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Abstract

Stable matchings are the primary solution concept for two-sided matching markets
with nontransferable utility. We investigate the strategic foundations of stability
in a decentralized matching market. Towards this end, we embed the standard
marriage markets in a search model with random meetings. We study the limit
of steady-state equilibria as exogenous frictions vanish. The main result is that
convergence of equilibrium matchings to stable matchings is guaranteed if and only
if there is a unique stable matching in the underlying marriage market. Whenever
there are multiple stable matchings, sequences of equilibrium matchings converging
to unstable, inefficient matchings can be constructed. Thus, vanishing frictions do
not guarantee the stability and efficiency of decentralized marriage markets.
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1. Introduction

This paper considers a two-sided matching market with nontransferable utility:
agents on each side of the market match with at most one agent from the other side of
the market, and agents cannot make transfers. Following standard practice, we refer
to such a market as a marriage market and use the corresponding terminology; see
Roth and Sotomayor [26]. The central theoretical problem in a marriage market is to
determine who will match with whom. The concept of stable matchings introduced
in Gale and Shapley [17] provides an answer: a matching is stable if no matched
agent prefers to be single and no pair of agents prefers each other to their assigned
partner in the matching.

Most of the recent literature on matching considers questions of economic design
in centralized markets. However, many of those markets that are analyzed using
stability concepts, including the marriage market in its literal sense, are decentral-
ized. Roth and Sotomayor [26, p.22] conjecture that even in a decentralized market,
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we might expect matchings to be stable if frictions are negligible in the sense that
“the agents have a very good idea of one another’s preferences and have easy access
to each other.” The purpose of this paper is to test this conjecture. In particular,
we assume complete information about preferences and ask whether “easy access”
to potential partners implies the stability of matchings.

To investigate this question, we embed a marriage market in a search model
with random meetings and investigate the limit of steady-state equilibria in the
search model when search frictions vanish. Our approach is thus akin to the one
in the literature on convergence to competitive equilibria in dynamic matching and
bargaining games, surveyed in Osborne and Rubinstein [24] and Gale [16].] The
concern motivating our paper is the same as the one motivating this literature,
namely, to investigate the strategic foundations of stable outcomes in decentralized
markets. The key difference is that we consider the nontransferable utility case.

In the underlying marriage market that we consider, there are a finite number
of men and women. All individuals have strict preferences over mates and staying
single; no further restrictions on preferences are imposed. In the search model
there are continua of men and women with each individual in the marriage market
represented by one of a finite number of types. The rate at which men and women
meet one another is determined by the size of the population of agents searching
for a potential partner according to a continuous contact function. If a man and a
woman meet, they decide whether to accept each other. If both accept, the agents
leave as a matched pair. Otherwise, both continue searching. The opportunity cost
of rejecting a partner and waiting for a better match is an exogenous risk that an
agent will have to abandon the search and remain single. Exogenously arriving
unmatched men and women keep the stock of agents who are searching for partners
from depleting. We study the matchings that result from steady-state equilibria and
refer to these as equilibrium matchings.

Due to the randomness inherent in the contact process and the risk of exogenous
exit, different agents of the same type will obtain different outcomes in a steady-state
equilibrium. The equilibrium matchings arising in the search model thus correspond
to fractional matchings as considered in Roth et al. [28]. We find it convenient to
refer to matchings in which all agents of the same type receive the same match as
simple matchings and to reserve the term fractional matchings for matchings that
are not simple; the term matching encompasses both possibilities. The distinction
between simple and fractional matching patterns plays a key role in our analysis.

In the search model the speed of the contact process determines how difficult
it is to access potential partners and will thus serve as our measure of frictions.
To investigate whether equilibrium matchings approximate stable matchings when

LA rather different approach to the emergence of stable matchings in marriage markets with
decentralized decision making is pursued by Roth and Vande Vate [27]. They demonstrate that
starting from any initial matching, the process of allowing randomly chosen “blocking pairs” of
myopic agents to match converges to a stable matching. Their model abstracts from the strategic
considerations and frictions that are at the heart of our approach.



search frictions are small, we study those matchings in the marriage market that
can be obtained as limits of equilibrium matchings in the search model as the speed
of the contact process goes to infinity. We refer to these matchings (both, simple
and fractional) as limit matchings.

Our first main result, Proposition 1, is that a simple matching is a limit matching
if and only if it is stable. At first glance, this result may seem to settle the question
motivating this paper in the positive. It does not. The reason is that Proposition
1 does not preclude the existence of fractional limit matchings. To obtain firm
conclusions about the stability of limit matchings, we need to address the existence of
fractional limit matchings and their properties. Our second main result, Proposition
2, shows that fractional limit matchings exist if and only if there is more than one
stable matching in the underlying marriage market. Fractional limit matchings have
undesirable properties. We show that fractional limit matchings fail to satisfy a weak
stability requirement that is implied by all existing stability notions for fractional
matchings. In addition, fractional limit matchings are inefficient.

Taken together, our results identify a dichotomy between those marriage markets
that have a unique stable matching and those that do not. In the first case, all
equilibrium matchings converge to the unique stable matching when frictions vanish.
In the second case, vanishing frictions do not imply stability.?

Our analysis is driven by two characterization results. The first of these, given
in Lemma 7, provides necessary and sufficient conditions for a matching to arise as
the equilibrium outcome in the search model. Theorem 1 builds on Lemma 7 to
obtain a concise characterization of limit matchings in terms of the parameters of
the underlying marriage market. These results not only yield Propositions 1 and 2,
but also provide more general insights into the structure of equilibria with search
frictions. We demonstrate this in Section 5 by obtaining counterparts to our limit
results for the case of small search frictions.

Three key features differentiate our model and results from related contributions
investigating the limits of steady-state equilibria in search models for vanishing
frictions.

First, as we have already noted above, the literature on convergence to compet-
itive equilibria in dynamic matching and bargaining games considers transferable
utility, whereas we assume utility to be nontransferable. This difference is critical
to our analysis. The reason is that with nontransferable utility agents may disagree
about whether or not to form a match.? For example, if a woman strictly prefers to

%A similar dichotomy has been observed in related problems. Sénmez [33] studies a general class
of indivisible goods allocation problems, including the marriage market investigated here as a special
case, and finds that there exists a Pareto efficient, individual rational, and strategy-proof solution
only if the core correspondence is “essentially single-valued.” Bloch and Diamantoudi [3] study a
non-cooperative game of coalition formation and identify conditions which imply that all equilibria
are efficient (in the sense of no-delay ) and generate stable outcomes. In a marriage market these
conditions are satisfied if the market itself and any “submarket” have a unique stable matching.

3 In contrast, if transfers are possible, agents always agree whether a match should be formed,
because the available surplus from the match is either positive or not. Smith [31] uses the obser-



match with the man she has met and the man is indifferent as to either accepting
the match or continuing to search, there is no inducement the woman can offer to
the man to break his indifference.* Such disagreements play, as we demonstrate in
Corollary 4, an essential role in our construction of fractional limit matchings.

Second, the composition and size of the stock of searching agents are endoge-
nously determined by agents’ acceptance decisions and, in addition, depend on the
speed of the contact process. Consequently, whether an agent has “easy access” to
attractive partners depends not only on the search frictions per se, but also on the
equilibrium behavior of all other agents and the properties of the contact function.
Taking these effects into account differentiates our work from the two existing pa-
pers, namely Eeckhout [13] and Adachi [1], that investigate convergence to stable
matchings in frictional search models with nontransferable utility: Adachi [1] as-
sumes that the distribution of agents searching for a partner is exogenous, whereas
Eeckhout [13] considers the special case of a market in which identical measures
of men and women meet each other according to a contact function with constant
returns to scale, thus eliminating many of the complications we encounter in our
more general setting. Indeed, dealing with the endogeneity of the stock is one of
the main challenges in proving our characterization of limit matchings. We believe
that taking these effects into account is not only of technical but also of economic
interest.’

Third, we consider the general version of the marriage model as introduced
in Gale and Shapley [17], in which multiplicity of stable matchings is a common
occurrence. This is in contrast to most of the literature studying search models with
nontransferable utility which follows Becker [2] in assuming that agents agree on the
ranking of their potential partners.% In such models with vertical heterogeneity, there
is a unique stable matching featuring positive assortative matching.” Our analysis
not only shows that in models with vertical heterogeneity the convergence to a stable
outcome is assured, but also demonstrates that this result is not robust. Clearly,
to reach the latter conclusion, it is essential to consider more general preference

vation that disagreements about matchings in social settings are common as an argument for the
nontransferable utility model.

4Such indifferences may arise in equilibrium despite our assumption that preferences are strict
because continuation payoffs are determined endogenously to equilibrate the market.

®Burdett and Coles [6] and Shimer and Smith [30] discuss the importance of the feedback effect
from agents’ decision to the steady-state distribution of types. In the context of the literature
on convergence to competitive equilibria, Gale [15] has pioneered the investigation of models in
which the stock of searching agents is endogenously determined and offers extensive discussion. See
Lauermann [20] for further discussion.

SBurdett and Coles [7] and Smith [32] survey the literature. Notable contributions include
McNamara and Collins [21], Johnstone et al. [18], Burdett and Coles [6], Morgan [23], Eeckhout
[13], Bloch and Ryder [4], Smith [31]. Burdett and Wright [9] and Burdett et al. [8] also study
search models with nontransferable utility, but consider a model with match-specific random shocks
in which all agents on the same side of the market are identical ex-ante.

"See Eeckhout [14] and Clark [10] for more general conditions ensuring uniqueness of stable
matchings.



structures.

The papers most closely related to ours are Eeckhout [13] and Adachi [1]. These
authors also consider the relationship between stable matchings in a marriage mar-
ket and the equilibrium matchings in a search model when frictions become negligi-
ble. Both papers find convergence to stable matchings. This is consistent with our
findings: The underlying marriage market in Eeckhout [13] features vertical hetero-
geneity and thus has a unique stable matching. Adachi [1], who considers general
preferences as we do, eliminates fractional limit matchings from consideration by re-
quiring an agent to accept a partner whenever the agent is indifferent as to accepting
the partner or continuing to search.

Section 2 introduces the marriage market model, discusses stable matchings,
and introduces the notions of coherent and regret-free matchings that play a key
role in our analysis. Section 3 embeds the marriage market in a search model,
defines equilibrium matchings, and notes some of their properties. We present our
limit results for the case of vanishing frictions in Section 4. As a byproduct of our
convergence analysis, we obtain results for search with small frictions. These are
noted in Section 5. Section 6 concludes.

