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1 Introduction

One of the key results in the literature on in�nitely repeated games is the folk theorem:

Any feasible and individually rational payo¤ can be sustained in equilibrium when players

are su¢ ciently patient. Even if a stage game does not have an e¢ cient Nash equilibrium,

the repeated game does. Hence, the repeated game gives a formal framework to analyze a

cooperative behavior. Fudenberg and Maskin (1986) establish the folk theorem under perfect

monitoring, that is, when players can directly observe the action pro�le. Fudenberg, Levine

and Maskin (1994) extend the folk theorem to imperfect public monitoring, where players

can observe only public noisy signals about the action pro�le.

Recent papers by Hörner and Olszewski (2006 and 2009) show that the folk theorem

holds in private monitoring, where players can observe only private noisy signals about the

action pro�le, if the monitoring is almost perfect and almost public, respectively.

The driving force of the folk theorem in perfect or public monitoring is the coordination

of future play based on common knowledge of relevant histories. Speci�cally, the public com-

ponent of histories, such as action pro�les in perfect monitoring or public signals in public

monitoring, reveals past action pro�les (at least statistically). Since this public information

is common knowledge, players can coordinate a punishment contingent on the public infor-

mation, and thereby provide dynamic incentives to choose actions that are not static best

responses.

Hörner and Olszewski (2006 and 2009) show the robustness of this coordination to the

limited classes of private monitoring. If monitoring is almost perfect, then players can

believe that every player observes the same signal corresponding to the action pro�le with

high probability. If monitoring is almost public, then players can believe that every player

observes the same signal with high probability.1 Hence, almost common knowledge about

relevant histories still exists.

However, with general private monitoring, almost common knowledge may not exist and

1See also Mailath and Morris (2002 and 2006).
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coordination is di¢ cult (we call this problem �coordination failure�).2 Hence, the robustness

of the folk theorem to general private monitoring has been an open question. For example,

Kandori (2002) states that �[t]his is probably one of the best known long-standing open

questions in economic theory.�3

This paper is, to the best of our knowledge, the �rst to show that the folk theorem

holds in repeated games with discounting and generic private monitoring: In any N -player

repeated game with private monitoring, if each player�s number of signals is su¢ ciently large,

then any feasible and individually rational payo¤ is sustainable in a sequential equilibrium

for a su¢ ciently large discount factor.4

Repeated games with private monitoring are relevant for many traditional economic

problems. For example, Stigler (1964) proposes a repeated price-setting oligopoly, where

�rms set their own price in a face-to-face negotiation and cannot directly observe their

opponents�prices. Instead, a �rm obtains some information about opponents�prices through

its own sales. Since the level of sales depends on both opponents�prices and unobservable

shocks due to business cycles, the sales level is an imperfect signal. Moreover, each �rm�s sales

level is often private information. Thus, the monitoring is imperfect and private. In principal-

agent problems, if the principal evaluates the agent subjectively, then the monitoring by the

principal about the agent becomes private. Despite the importance of these problems, only a

limited number of papers successfully analyze the repeated games with private monitoring.5

Our result o¤ers a benchmark to analyze these problems in a general private-monitoring

setting.

To show the folk theorem under general private monitoring, we unify and improve on

three approaches in the literature on private monitoring that have been used to show the

2Mailath and Morris (2002 and 2006) and Sugaya and Takahashi (2011) o¤er the formal models of this
argument.

3See Mailath and Samuelson (2006) for a survey.
4See Lehrer (1990) for the case of no discounting.
5Harrington and Skrzypacz (2011) show evidence of cooperative behavior (cartels) among �rms in lysine

and vitamin industries. After arguing that these industries �t Stigler�s setup, they write a repeated-game
model with private monitoring and solve a special case. See also Harrington and Skrzypacz (2007).
Fuchs (2007) applies a repeated game with private monitoring to a contract between a principal and an

agent with subjective evaluation.
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partial results so far: Belief-free, belief-based and communication approaches.

The belief-free approach (and its generalizations) has been successful in showing the

folk theorem in the prisoners�dilemma.6 A strategy pro�le is belief-free if, for any history

pro�le, the continuation strategy of each player is optimal conditional on the history of the

opponents. Hence, coordination failure never happens. With almost perfect monitoring,

Piccione (2002) and Ely and Välimäki (2002) show the folk theorem for the two-player

prisoners� dilemma.7 Without any assumption on the precision of monitoring but with

conditionally independent monitoring, Matsushima (2004) obtains the folk theorem in the

two-player prisoners� dilemma, which is extended by Yamamoto (2011) to the N -player

prisoners�dilemma with conditionally independent monitoring.8

Previously, attempts to generalize Matsushima (2004) have shown only limited results

without almost perfect or conditionally independent monitoring: For some restricted classes

of the distributions of private signals, Fong, Gossner, Hörner and Sannikov (2010) show that

the payo¤ of the mutual cooperation is approximately attainable and Sugaya (2010a) shows

the folk theorem in the two-player prisoners�dilemma. Sugaya (2010b) shows that the folk

theorem holds with a general monitoring structure in the prisoners�dilemma if the number

of players is no less than four.

Several papers construct belief-based equilibria, where players�strategies involve statis-

tical inference about the opponents�past histories. That is, since common knowledge about

relevant histories no longer exists, each player calculates the beliefs about the opponents�

histories to calculate best responses. With almost perfect monitoring, Sekiguchi (1997)

6Kandori and Obara (2006) use a similar concept to analyze a private strategy in public monitoring.
Kandori (2010) considers �weakly belief-free equilibria,�which is a generalization of belief-free equilibria.
Apart from a typical repeated-game setting, Takahashi (2010) and Deb (2011) consider the community
enforcement and Miyagawa, Miyahara and Sekiguchi (2008) consider the situation where a player can improve
the precision of monitoring by paying cost.

7See Yamamoto (2007) for the N -player prisoners�dilemma. Ely, Hörner and Olszewski (2004 and 2005)
and Yamamoto (2009) characterize the set of belief-free equilibrium payo¤s for a general game. Except for
the prisoners�dilemma, this set is not so large as that of feasible and individually rational payo¤s.

8The strategy used in Matsushima (2004) is called a �belief-free review strategy.�See Yamamoto (2011)
for the characterization of the set of belief-free review-strategy equilibrium payo¤s for a general game with
conditional independence. Again, except for the prisoners�dilemma, this set is not so large as that of feasible
and individually rational payo¤s.
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shows that the payo¤ of the mutual cooperation is approximately attainable and Bhaskar

and Obara (2002) show the folk theorem in the two-player prisoners�dilemma.9 Phelan and

Skrzypacz (2011) characterize the set of possible beliefs about opponents�states in a �nite-

state automaton strategy and Kandori and Obara (2010) o¤er a way to verify if a �nite-state

automaton strategy is an equilibrium.

Another approach to analyze repeated games with private monitoring introduces pub-

lic communication. Folk theorems have been proven by Compte (1998), Kandori and Mat-

sushima (1998), Aoyagi (2002), Fudenberg and Levine (2002) and Obara (2009). Introducing

a public element (the result of communication) and letting a strategy depend only on the

public element allow these papers to sidestep the di¢ culty of coordination through private

signals. However, the analyses are not applicable to settings where communication is not

allowed: For example, in Stigler (1964)�s oligopoly example, anti-trust laws prohibit commu-

nication. Hörner and Olszewski (2006) argue that �communication reintroduces an element

of public information that is somewhat at odds with the motivation of private monitoring

as a robustness test�to the lack of common knowledge.

This paper incorporates all three approaches. First, the equilibrium strategy to show the

folk theorem is phase-belief-free. That is, we see the repeated game as the repetition of long

review phases. Each player has two strategies for the review phase; one that is generous to

the opponent and another that is harsh to the opponent.10 At the beginning of each review

phase, for each player, both generous and harsh strategies are optimal conditional on any

realization of the opponents�history. Within each review phase, each player can change

the opponent�s continuation payo¤ from the next review phase by changing the transition

probability between the two strategies, without considering the other players�history. This

equilibrium is immune to coordination failure at the beginning of each phase and gives us

freedom to control the continuation payo¤s.

Second, however, the belief-free property does not hold except at the beginning of the

9Bhaskar and Obara (2002) also derive a su¢ cient condition for the N -player prisoners�dilemma.
10As will be seen in Section 5, for a game with more than two players, one of player i�s strategies is generous

to player i+ 1 and another of player i�s strategies is harsh to player i+ 1. In addition, players � (i; i+ 1)�s
payo¤s are constant regardless of which strategy player i picks from the two.
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phases. Hence, we consider each player�s statistical inference about the opponents� past

histories as in the belief-based approach within each phase.

Finally, in our equilibrium, to coordinate on the play in the middle of the phase, the

players do communicate but the message exchange is done with their actions. The di¢ culty

to replace cheap talk with messages via actions is that, since the players need to infer the

opponents�messages from their private signals, common knowledge about the past messages

no longer exists. One of our methodological contributions is to o¤er a systematic way to

replace the cheap talk with message exchange via actions in private monitoring by overcoming

the lack of common knowledge.

The rest of the paper is organized as follows: Section 2 introduces the model and Section

3 states the assumptions and main result. Section 4 o¤ers the overview of the structure of

the proof. Section 5 relates the in�nitely repeated game to a �nitely repeated game with an

auxiliary scenario (reward function) and derives a su¢ cient condition on the �nitely repeated

game to show the folk theorem in the in�nitely repeated game. The remaining parts of the

paper are devoted to the proof of the su¢ cient condition. Section 6 explains the basic

structure of the �nitely repeated game. As will be seen in Section 7, we concentrate on the

approximate equilibrium until Section 13. Since the complete proof is long and complicated,

for the rest of the main text (that is, from Section 8 to Section 15), we concentrate on a special

case explained in Section 8 to illustrate the key structure. Namely, we focus on the two-

player prisoners�dilemma with cheap talk and public randomization, and interested readers

may refer to the Supplemental Materials for the complete proof for a general game without

cheap talk or public randomization. Section 9 speci�es what assumptions are su¢ cient

in this special case. After we formally de�ne the structure of the �nitely repeated game

for the two-player prisoners�dilemma in Section 10, we de�ne the strategy in Section 11.

While de�ning the strategy, we de�ne many variables. Section 12 veri�es that we take all the

variables coherently. Section 13 shows that the strategy approximately satis�es the su¢ cient

condition derived in Section 5. Finally, Section 14 adjusts the strategy further so that it

exactly satis�es the su¢ cient condition (therefore, we are not considering an approximate
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equilibrium. The �nal strategy is an exact sequential equilibrium). All proofs are given in

the Appendix (Section 15). Sections from 16 to 53 are in the Supplemental Materials.

2 Model

2.1 Stage Game

The stage game is given by
�
I; fAi; Yi; Uigi2I ; q

	
. I = f1; : : : ; Ng is the set of players, Ai

with jAij � 2 is the �nite set of player i�s pure actions, Yi is the �nite set of player i�s private

signals, and Ui is the �nite set of player i�s ex-post utilities. Let A �
Q

i2I Ai, Y �
Q

i2I Yi

and U �
Q

i2I Ui be the set of action pro�les, signal pro�les and ex post utility pro�les,

respectively.

In every stage game, player i chooses an action ai 2 Ai, which induces an action pro�le

a � (a1; : : : ; aN) 2 A. Then, a signal pro�le y � (y1; : : : ; yN) 2 Y and an ex post utility

pro�le ~u � (~u1; : : : ; ~uN) 2 U are realized according to a joint conditional probability function

q (y; ~u j a).

Following the convention in the literature, we assume that ~ui is a deterministic function

of ai and yi so that observing the ex post utility does not give any further information than

(ai; yi). If this were not the case, then we could see a pair of a signal and an ex post utility,

(yi; ~ui), as a new signal.

Player i�s expected payo¤ from a 2 A is the ex ante value of ~ui given a and is denoted

ui (a). For each a 2 A, let u (a) represent the payo¤ vector (ui (a))i2I .

2.2 Repeated Game

Consider the in�nitely repeated game of the above stage game in which the (common)

discount factor is � 2 (0; 1). Let ai;� and yi;� , respectively, denote the action played and the

private signal observed in period � by player i. Player i�s private history up to period t � 1

is given by hti � fai;� ; yi;�g
t�1
�=1. With h

1
i = f;g, for each t � 1, let H t

i be the set of all h
t
i. A
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strategy for player i is de�ned to be a mapping �i :
1S
t=1

H t
i !4(Ai). Let �i be the set of all

strategies for player i. Finally, let E(�) be the set of sequential equilibrium payo¤s with a

common discount factor �.

3 Assumptions and Result

In this section, we state two assumptions and the main result (folk theorem).

First, we state an assumption on the payo¤ structure. Let F � co(fu(a)ga2A) be the set

of feasible payo¤s. The minimax payo¤ for player i is

v�i � min
��i2�j 6=i�(Aj)

max
ai2Ai

ui(ai; ��i):

Then, the set of feasible and individually rational payo¤s is given by F � � fv 2 F : vi � v�i

for all ig. We assume the full dimensionality of F �.

Assumption 1 The stage game payo¤ structure satis�es the full dimensionality condition:

dim(F �) = N .

Second, we state an assumption on the signal structure.

Assumption 2 Each player�s number of signals is su¢ ciently large: For any i 2 I, we have

jYij � 2
X
j2I
jAjj :

Under these assumptions, we can generically construct an equilibrium to attain any point

in int(F �).

Theorem 1 If Assumptions 1 and 2 are satis�ed, then the folk theorem generically holds:

For generic q (� j �), for any v 2 int(F �), there exists �� < 1 such that, for all � > ��, v 2 E (�).
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See Section 9 and the Supplemental Material 1 for exactly what genericity conditions we

need in the proof. As will be seen, Assumption 2 is more than necessary. What we need for

the proof is

jYij �

8>>>>>>>>><>>>>>>>>>:

jAij+ 2 jAi�1j

if N = 2;

max

8<: jAij+ jAi+1j � 1 + 2
P

j 6=i;i+1 (jAjj � 1) ; jAi�1j+
P

j 6=i�1;i (jAjj � 1) ;

2 jAi�1j ;maxj2I
n
1
2
jAjj+

P
n6=j jAnj

o
;maxj2I

n
1
2
jAjj+ 2

P
n6=i;j jAnj

o
9=;

if N � 3:

From now on, we arbitrarily �x v 2 int(F �) and construct an equilibrium to support v

in a sequential equilibrium.

4 An Overview of the Argument

This section provides some intuition for our construction. Following Hörner and Olszewski

(2006), we see a repeated game as repetition of TP -period review phases. TP will be formally

de�ned later. In Section 4.1, we explain that our equilibrium is �phase-belief-free�and how

it makes our equilibrium immune to coordination failure at the beginning of each phase.

Section 4.2 o¤ers the basic structure of the review phase.

To explain the details of the review phase, it is useful to consider a special case where

additional communication devices are available. Section 4.3 introduces these devices. With

these communication devices, in Sections 4.4, 4.5 and 4.6, we o¤er the detailed explanation

of the review phase.

Finally, we explain how to dispense with the communication devices in Section 4.7.

4.1 Phase-Belief-Free

As Hörner and Olszewski (2006), the equilibrium is phase-belief-free. Each player i has two

TP -period-�nitely-repeated-game strategies, denoted �i(G) and �i(B). At the beginning of
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each review phase, for each player i, independently of her history, any continuation strategy

that adheres to one of the two strategies �i(G) and �i(B) in the review phase is optimal. We

say that player i taking �i(xi) with xi 2 fG;Bg in the review phase is �in state xi 2 fG;Bg.�

Intuitively speaking, �i(G) is a �generous� strategy that gives a high payo¤ to player

i + 1 (modN) who takes either �i+1(G) or �i+1(B), regardless of the other players�state

pro�le x�(i;i+1) 2 fG;BgN�2. On the other hand, �i(B) is a �harsh� strategy that gives

a low payo¤ to player i + 1 regardless of player (i+ 1)�s strategy (including those di¤erent

from �i+1(G) and �i+1(B)) and x�(i;i+1). Hence, player (i� 1)�s strategy controls player

i�s value regardless of x�(i�1), replacing i with i � 1 in the previous two sentences. Since

these two strategies are optimal at the beginning of the next phase, it is up to player i � 1

whether player i� 1 will take �i�1(G) or �i�1(B) in the next phase. Therefore, player i� 1

with �i�1(G) in the current phase can freely reduce player i�s continuation payo¤ from the

next review phase by transiting to �i�1(B) with higher probability while player i � 1 with

�i�1(B) can freely increase player i�s continuation payo¤by transiting to �i�1(G) with higher

probability.11 In summary, we do not need to consider player (i� 1)�s incentive to punish

player i after a �bad history�in state G or to reward player i after a �good history�in state

B.

4.2 Structure of the Review Phase

The basic structure of the review phase is summarized as follows. At the beginning of the

review phase, the players communicate a state pro�le x 2 fG;BgN . This communication

stage is named the �coordination block�since the players try to coordinate on x. The details

will be explained in Section 4.4.

Based on the result of the coordination block, the players play the �nitely repeated

11Here, the changes in the continuation payo¤s are measured by the di¤erences between player i�s ex ante
value given xi�1 at the beginning of the review phase and the ex post value at the end of the review phase
after player i� 1 observes the history in the phase. See Section 5 for the formal de�nition.
For example, if player i � 1 with xi�1 = G does not reduce player i�s continuation value, then it means

that the state of player i� 1 in the next review phase is G with probability one, so that the ex post value is
the same as the ex ante value.
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game for many periods. This step consists of multiple �review rounds.�The details will be

explained in Section 4.6.

Finally, at the end of the phase, the players communicate the history in the coordination

block and review rounds. This stage is named the �report block�since the players report the

history in the review rounds. The role of this communication will be explained in Section

4.5.

4.3 Special Communication Devices

Before explaining the details of the coordination block, review rounds and report block, we

introduce three special communication devices. We will dispense with all three in Section

4.7.

Perfect Cheap Talk Until Section 4.6, we assume that the players could directly com-

municate in the coordination block and report block. We assume that the communication

were (i) cheap (not directly payo¤-relevant), (ii) instantaneous and (iii) public and perfect

(it generates the same signal as the message to each player).

Noisy Cheap Talk In the review rounds, we assume that the players could directly com-

municate via noisy cheap talk. We will later explain why we use noisy cheap talk rather

than the perfect cheap talk in the review rounds.

�Noisy cheap talk with precision p 2 (0; 1)� is the communication device that is (i)

cheap and (ii) instantaneous, but (iii) private and imprecise with probability exp(�O(T p)).12

Speci�cally, when the sender (say player j) sends a binary message m 2 fG;Bg via noisy

cheap talk, the receiver (say player i) will observe a binary private signal f [i](m) 2 fG;Bg.

With high probability, the message transmits correctly: f [i](m) = m with probability 1 �

exp(�O(T p)). Given the true message m and the receiver�s private signal f [i](m), the

controller of the receiver�s payo¤ (player i� 1) stochastically receives a binary private signal
12In general, when we say y = O(x), it means that there exists k > 0 such that y = kx.
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g[i � 1](m) 2 fm;Eg. If f [i](m) 6= m (if the receiver receives a wrong signal), then g[i �

1](m) = E with probability 1� exp(�O(T p)). That is, g[i� 1](m) = E implies that player

i�1 (the controller of player i�s payo¤) suspects that the communication may have an error.

Further, we assume that any signal pair can occur with probability at least exp(�O(T p)).

Hence, the communication is noisy.

We assume that the signals are private. Therefore, f [i](m) is observable only to the

receiver (player i) and g[i� 1](m) is observable only to the controller of the receiver�s payo¤

(player i� 1).

There are two important features of this noisy cheap talk: First, whenever the receiver

realizes that her signal was wrong: f [i](m) 6= m, then she puts a belief no less than 1 �

exp(�O(T p)) on the event that the controller of her payo¤ should have received the signal

g[i� 1](m) = E and �realized�there was an error.13 Second, any error occurs with positive

probability exp(�O(T p)). It will be clear in Section 4.6 that these two features are important

to construct an equilibrium in the review rounds.

Public Randomization In the report block, we assume that public randomization were

available in addition to the perfect cheap talk.

With these special communication devices, Sections 4.4, 4.5 and 4.6 explain the coordi-

nation block, the report block and the review rounds, respectively.

4.4 Coordination Block

The role of the coordination block is to coordinate on x as in Hörner and Olszewski (2006).

With the perfect cheap talk, each player tells the truth about her own state xi and the

state pro�le x 2 fG;BgN becomes common knowledge. In the review rounds, based on x,

the players play a(x) with high probability on the equilibrium path. Intuitively, a(x) is the

action pro�le taken in the �regular�histories when the state pro�le is x. See Section 5 for

the formal de�nition of a(x).

13As we will see, player (i� 1)�s continuation play is independent of g[i � 1](m) and so player i cannot
learn g[i� 1](m).
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4.5 Report Block

We introduce the report block where the players communicate the history in the coordination

block and review rounds. This communication enables us to concentrate on "-equilibrium

until the end of the last review round. Suppose that we have constructed a strategy pro�le

which is "-equilibrium at the end of the last review round if we neglect the report block. We

explain how to attain the exact equilibrium by using the report block.

As seen in Section 4.3, suppose that the perfect cheap talk and public randomization are

available. Each player i is picked by the public randomization with probability 1
N
.14 The

picked player i sends the whole history in the coordination block and review rounds (denoted

hmaini ) to player i � 1. That is, hmaini is player i�s history from the beginning of the current

review phase to the end of the last review round.

