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1 Introduction

One of the key results in the literature on infinitely repeated games is the folk theorem:
Any feasible and individually rational payoff can be sustained in equilibrium when players
are sufficiently patient. Even if a stage game does not have an efficient Nash equilibrium,
the repeated game does. Hence, the repeated game gives a formal framework to analyze a
cooperative behavior. Fudenberg and Maskin (1986) establish the folk theorem under perfect
monitoring, that is, when players can directly observe the action profile. Fudenberg, Levine
and Maskin (1994) extend the folk theorem to imperfect public monitoring, where players
can observe only public noisy signals about the action profile.

Recent papers by Horner and Olszewski (2006 and 2009) show that the folk theorem
holds in private monitoring, where players can observe only private noisy signals about the
action profile, if the monitoring is almost perfect and almost public, respectively.

The driving force of the folk theorem in perfect or public monitoring is the coordination
of future play based on common knowledge of relevant histories. Specifically, the public com-
ponent of histories, such as action profiles in perfect monitoring or public signals in public
monitoring, reveals past action profiles (at least statistically). Since this public information
is common knowledge, players can coordinate a punishment contingent on the public infor-
mation, and thereby provide dynamic incentives to choose actions that are not static best
responses.

Horner and Olszewski (2006 and 2009) show the robustness of this coordination to the
limited classes of private monitoring. If monitoring is almost perfect, then players can
believe that every player observes the same signal corresponding to the action profile with
high probability. If monitoring is almost public, then players can believe that every player
observes the same signal with high probability.! Hence, almost common knowledge about
relevant histories still exists.

However, with general private monitoring, almost common knowledge may not exist and

!See also Mailath and Morris (2002 and 2006).



coordination is difficult (we call this problem “coordination failure”).> Hence, the robustness
of the folk theorem to general private monitoring has been an open question. For example,
Kandori (2002) states that “[t]his is probably one of the best known long-standing open
questions in economic theory.”?

This paper is, to the best of our knowledge, the first to show that the folk theorem
holds in repeated games with discounting and generic private monitoring: In any N-player
repeated game with private monitoring, if each player’s number of signals is sufficiently large,
then any feasible and individually rational payoff is sustainable in a sequential equilibrium
for a sufficiently large discount factor.*

Repeated games with private monitoring are relevant for many traditional economic
problems. For example, Stigler (1964) proposes a repeated price-setting oligopoly, where
firms set their own price in a face-to-face negotiation and cannot directly observe their
opponents’ prices. Instead, a firm obtains some information about opponents’ prices through
its own sales. Since the level of sales depends on both opponents’ prices and unobservable
shocks due to business cycles, the sales level is an imperfect signal. Moreover, each firm’s sales
level is often private information. Thus, the monitoring is imperfect and private. In principal-
agent problems, if the principal evaluates the agent subjectively, then the monitoring by the
principal about the agent becomes private. Despite the importance of these problems, only a
limited number of papers successfully analyze the repeated games with private monitoring.’
Our result offers a benchmark to analyze these problems in a general private-monitoring
setting.

To show the folk theorem under general private monitoring, we unify and improve on

three approaches in the literature on private monitoring that have been used to show the

2Mailath and Morris (2002 and 2006) and Sugaya and Takahashi (2011) offer the formal models of this
argument.

3See Mailath and Samuelson (2006) for a survey.

4See Lehrer (1990) for the case of no discounting.

SHarrington and Skrzypacz (2011) show evidence of cooperative behavior (cartels) among firms in lysine
and vitamin industries. After arguing that these industries fit Stigler’s setup, they write a repeated-game
model with private monitoring and solve a special case. See also Harrington and Skrzypacz (2007).

Fuchs (2007) applies a repeated game with private monitoring to a contract between a principal and an
agent with subjective evaluation.



partial results so far: Belief-free, belief-based and communication approaches.

The belief-free approach (and its generalizations) has been successful in showing the
folk theorem in the prisoners’ dilemma.® A strategy profile is belief-free if, for any history
profile, the continuation strategy of each player is optimal conditional on the history of the
opponents. Hence, coordination failure never happens. With almost perfect monitoring,
Piccione (2002) and Ely and Vailiméki (2002) show the folk theorem for the two-player

" Without any assumption on the precision of monitoring but with

prisoners’ dilemma.
conditionally independent monitoring, Matsushima (2004) obtains the folk theorem in the
two-player prisoners’ dilemma, which is extended by Yamamoto (2011) to the N-player
prisoners’ dilemma with conditionally independent monitoring.®

Previously, attempts to generalize Matsushima (2004) have shown only limited results
without almost perfect or conditionally independent monitoring: For some restricted classes
of the distributions of private signals, Fong, Gossner, Hérner and Sannikov (2010) show that
the payoff of the mutual cooperation is approximately attainable and Sugaya (2010a) shows
the folk theorem in the two-player prisoners’ dilemma. Sugaya (2010b) shows that the folk
theorem holds with a general monitoring structure in the prisoners’ dilemma if the number
of players is no less than four.

Several papers construct belief-based equilibria, where players’ strategies involve statis-
tical inference about the opponents’ past histories. That is, since common knowledge about

relevant histories no longer exists, each player calculates the beliefs about the opponents’

histories to calculate best responses. With almost perfect monitoring, Sekiguchi (1997)

6Kandori and Obara (2006) use a similar concept to analyze a private strategy in public monitoring.
Kandori (2010) considers “weakly belief-free equilibria,” which is a generalization of belief-free equilibria.
Apart from a typical repeated-game setting, Takahashi (2010) and Deb (2011) consider the community
enforcement and Miyagawa, Miyahara and Sekiguchi (2008) consider the situation where a player can improve
the precision of monitoring by paying cost.

"See Yamamoto (2007) for the N-player prisoners’ dilemma. Ely, Horner and Olszewski (2004 and 2005)
and Yamamoto (2009) characterize the set of belief-free equilibrium payoffs for a general game. Except for
the prisoners’ dilemma, this set is not so large as that of feasible and individually rational payoffs.

8The strategy used in Matsushima (2004) is called a “belief-free review strategy.” See Yamamoto (2011)
for the characterization of the set of belief-free review-strategy equilibrium payoffs for a general game with
conditional independence. Again, except for the prisoners’ dilemma, this set is not so large as that of feasible
and individually rational payoffs.



shows that the payoff of the mutual cooperation is approximately attainable and Bhaskar
and Obara (2002) show the folk theorem in the two-player prisoners’ dilemma.? Phelan and
Skrzypacz (2011) characterize the set of possible beliefs about opponents’ states in a finite-
state automaton strategy and Kandori and Obara (2010) offer a way to verify if a finite-state
automaton strategy is an equilibrium.