2. Marriage Market

2.1. Agents and Preferences

There are two finite, disjoint sets of agents: the set M of men and the set W of
women. Each agent has a complete, transitive, and strict preference ordering over
the set of agents on the other side of the market and the prospect of remaining
single. We assume that the extension of this preference to the set of corresponding
lotteries has an expected utility representation. We represent these preferences for
a man m € M by the utilities u(m, h) € R, where h € W U {m}, and for a woman
w € W by v(h,w) € R, where h € M U {w}. We normalize the utility of staying
single to zero, that is u(m, m) = v(w,w) = 0 holds for all m € M, resp. w € W. As
preferences are strict, we have u(m,w) # 0 and v(m,w) # 0 for all (m,w) € M x W
as well as u(m,w) # u(m,w’) and v(m,w) # v(m',w) for all (m,w) € M x W,
w #w e W, and m' #m € M. To avoid trivialities, we assume that there is at
least one pair of agents (m, w) such that (m,w) find each other mutually acceptable,
that is, u(m,w) > 0 and v(m,w) > 0 holds.

We refer to a tuple (M, W;u,v) satisfying the above assumptions as a marriage
market.

2.2. Matchings and Payoffs
A matching is given by an assignment matriz z € RIMXIWI gatisfying

Z x(m,w) <1 for all m € M, (1)
weW
Z x(m,w) <1 for all w € W, (2)
meM

x(m,w) > 0 for all (m,w) € M x W. (3)



If the assignment matrix in the above definition of a matching satisfies x(m,w) €
{0,1} for all (m,w) € M x W, we say that the matching is simple; otherwise, it is
fractional.

The interpretation of a simple matching is straightforward: z(m,w) = 1 indicates
that man m and woman w are matched, whereas x(m,w) = 0 indicates that they
are not. The constraints in (1) — (3) ensure that no individual has more than one
partner in a simple matching. Simple matchings can also be described (Roth and
Sotomayor [26, Definition 2.1]) by a matching function p : MUW — M UW
satisfying u(m) € Wu{m}, p(w) € MU{w}, and y?(h) = hforallm € M, w € W,
and h € M UW. For every matching function having these properties, setting

z(m,w) =1 p(m) =w < p(w) =m (4)

produces the unique assignment matrix describing the corresponding simple match-
ing (and vice versa).

The interpretation of fractional matchings® depends on the context. One possi-
bility is to view fractional matchings as describing lotteries over simple matchings.”
In this interpretation, z(m,w) is the probability that a match between man m and
woman w is formed, z(m,m) :=1— 3y (m,w) is the probability that man m
remains single, and z(w,w) := 1 -3 ) x(m,w) is the probability that woman
w stays single. Given any matching x, we say that h € M U W is fully matched
if x(h,h) = 0, partially matched if 0 < x(h,h) < 1, and unmatched if x(h,h) = 1
holds. Types (m,w) € M x W are partners if z(m,w) > 0 holds.

With every matching =, we associate the payoff vectors U(z) € RIMl and V (z) €
RW! given by

U(m;z) = Z x(m,w)u(m,w), (5)

weW

V(w;z) = Z x(m,w)v(m,w). (6)

meM

Recall that we have normalized the utility from staying single to zero. Hence, these
payoffs correspond to the expected utilities of the matching x.

2.8. Individual Rationality and Pairwise Stability

A matching z is individually rational if

z(m,w) > 0= u(m,w) >0 and v(m,w) >0 (7)

8Fractional matchings are studied (among others) by Vande Vate [35], Rothblum [29], Roth et al.
28], Kesten and Unver [19], Echenique et al. [12].

9The Birkhoff-von Neumann theorem implies that every such lottery can be represented by an
assignment matrix satisfying (1) — (3) and every such assignment matrix corresponds to a lottery
over simple matchings. See Budish et al. [5] for an extensive discussion in the context of assignment
problems.



holds and it is pairwise stable if
there is no (m,w) € M x W s.t. u(m,w) > U(m;x) and v(m,w) > V(w;z). (8)

For simple matchings, we can use (4) to rephrase individual rationality and
pairwise stability in terms of the matching function describing the simple matching.
For simple matchings we have U(m;z) = u(m, u(m)) and V(w;z) = v(p(w), w), so
that such a matching is individually rational if and only if u(m, pu(m)) > 0 holds
for all m and v(u(w),w) > 0 holds for all w. It is pairwise stable if and only
if there does not exist (m,w) € M x W such that u(m,w) > u(m,pu(m)) and
v(m,w) > v(pu(w),w) holds. These are the requirements that the simple matching is
not blocked by any individual (individual rationality) or any pair of agents (pairwise
stability), cf. Roth and Sotomayor [26, p. 21].

Under the lottery interpretation of fractional matchings, (7) corresponds to an
ex-post individual rationality requirement. In contrast, (8) means that there is no
blocking pair at the ex-ante stage before the outcome of the lottery (that is, a
simple matching) is realized. While other formulations of individual rationality and
pairwise stability for fractional matchings are possible, conditions (7) — (8) turn out
to be the ones most relevant for our subsequent analysis.

2.4. Stable Matchings

A simple matching is stable if it is individually rational and pairwise stable. We
recall the fact that every marriage market has a stable simple matching (Gale and
Shapley [17]). Furthermore, our assumption that there is a mutually acceptable
pair (that is, a pair satisfying u(m,w) > 0 and v(m,w) > 0) implies that in every
stable simple matching there exists (m,w) € M x W such that x(m,w) = 1 holds.
(Equivalently, u(h) # h holds for some h € M UW.)

We extend stability to fractional matchings following Vande Vate [35] and say
that a matching x is stable if and only if there exist stable simple matchings
z', ..., z" such that z is a convex combination of z!, ..., z*.19 Under the lottery in-
terpretation of fractional matchings offered above, this means that stable fractional
matchings can be obtained as lotteries over stable simple matchings.

Since the set of agents who are unmatched is the same for all stable simple
matchings (see Roth and Sotomayor [26, Theorem 2.22]) and stable matchings, by
definition, are convex combinations of stable simple matchings, every stable match-
ing satisfies z(h, h) € {0,1} for all h € M UW. Recalling our definition of a partially
matched agent, we have the following result, which we record as a lemma for later
reference.

Lemma 1. Let x be a stable matching. Then there are no partially matched agents
m x.

10See Roth et al. [28] for the equivalence between this definition and the one given in Vande Vate
[35].



As alternative stability notions for fractional matchings have been proposed in
the literature,!! we observe that for fractional matchings Lemma 1 is the only im-
plication of stability that we use in our subsequent analysis.

2.5. Coherent and Regret-Free Matchings

The definitions and results in this subsection are not standard, but essential for
our characterization of limit matchings in Section 4.

Definition 1. A matching is coherent if it is individually rational and pairwise
stable, i.e., (7) — (8) hold. A matching is regret-free if

z(m,w) > 0= u(m,w) > U(m;z) and v(m,w) > V(m;x). 9)

A simple matching is, by definition, coherent if and only if it is stable. For
fractional matchings, this is not the case.'? Under the lottery interpretation of
fractional matchings, regret-freeness can be understood as the requirement that any
pair of agents who are matched with a strictly positive probability in = weakly
prefer to match with each other, rather than returning to the ex-ante stage before
the outcome of the lottery is realized.

Every simple matching is regret-free because the two inequalities in (9) hold
as equalities if z(m,w) = 1. For fractional matchings, however, condition (9) has
substantial bite.

Lemma 2. Let x be a regret-free matching. Then every fully matched agent has a
unique partner. In particular, 0 < z(m,w) < 1 implies that m and w are partially
matched.

Proof. Suppose x satisfies (9). Assume m € M is fully matched. Using z(m,m) =0
and (5) we have

Z z(m,w) [u(m,w) — U(m;x)] = 0.

weW
Because z satisfies (9), all the summands on the left side of this equality are positive.
Hence, all summands are equal to zero. Consequently, x(m,w) = 0 holds for all w
satisfying u(m,w) — U(m;z) # 0. Because preferences are strict, it follows that
there is w € W satisfying x(m,w) = 1. Hence, m has a unique partner. An
analogous argument shows that every fully matched w € W has a unique partner.
Consequently, 0 < z(m,w) < 1 implies 0 < z(m,m) < 1 as well as 0 < z(w,w) < 1
(because neither m nor w can be unmatched or fully matched if 0 < z(m,w) < 1
holds). O

" The stability notion by Vande Vate [35] used here has a natural interpretation as an ex-post
stability requirement. From an ex-ante perspective, the notion of a strongly stable matching in-
troduced in Roth et al. [28] may be more appealing. Our results continue to hold when using this
alternative stability definition.

12This point is illustrated by the example below.



The intuition behind Lemma 2 is simple: if every partner of an agent provides a
payoff at least as high as the average payoff an agent receives, then it must either be
the case that the agent only has one partner or it must be the case that there is a
strictly positive probability that the agent remains unmatched. After all, in contrast
to the children in Lake Wobegon, not all partners can be better than average.

As a straightforward implication of Lemmas 1 and 2, we obtain the result that
stability and regret-freeness are incompatible for fractional matchings.

Lemma 3. Let x be a regret-free fractional matching. Then x is unstable.

Proof. Let x be a regret-free fractional matching. By the definition of a fractional
matching, there exists a pair (m,w) € M x W such that 0 < x(m,w) < 1 holds.
Lemma 2 then implies that m and w are partially matched in z. By Lemma 1, this
implies that x is unstable. O

The problem with regret-free fractional matchings is deeper than the instability
identified in Lemma 3. Let us say that a matching is strongly inefficient if there
exists a pair (m,w) € M x W satisfying

u(m,w) >0, v(m,w) >0, x(m,m) >0, and z(w,w) > 0. (10)

In words, (10) means that both m and w stay single with strictly positive probability
even though man m and woman w find each other acceptable. Hence, by the simple
device of increasing z(m,w) to z'(m,w) = z(m,w) + min{x(m,m), z(w,w)} the
payoff of both m and w can be strictly increased (without affecting the payoff of any
other agent), thus generating a Pareto improvement.

Lemma 4. Let x be a regret-free and individually rational fractional matching. Then
x 18 strongly inefficient.

Proof. Let x be a regret-free and individually rational fractional matching. Asin the
proof of Lemma 3, we obtain the existence of a pair (m,w) such that 0 < z(m,w) <
1, z(m,m) > 0, and z(w,w) > 0 holds. Because x is individually rational, the
inequality x(m,w) > 0 implies u(m,w) > 0 and v(m,w) > 0. Hence, x is strongly
inefficient. O

We illustrate the above definitions and results with a simple example.