Assume that player i always tells the truth about hmaini . Player i� 1 changes the contin-

uation payo¤ of player i such that, after any period t in the coordination block and review

rounds, after any history hti, it is exactly optimal for player i to follow the prescribed action

by �i(xi). Since the original strategy pro�le was "-equilibrium with arbitrarily small ", this

can be done by slightly changing the continuation strategy based on hmaini�1 and hmaini .15

The remaining task with the perfect cheap talk and public randomization is to show the

incentive to tell the truth about hmaini . Intuitively, with de�ning a linear space and norm prop-

erly for the histories, player i�1 punishes player i proportionally to



hmaini�1 � E

h
hmaini�1 j ĥmaini

i


2
with ĥmaini being the reported history. The optimal report ĥmaini to minimize the expected

punishment E
�


hmaini�1 � E

h
hmaini�1 j ĥmaini

i


2 j hmaini

�
is to tell the truth: ĥmaini = hmaini .16

Since the adjustment for exact optimality is small, the small punishment is enough to in-

centivize player i to tell the truth. Therefore, the total changes in the continuation payo¤

based on the report block do not a¤ect the equilibrium payo¤.

14For N � 3, the precise procedure is slightly di¤erent. See Section 36 in the Supplemental Material 3.
15With more than two players, player i� 1 also needs to know the histories of players � (i� 1; i). So that

players �(i�1; i) can send their histories to player i�1, we introduce another communication stage after the
report block, named the �re-report block.�Since this information sent by players � (i� 1; i) in the re-report
block is used only to control player i�s continuation payo¤, the truthtelling incentive for players � (i� 1; i)
is trivially satis�ed. See Section 37 in the Supplemental Material 3.
16Note that this logic is the same as we show the consistency of generalized-method-of-moments estimators.
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4.6 Review Rounds

Between the coordination block and the report block, the players play a T -period �review

round�for L times. Here, L 2 N is a �xed integer that will be determined in Section 12, and

T = (1� �)�
1
2

so that

T !1 and �LT ! 1 as � ! 1: (1)

Throughout the paper, we neglect the integer problem since it is handled by replacing each

variable s that should be an integer with minn2N
n�s

n.

The reason why we have T periods in each review round is to aggregate private signals for

many periods to get precise information as in Matsushima (2004).17 There are two reasons

why we have L review rounds. The �rst reason is new: As we will explain, the signals of the

players can be correlated while Matsushima (2004) assumes that the signals are conditionally

independent. To deal with correlation, we need multiple review rounds.

The second reason is the same as Hörner and Olszewski (2006). If we replace each period

of Hörner and Olszewski (2006) with a T -period review round, then we need a su¢ ciently

large number of review rounds so that a deviator should be punished su¢ ciently long to

cancel out the gains in the instantaneous utility from deviation.

Below, we o¤er a more detailed explanation of the review rounds. In Section 4.6.1, we

concentrate on the �rst role of the L rounds. That is, we consider the case where the block

of Hörner and Olszewski (2006) has one period, that is, the stage game is the two-player

prisoners�dilemma. We will explain a general two-player game and a general more-than-two-

player game in Sections 4.6.2 and 4.6.3, respectively, where the second role of the L rounds

is important.

Whenever we consider the two-player case and we say players i and j, we assume that

player j is player i�s (unique) opponent unless otherwise speci�ed.

17See also Radner (1985) and Abreu, Milgrom and Pearce (1991).
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4.6.1 The Two-Player Prisoners�Dilemma

In the two-player prisoners�dilemma, we consider player i�s incentive to take �i(G) when

player j takes �j(G). The other combinations of (xi; xj) are symmetric. Remember that

since x is communicated via perfect cheap talk, x is common knowledge.

So that �i(G) is generous to player j, player i needs to take cooperation with ex ante high

probability. On the other hand, player j can reduce player i�s continuation payo¤ from the

next review phase based on her history within the current review phase (see the explanation

of phase-belief-free in Section 4.1).

Suppose that player j has a �good�random variable (signal) which occurs with proba-

bility q2 when player i takes cooperation and with probability q1 < q2 when player i takes

defection. q2 > 0 can be very small since the monitoring is imperfect. Assume that the

instantaneous utility gain of taking defection instead of cooperation is g > 0.

If player j needs to incentivize player i to take cooperation every period independently,

then player j needs to reduce player i�s continuation payo¤ by at least g
q2�q1 (for simplicity,

forget about discounting) after not observing the good signal. Then, the ex ante per-period

reduction of the continuation payo¤ is g
q2�q1 (1� q2), which is too large to attain e¢ ciency

(if q2 is bounded away from one). That is, player j switches to the harsh strategy (which

takes defection in the prisoners�dilemma) from the next review phase too often. Hence, we

need to come up with a procedure to prevent the ine¢ cient punishment (reduction of the

continuation payo¤).

Conditional Independence Following Matsushima (2004), assume that player i�s signals

were independent of player j�s signals. In this case, we could see a collection of L review

rounds as one �long review round.�That is, player j monitors player i for LT periods. Player

j will take the generous strategy with probability one in the next review phase if the good

signal is observed (q2 + 2")LT times or more.18 If it is observed less, then player j reduces

the continuation payo¤ by the shortage multiplied by g
q2�q1 . That is, with Xj being how

18We will explain why we use 2" instead of " later. In addition, this " is di¤erent from " for "-equilibrium.
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many times player j has observed the good signal in the LT periods, the reduction of the

continuation payo¤will be g
q2�q1 f(q2 + 2")LT �Xjg+.19 We call Xj �player j�s score about

player i.�

Since player i�s signals were independent of player j�s signals, player i could not update

any information about player j�s score about player i from player i�s private signals. Hence,

by the law of large numbers, for su¢ ciently large T , player i believes that (q2 + 2")LT�Xj >

0 with ex post high probability after any history. Hence, it is optimal for player i to constantly

take cooperation. At the same time, since the expected value of Xj is q2LT , the ex ante

per-period reduction of the continuation payo¤ is g
q2�q12", which can be arbitrarily small by

taking " small. Therefore, we are done.

Conditional Dependence Now, we dispense with conditional independence. That is,

player i�s signals and player j�s signals can be correlated arbitrarily. Intuitively, see one

period as a day and a long review round as a year: LT = 365. Since the expected score is

q2LT , to prevent an ine¢ cient punishment, player j cannot punish player i after the score

slightly exceeds q2LT (in the above example, (q2 + 2")LT ). On the other hand, if the signals

are correlated, then later in a year (say, November), it happens with a positive probability

that player i believes that, judging from her own signals and correlation, player j�s score

about player i has been much more than q2LT already (in the above example, more than

(q2 + 2")LT ). Then, player i wants to start to defect.

More generally, it is impossible to create a punishment schedule that is approximately

e¢ cient and that at the same time incentivizes player i to cooperate after any history with

arbitrary correlation. Hence, we need to let player i�s incentive to cooperate break down

after some history. Symmetrically, player j also switches her own action after some history.

Intuitively, player i switches to defection if player i�s expectation of player j�s score about

player i is much higher than the ex ante mean. We want to specify exactly when each player

i takes defection based on player i�s expectation of player j�s score about player i.

19fXg+ is equal to X if X � 0 and 0 otherwise.
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Chain of Learning However, this creates the following problem: Since player i switches

her action based on player i�s expectation of player j�s score about player i, player i�s

action reveals player i�s expectation of player j�s score about player i. Since both �player

i�s expectation of player j�s score about player i�and �player i�s score about player j�are

calculated from player i�s history, player j may want to learn �player i�s expectation of player

j�s score about player i�from �player j�s signals about player i�s action.� If so, player j�s

decision of actions depends also on player j�s expectation of player i�s expectation of player

j�s score about player i. Proceeding one step further, player i�s decision of actions depends

on player i�s expectation of player j�s expectation of player i�s expectation of player j�s score

about player i. This chain continues in�nitely.

Noisy Cheap Talk Cuts o¤ the Chain of Learning We want to construct an equilib-

rium that is not destroyed by the chain of high order expectations. From the discussion of

the report block, we can focus on "-equilibrium. This means that, to verify an equilibrium, it

is enough to show that each player believes that her action is strictly optimal or any action

is optimal with high probability (not probability one). To prevent the chain of learning,

we take advantage of this �" slack� in "-equilibrium and the noise in the noisy cheap talk

explained in Section 4.3.

The basic structure is as follows. We divide an LT -period long review round into L

T -period review rounds. We make sure that each player takes a constant action within a

review round. If player j observes a lot of good signals in a review round, then player i

should take defection from the next review round. At the end of each review round, player

j sends a noisy cheap talk message with precision p = 1
2
to inform player i of the optimal

action in the next review round. Based on player i�s own history and player i�s signal of

player j�s message via noisy cheap talk, player i may switch to a constant defection from

the next review round. That is, the breakdown of incentives and switches of actions occur

only at the beginning of each review round. The remaining questions are (i) how we can

incentivize player j to tell the truth and (ii) how we can make sure that the chain of learning
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does not destroy an equilibrium.

The intuitive answer to these questions are as follows. In equilibrium, by the law of

large numbers, with ex ante high probability, player i at the end of the review round puts

a high belief on the event that player j has not observed a lot of good signals. In such a

case, player i believes that player i�s optimal action in the next review round is cooperation

and disregards the signal of player j�s message. That is, the precision of player i�s inference

about player i�s optimal action from the review rounds is usually 1 � exp(�O(T )) because

the length of the review round is T . Since this is higher than the precision of the signal of

the noisy cheap talk, 1� exp(�O(T 1
2 )), player i disregards the signal. Player i incentivizes

player j to tell the truth by changing player j�s continuation payo¤ from the next review

phase only if player i does not disregard the message. Since player i does not disregard

the message only after rare histories, incentivizing player j does not a¤ect e¢ ciency. This

answers question (i).

The answer to question (ii) is as follows: Consider the case where player i obeys the signal

of player j�s message and player i learns from player j�s continuation play that player i�s

signal of player j�s message was wrong. Even after realizing an error, player i keeps obeying

the signal by the following reasons: By the de�nition of the noisy cheap talk in Section 4.3,

player i believes that player j should have received E and should have realized that player i�s

signal was wrong. Since player j�s continuation play never reveals whether player j received

E or not, player i keeps this belief. As will be seen, player j after observing E makes player

i indi¤erent between any action pro�le. Therefore, it is almost optimal for player i to keep

obeying the signal.

Next, consider the case where player i disregards the signal of player j�s message and

player i learns from player j�s continuation play that player j�s action is di¤erent from what

is consistent with player i�s expectation of player j�s score about player i and player i�s

message. For example, player i sent the message that player j should switch to defection

but realizes that player j is still cooperating. This means that, if player i�s message had

transmitted correctly, then in order for player j to keep cooperating, player j�s history should
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have told player j that player i has not observed a lot of good signals about player j yet

(that is, player j�s expectation of player i�s score about player j is low). What if player j�s

expectation of player i�s good signal about player j and player j�s good signal about player

i are negatively correlated and this implies that player j should have observed a lot of good

signals about player i? Does player i want to switch to defection? The answer is no. Since

player i�s message did not transmit correctly with probability exp(�O(T 1
2 )), player i always

attributes the inconsistency between player j�s action and player i�s expectation of player j�s

action to the error in player j�s signal of player i�s noisy message, rather than the mistake

in player i�s inference.20

We will de�ne an equilibrium strategy more fully to answer the questions (i) and (ii)

formally.

Full Explanation of the Strategy For each lth review round, letXj(l) be player j�s score

about player i in the lth review round, which denotes how many times player j observes the

good signal in the lth review round.

In each lth review round, if Xj(~l) � (q2 + 2")T for all ~l � l � 1, that is, if player

j�s score about player i has not been �erroneously high� in the previous review rounds,

then player j monitors player i by player j�s score about player i. That is, the reduction

of the continuation payo¤ from the next review phase21 caused by the lth review round

is g
q2�q1 ((q2 + 2")T �Xj(l)). Note that this is proportional to

g
q2�q1 f(q2 + 2")LT �Xjg+

except that this increases without an upper bound within a review round.

On the other hand, if Xj(~l) > (q2 + 2")T happens for some ~l � l � 1, that is, if player

j�s score about player i has been �erroneously high� in one of the previous review rounds,

then player j stops monitoring. That is, the reduction of player i�s continuation payo¤ from

the next review phase caused by the lth review round is �xed at gT + g
q2�q12"T . See below

for how we determine this number.
20See 1-(b) and 2 below to make sure that after any history, there is a positive probability that player j

obeys the signal of player i�s message.
21Note that this is not a next review round.
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For notational convenience, let �j(l) = G denote the situation that player j monitors

player i in the lth review round and let �j(l) = B denote the situation that player j stops

monitoring in the lth review round. That is, �j(1) = G and �j(l) = G if and only if

Xj(~l) � (q2 + 2")T for all ~l � l � 1.

The total reduction of the continuation payo¤ is

g

q2 � q1
T+

LX
l=1

�
1 f�j(l) = Gg g

q2 � q1
((q2 + 2")T �Xj(l)) + 1 f�j(l) = Bg

�
g

q2 � q1
T +

g

q2 � q1
2"T

��
:

In general, 1 fXg is an index function such that

1 fXg =

8<: 1 if X is true,

0 if X is not true.

Three remarks: First, we have a constant term g
q2�q1T . Note that the maximum score Xj(l)

for one round is T . Since the increment of the decrease in the reduction of the continuation

payo¤ is g
q2�q1 , this constant term is su¢ cient to cover the maximum decrease of the reduction

of the continuation payo¤ for one review round. Second, after (q2 + 2")T �Xj(l) < 0, that

is, after player j�s score about player i becomes erroneously high, in the following review

rounds, we have a constant positive reduction
�

g
q2�q1T +

g
q2�q12"T

�
. Third, from the �rst

and second remarks, the total reduction in the continuation payo¤ at the beginning of the

next review phase is always positive. This implies that we can �nd a transition probability

for player j�s state in the next review phase to achieve this reduction of the continuation

payo¤. If it were negative, then player j would need to transit to a bad strategy with a

negative probability, which is infeasible.

Consider player i�s incentive. If player i could know �j(l), then player i wants to take

cooperation (defection, respectively) constantly in the lth review round if �j(l) = G (�j(l) =

B, respectively). Verify this by backward induction: In the last Lth review round, this is true

since the decrease in the reduction of the continuation payo¤ is always g
q2�q1 (0, respectively)

for an additional observation of the good signal if �j(L) = G (�j(L) = B, respectively).
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Note that with this optimal strategy, player i�s payo¤ from the Lth review round (the

instantaneous utilities in the Lth review round and the reduction of the continuation payo¤

caused by the Lth review round) is equal to ui(C;C)� g
q2�q12"T regardless of �j(L) if player

j plays cooperation.22 That is, the reduction of the continuation payo¤ after �j(L) = B

is determined so that player i�s payo¤ is the same between �j(L) = G and �j(L) = B.

Therefore, when we consider the (L� 1)th review round, player i can neglect the e¤ect of

the strategy in the (L� 1)th review round on the payo¤ in the Lth review round. Hence,

the same argument establishes the result for the (L� 1)th review round. We can proceed

until the �rst review round by backward induction.

Since player i cannot observe �j(l+1) directly, after the lth review round, player i wants

to know whether �j(l + 1) is G or B. To inform player i of �j(l + 1), player j sends a

noisy cheap talk message m = �j(l + 1) with precision p = 1
2
at the end of each lth review

round. With two players, player i � 1 is equal to player j. If player j receives the signal

g[j](m) = E which implies that the communication may have an error, then player j makes

player i indi¤erent between any action pro�le sequence in the following review rounds.

Intuitively, player i takes cooperation in the next review round if f [i](�j(l+1)) = G and

defection if f [i](�j(l + 1)) = B. However, to incentivize player j to tell the truth without

destroying e¢ ciency of the equilibrium and to deal with the chain of learning, we need a

more complicated strategy.

Speci�cally, after each lth review round, player i calculates the conditional belief (dis-

tribution) of Xj(l) given player i�s history. By the central limit theorem, given player i�s

history, the standard deviation of this conditional distribution is O(T
1
2 ). If the conditional

expectation of Xj(l) is no more than (q2 + ")T , then since (q2 + 2")T is far from the con-

ditional expectation by at least "T , player i believes that player j has not observed an

erroneously high score with probability at least 1 � exp(�O(T )). That is, player i believes

that �j(l+1) = G with probability at least 1� exp(�O(T )).23 Therefore, if player i�s condi-
22As player i switches to defection after some history, player j does not always take cooperation. We will

take this into account in the formal proof.
23Precisely speaking, �j(l + 1) = B if and only if player j has observed an erroneously high score in the
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tional expectation of player j�s score about player i is no more than (q2 + ")T , then player

i will think that it is an error with probability at least 1 � exp(�O(T )) if player i receives

f [i](�j(l + 1)) = B.

Given the discussion above, player i will take the following strategy:

1. If player i�s conditional expectation of player j�s score about player i is no more than

(q2 + ")T , then player i will mix the following two:

(a) With probability 1��, player i disregards the message and believes that �j(l+1) =

G, thinking that it is an error if player i receives f [i](�j(l + 1)) = B.

(b) With probability �, player i obeys player i�s signal of player j�s message: Player i

takes cooperation in the (l + 1)th review round if f [i](�j(l+1)) = G and defection

if f [i](�j(l + 1)) = B.

2. If player i�s conditional expectation of player j�s score about player i is more than

(q2 + ")T , then player i always obeys player i�s signal of player j�s message: Player i

takes cooperation in the (l + 1)th review round if f [i](�j(l + 1)) = G and defection if

f [i](�j(l + 1)) = B.

In addition, if 1-(b) or 2 happens, then player i makes player j indi¤erent between any

action pro�le sequence.

Verify that this is an "-equilibrium: From player i�s perspective at the beginning of the

(l + 1)th review round, 1-(a) is "-optimal by the reason explained above. For 1-(b) and 2,

it is always "-equilibrium to obey the message since whenever player i�s signal is wrong:

f [i](�j(l+1)) 6= �j(l+1), player j receives g[j](�j(l+1)) = E and makes player i indi¤erent

between any action pro�le sequence with probability 1� exp(�O(T 1
2 )).

Does player i want to learn from player j�s continuation strategy? The answer is no in

"-equilibrium.

~lth review round for some ~l � l. Hence, even if player j�s score in the lth review round is not erroneously
high, it is possible to have �j(l+1) = B when player j has observed an erroneous score before the lth review
round. We will take this into account in the formal proof in Section 13.
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If 1-(b) or 2 is the case for player i, then since player j�s strategy is independent of

g[j](�j(l+1)),24 player i always believes that if f [i](�j(l+1)) 6= �j(l+1), then g[j](�j(l+1)) =

E.

If 1-(a) is the case for player i, then player i�s belief on �j(l+1) = G at the beginning of

the (l + 1)th review round is no less than 1� exp(�O(T )). On the other hand, 1-(b) or 2 is

the case for player j with probability at least � regardless of player j�s history. Hence, player

j obeys player j�s signal of player i�s message with probability at least �. Since player j�s

signal of player i�s message is noisy, regardless of player i�s true message and g[i](�i(l + 1)),

any realization of player j�s signal is possible with probability at least exp(�O(T 1
2 )). Thus,

player i believes that any action of player j happens with probability at least exp(�O(T 1
2 )).

Since the initial belief on �j(l + 1) = G is 1� exp(�O(T )), which is very high compared to

exp(�O(T 1
2 )), player i will not learn from player j�s continuation play in "-equilibrium.

In other words, when player i obeys the signal, player i believes that if player i�s signal is

wrong, then player j should have known that. When player i disregards the message based

on her inference from the review round, then whenever player i observes player j�s action

di¤erent from player i�s expectation, player i attributes the inconsistency to an error in player

j�s signals, rather than to player i�s inference about player j�s score about player i. This is

possible since the inference from the review round is precise with probability 1�exp(�O(T ))

while the signals of the noisy cheap talk are imprecise with probability exp(�O(T 1
2 )).

Finally, consider player j�s incentive. The incentive to tell the truth about �j(l + 1) is

satis�ed since whenever player i�s signal of player j�s message a¤ects player i�s continuation

play, that is, if 1-(b) or 2 is the case for player i, then player i makes player j indi¤erent

between any action pro�le sequence.

We also need to consider player j�s incentive in the lth review round. If 1-(a) is the case,

then player i cooperates and player i does not make player j indi¤erent between any action

pro�le sequence. This is better than 1-(b) or 2, where player i makes player j indi¤erent be-

24As player i�s continuation play is independent of g[i](�i(l+1)), player j�s continuation play is independent
of g[j](�j(l + 1)).
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tween any action pro�le sequence.25 Therefore, if player j can decrease player i�s conditional

expectation of player j�s score about player i, then player j wants to do so. We construct the

good signal so that player j cannot manipulate player i�s conditional expectation of player

j�s score about player i. That is, player j�s expectation of player i�s conditional expectation

of player j�s score about player i is constant with respect to player j�s action. See (19) and

(27) for the formal de�nition of the good signal.

Therefore, this is an "-equilibrium.

We are left to check e¢ ciency. An erroneously high realization of player j�s score about

player i or player i�s conditional expectation of player j�s score about player i does not occur

with high probability. In addition, g[j](m) = E does not happen with high probability either.

