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Abstract

In this paper, I propose a framework for studying market interactions in economies
without assuming that traders are price-takers or Nash players. The model endogenously
derives market power from primitives: endowments, preferences, and cost functions. The
novelty of the approach lies in the treatment of the off-equilibrium behavior of the econ-
omy. A trader correctly anticipates that any deviation from equilibrium quantity will be
followed by a price change sufficient to encourage all other traders to absorb the devia-
tion. This price response defines a downward sloping demand curve facing each trader,
and traders take into account the ability to affect prices in equilibrum, but also when
absorbing unilateral deviations. I show that equilibrium defined in this way exists in
economies with smooth utility and cost functions, is generically locally unique and gener-
ically Pareto inefficient. The framework suggests that trader’s market power depends
positively on the convexity of preferences and cost functions of the trading partners.
Consequently industries with nearly constant marginal costs are fairly competitive, even
if the number of firms is small. In addition market power of different traders reinforce
each other. The model predicts the following effects of non-competitive trading: the vol-
ume of trade is reduced and price bias can be positive or negative depending of the third
derivatives.
Unlike the Marshallian approach, the framework makes it possible to determine market

structure in a coherent way even if the number of operating firms is small. It also defines
equilibrium prices and quantities when there are increasing returns to scale or a bilateral
monopoly.
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1 Introduction

The problem of the exchange of goods between rational traders is at the heart of economics.
The study of this problem, originating with the work of Walras, and later refined by Fisher,
Hicks, Samuelson, Arrow and Debreu provides a well-established methodology for analyz-
ing market interactions in an exchange economy. The central concept of this approach is
competitive equilibrium, in which it is assumed that individual traders cannot affect prices.
Price taking behavior is often justified by the informal argument that the economy is so large
that each individual trader is negligible and hence has no impact on price. This argument
does not apply to economies in which the number of traders is small or when the traders are
heterogeneous. A vast amount of empirical evidence shows that a significant fraction of total
trade in financial markets is accounted for by a relatively small group of large institutional
traders who do recognize their price impact1. The goal of this paper is to propose a general
equilibrium framework that models economies so small or heterogeneous that it does not
make sense to assume that all traders are price takers.

Economic thinking about market power has long been shaped by the game-theoretic tra-
dition that started with the work of Cournot and Bertrand. Their models treat only some
of the traders as strategic players, and therefore a priori assume away the market power of
some of the market participants. My approach does not impose any a priori restriction on
traders’ price impacts, but derives them from preferences and endowments. Neither does
it discriminate between consumers and producers or more generally buyers and sellers. In
addition, the game-theoretic models are highly sensitive to the behavioral assumptions. De-
pending on the choice of a strategy space (prices, quantities or supply functions), such models
predict outcomes with prices varying from competitive to monopolistic. The indeterminacy is
associated with the fact that Nash equilibrium does not require that off-equilibrium behavior
be rational. In my model, all traders are assumed to react optimally to prices in and out of
equilibrium, which allows me to pin down market power for traders.

There are three building blocks in the proposed framework: the rational choice of a
consumer and a firm with price impact; the off-equilibrium pricing mechanism; and the
concept of equilibrium. I introduce these concepts now.

First, in the proposed framework, traders recognize the impact of their trades on prices
and take this into consideration when maximizing preferences or profits. The novel feature
of the consumer’s problem is that due to the price impact, the set of all affordable bundles, a
budget set, is strictly convex. More importantly, the budget set depends not only on observed
prices but also on the demand chosen. Similarly, firms’ iso-profit curves are strictly convex
and depend on the selected trade. Because of such endogeneity, I cannot use Walrasian choice
theory. In its stead, I propose an alternative concept of demand, stable demand, defined as
an optimal choice of trade given the budget set or profit function defined by this choice.

The second and key ingredient of the model is the behavior of the economy after a
unilateral deviation by a trader. The need for defining such behavior was recognized by
Shapley and Shubik [1977] in their game-theoretic model of exchange. In order to use a
market clearing condition as a principle determining disequilibrium prices, they let traders

1For the evidence on price impacts of institutional traders, see Kraus and Stoll [1972], Holthousen Leftwich
and Mayers [1987, 1990], Hausman, Lo and McKinlay [1992], Chan and Lakonishok [1993, 1995] and Keim
and Madhavan [1996].
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make decisions about nominal rather than real levels of consumption. A drawback of their
approach is that it requires that consumers choose how much to spend in nominal terms
before they learn the prices, so that they make suboptimal decisions off equilibrium. In this
paper, a deviation from equilibrium consumption is followed by a change of prices which
is sufficient to encourage other households to absorb the excess supply (or demand). The
off-equilibrium market response defines an inverse demand function for each trader and thus
her market power.

Finally I redefine the concept of equilibrium so as to incorporate traders’ beliefs about
their market power. It can be summarized as follows: i) an equilibrium allocation is such that
all markets clear; ii) agents chose optimally their trades, given their beliefs about the effects on
prices; and iii) in their conjectures, traders correctly recognize these impacts, given that prices
tend to clear the market off-equilibrium. The proposed concept of equilibrium is conceptually
similar to a consistent conjectural variation equilibrium introduced by Bresnahan [1981] in a
duopoly model2 also studied by Perry [1982] and Boyer and Moreaux [1983], or to a rational
conjectural equilibrium in Hart [1985]. In equilibrium from this paper, however, traders
have conjectures about the price impacts–price changes as a function of off-equilibrium
deviations rather then absolute levels of trade. In addition unlike in Bresnahan [1981] traders
make consistent conjectures not about the response of one rational opponent who maximizes
preferences, but about the outcome of the interactions in an economic system with many
heterogenous traders. The concept of equilibrium used in this paper is defined for an abstract
game in Weretka [2005c] where I call it a “perfect conjectural equilibrium”. In the existing
literature on conjectural equilibrium, the equilibria may not exist or be locally unique. Perfect
conjectural equilibrium does always exist in oligopolistic settings with differentiable utility
and convex cost functions, and it is generically determinate.

I use the model to study the following phenomena in a general equilibrium framework:
• The determinants of market power.

The model predicts that the price impact captured by the slope of a demand faced by a
trader, is directly related to the convexity of the preferences or cost functions of the trading
partners. The traders’ price impacts mutually reinforce each other and they depend negatively
on the number of traders. As do duopoly models with consistent conjectures, my model
predicts outcomes that are more competitive than those of the Cournot model, and therefore
it suggests that industries with very high Herfindahl-Hirschman Index (HHI) may be fairly
competitive when the convexity of the technology is low.
• The effects of non-competitive trading on the allocation, prices and welfare.

Market power provides incentives strategically to reduce trade in order to affect price, so
that non-competitive trading is associated with a smaller then competitive volume of trade.
The model does not give sharp predictions about the effects of non-competitive trading on
prices. The prices can be above, below or equal to the competitive ones, depending on the
specification of the economy. It is shown, however, that in a pure exchange economy with
identical utility functions, the sign of the price bias equals to the sign of the third derivative
of the assumed utility functions. The welfare cost is not shared uniformly by the traders.

2The concept of conjectural variation was first introduced by Bowley [1924] in the model of the Cournot
duopoly and Frish [1933]. The idea of consistent conjectural variation equilibrium was studied by Laitner
[1980], Bresnahan [1981], Perry [1982], Kamien and Schwartz [1983] and Boyer and Moreaux [1983]. For a
recent survey of the theory, see Charles Fiuguers at al [2004].
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• The impact of ownership structure on the equilibrium outcome.
Contrary to the Walrasian model, maximizing profit production is not optimal from the

perspective of each individual shareholder. This is because apart from receiving dividends,
owners would like to use the firm as a device to affect market prices. In other words, having
control over a firm is associated with the advantage of having additional market power. The
complete definition of a firm must therefore include a description of how managerial decisions
are made. In this paper I study the implications of two extreme types of ownership: sole
proprietorship, and for-profit corporations.
• Endogenous market structures.

The Marshallian model of long run equilibrium assumes price taking behavior by all
market participants. Consequently, that model is not suitable for studying market structures
in economies with a small number of firms. My model does not define traders as competitive
or monopolistic and consequently it nests various types of market interactions, and allows
diverge market structures to arise endogenously within the same framework. The other
advantage of the framework over the Marshallian approach is that it defines equilibrium
prices and quantities when producers have increasing returns to scale and there is a bilateral
monopoly.

A number of papers have studied market power in a general equilibrium framework. In
pioneering work, Negishi [1960]3 introduced monopolistically competitive firms into a general
equilibrium model. In his setup, the demands faced by producers are downward sloping
but exogenous. Dixit and Stiglitz [1977] and Hahn [1977] made the demands endogenous
by including competitive consumers in a simple model of monopolistic competition. These
three models make a priori assumptions about the market power of the traders and assume
that the consumers have no market power power. This criticism extends to models studied
by Gabszewicz and Vial [1972], Roberts and Sonnenschein [1977] and Hart [1979]. Finally,
the theoretical approach is most closely related to the literature on rational conjectures in
a static framework, among others Hahn [1978], Bresnahan [1981], Perry [1983], and Hart
[1983], [1985].

The rest of this paper is organized as follows. In Section 2, I define the economy and
discuss its assumptions. In Section 4, I model the choices of a consumer and a firm with an
exogenously given price impact. For this model, I first define a budget set and characterize
its properties. Next, I analyze a choice of a rational consumer. In Section 5, I discuss a firm’s
rational choice. In Section 6, I endogenize price impacts, using the principle of off-equilibrium
market clearing. Section 7 is the heart of the paper. In this section, I formally define a concept
of an equilibrium in an exchange sub-economy and give the theoretical results on the existence,
generic local uniqueness, (in)efficiency, convergence and testability of an equilibrium. Section
8 studies the effects of non-competitive trading on equilibrium allocation, prices and welfare
in several economies and in Section 9 I discuss the determinants of market power. Section
10 shows how other models of non-competitive trade relate to the proposed framework and
Section 12 discusses how tax systems can re-establish Pareto efficiency of the equilibrium
allocation (analog of the Second Welfare Theorem).

I adopt the following notation: xi ∈ RL is an L dimensional column vector. The notation
xi ≥ 0 means that each element of the vector is non-negative, xi > 0 denotes a non-negative,

3A similar model of monopolistic competition can be found in Arrow and Hahn [1971].
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non-zero vector, and xi >> 0 is a vector with all strictly positive elements. RL
+ (RL

++) denotes
the set of non-negative (strictly positive) L−vectors. For any smooth function u : RL → R,
Dui denotes the gradient (or Jacobian) of u, and D2ui is the Hessian of this function. The
proofs of all results are in the Appendix.

2 A Private Ownership Economy

I study market interactions in a small group of traders that form a private ownership economy
E , defined as follows: E is a standard, 1 -period, L - good, exchange economy, composed of I
consumers and J producers. L is the set of all types of traded commodities, I is the set of all
consumers and J is a set of firms. Superscript i ∈ I, e.g. xi indicates that the variable refers
to the ith consumer, jth superscript denotes variables of jth firm and subscript l ∈ L refers
to the lth commodity. In particular, xil ∈ R+

¡
eil ∈ R+

¢
denotes a consumption (endowment)

of the lth good by ith consumer, xi ∈ R L
+ (ei ∈ RL

++) is a consumption (endowment)

vector of all goods, and x ∈ RL×I
+

³
e ∈ RL×I

++

´
is an allocation (initial allocation) of goods

across consumers. Each consumer is endowed with the claims (shares) to the profits of the
firms. Vector θi ∈ [0, 1]J denotes the share portfolio of consumer i, and θ =

©
θi
ª
i∈I specifies

portfolios for all consumers. For consumer i, her trade is defined as a net demand til ≡ xil−eil,
and for firm j, it is a negative of a supply tj = −yj . In the proposed framework, “markets” do
not discriminate among the consumers and firms and both types of market participants are
modelled as traders. Therefore it is convenient to introduce the following notation: The set
of all traders in the economy is denoted by N ≡ I ∪ J , the number of traders is N = I + J
and the typical trader is indexed by n = i, j.

Consumer i has rational preferences over consumption of goods given by a utility function
ui : RL

+ → R. The vector function u specifies utility functions for all consumers, u =
©
ui
ª
i∈I .

Another commodity is a numeraire or a unit of account. If numeraire mi ∈ R is spent
optimally outside of E , it gives a positive constant marginal utility4. In other words, the
permanent income hypothesis holds. Without loss of generality, marginal utility of numeraire
is normalized to 1, and trader’s endowment of numeraire good is equal to zero5.

Next I give the assumptions on E :
A1) Household i maximizes a quasi-linear, separable6 utility function

(1) U i
¡
xi,mi

¢
= ui

¡
xi
¢
+mi =

X
l∈L

uil
¡
xil
¢
+mi.

A2) Differentiability: ui is twice continuously differentiable, for all i ∈ I
A3) Strict monotonicity: Dxu

i >> 0, for all xi ∈ RL
++ and i ∈ I

4Numeraire consumptionmi can be positive or negative. Its negative value could be interpreted as obtaining
the numeraire from selling goods outside of the economy and spending it in the economy.

5Roberts and Sonnenchein [1977] demonstrated that equilibrium with monopolistic firms may fail to exist for
more general utility functions in the Cournot-Chamberlain-Walras model. This is also the case in the presented
framework. The quasi-linearity assumption sets income effects to be equal to zero and hence guarantees a
well-behaved demand functions.

6An example of a natural application of the framework with separable preferences is a trade under risk,
with von Neumann-Morgenstern expected utility function. The model then becomes the financial one.
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A4) Concavity: D2
xu

i is negative definite for all xi ∈ RL
++ and i ∈ I

In the proposed model, the concept of equilibrium relies critically on the differentiability
of the demands. Therefore I include a condition assuring the interiority of potential equilibria.
The condition is as follows:
A5) Interiority: for any good l ∈ L, and i, i0 ∈ I

(2) lim
xil→0

∂uil
¡
xil
¢

∂xl
>

∂ui
0
l

³
ei
0
l

´
∂xi

0
l

.

The interiority condition A5 gives a common lower bound for the marginal utility at zero.
Note that such a condition is weaker than the standard Inada condition: limxil→0

∂uil
¡
xil
¢
/∂xl =

∞.
In this paper, I restrict attention to firms producing non-numeraire commodities using a

numeraire as an input. (This assumption, along with the separability of the utility functions,
is relaxed in a more technical paper, Weretka [2005a]). Vector yjl ∈ R L

+ denotes the level of
production of good l, and the profit of this firm is given by πj . A technology of producer j
is given by a separable cost function

(3) f j
¡
yj
¢
=
X
l∈L

f jl

³
yjl

´
,

where each f jl

³
yjl

´
specifies the cost of production yjl in terms of a numeraire. Function f j

satisfies the following assumptions:
A6) Differentiability: f j is twice continuously differentiable
A7) Zero inaction cost: f jl (0) = 0

A8) Strict monotonicity: ∂f jl
³
yjl

´
/∂yjl > 0 (and limyjl→0

∂f jl

³
yjl

´
/∂yjl = 0)

A9) Convexity: ∂2f jl () /∂
³
yjl

´2
> 0 (and 0 < lim

yjl→0
∂2f jl

³
yjl

´
/∂
³
yjl

´2
<∞

Vector function f =
©
f j
ª
j∈J specifies the cost functions for all firms j ∈ J . Formally, a

private ownership economy E is given by

(4) E = (u, e, θ, f) ,

where there are two or more traders, N = I + J ≥ 2, with at least one consumer I ≥ 1. An
economy E satisfying assumptions A1-A9 is called smooth and separable. Now I introduce a
concept of market power of a trader.

3 Market Power

Market power of a trader n = i, j, is defined as her ability to affect prices by varying the
demand. In order to make this idea more precise, suppose that in equilibrium, a trader
observes a non-numeraire price vector p̄ ∈ RL

+, while demanding t̄
n ∈ RL. The price impact

of trader n is a relation between the price change of non-numeraire goods, ∆p = p− p̄, and
the trade deviation, ∆tn = tn − t̄n. Formally this relation is denoted by ∆pn (∆tn), a map
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from RL to RL. Provided that ∆pn (tn − t̄n) · tn is concave, I can restrict attention to models
of price impact that are linear. I may do so, because even if traders face a nonlinear demand,
the only information they use is the first-order derivative of this function evaluated at the
equilibrium trade, which is, of course, the slope of a linearized demand7. Linear ∆pn (∆tn)
can be written as

(5) ∆pn (∆tn) = M̄n∆tn = M̄n (tn − t̄n) ,

where M̄n is an L × L price impact matrix, which will be positive definite and symmetric.
By M̄ =

©
M̄n

ª
n∈N , I denote the vector of price impact matrices for all traders, and t̄ =

{t̄n}n∈N are their equilibrium trades. A typical entry of M̄n, M̄n
k,l is a change of the price of

good k, caused by an increase of the demand for good l by one unit. When making decisions,
traders take their price impact matrices M̄n as given. With equilibrium values of p̄, t̄n and
M̄n, trader n faces a linear inverse demand function

(6) pp̄,t̄n,M̄n (tn) = p̄+ M̄n (tn − t̄n) .

Given the demand function pn
p̄,t̄n,M̄n (·), the total value of non-numeraire trade tn is equal

to pn
p̄,t̄n,M̄n (t

n) · tn. The derivative of pn
p̄,t̄n,M̄n (t

n) · tn says how much the cost of trade would
increase if the demand went up marginally, or equivalently, what is the benefit in terms of
a numeraire from the marginal reduction of a non-numeraire demand. Consequently, the
derivative is a marginal revenue from selling the goods on a market. If M̄ i is symmetric, the
vector of marginal revenues8 is given by

MR (tn) ≡ Dtn

³
pnp̄,t̄n,M̄n (t

n) · tn
´

(7)

= p̄+ M̄n (2tn − t̄n) .

In particular, at the equilibrium trade t̄n, such vector becomes

(8) MR (t̄n) = p̄+ M̄nt̄n.

(Observe that t̄n is defined as a demand and hence MR (t̄n) is increasing in t̄n.) It is conve-
nient to define a trade, t̂n, for which marginal revenue is equal to zero, MR

¡
t̂n
¢
= 0. If M̄n

is positive definite, then solving (7) gives

(9) t̂i =

h
t̄n −

¡
M̄n

¢−1
p̄
i

2
.

Trade t̂n maximizes total revenue from the non-numeraire trade pp̄,t̄n,M̄n

¡
t̂n
¢
·t̂n (or minimizes

the total cost).
Informally the equilibrium in the economy is defined as a triple

¡
p̄, t̄, M̄

¢
that satisfies

the following four conditions: 1) for each consumer i, trade t̄i maximizes utility, among all
affordable trades, given the inverse demand function pi

p̄,t̄i,M̄i (·); 2) for any firm j, its trade

7When ∆pn (tn − t̄n) · tn is not concave, then the linearization is not without loss of generality.
8 I call it marginal revenue and the name marginal cost I reserve for the marginal cost of production of

non-numeraire goods by firms.
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maximizes profit, given pj
p̄,t̄j ,M̄j (·); 3) prices are such that all markets clear; and 4) the

conjectured price impacts M̄ are consistent with the true price impacts for all traders. In
sections 4 and 5, I introduce a model of a rational choice of a consumer and a firm with
market power.

4 Consumer’s Choice

The section on consumer choice consists of two parts: In the first part I discuss the geometry
and the properties of a budget set and in the second part I define a stable choice of a consumer
on this set.

4.1 The Geometry of a Budget Set

In this section, all three elements of an equilibrium
¡
p̄, t̄, M̄

¢
are considered as exogenous and

predetermined. A budget set B(p̄, t̄i, M̄ i) of consumer i is a set of all affordable trades ti,
given a downward sloping demand function (6), or alternatively, given p̄, t̄i and M̄ i. The set
is determined by the budget constraint

(10) pip̄,t̄i,M̄i

¡
ti
¢
· ti +mi ≤ θi · π.

Inequality (10) implies that a non-numeraire demand is financed either by income from shares
or a negative consumption of numeraire. The only departure from the Walrasian approach is
that in (10), prices are not constant, but depend linearly on trade, and therefore the budget
constraint is quadratic in ti and linear in mi. Given the strictly monotone preferences, the
equilibrium consumption of numeraire is given by

(11) m̄i = θi · π − t̄i · p̄.

There are three important trade points that satisfy (10) with equality, namely: the autarky
trade,

¡
ti,mi

¢
=
¡
0, θi · π

¢
; the equilibrium trade,

¡
t̄i, m̄i

¢
; and what I call an anchor trade,³

−
¡
M̄ i
¢−1

p̄, m̄i
´
9. The anchor trade has the property that it does not depend on t̄i, and it

will serve as an “anchor” for the family of budget sets defined by various t̄i, but fixed p̄ and
M̄ i. Example 1 illustrates the properties of a budget set.

Example 1 Suppose in an economy there are two non-numeraire goods, and equilibrium
values of p̄, t̄i and M̄ i are

(12) p̄ =

∙
1
1

¸
, t̄i =

∙
1
−1

¸
, M̄ i =

∙
1 0
0 1

¸
, π = 0.

In equilibrium, consumer i exchanges one unit of good 1 for one unit of good 2. With prices
of both goods equal to one, such trade involves no monetary payment, m̄i = −p̄ · t̄i = 0. The
inverse demand, faced by i

(13) pip̄,t̄i,M̄i

¡
ti
¢
=

∙
ti1

ti2 + 2

¸
,

9To see it, observe that for symmetric and positive definite M̄ i, the left hand side of a budget constraint
(10) can be reduced to p̄t̄i + m̄i which, by definition of m̄i, is equal to θi · π.
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implies the following budget constraint (see (10))

(14)
¡
ti1
¢2
+
¡
ti2 + 1

¢2 ≤ 1−mi.

What is the set of all trades that i can afford, given zero consumption of numeraire (mi = m̄i

= 0)? In a two dimensional space
¡
ti1, t

i
2

¢
, equation (14) defines a circle with the center

(0,−1) and the radius r =
√
1−mi = 1 (see Figure 1.a). The autarky point (0, 0), the

equilibrium trade (1,−1) and the anchor trade (−1,−1) are on the boundary of the circle.
Unlike the Walrasian budget set, this set is strictly convex. This occurs for two reasons.
First, by decreasing the consumption of good 1 (increasing market supply), i adversely affects
the marginal revenue from this good. As a result, i receives less and less numeraire per each
additional unit sold. Second, as the consumption/demand of the other good, t2, goes up, its
marginal cost also increases. This implies that fewer units of the second good can be purchased
for each additional unit of numeraire. Both effects imply that, contrary to the Walras case,
the slope of the budget constraint is not constant.