Another approach to analyze repeated games with private monitoring introduces pub-
lic communication. Folk theorems have been proven by Compte (1998), Kandori and Mat-
sushima (1998), Aoyagi (2002), Fudenberg and Levine (2002) and Obara (2009). Introducing
a public element (the result of communication) and letting a strategy depend only on the
public element allow these papers to sidestep the difficulty of coordination through private
signals. However, the analyses are not applicable to settings where communication is not
allowed: For example, in Stigler (1964)’s oligopoly example, anti-trust laws prohibit commu-
nication. Horner and Olszewski (2006) argue that “communication reintroduces an element
of public information that is somewhat at odds with the motivation of private monitoring
as a robustness test” to the lack of common knowledge.

This paper incorporates all three approaches. First, the equilibrium strategy to show the
folk theorem is phase-belief-free. That is, we see the repeated game as the repetition of long
review phases. Each player has two strategies for the review phase; one that is generous to
the opponent and another that is harsh to the opponent.'® At the beginning of each review
phase, for each player, both generous and harsh strategies are optimal conditional on any
realization of the opponents’ history. Within each review phase, each player can change
the opponent’s continuation payoff from the next review phase by changing the transition
probability between the two strategies, without considering the other players’ history. This
equilibrium is immune to coordination failure at the beginning of each phase and gives us
freedom to control the continuation payoffs.

Second, however, the belief-free property does not hold except at the beginning of the

9Bhaskar and Obara (2002) also derive a sufficient condition for the N-player prisoners’ dilemma.

10 As will be seen in Section 5, for a game with more than two players, one of player i’s strategies is generous
to player i + 1 and another of player i’s strategies is harsh to player i + 1. In addition, players — (i,i+ 1)’s
payoffs are constant regardless of which strategy player 4 picks from the two.



phases. Hence, we consider each player’s statistical inference about the opponents’ past
histories as in the belief-based approach within each phase.

Finally, in our equilibrium, to coordinate on the play in the middle of the phase, the
players do communicate but the message exchange is done with their actions. The difficulty
to replace cheap talk with messages via actions is that, since the players need to infer the
opponents’ messages from their private signals, common knowledge about the past messages
no longer exists. One of our methodological contributions is to offer a systematic way to
replace the cheap talk with message exchange via actions in private monitoring by overcoming
the lack of common knowledge.

The rest of the paper is organized as follows: Section 2 introduces the model and Section
3 states the assumptions and main result. Section 4 offers the overview of the structure of
the proof. Section 5 relates the infinitely repeated game to a finitely repeated game with an
auxiliary scenario (reward function) and derives a sufficient condition on the finitely repeated
game to show the folk theorem in the infinitely repeated game. The remaining parts of the
paper are devoted to the proof of the sufficient condition. Section 6 explains the basic
structure of the finitely repeated game. As will be seen in Section 7, we concentrate on the
approximate equilibrium until Section 13. Since the complete proof is long and complicated,
for the rest of the main text (that is, from Section 8 to Section 15), we concentrate on a special
case explained in Section 8 to illustrate the key structure. Namely, we focus on the two-
player prisoners’ dilemma with cheap talk and public randomization, and interested readers
may refer to the Supplemental Materials for the complete proof for a general game without
cheap talk or public randomization. Section 9 specifies what assumptions are sufficient
in this special case. After we formally define the structure of the finitely repeated game
for the two-player prisoners’ dilemma in Section 10, we define the strategy in Section 11.
While defining the strategy, we define many variables. Section 12 verifies that we take all the
variables coherently. Section 13 shows that the strategy approximately satisfies the sufficient
condition derived in Section 5. Finally, Section 14 adjusts the strategy further so that it

exactly satisfies the sufficient condition (therefore, we are not considering an approximate



equilibrium. The final strategy is an ezact sequential equilibrium). All proofs are given in

the Appendix (Section 15). Sections from 16 to 53 are in the Supplemental Materials.

2 Model

2.1 Stage Game

The stage game is given by {I, {A;,Y;, Ui}iel,q}‘ I ={1,...,N} is the set of players, A;
with |A;] > 2 is the finite set of player i’s pure actions, Y; is the finite set of player i’s private
signals, and U; is the finite set of player i’s ex-post utilities. Let A = [],.; Ai, Y =[], Vi

and U = []

iel
.c1 Ui be the set of action profiles, signal profiles and ex post utility profiles,
respectively.

In every stage game, player ¢ chooses an action a; € A;, which induces an action profile
a = (ay,...,ay) € A. Then, a signal profile y = (y1,...,yn) € Y and an ex post utility
profile @ = (41, ..., uy) € U are realized according to a joint conditional probability function
q(y,u|a).

Following the convention in the literature, we assume that ; is a deterministic function
of a; and y; so that observing the ex post utility does not give any further information than
(a;,y;). If this were not the case, then we could see a pair of a signal and an ex post utility,
(yi, 0;), as a new signal.

Player i’s expected payoff from a € A is the ex ante value of u; given a and is denoted
u; (a). For each a € A, let u (a) represent the payoff vector (u; (a))

iel”

2.2 Repeated Game

Consider the infinitely repeated game of the above stage game in which the (common)
discount factor is 6 € (0,1). Let a;, and y; -, respectively, denote the action played and the
private signal observed in period 7 by player 7. Player i’s private history up to period ¢t > 1
is given by ht = {a;,,yi,}._,. With h} = {0}, for each t > 1, let H! be the set of all hf. A



strategy for player 7 is defined to be a mapping o; : |J Hf — A(4;). Let ; be the set of all
t=1
strategies for player i. Finally, let E(8) be the set of sequential equilibrium payoffs with a

common discount factor 6.

3 Assumptions and Result

In this section, we state two assumptions and the main result (folk theorem).
First, we state an assumption on the payoff structure. Let F' = co({u(a)}.ca) be the set

of feasible payoffs. The minimax payoff for player i is

. .
v = min max u;(a;, a_;).
Oé_iEHj#iA(A]-) aieAi

Then, the set of feasible and individually rational payoffs is given by F* = {v € F : v; > v}

for all i}. We assume the full dimensionality of F™.

Assumption 1 The stage game payoff structure satisfies the full dimensionality condition:

dim(F*) = N.
Second, we state an assumption on the signal structure.

Assumption 2 Fach player’s number of signals is sufficiently large: For anyi € I, we have

Vil >2) 14,
jEI
Under these assumptions, we can generically construct an equilibrium to attain any point

in int(F™*).

Theorem 1 If Assumptions 1 and 2 are satisfied, then the folk theorem generically holds:
For generic q (- | -), for any v € int(F*), there exists 6 < 1 such that, for all 6 > 6, v € E ().



See Section 9 and the Supplemental Material 1 for exactly what genericity conditions we
need in the proof. As will be seen, Assumption 2 is more than necessary. What we need for

the proof is

|Ay] + 2| A 4]

if N =2,
|Y;| = nax |Az| + ’Aiﬂ‘ -1+ 2Zj7éi,i+1 (’Aj‘ - 1) ) ’Aifl‘ + Zj;ﬁiq,z‘ (’AJ" - 1) )
2|As-al maxer {31451 + S 1Anl } s maser {31451+ 25,41, 14nl |

if N> 3.

From now on, we arbitrarily fix v € int(F*) and construct an equilibrium to support v

in a sequential equilibrium.