Hence, if we take � (the probability that 1-(b) is the case) su¢ ciently small, then with high

probability, player i takes cooperation for all the review rounds and player j monitors player

i by
g

q2 � q1
T +

LX
l=1

g

q2 � q1
((q2 + 2")T �Xj(l)) :

Since the ex ante mean of Xj(l) is q2T , the per-period expected reduction of the continuation

payo¤ is g
q2�q1

�
1
L
+ 2"

�
, which can be arbitrarily small for large L and small ".

Summary Let us summarize the equilibrium construction. Although the breakdown of

cooperation after erroneous histories is inevitable, we need to verify that the chain of learning

does not destroy the incentives. First, we divide the long review round into L review rounds.

We make sure that, in each review round, the constant action is optimal. To do so, we have

a constant term g
q2�q1T for the reduction of the continuation payo¤. This is enough to cover

the maximum decrease in the reduction of the continuation payo¤ in one review round. At

the same time, since the length of one review round is only 1
L
of the total length of the

review phase, the per-period reduction of the continuation payo¤ from this constant term is

25Since player i is in the good state, when player i makes player j indi¤erent between any action pro�le
sequence, player i will do so by reducing player j�s continuation payo¤ from the next review phase so that
player j�s payo¤ (the summation of the instantaneous utilities and the reduction of the continuation payo¤)
is �atten at the lowest level with respect to action pro�les.
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su¢ ciently small for large L. So, this does not a¤ect e¢ ciency.

To inform player i of the optimal action in the next review round, player j sends a noisy

message. The noise plays two roles: First, player i (the receiver) disregards the message

with ex ante high probability (this is 1-(a) in the above explanation). To incentivize player

j to tell the truth, player i makes player j indi¤erent between any action pro�le sequence

in the following review rounds whenever player i�s signal of player j�s message a¤ects player

i�s continuation play. Since player i disregards the message with high probability, this does

not destroy e¢ ciency. Second, since each player obeys her signal of the opponent�s message

with a positive probability, whenever a player observes the opponent�s action di¤erent from

what she expected, she thinks that this is due to an error in the noisy communication. This

cut down the chain of learning.

Finally, we construct the good signal from player j�s private signals such that player j�s

expectation of player i�s conditional expectation of player j�s score about player i is constant

with respect to player j�s action.

4.6.2 A General Two-Player Game

Now, we consider the second role of L, that is, we consider a game where the block of Hörner

and Olszewski (2006) has more than one period. We still concentrate on the two-player case.

Imagine that we replace each period in Hörner and Olszewski (2006) with a T -period

review round. We need L review rounds so that, when player i uses the harsh strategy,

regardless of player j�s deviation, we can keep player j�s value low enough. If player j

deviates for a non-negligible part of a review round, then by the law of large numbers, player

i can detect player j�s deviation with high probability. If player i minimaxes player j from

the next review round after such an event, then player j can get a payo¤ higher than the

targeted payo¤ only for one review round. With su¢ ciently long L, therefore, player j�s

average payo¤ from a review phase can be arbitrarily close to the minimax payo¤.

A known problem to replace one period in Hörner and Olszewski (2006) with a review

round is summarized in Remark 5 in their Section 5. Player i�s optimal action in a round
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depends on player j�s signals in the past rounds. Player i calculates the belief about player

j�s past signals at the beginning of the round and starts to take an action that is optimal from

her belief. While player i observing signals in that round, since player j�s actions depend on

player j�s signals in the past rounds, player i may realize that player j�s actions are di¤erent

from what player i expected from her belief about player j�s signals. Then, player i needs

to correct her belief about player j�s past signals.

Realize that this is the same �chain of learning�problem as we have dealt with for �j(l).

Here, we will proceed as follows: Player j has a �signal to check her own deviation�which

occurs less often if player j does not follow the equilibrium path. Let Gj(l) be how many

times player j observes this signal in the lth review round. We call Gj(l) �player j�s score

about player j�s own deviation.�If the realization of Gj(l) is su¢ ciently low, then player j

allows player i to minimax player j from the next review round. Speci�cally, player j makes

player i indi¤erent between any action pro�le sequence from the (l + 1)th review round.26 At

the end of the lth review round, player j sends the noisy cheap talk message about whether

player j will allow player i to minimax player j from the next review round.

On the other hand, at the end of the lth review round, player i calculates the conditional

expectation of player j�s score about player j�s own deviation. With probability 1��, player

i decides the action in the (l + 1)th review round as follows:

1. If player i�s conditional expectation of player j�s score about player j�s own deviation

is very low, then player i disregards player i�s signal of player j�s message and will

minimax player j. Player i believes that it is an error if the signal says that player j

will not allow player i to minimax player j.

2. Otherwise, player i will not minimax player j. Since player j makes player i indi¤erent

if player j allows player i to minimax, not minimaxing is always optimal.

26To prevent player i from manipulating whether player j makes player i indi¤erent, we construct player
j�s score about player j�s own deviation so that player i cannot change player i�s expectation of player j�s
score about player j�s own deviation. This is parallel to making sure that player j cannot change player j�s
expectation of player i�s conditional expectation of player j�s score about player i.
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With a small probability �, player i obeys the signal of player j�s message. In this case,

player i makes player j indi¤erent between any action pro�le sequence.

Then, from 1, player j will be minimaxed if player j deviates with high probability

regardless of player j�s message. For this procedure to trigger the punishment properly,

we construct player j�s score about player j�s own deviation so that player i�s conditional

expectation of player j�s score about player j�s own deviation will become low if player j

deviates. Hence, we can keep player j�s payo¤ low regardless of player j�s deviation both

in actions and messages. Since the players obey the signals of the messages with positive

probability, if player i realizes that player j�s action is di¤erent from what player i expected,

then player i thinks that it is due to an error in the noisy communication. Hence, the chain

of learning will not be a problem in "-equilibrium.

4.6.3 A General Game with More Than Two Players

Finally, we consider a general game with more than two players. There are two problems

unique to a game with more than two players: First, if player i�s state xi is B, then player

(i+ 1)�s value should be low. Since player i is in the bad state, player i can only increase

the continuation payo¤. That is, we cannot punish player i+1 by reducing the continuation

payo¤. Hence, players � (i+ 1) need to minimax player i + 1 if player i + 1 seems to have

deviated. With two players, player i is the only opponent of player i + 1 and so it su¢ ces

for player i to unilaterally punish player i+ 1. Hence, the punishment explained in Section

4.6.2 works (note that player i + 1 is player j in the two-player case). On the other hand,

with more than two players, we need to make sure that players � (i+ 1) can coordinate on

the punishment. This coordination can be done by communication among all the players

about who will be punished at the end of each review round. See the Supplemental Material

3 for the details.

Second, there will be a new problem when we dispense with the perfect cheap talk in the

coordination block. We will address this issue in Section 4.7.2.
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4.7 Dispensing with Special Communication Devices

We are left to dispense with the special communication devices introduced in Section 4.3. We

�rst explain the dispensability in the two-player game and then proceed to the dispensability

in the more-than-two-player game.

4.7.1 Two Players

Dispensing with the Perfect Cheap Talk for x We explain how to replace the perfect

cheap talk for the coordination on x in the coordination block with messages via actions.

We proceed in steps.

First, we replace the perfect cheap talk with the noisy cheap talk sending a binary

message. The property of the noisy cheap talk here is the same as the one in Section 4.3.

By exchanging the noisy cheap talk messages several times, each player i can construct the

inference of x, denoted x(i). The important properties to establish are (i) x(i) = x for all i

with high probability, (ii) the communication is incentive compatible, and (iii) after realizing

that x(i) 6= x(j), that is, after player i realizes that player i�s inference is di¤erent from player

j�s inference, player i believes that player j should have realized there was an error in the

communication and that player j has made player i indi¤erent between any action pro�le

sequence in all the review rounds with high probability. See the Supplemental Material 4

for the details.

Dispensing with the Noisy Cheap Talk Second, we replace all the noisy cheap talk

with messages via actions. Given the discussion above, by doing so, we can dispense with

the perfect cheap talk in the coordination block and the noisy cheap talk in the review

rounds. Consider the situation where player j sends a binary noisy cheap talk message

m 2 fG;Bg to player i with precision p 2 (0; 1). Again, with two players, player i � 1 is

equal to player j. Remember that the noisy cheap talk with precision p is (i) cheap, (ii)

instantaneous, and (iii) precise with probability 1� exp(�O(T p)): (iii-a) f [i](m) = m with

probability 1 � exp(�O(T p)); (iii-b) If f [i](m) 6= m, then g[j](m) = E with probability
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1� exp(�O(T p)); (iii-c) any signal pair can occur with probability exp(�O(T p)).

Instead of sending a noisy cheap talk message, suppose that player j sends the message

via actions: Player j (sender) picks two actions aGj and a
B
j and takes a

m
j for T

p period. Player

i (receiver) takes some �xed action, say aGi . Player i needs to infer the message from her

private signals.

There are three di¢ culties: The message exchange is now (i) payo¤-relevant, (ii) takes

time and (iii) imprecise.

Since T p < T with p 2 (0; 1), the length of the communication is much shorter than

that of the review rounds. Therefore, we can deal with the �rst di¢ culty by changing

the continuation payo¤s to cancel out the di¤erences in the instantaneous utilities. With

T p < T , this does not a¤ect the equilibrium payo¤, that is, the equilibrium payo¤ is mainly

determined by the instantaneous utilities and the changes in the continuation payo¤s from

the T -period review rounds. (ii) In addition, T p < T implies that the second di¢ culty does

not a¤ect the equilibrium payo¤ either.

(iii) We are left to consider the third di¢ culty. We want to create a mapping from player

j�s history to g[j](m) 2 fm;Eg and a mapping from player i�s history to f [i](m) 2 fG;Bg

to preserve (iii-a), (iii-b) and (iii-c). The latter cannot depend on the true message.

The basic intuition is as follows. Suppose that player i�s signals and player j�s signals

are correlated. Player i infers that the message is m if the empirical distribution of player

i�s signals is close to the true distribution under player j sending m. If player i makes a

mistake, then it means that player i observes the empirical distribution of her signals that is

far away from the true distribution. Since the signals are correlated, with high probability,

player j also observes the empirical distribution of her signals that is far away from the

ex ante distribution under m.27 Since player j knows her own message m, player j should

realize that there may be an error. That is, if player j infers g[j](m) = E if the empirical

distribution of player j�s signals is far from the true distribution under m, then (iii-b) is

27This is not generically true if player i�s number of signals is much larger than player j�s number of signals.
This corresponds to the case where f [i](m) below is not well de�ned. See the Supplemental Material 4 for
how to deal with this case.
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satis�ed. (iii-a) follows from the law of iterated expectation and the low of large numbers

and (iii-c) follows from the full support assumption of the signal distribution.

Formally, by the law of large numbers, with very high ex ante probability, the empiri-

cal distribution of player j�s signals with a messagem is very close to the a¢ ne hull of the true

distribution of player j�s signals with respect to player i�s deviation: a�
�n�

qj(yj j amj ; ai)
�
yj

o
ai2Ai

�
.

Hence, if not, then player j thinks that there is an error. That is,

1. g[j](m) = m if the empirical distribution of player j�s signals is very close to

a�

�n�
qj(yj j amj ; ai)

�
yj

o
ai2Ai

�
, and

2. g[j](m) = E if it is not close to a�
�n�

qj(yj j amj ; ai)
�
yj

o
ai2Ai

�
.

On the other hand, we de�ne f [i](m) as follows:

1. Player i calculates the conditional expectation of the empirical distribution of player

j�s signals as if player i knew m = G. If this conditional expectation is not far away

from a�

�n�
qj(yj j aGj ; ai)

�
yj

o
ai2Ai

�
, then f [i](m) = G.

2. Player i calculates the conditional expectation of the empirical distribution of player

j�s signals as if player i knew m = B. If this conditional expectation is not far away

from a�

�n�
qj(yj j aBj ; ai)

�
yj

o
ai2Ai

�
, then f [i](m) = B.

Suppose that this is well de�ned. That is, there is no player i�s history such that

� If player i calculates the conditional expectation of the empirical distribution of player

j�s signals as if player i knew m = G, then this conditional expectation is not far away

from a�

�n�
qj(yj j aGj ; ai)

�
yj

o
ai2Ai

�
.

� At the same time, if player i calculates the conditional expectation of the empirical

distribution of player j�s signals as if player i knew m = B, then this conditional

expectation is not far away from a�

�n�
qj(yj j aBj ; ai)

�
yj

o
ai2Ai

�
either.
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Then, we are done: First, (iii-a) is satis�ed by the law of iterated expectations and the

law of large numbers. Second, (iii-b) is satis�ed. To see why, suppose that the true message is

m = G and that player i has f [i](m) = B. Then, since 1 is not the case, player i�s conditional

expectation of the empirical distribution of player j�s signals as if player i knew m = G (this

is the true message) is far away from a�

�n�
qj(yj j aGj ; ai)

�
yj

o
ai2Ai

�
. This implies that, by

the central limit theorem, player i puts a belief no less than 1�exp(�O(T p)) on the event that

the empirical distribution of player j�s signals is not close to a�
�n�

qj(yj j aGj ; ai)
�
yj

o
ai2Ai

�
and that g[j](m) = E, as desired. The case with m = B is symmetric. Finally, if we make

the full support assumption on the signal distribution, then (iii-c) is automatically satis�ed.

See the Supplemental Material 4 for how we deal with the case where the above de�nition

of f [i](m) is not well de�ned.

Dispensing with the Perfect Cheap Talk and Public Randomization in the Report

Block We are left to dispense with the perfect cheap talk and public randomization in the

report block about hmaini .

First, we replace the perfect rich cheap talk to send hmaini with perfect cheap talk that can

send only a binary message. We attach a sequence of binary messages to hmaini . To send hmaini ,

player i sends the sequence of binary messages corresponding to hmaini . Expecting that we

will replace the perfect cheap talk with messages via actions, we make sure that the number

of binary messages sent is su¢ ciently smaller than T . Otherwise, it would be impossible

to replace the cheap and instantaneous talk with payo¤-relevant and taking-time messages

via actions. Since each period in each review round is i.i.d., it su¢ ces that player i reports

how many times player i observes an action-signal pair (ai; yi) for each (ai; yi) 2 Ai � Yi for

each review round. Hence, the cardinality of the relevant history is approximately TLjAijjYij.

Since each message is binary, the number of binary messages necessary to send the relevant

history is log2 T
LjAijjYij, which is much smaller than T .

Second, we dispense with the public randomization. Recall that we use the public ran-

domization to determine who will report the history such that (i) ex ante (before the report
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block), every player has a positive probability to report the history, and that (ii) ex post

(after the realization of the public randomization), there is only one player who reports the

history.

To see why both (i) and (ii) are important, remember that the equilibrium strategy would

be only "-optimal without the adjustment based on the report block. Thus, to attain the

exact optimality, it is important for each player in the review rounds to believe that the

reward will be adjusted with positive probability. Therefore, (i) is essential.

(ii) is important because, the logic to incentivize player i to tell the truth uses the fact

that player i does not know hmainj (again, with two players, player i� 1 is player j). If player

i could observe a part of player j�s sequential messages which partially reveal hmainj , then

player i may want to tell a lie.

We show that the players use their actions and private signals to establish the properties

(i) and (ii), without the public randomization.

Third, we replace the perfect binary cheap talk with noisy binary cheap talk. Before

doing so, we explain what property of the communication is important in the report block.

The role of the report block is for player j to adjust player i�s continuation payo¤ so that

�i(G) and �i(B) are both exactly optimal. Since this adjustment does not a¤ect player j�s

payo¤, while player i sends hmaini , player j (the receiver) does not care about the precision

of the message. On the other hand, if player i realizes that her past messages may not have

transmitted correctly in the middle of sending a sequence of messages, then we cannot pin

down player i�s optimal strategy after that.

Therefore, we consider conditionally independent noisy cheap talk such that, when player

i sends m 2 fG;Bg, player j receives a signal f ci[j](m) 2 fG;Bg. The message transmits

correctly, that is, f ci[j](m) = m, with high probability. Player i receives no information

about f ci[j](m), so that player i can always believe that the message transmits correctly

with high probability. Then, the truthtelling is still optimal after any history.

Finally, we replace the conditionally independent noisy cheap talk with messages via

repetition of actions. Although we do not assume conditional independence of signals a
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priori or do not assume that 2 jYij � jAjj jYjj,28 as long as the adjustment of the continuation

payo¤ based on the messages is su¢ ciently small, we can construct a message exchange

protocol such that the sender always believes that the message transmits correctly with high

probability. We defer the detailed explanation to Section 44.4.1 in the Supplemental Material

4.

4.7.2 More Than Two Players

With more than two players, we follow the same step as in the two-player case to dispense

with the communication devices. Each step is the same as in the two-player case with

player j replaced with player i � 1 except for how to replace the perfect cheap talk in the

coordination block with the noisy cheap talk.

Recall that player i informs the other players �i of xi in the coordination block. With

two players, there is only one receiver of the message. On the other hand, with more than

two players, there are more than one receivers of the message. If some players infer xi is G

while the others infer xi is B, then the action that will be taken in the review rounds may

not be included in fa(x)gx. Since we do not have any bound on player i�s payo¤ in such a

situation, it might be of player i�s interest to induce this. Since we assume that the signals

from the noisy cheap talk when player i sends the message to player j are private, if we let

player i inform each player j of xi separately, then player i may want to tell a lie to a subset

of players. In the Supplemental Material 5, we create a message protocol so that, while the

players exchange messages and infer the other players�messages from private signals in order

to coordinate on xi, there is no player who can induce a situation where some players infer xi

is G while the others infer xi is B in order to increase her own equilibrium payo¤. Yamamoto

(2011) o¤ers a procedure to achieve this goal with conditionally independent monitoring. Our

contribution is a non-trivial extension of his procedure so that it is applicable to a general

monitoring structure.

28The latter implies that we cannot use the method that Fong, Gossner, Hörner and Sannikov (2010)
create �j(yj) in their Lemma 1, which preserves the conditional independence property.
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5 Finitely Repeated Game

In this section, we consider a TP -period �nitely repeated game with auxiliary scenarios.

Intuitively, a �nitely repeated game corresponds to a review phase in the in�nitely repeated

game and auxiliary scenarios correspond to changes in continuation payo¤s.

We derive su¢ cient conditions on strategies and auxiliary scenarios in the �nitely re-

peated game such that we can construct a strategy in the in�nitely repeated game to support

v. The su¢ cient conditions are summarized in Lemma 1.

Let �TPi : HTP
i ! �(Ai) be player i�s strategy in the �nitely repeated game. Let �

TP
i be

the set of all strategies in the �nitely repeated game. Each player i has a state xi 2 fG;Bg.

In state xi, player i plays �i (xi) 2 �TPi .

In addition, locate all the players on a circle clockwise. Each player i with xi gives an

�auxiliary scenario�(or �reward function�) �i+1(xi; � : �) : HTP+1
i ! R to the left-neighbor

i+1 (identify player N +1 as player 1).29 The auxiliary scenarios are functions from player

i�s histories in the �nitely repeated game to the real numbers.

Our task is to �nd f�i (xi)gxi;i and f�i+1(xi; � : �)gxi;i such that for each i 2 I, there are

two numbers vi and �vi to contain v between them:

vi < vi < �vi (2)

and such that there exists TP with lim�!1 �
TP = 1 which satis�es the following conditions:

For su¢ ciently large �, for any i 2 I,

1. For any combination of the other players� states x�i � (xn)n6=i 2 fG;BgN�1, it is

optimal to take �i (G) and �i (B):

�i (G) ; �i (B) 2 arg max
�
TP
i 2�TPi

E

"
TPX
t=1

�t�1ui (at) + �i(xi�1; h
TP+1
i�1 : �) j �TPi ; ��i(x�i)

#
:

(3)

29The players are inward-looking.
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2. Regardless of x�(i�1), the discounted average of player i�s instantaneous utilities and

player (i� 1)�s auxiliary scenario on player i is equal to �vi if player (i� 1)�s state is

good (xi�1 = G) and equal to vi if player (i� 1)�s state is bad (xi�1 = B):

1� �

1� �TP
E

"
TPX
t=1

�t�1ui (at) + �i(xi�1; h
TP+1
i�1 : �) j �(x)

#
=

8<: �vi if xi�1 = G;

vi if xi�1 = B
(4)

for all x�(i�1) 2 fG;BgN�1.

Intuitively, since lim�!1
1��
1��TP =

1
TP
, this requires that the time average of the expected

sum of the instantaneous utilities and the auxiliary scenario is close to the targeted

payo¤s vi and �vi.

3. 1��
�T

P converges to 0 faster than �i(xi�1; h
TP+1
i�1 : �) diverges and the sign of �i(xi�1; h

TP+1
i�1 :

�) satis�es a proper condition:

lim
�!1

1� �

�TP
sup

xi�1;h
TP+1
i�1

���i(xi�1; hTP+1i�1 : �)
�� = 0;

�i(G; h
TP+1
i�1 : �) � 0;

�i(B; h
TP+1
i�1 : �) � 0: (5)

We call (5) the �feasibility constraint.�

As seen in Section 4, (5) implies that player i� 1 with xi�1 = G can reduce player i�s

continuation payo¤by transiting to xi�1 = B with higher probability while player i�1

with xi�1 = B can increase player i�s continuation payo¤ by transiting to xi�1 = G

with higher probability.

We explain why these conditions are su¢ cient. As explained in Section 4, we see the

in�nitely repeated game as the repetition of TP -period review phases.