Example. Consider a marriage market with two men, M = {mj,ma}, and two
women, W = {w;,ws}. Preferences are described by the bi-matrix

w1 w2
mi [ 2,1 | 1,2
me | 1,2 | 2,1

where the first entry in the cell corresponding to (m;,w;) is the payoff u(m;, w;)
and the second entry is the payoff v(m;, w;). In this example, all matchings are



individually rational. There are two stable simple matchings given by the assignment

matrices
|10 q |01
Ty = 0 1 and ryw = 1 ol

The matching xjs is the men-optimal matching, whereas the matching zy is the
women-optimal matching; see Roth and Sotomayor [26, Definition 2.11].
There is one additional coherent and regret-free matching, namely the fractional

matching
11
=]
3 3

resulting in the payoffs U(m;; x4) = V(wj;2,) =1 for 4,5 = 1,2.

As implied by Lemma 3, z, is unstable as each agent stays unmatched with
probability 1/3, whereas in a stable matching all agents are matched for sure. As
implied by Lemma 4, x, is strongly inefficient; a Pareto improvement would obtain
from switching to the stable fractional matching

11
f |2 2
x—|:1 1:|.
2 2

3. Search

3.1. Search Process and Steady States

We embed a marriage market (M, W;wu,v) in a continuous-time search model
with a continuum of agents, similar to the search model studied by Burdett and
Coles [6]. To do so, we re-interpret the sets M and W as the set of possible types
for men and women, respectively. For each m € M and w € W, new agents of the
corresponding type are born at a constant flow rate that is equal to > 0. Newborn
agents start searching for partners and continue doing so until they either match
with an agent of the opposite sex or exit the search process without having found
a partner. Agents exit as unmatched singles at an exogenous rate 6 > 0.3 On the
individual level, the exit rate acts like a discount rate and is a convenient way to
model the opportunity costs of waiting for a better match. We thus do not consider
any additional, explicit time discounting and assume the payoff of an agent of type
h who exits the search process in a partnership with another agent (or single) is the
one from the underlying marriage market.

Let f(m) > 0 denote the mass of men of type m searching for a partner and let
f denote the corresponding vector of masses. Define f = Y men f(m). Similarly,

130ur model of entry and exit is the one from Burdett and Coles [6]. As noted by Eeckhout [13],
assuming that there is (i) a fixed population of infinitely lived agents who (ii) exit the search process
only if they have found a partner and (iii) enter the search process when their partnership dissolves
due to exogenous separation, yields identical steady-state conditions; see Shimer and Smith [30]
and Smith [31].

10



let g(w) > 0 denote the mass of women of type w searching for a partner, let g be
the corresponding vector, and define g = > - g(w). We suppress time indices
because we consider steady states. The mass of meetings between men and women
that occur per unit time is given by A - C(f,g). We refer to C : Ri — R, as the
contact function and to the parameter A > 0 as the speed of the contact process.!*
Only minimal assumptions are imposed on the contact function.

Assumption 1. The contact function C is continuous and is strictly positive if and
only if both of its arguments are strictly positive.

The contact functions commonly considered in the labor market search literature
(Petrongolo and Pissarides [25]) satisfy Assumption 1, except for the linear matching
function (Diamond and Maskin [11]), which violates the requirement that there are
no meetings if the mass of men or women is zero; see Stevens [34].

We assume that the contact process is random in the sense that the fraction
of meetings involving a man of type m and a woman of type w is given by f(m) -

g(w)/(fg) Deﬁningc:R?H — Ry, by

_ C(f,g
o(f,g9) = & ,g), (11)
f-g
all men in the market thus meet women of type w at rate
y(w; f,9) = A-e(f, ) - g(w) > 0, (12)
and all women in the market meet men of type m at rate
o(m; f,9) = X-c(f,9) - f(m) > 0. (13)

If two agents meet, they observe each other’s type and simultaneously decide
whether to accept each other or not. If both accept, the agents leave the search
process as a matched pair. If at least one agent rejects the match, both return to
search. In line with our focus on steady states, we assume that all agents use time
and history independent strategies. In addition, we restrict attention to strategy
profiles that are symmetric in the sense that all agents of the same type use the
same strategy. We may thus use a pair of functions Sy : M x W — [0, 1] and
Bw : M x W — [0,1] to describe a strategy profile, where 0 < SBp(m,w) < 1
specifies the probability that a man of type m accepts a match with a woman of
type w and, symmetrically, 0 < By (m,w) < 1 specifies the probability that a woman
of type w accepts a match with a man of type m. Let

a(m,w) = By (m,w) - By (m,w) € [0,1] (14)

denote the resulting probability that a meeting between a man of type m and a
woman of type w results in a match. We use a € [0, 1]M*IW1 to denote the corre-
sponding matrix of acceptance probabilities.

14We refer to C' as a contact function rather than as a matching function because in our model
not every meeting between agents needs to result in a match.

11



Definition 2. A steady state is a tuple (f, g, «) satisfying

0+ Z (w; f, )] for all m € M, (15)
weW

n=gw) [0+ ) of o(m; f, )] for all w e W. (16)
meM

The left side of equations (15) — (16) represent the inflow of newborn agents of
a given type. The right side is the corresponding outflow of single and matched
agents. In a steady state these flows balance.

3.2. Payoffs and Equilibria

Given a steady state (f, g, ), the probability that a man of type m is in a match
with a woman of type w when exiting from the search process is

(. w) = a(m,w)y(w; f,9)
P(f,9,0)\1 6+ Zw/eW a(m,w)y(w'; f,g) .

To see this, observe that § + Y oy a(m, w')y(w'; f, g) is the exit rate of such a
man, so that the expression on the right side of (17) is the probability of exiting in
a match with w conditional on exit. Similarly, the probability that a woman of type
w exits the search process in a partnership with a man of type m is given by

a(m, w)g(m; f, g)

(17)

q m,w . 18
o)) = s s @l )0 F-g) 1
The expected payoffs associated with a steady state are therefore
U(m;p(f,g,a)) = Z P(f,9,0) (ma w)u(m’ ZU), (19)
weW
V(w; Q(f,g,a)) = Z q(f,g9,0) (m7 w)v(m, U}) (20)
meM

An equilibrium is a steady state in which the acceptance probabilities o are
consistent with the requirement that agents’ acceptance decisions maximize their
expected payoffs. Due to the stationarity of the environment, the continuation
payoff of an agent who rejects a match and returns to the search process is as given
n (19)- (20). Consequently, the optimality of strategies requires'®

0 if u(m,w) <U(m;p(s,9,a));

i (21)
L if u(m,w) > U(m;ptg.a))

B (m,w) = {

15\We eliminate the dominated strategies in which an agent rejects a potential match that provides
strictly higher utility than continued search.
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and

0 if v(m,w) < V(w;qfg,a))s (22)

im0 = {1 if v(m, w) > V(wiq(sg.0)-

Observe that conditions (21) — (22) allow agents to randomize their acceptance
decisions when indifferent as to whether to accept the current partner or continuing
to search.
Conditions (21) — (22) are easily seen to imply that the acceptance probabilities
a(m,w) as determined by (14) satisfy
o, w) = {0 %f u(m,w) < U(m;p(f’gva)) or v(m,w) < V(w;q(f’gva)), (23)
L if u(m,w) > U(m;p(sg.a)) and v(m,w) > V(w;qt,g.q))-

Vice versa, for any acceptance probabilities satisfying (23), there exist corresponding
strategies satisfying (21) — (22). Just as we have done for steady states, we may
thus define equilibria in terms of the stocks of agents searching for partners and the
acceptance probabilities.

Definition 3. An equilibrium is a steady state (f, g, «) that satisfies condition (23)
for all (m,w) € M x W.

3.3. Steady-State Matchings and Equilibrium Matchings

As shown in Lemma 5 below, the steady-state matching probabilities from the
search model correspond directly to matchings in the underlying marriage market.
Thus, even though the search model allows for the formation of inter-cohort partner-
ships and features a continuum of agents—whereas the underlying marriage market
envisions a single cohort with a finite number of agents—there is a natural way to
map equilibria of the search model into matchings.'6

Definition 4. A steady state (f,g,«) induces the matching x, if the matching z
satisfies

T =D (f,9,0) = Up,f.0)- (24)

A matching x is a steady-state matching if it is induced by some steady state (f, g, @);
it is an equilibrium matching if it is induced by some equilibrium (f, g, «).

Condition (24) is the requirement that for all pairs of types (m,w), x(m,w) is
the probability that a man of type m (resp. a woman of type w) will exit the search
process in a match with a woman of type w (resp. a man of type m). By (19) — (20)
this condition ensures that in the steady state (f, g, «) every agent obtains matching
probabilities and expected payoffs that are identical to the ones the agent obtains
in the induced matching x in the underlying marriage market.

16Such an interpretation of equilibrium outcomes relative to the static benchmark is conventional
in the search literature: See, for example, Gale [15] and Lauermann [20].
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The following lemma establishes a one-to-one relationship between steady states
and steady-state matchings: every steady state induces a unique matching and every
steady-state matching is induced by a unique steady state. To simplify notation, we
let 07 = epr®(m,m) and 7, = > -y (w,w) for any matching x.

Lemma 5. Let (f,g,«) be a steady state. Then x given by

2(m, 1) = 2a<m, w)el . 3) f (m)g(w). (25)

is the unique matching induced by (f, g, ). Vice versa, if x is a steady-state match-
ing then (f,g,a) given by

f(m) = Ja(m,m), (26)
g(w) = Za(w,w), (27)

2$ m,w
a(m,w) O(m, w) (28)

- nAC(40g, F2)x(m, m)z(w, w)’
1s the unique steady state inducing x.

Proof. See Appendix A. O

It is immediate from equation (25) that a steady-state matching satisfies z(m, w) > 0
if and only if the steady state inducing it satisfies a(m, w) > 0. Using the equilibrium
requirement (23) it follows that every equilibrium matching is regret-free as defined
by (9). As every agent has the option of rejecting all those potential partners
generating a strictly negative payoff, it is also clear that equilibrium matchings are
individually rational. We thus state without further proof:

Lemma 6. Every equilibrium matching is individually rational and regret-free.