At the trade t̂i1 = 0, the marginal revenue from selling good 1 becomes zero, and the
further increase of its supply results in a reduction of total revenue. Similarly, for t̂i2 = −1,
the marginal revenue from selling good 2 is equal to zero. In fact, t̂i ≡ (0,−1), the trade
for which marginal revenue from selling each of the two goods is zero, is located exactly in
between the equilibrium trade t̄i and the anchor trade −

¡
M̄ i
¢−1

p̄ = (−1,−1), and it is the
center of the circle. The four quadrants of the circle are associated with different combinations
of “signs” of marginal revenue, and the northeast quadrant is characterized by a positive
marginal revenue for each of the goods.

a) 
b)

it1

( )11 −= ,it

( )10 −= ,ˆ it

it2

it1

( )011 ,,),( −=ii mt

it2

( )110 ,,)ˆ,ˆ( −=ii mt

im( )1,1 −−
Anchor 

)( itMR

⎥
⎦

⎤
⎢
⎣

⎡

1
)( itMR

Figure 1. The budget set in (a) two and (b) three dimensional space.

How does the budget set look when mi 6= 0? Figure 1.b shows the set of all affordable trades
in three dimensional space

¡
ti1, t

i
2,m

i
¢
. For an arbitrary but fixed level of numeraire, mi,

inequality (14) defines a circle with the center at (0,−1,mi) and the radius r =
√
1−mi.

Note that r increases as mi becomes more negative, but the rate of increase is decreasing.
This shows that the budget set has the shape of a paraboloid around the axis (0,−1,mi).
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Interestingly, there exists no affordable trade ti when mi > 1. The intuition behind this fact
is as follows: the total revenue (in terms of numeraire) is maximized when marginal revenues
equal zero, which occurs when t̂i = (0,−1) and m̂i = 1. Further increase in the supply of
either of the goods reduces the received amount of numeraire. The trade

¡
t̂i, m̂i

¢
= (0,−1, 1)

is the base point of the budget set.

Now I discuss the properties of a budget set in a general case. A budget constraint
is a quadratic form and therefore for any positive definite, diagonal matrix M̄ i, a budget
set is an elliptic paraboloid10: for any level of mi, it is an ellipse with the center t̂i and a

semi-minor/semi-major radius rl =
q
(m̂i −mi ) /M̄ i

l,l, where M̄
i
l,l is the l

thdiagonal entry

of M̄ i. (See Figure 2.) The maximal revenue from non-numeraire trade is attained at t̂i,
which determines a base of the budget set. The numeraire consumption at this point is given
by m̂i ≡ −t̂i · pi

p̄,t̄i,M̄i

¡
t̂i
¢
+ θi · π, which is the maximal possible consumption of numeraire

available to i. t̂i is located between the average of the equilibrium trade t̄ and the anchor
trade −

¡
M̄ i
¢−1

p̄, as in Figure 1a.

 

it̂

it2

1r
2r

it1

Figure 2. Elliptic budget set

In the non-competitive setting, the vector normal to the surface of a budget set deter-
mining the slope of a budget set is given by

(15)
µ

MR
¡
ti
¢

1

¶
where the marginal revenue is defined as in (7). At the equilibrium trade

¡
t̄i, m̄i

¢
, the normal

vector becomes

(16)
µ

p̄+ M̄nt̄n

1

¶
.

10 In the case of more than two non-numeriare goods, it is the extension of an elliptic paraboloid to a higher
dimensional space.
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Note that at t̄i, the normal vector is different from (p̄, 1), the actual price at which goods
are traded. Intuitively, a marginal change of a trade, ∆ti, raises the total spending directly
by ∆ti · p̄. In addition, ∆ti changes prices by ∆p = M̄ i∆ti, and therefore it increases the
marginal spending on all goods that are traded by ∆p· t̄i. The constant total spending implies

0 = ∆ti · p̄+∆p · ti +∆mi =(17)

= ∆ti · p̄+∆ti · M̄ t̄i +∆mi =

=

µ
∆ti

∆mi

¶
·
µ

p̄+ M̄ it̄i

1

¶
.(18)

At the autarky trade t̄i = 0, the slope is given by

(19)
µ

p̄− M̄ it̄i

1

¶
.

In this case, the slope is different from (p̄, 1) because at the autarky trade, the prices are
exactly equal to p̄− M̄ it̄i. Finally, when the price impact is equal to zero, M̄ i = 0, as in the
Walrasian framework, the vector normal to the budget set coincides with the vector of prices
for all trades.

Apart from its shape, the other feature of a budget set that distinguishes it from a
Walrasian budget set is that it depends endogenously on the choice of trade. This point is
made clear in the next section.

4.2 Stable Consumer’s Choice (of Trade)

In this section, I define a stable non-numeraire trade of consumer i, t̄i, given observed values
of M̄ i and p̄. The notion of stability replaces the optimality condition in the Walrasian
model. Intuitively, t̄i is stable at p̄ and M̄ i, if t̄i, together with the implied consumption of
numeraire, m̄i = −t̄i · p̄, maximizes utility among all trades that are affordable, given the
inverse demand function pi

p̄,t̄i,M̄i (·).

Definition 1 The consumer’s trade t̄i is stable at p̄ and M̄ i if

(20) U(t̄i + ei, m̄i) ≥ U(ti + ei,mi),

for all
¡
ti,mi

¢
∈ B(p̄, t̄i, M̄ i).

It is theoretically possible that two trades exist, t̄i and t̄0i stable at p̄, M̄ i, and one of
them is strictly better than the other. This might occur because the budget set B(p̄, t̄i, M̄ i)
is endogenous with respect to a stable trade t̄i, and t̄0i does not necessarily have to belong to
that set. In other words, the stable trade is not simply an optimal response to observed p̄ and
M̄ i. Rather it is an optimal response to the observed triple (p̄, t̄i, M̄ i), as all three elements
are needed to determine affordable alternatives completely.

More formally, the stable trade can be interpreted as a fixed point of a procedure, mapping
the set of non-numeraire trades into itself, t0i → t00i, in the following way: Given p̄ and M̄ i,
and hence B(p̄, t0i, M̄ i), find t

00i that maximizes the utility on that set (see Figure 3.a). Since
t00i defines a new budget set (see Figure 3.b), t00i does not have to be stable, as there might
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be some better choice in B(p̄, t00i, M̄ i). In fact, t00i is stable at p̄ and M̄ i, if and only if it is
a fixed point of the mapping from t̄i to t0i. Because of the dependence of a budget set on
an optimal choice of t̄i, neither existence nor uniqueness of t̄i is guaranteed by the standard
arguments that use the Weierstrass theorem and strict concavity.

 a) 
b)

it1

it2

it ''

),',( ii MtpB

it'
it1

it2

it ''

),',( ii MtpB

it'

it '''

Figure 3. Optimal choice on (a) B
¡
p̄, t̄0i, M̄ i

¢
and on (b) B

¡
p̄, t̄00i, M̄ i

¢
.

The next proposition establishes the existence and the uniqueness of a stable trade t̄i in
a smooth and separable economy.

Proposition 1 In a smooth and separable economy, for any positive definite diagonal M̄ i

and p̄ ≥ 0, there exists a unique t̄i that is stable at p̄ and M̄ i.

The necessary condition for interior t̄i to be optimal on B(p̄, t̄, M̄ i) is the tangency of a
budget set with an upper contour set of the utility function at

¡
t̄i, m̄i

¢
. Since the marginal

utility of numeraire and its price are always equal to one, the tangency condition reduces to

(21) Dui
¡
t̄i + ei

¢
=MR

¡
t̄i
¢
= p̄+ M̄ it̄i.

Proposition 1 assures that the system (21) has a unique solution, and hence there exists a
stable trade function th

¡
p̄, M̄

¢
mapping vector of non-negative prices and strictly positive

definite, diagonal matrices into stable trades. Corollary 1 characterizes the properties of this
function.

Corollary 1 In a smooth and separable economy, a stable trade function t̄i
¡
p̄, M̄ i

¢
is con-

tinuous for all p̄. This function is also differentiable for all p̄ and M̄ i, such that the trade is
interior, that is t̄i

¡
p̄, M̄ i

¢
>> −ei.

Equation (21) implicitly defines a stable trade function for any interior trade. Its deriva-
tive with respect to price is equal to

(22) Dpt
i
¡
p̄, M̄ i

¢
= −

¡
M̄ i −D2ui

¢−1
.
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The response of a non-numeraire stable demand to price can be decomposed into two effects:
a substitution effect associated with the inverse of the Hessian of a utility function, and a
strategic effect, a price impact of i on prices, M̄ i.

Gossen’s Law asserts that when the choice of the Walrasian consumer is optimal, the
marginal rate of substitution must coincide with the price ratio. The tangency condition
from (21) allows me to extend this result to a non-competitive setting. The Generalized
Gossen’s Law says that the marginal rate of substitution is equal to a ratio of marginal
revenues:

(23) MRSl,l0
¡
t̄i
¢
=

MRl

¡
t̄i
¢

MRl0 (t̄i)
.

When traders do not have price impacts, and hence M̄ i = 0, condition (23) collapses to
standard Gossen’s Law.

Another implication of condition (21) is that consumers with strictly monotone preferences
chose demands for which marginal revenue is strictly positive (and equal to marginal utility).
This implies that the relevant part of the budget set consists only of trades satisfying ti > t̂i.
In Figure 1, this part of the budget set is marked by a bold line. Consequently, consumers
operate solely on the elastic part of the faced demand.

5 Firm’s Choice

Modeling non-competitive firms in a general equilibrium framework is associated with two
complications. The equilibrium outcome may vary depending on in which goods firms transfer
profits to their shareholders. In addition, individual owners typically do not agree on an
optimal production plan11 for the firm. I discuss these complications in detail in the following
paragraphs.

In a Walrasian equilibrium, price taking behavior assures that marginal production cost is
equal to the marginal utilities of the consumers. When traders have market power, however,
in equilibrium there is a wedge between the two values. If consumers are also shareholders,
a gap creates natural incentives to transfer non-numeraire goods from a firm directly to its
owners, and to bypass the markets. For example, shareholders of General Motors would
benefit from receiving their dividends in cars rather than in dollars12.

In addition, even if the dividends are paid solely in terms of numeraire, there does not
exist one objective function for the firm that all shareholders would agree on. In particular
the level of production maximizing profit does not coincide with the optimal production plan
from the perspective of each individual shareholder. This is because apart from receiving
dividends, each consumer is tempted to use the firm as a leverage to profitably affect market
prices. In the General Motors example, shareholders benefit from increasing the supply of
cars above the profit maximizing level if they buy cars. This is because at the production

11For example, this problem was recognized by Gabszewicz and Vial [1972], who studied monopolistic
interactions in the Cournot-Chamberlain-Walras framework.
12Paying dividends in terms of non-numeraire goods (at a marginal cost) is to some extent similar to a

monopoly price discrimination. The owners, apart from buying goods on the market, obtain them directly
from the firm at the discounted price.
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maximizing profit, increasing the supply only has a second order negative effect on profit,
while the benefit from a lower price of a car is of the first order magnitude.

A complete characterization of a firm must specify which goods can be transferred to its
owners as dividends and what the objective of a firm is. In the case of a sole proprietorship,
the firm should be expected to maximize a utility of the owner and there should be no
restrictions on transfers of non-numeraire commodities. The goal of (for profit) corporations
(independent legal entities) is to make a profit. In addition, corporations do not transfer any
other commodities to their owners but money.

5.1 Sole Proprietorship

A firm owned by one consumer can be modeled indirectly by modifying the preferences of an
owner. Suppose the utility of a consumer-owner is ui (·). The total amount of non-numeraire
at the consumer’s disposal is equal to

(24) ēi = ei + yi,

where ei is the initial endowment and yi is a production level. For any value t̄i, trader’s
utility is given by ui

¡
t̄i + ei + yi

¢
. Since non-numeraire transfers between the owner and the

firm are feasible, for any fixed t̄i the optimal production plan assures the equality of marginal
utility and marginal cost of production13. Otherwise, the owner would benefit from adjusting
the production to match the two values, without affecting t̄i. The equality condition

(25) Dui
¡
t̄i + ei + yi

¢
= Df i

¡
yi
¢

defines a smooth policy function y
¡
t̄i
¢
, which is an optimal level of production for arbitrary

value of trade. The optimal production is negatively correlated with trade t̄i. This is because
higher supply on the market (and hence lower ti) is partially offset by an increased level of
production. The value function defined as

(26) ûi
¡
t̄i
¢
= u

¡
t̄i + ei + yi

¡
t̄i
¢¢

is increasing concave and smooth. If the assumptions A1-A9 are satisfied, the value function
ûi
¡
t̄i
¢
is also additively separable. This shows that firms owned by individual consumers-

owners can be modeled within the framework in a pure exchange economy, with consumers-
owners’ utility functions ui (·) replaced by the value functions ûi

¡
t̄i
¢
.

5.2 Corporations

In this paper I focus on incorporated firms. Such firms maximize profits in terms of numeraire
and pay dividends exclusively in this good (money). Profit of incorporated firm j is given by

(27) πj
p̄,t̄j ,M̄j

¡
tj ,mj

¢
= −

³
pj
p̄,t̄j ,M̄j

¡
tj
¢
tj +mj

´
.

By convention, mj is money demanded by firm j and trade tj is a negative of the supply
tj ≡ −yj , and hence the profit function has a minus sign. With the equilibrium values of
13The necessity of equality of the marginal utility and marginal cost for any value of trade is analogous to

the cost minimization for any value of production.
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p̄, t̄j and M̄ j , equation (27) defines a map of iso-profit curves. In Example 2, I discuss the
properties of such a map.

Example 2 Consider the following equilibrium price, trade and price impact:

(28) p̄ = 1, t̄j = −1, m̄j = 0.5, M̄ = 1.

In equilibrium, a firm sells one unit of non-numeraire for one dollar, and hence its profit is
π̄j = 0.5. The inverse demand faced by a firm is given by

(29) pj
p̄,t̄j ,M̄j

³
tjl

´
= 2 + tjl = 2− yjl ,

and the profit function is given by

(30) πj
p̄,t̄j ,M̄j

³
th,mj

´
= −

³
2 + tjl

´
tjl −mj .

The iso-profit curves are depicted in Figure 4 (in inverted space
¡
−mj ,−tj

¢
). For any value

of profit πj, equation (30) implicitly defines a corresponding iso-profit curve. In the Walrasian
framework it is a straight line. With non-zero price impact, however, it is a parabola. The
intuition is analogous to that behind the parabolic shape of a consumers budget set. The
increased supply of a non-numeraire commodity adversely affects its price and therefore the
marginal revenue is decreasing. At the trade t̂jl = −1, marginal revenue becomes zero and the
further increase of the supply reduces total revenue. The zero profit parabola passes through
the inaction point (0, 0), and separates all profitable trades (all trades to the right of it) from
not-profitable ones (all trades to the left). Finally, equilibrium profit is determined by the
intersection point of the equilibrium iso-profit parabola and the numeraire axes.

The general properties of the iso-profit map are as follows. Similar to a consumer’s budget
constraint, profit function (27) is quadratic in tj and linear in numerairemj , and therefore iso-
profit curves are paraboloids. For any level of profit, the iso-profit surface bends backwards
at the zero marginal revenue trade t̂j . The iso-profit paraboloid associated with no profit is
always passing thorough the inaction point (0, 0), and trades in the interior of this paraboloid
are associated with a positive profit. The distance along the numeraire axes between π̄j = 0
manifold and any other iso-profit paraboloid determines the value of profit of the curve. The
vector normal to any iso-profit curve is equal to a negative of a marginal revenue

(31) −
µ

MR
¡
tj
¢

1

¶
.

The iso-profit map depends on the equilibrium choice of trade. Consequently, as in the
case of consumers, the Walrasian optimality condition must be replaced with the notion of
stability.
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Figure 4. Iso—profit map and the firm’s stable trade.

5.3 Stable Firms’s Choice (of Trade)

A stable trade of a firm is defined in a similar way to the stable trade of a consumer. Trade
t̄j is stable at observed values of M̄ j and p̄, if t̄j together with the required level of numeraire
input to produce it

(32) m̄j ≡ f j
¡
−t̄j

¢
maximizes the profit among all trades technologically feasible, given the inverse demand
function pj

p̄,t̄j ,M̄j (·) .

Definition 2 The firm’s trade t̄j is stable at p̄ and M̄ j, if

(33) πj
p̄,t̄j ,M̄j

¡
t̄j , m̄j

¢
≥ πj

p̄,t̄j ,M̄j

¡
tj ,mj

¢
,

for all
¡
tj ,mj

¢
such that

(34) mj ≥ f j
¡
−tj

¢
and tj ≤ 0.

The firm’s objective function (27) is not fixed, as the demand function depends on a stable
trade t̄j . The endogeneity of the objective function implies that t̄j is defined as a fixed point
rather than a simple maximand, and hence I need to give the results on its existence and
uniqueness. The next proposition establishes the existence of a stable trade function t̄j (·) in
a smooth and separable economy.

Proposition 2 In a smooth and separable economy, for any positive definite diagonal M̄ j

and p̄ ≥ 0, there exists a unique trade function t̄j
¡
p̄, M̄ j

¢
≤ 0 that is stable. The function

t̄j
¡
p̄, M̄ j

¢
is differentiable for all p̄ and M̄ j such that t̄j

¡
p̄, M̄ j

¢
<< 0.
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At the stable trade a production set must be tangent to iso-profit curve and hence their
normal vectors must be colinear. Formally the stable demand function is implicitly defined
by the condition that the marginal revenue is equal to the marginal cost

(35) Df j
¡
−t̄j

¢
=MR

¡
t̄j
¢
= p̄+ M̄ j t̄j ,

and therefore the derivative of a stable demand function with respect to price is given by

(36) Dpt̄
j
¡
p̄, M̄ j

¢
= −

¡
M̄ j +D2f j

¢−1
.

6 Consistency of M̄

Suppose (p̄, t̄, M̄) is such that all markets clear and t̄n is stable at p̄ and M̄n, for any n = i,
j. In this section, I address the following question: What is a reasonable system of impact
matrices M̄, at (p̄, t̄)? It is natural to assume that the market power conjectured by each n
should coincide with the true response of market prices to off-equilibrium trade deviation of
n. However, as Shapley and Shubik [1977] pointed out, the off-equilibrium behavior of the
economy is not defined in competitive equilibrium theory. Here I propose the mechanism
based on the premise that the markets clear both in and out of equilibrium. In particular,
after any unilateral off-equilibrium deviation by trader n, prices adjust in order to encourage
other traders to absorb the deviation and keep demand equal to supply. Such a price response
to the deviation is considered here to be the true price impact of n. The remaining traders
respond optimally to prices both in and out of equilibrium. I will now make precise the idea
of disequilibrium market clearing.

The disequilibrium demand deviation by n is given by

(37) ∆tn = tn − t̄n.

If t̄n is interior, then ti ≥ −ei, or tj ≤ 0 is not binding for any tn sufficiently close to t̄n, and
trader n can consider a deviation in any possible direction.

It is convenient to assume that a fraction of ρn ∈ [0, 1] of the disequilibrium trade, ∆tn, is
absorbed outside of the economy E at the prevailing prices and only (1− ρn)∆tn is purchased
by the remaining traders within E . Exogenous vector ρ ∈ [0, 1]N specifies a level of external
absorption for all traders. It allows us to map most of the exiting (non-)competitive models
into the proposed framework by properly choosing respective values of ρ (see Section 10). For
example, when ρ = 1, each trader may sell the whole ∆tn outside of E at the given prices,
and hence this does not have any price impact. (This is the standard competitive Walrasian
model.). When ρn = 0, for all n, then no good is even partially absorbed outside of the
economy and any deviation by n stays in E . It will be shown that none of the theoretical
results depend on the introduction of ρ, except when there are only two traders, N = 2.
Given ρn, the off-equilibrium market clearing condition for trader n is

(38) (1− ρn)∆tn + t̄n +
X
n0 6=n

tn
0
³
p, M̄n0

´
= 0,

where t̄n
0
³
p, M̄n0

´
is a stable trade function of trader n0 ∈ N\{n}. Since in equilibrium

markets clear, pair p = p̄, and ∆tn = 0 satisfies equation (38). When for all n0 6= n matrices
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M̄n0 are positive definite, equation (38) defines a smooth price impact function pn (tn) around
t̄n. The Jacobian of pn (tn) is given by

Dtp
n|t̄n = − (1− ρn)

⎡⎣X
n6=n0

Dpt
n0
³
p̄, M̄n0

´⎤⎦−1 =(39)

= (1− ρn)

⎡⎣X
n0 6=n

³
Mn0 + V n0

´−1⎤⎦−1 ,
where V n is a positive definite matrix given by

(40) V i ≡ −D2ui and V j ≡ D2f j ,

specifying the convexity of preferences of a consumer or convexity of firm’s cost function.
The key idea is that in equilibrium the inverse demand conjectured by each trader n

coincides with the true price impact pn (tn), up to a level approximation of order one. This
requirement is called ρ−consistency of M̄ with disequilibrium market clearing.

Definition 3 Let (p̄, t̄, M̄) be such that markets clear and t̄ is stable at p̄, M̄ . A system of
impact matrices, M̄, is said to be ρ−consistent with disequilibrium market clearing if for
every n ∈ N , M̄n is a semi-positive definite matrix satisfying

(41) M̄n = Dtp
n (t̄n) .

Why in equation (39) does the price impact depend on the impact matrices of the other
traders, M̄n0 for n0 6= n? With the substantial price impact, the remaining traders are reluc-
tant to depart from their equilibrium demands and to absorb ∆tn, they must be compensated
by significant price changes. In other words, prices respond more to the deviations by trader
n and price impact is higher. I call such mutual interdependence of price impacts a mutual
reinforcement effect.

Next I give a result establishing the existence of ρ−consistent M̄ at some t̄ in a smooth
and separable economy .

Proposition 3 In a smooth separable economy, at any interior (p̄, t̄) such that all markets
clear and t̄n is stable, there exists a system of ρ−consistent matrices M̄ if and only if N > 2
or ρ > 0.

Whenever there are more than two traders, the consistent system of matrices exists. For
economies with two traders, M̄ exists only if at least one of the traders has positive external
absorption. The canonical examples of economies for which partial external absorption is
necessary are standard Edgeworth Box economy (I = 2 and J = 0), and Robinson Crusoe
economy (I = 1 and J = 1). The intuition behind the negative result in case of the economies
with N = 2 and ρ = 0 is the following: Market power of n is met by the same power of the
other trader, n0. If there is no external absorption of trade, this power in turn reinforces the
price impact of n by exactly the same amount. The price impacts of both traders explode to
infinity, so that the system (41) has no solution.
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7 ρ−Competitive Equilibrium
Now that all the elements of an equilibrium have been introduced, I am in the position to
define it formally, and to state the theoretical results characterizing it. I call this equilibrium
a ρ−competitive equilibrium.