In each review phase, each player i has two possible states fG;Bg 3 xi and player i

with state xi takes �i(xi) in the phase. (3) implies that both �i(G) and �i(B) are optimal
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regardless of the other players� strategy. (4) implies that player i�s ex ante value at the

beginning of the phase is solely determined by player (i� 1)�s state: �i�1(G) gives a high

value while �i�1(B) gives a low value.

Here, �i(xi�1; h
TP+1
i�1 : �) represents the di¤erences between player i�s ex ante value given

xi�1 at the beginning of the phase and the ex post value at the end of the phase after player

i � 1 observes hTP+1i�1 . �i(xi�1; h
TP+1
i�1 : �) = 0 implies that the ex post value is the same

as the ex ante value since player i � 1 transits to the same state in the next phase with

probability one. With xi�1 = G (B, respectively), the smaller �i(G; h
TP+1
i�1 : �) (the larger

�i(B; h
TP+1
i�1 : �), respectively), the more likely it is for player i� 1 to transit to the opposite

state B (G, respectively) in the next phase.30 The feasibility of this transition is guaranteed

by (5).

The following lemma summarizes the discussion:

Lemma 1 For Theorem 1, it su¢ ces to show that, for su¢ ciently large �, there exist

fvi; �vigi2I with (2), TP with lim�!1 �
TP = 1, ff�i (xi)gxi2fG;Bggi2I and ff�i(xi�1; � : �)gxi�12fG;Bggi2I

such that (3), (4) and (5) are satis�ed in the TP -period �nitely repeated game.

Proof. See the Appendix.

Let us specify vi and �vi. This step is the same as Hörner and Olszewski (2006). Given

x 2 fG;BgN , pick 2N action pro�les fa(x)gx2fG;BgN and corresponding payo¤ vectors

fw(x)gx2fG;BgN :

w(x) = u (a(x)) with x 2 fG;BgN . (6)

As we have mentioned, player (i� 1)�s state xi�1 refers to player i�s payo¤ and indicates

whether this payo¤ is strictly above or below vi no matter what the other players�states are.

That is, player (i� 1)�s state controls player i�s payo¤ . Formally,

max
x:xi�1=B

wi(x) < vi < min
x:xi�1=G

wi(x) for all i 2 I:

30Here, we de�ne �i(G; h
TP+1
i�1 : �) as the movement of the continuation payo¤. On the other hand, in

Section 4, we consider the reduction of the continuation payo¤. Therefore, ��i(G; hTP+1i�1 : �) corresponds to
the reduction of the continuation payo¤ in Section 4.
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Take vi and vi such that

max

�
v�i ; max

x:xi�1=B
wi(x)

�
< vi < vi < vi < min

x:xi�1=G
wi(x): (7)

Pure action pro�les that satisfy the desired inequalities may not exist. However, if

Assumption 1 is satis�ed, then there always exist an integer z and 2z �nite sequences

fa1(x); : : : ; az(x)gx2fG;BgN such that each vector wi(x), the average discounted payo¤ vector

over the sequence fa1(x); : : : ; az(x)gx2fG;BgN , satis�es the appropriate inequalities provided

� is close enough to 1. The construction that follows must then be modi�ed by replacing

each action pro�le a(x) by the �nite sequence of action pro�les fa1(x); : : : ; az(x)gx2fG;BgN .

Details are omitted as in Hörner and Olszewski (2006).

Below, we construct f�i (xi)gxi;i and f�i(xi�1; � : �)gxi�1;i satisfying (3), (4) and (5) with

�vi and vi de�ned above in the �nitely repeated game.

6 Coordination, Main and Report Blocks

In this section, we explain the basic structure of the TP -period �nitely repeated game. At

the beginning of the �nitely repeated game, there is the �coordination block.�In the �nitely

repeated game, the players play the action pro�le a(x) depending on the state pro�le x =

(xn)n2I 2 fG;BgN . Since xi is player i�s private state, player i informs the other players �i

of xi by sending messages about xi.

As seen in Section 4, we �rst assume that the players can communicate x via perfect

cheap talk. The players take turns: Player 1 tells x1 �rst, player 2 tells x2 second, and so

on until player N tells xN . With the perfect cheap talk, this block is instantaneous and

x becomes common knowledge. Second, we replace the perfect cheap talk with the noisy

cheap talk. As we will see, with two players, this block is still instantaneous while with more

than two players, this block now consists of many periods. More importantly, x is no longer

common knowledge. Finally, we replace the noisy cheap talk with messages via actions.

Since the players repeat the messages to increase the precision, this block takes time.
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After the coordination block, we have �main blocks.�One main block consists of a review

round and a few supplemental rounds. The review round lasts T periods with

T = (1� �)�
1
2

as seen in Section 4. After that, for each player i, each player j 2 �i sends messages about

what is player i�s optimal action in the next round. As explained in Section 4, we �rst

assume that player j sends the messages via noisy cheap talk. With the noisy cheap talk,

this message is sent instantaneously. Then, we replace the noisy cheap talk with messages

via actions. Since the players repeat the messages to increase the precision, sending the

messages takes time.

Let hmaini be a generic element of player i�s history at the end of the last main block, that

is, player i�s history in the coordination block and all the main blocks.

After the last main block, we have the �report block�where each player reports hmaini . We

�rst assume that the players decide who will report the history by the public randomization

device and that the picked player reports hmaini by the perfect cheap talk. Then, this block

is instantaneous. Second, we dispense with the public randomization. Third, we replace the

perfect cheap talk with conditionally independent (noisy) cheap talk. Fourth, we dispense

with the conditionally independent cheap talk.

When we say hTP+1i , this denotes player i�s history at the end of the report block, that

is, hTP+1i contains both hmaini and what information player i receives about
�
hmainn

�
n2I in the

report block.

7 Almost Optimality

As seen in Section 4, we �rst show that player i�s strategy is �almost optimal,�or that the

strategy pro�le is �"-equilibrium�with " = exp(�O(T 1
2 )) until the end of the last main

block if we neglect the report block. After that, based on the communication in the report

block, player i� 1 adjusts the reward function so that player i�s strategy is exactly optimal
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after any history in any period of the review phase if we take the report block into account.

We divide the reward function into two parts:

�i(xi�1; h
TP+1
i�1 : �) = �maini (xi�1; h

main
i�1 : �) + �reporti (xi�1; h

TP+1
i�1 : �):

Note that �maini (xi�1; h
main
i�1 : �) is the reward based on player (i� 1)�s history except for the

report block and that �reporti (xi�1; h
TP+1
i�1 : �) is the reward based on player (i� 1)�s whole

history including the report block.

As a preparation to prove the existence of �i with (3), (4) and (5), we �rst construct

�maini such that

1. �i(xi) is �almost optimal with exp(�O(T
1
2 )) > 0 if we ignore the report block�: For

all i 2 I and x 2 fG;BgN , for any � and h�i in the coordination and main blocks,

max�i2�maini
E
hPTP

t=1 �
t�1ui (at) + �maini (xi�1; h

main
i�1 : �) j h�i ; �i; ��i(x�i)

i
�E

hPTP
t=1 �

t�1ui (at) + �maini (xi�1; h
main
i�1 : �) j h�i ; �(x)

i
� exp(�O(T 1

2 )): (8)

Here, �maini is the set of all possible strategies in the coordination and main blocks.

2. (4) and (5) are satis�ed with �i replaced with �maini (neglecting �reporti ).

That is, our temporary objective is to construct �i (xi) and �maini (xi�1; h
main
i�1 : �) satisfying

(8), (4) and (5). We concentrate on this problem until Section 13. After constructing

such �maini , we construct the strategy in the report block and �reporti such that �i(xi) and

�i = �maini + �reporti satisfy (3), (4) and (5) in Section 14.

8 A Special Case

Since the complete proof is long and complicated, in the proof of the main text, we illustrate

the main structure by focusing on a special case where (i) there are two players (N = 2), (ii)
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the payo¤ structure is prisoners�-dilemma and for all i,

ui (D;D) < vi < ui (C;C) ; (9)

(iii) public randomization is available, (iv) perfect cheap talk is available, and (v) noisy cheap

talk with precision p 2 (0; 1) is available.

We comment on each of these �ve simpli�cations.

Two Players As we have explained in Section 4.6.3, the two-player case is special in the

following two aspects: First, if player i�s state xi is B, with more than two players, players

� (i+ 1) need to coordinate on minimaxing player i+1 if player i+1 seems to have deviated.

Second, when the players coordinate on xi in the coordination block, we need to make sure

that no player can induce the situation where some players infer xi is G while the others

infer xi is B.

In the Supplemental Material 3, we concentrate on the �rst aspect and explain how

players � (i+ 1) coordinate on the punishment. In the Supplemental Material 3, player i

sends the message about xi via perfect cheap talk that is also public, that is, if player i sends

xi to a player, then all the players can observe the message precisely. Since all the players

coordinate on the same xi, we are free from the second problem.

In the Supplemental Material 5, we consider the second problem. We replace the perfect

and public cheap talk with the noisy cheap talk and then replace the noisy cheap talk with

messages via actions. We need to show that, while the players exchange messages and infer

the other players�messages from private signals in order to coordinate on xi, there is no

player who can induce a situation where some players infer xi is G while the others infer xi

is B in order to increase her own equilibrium payo¤.

Below, we concentrate on the two-player case. See the Supplemental Materials 3 and 5

for the case with more than two players. Since we assume two players, let player j be player

i�s unique opponent.
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The Prisoners�Dilemma Remember that we take a(x) such that (7) holds. If (9) is the

case, then we can take

ai(x) �

8<: Ci if xi = G;

Di if xi = B:

Then, it happens to be the case that ai (x) with xi = B minimaxes player j at the same

time of satisfying (7).

In a general game, ai(x) with xi = B is not a minimaxing strategy. Since player i with

�i(B) needs to keep player j�s payo¤ low with a non-negative reward for any strategy of

player j, player i needs to switch to a minimaxing action if player i believes that player j

has deviated with high probability.

For this reason, Hörner and Olszewski (2006) have a block consisting of more than one

period and in each period, if player i observes a signal indicating player j�s deviation, then

player i switches to a minimaxing action. As explained in Section 4, in our equilibrium,

if player i observes signals indicating player j�s deviation in a review round, then player i

minimaxes player j from the next review round. See the Supplemental Material 2 for the

formal treatment of a general game with two players.

Public Randomization As mentioned in Section 4, the players use public randomization

in the report block to determine who will report the history hmaini such that (i) ex ante

(during the main blocks), every player has a positive probability to report the history, and

that (ii) ex post (after the realization of the public randomization), there is only one player

who reports the history.

Speci�cally, we assume that the players can draw a public random variable yp from the

uniform distribution on [0; 1] whenever they want.

In the Supplemental Materials 4 and 5, we show that the public randomization is dis-

pensable and that the players use their actions and private signals to establish the properties

(i) and (ii).
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Perfect Cheap Talk Perfect cheap talk will be used in the coordination block to coordi-

nate on x and in the report block to report the whole history hmaini . When the sender sends

a message m via perfect cheap talk, the sender does not receive any private signal while the

receiver receives a perfect signal, that is, the receiver�s private signal is m. Hence, we can

say that the receiver observes m directly and that m becomes common knowledge.

In the Supplemental Materials 4 and 5, we show that the perfect cheap talk is dispensable.

As explained in Section 4, for the coordination block, we �rst replace the perfect cheap talk

with the noisy cheap talk and then replace the noisy cheap talk with messages via actions.

For the report block, we �rst replace the perfect cheap talk with the conditional independence

(noisy) cheap talk and then replace the conditional independence cheap talk with messages

via actions.

Noisy Cheap Talk with Precision p 2 (0; 1) We assume that each player j has an access

to a noisy cheap talk device with precision p 2 (0; 1) to send a binary message m 2 fG;Bg.31

When player j sends m to player i via noisy cheap talk with precision p, it generates player

i�s private signal f [i] (m) 2 fG;Bg with the following probability:

Pr (ff [i] (m) = fg j m) =

8<: 1� exp(�O(T p)) for f = m;

exp(�O(T p)) for f = fG;Bg n fmg:

That is, f [i] (m) is the correct signal with high probability.

Given player i�s signal f [i] (m), it generates player j�s private signal g [j] (m) 2 fm;Eg

with the following probability:

Pr (fg [j] (m) = Eg j m; f [i] (m)) = 1� exp(�O(T p))

for all (m; f [i] (m)) with f [i] (m) 6= m. That is, if player i observes a wrong signal, then

player j observes the signal E (�error�) with high probability. This also implies that player

j with g [j] (m) = m believes that f [i] (m) = m with probability at least 1 � exp(�O(T p))
31Except for the Supplemental Material 4, p is always equal to 1

2 .
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since otherwise, player j should have received g [j] (m) = E.

We do not specify the probability for the other cases except that

� anything happens with probability at least exp(�O(T p)):

Pr (f(f [i] (m); g [j] (m)) = (f; g)g j m) � exp(�O(T p))

for all m and (f; g), and

� unconditionally on f [i](m), g [j] (m) = m with high probability:

Pr (fg [j] (m) = mg j m) � 1� exp(�O(T p))

for all m.

Finally, player i observes her second private signal f2 [i] (m) 2 fG;Bg and player j

observes her second private signal g2[j](m) 2 fG;Bg. We assume that there exists � > 0

such that

� f2 [i] (m) and g2 [j] (m) are very imprecise signals compared to f [i](m) and g[j](m):

�For all f2;m; f [i](m); g [j] (m) 2 fG;Bg,

Pr (ff2 [i] (m) = f2g j m; f [i](m); g [j] (m)) � �: (10)

By (10), after observing any f2[i](m), player i still believes that if f [i] (m) 6= m,

then g[j](m) = E with probability 1� exp(�O(T p)).

�For all g2;m; f [i](m); g [j] (m) 2 fG;Bg,

Pr (fg2 [j] (m) = g2g j m; f [i](m); g [j] (m)) � �: (11)

By (11), after observing any g2[j](m), player j with g [j] (m) = m still believes

that f [i] (m) = m with probability 1� exp(�O(T p)).
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This implies that, while we are considering almost optimality, we can ignore the second

signals f2 [i] (m) and g2 [j] (m).

� f2 [i] (m) and g2 [j] (m) have some information about the other player�s information:

�For anym 2 fG;Bg, g[j](m) 2 fG;Bg, f [i](m); f [i](m)0 2 fG;Bg and f2[i](m); f2[i](m)0 2

fG;Bg, if (f [i](m); f2[i](m)) 6= (f [i](m)0; f2[i](m)0), then





 E
�
1g2[j](m) j m; g[j](m); f [i](m); f2[i](m)

�
�E

�
1g2[j](m) j m; g[j](m); f [i](m)0; f2[i](m)0

�






 > �: (12)

In this paper, we use the Euclidean norm. Here, 1g2[j](m) is 2� 1 vector such that

1g2[j](m) =

8>>>>>><>>>>>>:

24 1
0

35 if g2[j](m) = G;24 0
1

35 if g2[j](m) = B:

This implies that, in the report block, even after knowing m and g[j](m), player i

who does not know g2[j](m) has the incentive to tell the truth about (f [i](m); f2[i](m)).

See Lemma 9 for the formal argument.

�For any m;m0 2 fG;Bg, f [i](m) 2 fG;Bg, g[j](m); g[j](m)0 2 fG;Bg and

g2[j](m); g2[j](m)
0 2 fG;Bg, if (m; g[j](m); g2[j](m)) 6= (m0; g[j](m)0; g2[j](m)

0),

then 





 E
�
1f2[i](m) j m; g[j](m); g2[j](m); f [i](m)

�
�E

�
1f2[i](m) j m0; g[j](m)0; g2[j](m)

0; f [i](m)
�






 > �: (13)
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Here, 1f2[i](m) is 2� 1 vector such that

1f2[i](m) =

8>>>>>><>>>>>>:

24 1
0

35 if f2[i](m) = G;24 0
1

35 if f2[i](m) = B:

This implies that, in the report block, even after knowing f [i](m), player j who

does not know f2[i](m) has the incentive to tell the truth about (m; g[j](m); g2[j](m)).

Again, see Lemma 9 for the formal argument.

The following lemma summarizes the important features of the noisy cheap talk:

Lemma 2 The signals by the noisy cheap talk with precision p 2 (0; 1) for player j to send

m 2 fG;Bg satisfy the following conditions:

1. For any m 2 fG;Bg, player i�s signal f [i] (m) is correct with high probability:

Pr (ff [i] (m) = mg j m) � 1� exp(�O(T p)):

2. For any m 2 fG;Bg, f [i] (m) 2 fG;Bg and f2[i](m) 2 fG;Bg, after knowing m,

f [i] (m) and f2[i](m), player i puts a high belief on the events that either f [i] (m) is

correct or g [j] (m) = E:

Pr (ff [i] (m) = m or g [j] (m) = Eg j m; f [i] (m); f2[i](m)) � 1� exp(�O(T p)):

3. For any m 2 fG;Bg and g2 [j] (m) 2 fG;Bg, if g [j] (m) = m, then player j puts a

high belief on the event that player i�s �rst signal is correct:

Pr (ff [i] (m) = mg j m; fg [j] (m) = mg ; g2[j](m)) � 1� exp(�O(T p)):
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4. For any m 2 fG;Bg, any signal pro�le can happen with positive probability:

Pr (f(f [i] (m); g[j](m); f2[i](m); g2[j](m)) = (f; g; f2; g2)g j m)

� exp(�O(T p))

for all (f; g; f2; g2) 2 fG;Bg4.

Proof. See the discussion above.

Condition 1 implies that the signal is correct with high probability. Condition 2 implies

that, even after player i realizes that her signal is not correct (f [i](m) 6= m), player i believes

that player j realizes the mistake (that is, g[j](m) = E) with high probability, as required in

Section 4. On the other hand, Condition 3 implies that, after observing g[j](m) = m, player

j believes that player i received the correct signal (since otherwise player i should have

received g[j](m) = E) with high probability.32 Further, Condition 4 implies that all the

players believe that any mistake happens with probability exp(�O(T p). As seen in Section

4, this is important to incentivize the players to follow the equilibrium path after observing

the opponent�s action di¤erent from her expectation.

In the Supplemental Materials 4 and 5, we show that we can replace the noisy cheap

talk with messages via actions, so that we can keep the important features summarized in

Lemma 2.

History with Cheap Talk and Public Randomization Since the players communicate

via cheap talk, the players store the signals from the cheap talk in the history. When a sender

sends a message m, then the sender observes the true message and her own private signals

while the receiver observes only her own private signals. With abuse of notation, when the

communication is done before the players take actions in period t, we include the true message

and the private signals of the sender (only the private signals of the receiver, respectively)

to the history in period t of player i, hti, if player i is the sender (the receiver, respectively).

32We use this property only in Section 39 in the Supplemental Material 4.
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In addition, since the players coordinate the future play via public randomization, the

players store the realization of the public randomization in the history. With abuse of

notation, when a public randomization device is drawn before the players take actions in

period t, we include the realization of the public randomization device to the history in

period t of each player i, hti.

Summary In summary, for the proof in the main text, we focus on the two-player prisoners�

dilemma: I = 2, Ai = fCi; Dig and

ui(Di; Cj) > ui(Ci; Cj) > ui(Di; Dj) > ui(Ci; Dj): (14)

Further, we focus on v with

v 2 int([u1(D1; D2); u1(C1; C2)]� [u2(D2; D1); u2(C2; C1)]): (15)

For v with (15), we can take a(x), vi and �vi such that

ai(x) �

8<: Ci if xi = G;

Di if xi = B:
(16)

and

ui (D1; D2) < vi < vi < �vi < ui (C1; C2) : (17)

In addition, for notational convenience, whenever we say players i and j, unless otherwise

speci�ed, i and j are di¤erent.

Finally, we assume that the perfect cheap talk, noisy cheap talk with precision p 2 (0; 1)

and public randomization are available, all of which are shown to be dispensable in the

Supplemental Material 4.

For the rest of the main paper, we prove the folk theorem in this special case: We

arbitrarily �x v with (15) and then construct a strategy pro�le (action plans and rewards)
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in the �nitely repeated game with (3), (4) and (5).

9 Assumption

Before proceeding to the proof, we explain what are generic conditions that we need in

the special case de�ned above. See the Supplemental Material 1 for what are additional

assumptions that we need for more general cases.

Here, we make the following three assumptions: Assumption 3 implies that the monitoring

has full support. Assumption 4 guarantees that we can construct the good signal introduced

in Section 4.6.1. Assumption 5 is used to give the incentive to tell the truth in the report

block. As will be seen, all of them are generic under Assumption 2.

9.1 Full Support

We assume that the monitoring has full support:

Assumption 3 q(y j a) > 0 for all a 2 A and y 2 Y .

This assumption has two implications: First, Condition 4 of Lemma 2 is satis�ed when we

replace the noisy cheap talk with precision p with repeatedly taking actions for T p periods.33

Second, a Nash equilibrium is realization equivalent to a sequential equilibrium.34 There-

fore, for the rest of the paper, we focus on Nash equilibria.

9.2 Identi�ability

To incentivize the players to follow the equilibrium path, it is important that, for each player

i 2 I and action pro�le a 2 A, her opponent j statistically identi�es player i�s deviation.

