Testing for indeterminacy in U.S. monetary policy*

Sophocles Mavroeidis

Brown University

Preliminary and Incomplete: Please do not quote

24 March 2007

Abstract

We revisit the question of indeterminacy in U.S. monetary policy using identification-robust methods.

We find that the conclusions of Clarida, Galí, and Gertler (2000) that policy was inactive before 1979

are robust, but the evidence over the Volcker-Greenspan periods is inconclusive because confidence sets

are very large. We show that this is in fact what one would expect if policy were indeed active over that

period. Problems of identification also arise because policy reaction has been too gradual or excessively

smooth recently. All in all, our analysis demonstrates that identification issues should be taken seriously,

and that identification-robust methods can be informative even when they produce wide confidence sets.

Keywords: GMM, identification, rational expectations

JEL: C22, E31

*I would like to thank seminar participants at Carleton university for useful comments and discussion.

1

1 Introduction

In a seminal paper, Clarida, Galí, and Gertler (2000) studied the implications of monetary policy for macroeconomic fluctuations using a prototypical forward-looking sticky price model of the monetary transmission
mechanism. They proposed simple forward-looking equations for the reaction function of monetary policy
to deviations of inflation and output from their implicit targets. They estimated this equation over sample
periods before and after Paul Volcker became chairman of the Fed. They found that the policy rate did not
react sufficiently strongly to expected deviations of inflation from target prior to Volcker, thus violating the
Taylor principle and opening up the possibility of sunspot fluctuations induced by self-fulfilling expectations.
In contrast, policy over the Volcker-Greespan era was found to satisfy the Taylor principle, and this was seen
as an important factor contributing to the conquest of US inflation.

These conclusions are not uncontroversial, and there has been no shortage of alternative explanations. Orphanides (2002) emphasized the implications of using revised rather than real-time data. Primiceri (2006) and Sargent (1999) emphasized the role learning. Sims and Zha (2006) emphasized regime switching in volatility, rather than the parameters of the reaction function. This list is by no means exhaustive.

The objective of the present study is to revisit the original contribution of Clarida, Galí, and Gertler (2000) and re-examine their empirical findings, in the light of recent concerns over the identifiability of the model's parameters, see Canova and Sala (2005) and Mavroeidis (2004). We follow closely the limited information approach of Clarida, Galí, and Gertler (2000), which makes minimal assumptions about the nature of macroeconomic dynamics. The key difference is that we use the statistical methods proposed by Stock and Wright (2000) and Kleibergen (2005), which are robust to identification failure, see Stock, Wright, and Yogo (2002) or Andrews and Stock (2005) for reviews. Our analysis differs from that of Lubik and Schorfheide (2004), who approached this problem from a Bayesian perspective using full-information methods.

The results of this paper can be summarized as follows.

We find that the conclusion that policy reaction did not satisfy the conditions for determinacy (the Taylor principle) before Volcker is robust to identification failure. In fact, the policy rule parameters appear to be well-identified in the pre-Volcker sample. In contrast, in subsequent periods the identification-robust confidence sets are much larger, indicating that the policy reaction function is not well-identified. Despite the fact that the point estimates lie firmly in the determinacy region, the data is consistent also with the opposite view that policy remained inactive after 1979, too.

We then argue that these apparently pessimistic findings are in fact very informative. The sharp contrast in the results between the two periods indicates a shift in the dynamics of the economy, which is highly consistent with the view that policy was unsuccessful in reigning over self-fulfilling expectations before 1979, thus generating sufficient predictability in inflation and output to identify the policy rule. In contrast, the weak identifiability over the Volcker-Greenspan sample could well be a consequence of appropriate policy reaction, though it is not possible to distinguish between this and alternative explanations. Thus, our analysis points out the limitations of this limited information approach, and the need to make use of further identifying restrictions derived perhaps from the full structure of the model (namely, the restriction that policy shocks are uncorrelated with other macroeconomic shocks), as was done by Lubik and Schorfheide (2004).