Definition 4 A ρ−competitive equilibrium in the private ownership sub-economy E is a triple
(p̄, t̄, M̄) such that:
1) for all n, t̄n = t̄n

¡
p̄, M̄n

¢
;

2) all markets clear
P

n∈N t̄n = 0;
3) M̄ is a system of ρ−consistent matrices.

I state five theoretical results regarding ρ−competitive equilibrium in a smooth and sepa-
rable economy. (Recall that a smooth and separable economy is one that satisfies assumptions
A1-A9.) I refer to ρ−competitive equilibrium as a diagonal equilibrium, if matrix M̄n is di-
agonal for all n. The first two results are technical and are relevant for the computation of
an equilibrium. The third result is a version of the first welfare theorem, while the fourth
establishes the convergence to a unique Walrasian equilibrium in a large economy. The last
result addresses the problem of whether a ρ−competitive equilibrium is testable in general,
and it can be distinguished empirically from a Walrasian equilibrium.

A good economic model should be able to give the predictions for any economy. The first
theorem establishes the existence of such equilibria.

Theorem 1 In a smooth and separable economy, a diagonal ρ−competitive equilibrium exists
if and only if N > 2 or ρ > 0.

The assumptions of Theorem 1 are relatively weak. Whenever there are more than two
traders, or when at least one of the two traders has some outside option of trade, a diagonal
equilibrium exists. Only when the trade is restricted to two traders, as in the Edgeworth box
economy or in the Robinson Crusoe economy, and the external absorption is zero for the two
traders, does the ρ−competitive equilibrium breakdown.

A diagonal ρ−competitive equilibrium has two important properties. First, the equilib-
rium price vector is always strictly positive, p̄ >> 0. As shown in Weretka [2005a], this
is not necessarily true when the preferences are not separable, even when they are strictly
monotone. In addition, the equilibrium is homogenous of degree zero with respect to p̄ and
M̄ . This implies that prices and price impact matrices can be arbitrarily normalized with-
out changing the real outcomes. Note, however, that homogeneity does not contradict the
findings of Gabszewicz and Vial [1972], or more recently of Dierker and Grodal [1998], that
the choice of a numeraire has severe real effects when the competition is not perfect. In their
models the real effects result from the normalization of off-equilibrium prices relative to the
equilibrium ones, and not normalization of the absolute level of prices in equilibrium.

The second desirable feature of the model is that its predictions are sharp. Technically
the set of all equilibria should be small, possibly a singleton. It turns out that diagonal
ρ−competitive equilibrium can be expressed as a solution to a system of non-linear equations,
where the number of equations is exactly equal to the number of endogenous unknowns. If no
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equation is (locally) redundant, the equilibria are locally unique. Unfortunately, local “no-
redundancy” cannot be guaranteed for any arbitrary economy E . The next theorem formalizes
the idea that economies for which the equilibria are not locally unique are not robust. By
Eδ0,δ00 , I denote an economy E perturbed by adding term δ0i · xi + xi · δ00ixi to the utility
function and δ0j · yj + yj · δ00jyj to the cost function. Vector

¡
δ0, δ00

¢
∈ RN×2L denotes the

perturbation for all traders and P ∈ RN×2L is an open set of the perturbations that satisfies:
each perturbations preserve monotonicity and convexity of preferences and cost functions
on the set of trades possibly observed in equilibrium14, has non-zero Lebesque measure in
RN×2L and 0 ∈ P. Note that each element

¡
δ0, δ00

¢
∈ P defines some economy and hence P

parameterizes a family of perturbed economies around E .

Theorem 2 There exists a subset P̂ ⊂ P with full Lebesque measure of P, such that for any¡
δ0, δ00

¢
∈ P̂, all equilibria of the economy Eδ0,δ00 are locally unique.

Theorem 2 can be interpreted in the following way. For any economy E , including the ones
for which the equilibria are not determinate, there exists an arbitrarily small perturbation
of preferences and technology, such that in the perturbed economy all equilibria are locally
unique. One of the implications of this theorem is that in typical economies the number of
equilibria is finite. It should be noted that in the case of quadratic utility functions, for any
ρ, the equilibrium is globally unique.

The third theorem is related to inefficiency of an equilibrium allocation. In a Walrasian
framework, the first welfare theorem guarantees that the equilibrium allocation is Pareto effi-
cient. Theorem 3 provides an analogous though opposite result for a diagonal ρ−competitive
equilibrium.

Theorem 3 In a smooth and separable economy, in a diagonal ρ−competitive equilibrium
with ρ << 1, the allocation is Pareto efficient if and only if J = 0 and the initial allocation
is Pareto efficient.

It follows that when ρ << 1, in economies with firms the equilibrium allocations are always
Pareto inefficient, and in a pure exchange economy the allocations are inefficient generically
in endowments. The allocation inefficiency in the economy with two traders is demonstrated
in the Edgeworth Box example in Figure 6 and in the Robinson Crusoe economy in Figure 7.

The next theorem asserts that although an equilibrium allocation is not Pareto efficient,
in large economies the inefficiency is negligible, as a diagonal ρ−competitive equilibria con-
verge to a singleton–the unique Walrasian equilibrium. To show this I take advantage of a
construct of a k−replica economy.

Theorem 4 For any smooth and separable economy, and any ε > 0, there exists kε ∈
{2, 3 . . .} such that all diagonal ρ−competitive equilibria in a k−replica economy, for any
k ≥ kε, satisfy

1)
°°M̄n (kε)

°° ≤ ε, for any n;
2)
°°t̄n (kε)− t̄n,Walras

°° ≤ ε, for any n;
3)
°°p̄ (kε)− p̄Walras

°° ≤ ε.

14This set is defined in the appendix. Since the set of trades is compact, set ∆ exists.
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The next theorem indirectly addresses the question of testability of ρ−competitive equilib-
rium and the empirical distinction from the Walrasian equilibrium, given information about
observables: trades, endowments and prices (t̄, e, p̄). As argued before, the Walrasian equi-
librium in E is equivalent to a 1−competitive equilibrium, where price impact matrices are
M̄n = 0 for all n. This is because when ρ = 1, each trader n ∈ N may sell her goods outside
of E at the prevailing price, so that all traders in E are price takers. In general, for ρ < 1, the
relation between Walrasian and ρ−competitive equilibrium can be described in the following
way.

Theorem 5 The triple (p̄, t̄, M̄) is a diagonal ρ−competitive equilibrium in E = (u, e, θ, f)
only if (p̄, t̄) is a Walrasian equilibrium in the economy with modified preferences and tech-

nology, Ẽ =
³
û, e, θ, f̂

´
, where

(42) ûi
¡
xi
¢
= ui

¡
xi
¢
− 1
2

¡
xi − ei

¢
· M̄ i

¡
xi − ei

¢
,

for any consumer i ∈ I, and

f̂ j(yj) = f j +
1

2
yj · M̄ jyj ,

for any firm j ∈ J .

Any ρ−competitive equilibrium allocation and price vector in an economy can be ratio-
nalized as a Walrasian equilibrium by some other economy. As a result, any observation
(t̄, e, p̄) that refutes the Walrasian equilibrium also refutes a ρ−competitive one. At the same
time, ρ−competitive equilibrium cannot be empirically distinguished from the competitive
one, using only information about (t̄, e, p̄).

Note that the preferences rationalizing ρ−competitive equilibrium as a Walrasian one
exhibit a peculiar property: each consumer has preferences biased toward its own endowment.
Therefore when one restricts attention to a class of preferences that are independent from the
endowments15, the non-competitive hypothesis could be tested by verifying the significance
of the initial endowment in explaining the non-numeraire consumption. I illustrate this claim
with utility functions characterized by constant relative risk aversion:

(43) U i
¡
xi,mi

¢
=
X
l∈L

αl

¡
xil
¢1−θ

1− θ
+ λimi,

where λi is a normally distributed marginal value of wealth with lnλi ~N (0, σ) and αl is
some positive scalar. From the first order conditions, a competitive demand for good l is
given by

(44) ln x̄il = β0l + β1l ln p̄l + εi,

15The independence of preferences from the endowments can be loosely interpreted as an a priori assump-
tion, such that knowledge about endowments contains no information about utility functions, and each utility
function is “equally likely” for any arbitrary endowment. In particular, independence excludes phenomena
like habit formation and addiction.
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where β0l =
1
θ lnαl is a dummy coefficient on good l, β1l =

1
θ and εi is normally distributed

with N
³
0,
¡
1
θ

¢2
σ
´
. Consequently, if the market interactions are competitive, the endowments

should have no explanatory power in the regression

(45) ln x̄il = β0l + β1l ln p̄l + β2l ln e
i
l + εi,

and therefore hypothesis H0 : β
2
l = 0 can be associated with competitive interactions against

H1 : β
2
l > 0, suggesting market power of the traders.

8 Model Predictions

In the following section, I examine the effects of a non-competitive trading on the equilibrium
allocation, prices and welfare. First, I study a pure exchange economy with quadratic utility
functions. The quadratic utility functions are particularly convenient to work with because
their second derivatives do not depend on the level of equilibrium consumption, which allows
me to calculate a closed form solution of the equilibrium. Some of the properties of the
equilibrium, however, are not robust in the case of more general utility functions, therefore
I supplement the analyses with numerical simulations for the economy with utility function
characterized by constant relative risk aversion. Subsequently, I study the economies with
oligopolistic firms.

8.1 Pure Exchange Economy with Quadratic Utilities.

Consider a pure exchange economy with L commodities and I consumers, each characterized
by identical quadratic utility function,

(46) U i
¡
xi,mj

¢
=
X
l∈L

ul
¡
xil
¢
+mi =

X
l∈L

³¡
xil
¢
− γ̄l
2

¡
xil
¢2´

+mi.

The initial endowment is equal to ei >> 0. The external absorption is identical for all traders
and equal to ρi = ρ̄. Theorem 1 implies that a ρ−competitive equilibrium exists if the number
of traders is more than two, I > 2, or the external absorption is non-zero ρ̄ > 0, which is
assumed.

8.1.1 Equilibrium Allocation

Given identical, strictly concave utility functions in the Walrasian equilibrium, all traders
consume the same amounts of non-numeraire goods equal to the endowment per capita in
the whole economy

(47) x̄Walras =
1

I

X
i

ei = ē,

and the price of good l is equal to

p̄Walras
l = 1− γ̄lēl.
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Let me now compute ρ−competitive equilibrium. With quadratic utilities consistent
price impacts are independent from the level of consumption. The consistency conditions on
M̄ , (39) and (41) define the following systems of I × L equations and the same number of
unknowns (off-diagonal entries of matrices are zeros),

(48) M̄ i
l,l = (1− ρ̄)

⎛⎝X
i0 6=i

³
M̄ i0

l,l + γ̄l

´−1⎞⎠−1 .
In the economy with two traders and one non-numeraire good equation (48) reduces to

(49) M̄ i = (1− ρ̄)
³
M̄ i0 + γ̄

´
.

(49) is a system of two linear equation and two unknowns M̄1 and M̄2. They are depicted
in Figure 5 in the Euclidian space

¡
M̄1, M̄2

¢
. In the first equation, market power of the first

consumer is increasing in the market power of the second one, which in return, by the second
equation, reinforces back the price impact of the first one. The effect of mutual reinforcement
of price impact was already discussed: the higher the price impact, the less elastic the demand
with respect to the price and hence the greater the price change required to make the other
consumers absorb the deviation. Provided that ρ̄ > 0, the slopes of both lines are smaller
than one, and hence the two lines intersect so the considered system has a unique solution.
When ρ̄ = 0, the two lines in Figure 5 become parallel and the system (49) has no solution.
This is consistent with the negative result of Proposition 3.

 

1M

2M

( ) )( γρ +−= 12 1 MM

21 MM ,

0=ρ

( )γρ−1

( )γρ−1

( ) )( γρ +−= 21 1 MM

Figure 5. Determination of the price impacts
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The solution to system (48) must satisfy16 M̄ i = M̄ i0 for any i, i0, therefore it is given by

(50) M̄ i
l,l =

1− ρ̄

I + ρ̄− 2 γ̄.

Price impact M̄ i is inversely related to external absorption ρ̄ and to the number of traders.
For ρ̄ = 1 it is equal to zero, M i = 0, and for ρ̄ approaching zero, the price impact is
increasing to 1/ (I − 2).

The remaining elements of the equilibrium: the allocation and the price system can be
found by solving the system of the first order stability conditions (21) and equilibrium market
clearing condition. The equilibrium consumption is given by

(51) x̄i =
I + ρ̄− 2
I − 1 x̄Walras +

1− ρ̄

I − 1e
i.

The consumption is a convex combination of the Walrasian consumption and the initial en-
dowment, with weights (I + ρ̄− 2) / (I − 1) and (1− ρ̄) / (I − 1), respectively. The allocation
becomes more autarkic when the external absorption ρ̄ becomes smaller, or when the number
of consumers in the economy goes down.

In the economy with identical quadratic preferences, the price vector p̄ is the same for
all values of ρ̄. In particular, it is equal to the Walrasian one p̄Walras. As shown in Section
8.1.2, this is a knife-edge case, and this result is not robust with different utility functions.

8.1.2 Price Bias

To make the presentation more transparent, I first discuss the price bias mechanism in an
economy with one non-numeraire good and two traders called a buyer and a seller. The
buyer has an initial endowment eb and the seller es > eb. Both traders have quadratic utility
functions as in (46) with possibly different convexity coefficients γi. For any of the consumers
i = b, s the consistent price impacts can be found by solving (39) to obtain

(52) M̄ i =
(1− ρ̄)

ρ̄ (2− ρ̄)

³
γi

0
+ (1− ρ̄) γi

´
.

The price impact is increasing in the convexities of both consumers γi and γi
0
. The greater

weight, however, is put on the convexity of the trading partner, and therefore γi > γi
0
implies

M i0 > M i. Solving for a stable trade

(53) t̄i
¡
p̄, M̄ i

¢
=
1− γiei − p̄

γi + M̄ i
=

γi

γi + M̄ i

1− γiei − p̄

γi
=

γi

γi + M̄ i
t̄i(p̄, 0),

where function t̄i(p̄, 0) corresponds to a Walrasian demand.

16To see it, observe that for each i and l, M i
l,l is defined as a harmonic mean of M

i0
l,l + γ̄l for all i0 6=

i, multiplied by a scalar (1− ρ̄) / (I − 1) , and as such it is increasing in the corresponding elements. If
the consistent price impacts where not equal, it would be possible to find i and i0 such that M i0

l,l > M i
l,l.

Consequently, M i would be a harmonic mean of elements
³
M i0

l,l + γ̄
´
that are weakly greater than the ones

defining M i0 and one could conclude that M i
l,l ≥M i

l,l, which is a contradiction.
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Suppose for the moment that γb = γs. By equation (52), the price impacts of both traders
also coincide, M b = Ms, and the equilibrium market clearing condition, implicitly defining
the equilibrium price, can be written as

(54)
X
i=b,s

t̄i(p̄, M̄ i) =
γi

γi + M̄ i

X
i=b,s

t̄i(p̄, 0) =
X
i=b,s

t̄i(p̄, 0) = 0.

The unique price that solves the last equality in (54) is the Walrasian one p̄Walras and hence
p̄ = p̄Walras. The intuition behind this result is as follows: the identical convexity for the
buyer and seller leads to the same market power of both consumers. For any fixed price,
the buyer with price impact reduces its demand in the same proportion γi/

¡
γi +M i

¢
as the

seller decreases its supply, and the market clears and the price remains unchanged.
Now suppose that traders’ convexities differ, for example γb > γs. Then the price impacts

satisfy M b < Ms and the ratios γb/
¡
γb +M b

¢
> γs/ (γs +Ms). This and the stable market

clearing condition

(55) 0 =
X
i=b,s

t̄i(p̄, M̄ i) =
X
i=b,s

γi

γi +M i
t̄i(p̄, 0)

imply that at the ρ−competitive equilibrium price, p̄, the Walrasian excess demand is strictly
negative

(56)
X
i=b,s

t̄i(p̄, 0) < 0.

The Walrasian aggregate demand function is strictly decreasing in price, and therefore in
order to establish the market clearing in a competitive framework, the Walrasian price must
go down. One can conclude that

(57) p̄ > p̄Walras.

By a similar argument, the price bias is negative when the seller’s convexity is greater,
γb < γs, that is

(58) p̄ < p̄Walras.

This example illustrates that in a ρ−competitive equilibrium, price can be greater, the same or
below the competitive one, depending on the values of parameters of the considered economy.

In general, when consumers have identical quasi-linear and concave but not necessarily
quadratic utility functions, their Walrasian consumption vectors are the same, x̄i = x̄Walras.
In a ρ−competitive equilibrium however, the sellers are given incentives to reduce their supply
while the buyers cut down their demands. This leads to a disparity between the consumption
of the buyers and the sellers, x̄b < x̄Walras < x̄s. If the second derivative of the utility
function is increasing (u000 (·) > 0), then the convexity of the utility function of the buyer,
γb =

¯̄
u00
¡
x̄b
¢¯̄
, is higher than the one of the seller’s γs = |u00 (x̄s)|. The quadratic example

suggests that such endogenous asymmetry in convexity may lead to a positive price bias over
the Walrasian price, p̄ > p̄Walras. To make this observation formal, for any ρ−competitive
equilibrium

¡
p̄, t̄, M̄

¢
, I partition the set of all consumers into three groups: buyers, Ib =©

i ∈ I|t̄il > 0
ª
, sellers, Is =

©
i ∈ I|t̄il < 0

ª
, and non-active traders, Ina =

©
i ∈ I|t̄il = 0

ª
.
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Proposition 4 Consider a smooth and separable pure exchange economy, in which initial
allocation of any of the non-numeraire goods is not Pareto efficient, and the utility functions
and external absorption is the same for all consumers. Then in any ρ−competitive equilibrium¡
p̄, t̄, M̄

¢
, on the market l for any b ∈ Ib, s ∈ Is and na ∈ Ina

1) u000l (·) > 0 implies upward price bias p̄l > p̄Walras
l and M̄s

l,l > M̄na
l,l > M̄ b

l,l,
2) u000l (·) = 0 implies no price bias p̄l = p̄Walras

l and M̄s
l,l = M̄na

l,l = M̄ b
l,l,

3) u000l (·) < 0 implies downward price bias p̄l < p̄Walras
l and M̄s

l,l < M̄na
l,l < M̄ b

l,l.

There are two effects generating the price bias. First, with u000l (·) > 0, the sellers tend to
reduce their supply more than the buyers for any level of price impact M i

l,l, and hence price
must go up to clear the market. This is a direct effect. Second, the endogenous asymmetry
in convexity implies that the sellers’ price impacts exceed the ones of the buyers, further
increasing the price.

The utility functions characterized by constant relative risk aversion (CRRA) satisfy
condition u000l (·) > 0 and therefore in a pure exchange economy with such utility functions
one should expect upward price bias and high relative market power of the sellers.

8.1.3 Welfare

Now I focus on the effects of non-competitive interactions on welfare. In an economy with
quasi-linear preferences, the utility is transferrable and one can measure “welfare” in terms
of a numeraire.

The aggregate gains to trade on market l are defined as welfare attained at the unique
Pareto optimal allocation, less the utility in the autarky. In the considered economy, the
aggregate gains to trade are equal to

(59) ∆Wl =
X
i

uil (ē)− uil
¡
ei
¢
=
1

2
Iγ̄lV ar

¡
eil
¢
.

The aggregate gains to trade do not depend on the distribution of numeraire mi. They are
positively correlated with the heterogeneity of the initial endowments measured by variance
V ar

¡
eil
¢
, the convexity of the utility function γ̄l and the number of traders. If the endowments

are homogenous, the initial allocation is Pareto efficient and no trade can improve welfare.
This is the case when V ar

¡
eil
¢
= 0 and hence ∆Wl = 0. Similarly, when γ̄l is close to zero,

marginal utility is virtually constant for all traders and thus the distribution of goods has
minimal impact on aggregate welfare.

Theorem 3 implies that if the initial allocation is Pareto inefficient, then a ρ−competitive
allocation is not Pareto efficient either. This implies that some part of the aggregate gains
to trade is forgone. The dead weight loss on market l, denoted by DWLl, gives the fraction
of the aggregate gains to trade ∆Wl lost due to not perfectly competitive trading,

(60) DWLl ≡
P

i ul (ēl)− uil
¡
x̄il
¢

∆Wl
=

µ
1− ρ̄

I − 1

¶2
.

Equation (60) shows that the more traders in the economy I, the more competitive interac-
tions are and hence DWLl is smaller. Since the inverse of DWLl is quadratic in I, and ∆Wl

26



is linear, in absolute terms the welfare loss DWLl ·∆Wl also disappears with I approaching
infinity, as long as V ar

¡
eil
¢
stays bounded. The external absorption also lessens the effects

of non-competitive trading.
Now I discuss how the welfare loss is distributed among different traders in market l. By

m̄i
l = −p̄lt̄il, I denote the amount of numeraire spent on good l. The individual welfare loss

of consumer i on market l, IWLi
l is a difference between the utility in a unique Walrasian

equilibrium and in a ρ−competitive equilibrium, as a fraction of the individual gains to trade
in the Walrasian equilibrium,

(61) IWLi
l =

ul
¡
t̄Walras
l

¢
+ m̄i,Walras

l − ul
¡
t̄i
¢
− m̄i

l

ul
¡
t̄Walras
l

¢
+ m̄i,Walras

l − ul
¡
eil
¢ .

The denominator of IWLi
l is always non-negative, therefore IWLi

l > 0 indicates that the
trader is better off in a Walrasian than in a ρ−competitive equilibrium. The negative value
of IWLi

l implies that the consumer i gains extra utility at the expense of other traders, taking
advantage of its market power. For the identical quadratic utility functions, the individual
welfare loss is given by

(62) IWLi
l =

µ
1− ρ̄

I − 1

¶2
.

Each consumer is losing exactly the same fraction of its individual Walrasian gains to trade,
regardless of whether she is a buyer, a seller or a non-active trader. In addition, IWLi

l

coincides with the aggregate dead weight loss. This shows that the welfare loss is distributed
uniformly across all traders and no trader gains utility at the expense of other consumers.
As will be shown in the next sections, this result also relies on the assumption of identical
quadratic utility functions.