That is, we want to create a statistics  aj (yj) whose expectation is higher when player i

33This property is used in the Supplemental Materials 4 and 5.
34See Sekiguchi (1997) and Kandori and Matsushima (1998).
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follows the prescribed action ai than ~ai 6= ai: With some q2 > q1,

E
�
 aj (yj) j ~ai; aj

�
�
X
yj

q(yj j ~ai; aj) aj (yj) =

8<: q2 if ~ai = ai;

q1 if ~ai 6= ai:
(18)

Further, in our equilibrium, player i calculates the conditional expectation of  aj (yj) after

observing yi, believing that a is taken:

X
yj

 aj (yj)q(yj j a; yi):

We want to make sure that player j cannot change player j�s expectation of player i�s

conditional expectation of player j�s statistics  aj (yj) by player j�s deviation: For each ~aj 6=

aj, X
yi

0@X
yj

 aj (yj)q(yj j a; yi)

1A q (yi j ai; ~aj) = q2: (19)

Note that this is an equilibrium calculation, that is, player i believes that the equilibrium

action a is taken. Note also that (19) is equivalent to

X
yj

 X
yi

q(yj j a; yi)q(yi j ai; ~aj)
!
 aj (yj) = q2: (20)

A su¢ cient condition for the existence of such  aj is as follows: LetQ1(~ai; aj) � (q(yj j ~ai; aj))yj
be the vector expression of the conditional distribution of player j�s signals given ~ai; aj. In ad-

dition, let Q2(ai; ~aj) �
�P

yi
q(yj j a; yi)q(yi j ai; ~aj)

�
yj
be the ex ante distribution of player

j�s signals when yi is �rst generated according to q(yi j ai; ~aj) and then yj is generated ac-

cording to q(yj j a; yi). We assume that all the vectors Q1(~ai; aj) with ~ai 2 Ai and Q2(ai; ~aj)

with ~aj 6= aj are linearly independent:

Assumption 4 For any i 2 I and a 2 A, Q1(~ai; aj) with ~ai 2 Ai and Q2(ai; ~aj) with ~aj 6= aj

are linearly independent.
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This assumption is generic if jYjj � jAij + jAjj � 1. We can show that Assumption 4 is

su¢ cient for (18) and (19).

Lemma 3 If Assumption 4 is satis�ed, then there exist q2 > q1 such that, for each i 2 I

and a 2 A, there exists a function  aj : Yj ! (0; 1) such that (18) and (19) are satis�ed.

Proof. See the Appendix.

In addition, since the linear independence of Q1(~ai; aj) with respect to ~ai implies that

player j can statistically identify player i�s action, player j can give a reward that cancels

out the e¤ect of discounting:

Lemma 4 If Assumption 4 is satis�ed, then for each i 2 I, there exists ��i : N�Aj�Yj ! R

such that

�t�1ui (at) + E
�
��i (t; aj;t; yj;t) j at

�
= ui (at) for all at 2 A and t 2 f1; :::; TPg (21)

and

lim
�!1

1� �

1� �TP

TPX
t=1

sup
aj;t;yj;t

����i (t; aj;t; yj;t)�� = 0 (22)

for TP = O(T ) with T = (1� �)�
1
2 .

Proof. See the Appendix.

The intuition is straightforward. Since player j can identify player i�s action, player j

rewards player i if player i takes an action with a lower instantaneous utility in earlier periods

rather than postponing it. Since the discount factor converges to unity, this adjustment is

small. As we will see in Section 11.3, we add

TPX
t=1

��i (t; aj;t; yj;t) (23)

to �maini so that we can neglect discounting within the review phase. With abuse of nota-

tion, we do not consider (5) for ��i since (22) guarantees that we can always subtract (add,
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respectively) a small number depending on xj to (from, respectively) �maini to make �maini

negative (positive, respectively) without a¤ecting the incentives and equilibrium payo¤.

Further, since player j can statistically identify player i�s action, player j can give a

reward that cancels out the di¤erence in the instantaneous utilities:

Lemma 5 If Assumption 4 is satis�ed, then, there exists �u > 0 such that, for each i 2 I,

there exist �Gi : Aj � Yj ! [��u; 0] and �Bi : Aj � Yj ! [0; �u] such that

ui (a) + E
�
�Gi (aj; yj) j a

�
= constant 2 [��u; �u] for all a 2 A;

ui (a) + E
�
�Bi (aj; yj) j a

�
= constant 2 [��u; �u] for all a 2 A:

Proof. See the Appendix.

Suppose that player i�s reward function is time-separable and that, in period t, the reward

from period t is
P

��t �
xj
i (aj;� ; yj;� ). Then, player i is indi¤erent between any action pro�le

sequence from period t.

9.3 Slight Correlation

As brie�y mentioned in Section 7, the reward �reporti on player i is adjusted based on player

i�s messages about hmaini in the report block. At the same time, we need to establish player

i�s truthtelling incentive about hmaini .

When player i reports her history (ai;t; yi;t) for some period t in the coordination or main

blocks, intuitively, player j punishes player i proportionally to



1yj;t � E �1yj;t j âi;t; ŷi;t; aj;t�

2 :
Here, 1yj;t is a jYjj � 1 vector whose element corresponding to yj;t is one and other elements
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are zero. (âi;t; ŷi;t) is player i�s message. Intuitively,35 player i wants to minimize

E
h

1yj;t � E �1yj;t j âi;t; ŷi;t; aj;t�

2 j ai;t; yi;t; aj;ti : (24)

We assume that player i knew player j�s action aj;t.36

We assume that a di¤erent (ai;t; yi;t) has di¤erent information about yj;t conditional on

aj;t:

Assumption 5 For any i 2 I, aj 2 Aj, ai; a0i 2 Ai and yi; y0i 2 Yi, if (ai; yi) 6= (a0i; y0i), then

E
�
1yj j ai; yi; aj

�
6= E

�
1yj j a0i; y0i; aj

�
:

Note that this excludes the conditional independence. Given Assumption 5, the truthtelling

is uniquely optimal.

Lemma 6 If Assumption 5 is satis�ed, then for any at 2 A and yi;t 2 Yi, (âi;t; ŷi;t) =

(ai;t; yi;t) is a unique minimizer of (24).

Proof. By algebra.

Take ex ante value of (24) before observing yi;t assuming the truthtelling (âi;t; ŷi;t) =

(ai;t; yi;t):

E
h

1yj;t � E �1yj;t j ai;t; yi;t; aj;t�

2 j ai;t; aj;ti : (25)

From Lemma 3, we can show the existence of player j�s reward on player i which cancels out

the di¤erence in (25) for di¤erent ai;t�s:

Lemma 7 If Assumptions 4 and 5 are satis�ed, then for any j 2 I and aj 2 Aj, there exists

�i : Aj � Yj ! R such that

E [�i(aj; yj) j ai; aj] = E
h

1yj � E �1yj j ai; yi; aj�

2 j ai; aji

35That is, except that player i can learn about yj;t from the continuation play between period t and the
report block.
36If the incentive to tell the truth is provided assuming that player i knew player j�s action, then the

incentive automatically holds if player i does not know player j�s action.
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for all ai 2 Ai.

Proof. The same as Lemma 3.

10 Structure of the Phase

In this section, we formally de�ne the structure of the TP -period �nitely repeated game

(review phase), which is summarized in Figure 1 below. TP depends on L and T . L 2 N will

be pinned down in Section 12 and T = (1� �)�
1
2 .

As seen in Section 6, at the beginning of the phase, there is the coordination block. The

players take turns to communicate x. First, player 1 sends x1 via perfect cheap talk. Second,

player 2 sends x2 via perfect cheap talk. For notational convenience, let the round for xi

denote the moment that player i sends xi.

After the coordination blocks, there are L �main blocks.�Each of the �rst (L� 1) main

blocks is further divided into three rounds. That is, for l 2 f1; :::; L � 1g, the lth main

block consists of the following three rounds: First, the players play a T -period review round.

Second, there is a supplemental round for �1(l + 1). Third, there is a supplemental round

�2(l+1). As seen in Section4, �i(l+1) 2 fG;Bg is an index of whether player i has observed

an �erroneous score�in the review rounds 1; : : : ; l. In the supplemental round for �i(l + 1),

player i sends �i(l + 1) via noisy cheap talk with precision p = 1
2
.

The last Lth main block has only the T -period review round.

Let T (l) be the set of T periods in the lth review round.

After the last main block, there is the report block, where player i who is picked by the

public randomization reports the whole history hmaini .

Given this structure, we show that, for su¢ ciently large �, with TP = L (1� �)�
1
2 , there

exist �i (xi) and �i(xj; h
TP+1
j : �) satisfying (3), (4) and (5).

53



First review round: � � ����.

Supplemental round for ���	�.

Supplemental round for �
�	�.

1st main 

block

Player� sends �� via perfect cheap talk.

The picked player reports her whole history �

���� by 

cheap talk.

Report

block

Coordination

block
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Figure 1: Structure of the Phase
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11 Equilibrium Strategies

In this section, we de�ne �i (xi) in the coordination and main blocks and �maini (xj; h
main
j : �).

See Section 14 for the de�nition of �i(xi) in the report block and �
report
i (xj; h

TP+1
j : �).

In Section 11.1, we de�ne the state variables that will be used to de�ne the action plans

and rewards. Given the states, Section 11.2 de�nes the action plan �i(xi) and Section

11.3 de�nes the reward function �maini (xj; h
main
j : �). Finally, Section 11.4 determines the

transition of the states de�ned in Section 11.1.

11.1 States xi, �i(l + 1), �̂j(l + 1), �i(l) and �i(�i (l + 1))

The state xi 2 fG;Bg is determined at the beginning of the review phase and �xed. With

the perfect cheap talk, after player 2 sends x2 in the coordination block, x becomes common

knowledge.

As seen in Section 4, �i(l + 1) 2 fG;Bg is player i�s state. Intuitively, �i(l + 1) = B

implies that player i has observed an erroneous score about player j in the lth round or

before. As will be formally de�ned in Section 11.4, �i(l+ 1) is determined at the end of the

lth review round.

On the other hand, since player j�s reward on player i in the (l + 1)th review round

depends on �j(l + 1) as seen in Section 4, it is natural to consider player i�s belief about

�j(l + 1) = G. The space for player i�s possible beliefs about �j(l + 1) = G in each period t

in the (l + 1)th review round is [0; 1] and it depends on the details of a history hti. However,

we classify the set of player i�s histories into two partitions: The set of histories labeled as

�̂j (l + 1) = G and that labeled as �̂j (l + 1) = B. Intuitively, �̂j(l + 1) = G (�̂j(l + 1) = B,

respectively) implies that player i believes that �j(l + 1) = G (�j(l + 1) = B, respectively)

is likely.

To make the equilibrium tractable, �̂j(l + 1) depends only on player i�s history at the

beginning of the (l + 1)th review round and is �xed during the (l + 1)th review block, as will

be de�ned in Section 11.4. Further, in the (l + 1)th review round, player i takes a constant
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action that depends only on x 2 fG;Bg2 and �̂j(l + 1) 2 fG;Bg.

Further, as we have brie�y mentioned in Sections 4, player i makes player j indi¤erent

between any action pro�le after some history. If she does in the lth review round, then

�mainj will be
P

� �
xi
j (ai;� ; yi;� ) for period � in the lth review round and after. �i(l) 2 fG;Bg

and �i(�i (l + 1)) 2 fG;Bg are indices of whether player i uses such a reward. See Section

11.3 for how the reward function depends on these two states and see Section 11.4 for the

transition of the states.

11.2 Player i�s Action

In the coordination block, player i tells the truth about xi.

In the each lth review round, player i with �i(xi) takes ai(x) with

ai(x) �

8<: Ci if xi = G;

Di if xi = B
(26)

if �̂j(l) = G and Di if �̂j(l) = B. That is, if player i believes that player j has observed

an erroneous score before, then player i takes Di, a static best response to player j�s action

aj(x). This is the breakdown of the incentives explained in Section 4.

In the supplemental round for �i(l + 1), player i sends the message �i(l + 1) truthfully

via noisy cheap talk with precision p = 1
2
. We assume that the players cannot manipulate

p.37 That is, in the supplemental round for �i(l + 1), only the noisy cheap talk with p = 1
2

is available.

11.3 Reward Function

In this subsection, we explain player j�s reward function on player i, �maini (xj; h
main
j : �).

37The same constraint is applicable whenever a player sends a message via noisy cheap talk with precision
p 2 (0; 1).
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Score We formally de�ne player j�s score about player i in the lth review round denoted

Xj(l) by which player j monitors player i for all x 2 fG;Bg2.

Since the expected value of  a(x)j (yj;t) in Lemma 3 increases if the players take a (x),

intuitively, Xj(l) should be proportional to
P

t2T (l)  
a(x)
j (yj;t).

Instead of using  a(x)j (yj;t) as the actual score, we use  
a(x)
j (yj;t) as the probability with

which the score increases by 1, rather than 0.38 For that purpose, player j constructs 	a(x)j;t 2

f0; 1g from  
a(x)
j (yj;t) as follows: After taking aj;t and observing yj;t,39 player j calculates

 
a(x)
j (yj;t). After that, player j draws a random variable from the uniform distribution on

[0; 1]. If the realization of this random variable is less than  a(x)j (yj;t), then 	
a(x)
j;t = 1, and

otherwise, 	a(x)j;t = 0. That is, 	a(x)j;t is a time-independent Bernoulli random variable with

mean  a(x)j (yj;t). 	
a(x)
j;t corresponds to the �good signal�in Section 4.

Player j�s score about player i in the lth review round, Xj(l), is equal to
P

t2T (l)	
a(x)
j;t

except that player j does not use one random period in T (l) for monitoring. That is, player

j randomly picks one period tj(l) from T (l): Pr (ftj(l) = tg) = 1
T
for all t 2 T (l). Let

Tj(l) � T (l) n ftj(l)g be the other periods than tj(l) in the lth review round. Player j

monitors player i during T (l) by the score

Xj(l) �
X
t2Tj(l)

	
a(x)
j;t + 1tj(l): (27)

Here, 1tj(l) 2 f0; 1g is a random variable with Pr
��
1tj(l) = 1

	�
= q2 conditional on tj(l).

Hence, instead of monitoring by
P

t2T (l)	
a(x)
j;t , player j randomly picks tj(l) and replaces

	
a(x)
j;tj(l)

with the random variable 1tj(l) that is independent of the players�action. Note that,

since E
h
	
a(x)
j;t j a (x)

i
= E

�
1tj(l)

�
= q2, the expected increment of Xj(l) is the same for each

period as long as a (x) is played.

Since player j excludes tj(l) randomly, player i cannot learn player j�s signal in period

tj(l) by observing player j�s continuation play. This plays an important role to incentivize

38This convert from the probability to the Bernouli random variable is the same as Fong, Gossner, Hörner
and Sannikov (2010).
39As we have seen in Section 11.2, aj;t = aj(x) as long as �̂i(l) = G.
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player i to tell the truth in the report block (see also Section 15.7). The same remark is

applicable whenever we de�ne tj(l).

Slope of the Reward Take �L su¢ ciently large:

�L (q2 � q1) > max
a;i
2 jui (a)j : (28)

Intuitively, �L corresponds to g
q2�q1 in Section 4.

If the reward for the lth review round is �LX (l) except for a constant and player j plays

aj(x), then player i wants to take ai (x): Intuitively, for each t 2 T (l), the marginal increase

of the probability that 	a(x)j = 1 is

�
1� 1

T

�
| {z }
Pr(ftj(l) 6=tg)

(q2 � q1) :

From (28), for su¢ ciently large T , that is, for su¢ ciently large � from (1), the expected gain

from the reward dominates the gain from the instantaneous utilities.

The Reward Function The reward �maini (xj; h
main
j : �) is written as

�maini (xj; h
main
j : �) =

LX
l=1

X
t2T (l)

��i (aj;t; yj;t) +

8<: ��LT +
PL

l=1 �
main
i (x; hmainj ; l) if xj = G;

�LT +
PL

l=1 �
main
i (x; hmainj ; l) if xj = B:

Remember that T (l) is the set of periods in the lth review round.

Five remarks. First, we add (23) so that we can neglect discounting within the review

phase.

Second, since x becomes common knowledge, with abuse of notation, we let �maini depend

directly on x.

Third, intuitively, �maini (x; hmainj ; l) is the reward for the lth review round.

Fourth, for xj = G, there exists a term��LT . With g
q2�q1 replaced with

�L, this corresponds
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to the constant term g
q2�q1T in Section 4. As we will de�ne below formally, if Xj(~l) �

(q2 + 2")T for all ~l � l � 1, then player j�s reward on player i in the lth review round is

�maini (x; hmainj ; l) = a non-positive constant+ �L (Xj (l)� (q2 + 2")T ) ; (29)

which is non-positive for Xj(l) � (q2 + 2")T .40 After Xj(l) > (q2 + 2")T in the lth review

round, that is, after Xj(l) is �erroneously high,� �maini (x; hmainj ; ~l) will be a non-positive

constant for ~l � l + 1.

In summary, �maini (x; hmainj ; l) is positive at most for one review round whenXj(l) becomes

erroneously high for the �rst time. Therefore, for (5), it su¢ ces to have

max
Xj(l)

�L (Xj (l)� (q2 + 2")T )� �LT � 0:

Since Xj(l) � T , this is satis�ed.

Fifth, for xj = B, symmetrically to xj = G, there exists a term �LT . IfXj(~l) � (q2 � 2")T

for all ~l � l � 1, then the reward in the lth review round is

�maini (x; hmainj ; l) = a non-negative constant+ �L (Xj (l)� (q2 � 2")T ) ; (30)

which is non-negative if Xj(l) � (q2 � 2")T .41 After Xj(l) < (q2 � 2")T , that is, after Xj(l)

becomes �erroneously low,��maini (x; hmainj ; ~l) will be a non-negative constant for ~l � l + 1.

In summary, �maini (x; hmainj ; l) is negative at most for one review round and for (5), it

su¢ ces to have

min
Xj(l)

�L (Xj (l)� (q2 � 2")T ) + �LT � 0:

Since Xj(l) � 0, this is satis�ed.
40�A non-positive constant�in the above reward is zero in the example in Section 4. Generally, this term

is negative so that the equilibrium payo¤ is equal to the targeted value �vi. See Section 13.2.
41�A non-negative constant�is introduced so that the equilibrium payo¤ is equal to the targeted value vi.
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Reward Function for the lth Review Round Now, we can formally de�ne �maini (x; hmainj ; l)

for each l = 1; :::; L.

In the lth review round, if �j(~l) = B or �j(�j(~l + 1)) = B happens for some ~l � l � 1,

then player j makes player i indi¤erent between any action pro�le by

�maini (x; hmainj ; l) =
X
t2T (l)

�
xj
i (aj;t; yj;t): (31)

Otherwise, that is, if �j(~l) = �j(�j(~l + 1)) = G for all ~l � l � 1, then player j�s reward

on player i depends on the state pro�le, x, the index of the past erroneous history, �j(l),

and player j�s score about player i in the lth review round, X(l). As seen in Section 4, the

reward is linearly increasing in Xj(l) if �j(l) = G and is �at if �j(l) = B:

�maini (x; hmainj ; l) =

8>>><>>>:
��i(x;G; l) + �L (Xj(l)� (q2T + 2"T )) if xj = G and �j(l) = G;

��i(x;G; l) + �L (Xj(l)� (q2T � 2"T )) if xj = B and �j(l) = G;

��i(x;B; l) if �j(l) = B:

(32)

Here, ��i(x; �j(l); l) is a constant that will be determined in Section 13.2 so that (8), (4) and

(5) are satis�ed. ��i(x;G; l) with xj = G corresponds to the non-positive constant in (29)

and that with xj = B corresponds to the non-negative constant in (30).

11.4 Transition of the States

In this subsection, we explain the transition of the players�states. Since xi is �xed in the

phase, we consider the following four states:

11.4.1 Transition of �j(l + 1) 2 fG;Bg

As mentioned in Section 4, �j(l+1) 2 fG;Bg is player j�s index of the past erroneous history.

Here, we consider player j�s state rather than player i�s state since later, we will consider

how player j�s reward on player i incentivizes player i to take �i(xi). Since player j�s reward
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is a¤ected by �j(l+1), it is more convenient to summarize the transition of �j(l+1) rather

than �i(l + 1).

The initial condition is �j(1) = G. Inductively, given �j(l) 2 fG;Bg, �j(l + 1) is

determined as follows: If �j(l) = B, then �j(l + 1) = B. That is, once �j(l) = B happens,

it lasts until the end of the phase. If �j(l) = G, then �j(l + 1) = B if and only if the score

in the lth review round is �erroneous.�That is,

1. If

Xj (l) 2 [q2T � 2"T; q2T + 2"T ] ;

then �i(l + 1) = G.

2. If

Xj (l) 62 [q2T � 2"T; q2T + 2"T ] ;

then �i(l + 1) = B.

Compared to the above explanation, both erroneously low and erroneously high scores

induce �i(l + 1) = B regardless of xj. This lightens the notation since we do not need to

analyze di¤erent transitions for di¤erent xj�s.

11.4.2 Transition of �̂j(l + 1) 2 fG;Bg

As we have mentioned in Section 11.1, �̂j(l + 1) 2 fG;Bg is the partition of player i�s

histories. Intuitively, player i believes that �j(l + 1) = �̂j(l + 1) with high probability.