4 An Overview of the Argument

This section provides some intuition for our construction. Following Horner and Olszewski
(2006), we see a repeated game as repetition of Tp-period review phases. Tp will be formally
defined later. In Section 4.1, we explain that our equilibrium is “phase-belief-free” and how
it makes our equilibrium immune to coordination failure at the beginning of each phase.
Section 4.2 offers the basic structure of the review phase.

To explain the details of the review phase, it is useful to consider a special case where
additional communication devices are available. Section 4.3 introduces these devices. With
these communication devices, in Sections 4.4, 4.5 and 4.6, we offer the detailed explanation
of the review phase.

Finally, we explain how to dispense with the communication devices in Section 4.7.

4.1 Phase-Belief-Free

As Horner and Olszewski (2006), the equilibrium is phase-belief-free. Each player i has two
Tp-period-finitely-repeated-game strategies, denoted o;(G) and o;(B). At the beginning of



each review phase, for each player i, independently of her history, any continuation strategy
that adheres to one of the two strategies o;(G) and o;(B) in the review phase is optimal. We
say that player i taking o;(x;) with x; € {G, B} in the review phase is “in state z; € {G, B}.”

Intuitively speaking, o;(G) is a “generous” strategy that gives a high payoff to player
i+ 1 (mod N) who takes either 0;1(G) or ;1(B), regardless of the other players’ state
profile z_(;;+1) € {G, B} 2. On the other hand, o;(B) is a “harsh” strategy that gives
a low payoff to player i + 1 regardless of player (i + 1)’s strategy (including those different
from 0;41(G) and 0;11(B)) and _(;;+1). Hence, player (i — 1)’s strategy controls player
i’s value regardless of z_(;_1), replacing ¢ with ¢ — 1 in the previous two sentences. Since
these two strategies are optimal at the beginning of the next phase, it is up to player ¢ — 1
whether player i — 1 will take 0;_1(G) or o;_1(B) in the next phase. Therefore, player i — 1
with 0;_1(G) in the current phase can freely reduce player i’s continuation payoff from the
next review phase by transiting to o;_1(B) with higher probability while player i — 1 with
0;—1(B) can freely increase player i’s continuation payoff by transiting to o;_;(G) with higher
probability.!’ In summary, we do not need to consider player (i — 1)’s incentive to punish

player i after a “bad history” in state G or to reward player ¢ after a “good history” in state

B.

4.2 Structure of the Review Phase

The basic structure of the review phase is summarized as follows. At the beginning of the
review phase, the players communicate a state profile z € {G, B}". This communication
stage is named the “coordination block” since the players try to coordinate on x. The details
will be explained in Section 4.4.

Based on the result of the coordination block, the players play the finitely repeated

1Here, the changes in the continuation payoffs are measured by the differences between player i’s ex ante
value given x;_1 at the beginning of the review phase and the ex post value at the end of the review phase
after player 7 — 1 observes the history in the phase. See Section 5 for the formal definition.

For example, if player ¢ — 1 with x;_; = G does not reduce player i’s continuation value, then it means
that the state of player ¢ — 1 in the next review phase is G with probability one, so that the ex post value is
the same as the ex ante value.

10



game for many periods. This step consists of multiple “review rounds.” The details will be
explained in Section 4.6.

Finally, at the end of the phase, the players communicate the history in the coordination
block and review rounds. This stage is named the “report block” since the players report the
history in the review rounds. The role of this communication will be explained in Section

4.5.

4.3 Special Communication Devices

Before explaining the details of the coordination block, review rounds and report block, we
introduce three special communication devices. We will dispense with all three in Section

4.7.

Perfect Cheap Talk Until Section 4.6, we assume that the players could directly com-
municate in the coordination block and report block. We assume that the communication
were (i) cheap (not directly payoff-relevant), (ii) instantaneous and (iii) public and perfect

(it generates the same signal as the message to each player).

Noisy Cheap Talk In the review rounds, we assume that the players could directly com-
municate via noisy cheap talk. We will later explain why we use noisy cheap talk rather
than the perfect cheap talk in the review rounds.

“Noisy cheap talk with precision p € (0,1)” is the communication device that is (i)
cheap and (ii) instantaneous, but (iii) private and imprecise with probability exp(—O(T"?)).'?
Specifically, when the sender (say player j) sends a binary message m € {G, B} via noisy
cheap talk, the receiver (say player i) will observe a binary private signal f[i](m) € {G, B}.
With high probability, the message transmits correctly: f[i](m) = m with probability 1 —
exp(—O(TP)). Given the true message m and the receiver’s private signal f[i](m), the

controller of the receiver’s payoff (player i — 1) stochastically receives a binary private signal

12Tn general, when we say y = O(x), it means that there exists k > 0 such that y = kz.

11



gli — 1)(m) € {m, E}. If f[i](m) # m (if the receiver receives a wrong signal), then g[i —
1](m) = E with probability 1 — exp(—O(T?)). That is, g[i — 1](m) = E implies that player
i —1 (the controller of player i’s payoff) suspects that the communication may have an error.
Further, we assume that any signal pair can occur with probability at least exp(—O(17)).
Hence, the communication is noisy.

We assume that the signals are private. Therefore, f[i](m) is observable only to the
receiver (player ) and g[i — 1](m) is observable only to the controller of the receiver’s payoff
(player i — 1).

There are two important features of this noisy cheap talk: First, whenever the receiver
realizes that her signal was wrong: f[i](m) # m, then she puts a belief no less than 1 —
exp(—O(T"?)) on the event that the controller of her payoff should have received the signal
gli — 1](m) = E and “realized” there was an error.'® Second, any error occurs with positive
probability exp(—O(T?)). It will be clear in Section 4.6 that these two features are important

to construct an equilibrium in the review rounds.

Public Randomization In the report block, we assume that public randomization were
available in addition to the perfect cheap talk.
With these special communication devices, Sections 4.4, 4.5 and 4.6 explain the coordi-

nation block, the report block and the review rounds, respectively.

4.4 Coordination Block

The role of the coordination block is to coordinate on x as in Hérner and Olszewski (2006).
With the perfect cheap talk, each player tells the truth about her own state x; and the
state profile z € {G, B} becomes common knowledge. In the review rounds, based on z,
the players play a(x) with high probability on the equilibrium path. Intuitively, a(z) is the
action profile taken in the “regular” histories when the state profile is x. See Section 5 for

the formal definition of a(z).

13As we will see, player (i — 1)’s continuation play is independent of g[i — 1](m) and so player i cannot
learn g[i — 1](m).

12



4.5 Report Block

We introduce the report block where the players communicate the history in the coordination
block and review rounds. This communication enables us to concentrate on e-equilibrium
until the end of the last review round. Suppose that we have constructed a strategy profile
which is e-equilibrium at the end of the last review round if we neglect the report block. We
explain how to attain the exact equilibrium by using the report block.