The paper also provides results for the full Greenspan sample. The coefficients in the reaction function are not sufficiently accurately estimable over that period to rule out the possibility of indeterminacy. There is another possible explanation for this finding. When interest rates adjust too slowly to deviations of expected output and inflation from target, it becomes difficult to pin down the reaction function parameters accurately. We refer to this problem as excess smoothness of policy. Point estimates over different samples indicate that the degree of smoothness changed from 0.68 before 1979 to 0.92 in the Greenspan sample.

At a methodological level, the paper demonstrates two things. Firstly, there is a clear need to use identification-robust methods for inference in dynamic stochastic general equilibrium (DSGE) models, since conclusions can differ sharply from those reached by non-robust methods when identification fails. Secondly, even if confidence sets turn out to be large, they can still be highly informative and admit interesting and useful economic interpretations.

2 The model

2.1 Monetary policy rules

We consider policy rules of the type proposed by Clarida, Galí, and Gertler (2000):

$$r_t^* = r^* + \psi_\pi E_t \left(\pi_{t,k} - \pi^* \right) + \psi_x E_t x_{t,q} \tag{1}$$

where r_t^* denotes the target nominal policy rate at time t, $\pi_{t,k}$ denotes average (annualized) inflation between periods t and t+k and similarly for the output gap $x_{t,q}$. E_t denotes expectations conditional on information

¹We maintain exactly the same timing assumption for output gap as in Clarida, Galí, and Gertler (2000, footnote 5).

available at time t, π^* denotes the inflation target and r^* is the level of the nominal interest rate when inflation and output are expected to be on target.

In line with the rest of the literature, we assume that the actual nominal rate r_t may deviate unexpectedly from the target rate r_t^* for exogenous reasons and that monetary authority smooths changes in r_t . Thus, the actual rate adjusts partially to the target (1) according to

$$\rho(L) r_t = \rho(1) r_t^* + \varepsilon_{r,t}, \tag{2}$$

where $\rho(L)$ is a lag polynomial of order p, and $\varepsilon_{r,t}$ is a monetary policy shock, assumed to be an innovation with respect to all publicly available information at time t-1, i.e., $E_{t-1}\varepsilon_{r,t}=0$.

The baseline specification in Clarida, Galí, and Gertler (2000) is k = q = 1. Given their timing assumptions, this can be written as

$$\rho(L) r_t = \alpha + \rho(1) E_t \left(\psi_\pi \pi_{t+1} + \psi_x x_t \right) + \varepsilon_{r,t}. \tag{3}$$

where α is a constant that depends on the long-run equilibrium real rate $r^* - \pi^*$. For $\rho(L) = 1 - \rho L$, this equation coincides with the model discussed extensively in Woodford (2003, chapter 4). Replacing expectations by realizations, Eq. (3) can be written as

$$\rho(L) r_t = \alpha + \rho(1) (\psi_{\pi} \pi_{t+1} + \psi_x x_t) + e_t, \tag{4}$$

$$e_t = \varepsilon_{r,t} - \rho \left(1 \right) \left[\psi_{\pi} \left(\pi_{t+1} - E_t \pi_{t+1} \right) + \psi_x \left(x_t - E_t x_t \right) \right].$$
 (5)

The residual term e_t may be autocorrelated at lag 1. The assumption of rational expectations together with $E_{t-1}\varepsilon_{r,t} = 0$ give rise to the moment conditions $EZ_te_t = 0$ for any predetermined variable Z_t .

2.2 The transmission mechanism

To discuss the implications of the monetary policy rule (3) for macroeconomic fluctuations, we need a model of the monetary transmission mechanism. For this purpose, we choose the prototypical new Keynesian sticky price model used by Clarida, Galí, and Gertler (2000) and Lubik and Schorfheide (2004). After log-linearization around the steady state, the model's equilibrium conditions are given by

$$\pi_t = \beta E\left(\pi_{t+1}|\Omega_t\right) + \lambda x_t + z_t \tag{6}$$

$$x_{t} = E(x_{t+1}|\Omega_{t}) - \sigma[r_{t} - E(\pi_{t+1}|\Omega_{t})] + g_{t}.$$
(7)