The following lemma characterizes the set of all steady-state and equilibrium
matchings in terms of the parameters (M, W;u,v) of the marriage market and the
parameters (1, d, A, C') of the search model. Despite its simplicity, the result is impor-
tant because it enables us to conduct the subsequent analysis without any explicit
reference to the underlying steady states or equilibria. Instead, we can focus directly
on the induced matchings and their properties. The lemma utilizes the one-to-one-
relationship between steady states and steady-state matchings established in Lemma
5.

Lemma 7. A matching v is a steady-state matching if and only if

x(m,w) < @c(ﬂax, QTx)x(m, m)z(w,w) (29)

80 T
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holds for all (m,w) € M x W. A matching x is an equilibrium matching if and only
if, in addition,

x(m,w) = {O if u(m,w) < U(m;x) or v(im,w) < V(w;x),
) 2—20(%01», I )z(m,m)z(w,w) if u(m,w) > U(m;x) and v(m,w) > V(w;x)
(30)

holds for all (m,w) € M x W.
Proof. See Appendix A. O

The characterization of steady-state matchings in Lemma 7 shows how the speed A
of the contact process affects which matchings are feasible outcomes of the search
process. In particular, because Assumption 1 ensures that the function c is strictly
positive on R4 4, it is immediate from (29) that every matching satisfying x(h, h) > 0
for all h € M UW (that is, there are no fully matched agents) is a steady-state
matching for sufficiently large . It follows that every matching can be obtained as
the limit of a sequence of steady-state matchings as the speed of the contact process
converges to infinity. This shows that the restriction to steady-state matchings does
not cause any divergence between what is feasible in the underlying marriage market
and what is feasible in the search model as the speed of the contact process goes to
infinity. Consequently, the results that we describe in the following can be attributed
to the properties of equilibrium matches, as given by the optimality conditions (30),
rather than to some more superficial difference between the two settings we consider.

To illustrate the role of Lemma 7 and provide some intuition for our subsequent
results, we return to the example introduced in Section 2.5.

Example (continued from Section 2.5). Consider acceptance probabilities of

the form
_ro
““lo 1|’

which result if men accept only their respective preferred partner types, while women
accept all types. Lemma 5 implies that every steady-state matching that is induced
by a steady state with these matching probabilities must be of the form

2(s) = [g 2} |

with 0 < s < 1. For every such s there is a unique A(s) such that for z(s), the
inequality in (29) holds as an equality for the pairs (mi,w;) and (mg,w2). By
Lemma 7, z(s) is therefore a steady-state matching if and only if A > A(s). Moreover,
provided that s > 1/2, the matching z(s) also satisfies (30). It then follows from
Lemma 7 that z(s) is an equilibrium matching for A\ = A(s). It is not difficult
to see from (29) that for s — 1, A(s) — oo. Thus, the men-optimal simple stable
matching x 7 is the limit of equilibrium matchings as the speed of the contact process
converges to infinity. Of course, an analogous construction can be used to show that
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there exists an equilibrium matching approximating the women-optimal matching
xy for large contact speed.
Consider now the coherent and regret-free fractional matching

11

3 3
Because there is no fully matched agent in x,, it follows from Lemma 7 that there
exist A such that for all A > A this matching is a steady-state matching (cf. the
discussion after the statement of Lemma 7). Moreover, as z, is coherent and regret-
free, (30) holds: because x, is regret-free, the first condition holds; because . is
pairwise stable, there is no pair of types for which the second set of inequalities
applies. It follows from Lemma 7 that z, is an equilibrium matching whenever it
is a steady-state matching, that is, whenever A > A holds. The key feature of the
optimal strategy profile supporting x, as an equilibrium outcome is that every agent
accepts his or her favorite partner with probability 1 and randomizes the acceptance
decision in case the meeting is with the less desirable partner. This randomization
is such that the probability of exiting the search process in a match with the less
desirable partner is 1/3. Such randomization is optimal because given x, each agent
is indifferent towards accepting their less desirable partner. O

4. Matching with Vanishing Frictions

In this section, we consider a fixed marriage market (M, W;u,v). We investigate
the limit of equilibrium matchings as the search process becomes frictionless, in the
sense that the speed of the contact process A converges to infinity. Throughout, the
parameters § > 0,7 > 0 and the contact function C are kept fixed.

Definition 5. A matching z, is a limit matching if there exists a sequence (\y)
converging to infinity and a sequence of matchings (xj) converging to z, such that
for all £ the matching zj is an equilibrium matching for the search model with
parameters (7,4, A\g, C).

It is easy to see that the individual rationality and regret-freeness of equilib-
rium matchings (cf. Lemma 6) is preserved in the limit. The following theorem
establishes that strengthening individual rationality to coherency yields a necessary
and sufficient condition for a matching to be a limit matching. This result holds
without any restrictions on the structure of the underlying marriage market and for
all contact functions satisfying Assumption 1.

Theorem 1. A matching is a limit matching if and only if it is coherent and regret-
free.

Proof. See Appendix B. O
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The intuition for the coherency of limit matchings is straightforward. Suppose
that there exists a pair of types (m, w) violating the pairwise stability condition (8)
in the limit matching x,. For sufficiently large A, the optimality of equilibrium
strategies then implies that every meeting between agents of types m and w results
in a match. Provided that the rate at which such agents meet each other converges
to infinity, this implies that the limit matching satisfies x,(m,w) = 1, contradicting
the assumption that the pairwise stability condition is violated for these types.

The difficulty in making this intuition precise is that it is far from obvious that
meeting rates converge to infinity as the speed of the matching technology converges
to infinity.!” The problem is that an increase in the speed at which agents match
(and thus exit from search) implies a reduction in the steady-state masses of agents,
reducing the matching rates as given in (12) and (13). Furthermore, given the
weak assumptions we have imposed on the contact function, such a reduction in the
steady-state stocks may reduce c(f, g), introducing a second effect countervailing the
increase in the speed of the contact process. Taken together, these effects generate
the possibility that the meeting rate for some type of agent may converge to a finite
limit as A converges to infinity. Indeed, sequences of steady-state matchings with
this property are easily constructed. The main subtlety in proving the coherency of
limit matchings is to exclude this possibility for sequences of equilibrium matchings.
In doing so, we exploit the continuity of the contact function imposed in Assumption
1 and make use of the characterization of regret-free matchings in Lemma 2.

The main challenge in proving the sufficiency of the conditions in Theorem 1 lies
in showing that every coherent and regret-free fractional matching can be obtained as
limit matching. In essence, given such a matching x,, we must construct a sequence
of equilibria such that, for every pair of types (m, w) satisfying 0 < x,(m,w) < 1, the
associated sequence of matching probabilities converges to an interior limit. This in
turn requires that along the sequence at least one of the types m and w is indifferent
between accepting the match with his or her designated partner, whereas the other
type weakly prefers to accept the match.

As we have noted in Section 2.5, a simple matching is stable if and only if it
is coherent. In addition, every simple matching is regret-free. Theorem 1 therefore
implies:

Proposition 1. A simple matching is a limit matching if and only if it is stable.

Because stable simple matchings exist, Proposition 1 implies the existence of a
simple limit matching as a by-product.

If one restricts attention to simple matchings, Proposition 1 indicates that the
sets of limit matchings and stable matchings are identical. For fractional matchings,

7This is in contrast to a “cloning model”, such as the one studied by Adachi [1]. In a cloning
model, the steady-state masses (f, g) are taken as given so that the population share of each type is
strictly positive and constant along the sequence. Therefore, the matching rate necessarily converges
to infinity as the speed of the contact process does so. Hence, in such a model, the counterpart to
the necessary conditions for limit matchings in Theorem 1 is straightforward.
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however, this equivalence breaks down. In fact, from the characterization of limit
matchings in Theorem 1 and the results obtained in Lemmas 3 and 4, it is imme-
diate that fractional limit matchings, should they exist, are unstable and strongly
inefficient. This prompts our next result, which states a necessary and sufficient
condition for the existence of fractional limit matchings.

Proposition 2. Fractional limit matchings exist if and only if there exists more
than one stable simple matching.

Proof. See Appendix C. O

The proof of Proposition 2 shows that a marriage market (M, W;u,v) possesses
a regret-free and coherent fractional matching if and only if there exists more than
one stable simple matching. To the best of our knowledge, this is a novel result.
Combining it with Theorem 1 yields Proposition 2. To obtain the result that the
existence of a regret-free and coherent fractional matching implies the existence of
multiple simple matchings, we show that given any such fractional matching it is pos-
sible to construct two distinct stable simple matchings. These two simple matchings
support the original fractional matching in the sense that the union of any agent’s
partners in the two simple matchings coincides with his or her set of partners in the
fractional matching. Proving the other direction of the equivalence in the statement
of Proposition 2 is harder and relies on the lattice-structure of the set of stable sim-
ple matchings; see Roth and Sotomayor [26, Chapter 3]. The difficulty is that not
every pair of stable simple matchings supports a coherent and regret-free fractional
matching. However, any two stable simple matchings, which have the property that
all men have the same preferences over these two matchings and that there is no sta-
ble simple matching “between” those two in the men’s preference ordering, support a
coherent and regret-free fractional matching. In fact, our proof shows more, namely,
that for every pair of such consecutive stable simple matchings there is exactly one
coherent and regret-free fractional matching supported by this pair. The proof is
then completed by the observation that consecutive stable simple matchings exist
whenever there is more than one stable simple matching. In particular, if there are
exactly two stable simple matchings in the marriage market, then — as illustrated
by the example discussed in Sections 2.5 and 3.3 — there is a unique regret-free and
coherent fractional matching and, thus, a unique fractional limit matching.

As an immediate consequence of the preceding results, we have the result adver-
tised in the abstract.

Corollary 1. If there is a unique stable matching in the underlying marriage mar-
ket, then this matching is the unique limit matching. If there are multiple stable
matchings in the underlying marriage market, then there exist unstable and strongly
inefficient limit matchings.

Proof. Suppose there is a unique stable matching, which then must be simple. From
Proposition 1 this matching is a limit matchings and there are no other simple
limit matchings. Because of Proposition 2, there are no fractional limit matching.
Therefore, the unique stable simple matching is the unique limit matching.
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Suppose that there is more than one stable matching and, thus, more than one
stable simple matching. From Proposition 2, this implies that a fractional limit
matching exists. From Theorem 1, this fractional matching is coherent and regret-
free. From Lemmas 3 and 4, it is unstable and strongly inefficient. O

5. Matching with Small Frictions

Our analysis of the limit behavior of equilibrium matchings for vanishing frictions
implies a number of results for the structure of equilibrium matchings with small
frictions, that is, for sufficiently high but finite A\. We believe that some of these
results may be of independent interest and thus present them here. Doing so should
also help to clarify the structure of the proofs for our limit results. As in Section
4, we treat the parameters of the marriage market (M, W;u,v) and the parameters
(n,0,C) as given.