As seen in Section 4.3, suppose that the perfect cheap talk and public randomization are
available. Each player ¢ is picked by the public randomization with probability +.'* The
picked player i sends the whole history in the coordination block and review rounds (denoted
hinainy to player ¢ — 1. That is, h"*™ is player i’s history from the beginning of the current
review phase to the end of the last review round.

Assume that player i always tells the truth about h*®. Player i — 1 changes the contin-
uation payoff of player ¢ such that, after any period ¢ in the coordination block and review
rounds, after any history A, it is exactly optimal for player i to follow the prescribed action
by o;(x;). Since the original strategy profile was e-equilibrium with arbitrarily small ¢, this
can be done by slightly changing the continuation strategy based on A" and hiain 15

The remaining task with the perfect cheap talk and public randomization is to show the
incentive to tell the truth about h**™. Intuitively, with defining a linear space and norm prop-

main main | 7 main
hi—l - E |:hi—1 | hz i|

erly for the histories, player i—1 punishes player ¢ proportionally to ’
with iz?‘ain being the reported history. The optimal report fz?ain to minimize the expected

. . [ . 2 . ~ . .
i — 5 [ | fymain) || h;.nam} is to tell the truth: Amain — pmain 10

punishment [E “
Since the adjustment for exact optimality is small, the small punishment is enough to in-
centivize player ¢ to tell the truth. Therefore, the total changes in the continuation payoff

based on the report block do not affect the equilibrium payoft.

1For N > 3, the precise procedure is slightly different. See Section 36 in the Supplemental Material 3.

15With more than two players, player i — 1 also needs to know the histories of players — (i — 1,7). So that
players —(i—1,14) can send their histories to player i — 1, we introduce another communication stage after the
report block, named the “re-report block.” Since this information sent by players — (i — 1,4) in the re-report
block is used only to control player i’s continuation payoff, the truthtelling incentive for players — (i — 1,1)
is trivially satisfied. See Section 37 in the Supplemental Material 3.

16 Note that this logic is the same as we show the consistency of generalized-method-of-moments estimators.

13
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4.6 Review Rounds

Between the coordination block and the report block, the players play a T-period “review

round” for L times. Here, L € N is a fixed integer that will be determined in Section 12, and

N

T=01-6"

so that

T — oo and 67 — 1 as 6 — 1. (1)

Throughout the paper, we neglect the integer problem since it is handled by replacing each
variable s that should be an integer with minngN n.

The reason why we have T" periods in each Z(;\jiew round is to aggregate private signals for
many periods to get precise information as in Matsushima (2004).}7 There are two reasons
why we have L review rounds. The first reason is new: As we will explain, the signals of the
players can be correlated while Matsushima (2004) assumes that the signals are conditionally
independent. To deal with correlation, we need multiple review rounds.

The second reason is the same as Horner and Olszewski (2006). If we replace each period
of Horner and Olszewski (2006) with a T-period review round, then we need a sufficiently
large number of review rounds so that a deviator should be punished sufficiently long to
cancel out the gains in the instantaneous utility from deviation.

Below, we offer a more detailed explanation of the review rounds. In Section 4.6.1, we
concentrate on the first role of the L rounds. That is, we consider the case where the block
of Horner and Olszewski (2006) has one period, that is, the stage game is the two-player
prisoners’ dilemma. We will explain a general two-player game and a general more-than-two-
player game in Sections 4.6.2 and 4.6.3, respectively, where the second role of the L rounds
is important.

Whenever we consider the two-player case and we say players ¢ and j, we assume that

player j is player ¢’s (unique) opponent unless otherwise specified.

17See also Radner (1985) and Abreu, Milgrom and Pearce (1991).

14



4.6.1 The Two-Player Prisoners’ Dilemma

In the two-player prisoners’ dilemma, we consider player i’s incentive to take o;(G) when
player j takes 0,(G). The other combinations of (z;,z;) are symmetric. Remember that
since z is communicated via perfect cheap talk, x is common knowledge.

So that o,;(G) is generous to player j, player i needs to take cooperation with ex ante high
probability. On the other hand, player j can reduce player i’s continuation payoft from the
next review phase based on her history within the current review phase (see the explanation
of phase-belief-free in Section 4.1).

Suppose that player j has a “good” random variable (signal) which occurs with proba-
bility g2 when player ¢ takes cooperation and with probability ¢; < ¢» when player ¢ takes
defection. ¢o > 0 can be very small since the monitoring is imperfect. Assume that the
instantaneous utility gain of taking defection instead of cooperation is g > 0.

If player j needs to incentivize player i to take cooperation every period independently,

then player j needs to reduce player i’s continuation payoff by at least - 4 o (for simplicity,

forget about discounting) after not observing the good signal. Then, the ex ante per-period

g
q2—q1

reduction of the continuation payoff is (1 — g2), which is too large to attain efficiency
(if go is bounded away from one). That is, player j switches to the harsh strategy (which
takes defection in the prisoners’ dilemma) from the next review phase too often. Hence, we
need to come up with a procedure to prevent the inefficient punishment (reduction of the

continuation payoff).

Conditional Independence Following Matsushima (2004), assume that player ¢’s signals
were independent of player j’s signals. In this case, we could see a collection of L review
rounds as one “long review round.” That is, player j monitors player i for LT periods. Player
7 will take the generous strategy with probability one in the next review phase if the good

signal is observed (g + 2¢) LT times or more.'® If it is observed less, then player j reduces

the continuation payoff by the shortage multiplied by —2—. That is, with X; being how

q2—q1

18We will explain why we use 2¢ instead of ¢ later. In addition, this ¢ is different from e for e-equilibrium.

15



many times player j has observed the good signal in the LT periods, the reduction of the
continuation payoff will be —£— {(g + 2¢) LT — X}, ."? We call X “player j’s score about

q2—q1

player 7.”

Since player i’s signals were independent of player j’s signals, player ¢ could not update
any information about player j’s score about player ¢ from player i’s private signals. Hence,
by the law of large numbers, for sufficiently large T', player i believes that (gs + 2¢) LT —X; >
0 with ex post high probability after any history. Hence, it is optimal for player ¢ to constantly

take cooperation. At the same time, since the expected value of X; is ¢, LT, the ex ante

per-period reduction of the continuation payoff is gql 2e, which can be arbitrarily small by

q2—

taking € small. Therefore, we are done.

Conditional Dependence Now, we dispense with conditional independence. That is,
player ¢’s signals and player j’s signals can be correlated arbitrarily. Intuitively, see one
period as a day and a long review round as a year: LT = 365. Since the expected score is
q2 LT, to prevent an inefficient punishment, player j cannot punish player ¢ after the score
slightly exceeds g2 LT (in the above example, (g2 + 2¢) LT'). On the other hand, if the signals
are correlated, then later in a year (say, November), it happens with a positive probability
that player i believes that, judging from her own signals and correlation, player j’s score
about player i has been much more than ¢, LT already (in the above example, more than
(go + 2¢) LT). Then, player i wants to start to defect.