8.1.4 Convergence to a Walrasian Equilibrium

Is the Walrasian equilibrium a good approximation of market interactions in E , provided that
E is large? Theorem 4 gives a convergence result for a k−replica of a smooth and separable
economy. In this section, I illustrate this result geometrically in a well-known Edgeworth box
example. I consider a k−replica of the economy with two non-numeraire goods l = 1, 2 and
two types of consumers i = 1, 2. The consumers of the first type are initially endowed with
one unit of good one and zero of good two, e1 = (1, 0). The endowment of the second type is
e2 = (0, 1). Both types have preferences as in (46). Note that for any replica with k ≥ 2, the
economy is composed of at least four consumers, I ≥ 4, and hence the equilibrium exists17

for any level of external absorption, including ρ = 0. Observe that this economy is a special
case of the economy considered in the previous section.

In the Walrasian equilibrium, the consumption of each trader is equal to x̄i,Walras =
(0.5, 0.5), and is independent from k. In 0−competitive equilibrium consumption it is given
by

(63) x̄i (k) =
2k − 3
2k − 2 x̄

i,Walras +

µ
1

2k − 2

¶
ei.

17 In fact, one should also assume strictly positive initial endowments for all traders. This assumption is
superfluous in the case of quadratic utility functions.
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For k = 2, the ρ−competitive equilibrium is depicted in Figure 6, panel a. The stable
consumption of trader 1 is given by x̄1 = (0.75, 0.25). At the equilibrium consumption
point the budget set (shaded area) is tangent to the indifference curve. For trader 2 the
consumption vector is symmetric. The indifference curves of traders are not tangent to each
other, which demonstrates Pareto inefficiency of the equilibrium allocation. In panel b) it is
shown how equilibrium allocation converges to a Walrasian one. As k approaches infinity, the
weight put on the Walrasian consumption is closer to one and hence the equilibrium becomes
competitive.

 a) 
b)
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Figure 6. Convergence to the Walrasian equilibrium in the Edgeworth box economy.

8.2 Bilateral Monopoly and Constant Relative Risk Aversion

In this section I examine how non-constant convexity affects the results from the previous
section. In particular, I study the economy with only one good and two consumers–a buyer
and a seller. The consumers have an identical utility function characterized by a constant
relative risk aversion,

(64) U
¡
xi,mi

¢
=

¡
xi
¢1−θ

1− θ
+mi.

(For θ = 1, I assume a logarithmic utility function.)
The utility function (64) does not allow me to calculate equilibrium analytically, and

therefore I give numerical results. With such a utility function, a ρ−competitive equilibrium
has a convenient property that some of the variables characterizing it do not depend on the
scale of the endowments. Formally,

Lemma 1 Let E = (u, e) be a pure exchange economy with consumers characterized by con-
stant relative risk aversion, with identical coefficient θ for all i. Then

¡
p̄, t̄, M̄

¢
is a diagonal

ρ−competitive equilibrium in E iff
³
λ−θp̄, λt̄, λ−(1+θ)M̄

´
is a diagonal ρ−competitive equilib-

rium in the scaled economy Eλ ≡ (u, λe) for arbitrary scalar λ > 0.
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Consequently, for any fixed ρ and θ, the relative allocation of non-numeraire good, xb/xs,
the relative market power, M b/Ms, and the price bias, ∆p̄[%], defined as

∆p̄[%] =

µ
p̄

p̄Walras
− 1
¶
× 100%,

are function of a relative, eb/es, rather than the absolute level of initial endowment.
In the following sections I discuss the effects of the asymmetry in endowments, relative

risk aversion, and external absorption ρ on the equilibrium allocation, price and welfare.

8.2.1 Endowments

When eb/es = 1, the buyer and the seller is endowed with exactly the same amount of non-
numeraire and hence the traders do not benefit from trading. On the other extreme, when
the endowment of the buyer is equal to zero and hence in autarky, she has minus infinite
utility, thus the gains to trade are maximal.

I report the equilibrium values of relative consumption, price impacts and price bias, as
a function of relative endowment. The external absorption is set to be equal to ρb = ρs =
0.5 and the relative risk aversion is θ = 1 so that the utility is logarithmic.

Table 1a. Effects of eb/es: equilibrium.
eb/es 0 0.2 0.4 0.6 0.8 1

x̄b/x̄s 12.0% 44.7% 63.2% 77.4% 89.4% 100%
M̄ b/M̄

s
50.9% 63.6% 75.0% 84.6% 92.8% 100%.

∆p̄[%] 235.0% 27.0% 8.7% 2.7% 0.5% 0.0%

Notes: The first row reports the value of a relative buyers endowment eb/es for which the simulation was conducted.

xb/ xs is a consumption of the buyer relative to the consumption of the seller; M̄b/M̄s is a buyers relative price impact;

∆p[%] is the percentage increase in the equilibrium price over the Walrasian one.

In the Walrasian equilibrium, traders consume the same amounts of non-numeraire and
therefore x̄b/x̄s is equal to one for arbitrary value of eb/es. In a ρ−competitive equilibrium,
the buyer consumes less than the seller, provided that eb/es < 1. This is because both
traders have incentives to strategically reduce their trades to affect prices. The ratio x̄b/x̄s is
positively correlated with the relative endowment eb/es.

The simulations are consistent with the result from Proposition 4. The second derivative
of a logarithmic utility function is increasing

(65)
∂3 ln

¡
xi
¢

∂ (xi)3
= 2

¡
xi
¢−3

> 0,

and hence one observes an upward price bias.
The dead weight loss DWL, and individual welfare losses IWLb and IWLs do not depend

on the scale of the endowment, and they are functions of a relative endowment eb/es, too.
The effects on welfare are given in Table 1b.
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Table 1b. Effects of eb/es: welfare.
eb/es18 0 0.2 0.4 0.6 0.8 1

DWL 37.9% 28.1% 25.6% 25.2% 25.0% 25.0%
IWLb 42.5% 40.8% 36.4% 32.3% 28.5% 25%.
IWLs -70.0% -11.8% 6.0% 15.3% 21.0% 25.0%

Notes: The first row reports the value of a relative buyers endowment eb/es for which the simulation was conducted.

DWL is an aggregate loss of welfare associated with non-competitive trade as a fraction of total gains to trade in the

economy; IWLb and IWLs are buyer’s and seller’s individual losses/gains of welfare due to a non-competitive trade as

a fraction of the individual gains to trade in a competitive equilibrium.

It can be seen that the welfare loss, as a fraction of total gains to trade, is relatively
stable. It varies from −33% for the lowest relative endowment to −25% in the case when
there are no gains to trade at all. When eb/es approaches 1, the aggregate gains to trade
are minimal and therefore in absolute terms the loss of utility is also close to zero. The
last column suggests that when the endowments are nearly symmetric, the welfare loss is
uniformly spread between the buyer and the seller: each of them is losing 25% of their
potential gains. When endowments differ substantially, the seller is able to pass most of the
welfare cost onto the buyer. For eb/es ≤ 0.3, the seller’s benefit from being a monopoly is
sufficient to compensate for the welfare loss associated with the reduced volume of trade. In
this case, the buyer not only “pays” the cost of a dead weight loss but also a monopoly rent
to the seller.

8.2.2 Relative Risk Aversion

Now I examine the effects of a different level of relative risk aversion. Table 2a reports
the numerical simulations of a 0.5−competitive equilibrium (ρi = 0.5), with the relative
endowment equal to eb/es = 40%, for the following values of relative risk aversion θ = 0.5, 1,
2 and 3.

Table 2a. Effects of θ: equilibrium.
θ 0.5 1 2 3

x̄b/x̄s 63.8% 63.2% 61.6% 59.5%
M̄ b/M̄

s
80.4% 75.0% 65% 58.9%

∆p̄[%] 3.1% 8.7% 29.6% 69.7%

Notes: The first row reports the value of a relative risk aversion θ for which the simulation was conducted. xb/ xs is a
consumption of the buyer relative to the consumption of the seller; M̄b/M̄s is a buyers relative price impact; ∆p[%] is
the percentage increase in the equilibrium price over the Walrasian one.

The relative consumption x̄b/x̄s is decreasing in θ. This seems paradoxical as the more
concave the utility functions, the greater the gains to trade. Note, however, that market
power is increasing in the convexity of the utility functions |u00 (·)|, which in turn negatively
18 In the first and last column I give the limits of the statistics, as eb/es is approaching 0 and 1 respectively,

as the statistics are not defined for the two values of relative endowment.
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affects the trade. The relative risk aversion also magnifies the asymmetry of market power.
For θ = 3, the buyer only has 58% of the sellers price impact. This in turn positively affects
the markup over a competitive price. The effects of relative risk aversion on welfare are given
in Table 2b.

Table 2b. Effects of θ: welfare.
θ 0.5 1 2 3

DWL 25.4% 25.6% 26.4% 27.9%
IWLb 34.0% 36.4% 40.6% 44.1%
IWLs 11.9% 6.0% -8.7% -28.3%

Notes: The first row reports the value of a relative risk aversion θ for which the simulation was conducted. DWL is

an aggregate loss of welfare associated with non-competitive trade as a fraction of total gains to trade in the economy;

IWLb and IWLs are buyer’s and seller’s individual losses/gains of welfare due to a non-competitive trade as a fraction

of the individual gains to trade in a competitive equilibrium.

The dead weight loss is only modestly increasing in relative risk aversion, but the dis-
tribution of the welfare loss is very sensitive to changes in θ. For relatively small values of
θ, both traders are worse-off in a ρ−competitive equilibrium. When θ is high, the effect of
endogenous convexity implies that the majority of the aggregate welfare loss comes from the
reduction of utility of the buyer. For θ greater than one, the seller extracts the utility using
its superior market power.

8.2.3 Symmetric External Absorption

In this section, I investigate the consequences of the symmetric external absorption ρb = ρs =
ρ̄ and in the following section I discuss the effects of its asymmetry. In both sections, I assume
a logarithmic utility function and the value of a relative endowment equal to eb/es = 0.40%.

Table 3a gives the results for different values of ρ̄.

Table 3a. Effects of ρ̄: equilibrium.
ρ̄ 0.1 0.3 0.5 0.7 0.9 1

x̄b/x̄s 43.2% 51.8% 63.2% 76.7% 91.7% 100%
M̄ b/M̄

s
93.0% 81.5% 75.0% 75.5% 86.9% n.d.

∆p̄[%] 19.4% 14.8% 8.7% 3.6% 0.5% 0.0%

Notes: The first row reports the value of the symmetric external absorption ρ̄ for which the simulation was conducted.

xb/xs is a consumption of the buyer relative to the consumption of the seller; M̄b/M̄s is a buyers relative price impact;

∆p[%] is the percentage increase in the equilibrium price over the Walrasian one.

The relative consumption is increasing in ρ̄ to a competitive level xb/xs = 100%, for ρ̄ = 1.
Surprisingly, the relative market power is decreasing in ρ̄. This shows that for low values of
ρ̄, the mutual reinforcement effect of price impacts dominates the endogenous asymmetry of
the convexity (see Proposition 4). Price bias is also negatively related to ρ̄.

The dead weight loss is decreasing in ρ̄. Interestingly, the seller is better off in a
ρ−competitive equilibrium provided that the external absorption is not too small. Intu-
itively this is because for high values of ρ̄, the relative market power of the seller is high, and
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hence she benefits from a higher price, while the trade volume is still relatively large. When ρ̄
is small, the sellers utility gains associated with higher price are not sufficient to compensate
the welfare loss due to a reduced volume of trade.

Table 3b. Effects of ρ̄: welfare.
ρ̄ 0.1 0.3 0.5 0.7 0.9 1

DWL 84.3% 52.3% 25.6% 8.6% 0.9% 0.0%
IWLb 87.3% 61.7% 36.4% 15.5% 2.2% 0.0%
IWLs 78.7% 35.3% 6.0% -3.9% -1.37% 0.0%

Notes: The first row reports the value of the symmetric external absorption ρ̄ for which the simulation was conducted.

DWL is an aggregate loss of welfare associated with a non-competitive trade as a fraction of total gains to trade in the

economy; IWLb and IWLs are buyer’s and seller’s individual losses/gains of welfare due to a non-competitive trade as

a fraction of the individual gains to trade in a competitive equilibrium.

8.2.4 Asymmetric Bilateral Monopoly

In this section, I examine the effects of the asymmetry in external absorption. In Tables 4a
and 4b, the column associated with ρb = 0 and ρs = 1 gives results for the economy with a
monopolistic seller and a competitive buyer (pure monopoly). In last column, with ρb = 1
and ρs = 0, the buyer has full market power while the seller is competitive (pure monopsony).
The intermediate columns represent the case of bilateral monopoly with different levels of
asymmetry.

The relative consumption of the buyer x̄b/x̄s is “U” shaped. It is large for extreme
monopolies and smaller for a symmetric bilateral monopoly. This is because the mutual
reinforcement of price impacts is not present in a pure monopoly or monopsony and therefore
the market power is relatively low in general. In addition, the incentives to reduce the
trade are partially offset by the favorable price change for the two extremes. The relative
consumption is greater in the case of a pure monopsony than in a monopoly. With logarithmic
utility function, the buyer’s gains to trade are substantially higher than for the seller, and the
buyer is not willing to sacrifice such benefits as much as the seller does in order to decrease
the price. Not surprisingly, the price bias is negative for the pure monopsony, and positive
for the pure monopoly.

Table 4a. Effects of asymmetric ρ: equilibrium.
ρs 1 0.8 0.6 0.5 0.4 0.2 0
ρb 0 0.2 0.4 0.5 0.6 0.8 1

x̄b/x̄s 78.4% 69.9% 64.6% 63.2% 62.8% 64.33% 69.6%
M̄ b/M̄

s ∞% 197.8% 98.3% 75.0% 57.2% 28.3% 0.0%
∆p̄ [%] -10.8% -2.8% 5.1% 8.7% 12.1% 17.7% 21.8%

Notes: The first two rows report the values of external absorption for the buyers and the seller for which the simulation

was conducted. x̄b/x̄s is a consumption of the buyer relative to the consumption of the seller; M̄ b/M̄
s
is a buyer’s

relative price impact; ∆p [%] is the percentage increase in the equilibrium price over the Walrasian one.

The pattern of aggregate welfare loss is a mirror image of the relative consumption and
therefore DWL has an inverted “U” shape. On the individual level, the buyer is better-off as
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a pure monopsony and the seller as a pure monopoly. In general, the seller is willing to use
market power more aggressively than the buyer as her welfare loss associated with reduced
volume of trade is smaller than the one of the buyer.

Table 4b. Effects of asymmetric ρ: welfare.
ρs 1 0.8 0.6 0.5 0.4 0.2 0
ρb 0 0.2 0.4 0.5 0.6 0.8 1

DWL 7.2% 15.2% 23.4% 25.6% 26.5% 23.8% 16.0%
IWLb -19.2% 8.3% 29.0% 36.4% 42.1% 49.7% 55.5%
IWLs 55.5% 29.3% 13.5% 6.0% -1.9% -23.6% -55.7%

Notes: The first two rows report the values of external absorption for the buyers and the seller for which the simulation

was conducted. DWL is an aggregate loss of welfare associated with non-competitive trade as a fraction of total

gains to trade in the economy; IWLb and IWLs are buyer’s and seller’s individual losses/gains of welfare, due to

a non-competitive trade as a fraction of the individual gains to trade in a competitive equilibrium.

8.3 Equilibrium with Producers: Robinson Crusoe Inc.

So far I have focused on the non-competitive interactions in a pure exchange economy. Now
to the economy from Section 8.1, I introduce production firms and demonstrate in the simple
example how the ownership structure affects the equilibrium outcome.

I first study an economy with J incorporated firms, with technology characterized by a
quadratic cost function for each good l ∈ L

(66) f jl =
γ̄l
2

³
yjl

´2
.

The quadratic preferences of the consumers are as in equation (46), and the convexities of the
utility function and the cost function, γ̄l, coincide. The consumers’ non-numeraire endow-
ments are equal to zero and the shares are distributed according to some vector θ ∈ RI×J .
Throughout this section I assume the same level of external absorption for all consumers and
firms, ρil = ρjl = ρ̄.

As in the pure exchange economy from Section 8.1, ρ−competitive equilibrium has a
closed form solution. The equilibrium prices do not depend on the absolute number of the
traders but on the composition of the traders in the economy

(67) p̄l = p̄Walras
l =

I

I + J
.

Moreover, prices are independent from the level of external absorption. The price impacts
are identical for all firms and consumers and are given by

(68) M̄ i
l,l = M̄ j

l,l =
1− ρ̄l

I + J + ρ̄l − 2
γ̄l.

They are increasing in γ̄l, and decreasing in ρ̄ and absolute number of traders N = I + J .
Finally, the non-numeraire allocation is given by

(69) x̄il = t̄il =
I + J + ρ̄l − 2
I + J − 1 x̄i,Walras

l where x̄i,Walras
l =

1

γ̄l

J

I + J
,
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and the individual stable supply is

(70) ȳjl = −t̄
j
l =

I + J + ρ̄l − 2
I + J − 1 ȳj,Walras

l where ȳj,Walras
l =

1

γ̄l

I

I + J
.

Consider the simplest version of the considered economy, with one non-numeraire good,
one consumer, and one firm I = J = 1, and also assume γ̄ = 1. The equilibrium in such an
economy is depicted in Figure 7a. For ρ̄ = 1, it coincides with a Walrasian equilibrium and
is given by

(71) x̄i,Walras = ȳj,Walras =
1

2
, p̄Walras =

1

2
and π̄Walras =

1

8
.

The equilibrium allocation is Pareto efficient, therefore it can be determined as a tangency
point of the indifference curve and the production set. The consumer’s budget set at equi-
librium prices consists of all

¡
ti,mi

¢
below the iso—profit line π̄Walras. When Robinson is a

sole proprietor of the firm, then he would chose the Pareto optimal (Walrasian) allocation,
regardless of the value of ρ̄.

Now suppose that the firm is incorporated and therefore it maximizes profit. With ex-
ternal absorption strictly smaller than one, for example ρ̄ = 0.5, a unique ρ−competitive
equilibrium is given by

(72) x̄i = ȳj =
1

4
, p̄ =

1

2
, M̄ i = M̄ j = 1 and π̄ =

3

32
< π̄Walras.

The stable choice of the firms is depicted in panel b). The equilibrium iso—profit parabola
is tangent to a production set at

¡
ȳj , m̄j

¢
, and it cuts the numeraire axes at the equilibrium

profit π̄ = 3
32 . The stable choice of the consumer is shown in panel c). The budget set

corresponds to the interior of the parabola that crosses the numeraire axes at π̄ = 3
32 and also

passes through the equilibrium allocation
¡
−18 ,

1
4

¢
. By definition of stability, the indifference

curve is tangent at
¡
−18 ,

1
4

¢
to the budget set. Note, however, that the indifference curve is

not tangent to the production set, and hence the equilibrium allocation is Pareto inefficient.
It should be noted that in the case of a sole proprietorship, Pareto efficiency results from

the fact that Robinson is the only trader in the economy. The sole proprietorship is not
necessarily more efficient than the incorporated ownership.

Any allocation on the frontier of the production set located between the Walrasian allo-
cation

¡
−14 ,

1
2

¢
and the autarky (0, 0) can be a part of an equilibrium for some value of ρ̄ (this

is shown in panel d). In addition, any 0−competitive allocation in the k- replica economy is
also on the frontier, between allocation

¡
−16 ,

1
3

¢
corresponding to k = 2, and the Walrasian

allocation
¡
−14 ,

1
2

¢
for k approaching infinity.

With asymmetric external absorption, the geometric representation of an equilibrium
differs from the one depicted in Figure 7 as follows: For a pure monopoly (ρj = 0, and
ρi = 1), the budget set of a consumer in panel c) becomes linear and in the case of a pure
monopsony, (ρj = 1 and ρi = 0) the iso—profit curves in panel b) are linear.
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Figure 7. Equilibrium in the economy with a firm.

8.4 Increasing Returns to Scale and a Natural Monopoly.

Sometimes establishing a firm is associated with large fixed costs while the production is
characterized by a constant marginal cost. In such case the average cost is monotonically
decreasing, and the technology exhibits increasing returns to scale. I call such a firm a natural
monopoly. The behavior of a natural monopoly cannot be studied within the Walrasian
framework. This is because the firm’s competitive supply is either infinite or zero, depending
on whether the price is above the marginal cost or not. In this section, I demonstrate how
the natural monopoly can be incorporated in a general equilibrium framework when traders
have market power.

I consider an economy with one non-numeraire good, one firm characterized by the fol-
lowing cost function

(73) f j
¡
yj
¢
=

½
F + cyj if yj > 0
0 otherwise

¾
,

and I consumers with a quadratic utility function given by (46). The initial endowments are
normalized to zero. In equation (73), F corresponds to a fixed cost and c is a marginal cost.
The production set of the monopoly is depicted in Figure 8a. The cost function in (73) does
not satisfy assumptions A7 and A9 and hence the considered economy is not smooth and
separable. Consequently, the theorems from Section 7 do not apply here.

When F is already a sunk cost, the production set does contain inaction point (0, 0) and
hence is convex. In such case, a stable supply function can be determined from the first order
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stability condition (35) . The equality between marginal cost and marginal revenue implies

(74) ȳj ≡ −t̄j = 1

M̄ j
(p̄− c) ,

for any p̄ ≥ c and 0 otherwise. In Figure 8, the stable supply is geometrically determined as
a tangency point of the iso—profit parabola and the production set.

If F is a fixed rather than a sunk cost, the inaction point is a feasible option for the
firm, and hence the production plan ȳj from (74) may fail to be stable. This would be the
case when ȳj is associated with a negative profit, and hence the natural monopoly prefers the
inaction point. In Figure 8, the zero profit parabola passing through trade (0.0) is represented
by a dashed line. If ȳj is in the interior of this parabola, it dominates the inaction point in
terms of profit and hence it is stable on the whole production set (see panel a). In panel b),
ȳj is not profitable and therefore it is not stable.

a) 
b)

jm−F

jy

jm−

jy
0=π

0=π

0>π

Figure 8. The existence of a stable supply.

The individual inverse supply function is depicted in Figure 9 in space
¡
ȳj , p̄

¢
. The

tangency condition (74) defines a straight line originating in point (0, c) and with the slope
equal to M̄ j .