Equation (6) is a forward-looking Phillips curve that incorporates nominal rigidities captured in the slope parameter $\lambda > 0$, the parameter $0 < \beta < 1$ is a discount factor and the process z_t captures exogenous shifts to the marginal costs of production. Equation (7) is an Euler equation for output, derived from households intertemporal optimization. The parameter σ is the intertemporal elasticity of substitution and the process g_t capture exogenous shifts in preferences and government spending. These equations can be derived by loglinear approximation around the steady state of a dynamic stochastic general equilibrium model, see Woodford (2003, Chapter 4) (uninteresting constants relating to the inflation target and the long-run equilibrium real rate have been omitted).

The model consisting of Equations (6), (7) and (2) can be solved to determine the path of the endogenous variables π_t , π_t as a function of the exogenous forcing variables π_t , and π_t . If there exists a unique stable solution, the equilibrium is determinate. Indeterminacy arises whenever there exist multiple stable solutions. Woodford (2003, Proposition 4.6) shows that a necessary condition for determinacy in this model is given by

$$\psi_{\pi} + \frac{1-\beta}{\lambda}\psi_{x} - 1 \ge 0. \tag{8}$$

This can be thought of as a generalization of the Taylor (1993) principle, that nominal rates must rise by more than one for one with inflation to prevent self-fulfilling cycles. Determinacy also requires that the response to inflation is not too large, see Woodford (2003). It turns out that this additional condition is not empirically binding, so we do not discuss it here.

3 Inference on indeterminacy

3.1 The story of Clarida Gali and Gertler

Clarida, Galí, and Gertler (2000) estimated the policy rule (3) using quarterly data from 1960 to 1997. They estimated the parameters over various subsamples, and checked the condition for determinacy (8). This requires knowledge of the parameters of the Phillips curve (6) β and λ . Clarida, Galí, and Gertler (2000) fixed the discount rate β to 0.99 and λ to 0.3. Given those values, they found that the point estimates of the reaction coefficients (ψ_{π}, ψ_{x}) lie in the indeterminacy region prior to Volcker's chairmanship of the Fed, whereas they lie in the determinacy region thereafter.

This conclusion can be shown more formally by constructing two-dimensional confidence sets on the parameters (ψ_{π}, ψ_{x}) . We use the same data and methods as Clarida, Galí, and Gertler (2000). Figure 1

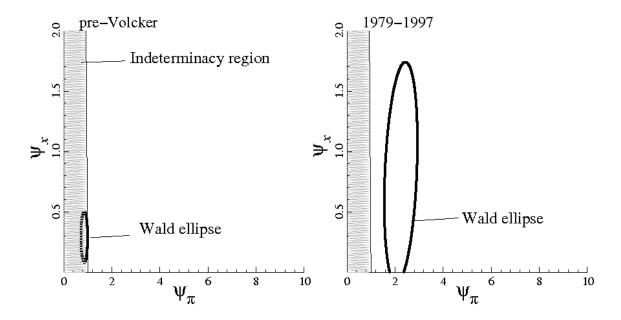


Figure 1: 90% level Wald confidence sets for the parameters of the Taylor rule $\rho(L) r_t = c + \rho(1) (\psi_{\pi} E_t \pi_{t+1} + \psi_x E_t x_t) + \varepsilon_t$. The model is estimated by GMM using four lags of π_t, x_t and r_t as instruments, and Newey-West weight matrix. The pre-Volcker sample is 1961:q1 to 1979:q2.

presents the 90% level confidence ellipses based on inverting the Wald test on (ψ_{π}, ψ_{x}) over the two key subsamples that they studied. This picture is truly remarkable. The confidence set for the pre-Volcker sample lies entirely within the indeterminacy region. This provides strong support for the view that policy prior to that period has been passive and opened up the possibility of sunspot fluctuations induced by self-fulfilling expectations. Moreover, this conclusion is reached irrespective of whether one chooses to test the null hypothesis of determinacy or indeterminacy. In contrast, the confidence set for the Volcker-Greenspan sample, though considerably wider, lies firmly within the determinacy region. This again seems to provide undeniable evidence that policy over that period satisfied the Taylor principle (8).