Since �j(1) = G is common knowledge, de�ne �̂j(1) = G. We de�ne �̂j(l) inductively. If

�̂j(l) = B, then �̂j(l + 1) = B. Hence, once �̂j(l) = B happens, it lasts until the end of the

phase. If �̂j(l) = G, then �̂j(l + 1) 2 fG;Bg is de�ned as follows.

Suppose that �̂j(l) = G would be a correct inference (not always in private monitoring).

Then, �j(l + 1) is determined as

�j(l + 1) =

8<: G if Xj(l) 2 [q2T � 2"T; q2T + 2"T ]

B if Xj(l) 62 [q2T � 2"T; q2T + 2"T ]
(33)
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with Xj(l) =
P

t2Tj(l)	
a(x)
j;t + 1tj(l). Therefore, it is natural to consider the conditional

expectation of Xj(l):

E
�
Xj(l) j a(x); fyi;tgt2T (l)

�
:

Here, we assume that player j would play aj(x) in the lth review round (not always if

�̂i(l) = B).42

Intuitively, player i calculates E
�
Xj(l) j a(x); fyi;tgt2T (l)

�
. Then, in the supplemental

round for �j(l + 1), player j sends �j(l + 1) via noisy cheap talk with precision p = 1
2

and player i receives a signal f [i](�j(l + 1)).43 Based on E
�
Xj(l) j a(x); fyi;tgt2T (l)

�
and

f [i](�j(l + 1)), player i constructs �̂j(l + 1).

Formally, instead of using the conditional expectation E
�
Xj(l) j a(x); fyi;tgt2T (l)

�
, we

consider X
t2Ti(l)

E
h
	
a(x)
j;t j a(x); yi;t

i
+ q2: (34)

Notice that player i calculates the summation of the conditional expectation of 	a(x)j;t over

Ti(l) (the set of periods that player i uses to monitor player j), not Tj(l) (the set of periods

that player j uses to monitor player i).44 Since Ti(l) and Tj(l) are di¤erent at most for two

periods, this di¤erence is negligible for almost optimality (8).

Further, instead of using E
h
	
a(x)
j;t j a(x); yi;t

i
, player i constructs (Ei	

a(x)
j )t 2 f0; 1g

as follows: After taking ai(x) and observing yi;t, player i calculates E
h
	
a(x)
j;t j a(x); yi;t

i
.

After that, player i draws a random variable from the uniform distribution on [0; 1]. If the

realization of this random variable is less than E
h
	
a(x)
j;t j a(x); yi;t

i
, then (Ei	

a(x)
j )t = 1 and

otherwise, (Ei	
a(x)
j )t = 0. Let

EiXj(l) =
X
t2Ti(l)

(Ei	
a(x)
j )t + q2:

42See Section 11.4.4 for the reason why player i can always believe that player j takes aj(x).
43By (10), we can neglect f2[i](�j(l + 1)) for almost optimality.
44The term q2 re�ects the fact that the expected value of 1tj(l) is q2.
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Since

Pr
�n
(Ei	

a(x)
j )t = 1

o
j at; yt

�
= E

h
	
a(x)
j;t j a(x); yi;t

i
for all at and yt given E

h
	
a(x)
j;t j a(x); yi;t

i
, the ex post probability given fat; ytgt2T (l) of the

event that ������
X
t2Ti(l)

E
h
	
a(x)
j;t j a(x); yi;t

i
+ q2 � EiXj(l)

������ � 1

4
"T (35)

is 1� exp(�O(T )) by the law of large numbers.

Consider player i�s belief about �j(l + 1) in the case with (35) and

EiXj(l) 2 [q2T �
1

2
"T; q2T +

1

2
"T ]: (36)

Since Ti(l) and Tj(l) are di¤erent only for two periods, player i has

E
�
Xj(l) j a(x); fyi;tgt2T (l); Ti(l); Tj(l)

�
2 [q2T � "T; q2T + "T ]: (37)

Given a(x), fyi;tgt2T (l), Ti(l) and Tj(l), the conditional distribution of Xj(l) is approx-

imately a normal distribution with the mean (37) and a standard deviation O(T
1
2 ) by the

central limit theorem. Since (37) implies that the conditional mean is inside of [q2T �

2"T; q2T + 2"T ] at least by

"T = T
1
2 � O(T

1
2 )| {z }

the order of the standard deviation

;

player i believes that Xj(l) 2 [q2T � 2"T; q2T + 2"T ] with probability 1 � exp(�O(T )).

Hence, at the end of the lth review round (before receiving signals from the noisy cheap talk

message in the supplemental rounds), player i believes that �j(l + 1) = G with probability

1� exp(�O(T )).

Consider the posterior after receiving f [i](�j(l + 1)). Since player i knows that errors

occur with probability exp(�O(T 1
2 ))� exp(�O(T )) in the communication via noisy cheap
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talk, player i keeps a belief

1� exp(�O(T )) (38)

on �j(l + 1) = G regardless of f [i](�j(l + 1)). Especially, if the signal is f [i](�j(l + 1)) = B,

then player i believes that it is an error with high probability.

Further, we need to consider the posterior after observing player j�s continuation play

in the following review rounds. Section 13.1 o¤ers the proof that learning from player j�s

continuation play does not change the belief so much.

On the other hand, forget about the belief about �j(l+1) and suppose that player i could

know �j(l + 1) (she cannot in private monitoring). Consider the two possible realizations

of the signals in the supplemental round for �j(l + 1). If f [i](�j(l + 1)) = �j(l + 1), then

player i receives a correct message. If f [i](�j(l + 1)) 6= �j(l + 1), then with probability

1� exp(�O(T 1
2 )), player j should receive the signal telling that player i did not receive the

correct signal, that is, g[j](�j(l + 1)) = E. If g[j](�j(l + 1)) = E, then player j will use the

reward (31) for ~l � l+1 and any action will be optimal for player i as we will see in Section

11.4.3.

Therefore, regardless of �j(l + 1) and f [i](�j(l + 1)), if player i uses

�̂j(l + 1) = f [i](�j(l + 1)); (39)

then �i(xi) de�ned in Section 11.2 is almost optimal. Note that player j�s action plan in the

main blocks is independent of g[j](�j(l + 1)) and that player i cannot learn g[j](�j(l + 1))

from player i�s history in the main blocks.

Given the discussion above, we consider the following transition of �̂j(l + 1):

1. If (35) and (36) are satis�ed, then player i randomly picks the following two procedures:

(a) With large probability 1��, player i disregards f [i](�j(l+1)) and has �̂j(l+1) = G.

This is almost optimal from (38).

(b) With small probability � > 0, player i will obey f [i](�j(l + 1)): �̂j(l + 1) is
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determined by (39). This is almost optimal since if f [i](�j(l + 1)) 6= �j(l + 1),

then g[j](�j(l + 1)) = E with probability 1� exp(�O(T 1
2 )).

2. If (35) is not satis�ed or (36) is not satis�ed, then �̂j(l+ 1) is determined by (39). As

1-(b) above, this is almost optimal.

For concreteness, we de�ne that player i who has deviated before the beginning of the

(l + 1)th review round determines �̂j(l + 1) by (39).

11.4.3 Transition of �i(l) 2 fG;Bg and �i(�i (l + 1)) 2 fG;Bg

As we have seen in Section 11.3, �i(~l) = B or �i(�i(~l + 1)) = B with ~l � l � 1 implies that

player j is indi¤erent between any action pro�le (except for the incentives from �reportj ).

�i(l) = G if 1-(a) is the case when player i creates �̂j(l + 1) in Section 11.4.2. On the

other hand, �i(l) = B if 1-(b) or 2 is the case.

After sending �i(l+1) via noisy cheap talk message in the supplemental round for �i(l+1),

if player i receives the signal that player j may receive a wrong signal, that is, if g[i](�i(l +

1)) = E, then �i(�i (l + 1)) = B. Otherwise, that is, if g[i](�i (l + 1)) = �i (l + 1), then

�i(�i (l + 1)) = G.

11.4.4 Summary of the Transitions of �j

We summarize the implications of the transitions of �j. Since we want to consider player i�s

incentive, we consider �j, not �i.

First, player j makes player i almost indi¤erent between any action pro�le after receiving

g[j](�j(l+1)) = E. Since player i believes that, whenever her signal is wrong: f [i](�j(l+1)) 6=

�j(l+1), player j receives g[j](�j(l+1)) = E and so �i(�i (l + 1)) = B with high probability.

Therefore, (39) is an almost optimal inference.

Second, consider how player j constructs �̂i(l + 1). Reversing the indices i and j in

Sections 11.4.2, whenever player j uses the signal of the noisy cheap talk f [j](�i(l + 1)),

�j(l) = B or �j(�j(l + 1)) = B happens. This implies that player j will use the reward (31)
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and player i is indi¤erent between any action of player j from the (l + 1)th review round,

whenever player i�s message has an impact on player j�s continuation action plan. Hence,

player i is almost indi¤erent between any message.

Third, from Section 11.2, player j does not take aj(x) in the lth review round only if

�̂i(l) is not equal to G. Section 11.4.2 implies that player j has �̂i(l) 6= G only if 1-(b) or

2 is the case in Section 11.4.2 for some review round ~l � l � 1. Hence, �̂i(l) 6= G implies

that �j(~l) = B or �j(�j(~l + 1)) = B with ~l � l � 1. Therefore, when player i calculates the

conditional expectation of Xj(l), for almost optimality, player i can assume that player j

takes aj(x). See the proof of Lemma 8 for the formal argument.

Fourth, suppose that �j(~l) = �j(�j(~l + 1)) = G for all ~l � l � 1 (otherwise, player i is

indi¤erent between any action pro�le except for �reporti ). From the third observation, player j

takes aj(x). We will show that the joint distribution of �j(l) and �j(�j (l + 1)) is independent

of player i�s action in the lth review round with probability no less than 1� exp(�O(T 1
2 )).

To see why, consider the following three reasons:

1. The event that (35) is not satis�ed happens with the ex post probability exp(�O(T ))

given fat; ytgt2T (l), as we have veri�ed in Section 11.4.2.

2. Suppose that (35) is the case. �j(l) = B if (i) (36) is not satis�ed or (ii) (36) is satis�ed

and 1-(b) happens in Section 11.4.2 (with the roles of players i and j reversed).

Since player j takes aj(x), from Lemma 3 (with the roles of players i and j reversed),

the distribution of
�
Ej	

a(x)
i

�
t
is independent of player i�s action. Therefore, whether

(36) is satis�ed or not is independent of player i�s action.

Conditional on that (36) is satis�ed, whether 1-(a) or 1-(b) is the case depends on

player j�s mixture and is independent of player i�s action.

3. �j(�j(l + 1)) = B if and only if g[j](�j(l + 1)) = E, which happens with probability

exp(�O(T 1
2 )) for all �j(l + 1).45

45The coe¢ cient of T
1
2 in the explicit expression of O(T

1
2 ) can depend on �j(l + 1) and �j(l + 1) may

depend on player i�s strategy. However, the probability of g[j](�j(l + 1)) = E is exp(�O(T 1
2 )) regardless of

�j(l + 1) and so almost independent of �j(l + 1).
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12 Variables

In this section, we show that all the variables can be taken consistently satisfying all the

requirements that we have imposed: q2, q1, �u, �L, L, � and ".

First, q1 and q2 are determined in Lemma 3 and �u is determined in Lemma 5, indepen-

dently of the other variables. These are determined by the precision of the monitoring.

Given q1 and q2, we de�ne �L to satisfy (28):

�L (q2 � q1) > max
a;i
2 jui (a)j : (40)

This implies that the marginal expected increase of the continuation payo¤ by taking ai(x)

is su¢ ciently higher than the gain of the deviation in the instantaneous utilities.

Given �L, we take L 2 N su¢ ciently large and " > 0 su¢ ciently small such that

ui (D1; D2) +
�L

L
+ 2"�L < vi < vi < ui (C1; C2)�

�L

L
� 2"�L:

From (17), this is feasible. As seen in Section 4, a large L makes it possible to incentivize

the players to take a constant action within a review round without destroying e¢ ciency. A

small " together with large T implies that we can make sure that erroneous histories do not

occur frequently without a¤ecting e¢ ciency.

Given �u, �L, L and ", take � su¢ ciently small such that

ui (D1; D2) +
�L

L
+ 2"�L+ L�

�
�u�min

i;x
wi (x)

�
(41)

< vi < vi < ui (C1; C2)�
�L

L
� 2"�L� L�

�
�u+max

i;x
wi (x)

�
:

As explained in Section 4, a small � implies that the event that player i needs to incentivize

player j to tell the truth in the supplemental rounds does not occur too often.
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Since TP = LT and T = (1� �)�
1
2 , we have

lim
�!1

�TP = 1:

Therefore, discounting for the payo¤s in the next review phase goes to zero.

13 Almost Optimality of �i(xi)

Since we have de�ned �i(xi) and �maini except for ��i(x; �j(l); l), we now show that if we

properly de�ne ��i(x; �j(l); l), then �i(xi) and �maini satisfy (8), (4) and (5).

13.1 Almost Optimality of �̂j(l)

First, we show the �almost optimality of �̂j(l).�Let �j(l) be player j�s action plan in the

lth review round46 and �j(l) = (�j(1); :::; �j(l)) be the sequence of player j�s action plans

from the �rst review round to the lth review round (excluding what messages player j sent

via noisy cheap talk in the supplemental rounds). We want to show that, for any lth review

round, for any hti with period t in the lth review round, conditional on �j(l), player i puts a

belief no less than 1� exp(�O(T 1
2 )) on the events that �j(l) = �̂j(l) or there exists ~l � l� 1

with �j(~l) = B or �j(�j(~l+1)) = B (and so player i is indi¤erent between any action pro�le

except for �reporti ).

Lemma 8 For any lth review round, for any hti with period t in the lth review round, con-

ditional on �j(l), player i puts a belief no less than

1� exp(�O(T 1
2 )) (42)

on the events that �j(l) = �̂j(l) or there exists ~l � l� 1 with �j(~l) = B or �j(�j(~l+1)) = B.

46Note that player j takes an i.i.d. action plan within a review round. We use �j instead of aj since player
j may take a mixed strategy to minimax player i in a general game. See the Supplemental Materials 2 and
3.
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Proof. See the Appendix.

Since the statement is correct after conditioning on player j�s action plan in the lth

review round, learning about player j�s action from player i�s signals in the lth review round

is irrelevant.

Let us illustrate the main logic by concentrating on l = 2. It is common knowledge that

the players took a(x) in the �rst review round.

From the discussion in Section 11.4.2, we know the following:

1. If 1-(a) is the case in Section 11.4.2, then at the end of the �rst review round, player i

puts a belief no less than 1� exp(�O(T )) on the event that �j(2) = G.

2. If 1-(b) or 2 is the case, then at the beginning of the second round, given �j(2), player i

puts a conditional belief no less than 1�exp(�O(T 1
2 )) on the events that �j(2) = �̂j(2)

or �g[j] (�j(2)) = E and �j(�j (2)) = B.�

Conditional on �j(2), player i will not learn anything about �j(�j (2)) from player j�s

strategy in the main blocks. Hence, if Case 2 is the case, then Lemma 8 is true.

Suppose that Case 1 happens. We consider how the belief changes after receiving the

signals from the noisy cheap talk messages in the supplemental rounds for �1(2) and �2(2)

and after learning player j�s action in the second review round. Since player j�s action in

the second review round is determined solely by x and �̂i(2), we want to show that, given

f [i](�j(2)), f2[i](�j(2)), x and �̂i(2), player i puts a belief no less than 1� exp(�O(T
1
2 )) on

the events that �j(2) = G or ��j(1) = B or �j(�j (2)) = B.�

Consider learning from the signals f [i](�j(2)) and f2[i](�j(2)). Since any pair happens

with probability at least exp(�O(T 1
2 )) by Lemma 2, the upper bound of changes in the

likelihood by observing the signals is exp(O(T
1
2 )).

Next, consider learning from �̂j(2). Remember that 1-(b) or 2 is the case with probability

at least � when player j constructs �̂i(2) in Section 11.4.2 (the roles of players i and j are

reversed). If 1-(b) or 2 is the case, then given player i�s message �i(2) and player i�s signals

about player j�s signals g[i](�i(2)) and g2[i](�i(2)), player i believes that any f [j](�i(2))
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happens with probability at least exp(�O(T 1
2 )) by Lemma 2. Therefore, the upper bound

of changes in the likelihood by observing �̂i(2) is
1��
�
exp(O(T

1
2 )).

In total, learning from f [i](�j(2)), f2[i](�j(2)) and �̂i(2) changes the likelihood by

exp(O(T
1
2 ))
1� �

�
exp(O(T

1
2 )) = exp(O(T

1
2 )):

Since the prior on �j(2) = G is 1 � exp(�O(T )), the posterior on �j(2) = G after learning

f [i](�j(2)), f2[i](�j(2)) and �̂i(2) (and so after learning the signals from the noisy cheap talk

messages in the supplemental rounds for �1(2) and �2(2) and player j�s action in the second

review round) is at least

1� exp(�O(T )) exp(O(T 1
2 )) = 1� exp(�O(T )):

Therefore, Lemma 8 holds for Case 1.

See the Appendix for the proof with l � 3. The additional di¢ culty is that the players

do not always take a(x) from the second review rounds.

13.2 Determination of ��i(x; �j (l) ; l)

Second, based on Lemma 8, we determine ��i(x; �j(l); l) such that �i(xi) and �maini satisfy

(8), (4) and (5):

Proposition 1 For su¢ ciently large �, there exists ��i(x; �j(l); l) such that

1. �i(xi) is almost optimal: For each l 2 f1; :::; Lg,

(a) For any period t in the lth review round, (8) holds.

(b) When player i sends the noisy cheap talk message about �i(l + 1), (8) holds.47

47With l = L, this is redundant.
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2. (4) is satis�ed with �i replaced with �maini . Since each xi 2 fG;Bg gives the same value

conditional on xj, the strategy in the coordination block is optimal.48

3. �maini satis�es (5).

Proof. See the Appendix.

Here, we o¤er the intuitive explanation. First, we construct ��i(x; �j (l) ; l), assuming that

the players follow �i(xi). We want to make sure that ��i(x; �j(l); l) � 0 (��i(x; �j(l); l) � 0,

respectively) if xj = G (xj = B, respectively) and that player i�s value from the lth review

round X
t2T (l)

ui(at) + �maini (x; hmainj ; l)

is close to �vi (vi, respectively) if xj = G (xj = B, respectively), �̂j(l) = �j(l) and �j(~l) =

�j(�j(~l + 1)) = G for all ~l � l � 1. Note that the last condition implies that �̂i(l) = G and

that player j takes aj(x). Remember that in Section 4.6.1, the reward gT +
g

q2�q12"T after

�j(l) = B is determined so that player i�s value is independent of whether �j(l) is equal to

G or B, as long as �̂j(l) = �j(l).

If �̂j(l) = �j(l) = G, then the players take a(x) and the average instantaneous utility

during the lth review round is wi(x).49 On the other hand, the ex ante mean of the score

Xj(l) is q2T and the expected reward is close to 0 except for ��i(x; �j (l) ; l). Therefore, from

(41), if xj = G (xj = B, respectively), then there exists ��i(x; �j(l); l) � 0 (��i(x; �j(l); l) � 0,

respectively) such that player i�s value from the lth review round is close to �vi (vi, respec-

tively).

If xj = G and �̂j(l) = �j(l) = B, then player i takes a best response to player j�s action

aj(x) and the average instantaneous utility during the lth review round is more than wi(x).

The reward is 0 except for ��i(x; �j (l) ; l). Therefore, from (41), player i�s value from the lth

review round is close to �vi if we properly determine ��i(x; �j (l) ; l) � 0.
48This is not precise since we will further adjust the reward function based on the report block. However,

as we will see, even after the adjustment of the report block, any xi 2 fG;Bg still gives exactly the same
value and so the strategy in the coordination block is exactly optimal.
49With abuse of language, we take the limit where � goes to one.
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If xj = B, �̂i(l) = G, and �̂j(l) = �j(l) = B, then player i takes a best response to player

j�s action aj(x). Since player j with xj = B takes the minimaxing action Dj, the average

instantaneous utility during the lth review round is v�i = ui(D;D) � vi. The reward is 0

except for ��i(x; �j (l) ; l). Therefore, from (41), player i�s value from the lth review round is

close to vi if we properly determine ��i(x; �j(l); l) � 0.

Second, we verify 1-(a): In the lth review round, it is almost optimal for player i to follow

�i(xi). We concentrate on the case where �j(~l) = �j(�j(~l + 1)) = G for all ~l � l � 1 and

player j uses the reward (32). Lemma 8 guarantees that, for almost optimality, player i can

assume �j(l) = �̂j(l) and Section 11.4.4 guarantees that player j takes aj(x).

For the last Lth review round, player i maximizes

X
t2T (l)

ui(at) + �maini (x; hmainj ; l) (43)

with l = L. If �j(L) = �̂j(L) = G, then �maini (x; hmainj ; L) is linearly increasing with slope

�L in the score Xj(L). Since (40) implies that the slope �L is su¢ ciently large, it is almost

optimal to take ai(x) in order to maximize (43). If �j(L) = �̂j(L) = B, then �maini (x; hmainj ; L)

is �at and so player i wants to take a best response to player j�s action. Therefore, Di is

almost optimal in order to maximize (43). Therefore, �i(xi) is almost optimal for the Lth

review round.

