Example 5.3 (total variation.) For Φ(t) = |t−1|, the Φ-measure of distance

is the total variation
S

∑

s=1

|P (s) − π(s)|. (26)

Function Φ(t) = |t − 1| is neither strictly convex nor differentiable. Nevertheless,

it is easy to show that total variation (26) has the distance properties common to

strictly convex statistical measures. It is non-negative, convex and equal to zero

only if P = π. Further, total variation neighborhoods of π are π-stable.
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5. Risk Aversion and Unambiguous Events.

Under multiple-prior expected utility, the agent’s probabilistic beliefs about

events are described by the set of probability measures P. A natural definition

(see Nehring (1999)) of an unambiguous event is as such event A ⊂ S that

P (A) = P ′(A) for all P, P ′ ∈ P. Of course, the trivial events, ∅ and S, are al-

ways unambiguous.

It turns out that, if a set of priors - other than a singleton set - permits non-

trivial unambiguous events, then it cannot be π-stable for any π. Thus, the exis-

tence of a non-trivial unambiguous event precludes mean-independent risk aver-

sion.

Theorem 2: If P is π-stable and there exists a non-trivial unambiguous event

A ⊂ S, then P = {π}.

Proof: Suppose by contradiction that P is π-stable, has a non-trivial unam-

biguous event A, and there exists P ∈ P such that P 6= π. Let s be such that

π(s) 6= P (s). Suppose first that s /∈ A. Consider a partition F of S into two sets:

A∪{s}, and its complement. Note that the complement of A∪{s} is non-empty, for

it cannot be that P (A) = π(A), π(s) 6= P (s), and A∪{s} = S. For the probability

measure P π
F defined by (6), we have

P π
F (A) = π(A)

π(A) + P (s)

π(A) + π(s)
6= π(A). (27)

Since P π
F ∈ P, this contradicts the assumption that A is unambiguous. If s ∈ A,

then we consider the complement event Ac instead of A. Event Ac is unambiguous

and s /∈ Ac, so that the above arguments apply. This concludes the proof. 2

For the set of probability priors in our discussion of the Ellsberg paradox in Sec-

tion 1, the event of red ball drawn from the urn is unambiguous. It has probability

1/3. Theorem 2 implies that there is no measure π in the set of priors such that

π-stability holds. Thus, the form of ambiguity of beliefs in the Ellsberg paradox

precludes risk aversion.

7. Remarks.

Euclidean neighborhoods of π are in general not π-stable. An exception is the

case of the uniform probability measure on S for then the Euclidean neighborhood
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coincides with the Gini-index neighborhood which is π-stable by Proposition 2. If

π is not uniform, then one can check that condition (10) does not hold, and hence

Euclidean neighborhoods of π are not π-stable.

For the sets of priors Pl and Pu of Section 3 (see (7) and (8)), one can show that

the probability measure π is the unique measure with respect to which the sets

are π-stable. This is not always so for cores of convex distortions. For instance,

if the probability measure is such that different contingent claims have different

probability distributions and the distortion function is strictly convex, then the

core is π-stable for all probability measures in a small neighborhood around the

reference probability measure.
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