However, it is by now well-known that DSGE models may suffer from weak identification and thus results based on conventional GMM tests could be very misleading, see, e.g., Mavroeidis (2004) and Canova and Sala (2005). Therefore, it is important to re-examine those conclusions using identification-robust methods.

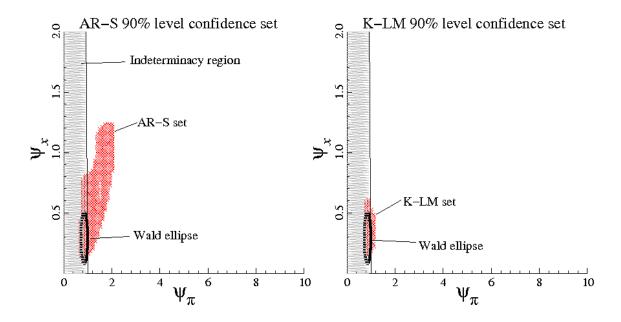


Figure 2: 90% level confidence sets for the parameters of the Taylor rule $r_t = c + \rho_1 r_{t-1} + \rho_2 r_{t-2} + (1 - \rho_1 - \rho_2) E_t (\psi_{\pi} \pi_{t+1} + \psi_x x_t) + \varepsilon_t$. The model is estimated by GMM over the period 1961:q1 to 1979:q2, using four lags of π_t , x_t and r_t as instruments, and Newey-West weight matrix.

3.2 Identification-robust tests of indeterminacy

Figure 2 presents 90% level confidence sets for the policy rule parameters (ψ_{π}, ψ_{x}) based on inverting the Anderson-Rubin (AR-S) statistic of Stock and Wright (2000) (left-hand panel) and the conditional score (K-LM) statistic of Kleibergen (2005) (right-hand panel). The Wald ellipse is superimposed for comparison. We notice that the AR-S region is considerably wider than the Wald ellipse, and cuts across to the determinacy region. However, this need not imply any identification problems, and may simply be a consequence of the fact that the AR-S test is less powerful than the Wald test when the instruments are good and the model is over-identified (the degree of over-identification is 8 in this case).

In contrast, the K-LM test has the same degrees of freedom as the Wald test and does not suffer a loss of power relative to the Wald test when the parameters are well-identified, see Kleibergen (2005). The 90% level set based on inverting the K-LM statistic in the right-hand panel of figure 2 is actually very similar to the Wald confidence ellipse. This can be interpreted as evidence that the parameters of the model are well-identified. Thus, the earlier finding that monetary policy before Volcker violated the Taylor principle appears to be robust to the quality of the instruments.

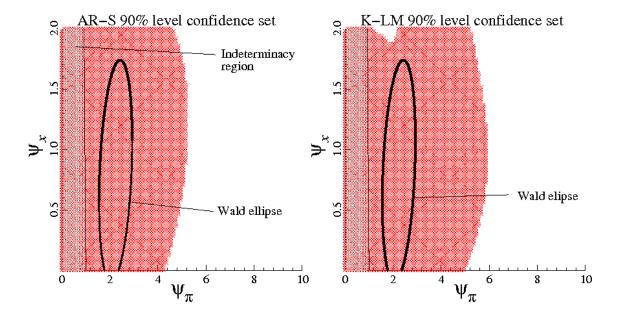


Figure 3: 90% level confidence sets for the parameters of the Taylor rule $r_t = c + \rho r_{t-1} + (1 - \rho) E_t (\psi_{\pi} \pi_{t+1} + \psi_x x_t) + \varepsilon_t$. The model is estimated by GMM over the period 1979:q3 to 1997:q4, using four lags of π_t , x_t and r_t as instruments, and Newey-West weight matrix.