We first observe that in the process of proving Theorem 1 and Proposition 2 we
have established a simple lower bound for the number of equilibria. In particular,
for small frictions existence of equilibria is assured.'®

Corollary 2. Let n > 1 denote the number of stable simple matchings in the mar-
riage market. Then there exists A\, > 0 such that for all X > )\, at least 2n — 1
equilibria in the search model exist.

Proof. In a marriage market with n stable simple matchings, there are at least
n — 1 distinct pairs of consecutive stable matchings (corresponding to those pairs
connected by a branch of the lattice of stable matchings; cf. Roth and Sotomayor
[26, Section 3.2]). Lemma 13 in Appendix C then implies that there are at least
n — 1 distinct coherent and regret-free fractional matchings. As every stable simple
matching is coherent and regret-free it follows that there are at least 2n — 1 coherent
and regret-free matchings. Label these matchings z; withi=1,...,2n — 1. Lemma
9 in Appendix B establishes that for each of the matchings z; there exists A, > 0
such that for any A > A, an associated equilibrium matching, that we label :c?, can
be constructed such that these matchings satisfy limy_, o xf‘ = x;. As the matchings
x1,...,T2p—1 are distinct, it follows that there exist A, > max; A, such that m;\ % :cg\
holds for all ¢ # 7 and A > ), establishing the existence of 2n—1 distinct equilibrium
matchings for all such A. As the relationship between equilibrium matchings and
equilibria is one-to-one (cf. Definition 3 and Lemma 5), this implies the existence of
2n — 1 distinct equilibria for A > A,. O

The intuition why (for small frictions) there should be at least as many equilibria
in the search model as there are stable simple matchings in the underlying marriage

8 There are very few existence results for equilibria in search models with nontransferable utility
in which the distribution of searching agents is endogenously determined, as it is in our model.
In particular, Burdett and Coles [6] and Smith [31] establish existence for any level of frictions,
but consider models with a unique stable matching in the underlying marriage market and impose
stringent restrictions on the search technology.
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market is straightforward and captured by our discussion of the example in Section
3.3.19 Consider any given type h. If the agents of all other types only accept those
matches involving a partner at least as attractive as the one assigned to them in a
given stable simple matching x, then for small frictions agents of type h will also find
it optimal to follow the same rule. Given such a strategy profile and a corresponding
steady state, we have an equilibrium in which only those meetings between pairs of
agents for whom z(m,w) = 1 holds, will form.?° The additional equilibria whose
existence is asserted in Corollary 2 correspond to fractional limit matching.

From Corollary 2, uniqueness of stable matchings is a necessary condition for the
uniqueness of equilibrium when frictions are small. The following result addresses
the question whether this condition is also sufficient. We first demonstrate that
the acceptance probabilities are uniquely determined for small frictions. This is
intuitive: for sufficiently large A, agents’ expected payoffs must be close to their
payoffs in the stable matching, and, for these payoffs, the only matches accepted by
both agents in a meeting are those between types that are partners in the stable
matching. Still, multiple steady-states may be compatible with the same acceptance
behavior. This is because Assumption 1 imposes only very weak conditions on the
contact function. Using the characterization of steady-state matchings in Lemma
7, we can exclude this possibility for the prominent example of a quadratic contact
function as studied, for instance, in Shimer and Smith [30] and Smith [31].2

Corollary 3. Suppose there is a unique stable matching . in the marriage market.
Then there exists A, > 0 such that for all A\ > A\, equilibrium acceptance probabilities
are uniquely determined and given by a(m,w) = x.(m,w) € {0,1}. If the contact
function is quadratic,

equilibrium is unique for A > A,.

Proof. See Appendix D. O

We have noted in Section 2 that our equilibrium definition allows agents to ran-
domize their acceptance decisions when indifferent and indicated in the Introduction

19Just as we did in the discussion of the example, the following heuristic discussion takes for
granted what we have established in the proof of Theorem 1, namely, that despite the endogeneity
of the population small frictions imply “easy access” to potential partners (cf. the discussion
following the statement of Theorem 1). It also takes for granted that for the strategy profile under
consideration there exists a corresponding steady state when frictions are sufficiently small — which
is another implication of the proof of Theorem 1.

20 This source of multiplicity is distinct from the source of multiplicity observed in Burdett and
Coles [6, Example 3] who demonstrate that (for sufficiently high frictions) there may be multiple
equilibria even when there is a unique stable matching. The multiplicity in Burdett and Coles is
driven by the endogenous population of agents searching for a partner. The multiplicity of equilibria
we discuss here also arises in a model with a fixed population; see Adachi [1].

21'While the structure of our argument is different, the role of the quadratic contact function in
it is the same as in Shimer and Smith [30] and Smith [31], namely, to ensure that there is a unique
steady state associated with a given strategy profile.
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that this assumption is important for our results. Our final result demonstrates that,
as suggested by the discussion of our example in Section 3.3, such mixing plays
no role in obtaining stable simple matchings as limit matchings, but is essential
in constructing equilibria with associated matchings converging to fractional limit
matchings.

Corollary 4. Given a sequence (M) converging to infinity, let (f,gr, o) be a
sequence of equilibria with induced steady-state matchings xp converging to a limit
matching x.. If x, is simple, then for all k sufficiently large, a(m,w) € {0,1} for
all pairs of types (m,w). If x. is fractional, then for all k sufficiently large, there
exists a pair of types (m,w) such that 0 < ax(m,w) < 1, u(m,w) = U(m;zy), and
v(m,w) > V(w;zy).

Proof. For simple z, the result follows from the argument given in the first part of
the proof of Corollary 3 leading up to Equations (D.3) and (D.4).

For every fractional limit matching x,, the proof of Lemma 10 establishes the
existence of a pair (m,w) such that (a) 0 < z.(m,w) < 1, (b) 0 < z,(m,m) < 1,
() 0 < zo(w,w) < 1, (d) u(m,w) = U(m;z,) and, (e) v(m,w) > V(w;x,); see
the right-most parts of Equations (C.1) and (C.2). The continuity of the expected
payoffs and the convergence of zj imply that for sufficiently large k, v(m,w) >
V(w;xg). Moreover, from Equation (28), the first three of these conditions imply
that for every sequence of equilibria with induced matchings (z) converging to .,
for k sufficiently large, the acceptance probability must satisfy 0 < ag(m,w) < 1.
This, v(m,w) > V(w;xy), and the equilibrium condition (23) imply u(m,w) =
U(m; xy). O

When combined with Proposition 1, Corollary 4 implies that a matching can
be obtained as the limit of a sequence of “pure” equilibria if and only if it is a
stable simple matching. Thus, we verify that the result by Adachi [1]—who restricts
attention to strategy profiles in which agents accept when indifferent and obtains
the set of stable simple matchings as the counterpart to our limit matchings—
continues to hold when the stock is endogenous and, in addition, we identify the
ruling out of mixed acceptance decisions as critical for such a conclusion. The
second part of the conclusion in Corollary 4 implies further that a weaker restriction
on agents’ strategies, namely requiring indifferent agents to accept a match if the
partner strictly prefers doing so, will also eliminate all fractional limit matchings.??

In our view, allowing for mixed acceptance decisions is natural. First, with an
endogenous stock, simple examples demonstrate that mixed acceptance decisions are
necessary to ensure equilibrium existence for all parameters. Second, the inability to
offer an inducement to break the indifference of a partner is a central feature of the
nontransferable utility setup. Strikingly, our analysis isolates precisely this feature
as causing the existence of unstable and inefficient limit matchings.

22\We are grateful to an anonymous reviewer for noting this implication of our analysis.
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6. Concluding Remarks

In this paper, we have revisited the classical marriage problem and its solu-
tion concept, namely, stability, in a frictional decentralized environment. We have
demonstrated that when frictions vanish, the set of equilibrium matchings converges
to the set of stable matchings if and only if there is a unique stable matching. Oth-
erwise, additional, unstable and inefficient fractional matchings arise in the limit.

Many of the marriage markets considered in the economic literature possess a
unique stable matching. It is thus an important class of marriage markets for which
our Corollary 1 confirms the conjecture by Roth and Sotomayor [26] that stable
matchings approximate equilibrium matchings in marriage markets with negligible
frictions. However, our analysis reveals that the uniqueness of stable matchings
plays an essential role in obtaining this conclusion.
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Appendix A. Proofs of Lemmas 5 and 7

Proof of Lemma 5. Let (f, g, ) be a steady state and let x satisfy (25). Clearly,
every steady state induces at most one matching. Hence, to establish the first
claim in the lemma, it suffices to show that x satisfies (24) and the conditions for a
matching, (1) — (3). From (15), we have

1
0+ Ypew alm,w)y(wsi fLg)

1
Ef(m)

Substituting this expression into (25), using the definition of v(wj; f, g) that is given
in (12), and the definition of p(s, ) from equation (17), establishes the equality
between the first and the second expression in (24). An analogous calculation using
(13), (16), and (18) establishes equality between the first and the third expression
in (24). It is immediate from (25) that z(m,w) > 0 holds for all pairs (m,w). From
(17) and (24) we have »_ y z(m,w) = > e P(f,g,0) (M, w) < 1. From (18) and
(24), we have D\ x(m,w) =3 1 4(f,g,0)(m,w) < 1.

Let = be a steady-state matching and let (f, g, «) be a steady state inducing it.
Summing (25) over all w and using (12) and (15), we obtain

w(mm) =1- 3 a(mw)=1— fm) 3 a(m,wy(w; f,g)/n = gﬂm) >0,

weWw weWw
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implying (26). An analogous argument using (13) and (16) yields

2w, w) =1— 3 zpgalmw) =1—g(w) 3 alm,w)d(m; f,g)/n = 2g<w> >0,

meM meM

implying (27). To obtain (28), substitute from (26) — (27) into (25) and solve for
a(m,w). O

Proof of Lemma 7. Let x be a steady-state matching. From Lemma 5, the steady-
state (f,g,a) inducing = satisfies (28). Since (f, g, ) is a steady-state, a satisfies
a(m,w) <1 for all (m,w), implying (29).