We proceed backward. Suppose that player i follows �i(xi) from the (l + 1)th review

round and consider player i�s incentive in the lth review round. Note that we de�ne ��i such

that player i�s value is almost independent of �j(l+1) as long as player i follows �i(xi) from

the (l + 1)th review round and �j(l + 1) = �̂j(l + 1).50 In addition, Lemma 8 implies that

player i in the main blocks does not put a high belief on the case that ��j(l+1) 6= �̂j(l+1)

and player i�s value depends on action pro�les in the (l + 1)th review round.� Further,

50In the above discussion, we have veri�ed that this claim is correct for the case with �j(~l) = �j(�j(~l+1)) =
G for all ~l � l (with L replaced with l + 1).
For the other cases, player i is indi¤erent between any action pro�le sequence, which implies that player

i�s value is constant for any action pro�le, as desired.
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Section 11.4.4 guarantees that the probability that �j(l) = B or �j(�j(l + 1)) = B given

�j(~l) = �j(�j(~l + 1)) = G for all ~l � l � 1 is almost independent of player i�s strategy in

the lth review round and supplemental round for �i(l+1). Therefore, for almost optimality,

we can assume that player i in the lth review round maximizes (43), assuming that �j(~l) =

�j(�j(~l + 1)) = G for all ~l � l � 1, that player j uses the reward (32), that �j(l) = �̂j(l),

and that player j takes aj(x). Therefore, the same argument as for the Lth review round

establishes that �i(xi) is almost optimal for the lth review round.

Third, 1-(b) is true since, as seen in Section 11.4.4, whenever player i�s message a¤ects

player j�s continuation action, player i has been almost indi¤erent between any action pro�le.

In addition, although player i�s message and signal observation a¤ect player i�s posterior

about the optimality of �̂j(l + 1), the e¤ect is su¢ ciently small for almost optimality (see

the discussion in Section 13.1).

Fourth, 2 is true since except for rare events �̂j(l) = B or �̂i(l) = B, the players take a(x)

in the lth review round. In addition, �j(l) = B or �j(�j(l + 1)) = B does not happen with

high probability. Hence, in total, the players play a (x) and player j uses the reward (32) for

each review round with high probability. Therefore, the ex ante value is �vi (vi, respectively)

if xj = G (xj = B, respectively) by construction of ��i.

Finally, from Section 11.3, �maini satis�es 3 since we take ��i(x; �j (l) ; l) � 0 (��i(x; �j (l) ; l) �

0, respectively) if xj = G (B, respectively).

Therefore, we are left to construct the strategy in the report block and �reporti such that

�i(xi) and �maini + �reporti satisfy (3), (4) and (5).

14 Exact Optimality

In this section, we explain the strategy and the reward �reporti in the report block. As brie�y

mentioned in Sections 6 and 7, player i reports hmaini to player j if player i is picked by the

public randomization. Player j calculates �reporti based on the reported history ĥmaini so that

�i(xi) is exactly optimal against �j(xj) and �maini + �reporti .
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With the perfect cheap talk, the players could report hmaini simultaneously and instan-

taneously. However, as seen in Section 4, for the dispensability of the cheap talk, it is

important to construct the report block so that only one player sends the message and that

the cardinality of the messages is su¢ ciently small.

For the �rst purpose, the players use public randomization. Player 1 reports hmain1 if

yp � 1
2
and player 2 reports hmain2 if yp > 1

2
. Below, we consider the case where player i

reports the history.

From Section 10, there is a chronological order for the rounds. Hence, we can number

all the rounds serially. For example, the round for x1 is round 1, the round for x2 is round

2, the �rst review round is round 3, the supplemental round for �1(l + 1) is round 4, the

supplemental round for �2(l + 1) is round 5, and so on.

Let hr+1i be player i�s history at the beginning of the (r + 1)th round.

The reward from the report block is the summation of the rewards for each round:

�reporti (xj; h
TP+1
j : �) =

X
r

�reporti

�
hr+1j ; ĥr+1i ; r

�
:

Here, ĥr+1i is player i�s report about hr+1i . Precisely, to reduce the cardinality of the messages,

player i reports the summary of hr+1i . The details will be determined below. Note that the

reward for round r, �reporti

�
hr+1j ; ĥr+1i ; r

�
, depends on the history until the end of round r.

We de�ne �reporti

�
hr+1j ; ĥr+1i ; r

�
such that

1. During the main blocks, for each period t and each hti, player i believes that player i

will tell the truth about hr+1i .

2. Based on the truthful report hr+1i , �reporti will be adjusted so that �i(xi) is exactly

optimal.

Suppose that we have shown the truthtelling incentive 1 and let us concentrate on the

adjustment 2. See Section 15.7 for the proof of the truthtelling incentive.
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Since we need to keep the cardinality of the messages su¢ ciently small, we consider the

summary statistics #~r
i for the history in each round ~r: For round 1, let #

1
i be x1, the message

sent by the perfect cheap talk in round 1. Similarly, for round 2, let #2
i be x2.

For round ~r corresponding to a review round, for each (ai; yi) 2 Ai � Yi, let #~r
i (ai; yi)

be how many times player i observed an action-signal pair (ai; yi) in round ~r. Let #~r
i be a

vector
�
#~r
i (ai; yi)

�
ai;yi
.

For round ~r where player i sends a message m via noisy cheap talk, let #~r
i be player i�s

message and signals (m; g[i](m); g2[i](m)).51

For round ~r where player i receives a message m via noisy cheap talk, let #~r
i be player

i�s signals (f [i](m); f2[i](m)).

By backward induction, we construct �reporti

�
hr+1j ; ĥr+1i ; r

�
. For round r corresponding

to a review round, let (T (r; ai))ai2Ai 2 T
jAij be the set of strategies that take ai for T (r; ai)

times in round r. Given the summary of the history at the beginning of round r, player

j calculates the ex ante continuation value of taking (T (r; ai))ai at the beginning of round

r. To do so, player j assumes that player i follows the equilibrium path from the next

round if (T (r; ai))ai is a strategy taken on the equilibrium path. If (T (r; ai))ai is a deviation,

then player j assumes that player i takes a best response from the next round. In addi-

tion, player j takes into account the reward in the report block for the subsequent roundsP
~r�r+1 �

report
i

�
h~r+1j ; ĥ~r+1i ; ~r

�
. This calculation is well de�ned by the following three reasons:

(i) Ex ante, by (23), we can ignore discounting. (ii) The set of (T (r; ai))ai�s that player i

should take with positive probability on the equilibrium path is determined by a summary

of player i�s history hri �
�
#~r
i

	
~r�r�1. (iii) Player j determines her continuation strategy

treating each period within a round identically. Hence, given the truthtelling strategy in the

report block, even after a deviation, hri and #
r
i are enough to calculate the best responses

and the continuation value for player i at the beginning of the next round. To calculate the

ex ante value of taking (T (r; ai))ai, we take the expectation of this continuation value using

the conditional distribution of #r
i given (T (r; ai))ai. Since player j�s strategy treats each

51Although we neglected the secondary signals f2[i](m) and g2[i](m) for the almost optimality, for the
exact optimality, we need to take into account the belief updates from the secondary signals.
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period in round r identically, the timing of taking ai does not change the expectation as long

as (T (r; ai))ai is �xed.

On the other hand, from #r
i , player j can know how many times player i took ai in round

r. Let (#r
i (ai))ai be this number. With abuse of notation, we say player i reports that she

took (T (r; ai))ai if T (r; ai) is equal to #
r
i (ai) for all ai.

Therefore, based on the report of hri and (T (r; ai))ai, player j can construct �
report
i

�
hr+1j ; ĥr+1i ; r

�
such that, given hri and player j�s action plan in round r, �j(r),

� for all (T (r; ai))ai that should be taken with positive probability, player i�s ex ante

payo¤ at the beginning of round r is the same, and

� if player i reports (T (r; ai))ai that should not be taken on the equilibrium path, then

player j punishes player i. We make sure that this punishment is su¢ ciently large to

discourage any deviation (not only ex ante but also) after any history.

Since the original strategy is almost optimal conditional on �j(r) and a strategy which

takes non-constant actions in a review round is a deviation, the second bullet point incen-

tivizes player i to take a constant action in each review round.52 Hence, the ex ante optimality

at the beginning of each review round established by the �rst bullet point is su¢ cient for

the sequential optimality.

For round r corresponding to a round where player i sends a message m, we replace

(T (r; ai))ai with the set of possible messages m�s in the above discussion.

By backward induction, we can verify that �i(xi) is optimal, taking all the continuation

strategies into account after a deviation. See Section 15.7 for how to incentivize the players

to tell the truth.
52See the Supplemental Material 2 for how we allow a mixed strategy minimax in a general game.
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15 Appendix

15.1 Proof of Lemma 1

To see why this is enough for Theorem 1, de�ne the strategy in the in�nitely repeated game

as follows: De�ne

p(G; hTP+1i�1 : �) � 1 + 1� �

�TP
�i(G; h

TP+1
i�1 : �)

�vi � vi
;

p(B; hTP+1i�1 : �) � 1� �

�TP
�i(B; h

TP+1
i�1 : �)

�vi � vi
: (44)

If (5) is satis�ed, then for su¢ ciently large �, p(G; hTP+1i�1 : �), p(B; hTP+1i�1 : �) 2 [0; 1] for

all hTP+1i�1 . We see the repeated game as the repetition of TP -period �review phases.� In

each phase, player i has a state xi 2 fG;Bg. Within the phase, player i with state xi
plays according to �i (xi) in the current phase. After observing h

TP+1
i in the current phase,

the state in the next phase is equal to G with probability p(xi; h
TP+1
i : �) and B with the

remaining probability.

Player (i� 1)�s initial state is equal to G with probability pi�1v and B with probability

1� pi�1v such that

pi�1v �vi + (1� pi�1v )vi = vi:

Then, since

(1� �)

TPX
t=1

�t�1ui (at) + �TP
�
p(G; hTP+1i�1 : �)�vi +

�
1� p(G; hTP+1i�1 : �)

�
vi
�

=
�
1� �TP

� 1� �

1� �TP

(
TPX
t=1

�t�1ui (at) + �i(G; h
TP+1
i�1 : �)

)
+ �TP �vi
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and

(1� �)

TPX
t=1

�t�1ui (at) + �TP
�
p(B; hTP+1i�1 : �)�vi +

�
1� p(B; hTP+1i�1 : �)

�
vi
�

=
�
1� �TP

� 1� �

1� �TP

(
TPX
t=1

�t�1ui (at) + �i(B; h
TP+1
i�1 : �)

)
+ �TP vi;

(3) and (4) imply that, for su¢ ciently large discount factor �,

1. Conditional on the opponents�state, the above strategy in the in�nitely repeated game

is optimal.

2. Regardless of x�(i�1), if player i � 1 is in the state G, then player i�s payo¤ from the

in�nitely repeated game is �vi and if player i� 1 is in the state B, then player i�s payo¤

is vi.

3. The payo¤ in the initial period is pi�1v �vi + (1� pi�1v )vi = vi as desired.

15.2 Proof of Lemma 3

If Assumption 4 is satis�ed, then for any q2 > q1, the system of equations (18) and (19)

has a solution f ai (yj)gyj . If f ai (yj)gyj solves the system for q2 and q1, then, for any

m;m0 2 R++,
n
 ai (yj)+m

m0

o
yj
solves the system for q2+m

m0 and q1+m
m0 . Therefore, we can make

sure that  aj : Yj ! (0; 1).

15.3 Proof of Lemma 5

This follows from the assumption that Q1(~ai; aj) is linearly independent with respect to

~ai.53 Since
�
1� �t�1

�
ui (at) converges to 0 as � goes to unity for all t 2 f1; :::; TPg with

TP = O((1� �)�
1
2 ), we have

lim
�!1

sup
t2f1;:::;TP g;aj;t;yj;t

����i (t; aj;t; yj;t)�� = 0;
53See Yamamoto (2007) for the formal proof.
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which implies (22).

15.4 Proof of Lemma 5

This follows from the assumption that Q1(~ai; aj) is linearly independent with respect to ~ai.54

15.5 Proof of Lemma 8

Once �j(~l) = B is induced, then �j(~l
0) = B for all the following rounds. Hence, there

exists a unique l� such that �j(~l) = B is initially induced in the (l� + 1)th review round:

�j (1) = � � � = �j (l
�) = G and �j (l� + 1) = � � � = �j (L) = B. Similarly, there exists l̂� with

�̂j (1) = � � � = �̂j(l̂
�) = G and �̂j(l̂� + 1) = � � � = �̂j (L) = B. If �j (L) = G (�̂j (L) = G,

respectively), then de�ne l� = L (l̂� = L, respectively).

Then, there are following three cases:

� l� = l̂�: This means �j (l) = �̂j (l) for all l as desired.

� l� > l̂�: This means that 1-(b) or 2 is the case when player i creates �̂j(l̂� + 1) in

Section 11.4.2 and that �̂j(l̂� + 1) is determined by (39).

By Lemma 2, player i believes that, conditional on �j(l̂�+1), f [i](�j(l̂�+1)) = �j(l̂
�+1)

or g[j](�j(l̂� + 1)) = E with probability no less than 1 � exp(�O(T 1
2 )). If the latter

is the case, then �j(�j(l̂� + 1)) = B. Therefore, player i believes that, conditional on

�j(l̂
� + 1), f [i](�j(l̂� + 1)) = �j(l̂

� + 1) or �j(�j(l̂� + 1)) = B with probability no less

than 1� exp(�O(T 1
2 )).

Since player j�s continuation play in the main blocks does not depend on g[j](�j(l̂�+1)),

we are done.

� l� < l̂�: There are following two cases:

� If 1-(b) or 2 is the case when player i creates �̂j(l�+1) in Section 11.4.2, then by

the same reason as above, we are done.
54Again, see Yamamoto (2007).
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� If 1-(a) is the case when player i creates �̂j(l�+1) in Section 11.4.2, then player i

at the end of the l�th review round believes that �j(l� + 1) = G with probability

no less than 1� exp(�O(T )).

Player j�s continuation strategy reveals �j(l� + 1) through (i) the strategy in the

supplemental round for �j(l� + 1) and (ii) �̂i(l� + 1). By Condition 4 of Lemma

2, any signals happen in the supplemental round for �j(l� + 1) with probability

at least exp(�O(T 1
2 )). Hence, the update of the likelihood from (i) is bounded

by exp(O(T
1
2 )).

In addition, for �̂i(l�+1), player j is in 1-(b) or 2 when player j creates �̂i(l�+1)

in Section 11.4.2 with probability at least �. Since Condition 4 of Lemma 2

implies that any signals happen in the supplemental round for �i(l� + 1) with

probability at least exp(�O(T 1
2 )), the update of the likelihood from (ii) is bounded

by 1��
�
exp(O(T

1
2 )).

Therefore, after observing player j�s continuation strategy, player i believes �j(l+

1) = B with probability at most

exp(�O(T ))1��
�

�
exp(O(T

1
2 ))
�2

1� exp(�O(T 1
2 ))

= exp(�O(T )); (45)

as desired.

15.6 Proof of Proposition 1

For 3, it su¢ ces to have

��i (x; �j(l); l)

8<: � 0 if xj = G;

� 0 if xj = B;
(46)

j��i (x; �j(l); l)j � maxi;a 2 jui (a)jT (47)

for all x 2 fG;Bg2, �j(l) 2 fG;Bg and l 2 f1; :::; Lg.
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To see why (46) and (47) are su¢ cient, notice the following: (47) with T = (1� �)�
1
2

implies

lim
�!1

1� �

�TP
sup
x;hmainj

�����
LX
l=1

�maini (x; hmainj ; l)

����� = 0:
(46) implies that �maini (x; hmainj ; l) � 0 with xj = G or �maini (x; hmainj ; l) � 0 with xj = B

happens only if �j(l) = G and Xj(l) 62 [q2T � 2"T; q2T + 2"T ]. Since we have �j(~l) = B

for ~l > l after those events from Section 11.4.1, �maini (x; hmainj ; l) � 0 with xj = G or

�maini (x; hmainj ; l) � 0 with xj = B except for one review round. In addition, (46) im-

plies that �maini (x; hmainj ; l) � �LT for xj = G and �maini (x; hmainj ; l) � ��LT for xj = B.

Hence, in total, for any hmainj , ��LT +
PL

l=1 �
main
i (x; hmainj ; l) � 0 with xj = G and �LT +PL

l=1 �
main
i (x; hmainj ; l) � 0 with xj = B. Therefore, (5) is satis�ed.55

Now, we are left to prove 1 and 2. 1-(b) is true by the reasons that we have explained in

the main text.

We will verify 1-(a) by backward induction. Section 11.4.4 guarantees that the probability

that �j(l) = B or �j(�j(l+1)) = B given �j(~l) = �j(�j(~l+1)) = G for all ~l � l� 1 is almost

independent of player i�s strategy in the lth review round and supplemental round for �i(l+1)

and so we can neglect the e¤ect of player i�s strategy on �j for almost optimality. Further, for

a moment, forget about the �rst term in �maini , ��LT (�LT , respectively) for xj = G (xj = B,

respectively).

In the Lth review round, for almost optimality, we can assume that �j(L) = �̂j(L) and

that player j uses (32) by the following reason: By Lemma 8, player i has a posterior no

less than 1 � exp(�O(T 1
2 )) on the events that �j(L) = �̂j(L) or any action is optimal.

Since the per-period di¤erence of the payo¤ from two di¤erent strategies is bounded by

�U � �L + maxi;a 2 jui(a)j, the expected loss from assuming �j(L) = �̂j(L) is no more than

exp(�O(T 1
2 )) �UT . Therefore, for almost optimality, we can assume that �j(L) = �̂j(L).

Further, if (31) is used, then any action is optimal. Therefore, we can assume that player j

uses (32).

55We neglect (23) because of (22).
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In addition, if player j does not play aj(x), then it means that �̂i(L) = B and that,

by Section 11.4.4, any action is optimal for player i (that is, (31) is used). Hence, we can

concentrate on the case where player j plays aj(x).

If �j(L) = �̂j(L) = G, then ai(x) is strictly optimal for su¢ ciently large T since (40)

implies that the marginal expected increase in �LXj(L) is su¢ ciently large.56 If �j(L) =

�̂j(L) = B, then Di is strictly optimal since the reward (32) is constant. Therefore, �i(xi)

is optimal.

Further, if player j uses (32) and �j(L) = �̂j(L), then player i�s average continuation

payo¤ at the beginning of the Lth review round except for ��i(x; �j(L); L) is

wi(x)� 2"�L if xj = G; �j(L) = �̂j(L) = G;

wi(x) + 2"�L if xj = B; �j(L) = �̂j(L) = G;

ui(Di; Cj) if xj = G; �j(L) = �̂j(L) = B;

ui(Di; Dj) if xj = B; �j(L) = �̂j(L) = B:

(48)

Hence, there exists ��i(x; �j(L); L) with (46) and (47) such that player i�s average continuation

payo¤ is equal to wi(x)� 2"�L if xj = G and wi(x) + 2"�L if xj = B.

Therefore, we de�ne ��i(x; �j(L); L) such that player i�s value from the Lth review round

is independent of �j(L) as long as �j(L) = �̂j(L).57 In addition, Lemma 8 implies that

player i in the main blocks does not put a belief more than exp(�O(T 1
2 )) on the events

that �j(L) 6= �̂j(L) and player i�s value depends on action pro�les in the Lth review round.

Further, again, we can neglect the e¤ect of player i�s strategy on �j for almost optimality.

Therefore, for almost optimality, we can assume that player i in the (L� 1)th review round

maximizes X
t2T (L�1)

ui(at) + �maini (x; hmainj ; L� 1); (49)

56For large T , the e¤ect of dropping one tj(l) is negligible.
57In the above discussion, we have veri�ed that this claim is correct for the case with �j(~l) = �j(�j(~l+1)) =

G for all ~l � L� 1.
For the other cases, player i is indi¤erent between any action pro�le sequence, which implies that player

i�s value is constant for any action pro�le, as desired.
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assuming �j(L� 1) = �̂j(L� 1).

Therefore, the same argument as for the Lth review round establishes that �i(xi) is

almost optimal in the (L� 1)th review round.

Further, if player j uses (32) and �j(L � 1) = �̂j(L � 1), then player i�s average payo¤

from the (L� 1)th review round except for ��i(x; �j(L�1); L�1) is given by (48). The cases

where (31) will be used in the Lth review round will happen with probability no more than

� (player j is in 1-(b) in Section 11.4.2) plus some negligible probabilities for not having (35)

or (36). When (31) is used, per period payo¤ is bounded by [��u; �u] by Lemma 5.

Therefore, there exists ��i(x; �j(L � 1); L � 1) with (46) and (47) such that if player

j uses (32) and �j(L � 1) = �̂j(L � 1), then player i�s average continuation payo¤ from

the (L� 1)th and Lth review rounds is wi(x) � 2"�L � � (�u+maxi;xwi (x)) if xj = G and

wi(x) + 2"�L+ � (�u�mini;xwi (x)) if xj = B.

Recursively, for l = 1, 1-(a) of the proposition is satis�ed and the average ex ante

payo¤ of player i is wi(x) � 2"�L � L� (�u�maxi;xwi (x)) if xj = G and wi(x) + 2"�L +

L� (�u�mini;xwi (x)) if xj = B. Note that, in the �rst review round, player j uses (32) and

�̂j(1) = �j(1) = G with probability one.