Let us now look at the Volcker-Greenspan period. Figure 3 presents the identification robust 90% level AR-S and K-LM confidence sets for the parameters of the reaction function (ψ_{π}, ψ_{x}) over 1979-1997. The identification-robust confidence sets now stand in stark contrast to the non-robust Wald confidence ellipse. Upon comparison with the pre-Volcker sample, it is clear that the parameters (ψ_{π}, ψ_{x}) are less accurately estimated. However, the Wald ellipse fails to reflect the true degree of uncertainty about the parameters. Even the K-LM set is much wider than the Wald ellipse, indicating that the parameters are not well-identified.

3.3 Economic interpretation of the results

An initial reading of Figure 3 suggests that the conclusion that policy under Volcker and Greenspan satisfied the Taylor principle is not robust, and that the data could be consistent with either this or the opposite view. On the face of it, this is a rather pessimistic conclusion.

However, upon further reflection, one realizes that there is a great deal to be learned from these results.

The key to this realization lies in the very source of weak identification, which is directly linked to the question of determinacy. As we shall demonstrate in the following section, identification problems are more likely to

arise when the equilibrium of the economy is determinate. The intuition for this is simple. Good policy removes the possibility of sunspot dynamics, as well as mitigates the effect shocks on future inflation and output. As a result, these variables become less predictable than they would otherwise be. This interpretation of Figures 2 and 3 is very much in line with the view that policy pre-Volcker destabilized expectations. This, in turn, provided sufficient predictability to identify the parameters of the Taylor rule. After 1979, sunspot dynamics may have subsided which explains why the reaction function is poorly identified. Thus, even though we are unable to formally reject the hypothesis of indeterminacy, the results are suggestive of a clear break in the nature of macroeconomic fluctuations around 1979 which is consistent with a switch from an indeterminate to a determinate state.

It is important not to read too much into this interpretation of the empirical results, however. It should be noted that weak identification is not solely a consequence of determinacy. It may also arise when the equilibrium is indeterminate but for some other reason sunspot fluctuations do not play an important role (as a special case, think of the 'sunspot-free' Minimum State Variable solution of McCallum (1983)). In other words, stability of expectations may be conceivably achieved by methods other than active response to inflation. The model we study here is too simple to address the issues relating to the evolution of expectations, and the question of whether 'actions speak louder than words'. Models that incorporate learning, as in Primiceri (2006) or Milani (2005) seem more appropriate to study those issues.

3.4 Results for the Greenspan era

It is well-known that monetary policy over much of Volcker's tenure has been designed to control money, rather than interest rates. This led to significant volatility in the policy rate, which is reflected in the standard deviation of the residuals in the policy rule over that period, see the left panel of Figure 5. Moreover, the beginning of the 1980s was a period of sharp disinflation. It is therefore interesting to see how the forward-looking Taylor rule (3) characterizes monetary policy under the more stable Greenspan era.

Figure 4 presents confidence sets on the policy rule parameters (ψ_{π}, ψ_{x}) based on inverting the Anderson-Rubin (AR-S) statistic (left-hand panel) and the conditional score (K-LM) (right-hand panel), as well as the non-robust Wald test. One key difference with the results for the period 1979-1997 given in Figure 3 is that all three confidence sets are now smaller. To a large extent, this can be explained by the large fall in the variability of the residual e_t in the policy rule regression (4), see Figure 5. Recall that this residual is composed of the monetary policy shock $\varepsilon_{r,t}$ as well as the forecast errors in inflation and the output gap,

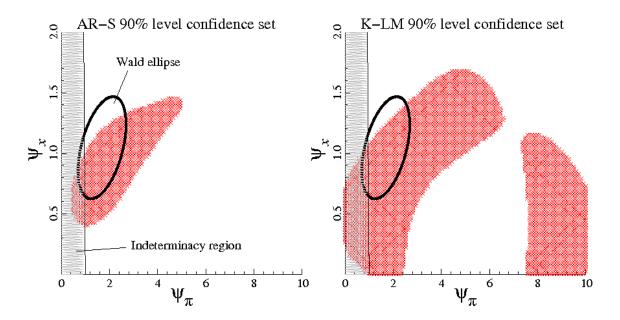


Figure 4: The reaction function under Greenspan. 90% level confidence sets for the parameters of the Taylor rule $r_t = c + \rho_1 r_{t-1} + \rho_2 r_{t-2} + (1 - \rho_1 - \rho_2) E_t (\psi_\pi \pi_{t+1} + \psi_x x_t) + \varepsilon_t$. The model is estimated by GMM over the Greenspan era (1997 to 2006), using four lags of π_t , x_t and r_t as instruments, and Newey-West weight matrix.