More generally, it is impossible to create a punishment schedule that is approximately
efficient and that at the same time incentivizes player i to cooperate after any history with
arbitrary correlation. Hence, we need to let player ¢’s incentive to cooperate break down
after some history. Symmetrically, player j also switches her own action after some history.

Intuitively, player ¢ switches to defection if player i’s expectation of player j’s score about
player i is much higher than the ex ante mean. We want to specify exactly when each player

1 takes defection based on player i’s expectation of player j’s score about player .

1Q{X}+ is equal to X if X > 0 and 0 otherwise.

16



Chain of Learning However, this creates the following problem: Since player i switches
her action based on player i’s expectation of player j’s score about player i, player ’s
action reveals player i’s expectation of player j’s score about player ¢. Since both “player
1’s expectation of player j’s score about player ¢” and “player i’s score about player j” are
calculated from player i’s history, player 7 may want to learn “player i’s expectation of player
7’s score about player i” from “player j’s signals about player i’s action.” If so, player j’s
decision of actions depends also on player j’s expectation of player i’s expectation of player
j’s score about player i. Proceeding one step further, player i’s decision of actions depends
on player i’s expectation of player j’s expectation of player i’s expectation of player j’s score

about player ¢. This chain continues infinitely.

Noisy Cheap Talk Cuts off the Chain of Learning We want to construct an equilib-
rium that is not destroyed by the chain of high order expectations. From the discussion of
the report block, we can focus on e-equilibrium. This means that, to verify an equilibrium, it
is enough to show that each player believes that her action is strictly optimal or any action
is optimal with high probability (not probability one). To prevent the chain of learning,
we take advantage of this “e slack” in e-equilibrium and the noise in the noisy cheap talk
explained in Section 4.3.

The basic structure is as follows. We divide an LT-period long review round into L
T-period review rounds. We make sure that each player takes a constant action within a
review round. If player j observes a lot of good signals in a review round, then player ¢
should take defection from the next review round. At the end of each review round, player
J sends a noisy cheap talk message with precision p = % to inform player ¢ of the optimal
action in the next review round. Based on player i’s own history and player i’s signal of
player j’s message via noisy cheap talk, player ¢ may switch to a constant defection from
the next review round. That is, the breakdown of incentives and switches of actions occur
only at the beginning of each review round. The remaining questions are (i) how we can

incentivize player j to tell the truth and (ii) how we can make sure that the chain of learning
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does not destroy an equilibrium.

The intuitive answer to these questions are as follows. In equilibrium, by the law of
large numbers, with ex ante high probability, player ¢ at the end of the review round puts
a high belief on the event that player j has not observed a lot of good signals. In such a
case, player ¢ believes that player i’s optimal action in the next review round is cooperation
and disregards the signal of player j’s message. That is, the precision of player ¢’s inference
about player i’s optimal action from the review rounds is usually 1 — exp(—O(T")) because
the length of the review round is 7. Since this is higher than the precision of the signal of
the noisy cheap talk, 1 — exp(—O(T %)), player ¢ disregards the signal. Player i incentivizes
player j to tell the truth by changing player j’s continuation payoff from the next review
phase only if player ¢ does not disregard the message. Since player i does not disregard
the message only after rare histories, incentivizing player j does not affect efficiency. This
answers question (i).

The answer to question (ii) is as follows: Consider the case where player i obeys the signal
of player j’s message and player i learns from player j’s continuation play that player i’s
signal of player j’s message was wrong. Even after realizing an error, player i keeps obeying
the signal by the following reasons: By the definition of the noisy cheap talk in Section 4.3,
player i believes that player j should have received E and should have realized that player i’s
signal was wrong. Since player j’s continuation play never reveals whether player j received
E or not, player ¢ keeps this belief. As will be seen, player j after observing F makes player
1 indifferent between any action profile. Therefore, it is almost optimal for player ¢ to keep
obeying the signal.

Next, consider the case where player i disregards the signal of player j’s message and
player ¢ learns from player j’s continuation play that player j’s action is different from what
is consistent with player i’s expectation of player j’s score about player i and player ¢’s
message. For example, player i sent the message that player j should switch to defection
but realizes that player j is still cooperating. This means that, if player i’s message had

transmitted correctly, then in order for player j to keep cooperating, player j’s history should
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have told player j that player ¢ has not observed a lot of good signals about player j yet
(that is, player j’s expectation of player i’s score about player j is low). What if player j’s
expectation of player i’s good signal about player j and player j’s good signal about player
1 are negatively correlated and this implies that player j should have observed a lot of good
signals about player ¢? Does player ¢ want to switch to defection? The answer is no. Since
player i’s message did not transmit correctly with probability exp(—O(T%)), player ¢ always
attributes the inconsistency between player j’s action and player i’s expectation of player j’s
action to the error in player j’s signal of player i’s noisy message, rather than the mistake
in player i’s inference.?’

We will define an equilibrium strategy more fully to answer the questions (i) and (ii)

formally.

Full Explanation of the Strategy For each [th review round, let X;(I) be player j’s score
about player ¢ in the [th review round, which denotes how many times player j observes the
good signal in the [th review round.

In each Ith review round, if X;(I) < (qo +2¢)T for all [ < | — 1, that is, if player
7’s score about player ¢ has not been “erroneously high” in the previous review rounds,
then player 7 monitors player ¢ by player j’s score about player ¢. That is, the reduction
of the continuation payoff from the next review phase?! caused by the Ith review round

is 4 ((¢2+2¢)T — X;(l)). Note that this is proportional to 2 {(¢2 +2¢) LT — X;},

q2—q1 2—q1

except that this increases without an upper bound within a review round.
On the other hand, if Xj(l~) > (g2 + 2¢) T happens for some [ < | — 1, that is, if player
j’s score about player ¢ has been “erroneously high” in one of the previous review rounds,

then player j stops monitoring. That is, the reduction of player ¢’s continuation payoff from

the next review phase caused by the /th review round is fixed at g7 + = 4 o2eT. See below

for how we determine this number.

20Gee 1-(b) and 2 below to make sure that after any history, there is a positive probability that player j
obeys the signal of player i’s message.
2INote that this is not a next review round.
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For notational convenience, let \;(I) = G denote the situation that player j monitors
player ¢ in the [th review round and let A;(I) = B denote the situation that player j stops
monitoring in the I/th review round. That is, A\;(1) = G and \;(I) = G if and only if
X;(0) < (qa+2¢)T forall [ <1—1.

The total reduction of the continuation payoff is

J T+Z(1{)\j(l):G} g ((C_I2—|—2€)T—Xj(l))—|—1{)\j(l):B}< I py9 25T)).

42— q1 =1 a2 —q a2 —q a2 —q

In general, 1{X} is an index function such that

1 (X} 1 if X is true,
0 if X is not true.