Suppose z is a matching satisfying (29) for all (m,w) € M x W. We show that
there is a steady state, defined by (26) — (28), that induces x. First, (29) implies
that z(m,m) > 0 and z(w,w) > 0 hold for all m and w.?> Therefore, (26) — (27)
define strictly positive stocks (f,g). In addition, the acceptance probabilities « as
given by (28) are well-defined and satisfy 0 < a(m,w) < 1 for all (m,w). It remains
to show that the tuple (f, g, ) defined this way is indeed a steady state and induces
x. Using (26) — (28) we obtain

f(m)

5+ Ae(f,q) Z a(m,w)g(w)] =z(m,m) + > e (m,w),
weW

g(w)

§+Xe(f,9) > alm, w)f(m)] = 2(w,w) + 3 e (M, w),

meM

for all m € M and w € W. The right sides of these equations are equal to 1. It
follows that (15) and (16) are satisfied. Hence, (f, g, @) is a steady state. Reversing
the substitutions yielding Lemma 5, we have that (f, g, ) induces xz. Hence, every
matching satisfying (29) is a steady-state matching.

Equation (28) holds whenever a matching z is induced by the steady state
(f,g,a). Therefore, (23) implies that every equilibrium matching satisfies (30).
Conversely, if a steady-state matching = satisfies (30), then the steady state that
induces it satisfies (23). Thus, a steady-state matching z is an equilibrium matching
if and only if it satisfies (30). O

Appendix B. Proof of Theorem 1

Throughout the following proof, we set 6 = 1 and n = 1 to simplify notation.
Doing so is without loss of generality because the effects of the parameters § and
7 may be subsumed in the contact function. More precisely, given any parameters
(n,0, A, C) of the search model, there exists a contact function C such that a match-
ing z is a steady state (or equilibrium) matching for the parameters (n, d, A, C) if any

23Quppose, for instance, z(m,m) = 0. Then, (29) implies z(m,w) = 0 for all w and, thus,
z(m,m)=1-73% x(m,w) =1, a contradiction.
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only if it a steady state (or equilibrium) matching for the parameters (1,1, X, C).24
We prove the Theorem using two lemmas.

Lemma 8. If x, is a limit matching, then it is coherent and regret-free.

Proof. Let x, be a limit matching, and let (Ag) and (zj) be the corresponding
sequences satisfying the properties in Definition 5. For all m € M and w € W
define the corresponding sequences of meeting rates (¢r(m)) and (v (w)) by 2

dr(m) = Apc(0gy, oy, ) Tr (M, M), (B.1)
Ve (w) == Apc(0gy, Tay )Tk (W, ). (B.2)

Throughout we assume that ¢r(m) and ~y,(w) converge to ¢.(m) € RU {0}, and
7«(w) € RU {oc} for all m and w, respectively.20

We first show that z, is individually rational and regret free. Suppose that
Zx(m,w) > 0 holds. As xj converges to z., there exists K, such that for all k£ > K we
have z(m,w) > 0. As xj, is an equilibrium matching, Lemma 6 implies u(m,w) > 0
and v(m,w) > 0. Therefore, x, is individually rational. Similarly, Lemma 6 implies
u(m,w) > U(m;zk) and v(m,w) > V(w;xy) for all k > K. As U(m;-) and V(w, )
are continuous in z, it follows that u(m,w) > U(m;x,) and v(m,w) > V(w;xy)
hold. Hence, x, is regret-free.

It remains to show that x, is pairwise stable. Suppose not. Then there exists a
pair (m,w) for which

u(m,w) > U(m;xy) and v(m,w) > V(m; xy). (B.3)

Because xj converges to x,, there exists K such that u(m,w) > U(m;zy) and
v(m,w) > V(m;x) holds for all £ > K. From (30), this implies

zrp(m,w) = A\pc(0g, , To )Tk (M, M) g (W, ), (B.4)

for such k.

2¥or (0,7) € R define
5796
and for (o,7) € R%, let é(o,7) = C(0,7)/(07). Then,

Co, 1) = %C(ﬁa QT).

n o n_ n__1CEo3r) _ Clo1) _
02 0(507 67-) T nor - ot &o,7),

so that a matching x satisfies (29), resp. (30), given the parameters (n,d, A\, C) if and only if =
satisfies the same conditions given the parameters (1,1, A, C’)

2Let (fx, gr, ax) be an equilibrium inducing zx. Recall that we have set 6 = n = 1. From (26)
- (27), we thus have fi(m) = zr(m,m) and gi(w) = zx(w,w). Substituting into (12) and (13),
shows that the interpretation of the following expressions as meeting rates is appropriate.

26This assumption is without loss of generality: If z. is a limit matching with the sequence zy
converging to it, then there exists a subsequence of zj such that the limits ¢.(m) and ~.(w) are
well-defined.
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From the definition of payoffs in (5) and (6) we can write

xp(m,m)U(m; xy) = Z zp(m,w) [u(m,w) — U(m;xy)],
weWw

wr(w, W)V (wiay) = Y wr(m,w) [v(m,w) = V(w;zp)].
meM

Using (30) to infer

S
5
T

zi(m,w) [u(m,w) — U(m; xy)] = zx(m, w) max [0, u(m, w) —

i (mw) [o(m, w) — V(w: )] = 2 (m, w) max [0, v(m, w) — V(w: z)]
yields
e, m)U (i) = 3 (om0, um, ') = U]
(w0, w)V (ws 2y) = wiM ai(m', w) max [0, v(m’, w) = V(w; 2x)]
and, thus, N

i (w, w)V(w; xg) > zp(m,w) [v(m,w) — V(w; xy)] .
Using (B.4), zx(h,h) > 0 for all h € M UW (cf. the proof of Lemma 7), and the
definitions of ¢ (m) and 45 (w) in (B.1) and (B.2), this implies
U(m; )],
V(w;xg)] -

Ulmyzk) 2 ye(w) [u(m, w) —
V(w;zg) > dp(m)[v(m,w) —
Because U(m;x) and V(w;zk) converge to the finite limits satisfying (B.3), these
inequalities imply

¢x(m) < 0o and v« (w) < oco. (B.5)

It is immediate from (B.1), (B.2), and (B.5) that either z.(m,m) = z.(w,w) = 0
must hold or that z, = limg_ A\ic(0g,, Tz, ) exists and is finite. The following
argument excludes the second possibility. Finiteness of z, implies that ¢.(m’) <
oo and v« (w') < oo holds for all m’" € M and w' € W. Using (29), this im-
plies z.(m’,w") = 0 whenever z,.(m’,m’) = 0 or z.(w',w’) = 0 holds (because
ze(m/;w') < du(m)a,(w',w') and z.(m/,w') < vy(w)a(m’,m’)). Consequently,
zo(m/,m') = 0 implies z,(m/,m’') =1 =3 ey 2«(m/,w’) = 1, which is a contra-
diction. Hence, finiteness of z, implies that z,(m’,m’) > 0 holds for all m’ € M.
Similarly, we obtain x,(w’,w") > 0 for all w' € W. In particular, we have o,, =
Yomren Le(m,m) > 0 and 7, = > e T (w',w') > 0. Because the contact func-
tion C' is strictly positive whenever both of its arguments are strictly positive, we
obtain ¢(oy,,7s,) > 0. Hence, 2z, = limy_,oo Agc(0g,, To,) = 00, which is a contra-
diction.
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Hence, (B.5) implies xz.(m,m) = 0 and z,(w,w) = 0 and, thus (from (29)),
Zsx(m,w) = 0. From Lemma 2, as z, is regret-free, z,(m, m) = 0 and z.(w,w) =0
imply that there exist w’ and m’ such that x,(m,w’) =1 and x.(m’,w) = 1. Using
(29) again, we have zy(m,w’) < ¢p(m)zi(w’,w’) for all k, so that z.(m,w’) =1
and z.(w’,w") = 0 (which is implied by z.(m,w’) = 1) implies ¢.(m) = co. (An
analogous argument implies ., (w) = oo.) This is a contradiction to (B.5). Hence,
T4 is pairwise stable. OJ

Lemma 9. Let x, be a coherent and regret-free matching. Then there exists A, > 0
such that for all X > \., an equilibrium matching a2 exists and limy_o0 2 = 24
holds. In particular, x, is a limit matching.

Proof. Let x, be a coherent and regret-free matching. For any r € R, define the
matching x, given by

ze(m,w)  if zu(m,w) <1,

(1- %) if x.(m,w) = 1.

zr(m,w) = { (B.6)

Because z, is a matching, x, satisfies (1) — (3). Thus, z, is a matching. Furthermore,
we have

lim z, = z,. (B.7)

T—00

In the following we will show that for any sufficiently large A € R, we can find a
value r(A) € Ry such that
= Tp())
is an equilibrium matching for the search model with parameters (1,1, A\,C). Fur-
thermore, we will show that
lim 7(\) = oo, (B.8)
A—00

holds. Combining (B.7) and (B.8) we have limy_,, 2* = x, proving the lemma.
We define the function h: Ry x Ry — R by

h()\,r):)\(T_il_1>20(0xr,7'm)— <1—Ti1>. (B.9)

As z, is regret-free, Lemma 2 ensures that o, > 0 and 7,, > 0 holds for all r,2”
ensuring that c(zM,zY) is well-defined and strictly positive for all 7. In addition,
as the mapping r — x, is continuous and c is continuous, it follows that h is a

continuous function. Next, we argue that for any A € R, we have

h(X,0)>0> —1= hﬁm h(\, 7). (B.10)

2TIf there exists (m,w) such that x.(m,w) = 1 holds, then we have z,(m,w) = 1 —1/(r + 1),
zi(m,w") = 0, and z(m’, w) = 0 for all w’ # w and m’ # m. Consequently, z,(m,m) = z,(w, w) =
1/(r+1) > 0 holds, implying o4, > 0 and 7, > 0. If there exists no (m, w) such that z.(m,w) =1
holds, then (B.6) implies z» = x.. In addition, Lemma 2 implies that no agent is fully matched in
4. Consequently, oy, = 05, > 0 and 75, = 75, > 0 hold.
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The first inequality in (B.10) is immediate from ¢(og,,7z,) > 0. It remains to
establish the equality in (B.10) which is equivalent to

r—oo \ 1r+1

lim< ! )20(%,@“):0. (B.11)

Suppose 0y, - Tz, > 0 holds, ensuring that c¢(og,,7s,) is well-defined. From (B.7)
and the continuity of ¢, this implies (B.11). Suppose o,, = 0. As x, is regret-free,
Lemma 2 then implies that x, is a simple matching. From (B.6), it then follows
that x,.(m,m) = 1/(r + 1) holds for all m € M and z,(w,w) € {1/(r 4+ 1),1} holds
for all w € W. Hence, we have o, = |M|/(r+ 1) and 7, > |W|/(r + 1), implying

1 \? 1 \?C(0p,,7,) 1
— ) T < C
<7‘—|—1> C(ervar) <T+1) Op. * Ty — ‘MHW‘ (ervTIr)a

T r

where we have used the definition of ¢ in (11) for the equality. As the contact
function C' is continuous, satisfies C'(0, 7, ) = 0, and x,, converges to ., this implies
(B.11). An analogous argument establishes (B.11) for the case 7,, = 0. Hence,
(B.10) holds.
From (B.10) and the continuity of h in 7 it follows that for every A > 0 there
exists () such that
h(A, (X)) =0 (B.12)

holds. As limy_,o h(A,7) = 0o holds for any given r € R we have (B.8). It remains
to establish that for sufficiently large A the matching z* is an equilibrium matching.
We begin by establishing that for sufficiently large X, the matching z* is a steady-
state matching.