The firm’s profit is non-negative if and only if the observed price is greater or equal to
the average cost

(75) p̄ ≥ AC ≡ c+ F/ȳj ,

and therefore all combinations
¡
ȳj , p̄

¢
below the average cost curve are associated with a

negative profit. Consequently, the stable supply function is a half line to the right of the AC
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curve.
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Figure 9. Stable supply function of a natural monopoly and equilibrium.

The aggregate stable demand of the consumers is as in the previous section. In Figure
9b, a natural candidate for a ρ−competitive equilibrium is the trade and the price for which
the stable supply and demand intersect. Solving the model analytically reveals that at this
point, the price is equal to

(76) p̄ =
(1 + c)

2
.

The price does not depend on the number of consumers I. This is because for higher I,
the larger aggregate demand is accompanied with increased supply due to the reduced price
impact of the monopoly and the prices may stay the same.

With the possibility of inaction, the intersection point determines 0−competitive equilib-
rium only if the average cost does not exceed price (76). This happens in Figure 9b for a
fixed cost equal to F . When, however, F 0 > F , at the price p̄ the firm incurs a loss, therefore
it shuts down the production. In such case, an equilibrium with an active firm fails to exist.

It can be shown that for any fixed value of F ≥ 0, there exists a critical mass of consumers,
Ī, such that in the economy with I ≥ Ī consumers, the equilibrium with an active monopoly
exists, and with I < Ī it does not. Similarly, for any number of consumers, I ≥ 2, there
exists a threshold value of F̄ , for which the equilibrium with a monopoly exists if and only if
F ≤ F̄ . In Figure 9, threshold F̄ can be determined as the fixed cost for which the AC locus
passes through the intersecting point of the demand and supply.

8.5 Endogenous Market Structure

In the previous sections, the number of operating firms was exogenously fixed. Here I will
assume that in the considered economy, there is an infinite number of entrepreneurs who
have access to the most efficient, commonly known technology, and they may potentially use
it to form a production firm. Formation of a firm is motivated by a non-numeraire profit.
The technology to produce non-numeraire commodities is given by some cost function f .
An economy consists of two elements: A pure exchange economy satisfying A1—A5 and a
technology f ,

(77) ELR =
³¡
ui, ei

¢
i∈I , f

´
.
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In a Marshallian long run equilibrium, the assumptions of free entry and price taking be-
havior imply that price is equal to a minimal average cost and each firm produces at the most
efficient scale. The number of active firms is determined as a ratio of the aggregate demand
divided by the individual production. This approach has the following drawbacks: The equi-
librium is well defined only for the technology characterized by a “U” shaped average cost,
and hence the model does not give any predictions for the industries with increasing returns
to scale. In addition, the model assumes price taking behavior by all market participants
even if the predicted number of firms is small. Finally, the assumption of “profit taking” by
potential entrants rules out the possibility of strictly positive profit in equilibrium. Here I
redefine the notion of long run equilibrium to free it from such drawbacks.

By EJ =
¡
u, e, θJ , f × J

¢
, I denote an exchange economy with J identical firms using

technology f , and θJ is an arbitrary distribution of shares of the firms among the consumers.
The ρ−competitive equilibrium in EJ is symmetric if t̄j is the same for all j ∈ J and firm j
is active if t̄j 6= 0. The long run equilibrium is defined iteratively in the following way:

Definition 5 A long run equilibrium in economy ELR is a vector (p̄, t̄, M̄ , J̄) such that
1)
¡
p̄, t̄, M̄

¢
is a symmetric 0− competitive equilibrium in E J̄ with J̄ active firms.

2) No profitable or profit reducing entry, that is for any J > J̄:
a) if π̄J̄ > 0, there does not exist an 0− competitive equilibrium in economy EJ ,
b) if π̄J̄ = 0 there does not exist a symmetric 0− competitive equilibrium in economy EJ
with π̄J > 0.

The first condition assures that none of the active firms have incentives to change the
traded quantities and all markets clear. The second condition prevents the non-active firms
from entering the industry. I assume that a new firm is formed if the current observed profit
is strictly positive and the industry may accommodate additional firms. A firm will also be
formed even if the observed profit is zero, provided that after the entry in a new equilibrium
the profit is positive. Observe that there are no incentives to entry when the current observed
profit and the profit after entry is zero.

By Theorem 1, there exists a 0−competitive equilibrium in a pure exchange economy
with J = 0, provided I > 2. Such equilibrium is not a long run equilibrium only if there
exists a 0−competitive equilibrium in the economy EJ for some J > 0, with firms making
a positive profit. This in turn is not a long run equilibrium only if there is an equilibrium
in the economy with J 0 > J firms. This shows that the long run equilibrium exists or the
economy can accommodate an arbitrarily large number of firms, all making a strictly positive
profit. With many firms the price impact is negligible, therefore the economies without long
run equilibrium are called competitive.

In the following sections I verify what market structures are compatible with different
types of technology.

8.5.1 Natural Monopoly

The active or inactive monopoly studied in Section 8.4 is the only market structure compatible
with the cost function given by (73). This is because with two or more operating firms,
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constant marginal cost makes positive price impacts inconsistent with off-equilibrium market
clearing condition19.

Lemma 2 Suppose the second derivative of the cost function is equal to zero, f 00 (·) = 0.
In a symmetric 0−competitive equilibrium, the price impacts M̄n > 0 are consistent with
off-equilibrium market clearing condition if and only if J = 1.

Intuitively, with the price impact of firm j equal to M j > 0, and without extra convexity
“added” by the Hessian of the cost function D2f j = 0, any unilateral deviation by firm j0 is
followed by the response of firm j sufficient to make the price impact of j0 only a fraction of
M̄ j . Because firms are symmetric, this is possible only if M̄ j = M̄ j0 = 0.

Strictly positive price impacts M̄ j > 0 are necessary for the existence of a stable supply
function given the cost function (73). Hence there does not exist a ρ−competitive equilibrium
with J ≥ 2, and the monopoly is the richest market structure compatible with such a cost
function. Intuitively, new firms are not willing to challenge the natural monopoly as their
entry triggers perfectly competitive interactions resulting in strictly negative profits for all
firms.

8.5.2 Perfectly Competitive Oligopoly

For the cost function

(78) f j
¡
yj
¢
= cyj ,

associated with constant returns to scale, the model predicts oligopolistic market structure,
including a duopoly. The equilibrium price is equal to a marginal cost, p = c, and the profit
equal to zero, π̄j = 0. This is because with constant marginal cost and J ≥ 2, Lemma 2
implies that the positive price impact M̄ j > 0 is inconsistent with ρ−competitive equilibrium.
For M̄ j = 0, the stable supply of the oligopolistic firm is well defined, and it coincides with
the Walrasian supply

(79) ȳj ≡ −t̄j =

⎧⎨⎩
0 if p < c

0 ≤ ȳj ≤ ∞ for p = c
∞ otherwise

⎫⎬⎭ .

With such supply function, any unilateral deviation of a trader is absorbed by other active
oligopolists without any effect on price. Consequently, M̄n = 0 for all traders n = i, j is
consistent with off-equilibrium market clearing. The number of firms and the individual level
of production is not determined by the model. In fact, any J̄ ≥ 2 and t̄j satisfying

(80) t̄j =

P
i∈I t̄

i (c, 0)

J̄
> 0

is consistent with equilibrium. Observe that such equilibrium is Pareto efficient.
A monopoly with constant returns to scale will not be observed in equilibrium. The

monopolistic firm is trading with consumers, and hence it faces a downward sloping demand,
19This result is consistent with the findings of Bresnahan [1981], in Example 6 for a duopoly and Perry

[1983] Section 3 for oligopoly.
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and hence has strictly positive profit. This in turn encourages other firms to enter the
industry. By a similar argument, the economy with J̄ = 0 is not a long run equilibrium
because with J̄ = 1 the firm makes a strictly positive profit, as long as

P
i∈I t̄

i (c, 0) > 0, and
hence there are incentives to form a monopoly.

8.5.3 Imperfectly Competitive Oligopoly

In the following two sections, I focus on strictly convex cost functions. First I consider a cost
function with a positive fixed cost that is given by

(81) f
¡
ȳj
¢
=

½
F + c

¡
ȳj
¢
if ȳj > 0

0 otherwise

¾
.

c
¡
yj
¢
is strictly increasing, strictly convex and marginal cost satisfies c0 (0) = 0.

The average cost is either monotonically decreasing and hence the technology exhibits
increasing returns to scale20, or the average cost has a “U” shape and has a well defined
minimal efficient scale. In the long run, such technology induces a monopolistic or oligopolistic
market structure in which active firms have positive price impacts and typically positive
profits.

Market structure with “U” shaped average cost was extensively studied within the com-
petitive framework. For example, with quadratic cost function

(82) f
¡
yj
¢
=

½
F + γ̄

2

¡
yj
¢2 if yj > 0

0 otherwise

¾
,

the competitive long run equilibrium predicts that each firm produces at the minimal efficient
scale, and price is equal to a minimal average cost,

(83) ȳj =

s
2F

γ̄
, p =

p
2F γ̄.

The number of consumers per each firm can be found as a ratio of the level of production
of a typical firm and the demand of each consumer. With I consumers characterized by a
quadratic utility functions

(84) U
¡
xi,mj

¢
= αxi − γ̄

2

¡
xi
¢2
+mi,

this ratio is equal to

(85)
I

J
=

√
2Fγ̄

αi −
√
2Fγ̄

.

The ratio is independent from the absolute scale of the economy.
20The example of the cost function that is strictly increasing, strictly convex and with monotonically de-

creasing average cost is

f
³
yj
´
= F + 1 + yj − yj

yj + 1
.
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As argued before, the concept of competitive long run equilibrium is not coherent unless
the economy is large. With the relatively small number of active firms, the price and profit
taking behavior is not justified. In addition, with only a few consumers, one should also
expect some monopsony power on the buyer’s side.

Using the framework from this paper, I find the magnitude of the small scale biases in the
predictions of the competitive long run equilibrium in the economy with consumers’ utility
function given by (84) and technology (82) . Table 5 summarizes the results for the following
values of parameters F = 10, γ̄ = 10 and α = 15.

Table 5. Small scale correction.
J 1 2 3 10 100 Walras

I 18-33 34-49 50-66 165-181 1649-1665 1-∞
I/J 18-33 17-24.5 16.66-22.0 16.5-18.1 16.48-16.65 16.48
ȳ 1.34-1.41 1.38-1.41 1.38-1.41 1.406-1.413 1.413-14.14 1.414
ȳ 14.21-14.56 14.17-14.41 14.15-14.35 14.134-14.215 14.142-14.15 14.142
π̄ 0.07-0.59 0.026-0.380 0.008-0.290 0.00-0.103 0.00-0.011 0

Notes: The first row, J reports the number of firms in the industry for which the simulation was conducted. I is

the number of consumers compatible with J firms; I/J is the number of consumers per firm. y gives the range of

production levels; p denotes a price and π is profit.

The first row denoted by J , defines the market structure in question. For example, column
J = 1 represents a monopoly, J = 2, is a duopoly and for J > 2 it is an oligopoly with J firms.
In the column “Walras” I report the predictions of the competitive long run equilibrium. Row
I gives the the numbers of consumers supporting considered market structure, and row I/J
informs about the number of consumers per each active firm. The last three rows give the
level of firms production, equilibrium price and profit.

It can be seen that the profits of the oligopolistic firms are positive and the price is above
the minimal average cost. In the small economy, the number of consumers per active firm
is significantly above the value predicted by the Walrasian equilibrium. For example, the
monopoly serves from 18 to 33 consumers and not the predicted 16.48. One of the reasons
for this is that indivisibility of a fixed cost prevents the other firms from entering the industry,
even if the incumbent has a relatively high profit. In addition, in a small economy, consumers
have some market power and hence the aggregate demand is below the competitive one. On
the other hand, the simulations suggest that the Walrasian long run equilibrium is a good
approximation when the number of operating firms is large. In the economy with more than
one hundred active firms, the gap in the predictions of the two frameworks becomes negligible.

8.5.4 Competitive Economy

When in the cost function given by (81) the value of fixed cost is zero, F = 0, the long
run equilibrium fails to exist. For any value of J, Theorem 1 asserts that one can find a
ρ−competitive one. It is easy to show that given identical cost function, all firms produce
the same amount of output and hence the equilibrium is symmetric, and with increasing
marginal cost all firms make a positive profit. Hence for any J there are always incentives to
form new firms. By definition, the economy without the long run equilibrium is competitive.
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9 Determinants of Market Power and Policy Implications

The key to understanding the phenomenon of market power is a source of trader’s price
impact defined as her ability to affect prices by marginally changing her trade. The presented
framework gives some insights into the nature of determinants of price impacts, a phenomenon
long ignored in the economic literature.

9.1 Determinants of Price Impacts

The essential ingredient of a price impact of each trader is a convexity of utility (negative of
the second derivative) or cost functions of the trading partners. The steeper the marginal
utility or cost of the other traders, the greater the price change needed to make others willing
to absorb the off-equilibrium deviation. Therefore the trader with the highest convexity has
the lowest price impacts, as she trades with a group of traders characterized by the lowest
convexity. More generally, the traders’ ranking with respect to the strength of price impact
is a reversed order of their convexities.

Some economies endogenously assign higher market power to sellers than to buyers. For
example, this is the case in a pure exchange economy with identical utility functions with a
positive third derivative. In equilibrium, the convexities of buyers are naturally above the
sellers’ and hence sellers have more substantial price impacts.

Price impacts are subject to a mutual reinforcement effect. They “add” to the convexi-
ties of utility or cost functions, making the traders more reluctant to absorb the unilateral
deviations of other traders. This positively affects price impacts of the remaining traders.
The mutual reinforcement effect amplifies the overall level of price impact in the economy.

It does not matter for the price impact whether the trader is a firm maximizing profit
or a consumer. In equilibrium, consumers and firms with the same convexity have identical
price impacts.

Surprisingly, price impact does not depend on the trader’s share in the total volume of
trade. Even if one of the traders is a sole supplier of a commodity on the market, she has
the same price impact as others, provided that the convexities are the same.

Price impacts are always decreasing in the absolute number of traders. Note that this is
not necessarily the case in the model of Cournot. With a linear demand function, the Cournot
model predicts/assumes that the price impact of an oligopolist is the same, regardless of the
number of firms operating in the industry and it is equal to the slope of a demand of the
industry. This is because in the Nash equilibrium, strategic traders do not react to unilateral
off-equilibrium deviations, and the price impacts are solely determined by the reaction of
competitive consumers.

In the economic literature, market power is associated with large traders. This is because
the same price impact affects traders’ decisions in a different way, depending on her volume
of trade. For example, with the price impact and the supply equal to one, the producer,
by selling additional unit of a good, is losing only one dollar on the previous sales due to a
reduced price. When the original volume of trade is equal to one hundred units, the loss of
profit amounts to one hundred dollars. Consequently, large traders are affected more severely
than the smaller ones, and hence their non-competitive behavior is more pronounced. In
other words, what matters is the elasticity of the demand function, and price impact is only
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one of its components.
Finally, I would like to stress the role of a harmonic mean in the framework. The consis-

tency condition on price impacts implies that a trader’s price impact is equal to a harmonic
mean of price impacts and convexities of utility or cost functions of the remaining traders,

(86) Mn =
1

N − 1H
¡
Mn + V n|n0 6= n

¢
,

and multiplied by a discount factor 1/ (N − 1). Harmonic mean arises naturally in the con-
sistency condition as it puts higher weight on the traders with smaller convexities. Observe
that such traders absorb most of the unilateral deviation and hence are key in price impact
determination. The traders with almost linear utility or cost functions are willing to absorb
off-equilibrium deviation without any price reward, making price impacts of other traders
negligible. This corresponds to the property of the harmonic mean that whenever one of its
elements converges to zero, the value of the mean also becomes zero.

9.2 Mergers and Antitrust Policy

The analytical framework used by the Department of Justice and the Federal Trade Com-
mission to determine whether mergers are likely to lessen the competition of the industry
is primarily based on the Herfindahl-Hirschman Index (HHI). HHI measures post-merger
market concentration by summing the squares of the market shares of all market participants.

(87) HHI =
X
j∈J

¡
sj
¢2
,

where sj is a share in the sales on the market by firm j. Markets with HHI above 1800 are
considered highly concentrated, and mergers increasing HHI by more than 100 points are
assumed to be likely to “create or enhance market power or facilitate its exercise.”

The model presented in this paper suggests that HHI does not contain sufficient informa-
tion for the evaluation of the unilateral21 effects of mergers on competitiveness of the market.
This is because, other things being equal, oligopolistic market power critically depends on
the convexity of the cost functions of the other firms. In the industries characterized by large
fixed costs and approximately constant marginal costs, the interactions should be competitive
even if the number of firms is small. Consider a software industry with three firms of equal
size, and suppose that two of them are considering a merger to save on fixed costs. The post
merger Herfindahl-Hirschman index is equal to

(88) HHI = 5445,

so the market is considered as highly concentrated. In addition, the merger increases HHI
by 2178, and therefore the merger is likely to be blocked. If, however, the marginal cost is
constant, such a merger does not enhance market power at all! In addition, with increasing
returns to scale such a merger is Pareto improving, as it reduces the fixed cost expenses.

21The model by assumption rules out the merger effects on lessening the competition through a coordinated
interaction.
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10 Relation to Other Non-competitive Models

When external absorption is equal to one for all traders, the framework becomes the Walrasian
one. In this section, I argue that several other non-competitive models of market interactions
are also embedded in the proposed framework.

10.1 Unilateral Monopoly, Dixit-Stiglitz Monopolistic Competition

The models of unilateral monopoly assume that only one trader in each market has market
power. An example of such models include a standard monopoly or monopsony. Such models
have been extensively studied in economic literature.

Technically, the models of a unilateral monopoly can be obtained within the proposed
framework by setting the value of external absorption of one trader to zero, and for the
remaining traders to one. For example, in the economy with one consumer and one firm,
setting ρi = 1 for the consumer and ρj = 0 for the producer transforms the framework into
a standard model of monopoly. When the values are reverted, i.e., ρi = 0 and ρj = 1, it
becomes a model of monopsony. The proper values of external absorption for a buyer and a
seller in the Edgeworth box economy define a model of monopoly or monopsony.

The most prominent example of a unilateral monopoly is a model of monopolistic com-
petition proposed by Dixit and Stiglitz [1977]. Dixit and Stiglitz consider an economy with
one competitive consumer and J firms, each producing one non-numeraire good. Their rep-
resentative consumer has preferences given by a utility function

(89) U

⎛⎝m,

ÃX
l

(xl)
s−1
s

! s
s−1
⎞⎠ .

U (·, ·) is a homogenous, strictly quasi-concave and increasing function and s ∈ (1,∞). Such
preferences are more general than the ones assumed in this paper, as they allow for different
values of marginal rate of substitution between money and “utility” from non-numeraire
goods. I will argue, however, that in deriving their equilibrium, Dixit and Stiglitz implicitly
assumed a constant marginal rate of substitution on the individual level (the marginal rate
of substitution is determined on the aggregate level).

If one defines a modified utility function as Ũ (m,u) ≡ U
³
m,u

s−1
s

´
, the utility function

(90) Ũ

Ã
m,
X
l

(xl)
s−1
s

!

represents the same preferences as the one in (89), and its non-numeraire argument is ad-
ditively separable. The aggregate price index p̄ and an index of aggregate non-numeraire
consumption x̄ in the economy is defined as

(91) p̄ =

ÃX
l

(p̄l)
1−s
! 1

1−s

and x̄ =

ÃX
l

(xl)
s−1
s

! s
s−1

.
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The maximization of the utility function on a budget set,

(92) m+
X
l

plxl ≤ I,

yields the following optimal non-numeraire demand of each l:

(93) xl =

µ
1

pl

¶s

x̄p̄s.

(93) and the budget constraint in (92) determine the consumption of numeraire. In general
it is very hard to find a closed form solution for the system of L + 1 non-linear equations
and L + 1 unknowns. Dixit and Stiglitz argue, however, that when the number of non-
numeraire goods is large, the change of an individual price should have a negligible effect on
the aggregate price level p̄ and also on the aggregate consumption x̄. They conclude that the
elasticity of the demand for individual good should be approximately equal to s.

It is immediate to show that in optimum, the marginal rate of substitution between a
numeraire and non-numeraire utility is equal to

(94)
Ũm (·)
Ũx (·)

=
s− 1
s

(x̄p̄s)−
1
s .

Therefore, fixing the value of x̄p̄s is equivalent to making Ũm/Ũx constant, too. In other
words, Dixit and Stiglitz assume that from the perspective of an individual firm, the repre-
sentative consumer behaves as if she had a quasi-linear utility function, additively separable
with respect to non-numeraire goods

Ũ

Ã
m,
X
l

(xl)
s−1
s

!
=
³
Ũm/Ũx

´
m+

X
l

(xl)
s−1
s .

Such a utility functional satisfies the assumptions A1-A5 in this paper.
To close the model, Dixit and Stiglitz endogenize Ũm/Ũx on the aggregate level. The

unique equilibrium value of Ũm/Ũx, and the production level x̄l is determined22 by the con-
dition that the consumers’ demand is sufficiently large to insure that the firm breaks even,
given the elasticity of the demand equal to s and fixed cost equal to F . The number of goods
produced in the economy, L, is then determined to make the equilibrium marginal rate of
substitution Ũm/Ũx to be a true one. Formally, L is implicitly defined by the condition

(95)
Ũm

¡
m,Lxγl

¢
Ũx

¡
m,Lxγl

¢ = Ũm

Ũx

.

It is straightforward to generalize the framework in this paper to allow for the preferences
as in the monopolistic competition model of Dixit and Stiglitz. The derivation of an equi-
librium requires some approximations, and therefore such a generalization come at the cost
of not perfect internal consistency. In this paper, I focus on the interdependencies of market
power among traders rather than income effects in non-competitive trading. Therefore, I
leave such an extension for future research.
22 In the version of monopolistic competition with a fixed number of operating firms, the marginal rate of

substitution is determined as a solution to the system of two equations and two unknowns (93), with MRS

substituted from (94), giving xl
³
Ũm/Ũx

´
and Ũm (m,xl) /Ũx (m,xl).
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10.2 Bilateral/Multilateral Monopoly, Game-theoretic Approach.

Modelling a bilateral monopoly is more complicated than the unilateral one. The complication
results from the fact that the price impact of the oligopolist depends on the behavior and
hence the price impact of the other oligopolist and vice versa. Such mutual interdependence of
price impacts is explicitly studied in this paper. The game theoretic models solve the problem
in an alternative way. They cut the link between the price impacts of different traders by
imposing the condition that only price takers react to unilateral deviation of strategic players.
For example, this is the case in the Cournot model.