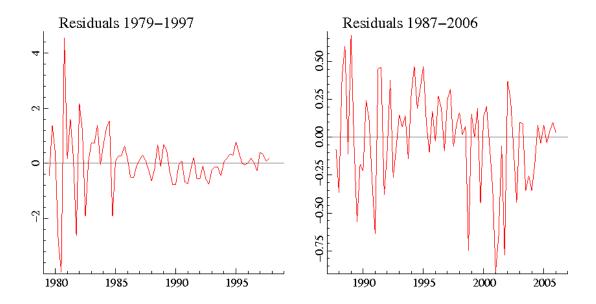


Figure 5: Residuals of the policy rule: $\hat{e}_t = \hat{\rho}\left(L\right)r_t - \hat{c} - \hat{\rho}\left(1\right)\left[\hat{\psi}_{\pi}\pi_{t+1} + \hat{\psi}_x x_t\right]$. The parameters are estimated by GMM over the two periods: 1979:q3-1997:q4 and 1987:q1-2006:q1.

see Eq. (5). Thus, this drop in volatility could arise from different sources. Even though the parameters of the model (3) are more accurately estimable over the Greenspan era, problems with the identifiability of ψ are still evident in the confidence sets reported in Figure 4. Even though the point estimates lie in the determinacy region, all three confidence sets include values in the indeterminacy region.

4 Discussion of identification

In this section, we elaborate further into the possible explanations of the empirical results presented above.

There are at least two sources of identification problems for the parameters of the policy rule (3). One is when inflation and/or the output gap are not forecastable by information available at time t-1. The other arises when the smoothing parameter ρ (1) in the reaction function (2) is close to 0, or, in other words, the adjustment to the target rate (1) is too slow.

4.1 The implications of determinacy

Formally, the model will be partially identified whenever a linear combination of the endogenous variables, inflation and the gap, is completely uncorrelated with the lagged variables beyond the lags of r_t which appear

in the model as exogenous regressors. We can check this by looking at the reduced form for π_t and x_t that is implied by the model (6), (7) and (3).

Lubik and Schorfheide (2004) characterize the full set of stable solutions of this model, building on the approach of Sims (2002). Suppose that the exogenous processes z_t and g_t evolve according to

$$z_t = \rho_z z_{t-1} + \varepsilon_{z,t}$$

$$g_t = \rho_g g_{t-1} + \varepsilon_{g,t}$$

where $\varepsilon_{z,t}$ and $\varepsilon_{g,t}$ are innovation processes. The model can then be written in the Sims (2002) canonical form:

$$\Gamma_0 s_t = \Gamma_1 s_{t-1} + \Psi \varepsilon_t + \Pi \eta_t \tag{9}$$

where s_t is a vector of state variables $s_t = (E_t \pi_{t+1}, E_t x_{t+1}, \pi_t, x_t, r_t, \dots, r_{t-p+1}, z_t, g_t)'$, p is the order of the $\rho(L)$ polynomial in the rule (3), $\varepsilon_t = (\varepsilon_{z,t}, \varepsilon_{g,t}, \varepsilon_{r,t})'$ are exogenous, and $\eta_t = (\eta_{\pi,t}, \eta_{x,t})'$ are the one-step-ahead forecast errors in π_t and x_t , $\eta_{\pi,t} = \pi_t - E_{t-1}\pi_t$ and $\eta_{x,t} = x_t - E_{t-1}x_t$. The matrices $\Gamma_0, \Gamma_1, \Gamma_u$ and Π are sparse and depend on the parameters θ , containing $\beta, \lambda, \sigma, \psi_{\pi}, \psi_{x}, \rho_{z}, \rho_{g}$ and $\rho_i, i = 1, \dots, p$.