Let A\, be such that z,(h,h) > 1/(r(A+1) holds for all A > A, and h € MUW for
which x.(h,h) > 0 holds. (As there is a finite number of types and (B.8) holds, the
existence of such a ), is assured.) We now show that for all A > ), the matching 2*
is a steady-state matching for the search model with parameters (1,1, \,C'). Using
Lemma 7, we have to show

2 (m,w) < Ae(on, Tor )z (m, m) 2z (w, w) (B.13)
for all (m,w) € M x W. Consider (m,w) satisfying x,(m,w) = 1. Then

A 1— 1
M (m, w) _ () F1 1 (B.14)
A= c(opn, Ton )z (m,m)a (w, w) A (o 70n) (#>2 ’
2 Ter )\ Fo0+1

where the first equality uses (B.6) to infer 2*(m,w) = 1 — 1/(r(A\) + 1) as well as
2Mm,m) = 2Mw,w) = 1/(r(\) + 1) from x,(m,w) = 1, and the second equality is
from (B.12). It follows that (B.13) holds with equality. Consider (m,w) satisfying
0 < z«(m,w) < 1. As z, is regret-free, Lemma 2 and (B.6) then imply z,(m,m) =
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zM(m,m) > 0 and z,(w,w) = 2*(w,w) > 0. Hence,

2 M(m, w) B T (m, w)
A-c(opn, T )z (m,m)z M (w,w) A e(opn, Tor ) Tx (M, m)za (w, w)
1
1~ moom
< 2
A C(O’x/\, Txk) <,’,()\7%+1>

=1,

where the inequality uses that A > A, implies z.(m,m) > 1/(r(\) + 1), z.(w,w) >
1/(r(A\) + 1), and z*(m,w) < 1 —1/(r(\) +1). It follows that (B.13) holds with
strict inequality. Finally, from (B.6), z.(m,w) = 0 implies 2*(m,w) = 0, so that
(B.13) trivially holds for all (m,w) satisfying z.(m,w) = 0.

Using Lemma 7, it remains to show that there exists A, > A, such that for A > A,
the condition

2 (m, w) = {0 if uw(m,w) < U(m;z?) or v(m,w) < V(w;z),
’ Ae(opn, Tpa )zt (m, m)z (w,w)  if w(m, w) > U(m; ) and v(m, w) > V(w; )
(B.15)

hold for all (m,w) € M x W.
From (B.6) the payoffs associated with z* are given by

1 ) : _
U(ms o) = (1 — T(>\)+1) U(m;xy) if zo(m,m) =0, (B.16)
U(m;xy) if z.(m,m) > 0,
and by
1 ) : —
V(w;xA) _ (1 — m) V(wsz,) if ze(w,w) =0, (B.17)
V(w;x) if z.(w,w) > 0.

In both cases, Lemma 2 is used to exclude the possibility that z*(h,h) = 0 holds
when h has more than one partner in z*.

From (B.7), the continuity of the payoff functions (or directly from (B.16) —
(B.17)), and (B.8), there exists A, > A, such that for all A > A the following
implications hold for all m € M and w € W:

u(m, w) < U(m; ) = u(m,w) < Ulm;z), (B.18)
v(m,w) < V(w;z,) = v(im,w) < V(w;z), (B.19)
Fix any A > \,. To show that (B.15) holds for all (m,w) € M x W, we consider

three cases and establish that (B.15) holds in each of these cases. As each pair
(m,w) € M x W belongs to at least one of these cases, this finishes the proof.

CASE 1: z.(m,m) =1 OR z,(w,w) = 1: Consider m satisfying x,(m,m) =1. We
then have 2, (m,w) = 2*(m,w) = 0 for all w € W, implying U (m; x,) = U(m;z) =
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0. Now consider any w € W. If u(m,w) < 0, it is immediate that (B.15) holds.
Hence, suppose u(m,w) > 0. We have to show that v(m,w) < V(w;z?) holds,
as this implies that z*(m,w) = 0 is consistent with (B.15). If z,(w,w) > 0, then
the inequality v(m,w) < V(w;2) is immediate from V(w;2*) = V(w;z,) and
the pairwise stability of x,. If x,(w,w) = 0, the pairwise stability of x, implies
v(m,w) < V(w;zs). (To obtain the strict inequality here, we use the strictness of
preferences together with the implication from Lemma 2 that there exists m’' # m
such that z,(m/,w) = 1, implying V(w;z.) = v(m’,w) for some m’ # m.) The
desired result then follows from (B.19).

An analogous argument using (B.18) shows that (B.15) holds for all (m,w) sat-
isfying . (w, w) = 1.

CASE 2: z,(m,m) = 0 OR z,(w,w) = 0: Consider m satisfying z.(m,m) = 0.
Lemma 2 then implies that there exists w’ € W such that z.(m,w’) = 1 and, thus,
U(m;z.) = u(m,w') as well as V(w'; 2,) = v(m,w’). By the individual rationality of
x4 and the strictness of preferences, we have u(m,w’) > 0 and v(m,w’) > 0. From
(B.16) and (B.17) we then have u(m,w’) > U(m;z*) and v(m,w') > V(w';2?).
Consequently, (B.15) requires that (B.13) holds with equality for the pair (m,w’),
which is ensured by construction of (), cf. (B.14). Consider now w # w’. Because
z.(m,w’) = 1 we have z,(m,w) = 0 and, thus, 2*(m,w) = 0. We have to show that
2 (m,w) = 0 is consistent with (B.15). If u(m,w) < U(m;x.), then (B.18) implies
u(m,w) < U(m;a?), establishing the desired conclusion. If u(m,w) > U(m;x,) (the
case of equality cannot arise because U (m; x.) = u(m,w’) holds for some w # w’ and
preferences are strict), the pairwise stability of x, implies v(m,w) < V(w;x.). By
(B.19) this implies v(m,w) < V(w;z?), establishing the desired conclusion. Hence,
we conclude that (B.15) holds for all (m,w) with x,(m,m) = 0.
An analogous argument shows that (B.15) holds for all (m, w) satisfying . (w, w) =

0.

CASE 3: 0 < z4(m,m) <1 AND 0 < z,(w,w) < 1: Using (B.6), (B.16), and (B.17),
we have 22 (m,w) = z.(m,w), U(m;z) = U(m,zs), and V(w;z) = V(w; ).
Pairwise stability of x, then implies that there does not exist such (m,w) satisfying
u(m,w) > U(m;x*) and v(m,w) > V(m;z?). Because x, is regret-free, 2* (m,w) >
0 also implies u(m,w) > U(m;z*) as well as v(m, w) > V(w;x). Therefore, (B.15)
holds for all (m,w) satisfying 0 < z,(m,m) < 1 and 0 < z.(w,w) < 1. O

Appendix C. Proof of Proposition 2

In the following, it is often more convenient to identify simple matchings with
their matchings functions, instead of using the assignment matrices (cf. Section 2.2).

We establish Proposition 2 through a sequence of lemmas. We begin by estab-
lishing that the existence of a coherent and regret-free fractional matching implies
the existence of multiple stable simple matchings. By Theorem 1, this proves one
direction of the equivalence claimed in Proposition 2.
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Lemma 10. If there exists a fractional matching x that is coherent and regret-free,
then there exist two distinct stable simple matchings py # ps.

Proof. Let x be a fractional matching that is coherent and regret-free. Let
P,(m)={w € W :z(m,w) >0} and Py(w) ={m € M : z(m,w) > 0}

denote the sets of partners in this matching. We now construct p; and pg. Let
pa(h) = h if z(h,h) = 1. For all other agents, let y1(m) = argmax,¢ p, (m) u(m, w)
and 1 (w) = argmin,,c p, .,y 0(M, w), respectively. By the strictness of preferences,
the function p; : M UW — M UW is uniquely defined. Similarly, let ua(h) = h if
z(h,h) = 1. For all other agents, let ua(m) = argmin,,cp, () u(m, w) and p2(w) =
argmax,,cp, (w) v(m,w), respectively. We show in the following that uq and ug are
stable simple matchings that satisfy uq # pe.

We begin by verifying that p1 and ue are simple matchings. It is immediate from
the definitions that for ¢ = 1, 2 the conditions p;(m) € WU{m} and p;(w) € MU{w}
are satisfied for all m and w. Hence, our task is to verify that for ¢« = 1, 2 the condition
p2(h) = h holds for all h € M UW. For h satisfying z(h, h) = 1 this is immediate.
Consider h satisfying x(h,h) = 0. Because z is regret-free, Lemma 2 implies that
every such agent has a unique partner h’ # h and A’ is in turn the unique partner
of h. Consequently, we have p2(h) = u3(h) = h for all such agents. It remains to
consider h satisfying 0 < x(h,h) < 1, that is, the set of partially matched agents.