Three remarks: First, we have a constant term _—4—T'. Note that the maximum score X (D)

for one round is T'. Since the increment of the decrease in the reduction of the continuation

payoff is s 4 o this constant term is sufficient to cover the maximum decrease of the reduction

of the continuation payoff for one review round. Second, after (¢» + 2¢) 7T — X;(l) < 0, that

is, after player j’s score about player ¢ becomes erroneously high, in the following review

rounds, we have a constant positive reduction (q2 4 qlT + 5 4 o 25T>. Third, from the first
and second remarks, the total reduction in the continuation payoff at the beginning of the
next review phase is always positive. This implies that we can find a transition probability
for player j’s state in the next review phase to achieve this reduction of the continuation
payoff. If it were negative, then player j would need to transit to a bad strategy with a
negative probability, which is infeasible.

Consider player i’s incentive. If player i could know A;(l), then player ¢ wants to take

cooperation (defection, respectively) constantly in the Ith review round if A\;(I) = G (\;(1) =

B, respectively). Verify this by backward induction: In the last Lth review round, this is true

g
q2—q1

since the decrease in the reduction of the continuation payoff is always (0, respectively)

for an additional observation of the good signal if \;(L) = G (\;(L) = B, respectively).
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Note that with this optimal strategy, player i’s payoff from the Lth review round (the

instantaneous utilities in the Lth review round and the reduction of the continuation payoff

caused by the Lth review round) is equal to u;(C,C) — - 4 - 26T regardless of \;(L) if player
J plays cooperation.?? That is, the reduction of the continuation payoff after \;(L) = B
is determined so that player i’s payoff is the same between \;(L) = G and \;(L) = B.
Therefore, when we consider the (L — 1)th review round, player i can neglect the effect of
the strategy in the (L — 1)th review round on the payoff in the Lth review round. Hence,
the same argument establishes the result for the (L — 1)th review round. We can proceed
until the first review round by backward induction.

Since player ¢ cannot observe \;(I+ 1) directly, after the /th review round, player ¢ wants
to know whether A\;(l + 1) is G or B. To inform player ¢ of \;(l + 1), player j sends a
noisy cheap talk message m = \;(l + 1) with precision p = % at the end of each [th review
round. With two players, player ¢ — 1 is equal to player j. If player j receives the signal
gl7](m) = E which implies that the communication may have an error, then player j makes
player 7 indifferent between any action profile sequence in the following review rounds.

Intuitively, player i takes cooperation in the next review round if f[i](\;(I+1)) = G and
defection if f[i|()\;({ + 1)) = B. However, to incentivize player j to tell the truth without
destroying efficiency of the equilibrium and to deal with the chain of learning, we need a
more complicated strategy.

Specifically, after each Ith review round, player i calculates the conditional belief (dis-
tribution) of X;(I) given player ¢’s history. By the central limit theorem, given player i’s
history, the standard deviation of this conditional distribution is O(T%). If the conditional
expectation of X;(!) is no more than (g, +¢) T, then since (g2 + 2¢) T is far from the con-
ditional expectation by at least €T, player 7 believes that player j has not observed an

erroneously high score with probability at least 1 — exp(—O(T')). That is, player i believes
that \;(I4+1) = G with probability at least 1 —exp(—O(T')).?* Therefore, if player i’s condi-

22 As player i switches to defection after some history, player j does not always take cooperation. We will
take this into account in the formal proof.
23 Precisely speaking, Aj(l +1) = B if and only if player j has observed an erroneously high score in the
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tional expectation of player j’s score about player 7 is no more than (g2 + €) 7', then player
i will think that it is an error with probability at least 1 — exp(—O(T)) if player i receives
FlI (I +1)) = B.

Given the discussion above, player ¢ will take the following strategy:

1. If player i’s conditional expectation of player j’s score about player i is no more than

(g2 + ¢) T', then player i will mix the following two:

(a) With probability 1—n, player ¢ disregards the message and believes that \;(I+1) =
G, thinking that it is an error if player ¢ receives f[i](A;(l 4+ 1)) = B.

(b) With probability n, player i obeys player i’s signal of player j’s message: Player i
takes cooperation in the (I 4 1)th review round if f[i|(\;(I4+1)) = G and defection
if fliJ(N;(I1+1)) = B.

2. If player ¢’s conditional expectation of player j’s score about player i is more than
(g2 +¢) T, then player i always obeys player i’s signal of player j’s message: Player i
takes cooperation in the (I + 1)th review round if f[i](\;({ 4+ 1)) = G and defection if
FI(+ 1) = B.

In addition, if 1-(b) or 2 happens, then player ¢ makes player j indifferent between any
action profile sequence.

Verify that this is an e-equilibrium: From player ¢’s perspective at the beginning of the
(I 4+ 1)th review round, 1-(a) is e-optimal by the reason explained above. For 1-(b) and 2,
it is always e-equilibrium to obey the message since whenever player i’s signal is wrong:
FlEJ(A;(1+1)) # A;j(1+1), player j receives g[j](A;(I+1)) = E and makes player ¢ indifferent
between any action profile sequence with probability 1 — exp(—O(T'2)).

Does player i« want to learn from player j’s continuation strategy? The answer is no in

e-equilibrium.

Ith review round for some [ < [. Hence, even if player j’s score in the lth review round is not erroneously
high, it is possible to have A;(I+1) = B when player j has observed an erroneous score before the ith review
round. We will take this into account in the formal proof in Section 13.
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If 1-(b) or 2 is the case for player i, then since player j’s strategy is independent of
gl7](\;(141)),?* player i always believes that if f[i](\;(I14+1)) # A\;(I4+1), then g[j](A\;(I+1)) =
E.

If 1-(a) is the case for player ¢, then player i’s belief on A;({ +1) = G at the beginning of
the (I 4 1)th review round is no less than 1 — exp(—O(T')). On the other hand, 1-(b) or 2 is
the case for player j with probability at least n regardless of player j’s history. Hence, player
J obeys player j’s signal of player i’s message with probability at least 7. Since player j’s
signal of player i’s message is noisy, regardless of player i’s true message and g[i](\;({ + 1)),
any realization of player j’s signal is possible with probability at least exp(—O(T%)). Thus,
player i believes that any action of player j happens with probability at least exp(—O(T%)).
Since the initial belief on \;(I + 1) = G is 1 — exp(—O(T')), which is very high compared to
exp(—O(T %)), player i will not learn from player j’s continuation play in e-equilibrium.

In other words, when player ¢ obeys the signal, player ¢ believes that if player ¢’s signal is
wrong, then player j should have known that. When player ¢ disregards the message based
on her inference from the review round, then whenever player i observes player j’s action
different from player i’s expectation, player ¢ attributes the inconsistency to an error in player
7’s signals, rather than to player ¢’s inference about player j’s score about player . This is
possible since the inference from the review round is precise with probability 1 —exp(—O(T"))
while the signals of the noisy cheap talk are imprecise with probability exp(—O(T'2)).

Finally, consider player j’s incentive. The incentive to tell the truth about A;(l + 1) is
satisfied since whenever player i’s signal of player j’s message affects player ¢’s continuation
play, that is, if 1-(b) or 2 is the case for player ¢, then player i makes player j indifferent
between any action profile sequence.