The full set of solution takes the form, see Lubik and Schorfheide (2003),

$$s_{t} = \Gamma_{1}^{*}(\theta) \, s_{t-1} + \Gamma_{\varepsilon}^{*}(\theta) \, \varepsilon_{t} + \Gamma_{\zeta}(\theta) \, (M\varepsilon_{t} + \zeta_{t}) \tag{10}$$

given s_0 and an arbitrary martingale difference process ζ_t , which is referred to as a sunspot shock. The dimension of ζ_t depends on the degree of indeterminacy r (which is at most 1 here), and the matrix $\Gamma_{\zeta}(\theta)$ is restricted to lie in a particular r-dimensional linear subspace. M is an arbitrary $r \times 3$ matrix.

When the equilibrium is determinate, r = 0 and the last two terms in the solution (10) drop out. In fact, it can be shown (e.g., using the method of undetermined coefficients) that the determinate solution implies the following restricted reduced form dynamics in π_t and x_t (see, e.g., Mavroeidis (2004) for a special case of this)

$$\begin{pmatrix} \pi_t \\ x_t \end{pmatrix} = \sum_{i=1}^p b_i(\theta) r_{t-i} + C(\theta) \begin{pmatrix} z_t \\ g_t \end{pmatrix} + d(\theta) \varepsilon_{r,t}, \tag{11}$$

where p is the order of the $\rho(L)$ polynomial in (3). It is immediately obvious that if the forcing variables z_t and g_t are serially independent, then the optimal predictors of π_t and x_t are the lags of r_t that already appear in the Taylor rule (3) as exogenous regressors. Therefore, Eq. (3) will not be identifiable using lags of the variables as instruments. This fact was put forward by Lubik and Schorfheide (2004) as an argument

for using a full-information approach that exploits the additional assumption that the shocks $\varepsilon_{z,t}, \varepsilon_{g,t}$ and $\varepsilon_{r,t}$ should be mutually uncorrelated. We investigate this assumption below.

The situation that z_t and g_t are serially uncorrelated seems unrealistic, since it is well-known that inflation and the output gap have strong autoregressive dynamics in the US. However, identification problems may still arise if there exists a linear combination of π_{t+1} and x_t that is poorly forecastable by past information, as explained in Mavroeidis (2004).

It is important to point out that such identification problems need not arise only when the equilibrium is determinate. A solution of the form (11) may also arise as a special case of the general solution (10), even if the conditions for determinacy are not satisfied. One example is the MSV solution of McCallum (1983), which also takes the form (11).

Finally, the indeterminate solution (10) can be written as an infinite-order vector autoregressive process, provided. Thus, π_t and x_t may be predictable even in the special case that z_t and g_t are serially uncorrelated, so the model could be identified even in this case. Having said that, it is not, in general, possible to characterize the rank condition for identification analytically, and the restrictions that it imposes on the structural parameters as well as the nature of the sunspot shocks ζ_t . That is why it is important to use inference procedures that do not rely on the validity of the identification assumption.

4.2 Excess smoothness

Identification of ψ in (3) will also become problematic when $\rho(1)$ is close to 0, a situation which might be called 'excess smoothness' or excess gradualism in policy reaction. Indeed, if policy is so gradual that the interest rate moves little in response to changes in inflation and output, the resulting path of interest rates could be mistaken as evidence of policy inactivity.

In principle, one could consider testing the null hypothesis that $\rho(1) = 0$ in Eq. (3), but this raises a couple of econometric issues. First, under the null hypothesis, the parameters ψ in the Taylor rule are unidentified. This belongs to the class of problems when a nuisance parameter (here ψ) is not identified under the null. Andrews and Ploberger (1994) and Hansen (1996) showed that the asymptotic distribution of the usual test statistics is non-standard, and derived optimal tests for such hypothesis under stationarity and weak dependence restrictions. Optimality, however, is a secondary consideration here relative to the fact that, under the null hypothesis, the interest rate becomes a unit root process.