In the Cournot model, each firm is maximizing a profit, given a demand of the industry

(96) p
³
yj +

X
ȳj
´
.

If the demand is determined by a market clearing condition, as in the monopolistic compe-
tition studied by Gabszewicz and Vial [1972], function p () is implicitly determined by the
market clearing condition

(97)
X

t̄i,Walras (p) = yj +
X
j06=j

ȳj0,

which, given the inelastic supply function, yj = −tj , can be written as

(98) tj +
X
j06=j

t̄j0 +
X

t̄i (p, 0) = 0.

This shows that the allocation in a Cournot-Nash equilibrium is numerically equivalent to a
ρ−competitive equilibrium, in which external absorption of the consumers is set to one and
the firms’ off-equilibrium market clearing condition is modified so that the firms do not react
to unilateral deviations (98).

The Bertrand model can also be embedded in the framework with modified off-equilibrium
price. The Bertrand firms, however, instead of optimally responding to changes in the de-
mands, are assumed to supply any demanded quantity of the good at the equilibrium price.
In other words, in Nash equilibrium their trade correspondence is “flat” and defined as

(99) t̄j
0 ¡
p, M̄

¢
=
©
0 ≥ −tj ≥ ∞ for p = p̄

ª
.

With such supply correspondences with “zero” slopes, the off-equilibrium market clearing
condition predicts zero price impacts of all traders–any unilateral deviation is absorbed
by the other traders without any price change. The similar reasoning generalizes to the
Grossman’s model of Nash in Supply Function from Grossman [1981].

Another well-known model of a bilateral monopoly, the Shapley and Shubik strategic
market game, cannot be mapped into the proposed framework. The reason is that in such a
game, none of the traders responds optimally to changing prices after a unilateral deviation.

The framework is most closely related to the models studied by Bresnahan [1981], Perry
[1982] or Hart [1985]. The key difference is that here traders here have conjectures about the
deviations of prices as a function of off-equilibrium deviations rather that the absolute level
of trade, and they make consistent conjectures not about a best response of the other player,
but about the equilibrium in an economic system with many heterogenous traders.
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11 Perfect Conjectural Equilibrium

A ρ−competitive equilibrium from this paper is an example of a Perfect Conjectural Equi-
librium, a solution concept formulated in Weretka [2005c]. to moddel strategic interactions
in complex systems in which players have a possibily to revise their strategies and the only
information about their environment is limited to the observations of variables relevant in
their payofs that comes from their experimentation. Each player forms believes of how she
affects the behavior of other players ∆s−i (∆si) and take into account when reacting in and
out of equilibirum.

12 Non-competitive Second Welfare Theorem

Theorem 3 asserts that the equilibrium allocation is typically Pareto inefficient. It is natural
to ask whether it is possible to design a tax system that corrects the incentives, so that Pareto
efficient allocation is implementable as a ρ−competitive equilibrium.

Consider a smooth tax rule, T =
¡
T 1, T 2 . . . , T I , . . . , TN

¢
, defined as a vector ofN smooth

functions, each specifying a tax obligation of trader n in terms of numeraire for any possible
value of trade tn. I restrict attention to separable tax rules, that is the rules for which
Hessians D2Tn are diagonal .

By tPE I denote a unique Pareto efficient trade23. In a smooth and separable economy,
tPE must satisfy

(100) Dui|tiPE = Df j |
tjPE

for any i, j ∈ N . The condition (100) and market clearing is sufficient for Pareto optimality
of tPE.

With a smooth tax rule T (·), the necessary condition for stability of consumer’s trade is

(101) Dui
¡
ti + ei

¢
= p̄+Ψi,

where Ψi is a distortion associated with a non-competitive trading and taxation. For any
producer j, in the equation (101) marginal utility is replaced with the marginal cost. The
distortion can be written as

(102) Ψn = M̄n
T t

n +DTn.

Since in equilibrium markets clear, to implement the Pareto efficient allocation, it is sufficient
to make Ψn equal across all traders n, at tPE . I focus on tax rules for which the distortion
is null, Ψn = 0.

A tax rule affects Ψn in two ways. Its gradient enters equation (102) directly, changing
the first order incentives. In addition, taxes determine the price impacts of all traders in
equilibrium, M̄T (hence M̄ has subscript T ). Does there exist a smooth tax rule for which
two effects offset and hence Ψn = 0? To make the argument more transparent, I introduce
the following notation: T 0n ≡ DTn (tnPE) is a gradient of a tax rule at the Pareto efficient

23 In a smooth and separable economy, there is a unique allocation x satisfying this condition. Therefore,
this will also be an allocation in a unique Walrasian Equilibrium.
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allocation and T 00i ≡ D2T i
¡
tiPE

¢
is the Hessian. T 0, and T 00 give T 0n and T 00n for all traders.

The next proposition establishes the existence of a tax rule implementing the Pareto efficient
allocation in a ρ−competitive equilibrium:

Proposition 5 Consider T 00 such that −D2ui () >> T 00i for any consumer i ∈ I and
D2f j () >> T 00j for any producer j ∈ J . Then there exists a unique T 0, such that Ψn = 0
for all n.

One of the implications of Proposition 5 is that for any T 00 one can find a gradient T 0

that makes the distortion equal to zero. Consequently, the proposition implies the existence
of a whole class of tax rules T implementing a Pareto efficient allocation in ρ−competitive
equilibrium. In Proposition 5 the restrictions on T 00 guarantee that the maximization problem
of each trader is convex and hence first order stability conditions are sufficient. It should be
stressed that it is sufficient for the result that the taxes are paid by at least two of the traders
in the economy and not all traders.

The next result demonstrates that the distortion related to non-competitive trading can
be made arbitrarily small by choosing a tax rule with Hessians sufficiently close to Hessians
of corresponding utility or cost functions.

Proposition 6 Let {Tk}k∈{1,2,...∞} be a sequence of tax rules that satisfy the assumptions of
Proposition 5 and for each consumer are such that

(103) lim
k→∞

T 00ik = D2ui
¡
tiPE + ei

¢
,

and for a firm

(104) lim
k→∞

T 00jk = −D2f j (−tPE) ,

then for each trader

(105) lim
k→∞

¡
Mn

Tk

¢
tn = 0.

Proposition 6 shows that it is possible to implement Pareto efficient allocation almost
without affecting the first-order incentives by de-convexifying the optimization problem of
each trader around Pareto efficient trade tnPE. The example of the sequence of tax rules from
6 is

T i,k
¡
ti
¢
=

µ
k − 1
k

¶¡
ti − tiPE

¢T ¡
D2ui

¡
tiPE + ei

¢¢ ¡
ti − tiPE

¢
,(106)

T j,k
¡
tj
¢
= −

µ
k − 1
k

¶³
tj − tjPE

´T ³
D2f j

³
tjPE

´´³
tj − tjPE

´
.

Note that such a sequence satisfies the restriction on Hessians from Proposition 6. Since
D2ui

¡
tiPE + ei

¢
is negative definite and D2f j

³
−tjPE

´
is positive definite, the maximal tax

obligation is associated with trade tnPE , and it is equal to zero. For all other trades, t
n 6= tnPE ,

the value of the tax is negative. In other words, trader n is paid to deviate from the Pareto
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efficient allocation. Why is tPE implemented in a ρ−competitive equilibrium by a tax rule
that gives second-order incentives to deviate from it? Intuitively, the tax rule T k makes the
marginal utility or cost nearly constant around tn

0
PE for all other traders n

0. Therefore for any
unilateral deviation by n, the remaining traders are willing to take the deviation out of the
market without any change in price and hence market power of n is zero. Since this is true
for all traders, the distortion associated with market power disappears and the equilibrium
becomes competitive.

13 Conclusions

In this paper, I propose a framework for studying the outcomes of market interactions and
the determinants of market power in an economy with a small number of traders or with
heterogenous traders. I study economies with consumers characterized by separable utility
function and firms, using a numeraire as the only input. Though these separability assump-
tion are strong, the model has important applications. For example, when modeling trade
under uncertainty, the traders are often assumed to maximize expected utility–a utility
function that is separable with respect to consumption in different states of the world. This
model also makes it possible to study phenomena associated with non-competitive trading of
firms that do not depend on cross-market effects.

The assumption of separability is relaxed in Weretka[2005a]. There I study phenomena as-
sociated with strategic pricing across markets. In particular, I investigate cross-subsidization
of markets and substitution of inputs traded in noncompetitive markets by competitive in-
puts. I also discuss the problem of existence of equilibrium, determinacy and testability in a
non-separable economy.

A vast empirical literature suggests that the trades of large institutional investors do
impact asset prices and hence returns, and that investors take this impact into account when
trading. Yet the existing models of equilibrium asset pricing assume that all investors are
“return takers.” In Weretka [2005b], I use the abstract framework of non-competitive trading
to explain the effect of institutional trading on asset prices and allocations. I discuss the effects
of non-competitive trading in a model with mean-variance optimizing traders in a strategic
version of CAPM (S-CAPM). I also show that market power may account for the equity
premium and the risk-free interest rate puzzles when the utility functions are characterized
by prudence.

In [2005c], I formulate a concept of perfect conjectural equilibrium in an abstract non-
cooperative smooth game, possibly with more than two heterogenous players. Intuitively, in
such a game any marginal off-equilibrium deviation of player i triggers a game among all
remaining players, and the equilibrium outcome of this game is predicted correctly by player
i. When playing the game, other players are assumed to take into account their impacts on
the strategies of the other players. I study the properties of such equilibria.
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14 Appendix

Proof. (Proposition 1: Existence and uniqueness of a stable trade for a con-
sumer.)

Consider a trade that maximizes preferences U i
¡
ti + ei,mi

¢
on a budget set B

¡
p̄, t̄i, M̄ i

¢
,

and is feasible ti + ei ≥ 0. Formally, such
¡
ti,mi

¢
is a solution to the program

(107) max
ti,mi

U
¡
ti + ei,mi

¢
,

subject to ¡
ti,mi

¢
∈ B

¡
p̄, t̄i, M̄ i

¢
and ti ≥ −ei.

U (·) is strictly concave in ti, and constraints are convex, provided that M̄ i is positive definite.
In addition, by strict monotonicity of preferences (in money), in optimum budget constraint
will be satisfied with equality. With symmetric M̄ i, the necessary Khun — Tucker condition
of optimality is given by

(108)
Dui − p̄− M̄ i(2ti − t̄i) ≤ 0,
pp̄,t̄i,M̄i

¡
ti
¢
· ti +mi = 0,

p(p̄,t̄i,M̄i)
¡
ti
¢
= p̄+ M̄ i

¡
ti − t̄i

¢
,

where the first inequality holds with equality for all commodities such that til > −eil. By the
definition of a stable trade, t̄i is optimal on a budget set generated by itself and therefore the
additional necessary stability condition is

(109) ti = t̄i.

Equation (109) allows me to reduce (108) to

Dui − M̄ it̄i ≤ p̄,(110)

m̄i + p̄ · t̄ = 0.

The inequality asserts that at the stable trade, marginal utility can be at most equal to
marginal revenue. For any positive definite, diagonal matrix M̄ i, equation (110) has a unique
solution t̄i. To see it observe that the first group of inequalities in (110) forms a system of
L independent inequalities, each just in one unknown. Each diagonal element is M̄ i

l,l > 0,
therefore the left hand side is decreasing in t̄il. This function attains its maximal value,
preservationl , at t̄il = −ei and is equal to zero for some finite value of t̄il. Therefore, for any pl
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in the interval [0, preservationl ], there exists a unique positive value of t̄il that solves inequality
(110) with equality, and for pl in

¡
preservationl ,∞

¢
, the unique value of t̄i satisfying (110) is

zero. Given t̄i that solves all inequalities (110), a unique stable m̄i is determined by the last
equality (110). This shows that for any p̄ ≥ 0 and positive definite M̄ i diagonal matrix, there
exists a unique t̄i that is stable.

Proof. (Corollary 1: Stable trade function is differentiable in p̄.).
Proposition 1 asserts that for any positive definite diagonal matrix M̄ i and a price vector

p̄ such that p̄ ≥ 0, there exists a unique stable trade t̄i. This defines a function ti
¡
p̄, M̄ i

¢
. In

addition, when t̄i >> −ei, non-numeraire stable demand is implicitly defined by the equality
of the marginal utility and the marginal revenue (see (110))

(111) Dui
¡
t̄i + ei

¢
= p̄+ M̄ it̄i .

The derivative of the implicit function with respect to t̄i is given by

(112) M̄ i −D2ui (·) .

By assumption, −D2ui (·) and M̄ i are positive definite, therefore matrix (112) has full rank.
The implicit function theorem says that in the neighborhood of p̄, a stable trade function,
t∗i
¡
p̄, M̄ i

¢
, solving equation(110) is differentiable. Since this holds for any interior trade,

ti
¡
p̄, M̄ i

¢
is smooth for all interior trades. The implicit function theorem implies that the

derivative of the trade with respect to price

(113) D2
pt
¡
p̄, M̄ i

¢
= −

¡
M̄ i −D2ui

¢−1
is an inverse of the Hessian and the price impact matrix.

Proof. (Proposition 2: Existence of a differentiable, stable trade function for a
firm.)

Consider a problem of a firm choosing a trade tj to maximize a profit

(114) max
ti,mj

π = −
¡
pp̄,t̄j ,M̄j

¡
tj
¢
· tj +mj

¢
,

and is constrained by the production set determined by:

(115) mj ≥ f j
¡
−tj

¢
and tj ≤ 0.

With positive definite M̄ j price impact matrix, the objective function is strictly concave.
With M̄ j symmetric, the necessary conditions for tj to be optimal on the production set are

(116)
p̄+ M̄ j(2tj − t̄j)−Df j ≤ 0,

mi = f j
¡
−tj

¢
,

p(p̄,t̄j ,M̄j)
¡
tj
¢
= p̄+ M̄ j

¡
tj − t̄j

¢
,

where the inequalities hold with equality for all interior trades t̄jl < 0. The stability requires
that the trade is optimal with respect to “itself” and therefore

(117) tj = t̄j .
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The necessary and sufficient stability condition becomes

(118)
p̄ ≤ Df j

¡
−t̄j

¢
− M̄ j t̄j ,

m̄i = f j
¡
−tj

¢
,

where again the inequality holds with equality for all interior goods such that t̄jl < 0. Given
positive definite diagonal M̄ j for any l, each of the first L inequalities depends only on one
variable, t̄jl . The right hand side is continuous and monotonically decreasing in t̄jl , from
infinity for t̄jl approaching minus infinity (convexity), to zero for t̄

j
l = 0. There therefore

exists a unique non-positive t̄j satisfying the equation with equality for any price pl ≥ 0.
This establishes the existence of a function t̄j

¡
p̄, M̄

¢
. By analogous arguments, as in the case

of a consumer, such function is differentiable with the derivative given by

D2
pt
¡
p̄, M̄ j

¢
= −

¡
M j +D2f j

¢−1
,

which is symmetric to the derivative of the consumer’s demand.

Proof. (Proposition 3: Existence of ρ−consistent matrices.)
First I prove the proposition for N > 2 in the following four steps: I show that the

existence of ρ−consistent M̄ can be reformulated as a problem of the existence of a fixed
point of some function H (·) that maps the set of vectors of positive semi-definite matrices
into itself. In the case of smooth and separable economies, H (·) maps the set of positive
semi-definite diagonal matrices into itself (Claim 1). Next I construct a non-empty, compact,
and convex subset of positive semi-definite diagonal matrices (Claim 2) and show that H (·)
maps this set into itself (Claim 3). Since H (·) is continuous, standard argument in Claim
4 establishes the existence of consistent matrices. Finally, in Claim 5, I consider the case
economy with only two traders, N = 2. In the proof, ρ and Hessians D2ui

¡
t̄i + ei

¢
, and

D2f j
¡
−t̄j

¢
are assumed to be fixed for all n = i, j.

Claim 1 (ρ−consistent M̄ is a fixed point of H (·).)

(Argument for Claim 1): A system M̄ is ρ−consistent with disequilibrium market clearing
at t̄, if for any n ∈ N

(119) Mn = Dtp
n
¡
t̄,M−n¢ .

With (39), equation (119) can be written as

(120) M̄n = (1− ρn)

⎡⎣X
n0 6=n

³
M̄n0 + V̄ n0

´−1⎤⎦−1 ,
where V̄ i = −D2ui

¡
ei + t̄i

¢
is a negative of a Hessian of a utility function and V̄ j =

D2f j
¡
−t̄j

¢
is a Hessian of a cost function. Note that V̄ n is (strictly) positive definite for all

n ∈ N . Let V̄ be a specification of all V̄ n,

(121) V̄ =
¡
V̄ 1, . . . , V̄ I , V̄ I+1, . . . , V̄ N

¢
.
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The consistency condition on M̄ (120) is mathematically equivalent to M̄ being a fixed point
of a function H

¡
M, V̄

¢
(122) H (·) =

¡
H1 (·) , . . . ,HI (·) ,HI+1 (·) ...,HN (·)

¢
,

where

(123) Hn
¡
M, V̄

¢
= (1− ρn)

⎡⎣X
n0 6=n

³
Mn0 + V̄ n0

´−1⎤⎦−1 ,
and V̄ is fixed.

Claim 2 (Construction of a non-empty convex and compact set)

(Argument for Claim 2): Let M =
©
M1, . . . ,M I ,M I+1, . . . ,MN

ª
, where Mn is a L×L,

positive definite, diagonal matrix, andM is a set of all such M . Define two functions onM,
mappingM → R +, the lower and upper “norm”, kMk and kMk in the following way:

(124) kMk = max
n∈N

kMnk∗, where kMnk∗ = max
l∈L

¡
Mn

l,l

¢
,

and

(125) kMk = min
n∈N

kMnk∗, where kMnk∗ = min
l∈L

¡
Mn

l,l

¢
.

The two functions (and also their “matrix” equivalents k·k∗ and k·k∗) have the following
properties, similar to the properties of a norm in a vector space:

a) kMk = 0 if and only if M = 0,
b) scalar linearity: for all α ≥ 0

(126) kαMk = αkMk ,

and

(127) kαMk = αkMk,

c) triangle inequalities:

(128) kM1 +M2k ≤ kM1k + kM2k ,

and

(129) kM1 +M2k ≥ kM1k+ kM2k,

d) functions kMk and kMk are continuous with respect to elements of M .
Next, for any two non-negative scalars λ and λ̄, satisfying 0 ≤ λ ≤ λ̄ < ∞, define

Mλ̄
λ ⊂M

(130) Mλ̄
λ =

n
M ∈M|kMk ≤ λ̄ and kMk ≥ λ

o
.
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SetMλ̄
λ is non-empty, convex and compact in RN×L×L. For non-emptiness, observe that

diagonalM with diagonal entries λ are always members ofMλ̄
λ for any λ ≤ λ̄. For convexity,

suppose M1, M2 ∈ Mλ̄
λ. Then αM1 + (1− α)M2 consists of matrices αMn

1 + (1− α)Mn
2

for each n ∈ N that are positive semi-definite and diagonal. In addition, by the triangle
inequality and the linearity of norms

(131) kαM1 + (1− α)M2k ≤ αkM1k + (1− α) kM2k ≤ λ̄,

and

(132) kαM1 + (1− α)M2k ≥ αkM1k+ (1− α) kM2k ≥ λ.

This shows that (αM1 + (1− α)M2) ∈ Mλ̄
λ, and hence Mλ̄

λ is convex. Now I will argue

that Mλ̄
λ is compact in R N×L×L. It is sufficient to show that Mλ̄

λ is closed and bounded

in RN×L×L. For closedness, let {Mk}k=1,2...,∞ be a sequence inMλ̄
λ, converging to some M .

For any k, nth matrix Mn
k is diagonal, so that M

n must also be diagonal. Since k·k and k·k
are continuous and for any k, kMkk ≤ λ̄ and kMkk ≥ λ, therefore

(133) lim
k→∞

kMkk =

°°°° limk→∞
Mk

°°°° = kMk ≤ λ̄,

and

(134) lim
k→∞

kMkk =
°°°° limk→∞

Mk

°°°° = kMk ≥ λ.

This implies that M ∈Mλ̄
λ and henceMλ̄

λ is closed. The boundedness ofMλ̄
λ follows from

the fact that all off-diagonal entries are 0 and the diagonal ones are bracketed between
λ ≥Ml,l ≥ λ̄. Closedness and boundedness ofMλ̄

λ is sufficient for the compactness ofMλ̄
λ.

Let V and V γ̄γ be defined analogously toM andMλ̄
λ, respectively. By identical argument,

as in case ofMλ̄
λ, for any γ and γ̄ satisfying 0 < γ ≤ γ̄ <∞, set V γ̄γ is non-empty convex and

compact.

Claim 3 (Suppose N > 2. For any γ and γ̄ such that 0 < γ ≤ γ̄ <∞, there exists λ̄ <∞
such that function H (M,V ) mapsMλ̄

0 × V
γ̄
γ →Mλ̄

0 in a continuous way.)

(Argument for Claim 3): Define an auxilirary function A :M×V →M in the following
way:

(135) A (·) =
¡
A1 (·) , . . . , AI (·) , AI+1 (·) . . . , AN (·)

¢
,

where each

(136) An
¡
M, V̄

¢
=

1

N − 1

⎛⎝ 1

N − 1
X
n0 6=n

³
Mn0 + V̄ n0

´⎞⎠ .
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The nth component of A (·), An (·) is an arithmetic mean of elements of Mn0 + V n0 for
all n0 ∈ N\{n}, and “discounted” by factor 1

N−1 < 1. Mapping A (·) preserves positive
definiteness and diagonality of the matrices. Let λ̄

(137) λ̄ =
1

N − 2 γ̄.

Since N > 2, therefore 0 < λ̄ < ∞. Observe that by the triangle inequality and the scalar
linearity of k·k∗, for each n

kAn (M,V )k∗ =
1

N − 1

⎛⎝ 1

N − 1
X
n6=n0

³
Mn0 + V̄ n0

´⎞⎠ ≤(138)

≤ 1

N − 1

⎛⎝ 1

N − 1
X
n6=n0

³
kMn0k∗ + kV i0k∗

´⎞⎠ .

For any (M,V ) ∈Mλ̄
0 × V

γ̄
γ inequality (138) implies that

kAn (M,V )k∗ ≤ 1

N − 1
¡
λ̄+ γ̄

¢
=(139)

=
1

N − 1 λ̄+
N − 2
N − 1 λ̄ = λ̄,

where the first equality holds by (137). Since inequality (139) holds for any n,

(140) kA (M,V )k ≤ λ̄.