We also need to consider player j’s incentive in the /th review round. If 1-(a) is the case,
then player ¢ cooperates and player ¢ does not make player j indifferent between any action

profile sequence. This is better than 1-(b) or 2, where player ¢ makes player j indifferent be-

24 As player i’s continuation play is independent of g[i](\;(I+1)), player j’s continuation play is independent
of gl5](A; (I + 1))
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tween any action profile sequence.?® Therefore, if player j can decrease player i’s conditional
expectation of player j’s score about player i, then player j wants to do so. We construct the
good signal so that player j cannot manipulate player i’s conditional expectation of player
j’s score about player i. That is, player j’s expectation of player ¢’s conditional expectation
of player j’s score about player i is constant with respect to player j’s action. See (19) and
(27) for the formal definition of the good signal.

Therefore, this is an e-equilibrium.

We are left to check efficiency. An erroneously high realization of player j’s score about
player i or player ¢’s conditional expectation of player j’s score about player i does not occur
with high probability. In addition, g[j](m) = E does not happen with high probability either.
Hence, if we take 7 (the probability that 1-(b) is the case) sufficiently small, then with high
probability, player ¢ takes cooperation for all the review rounds and player 7 monitors player

1 by

L
g g

T+ g2+ 2e)T — X;(1)).
q2 — 1 ;%—%((2 ) J())

Since the ex ante mean of X (1) is g7, the per-period expected reduction of the continuation

payoff is s 4 o (% + 25), which can be arbitrarily small for large L and small e.

Summary Let us summarize the equilibrium construction. Although the breakdown of
cooperation after erroneous histories is inevitable, we need to verify that the chain of learning
does not destroy the incentives. First, we divide the long review round into L review rounds.

We make sure that, in each review round, the constant action is optimal. To do so, we have

a constant term — i o T for the reduction of the continuation payoff. This is enough to cover
the maximum decrease in the reduction of the continuation payoff in one review round. At
the same time, since the length of one review round is only % of the total length of the

review phase, the per-period reduction of the continuation payoff from this constant term is

25Since player i is in the good state, when player i makes player j indifferent between any action profile
sequence, player ¢ will do so by reducing player j’s continuation payoff from the next review phase so that
player j’s payoff (the summation of the instantaneous utilities and the reduction of the continuation payoff)
is flatten at the lowest level with respect to action profiles.
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sufficiently small for large L. So, this does not affect efficiency.

To inform player ¢ of the optimal action in the next review round, player j sends a noisy
message. The noise plays two roles: First, player i (the receiver) disregards the message
with ex ante high probability (this is 1-(a) in the above explanation). To incentivize player
j to tell the truth, player ¢ makes player j indifferent between any action profile sequence
in the following review rounds whenever player i’s signal of player j’s message affects player
1’s continuation play. Since player ¢ disregards the message with high probability, this does
not destroy efficiency. Second, since each player obeys her signal of the opponent’s message
with a positive probability, whenever a player observes the opponent’s action different from
what she expected, she thinks that this is due to an error in the noisy communication. This
cut down the chain of learning.

Finally, we construct the good signal from player j’s private signals such that player j’s
expectation of player i’s conditional expectation of player j’s score about player ¢ is constant

with respect to player j’s action.

4.6.2 A General Two-Player Game

Now, we consider the second role of L, that is, we consider a game where the block of Hérner
and Olszewski (2006) has more than one period. We still concentrate on the two-player case.

Imagine that we replace each period in Hoérner and Olszewski (2006) with a T-period
review round. We need L review rounds so that, when player ¢ uses the harsh strategy,
regardless of player j’s deviation, we can keep player j’s value low enough. If player j
deviates for a non-negligible part of a review round, then by the law of large numbers, player
1 can detect player j’s deviation with high probability. If player ¢ minimaxes player 5 from
the next review round after such an event, then player j can get a payoff higher than the
targeted payoff only for one review round. With sufficiently long L, therefore, player j’s
average payoff from a review phase can be arbitrarily close to the minimax payoff.

A known problem to replace one period in Hérner and Olszewski (2006) with a review

round is summarized in Remark 5 in their Section 5. Player i’s optimal action in a round
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depends on player j’s signals in the past rounds. Player ¢ calculates the belief about player
j’s past signals at the beginning of the round and starts to take an action that is optimal from
her belief. While player ¢ observing signals in that round, since player j’s actions depend on
player j’s signals in the past rounds, player : may realize that player j’s actions are different
from what player ¢ expected from her belief about player j’s signals. Then, player ¢ needs
to correct her belief about player j’s past signals.

Realize that this is the same “chain of learning” problem as we have dealt with for A;({).
Here, we will proceed as follows: Player j has a “signal to check her own deviation” which
occurs less often if player j does not follow the equilibrium path. Let G;(I) be how many
times player j observes this signal in the [th review round. We call G;(I) “player j’s score
about player j’s own deviation.” If the realization of G;(I) is sufficiently low, then player j
allows player ¢ to minimax player j from the next review round. Specifically, player j makes
player ¢ indifferent between any action profile sequence from the (I + 1)th review round.?® At
the end of the Ith review round, player j sends the noisy cheap talk message about whether
player j will allow player ¢ to minimax player j from the next review round.

On the other hand, at the end of the [th review round, player i calculates the conditional
expectation of player j’s score about player j’s own deviation. With probability 1 —n, player

i decides the action in the (I + 1)th review round as follows:

1. If player i’s conditional expectation of player j’s score about player j’s own deviation
is very low, then player ¢ disregards player i’s signal of player j’s message and will
minimax player j. Player i believes that it is an error if the signal says that player j

will not allow player ¢ to minimax player j.

2. Otherwise, player ¢ will not minimax player j. Since player j makes player ¢ indifferent

if player j allows player ¢ to minimax, not minimaxing is always optimal.

26To prevent player i from manipulating whether player j makes player 4 indifferent, we construct player
j’s score about player j’s own deviation so that player i cannot change player i’s expectation of player j’s
score about player j’s own deviation. This is parallel to making sure that player j cannot change player j’s
expectation of player ¢’s conditional expectation of player j’s score about player 1.
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With a small probability 7, player ¢ obeys the signal of player j’s message. In this case,
player ¢ makes player j indifferent between any action profile sequence.

Then, from 1, player j will be minimaxed if player j deviates with high probability
regardless of player j’s message. For this procedure to trigger the punishment properly,
we construct player j’s score about player j’s own deviation so that player ¢’s conditional
expectation of player j’s score about player j’s own deviation will become low if player j
deviates. Hence, we can keep player j’s payoff low regardless of player j’s deviation both
in actions and messages. Since the players obey the signals of the messages with positive
probability, if player i realizes that player j’s action is different from what player ¢ expected,
then player ¢ thinks that it is due to an error in the noisy communication. Hence, the chain

of learning will not be a problem in e-equilibrium.