Taking the �rst term ��LT (�LT , respectively) for xj = G (xj = B, respectively) into

account, the average ex ante payo¤ is wi(x)�
�L
L
�2"�L�L� (�u�maxi;xwi (x)) if xj = G and

wi(x) +
�L
L
+ 2"�L+ L� (�u�mini;xwi (x)) if xj = B.

From (41), we can further modify ��i (x;G; 1) with (46) and (47) such that �i(xi) gives �vi

(vi, respectively) if xj = G (B, respectively). Therefore, 2 of the proposition is satis�ed.

15.7 Formal Construction of the Report Block

We formally construct the strategy in the report block and �reporti so that player i tells the

truth about hmaini and that �i (xi) is exactly optimal. Here, we do not consider the feasibility

constraint (5). As we will see, �reporti is bounded by [�T�1; T�1] and we can restore (5)

by adding or subtracting a small constant depending on xj without a¤ecting e¢ ciency or

incentive.
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Let Aj(r) be the set of information up to and including round r consisting of

� What state xj player j is in, and

� What action plan �j(l) player j took in the lth review round if round r is the lth review

round or after.

We want to show that �i(xi) is exactly optimal in round r conditional on Aj(r). Note

that Aj(r) contains xj and so the equilibrium is belief-free at the beginning of the �nitely

repeated game.

The following notations are useful: As we have de�ned in Section 14, #r
i is the summary

of player i�s history within round r, hri is the summary of player i�s history at the beginning

of round r, and (T (r; ai))ai is the set of player i�s strategies that take ai for T (r; ai) times

in round r ex ante (if round r corresponds to a review round). On the other hand, let #̂r
i

be player i�s report of #r
i and

�
T̂ (r; ai)

�
ai
be such that, according to player i�s report #̂r

i ,

player i takes each ai for T̂ (r; ai) times in round r. In addition, let tr be the �rst period of

round r.

For round r corresponding to a review round, we divide a review round into T
3
4 review

subrounds. Each kth subround is from period tr + (k � 1)T
1
4 + 1 to period tr + kT

1
4 with

k 2 f1; : : : ; T 3
4g. Let T (r; k) be the set of periods in the kth subround of round r. Let

#r
i (k)(ai; yi) 2 f1; :::; T

1
4g be how many times player i observed an action-signal pair (ai; yi)

in the kth subround of round r and #r
i (k) be (#

r
i (k)(ai; yi))ai;yi.

When player i is picked by the public randomization device with probability 1
2
, player

i sends the messages via perfect cheap talk: Sequentially from round 1 to the last round,

player i reports the history as follows:

� If round r corresponds to a review round, then

�First, player i reports the summary #r
i .

� Second, for each subround k, player i reports the summary #r
i (k).
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�Third, public randomization is drawn such that each subround k is randomly

picked with probability T�
3
4 . Let k(r) be the subround picked by the public

randomization.

�Fourth, for k(r), player i reports the whole history fai;t; yi;tgt2T (r;k(r)) in the k(r)th

subround.

� If player i sends the noisy cheap talk message in round r, then player i reports #r
i ,

which is her true message m and signals g[i](m) and g2[i](m).

� If player i receives the noisy cheap talk message in round r, then player i reports #r
i ,

which is her signals f [i](m) and f2[i](m).

Remember that we want to use binary perfect cheap talk as mentioned in Section 4.

For round r corresponding to a review round, for each #r
i 2 f1; :::; TgjAijjYij, we can attach

a sequence of binary messages fG;Bg so that the sequence uniquely identi�es #r
i . The

length of the sequence is jAij jYij log2 T . Similarly, for each #r
i (k), we can attach a sequence

of binary messages fG;Bg with length 1
4
jAij jYij log2 T . For each (ai; yi), we can attach a

sequence of binary messages fG;Bg with length log2 jAij jYij. Then, the number of binary

messages to send all the messages is O(T
1
4 ) since the fourth message fai;t; yi;tgt2T (r;k(r)) is the

longest. For the other rounds, the length of the necessary messages is at most 3. Therefore,

in total, the number of messages we need is

O(T
1
4 ): (50)

As a preparation to show the incentive to tell the truth, we prove the following lemma:

Lemma 9 If Assumption 5 is satis�ed, then there exists �" > 0 such that

1. For each l 2 f1; :::; Lg, in the lth review round, there exists gi(hmainj ; ai; yi) such that,
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for period t 2 T (l), it is better for player i to report (ai;t; yi;t) truthfully: For all hmaini ,

E
�
gi(h

main
j ; âi;t; ŷi;t) j hmaini ; (âi;t; ŷi;t) = (ai;t; yi;t)

�
(51)

> E
�
gi(h

main
j ; âi;t; ŷi;t) j hmaini ; (âi;t; ŷi;t) 6= (ai;t; yi;t)

�
+ �"T�1;

where (âi;t; ŷi;t) is player i�s report about (ai;t; yi;t) in the report block.

2. For the round where player i sends the noisy cheap talk message, it is better to report

(m; g[i](m); g2[i](m)) truthfully:

E
h
gi(h

main
j ; m̂; \g[i](m); \g2[i](m)) j hmaini ;

�
m̂; \g[i](m); \g2[i](m)

�
= (m; g[i](m); g2[i](m))

i
> E

h
gi(h

main
j ; m̂; \g[i](m); \g2[i](m)) j hmaini ;

�
m̂; \g[i](m); \g2[i](m)

�
6= (m; g[i](m); g2[i](m))

i
+�"T�1; (52)

where
�
m̂; \g[i](m); \g2[i](m)

�
is player i�s report in the report block about the message

and signals of the supplemental round.

3. For the round where player i receives the noisy cheap talk message, it is better to report

(f [i](m); f2[i](m)) truthfully:

E
h
gi(h

main
j ; \f [i](m); \f2[i](m)) j hmaini ;

�
\f [i](m); \f2[i](m)

�
= (f [i](m); f2[i](m))

i
> E

h
gi(h

main
j ; \f [i](m); \f2[i](m)) j hmaini ;

�
\f [i](m); \f2[i](m)

�
6= (f [i](m); f2[i](m))

i
+�"T�1; (53)

where
�
\f [i](m); \f2[i](m)

�
is player i�s report in the report block about the signals of the

supplemental round.

Proof.

1. We show that

gi(h
main
j ; âi;t; ŷi;t) = �1ftj(l) = tg



1yj;t � E[1yj;t j âi;t; ŷi;t; aj;t]

2
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works.58 To see this, consider the following two cases:

(a) If tj(l) 6= t, then any report is optimal since gi(hmainj ; âi;t; ŷi;t) = 0.

(b) If tj(l) = t, then period t is not used for the construction of player j�s continuation

strategy. Hence, player i cannot learn yj;t from hmaini . Hence, player i, after

knowing tj(l) = t and aj;t, wants to minimize

min
âi;t;ŷi;t

E
h

1yj;t � E[1yj;t j âi;t; ŷi;t; aj;t]

2 j ai;t; yi;t; aj;ti :

Assumption 5 implies that (âi;t; ŷi;t) = (ai;t; yi;t) is a unique minimizer.

We are left to show that there exists �" > 0 such that, for any hmaini , l and t 2 T (l),

player i puts a belief at least �"T�1 on tj(l) = t. Intuitively, this is true since the full

support assumption of the signal distribution prevents player i from learning much

about tj(l).

Formally, suppose that player i knows player j�s past history before the lth review

round and that player j�s action plan �j(l).

In addition, suppose that player i knows how many times player j observed each pair�
aj; yj; 'j

�
in the lth review round. Let #�

j(l)(aj; yj; 'j) denote this number and #
�
j(l)

be a vector
�
#�
j(l)(aj; yj; 'j)

�
(aj ;yj ;'j)

. Here, 'j � (	
a(x)
j ; (Ej	i)) is a statistics that

player j constructs in the lth review round.

Further, suppose that player i knows what pair
�
aj; yj; 'j

�
is observed in tj(l). That

is, player i knows
�
aj;tj(l); yj;tj(l); 'j;tj(l)

�
=
�
�aj; �yj; �'j

�
.

Given player j�s past history before the lth review round and player j�s action plan

�j(l), how many times player j observed each pair
�
aj; yj; 'j

�
in Tj(l) determines

player j�s continuation strategy. Since this information can be calculated from #�
j(l)

and
�
aj;tj(l); yj;tj(l); 'j;tj(l)

�
=
�
�aj; �yj; �'j

�
, it su¢ ces to show that, given player j�s past

58Kandori and Matsushima (1994) use a similar reward to give a player the incentive to tell the truth
about the history.
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history before the lth review round and player j�s action plan �j(l), conditional on

fai;� ; yi;�g�2T (l), #�
j(l) and

�
aj;tj(l); yj;tj(l); 'j;tj(l)

�
=
�
�aj; �yj; �'j

�
, player i puts a belief

at least "T�1 on tj(l) = t for each t. For any t and t0 2 T (l), the likelihood ratio

between tj(l) = t and tj(l) = t0 is given by

Pr
�
tj(l) = t j fai;� ; yi;�g�2T (l); �j(l);#�

j(l);
�
aj;tj(l); yj;tj(l); 'j;tj(l)

�
=
�
�aj; �yj; �'j

��
Pr
�
tj(l) = t0 j fai;� ; yi;�g�2T (l); �j(l);#�

j(l);
�
aj;tj(l); yj;tj(l); 'j;tj(l)

�
=
�
�aj; �yj; �'j

��
=

Pr
�
#�
j(l);

�
aj;tj(l); yj;tj(l); 'j;tj(l)

�
=
�
�aj; �yj; �'j

�
j fai;� ; yi;�g�2T (l); �j(l); tj(l) = t

�
Pr
�
#�
j(l);

�
aj;tj(l); yj;tj(l); 'j;tj(l)

�
=
�
�aj; �yj; �'j

�
j fai;� ; yi;�g�2T (l); �j(l); tj(l) = t0

�
2
"

min
ai;yi;�aj ;�yj ;�'j

q(�aj; �yj; �'j j ai; yi; �j(l));
1

minai;yi;�aj ;�yj ;�'j q(�aj; �yj; �'j j ai; yi; �j(l))

#
:

Two remarks: First, we omit the conditioning on player j�s history at the beginning

of the lth review round for notational simplicity. Second, the last minimization with

respect to �aj is taken subject to �aj 2 supp(�j(l)).

Since player j�s equilibrium action plan is i.i.d. in each round and we can assume the

full support for y and 'j from Assumption 3 and Lemma 3, there exists �" > 0 such

that

Pr
�
tj(l) = t j fai;� ; yi;�g�2T (l); �j(l);#�

j(l);
�
aj;tj(l); yj;tj(l); 'j;tj(l)

�
=
�
�aj; �yj; �'j

��
> �"Pr

�
tj(l) = t0 j fai;� ; yi;�g�2T (l); �j(l);#�

j(l);
�
aj;tj(l); yj;tj(l); 'j;tj(l)

�
=
�
�aj; �yj; �'j

��
for all t and t0. Further, since �j(l) 2 Aj [ f�minmaxj g, we can take �" independently

from player j�s history at the beginning of the lth review round and �j(l). Since there

exists at least one t with

Pr
�
tj(l) = t j fai;� ; yi;�g�2T (l);#�

j(l);
�
aj;tj(l); yj;tj(l); 'j;tj(l)

�
=
�
�aj; �yj; �'j

��
� T�1;

we are done.
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2. From (13),

gi(h
main
j ; m̂; \g[i](m); \g2[i](m)) = �




1f2[j](m) � E[1f2[j](m) j f [j](m); m̂; \g[i](m); \g2[i](m)]


2
works. Since player j�s continuation play is independent of f2 [j] (m), conditioning on

hmaini does not change the optimality.

3. From (12),

gi(h
main
j ; \f [i](m); \f2[i](m)) = �




1g2[j](m) � E[1g2[j](m) j m; g[j](m); \f [i](m); \f2[i](m)]


2
works. Since player j�s continuation play is independent of g2 [j] (m), conditioning on

hmaini does not change the optimality.

Given this preparation, by backward induction, we construct �reporti

�
hr+1j ; ĥr+1i ; r

�
for

each r such that

�reporti (xj; h
TP+1
j : �) =

X
r

�reporti

�
hr+1j ; ĥr+1i ; r

�
makes it optimal to tell the truth in the report block and that �i(xi) is exactly optimal.

Formally, �reporti

�
hr+1j ; ĥr+1i ; r

�
is the summation of the following rewards and punish-

ments.

Punishment for a Lie One component of �reporti

�
hr+1j ; ĥr+1i ; r

�
is the punishment for

telling a lie. For round r corresponding to a review round, the punishment is the summation

of the following three:

� The number indicating player i�s lie about fai;t; yi;tgt2T (r;k(r)):

X
t2T (r;k(r))

T�3gi(h
main
j ; âi;t; ŷi;t): (54)
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� The number indicating player i�s lie about #r
i (k):

T�3 � T
3
4 � 1

8<:#̂r
i (k(r)) 6=

X
t2T (r;k(r))

1âi;t;ŷi;t

9=; ; (55)

where 1âi;t;ŷi;t is an jAij jYij�1 vector such that the element corresponding to (âi;t; ŷi;t)

is equal to 1 and the others are 0.

� The number indicating player i�s lie about #r
i :

T�3 � 1
(
#̂r
i 6=

X
k

#̂r
i (k)

)
: (56)

If player i sends the noisy cheap talk message in round r, then player i reports (m; g[i](m); g2[i](m)).

Player j punishes player i if it is likely for player i to tell a lie by

T�3gi(h
main
j ; m̂; \g[i](m); \g2[i](m)): (57)

If player i receives the noisy cheap talk message in round r, then player i reports

(f [i](m); f2[i](m)). Player j punishes player i if it is likely for player i to tell a lie by

T�3gi(h
main
j ; \f [i](m); \f2[i](m)): (58)

Cancel Out the Expected Punishment by Telling the Truth Note that even if player

i tells the truth, punishment is positive for (54), (57) and (58) and the expectation of the

punishment is di¤erent for di¤erent actions and messages.59 We cancel out the di¤erences

in ex ante values of the punishment between di¤erent actions and messages: If player i is

picked by the public randomization, then we add the following variables to �maini :

59On the equilibrium, (55) and (56) are 0 after any history.
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� If round r is a review round, then

X
t2T (r)

1ftj(l) = tg1ft 2 T (r; k(r))gT�3�i(aj;t; yj;t): (59)

� If player i sends the message in round r, then

T�3�i(f [j] (m)): (60)

� If player i receives the message in round r, then

T�3�i(m): (61)

Here, �i(f [j] (m)) (�i(m), respectively) is de�ned so that the di¤erences in (57) ((58), re-

spectively) among messages are canceled out ex ante before sending (receiving, respectively)

the message, as we de�ne �i(aj;t; yj;t) in Lemma 7. Lemma 2 implies that the identi�abil-

ity to create such a reward is satis�ed. In addition, we abuse notation since we use the

information in the report block such as T (r; k(r)) to de�ne �maini .

Then, in each period of the main block, given truthtelling in the report block, before

taking an action or sending a message, the ex ante punishments from (54), (55), (56), (57),

(58), (59), (60) and (61) are zero.

Reward for the Optimal Action Another component of �reporti

�
hr+1j ; ĥr+1i ; r

�
is the

reward for taking an equilibrium action in round r (or, punishment for not taking an equi-

librium action). From
�
#~r
i

	
~r�r�1, we can calculate h

r
i =

�
#~r
i

	
~r�r�1. Let ĥ

r
i be player j�s

inference of hri based on player i�s reports
n
#̂~r
i

o
~r�r�1

.

If round r corresponds to a review round, then based on the reports ĥri and #̂
r
i , player j

gives the reward

fi(ĥ
r
i ; #̂

r
i ; �j(r)); (62)
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which is to be determined. Here, �j(r) is player j�s strategy in round r.

If round r corresponds to a round where player i sends the message m, then based on

the reports ĥri and m̂, player j gives the reward

fi(ĥ
r
i ; m̂); (63)

which is to be determined.

We will take fi such that

fi(ĥ
r
i ; #̂

r
i ; �j(r)); fi(ĥ

r
i ; m̂) 2 [�T�r�5; T�r�5] (64)

for all ĥri , #̂
r
i , �j(r) and m̂.

Incentive to Tell the Truth Before specifying fi, we establish player i�s incentive to tell

the truth. For the reports about the last round, all the reports about the previous rounds are

sunk. Hence, what the reports a¤ect is the punishment and fi for the last round. From (64),

the e¤ect on fi is bounded by O(T�5) while the marginal e¤ect on punishment from telling

a lie is at least O(T�4) from (54), (55), (56), (57), (58) and Lemma 9. Hence, truthtelling is

strictly optimal.

Given the incentive to tell the truth about the last round, the same argument holds for

the second last round, and so on. By induction, we establish player i�s incentive to tell the

truth for all the rounds.

Ex Ante Expected Punishment Given the truthtelling incentive and (59), (60) and

(61), in each period of each main block, before taking an action or sending a message, the

ex ante punishments from (54), (55), (56), (57), (58), (59), (60) and (61) are zero.

Determination of fi We determine fi by backward induction. For round r corresponding

to a review round, given ĥri and �j(r), we can calculate the ex ante continuation value of

(T (r; ai))ai. To do so, we assume that player i follows the equilibrium path from the next

91



round if ĥri is an on-path history and (T (r; ai))ai is a strategy taken on the equilibrium path.

If ĥri is an o¤-path history or (T (r; ai))ai is a deviation, then we assume that player i takes a

best response from the next round. Here, we take fi for round ~r � r + 1 into account. This

calculation is well de�ned since

� (23) implies that we can ignore discounting.60

� fi for round ~r � r + 1 has been de�ned since we proceed backward.

� Given the truthtelling incentive, the ex ante punishments from (54), (55), (56), (57),

(58), (59), (60) and (61) are zero and can be ignored.

� The set of (T (r; ai))ai�s that player i should take with positive probability on the

equilibrium path is determined by a summary of player i�s history hri �
�
#~r
i

	
~r�r�1.

� Player j determines her continuation strategy (�j(xj), �maini and fi for round ~r �

r + 1) treating each period within a round identically. Hence, given the truthtelling

strategy in the report block, even after a deviation, hri and #
r
i are enough to calculate

the best responses and the continuation value at the beginning of the next round.

To calculate the ex ante value of taking (T (r; ai))ai, we take the expectation of this

continuation value using the conditional distribution of #r
i given (T (r; ai))ai. Since

player j�s strategy treats each period in round r identically, the timing of taking ai

does not change the expectation as long as (T (r; ai))ai is �xed.

Let v(ĥri ; �j(r); (T (r; ai))ai) denote this value. Let (T
�(r; ai))ai be (T (r; ai))ai that it gives

the lowest ex ante value within those taken with positive probability in equilibrium.

We de�ne fi such that, if ĥri is an on-path history,

� if
�
T̂ (r; ai)

�
ai
is not an equilibrium strategy given ĥri , then

fi(ĥ
r
i ; #̂

r
i ; �j(r)) = �T�r�5; (65)

60Since a player takes a mixed strategy when she minimaxes the opponent when we consider non-prisoners�-
dilemma games in the Supplemental Materials, it is important to cancel out discounting so that this value
is well de�ned without reporting what action is taken for each period.
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and

� if
�
T̂ (r; ai)

�
ai
is an equilibrium strategy given ĥri , then

fi(ĥ
r
i ; #̂

r
i ; �j(r)) = 2

�
v(ĥri ; �j(r); (T

�(r; ai))ai)� v(ĥri ; �j(r);
�
T̂ (r; ai)

�
ai
)

�
(66)

so that player i is indi¤erent between any equilibrium strategy. The term 2 represents

1

Pr(player i is picked by the public randomization)
: (67)

On the other hand, if ĥri is an o¤-path history, then fi is de�ned to be 0.

We can take fi(ĥri ; #̂
r
i ; �j(r)) satisfying (64) since (i) the original strategy is almost op-

timal, (ii) fi for round ~r � r + 1 is bounded by [�T�r�6; T�r�6],61 (iii) we have established

the incentive to tell the truth, and (iv) from (iii) and �i, the ex ante punishments from (54),

(55), (56), (57), (58), (59), (60) and (61) are zero.

(65) is enough to discourage any deviation after any history on the equilibrium path,

considering all the continuation strategies after a deviation, that is, �(x) and the reward

functions are a Nash equilibrium, by the following reasons: Since a strategy which takes

non-constant actions in a review round is a deviation, the original strategy is almost optimal

conditional on �j(r), and the punishment in (65) for the current round is su¢ ciently larger

than fi for the later rounds, (65) incentivizes player i to take a constant action in each review

round in equilibrium. Hence, the ex ante optimality at the beginning of each review round

established by (66) is su¢ cient for the sequential optimality.

For round r where player i sends a message m, we replace (T (r; ai))ai with the set of

possible messages.

We can proceed until the �rst round and show the optimality of �i(xi) recursively.

Finally, without the reward in the report block, for all x 2 fG;Bg2, �i(xi) gives a payo¤

vi for xj = B and �vi for xj = G. In this section, we have established the exact optimality of

61For the last round, fi for round ~r � r + 1 does not exist.

93



�i(xi) conditional on xj. Since the summation of the reward in the report block is bounded

by T�1, for all x 2 fG;Bg2, �i(xi) is optimal against �j(xj) and gives a payo¤ close to vi
for xj = B and �vi for xj = G. Since �i(xi) is optimal conditional on xj, it is optimal for

both players to send xi truthfully in the coordination block (although player 2, the second

sender, knows x1 when she sends x2).
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