Consider function Hn (M,V )

(141) Hn (M,V ) = (1− ρn)

⎡⎣X
n0 6=n

³
Mn0 + V n0

´−1⎤⎦−1 .
If V ∈ V γ̄γ with γ > 0, matrix Mn + V n is strictly positive definite for all n, hence it is
invertible, so H (M,V ) is a well defined, continuous function on M×V. In addition, H (·)
preserves positive definiteness and diagonality of matrices, so that H (·) :M×V →M. By
the arithmetic — harmonic mean24 inequality and the fact that (1− ρn) ≤ 1 for any n,

(142) Hn (M,V ) ≤ An (M,V ) ,

(element by element) so that

(143) kHn (M,V )k∗ ≤ kAn (M,V )k∗

24Each function Hn (M,V ) can be written as Hn (M,V ) = (1−ρn)
N−1 H

³
M̄n0 + V̄ n0 |n0 6= n

´
where H () is a Harmonic Mean of N − 1 positive definite matrices

³
M̄n0 + V̄ n0

´
for all traders n0 6= n,

while function An (M,V ) = 1
N−1A

³
M̄n0 + V̄ n0 |n0 6= n

´
where A () is the arithmetic mean.
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and hence by inequality (140), for every (M,V ) ∈Mλ̄
0 × V γ̄γ

(144) kH (M,V )k ≤ kA (M,V )k ≤ λ̄.

In addition, since H (M,V ) preserves positive definiteness of matrices, kH (M,V )k ≥ 0. This
proves that H (·) maps in a continuous wayMλ̄

0 × V γ̄γ →Mλ̄
0 .

Claim 4 (Existence for N > 2.)

(Argument for Claim 4): For V̄ defined as in (121), find γ =
°°V̄ °° > 0 and γ̄ =

°°V̄ °° <∞
and let λ̄ be as in (137). SinceH :Mλ̄

0× V
γ̄
γ →Mλ̄

0 , and V̄ ∈ V
γ̄
γ , the restrictionH

¡
·, V̄

¢
maps

Mλ̄
0 →Mλ̄

0 and is continuous, andMλ̄
0 is a non-empty convex and compact set. Therefore,

by the Brouwer fixed point theorem, there exists M̄ such that

(145) H
¡
M̄, V̄

¢
= M̄.

This implies that M̄ is ρ−consistent with disequilibrium market clearing at t̄n. In addition,
since V̄ is strictly positive definite, H

¡
·, V̄

¢
maps into a subset of strictly positive definite

matrices. Hence M̄ = H
¡
M̄, V̄

¢
consists of strictly positive diagonal matrices.

Claim 5 ((Non-) existence for N = 2.)

(Argument for Claim 5): In the case of N = 2, the necessary condition for ρ−consistency
becomes (See equation (120))

(146) M1 =
¡
1− ρ1

¢ ¡
M2 −D2u2

¢
,

(147) M2 =
¡
1− ρ2

¢ ¡
M1 −D2u1

¢
.

If ρ1 = ρ2 = 0, equations (146) and (147) imply that

(148) D2u1 = −D2u2.

But this is impossible since the Hessians of both utility functions are negative definite. When
for at least one of the two traders external absorption is positive, ρn > 0, the system (146)
and (147) can be solved to obtain

M1 = −
¡
1− ρ1

¢
1− (1− ρ1) (1− ρ2)

¡¡
1− ρ2

¢
D2u1.+D2u2

¢
,(149)

M2 = −
¡
1− ρ2

¢
1− (1− ρ1) (1− ρ2)

¡¡
1− ρ1

¢
D2u2.+D2u1

¢
,(150)

The matrices M1 and M2 are consistent.

Proof. (Theorem 1: Existence of a diagonal ρ−competitive equilibrium.)
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One of the complications of proving the existence of equilibrium in a non-competitive
setting is that the second derivatives are defined only on RL

++ (an open set) and may not
be uniformly bounded. In such case, the set of Hessians of utility functions for different
values of trade may not be bounded (and hence not compact either). To give an example, for
logarithmic utility function ln (x), the second derivative is equal to − 1

x2
. It is not possible to

find an upper bound on the absolute value of the derivative, as limxi→0
¯̄
1/x2

¯̄
=∞, even if

the set of trades is compact.
It can be shown, however, that given strictly positive endowments, the consumption

near zero will never be observed in equilibrium. Therefore to overcome the problem of
unboundedness of the Hessians, I adopt the following strategy. I truncate the space of feasible
trades so that the consumption is bounded away from zero for all consumers. Then I define
a non-empty, convex, and compact set of trades, prices and price impact matrices, and a
continuous function mapping this set into itself. I establish the existence of a fixed point of
this map (Claim 7). Next I show that the constraints in the truncation are not binding so
that optimality extends to a whole RL

+ commodity space. (Claim 8). Finally I show that the
fixed point of the map defines an equilibrium in E (Claim 9).

Claim 6 (Truncated space of trades, T .)

(Argument for Claim 6): For each trader I replace the original commodity space RL
+ with

a compact box. In order to do so, for any non-numeraire good l, I find the maximal value
possibly observed as a price in a Walrasian equilibrium in E

(151) ūl ≡ max
i∈I

∂uil
¡
eil
¢

∂xil
.

Then for any consumer i I find a lower bound of the consumption of good l, xi,min

(152) ūl =
∂uil

³
xi,minl

´
∂xil

.

By the interiority assumption, A5, and convexity of the utility function, xi,minl , is well defined
and 0 < xi,minl ≤ eil. By xi,min, I denote a vector of lower bounds for all goods, xi,min ≡n
xi,min1 , . . . , xi,minL

o
. For any firm j I define an upper bound on the production of good l,

yj,maxl , as follows:

(153)
∂f jl

³
yj,maxl

´
∂yil

= ūl.

By assumption of monotonicity, A8, and convexity, A9, strictly positive yj,maxl exists and is

unique. Then yj,max =
n
yj,max1 , . . . , yj,maxL

o
is a vector of upper bounds on production for all

goods. A truncated space of trades, denoted by T , is defined as a set of all trades such that
markets clear and individual trades are within the defined bounds, namely

(154) T ≡
(
t ∈ R N×L|

X
n∈N

tn = 0, and ti ≥ −ei + 1
2
xi,min, and 0 ≥ tj ≥ −yj,max

)
.
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The trade space T is non-empty (for example, autarky is a member of T ), convex (union
of three convex sets) and compact (closed — it is a preimage of a closed set by a continuous
function, and bounded–all trades are bounded from below, and they all sum up to zero
hence they are also bounded from above).

Claim 7 (Construction of a compact set and a continuous map, the existence of a fixed
point.)

(Argument for Claim 7): First I define function V : T → V, mapping trades into a space
of vectors of positive definite matrices as

(155) V (t) =
¡
V 1
¡
t1
¢
, . . . , V I

¡
tI
¢
, V I+1

¡
tI+1

¢
, . . . , V N

¡
tN
¢¢

where

(156) V i
¡
ti
¢
= −D2ui

¡
ei + ti

¢
and V j

¡
tj
¢
= D2f j

¡
−tj

¢
.

Note that V is not well defined for trades in which the firm’s supply of some good is zero. This
is because the Hessians of cost functions are not defined on the boundary of RL

+. Therefore
for any tj such that tjl = 0 for some l, V j

¡
tj
¢
is defined as a limit of the Hessian as tjl

approaches zero

(157) V j
¡
tj
¢
= lim

tjl→0
D2f j

¡
−tj

¢
.

By assumption A9, such limit is well defined, is finite and strictly greater than zero for any
diagonal entry of V j

¡
tj
¢
. By interiority of the initial endowments, such problem does not

arise in case of consumers, as consumption induced by any trade in T is bounded away from
zero. Utility and cost functions are twice continuously differentiable on R ++, therefore V (t)
defined by (??) and (157) is continuous on T . Let

(158) γ̄ = sup
t∈T

kV (t)k and γ = inf
t∈T

kV (t)k.

Because k·k , k·k, and V (t) are continuous on T and T is compact, sup and inf are attained
on T , therefore 0 < γ ≤ γ̄ < ∞. For such two scalars define a set of vectors of positive
definite matrices, V γ̄γ , as in Claim 2 in Proposition 3. As argued before, V γ̄γ is non-empty,
convex, and compact and function V : T → V γ̄γ is continuous. Finally, define λ̄ andMλ̄

0 as

in Claim 3 in Proposition 3 and allocation function T :Mλ̄
0→ T , by the equation

(159) T (M) ≡ argmax
t∈T

⎡⎣X
i∈I

µ
ui
¡
ti + ei

¢
− 1
2
ti ·M iti

¶
−
X
j∈J

µ
f j
¡
−tj

¢
+
1

2
tj ·M itj

¶⎤⎦ .
The objective function in definition (159) is continuous, strictly concave, and T is compact,
therefore allocation function T (M) is well defined. In addition, T (M) is continuous by a
maximum principle. Finally define a map F

(160) F : T × V γ̄γ ×M
λ̄

0
→ T × V γ̄γ ×M

λ̄

0
,
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as
F = {T (·) , V (·) ,H (·)} .

In was shown in Claim 3 of Proposition 3 that H (·) maps in a continuous way V γ̄γ ×M
λ̄

0
into

Mλ̄
0 . Since each component of F is continuous, F is continuous on a non-empty, convex and

compact set T × V γ̄γ ×M
λ̄

0
. By the Brouwer fixed point theorem, there exists a fixed point

(t∗, V ∗,M∗) such that

(161) F (t∗, V ∗,M∗) = (t∗, V ∗,M∗) .

(For the case with N = 2 and ρ > 0, the proof is modified in a following way: By

Im
³
V γ̄γ
´
⊂M, denote the image of set V γ̄γ by the function (149) and then let λ̄ ≡ supM∈Im(V γ̄γ ) kMk.

Since Im
³
V γ̄γ
´
is compact, λ̄ is positive and finite. Then in the proof above use this λ̄ and

replace map H (·) with functions (149).)

Claim 8 (t∗ is in the interior of T )

(Argument for Claim 8.): I show that all inequality constraints in the definition of T ,
(154) are satisfied with strict inequality at t∗ and hence are not binding.

a) tjl ≤ 0 is not binding.
Partial derivative of the objective function (159) with respect to tjl is positive for all t

j
l < 0

and equal to zero for tjl = 0. If for some j, tj∗l = 0, then tj
0∗
l = 0 must hold for all firms

j0 ∈ J . Otherwise, one could benefit by reducing the supply of j0 and offset this change
by increased supply by firm j. With all firms producing zero, there must exist at least one
consumer with non-positive trade ti∗ (as all trades sum up to zero) and partial derivative of
(159) with respect to til evaluated at t

i∗
l ,

(162)
∂uil

¡
ti∗ + ei

¢
∂xil

−M i∗
ll t

i∗
l > 0

is strictly positive asM∗i
l,l ≥ 0. Consequently marginally reducing t

j∗
l (hence increasing supply

of j) and at the same time increasing ti∗l by the same amount increases the value of the
objective function and does not violate the constraints defining T . This contradicts the
optimality of t∗ on T .

b) tj ≥ −yj,max is not binding.
Suppose for some j and l, tj∗l = −yj,maxl < 0. By definition of yj,maxl , the partial derivative

of the objective function (159) with respect to tjl , evaluated at t
j∗
l is (153)

(163)
∂f il

¡
−ti∗l

¢
∂yil

−M i∗
ll t

i∗
l > ūl = max

i∈I

∂uil
¡
eil
¢

∂xil
.

In addition, by the fact that all trades sum up to zero, there must be at least one consumer
i with strictly positive trade ti > 0. For such consumers partial derivative

(164)
∂uil

¡
ti∗l + eil

¢
∂xil

−M i∗
ll t

i∗
l <

∂uil
¡
eil
¢

∂xil
≤ ūl.
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Equations (163) and (164) imply that increasing marginally tjl (cutting the supply) and
reducing the demand til by the same amount increases value of (159) and such change does
not violate the constraints. This contradicts optimality of t∗.

c) ti ≥ −ei + 1
2x

i,min is not binding.
Suppose for some i, ti∗l = −eil + 1

2x
i,max
l . By construction xi,maxl < eil, therefore t

i∗
l < 0.

In addition,

(165)
∂uil

¡
ti∗l + eil

¢
∂xil

−M i∗
l,l t

i∗
l =

∂uil

³
1
2x

i,max
l

´
∂xil

−M i∗
l,l t

i∗
l > ūl.

Since the trades sum up to zero, there must exist some other consumer i0 with ti∗l > 0
and for such consumer

(166)
∂ui

0
l

³
ti
0∗
l + ei

0
l

´
∂xi

0
l

−M i0∗
l,l t

i0∗
l <

∂ui
0
l

³
ei
0
l

´
∂xi

0
l

≤ ūl.

Equations (165) and (166) imply that increasing the demand of i and offsetting this change
by the reduction of trade i0 does not violate the constraints and increases the value of (159).
This contradicts optimality of t∗on T .

Claim 9 (Fixed point (t∗, V ∗,M∗) implies equilibrium (p∗, t∗,M∗) in E.)

(Argument for Claim 9): The objective function is strictly concave, and therefore Claim
8 implies that t∗ maximizes (159) on the set of trades defined by L constraints

P
n∈N tn =

0. Therefore, there must exist a vector of Lagrangian multipliers, p∗ ∈ RL such that t∗

solves unconstraint maximization problem, with objective function (159) augmented by the
additional term (constraints)

(167) −p∗ ·
X
n∈N

tn.

The first order optimality conditions for this program are: for any consumer i

(168) Dui
¡
ti∗ + ei

¢
−M i∗ti∗ = p∗,

and for any firm j

(169) Df j
³
−tj∗

´
−M i∗tj∗ = p∗.

For each i, let mi∗ = −p∗ · ti∗ and for each firm mj∗ = f j
¡
−t̄j∗

¢
. Such definitions and

two conditions (168) and (169) are necessary and sufficient for tn∗ to be stable at p∗ and
Mn∗. (See (110) and (118).) Since t∗ ∈ T , therefore

P
n∈N t∗n = 0, all markets clear. In

addition, by interiority of trades V i∗ = −D2ui
¡
ti∗ + ei

¢
and V j∗ = D2f i

¡
−tj∗

¢
therefore

M∗ = H (M∗, V ∗), at t∗, so that M∗ is ρ−consistent with the disequilibrium market clearing
condition. This proves the existence of an equilibrium (p∗, t∗,M∗).
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In such equilibrium, p∗ >> 0. To see it, observe that if there exists some firm such that

tj∗l < 0 then p̄l =
∂fj

³
−tj∗

´
∂tj

−M i∗tj∗ > 0. Otherwise, there must exist at least one consumer

with tj∗l ≤ 0 and hence p̄l =
∂ui(ti∗+ei)

∂ti
∗ −M i∗tj∗ > 0.

Proof. (Theorem 2: Local determinacy of an equilibrium.)
For the economy E = (u, e, θ, f), define an economy Eδ0,δ00 =

³
û, e, θ, f̂

´
as an economy

with preferences and technology perturbed by vector
¡
δ0, δ00

¢
=
¡¡
δ01, δ001

¢
, . . . ,

¡
δ0N , δ00N

¢¢
in

the following way:

(170) ûi
¡
xi
¢
= u

¡
xi
¢
+ δ0i · xi + xi · δ00ixi,

and for any firm
f̂ j
¡
yj
¢
= f

¡
yj
¢
+ δ0j · yj + yj · δ00jyj .

For any trader n, vector δ0n ∈ RL specifies a perturbation of the first derivative of a
utility or cost function, while δ00n ∈ RL×L is L×L diagonal matrix that perturbs the second
derivative. Observe that δ00n is an L dimensional object. Consider any open connected
set of perturbations P ∈ RN×2L such that 1) 0 ∈ P; and 2) the perturbation preserves
the monotonicity and concavity (convexity) of the utility functions (cost functions) on the
compact set of trades, T , defined as in (154); and 3) has non-zero Lebesgue measure. Such P
exists as T is compact so that the perturbation for any t ∈ T can be made arbitrarily small.
Note that each element of P defines some economy and hence P parameterizes a family of
perturbed economies. The original economy is represented in P by vector 0.

For any Eδ0,δ00 , the set of all diagonal ρ−competitive equilibria is defined as a critical point
of the system of equations

(171) Ψ
¡
p̄, t̄, M̄

¢
= 0,

with

(172) Ψ
¡
p̄, t̄, M̄

¢
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Dû1
¡
t̄1
¢
− M̄ it̄1 − p̄
...

DûI
¡
t̄I
¢
− M̄ I t̄I − p̄

Df̂ I+1
¡
−t̄I+1

¢
− M̄ I+1t̄I+1 − p̄
...

Df̂N
¡
−t̄N

¢
− M̄N t̄N − p̄

M̄1 −
¡
1− ρ1

¢µP
n6=1

³
M̄n + V̂ n (t̄n)

´−1¶−1
...

M̄N −
¡
1− ρN

¢µP
n6=N

³
M̄n + V̂ n (t̄n)

´−1¶−1
P

n∈N t̄n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and where V̂ i

¡
t̄i
¢
= −D2ûi

¡
t̄i + ei

¢
and V̂ j

¡
t̄j
¢
= D2f̂ j

¡
−t̄i
¢
. Equation (172) is a system

of L×N+L×N+L equations and the same number of unknowns. In the economy Eδ0,δ00 , all
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ρ−competitive equilibria are locally unique if Ψ
¡
p̄, t̄, M̄

¢
is transverse to 0. Unfortunately,

the transversality condition is not satisfied for arbitrary Eδ0,δ00 . Next, I show that transver-
sality holds for “almost all” economies in P, so that local indeterminacy may occur only as a
degenerate case. I first extend Ψ (p, t,M) to a domain that includes the perturbation parame-
ters δ0, δ00 and I show that extended Ψ (·) is transverse to zero. Then, using the transversality
theorem, I establish a generic determinacy.

Claim 10 (Ψ
¡
p̄, t̄, M̄ , δ0, δ00

¢
is transverse to 0.)

(Argument for Claim 10): I prove the claim using the method of perturbation. Any of
N × L equations defined by the trader’s first order condition (the first of the three main
groups of equations) can be perturbed by varying δ0nl , without affecting any other equation
in the system. To see it, observe that

(173)
∂ûil

¡
t̄il
¢

∂t̄il
=

∂ui
¡
t̄il
¢

∂til
+ δ0il + δ00il t̄

i

and similarly for a firm

∂f̂ jl

³
−t̄jl

´
∂til

=
∂f̂ il

¡
−t̄il
¢

∂til
− δ0jl + δ00jl tj .

The equations defining the consistency of price impacts (second group), for example, associ-
ated with the price impact of trader n on market l, we may be perturbed by changing the
diagonal entry M̄ i

l,l to M̃
n
l,l and offsetting this change by the corresponding adjustment of δ

00n
l

so that the sum of the two matrices stays constant

(174) M̄n
l,l + V n

l,l (t
n) = M̃n

l,l + V n
l,l (t

n) + δ00nl,l = constant

and also by changing δ0nl to offset the effects of the change in δ00nl,l on the first group equa-
tions. Finally, the market clearing condition for each l can be perturbed by varying t̄il and
compensating this change by adjusting

¡
δ0il , δ

00i
l

¢
to keep the values of equations in the first

two groups unchanged. This is sufficient for Ψ
¡
p̄, t̄, M̄ , δ0, δ00

¢
to be transverse to 0. Applying

transversality theorem, one can establish that there exists a dense subset P̂ of perturba-
tions in P with full Lebesgue measure, such that for

¡
δ0, δ00

¢
∈ P̂ from this set, function

Ψ(δ0,δ00)
¡
p̄, t̄, M̄

¢
= Ψ

¡
p̄, t̄, M̄ , δ0, δ00

¢
is transverse to zero. Consequently, in any economy

Eδ0,δ00 , such that
¡
δ0, δ00

¢
∈ P̂, all equilibria are locally unique.

Proof. (Theorem 3: Non-autarkic inefficiency.)
Let

¡
p̄, t̄, M̄

¢
be a diagonal ρ−competitive equilibrium and suppose that ρ < 0. For any

i ∈ I, the necessary and sufficient condition of stability of t̄i at p̄ and M i is

(175) Dui
¡
t̄i + ei

¢
= p̄+ M̄ it̄i

and similarly for firms

(176) Df j
¡
−t̄j

¢
= p̄+ M̄ j t̄j .
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The necessary and sufficient condition for Pareto efficiency of the equilibrium allocation is
the equality of marginal utilities and marginal costs for any n ∈ N

(177) Dui
¡
t̄i + ei

¢
= Df j

¡
−t̄j

¢
.

First I show that any allocation in a ρ−competitive equilibrium is Pareto efficient if and only
if the equilibrium allocation is autarkic, that is for any n, t̄n = 0.

Claim 11 (ρ−competitive allocation is Pareto efficient if and only if in equilibrium t̄n = 0
for all n ∈ N )

(Argument for Claim 11): For “if” part, observe that if for all n ∈ N , t̄n = 0, then
equations (175) and (176) imply Pareto efficiency condition (177). For “only if” direction,
suppose that non-autarkic equilibrium allocation is Pareto efficient. This, by (177), implies
for all n

(178) M̄nt̄n = M̄n0tn
0
.

Suppose the allocation is non-autarkic, and hence for at least one n ∈ N and l ∈ L the
trade in non-zero t̄il 6= 0. Without loss of generality assume t̄nl > 0. By the market clearing
condition, there must exist trader n0 6= n such that t̄n

0
l < 0. By diagonality of M̄n, the lth

entry of (178) is given by

(179) M̄n
l,l t̄

n = M̄ i0
l,l t̄

i0
l .

Since M̄n is positive definite, its diagonal entries satisfy M̄n
l,l, M̄

n0
l,l > 0. But then equation

(179) is impossible, as both sides have different signs.
To complete the proof, I show that ρ−competitive equilibrium allocation is autarkic if

and only if the initial allocation is Pareto efficient.

Claim 12 (In a ρ−competitive equilibrium, the allocation is autarkic if and only if the initial
allocation is Pareto efficient and J = 0.)

(Argument for Claim 12): For “only if” part, suppose J > 0. Then by (175) for each firm
t̄j = 0 trade is stable if and only if p̄ = 0. But at such price stable trades of consumers are
strictly positive and hence markets do not clear, a contradiction. Now suppose J = 0 and
that in ρ−competitive equilibrium t̄i = 0 for all i ∈ I. Then equation (175) implies that all
gradients coincide with price vector and hence

(180) Dui
¡
ei
¢
= Dui

0
³
ei
0
´
.