4.6.3 A General Game with More Than Two Players

Finally, we consider a general game with more than two players. There are two problems
unique to a game with more than two players: First, if player ¢’s state x; is B, then player
(¢ + 1)’s value should be low. Since player i is in the bad state, player ¢ can only increase
the continuation payoff. That is, we cannot punish player ¢ + 1 by reducing the continuation
payoff. Hence, players — (i + 1) need to minimax player 7 + 1 if player i + 1 seems to have
deviated. With two players, player ¢ is the only opponent of player ¢ + 1 and so it suffices
for player ¢ to unilaterally punish player ¢ + 1. Hence, the punishment explained in Section
4.6.2 works (note that player i + 1 is player j in the two-player case). On the other hand,
with more than two players, we need to make sure that players — (i + 1) can coordinate on
the punishment. This coordination can be done by communication among all the players
about who will be punished at the end of each review round. See the Supplemental Material
3 for the details.

Second, there will be a new problem when we dispense with the perfect cheap talk in the

coordination block. We will address this issue in Section 4.7.2.
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4.7 Dispensing with Special Communication Devices

We are left to dispense with the special communication devices introduced in Section 4.3. We
first explain the dispensability in the two-player game and then proceed to the dispensability

in the more-than-two-player game.

4.7.1 Two Players

Dispensing with the Perfect Cheap Talk for x We explain how to replace the perfect
cheap talk for the coordination on x in the coordination block with messages via actions.
We proceed in steps.

First, we replace the perfect cheap talk with the noisy cheap talk sending a binary
message. The property of the noisy cheap talk here is the same as the one in Section 4.3.
By exchanging the noisy cheap talk messages several times, each player ¢ can construct the
inference of x, denoted x(i). The important properties to establish are (i) x(i) = x for all i
with high probability, (ii) the communication is incentive compatible, and (iii) after realizing
that (i) # z(j), that is, after player i realizes that player ¢’s inference is different from player
j’s inference, player ¢ believes that player j should have realized there was an error in the
communication and that player 7 has made player i indifferent between any action profile
sequence in all the review rounds with high probability. See the Supplemental Material 4
for the details.

Dispensing with the Noisy Cheap Talk Second, we replace all the noisy cheap talk
with messages via actions. Given the discussion above, by doing so, we can dispense with
the perfect cheap talk in the coordination block and the noisy cheap talk in the review
rounds. Consider the situation where player j sends a binary noisy cheap talk message
m € {G, B} to player i with precision p € (0,1). Again, with two players, player i — 1 is
equal to player j. Remember that the noisy cheap talk with precision p is (i) cheap, (ii)
instantaneous, and (iii) precise with probability 1 — exp(—O(1?)): (iii-a) f[i](m) = m with
probability 1 — exp(—O(T?)); (iii-b) If f[i](m) # m, then g[j](m) = E with probability
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1 —exp(—O(T?)); (iii-c) any signal pair can occur with probability exp(—O(T7)).

Instead of sending a noisy cheap talk message, suppose that player j sends the message
via actions: Player j (sender) picks two actions af and aJB and takes aj* for TP period. Player
i (receiver) takes some fixed action, say a¥. Player i needs to infer the message from her
private signals.

There are three difficulties: The message exchange is now (i) payoff-relevant, (ii) takes
time and (iii) imprecise.

Since TP < T with p € (0,1), the length of the communication is much shorter than
that of the review rounds. Therefore, we can deal with the first difficulty by changing
the continuation payoffs to cancel out the differences in the instantaneous utilities. With
TP < T, this does not affect the equilibrium payoff, that is, the equilibrium payoff is mainly
determined by the instantaneous utilities and the changes in the continuation payoffs from
the T-period review rounds. (ii) In addition, 77 < 7" implies that the second difficulty does
not affect the equilibrium payoff either.

(iii) We are left to consider the third difficulty. We want to create a mapping from player
J’s history to g[j](m) € {m, E} and a mapping from player i’s history to f[i|(m) € {G, B}
to preserve (iii-a), (iii-b) and (iii-c). The latter cannot depend on the true message.

The basic intuition is as follows. Suppose that player i’s signals and player j’s signals
are correlated. Player i infers that the message is m if the empirical distribution of player
1’s signals is close to the true distribution under player j sending m. If player ¢ makes a
mistake, then it means that player ¢ observes the empirical distribution of her signals that is
far away from the true distribution. Since the signals are correlated, with high probability,
player j also observes the empirical distribution of her signals that is far away from the
ex ante distribution under m.?” Since player j knows her own message m, player j should
realize that there may be an error. That is, if player j infers g[j](m) = E if the empirical

distribution of player j’s signals is far from the true distribution under m, then (iii-b) is

2TThis is not generically true if player i’s number of signals is much larger than player j’s number of signals.
This corresponds to the case where f[i](m) below is not well defined. See the Supplemental Material 4 for
how to deal with this case.
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satisfied. (iii-a) follows from the law of iterated expectation and the low of large numbers
and (iii-c) follows from the full support assumption of the signal distribution.

Formally, by the law of large numbers, with very high ex ante probability, the empiri-
cal distribution of player j’s signals with a message m is very close to the affine hull of the true
distribution of player j’s signals with respect to player i’s deviation: aff <{ (q;(y; | aj, a,-))yj }aieAi> :
Hence, if not, then player j thinks that there is an error. That is,

1. g[j](m) = m if the empirical distribution of player j’s signals is very close to

aff <{(qj(yj | a;ﬂ,ai))yj}ai%), and

2. g[jl(m) = E if it is not close to aff <{(qj(yj | a}f'l,ai))y_} . )
a; €A;

J

On the other hand, we define f[i|(m) as follows:

1. Player ¢ calculates the conditional expectation of the empirical distribution of player

j’s signals as if player ¢ knew m = G. If this conditional expectation is not far away

from aff <{(qj(yj | af,ai))yj}aieA ), then f[i](m) =G.

2. Player i calculates the conditional expectation of the empirical distribution of player

7’s signals as if player ¢« knew m = B. If this conditional expectation is not far away

(s | aB. a. ; =
from aff <{(q](y] | a; ,al))yj}aieAi), then f[i|(m) = B.
Suppose that this is well defined. That is, there is no player ¢’s history such that

e If player ¢ calculates the conditional expectation of the empirical distribution of player

J’s signals as if player ¢ knew m = G, then this conditional expectation is not far away

from aff <{(Qj(yj | af, ai)>yj}aieAi)‘

e At the same time, if player i calculates the conditional expectation of the empirical
distribution of player j’s signals as if player ¢ knew m = B, then this conditional

expectation is not far away from aff <{ (g;(y; | a?, ai))y} ) either.
J

a; €A;
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Then, we are done: First, (iii-a) is satisfied by the law of iterated expectations and the
law of large numbers. Second, (iii-b) is satisfied. To see why, suppose that the true message is
m = G and that player i has f[i|(m) = B. Then, since 1 is not the case, player i’s conditional
expectation of the empirical distribution of player j’s signals as if player ¢ knew m = G (this

is the true message) is far away from aff ({ (g;(y; | af, ai))y} ) This implies that, by
J

CLZ'EAZ'
the central limit theorem, player i puts a belief no less than 1 —exp(—O(T?)) on