In principle, one could test the null hypothesis $\rho(1) = 0$ by standard unit root tests. The null hypothesis

of a unit root cannot be rejected at conventional significance levels over the subperiods 1979-1997 and 1987-2006, though it can be rejected over 1960-1979 and over the entire sample. However, we do not wish to take such results at face value, as they would imply that the policy rate follows an autonomous stochastic trend, which is clearly an implausible description of recent US monetary policy. It is more informative to just look at the point estimates of the smoothness parameter $\rho = 1 - \rho(1)$ over time. Before Volcker, $\rho = 0.68$ (0.1), it becomes 0.82 (0.05) between 1979 and 1997, and finally, 0.92 (0.02) over the Greenspan sample (standard errors in parentheses). This suggests policy has become more gradual over time, which would certainly help explain, partly, why the coefficients on the reaction function (1) have become less accurately estimable recently, relative to the past.

5 The identifying restrictions of Lubik and Schorfheide

6 Conclusions

References

- Andrews, D. W. and J. H. Stock (2005, August). Inference with weak instruments. NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
- Andrews, D. W. K. and W. Ploberger (1994). Optimal tests when a nuisance parameter is present only under the alternative. *Econometrica* 62(6), 1383–1414.
- Canova, F. and L. Sala (2005, May). Back to square one: identification issues in dsge models. Economics Working Papers 927, Department of Economics and Business, Universitat Pompeu Fabra.
- Clarida, R., J. Galí, and M. Gertler (2000). Monetary policy rules and macroeconomic stability: Evidence and some theory. *Quarterly Journal of Economics* 115, 147–180.
- Hansen, B. E. (1996). Inference when a nuisance parameter is not identified under the null hypothesis.

 Econometrica 64(2), 413–430.
- Kleibergen, F. (2005). Testing parameters in GMM without assuming that they are identified. *Econometrica* 73(4), 1103–1123.
- Lubik, T. A. and F. Schorfheide (2003). Computing sunspot equilibria in linear rational expectations models. J. Econom. Dynam. Control 28(2), 273–285.

- Lubik, T. A. and F. Schorfheide (2004). Testing for indeterminacy: An application to U.S. monetary policy. *American Economic Review* 94(1), 190–216.
- Mavroeidis, S. (2004). Weak identification of forward-looking models in monetary economics. Oxford Bulletin of Economics and Statistics 66 (Supplement), 609–635.
- McCallum, B. T. (1983). On non-uniqueness in rational expectations models: An attempt at perspective.

 Journal of Monetary Economics 11, 139–168.
- Milani, F. (2005, August). Expectations, learning and macroeconomic persistence. Working Papers 050608, University of California-Irvine, Department of Economics.
- Orphanides, A. (2002). Monetary-policy rules and the great inflation. American Economic Review 92(2), 115–120.
- Primiceri, G. E. (2006). Why inflation rose and fell: Policymakers' beliefs and us postwar stabilization policy. Quarterly Journal of Economics 121(3), 867–901.
- Sargent, T. (1999). The conquest of American inflation. USA: Princeton University Press.
- Sims, C. A. (2002). Solving linear rational expectations models. Computational Economics 20(1), 1–20.
- Sims, C. A. and T. Zha (2006). Were there regime switches in u.s. monetary policy? *American Economic Review 96*(1), 54–81.
- Stock, J., J. Wright, and M. Yogo (2002). GMM, weak instruments, and weak identification. *Journal of Business and Economic Statistics* 20, 518–530.
- Stock, J. H. and J. H. Wright (2000). GMM with weak identification. Econometrica 68(5), 1055–1096.
- Taylor, J. B. (1993). Discretion versus policy rule in practice. Carnegie–Rochester Conference Series on Public Policy 39, 195–214.
- Woodford, M. (2003). Interest and Prices: Foundations of a Theory of Monetary Policy. Princeton University Press.