But this is sufficient for Pareto efficiency of the initial allocation.
For “if” direction, let J = 0 and the initial allocation is Pareto efficient, and therefore for

any i and i0

(181) Dui
¡
ei
¢
= Dui

0
³
ei
0
´
,
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and suppose that in a ρ−competitive equilibrium the allocation is not autarkic, hence

(182) t̄il 6= 0

for some i and l. Without loss of generality, assume that t̄il > 0. By the market clearing
condition, there exists i0 6= i such that t̄i

0
l < 0. By strict concavity of utility functions equation

(181) implies that

(183)
∂uil

¡
t̄il + eil

¢
∂xil

<
∂ui

0
l

³
t̄i
0
l + ei

0
l

´
∂xi0

.

Equation (175) implies

(184)
∂uil

¡
t̄il + eil

¢
∂xil

− M̄ i
l,lt

i
l =

∂ui
0
l

³
t̄i
0
l + ei

0
l

´
∂xi0

−M i0
l,lt

i0
l .

From the two equations if follows that:

(185)
ti
0
l

til
>

M̄ i
l,l

M i0
l,l

> 0.

But inequality (185) is impossible, since by assumption ti
0
l /t

i
l < 0. The two claims show that

Pareto efficiency of initial allocation and J = 0 is equivalent to autarky of a ρ−competitive
equilibrium, which in turn is equivalent to Pareto efficiency of the equilibrium allocation.

Proof. (Theorem 4: Convergence to a Walrasian Equilibrium.)
By the similar arguments as in Claim 8, the only trades consistent with ρ−competitive

equilibrium are in set T ⊂ RN×L
+ (for its definition see 154). For such T , the set of all

possibly observed Hessians of utility functions and cost functions is a subset of a compact set
V γ̄γ , where V γ̄γ and the scalars γ̄, γ are defined as in Claim 7 of Theorem 1. In the following
arguments, I consider a k−replica of the economy, and therefore I assume that there are k
traders of each type n.

Claim 13 (In any ρ−competitive equilibrium, consistent matrices M̄ satisfy kMk ≤ 1
N×k−2 γ̄.)

(Argument for Claim 13): For any fixed V̄ , M̄ is ρ−consistent if and only if it is a fixed
point of map H :M→M where the nth element of H (·), Hn (·), is given by

(186) Hn
¡
M̄, V̄

¢
= (1− ρn)

⎡⎣k X
n0 6=n

³
M̄n0 + V̄ n0

´−1
+ (k − 1)

¡
M̄n + V̄ n

¢−1⎤⎦−1 .
Observe that each type trades with k trades of each other type (there are N − 1, other

types) and k − 1 traders of its own type. For each type n define a map
(187)

An (M,V ) =
1

N × k − 1

⎛⎝ 1

N × k − 1

⎛⎝k
X
n0 6=n

³
M̄n0 + V̄ n0

´
+ (k − 1)

³
M̄n0 + V̄ n0

´⎞⎠⎞⎠ .
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Given kV k ≤ γ̄ (as V ∈ V γ̄γ ), for any M̄ with
°°M̄°° = λ, equation 7 implies following

inequality:

(188)
°°An

¡
M̄, V̄

¢°°∗ ≤ 1

N × k − 1 (λ+ γ̄) .

Suppose that λ > 1
N×k−2 γ̄, then

(189) kAn (M,V )k∗ < λ.

By arithmetic–harmonic mean inequality and the fact that (1− ρn) ≤ 1

(190) Hn (M,V ) ≤ An (M,V ) ,

and therefore

(191) kHn (M,V )k∗ < λ,

so

(192) kH (M,V )k < kMk,

which implies that H
¡
M̄, V̄

¢
6= M̄ , and therefore M̄ is not a fixed point of H

¡
M̄, V̄

¢
and

therefore M̄ is not consistent. Consequently, M̄ is consistent only if kMk ≤ 1
N×k−2 γ̄.

Claim 14 (Convergence of ρ−competitive equilibrium to a Walrasian one.)

(Argument for Claim 14): For any ε > 0 define k (ε) ≡
³
γ̄L
ε + 2

´
1
N (ignore the integer

problem). Given the result from the previous claim, for such k (ε) the vector of consistent
price impacts M̄ satisfies

(193)
°°M̄°° ≤ 1

N × k − 2 γ̄ =
ε

L
.

For any trader n, a diagonal element of M̄n satisfies

(194) M̄n
l,lL ≤ ε,

and hence the Euclidian norm
°°M̄n

°° ≤ ε. In addition, for any M̄ there exists a unique t̄ and
p̄ such that

¡
p̄, t̄, M̄

¢
is ρ−competitive equilibrium. To see it, observe that trade stability for

each trader requires for all i and j that

(195) Dui
¡
t̄i + ei

¢
− M̄ it̄i = Df j

¡
−t̄i
¢
− M̄ it̄j ,

and since each of the L equations is deceasing in t̄nl and

(196)
X
n∈N

t̄n = 0,
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there is a unique t̄ that solves conditions (195) and (196) for some fixed value of M̄ . The
equilibrium price vector is given by p̄ = Dui

¡
t̄i + ei

¢
− M̄ it̄i for any i. This shows that there

exists a function t̄
¡
M̄
¢
and p̄

¡
M̄
¢
, mapping vector of matrices into equilibrium trades and

prices. Because (195) and (196) are continuous, by the standard argument t̄
¡
M̄
¢
and p̄

¡
M̄
¢

are also continuous in M̄ . Therefore, for any ε there exists ε0such that for any
°°M̄°° ≤ ε0,

one obtains
°°t̄n ¡M̄¢− t̄n (0)

°° ≤ ε and
°°p̄ ¡M̄¢− p̄ (0)

°° ≤ ε. But t̄n (0) and p̄ (0) correspond
to the Walrasian trade and price.

To conclude the proof, for any ε define k (ε) = max
³³

γ̄L
ε + 2

´
1
N ,
³
γ̄L
ε0 + 2

´
1
N

´
. For any

k ≥ k (ε), in k−replica economy
1)
°°M̄n

°° ≤ ε, for any n;
2)
°°t̄n − t̄n,Walras

°° ≤ ε, for any n;
3)
°°p̄− p̄Walras

°° ≤ ε.

Proof. (Theorem 5: ρ−competitive equilibrium rationalized as a Walrasian equi-
librium.)

Let
¡
p̄, t̄, M̄

¢
be a diagonal ρ− competitive equilibrium for some ρ. For any i, stable t̄i

satisfies

(197) Dui
¡
t̄i + ei

¢
− M̄ t̄i = p̄.

But this condition, together with equation m̄i = −p̄ · t̄i is necessary and sufficient for
¡
t̄i, m̄i

¢
to be optimal on the Walrasian budget set

(198) p̄ti +mi ≤ 0,

given the utility function

(199) ûi
¡
xi
¢
= ui

¡
xi
¢
+
1

2

¡
xi − ei

¢
· M̄ i

¡
xi − ei

¢
+mi.

Similarly, for a firm stability implies

(200) Df j
¡
−t̄j

¢
− M̄ t̄j = p̄,

which is also necessary and sufficient for the Walrasian firm to maximize profit, given the
cost function

f̂ j
¡
yj
¢
= f j

¡
yj
¢
− 1
2
yj · M̄ iyj .

Since in addition in ρ−competitive equilibrium all markets clear,
P

i∈I t̄
i = 0, tuple (p̄, t̄)

is a Walrasian equilibrium in the economy with modified preferences and technology.

Proof. (Proposition 4: Price bias with monotone u000.)
In order to make the proof more transparent, I consider an economy with u000 > 0 and with

only one non-numeraire good. The arguments for u000 < 0 and u000 = 0 are straightforward
modifications of the presented proof. In addition, in a smooth and separable economy, markets
are separated (quasi-linear utility function and separable utility), and therefore the proof
extends directly to the case with L > 1.
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The proof consists of the following steps: First, I prove two useful facts needed in the
main part of the proof: In Claim 15, I show that the convexities of buyers’ utility functions at
the stable consumption are always greater then the ones of the sellers, for any arbitrary level
of price impact but evaluated at the equilibrium price. Then in Claim 16, I argue that in
considered ρ−competitive equilibrium, price impacts of sellers exceed the ones of the buyers.
These two results will be used in the proof of the main result in Claim 17, the positive price
bias.

The idea behind the proof is as follows: Since in ρ−competitive equilibrium markets clear,
the sum of stable trade functions evaluated at the equilibrium p̄, M̄ is zero. The individual
trades are monotone in M̄ i, therefore by the result of Claim 16, replacing the M̄ i with some
common, intermediate value of M̃ reduces the value of the excess aggregate demand and
hence makes it strictly negative. Then using the result from Claim 15, I show that aggregate
stable demand is increasing in the common value M̃ , and hence replacing it with zero further
decreases the aggregate demand, making it even more negative. But stable excess demand
at M̃ = 0 for all traders corresponds to a Walrasian excess demand. This shows that at the
price p̄, there is an excess supply on a market when traders are competitive. Therefore, in
the Walrasian equilibrium, the price must go down to reestablish market clearing and hence,
p̄ > p̄Walras.

For any equilibrium
¡
p̄, t̄, M̄

¢
, the set of all consumers is partitioned into thee groups:

buyers, Ib =
©
i ∈ I|t̄i > 0

ª
, sellers, Is =

©
i ∈ I|t̄i < 0

ª
and traders that are not active, Ina

=
©
i ∈ I|t̄i = 0

ª
. Observe that since the initial allocation is not Pareto efficient, the sets

Is and Ib are non-empty. For any p ≥ 0 and scalar M i ≥ 0, I define a stable convexity of
the trader i, γi

¡
p,M i

¢
as an absolute value of the second derivative, evaluated at the stable

trade t̄i
¡
p,M i

¢
(201) γi

¡
p,M i

¢
≡
¯̄̄̄
¯∂2u

¡
t̄i
¡
p,M i

¢
+ ei

¢
∂ (xi)2

¯̄̄̄
¯ .

Claim 15 asserts that at the equilibrium price, p̄, and positive but otherwise arbitrary price
impacts M b, Mna, Ms, buyers always have higher stable convexity, provided u000 > 0.

Claim 15 (For any b ∈ Ib, s ∈ Is, and na ∈ Ina, equilibrium price p̄, and arbitrary positive
M b, Mna, Ms stable convexities satisfy

(202) γb
³
p̄,M b

´
> γna (p̄,Mna) > γs (p̄,Ms) > 0,

provided that u000 > 0.)

(Argument for Claim 15): Stable demand t̄i
¡
p̄,M i

¢
is implicitly defined by the equality

of the marginal utility and marginal revenue

(203)
∂ui

¡
t̄i + ei

¢
∂xi

= p̄+M it̄i.

The derivative of t̄i
¡
p̄,M i

¢
with respect to M i, implicitly defined by (203) is given by

(204)
∂t̄i
¡
p̄,M i

¢
∂M i

= −
t̄i
¡
p̄,M i

¢
M i + γi (p̄,M i)

.
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Since the denominator is positive, the trade is strictly increasing inM i for the buyers, decreas-
ing for the sellers and is constant for non-active traders. In addition, since ∂ub

¡
ei
¢
/∂xb > p̄,

therefore for any M b, stable trade is positive. Consequently, for any strictly positive price
impact M b > 0, the stable buyers demand is bracketed by a Walrasian and zero trade

(205) t̄b (p̄, 0) < t̄b
³
p̄,M b

´
< 0.

Similarly, for each seller the trade is bracketed by

(206) t̄s (p̄, 0) > t̄s (p̄,M s) > 0.

The Walrasian consumption of all traders at price p̄ is the same, as utilities are identical,

(207) t̄i (p̄, 0) + ei = t̄i
0
(p̄, 0) + ei

0
,

therefore conditions (205) and (206) imply for any strictly positive price impacts M b, Mna,
Ms stable consumption is

(208) t̄b
³
p̄,M b

´
+ eb < t̄na (p̄,Mna) + ena < t̄s (p̄,Ms) + es.

If the second derivative of the utility function is increasing in consumption, (u000 > 0), the
relation between stable consumptions (208) induces the following ranking of convexities:

(209) γb
³
p̄,M b

´
> γna (p̄,Mna) > γs (p̄,Ms) .

Claim 16 (u000 > 0 implies that for any b ∈ Ib, s ∈ Is, and na ∈ Ina, the equilibrium price
impacts satisfy

(210) M̄s > M̄na > M̄ b.)

(Argument for Claim 16): The consistency condition on M̄ i for any i can be written as

(211) M̄ i =
(1− ρ̄)

I − 1 H
³
M i0 + γi

0
³
p̄, M̄ i0

´
|i0 6= i

´
where H(xi0 ||i0 6= i) denotes a harmonic mean of elements xi

0
for all consumers but i. I will

argue that I conditions (211) imply that the equilibrium ranking of M̄ i is just a reverted
ranking of the convexities. Suppose for two traders i and i0, γi

¡
p̄, M̄ i

¢
> γi

0
(p̄, M̄ i0) and M̄ i ≥

M̄ i0 . Condition (211) implies that M̄ i is a harmonic mean of I−2 elements that also define M̄ i0

and one element that is strictly smaller as by assumption M̄ i0+γi
0
(p̄, M̄ i0) < M̄ i+γi

¡
p̄, M̄ i

¢
and hence M̄ i0 > M̄ i, which is a contradiction. Consequently γi

¡
p̄, M̄ i

¢
> γi

0
(p̄, M̄ i0) implies

that M̄ i < M̄ i0 for any i, i0 ∈ I. This, together with Claim 15 is sufficient for the result of
Claim 16.

Claim 17 (u000 > 0 implies p̄Walras > p̄)
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(Argument for Claim 17): Let M̃ be some scalar satisfying

(212) M̄s > M̃ > M̄ b,

for any buyer b ∈ Ib, and seller s ∈ Is. By Claim 16, such scalar exists. In a ρ−competitive
equilibrium the excess stable demand is equal to zero

(213)
X
i

t̄i
¡
p̄, M̄ i

¢
= 0.

Now in equality (213), I replace equilibrium price impacts, M̄ i, with the intermediate level
M̃ . Strict monotonicity of t̄i

¡
p̄, M̄ i

¢
in M i shown in (204) and ranking of equilibrium price

impacts (212) imply that aggregate excess demand evaluated at M̃ is negative

(214) Z
³
p̄, M̃

´
≡
X
i

t̄i
³
p̄, M̃

´
< 0.

In addition, for arbitrary but common level of M , partial derivative of Z (·) with respect to
M is given by

(215)
∂Z (p̄,M)

∂M
= −

X
i

t̄i (p̄,M)

M + γi (p̄,M)
.

By γ̃ > 0, I denote a convexity of the utility function evaluated at xi satisfying p̄ =
u0
¡
xi,Walras

¢
. Given u000 and the result of Claim 15, γs (p̄,M) < γ̃ < γb (p̄,M) for any

value of M > 0. Then replacing the convexities with a common value γ̃ in the the derivative
of Z (p̄,M) gives a lower bound of this derivative

(216)
∂Z (p̄,M)

∂M
> −

P
i t̄
i (p̄,M)

M + γ̃
= −Z (p̄,M)

M + γ̃
.

The inequality results from the fact that for the buyers (positive trades) replacing γi (p̄,M)
with γ̃ decreases the denominator, while for sellers, (negative trade) the denominator goes
up.

Inequality (216) defines a lower bound on the slope of Z (p̄,M). Observe that Z (p̄,M) is
upward slopping inM as long as Z (p̄,M) < 0 andM ≥ 0. Since excess demand evaluated at
the intermediate level M̃ is negative, Z

³
p̄, M̃

´
< 0, therefore Z (p̄,M) must be increasing in

M for allM from the interval (0, M̃ ]. To see it, consider a subset of allM from 0 ≤M ≤ M̃ ,
for which the excess demand is greater than zero Z (p̄,M) ≥ 0. This subset is a preimage of
a closed set by a continuous function and hence is closed. It is also bounded and hence it
is compact and therefore it must contain some maximal value M̂ . By construction, on the
interval M̂ < M ≤ M̃, Z (p̄,M) < 0 and hence its derivative is strictly positive. But this

implies that for any such M , Z (p̄,M) < Z
³
p̄, M̃

´
< 0 and hence by continuity of Z (p̄,M)

at M̂ , Z
³
p̄, M̂

´
≤ Z

³
p̄, M̃

´
< 0. But this contradicts the assumption that Z

³
p̄, M̂

´
≥ 0.

Consequently, for all M ∈ (0, M̃ ], excess demand Z (p̄,M) is increasing in M and hence

(217) Z (p̄, 0) < Z
³
p̄, M̃

´
< 0.
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But this shows that the Walrasian excess demand Z (p̄, 0) is negative, when evaluated at the
price p̄.

(218) Z (p̄, 0) =
X
i

t̄i (p̄, 0) < 0.

Since Z (p̄, 0) is strictly decreasing in p,

(219)
∂Z (p, 0)

∂p
= −

X
i

1

γi (p̄, 0)
< 0,

and in the unique Walrasian equilibrium price, p̄Walras, solves

(220) Z
³
p̄Walras, 0

´
= 0,

therefore p̄Walras must satisfy

(221) p̄Walras > p̄.

The proofs for u000 < 0 and u000 = 0 are composed of symmetric arguments but with reversed
signs.

Proof. (Lemma 1: Scale independence for CRRA.)
For “if” part set λ = 1. For “only if” direction, observe that u0 (x) = x−θ and ui00 (x) =

−θx−(θ+1). Suppose
¡
p̄, t̄, M̄

¢
is a ρ−competitive equilibrium in E and hence it satisfies the

following conditions: The stability of trade for each i

(222)
¡
t̄i + ei

¢−θ
= p̄+ M̄ it̄i,

ρ−consistency of price impact for each i,

(223) M i =
¡
1− ρi

¢
·

⎛⎝X
i0 6=i

µ
M i0 − θ

³
t̄i
0
+ ei

´−(θ+1)¶−1⎞⎠−1 ,
and market clearing condition

(224)
X
i∈I

t̄i = 0.

For any value of λ > 0, these conditions imply the necessary and sufficient conditions defining
equilibrium in Eλ. To see it, multiply both sides of equation (222) by λ−θ to obtain

(225)
¡
λt̄i + λei

¢−θ
= λ−θp̄+ λ−(1+θ)M̄ iλti,

the equation (223) by λ−(1+θ)

(226) λ−(1+θ)M i =
¡
1− ρi

¢
·

⎛⎝X
i0 6=i

µ
λ−(1+θ)M i0 − θ

³
λt̄i

0
+ λei

´−(θ+1)¶−1⎞⎠−1 ,
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and finally market clearing condition by λ

(227)
X
i

λt̄i = 0.

Conditions (225), (225) and (227) are necessary and sufficient for
³
λ.−θp̄, λt̄, λ.−(1+θ)M̄

´
to

be a ρ−competitive equilibrium in the scaled economy Eλ.
Proof. (Lemma 2: Inconsistency of M j > 0 with constant marginal cost c.)

Consider an economy with J firms with technology characterized by a constant marginal
cost. The consistency condition for the price impacts and symmetry across firms imply

(228)
¡
M̄ j
¢
=

Ã
(J − 1)

¡
M̄ j
¢−1

+
X
i∈I

¡
M̄ i + γ̄i

¢−1!−1
,

which is equivalent to

(229)
¡
M̄ j
¢−1

(2− J) =
X
i∈I

¡
M̄ i + γ̄i

¢−1
.

If J ≥ 2, then (2− J) ≤ 0 and hence the left hand side of the equation is less than zero. But
this is a contradiction since the right hand side is always positive.

Proof. (Proposition 5: Existence of a smooth tax rule.)
With taxes, the budget constraint becomes

(230) pp̄,t̄i,M̄i

¡
ti
¢
· ti +mi − T i

¡
t̄i
¢
= 0.

In the case of an interior stable demand t̄i, the necessary condition for stability is given by

(231) Dui (·) +DT i (·) = p̄+ M̄ it̄i.

Consequently, the Jacobian of a consumers stable trade consists of three elements

(232) Dpt
i
¡
p̄, M̄ i

¢
= −

¡
M i −D2ui (·)−D2T i (·)

¢−1
.

Similarly, the Jacobian of the firms stable trade

Dpt
j
¡
p̄, M̄ i

¢
= −

¡
M i +D2f j (·) +D2T i (·)

¢−1
.

For all i define augmented convexity as

(233) V̄ i = −D2ui
¡
t̄iPE + ei

¢
−D2T i

¡
ti
¢
,

and for all j
V̄ j = D2f j

¡
−t̄iPE

¢
+D2T i

¡
t̄iPE

¢
.

Observe that by assumption of Proposition 5, V̄ i and V̄ j are positive definite. Let V̄

V̄ =
¡
V̄ 1, . . . , V̄ I , . . . , V̄ N

¢
.
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The existence of a system of ρ−consistent matrices M̄ at tPE is equivalent to the existence
of a fixed point of the mapping H

¡
M, V̄

¢
where

(234) Hi
¡
M, V̄

¢
= (1− ρn)

⎛⎝ X
i0∈I−i

³
M i0 + V̄ i0

´−1⎞⎠−1 .
By the same arguments as those made in Claim 3, H

¡
, V̄
¢
maps a non-empty convex and

compact set of positive semi-definite diagonal matrices into itself in a continuous way. There-
fore, there exists a fixed point of H

¡
, V̄
¢
, M̄T and M̄T is positive definite and diagonal. Then

define T 0n,

(235) T 0n ≡ −M̄n
T t

n

for all n, and observe that with such definition Ψn = 0.

Proof. (Proposition 6: De-convexification of utility.)
The assumption that

lim
k→∞

T 00ik = D2ui
¡
t̄iPE + ei

¢
(236)

lim
k→∞

T 00ik = D2f j
¡
−t̄iPE

¢
(237)

is equivalent to

(238) lim
k→∞

V̄k = 0.

This fact, with the continuity of a norm k·k implies that

(239) lim
k→∞

γ̄k = lim
k→∞

kVkk =
°°°° limk→∞

Vk

°°°° = 0,
and hence the value of λ̄k

lim
k→∞

λ̄k = lim
k→∞

1− ρ

I + ρ− 2 γ̄k = 0.

For any k, ρ−consistent system of matrices M̄k belongs to Mλ̄k
0 and hence each diagonal

entry of Mn
k for any n is bounded above by λ̄k. Consequently,

0 ≤ lim
k→∞

M̄n
(k) l,l ≤ lim

k→∞
λ̄k = 0.

Therefore
lim
k→∞

M̄n
k = 0,

and hence
lim
k→∞

M̄k = 0.
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