Let M, and W, denote the sets of partially matched men and women, respec-
tively, in the matching x. As x is regret-free, Lemma 2 implies that these sets are not
empty. Because every agent in M, UW, has at least one partner (otherwise the agent
would be unmatched), the set of partners P,(h) is not empty for all h € M, U W,,.
Furthermore, for all h € M, U W, we have P,(h) C M, UW,. (If, say, m € M,
has a partner w’ € W \ W,, then w’ must be fully matched. From Lemma 2, this
implies z(m,w’) = 1, implying m ¢ M,.) Hence, for i = 1,2 we have u;(M;) C Wy,
and i (W,) C M,

We use the individual rationality of x for the first inequalities in the following
displayed expressions,

u(m, pi(m)) > (1 — z(m, m))u(m, p1(m)) > Z x(m,w)u(m,w) = U(m;x),

w€ Py (m)
U(M?(w)a U}> > (1 - .’E(’U), w)v(,ug(w), w) > Z x(m, w)v(m, 'IU) = V(w7 .’I,'),
me Py (w)
for all m € M, and w € W,. Hence, we have
u(m, p1(m)) > U(m;z) and v(pz(w),w) > V(w;x), (C.1)

for all m € M, and w € W,.
Because z is pairwise stable, (C.1) implies

v(m, pr(m)) < V(pr(m);z) and u(pz(w), w) < U(pz(w); z)

30



for all m € M, respectively for all w € W,.
Because x is regret free, these inequalities must, in fact, hold with equality, so
that we obtain

v(m, pr(m)) = V(p(m);z) and u(pz(w),w) = U(pa(w);z), — (C.2)

for all m € M, and w € W,. From the first equality in (C.2), p1(m) = p1(m’) = w
implies v(m/, w) = v(m,w) and thus, from strictness of preferences, m = m’. Hence,
the restriction of u; to M,, denoted by 7; in the following, is an injection into
W,. An analogous argument using the second equality in (C.2) shows that the
restriction of us to W, denoted by 79, is an injection into M,. Because the sets
M, and W, are finite it follows (as a trivial application of the Cantor-Bernstein-
Schroder theorem) that 7 and 7 are bijections. Let 1y L w, - M, and Ny 1,
M, — W, denote the corresponding inverses. To establish that @1 and uo are simple
matchings, it remains to show that 1, ! (w) = p1(w) and 7, (m) = pz(m) holds for
all w € W, and m € M,. Consider w € W,. From the first equality in (C.2), we
have v(n; '(w),w) = V(w;x). Observing that 1, !(w) is a partner of w and that
(because x is regret-free and preferences are strict) all other partners m of w satisfy
v(m,w) > V(w;z), the desired conclusion n; *(w) = p1(w) follows. An analogous
argument yields 7, ' (m) = pa(m) for all m € M,.

Consider any m € M,. Substituting w = p;(m) into the second inequality in
(C.1), we have v(po(p1(m)), p1(m)) > V(u1(m); z). From the first equality in (C.2),
this implies po(u1(m)) # m. Because M, is not empty, it follows that p1 and ug are
different. To complete the proof of the lemma, it remains to show that p; and ps are
stable. Let x; denote the assignment matrix corresponding to ;. By construction,
x;(m,w) = 1 implies that (m,w) are partners in z, that is, we have x(m,w) > 0.
Because z is individually rational, it follows that p; is individually rational. Next,
by the construction of y; and ps we have

U(m;x1) = U(m;xe) = U(m;z) for all m ¢ My,
V(w;z1) = V(w;z2) = V(w;z) for all w ¢ W,.

From (C.1) and (C.2) we have:

U(m;x1) > U(m;xe) = U(m;z) for all m € M,
V(w;z2) > V(w;z1) = V(w;z) for all w € W,

In particular, for i = 1,2 we have U(m; z;) > U(m;x) for all m € M and V (w; x;) >
V(w;z) for all w € W. As x satisfies (8) it follows that =1 and z satisfy (8). Hence,
w1 and pg are stable. O

To prove the converse of Lemma 10 and, thus by Theorem 1, to finish the proof
of Proposition 2, we rely on some well-known results about the structure of the
set of stable simple matchings. Given any two simple matchings p1 and po, define
w1 > po if w(m, pi(m)) > u(m, pa(m)) holds for all m € M and u(m, ui(m)) >
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u(m, p2(m)) for at least one m. Define py >w o in an analogous way. If p; and s
are both stable, then [26, Theorem 2.13]

W1 >M H2 = U2 > - (C.3)

Two stable simple matchings uq and pe are consecutive [26, p. 61] if u1 > po
holds and there does not exist a stable simple matching us between pp and uo,
that is, satisfying p1 >pr ps > po. Consecutive stable simple matchings exist if
and only if there is more than one stable simple matching: If there is more than
one stable simple matching, the men-optimal stable matching p; and the women-
optimal stable matching pp (Roth and Sotomayor [26, Definition 2.11]) satisfy
war >um pw- The set of simple matchings is finite, therefore there exists a matching
i/ such that puys and p' are consecutive. To finish the proof of Proposition 2, it thus
suffices to show that coherent and regret-free fractional matchings exist if consecutive
stable simple matchings exist. The following lemmas establish this.

Lemma 11. Let py and ps be consecutive stable simple matchings. Then there does
not exist (m,w) € M x W satisfying

u(m, pi(m)) > u(m,w) > u(m, pe(m)) and v(pz(w), w) > v(m,w) > v(u (w),w).
(C.4)

Proof. 28 Let p; and po be consecutive stable simple matchings for the marriage mar-
ket (M, W;u,v). Consider changing all man’s preferences such that uo(m) becomes
the least acceptable partner in the marriage market, that is consider a marriage mar-
ket (M, W;u' v) satisfying «'(m, h) = u(m,h) if u(m,h) > u(m, pz(m)) or h =m
holds and u/(m,h) < 0 otherwise for all m € M. Then s is the women-optimal
matching in (M, W;u/,v). Now take any man m such that pi(m) # p2(m) holds.
This implies that man m is matched in both pq and py. Let (M; W, u”,v) be the
marriage market which differs from (M, W;/,v) only in that woman us(m) is unac-
ceptable for man m, that is u”(m, u2(m)) < 0 holds. Now consider an application of
the women-proposing Gale-Shapley algorithm to the marriage market (M, W;u”, v),
taking the matching uo as the starting point of the algorithm and beginning with
a rejection step in which man m rejects woman pg(m). Because the matching p;
is consecutive to pg, the algorithm — which corresponds to the breakmarriage algo-
rithm from McVitie and Wilson [22] — stops at the matching p; (see the proof of
Theorem 4 in McVitie and Wilson [22, Section 4.1]). Further, because pi(m) # m,
the algorithm stops the first time that man m receives a proposal from a woman
w such that u”(m,w) > 0 < u(m,w) > u(m, uo(w)) holds. It follows that man m
does not receive a proposal from any woman w satisfying the first condition in (C.4).
On the other hand, every woman w for which the second condition in (C.4) holds,
must make a proposal to m. It follows that there does not exists (m,w) € M x W
satisfying (C.4). O

28We are grateful for an anonymous referee who suggested the following proof based on the logic
of the breakmarriage algorithm from McVitie and Wilson [22].
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We say that the simple matchings p1 and po support the fractional matching x
if the assignment matrices x; and xo associated with p; and us satisfy

—~
Q
(S

~—

z(m,w) =0 < [z1(m,w) =0 and z2(m,w) = 0],
z(m,w) =1< [z1(m,w) =1 and x2(m,w) = 1], (C.6)

for all (m,w) € M x W.

Lemma 12. Suppose the fractional matching x is supported by the consecutive stable
simple matchings p1 and po. If

U(m; x) = u(m, pp(m)) and V(w; z) = v(p(w), w) (C.7)
holds for allm € M and w € W, then x is coherent and regret-free.

Proof. Let x, 1 and po satisfy the conditions in the statement of the lemma, and
let x1 # x2 denote the assignment matrices associated with py and po.

Because 1 and po support z, (C.5) implies that x(m,w) > 0 only holds if either
z1(m,w) = 1 or z9(m,w) = 1 (or both) hold. As z; and z9 are individually rational
this implies u(m,w) > 0. Hence, x is individually rational.

From (C.6) for any pair (m,w) that satisfies z(m,w) = 1, it must be that
U(m;z) = u(m,w) and V(w;z) = v(m,w). Hence, condition (9) holds for such
pairs. To verify that x is regret-free, it remains to consider pairs (m, w) for which
0 < z(m,w) < 1. From (C.5) and (C.6), either z1(m,w) = 1 or x2(m,w) = 1
(but not both) hold. Consider the first of these cases. In this case, u(m,w) =
u(m, pi(m)) > u(m, p2(m)) and v(m,w) = v(p(w),w), where the inequality is
from gy >p; pe. Condition (C.7) then implies u(m,w) > U(m;x) and v(m,w) =
V(w; x), establishing that (9) holds. In the second case, it must be that u(m,w) =
u(m, p2(m)) and v(m,w) = v(p2(w),w) > v(p1(w), w), where the inequality is from
w1 > 2 and (C.3). As in the previous case, (C.7) then implies (9). Hence, x is
regret-free.

It remains to show the pairwise stability of x. Suppose, to the contrary, that
there is a pair (m,w) € M x W violating (8). Condition (C.7) then implies

u(m,w) > u(m, puz(m)) and v(m,w) > v(pi(w),w). (C.8)

By the stability of uso, the first of these inequalities implies v(uz(w), w) > v(m,w),
whereas from stability of p; the second inequality implies u(m, pi(m)) > u(m, w).
From Lemma 11, at the most one of the inequalities v(p2(w),w) > v(m,w) and
u(m, p1(m)) > u(m,w) can be strict. Suppose the first inequality holds with equal-
ity. Because of the strictness of preferences, this requires po(w) = m, and, therefore,
U(m, p2(m)) = u(m,w), which contradicts the first inequality in (C.8). Similarly,
if w(m,p1(m)) = u(m,w) holds, then v(m,w) = v(u1(w),w), which contradicts
the second inequality in (C.8). Therefore, there is no pair (m,w) satisfying (C.8),
proving that x is pairwise stable. O
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To conclude the proof of Proposition 2, it remains to show that if p; and uo
are consecutive stable simple matchings, then there exists a fractional matching x
that is supported by w1 and pe and satisfies (C.7). This is implied by the following
lemma, which proves the stronger result that such a fractional matching z exists
whenever p; > po holds.

Lemma 13. Let py and po be stable simple matchings such that py >y po. Then
there exists a fractional matching x that is supported by py and po and satisfies
conditions (C.7).

Proof. Let M = {m € M | ju(m) # po(m)} and W = {w € W | p1(w) # p2(w)}.
As py # po, we have M # () and W # (. As py and ug are both stable, the
set of unmatched agents in these matchings is the same (Roth and Sotomayor [26,
Theorem 2.22]). Therefore, u;(M) = W and y;(W) = M hold for i = 1, 2. Define an
oriented graph whose nodes are M UW as follows: (i) there is an arc from m € M to
w e W if iy (m) = w, and (ii) there is an arc from w € W to m € M if py(w) = m.
Because every node in this finite graph has a unique direct successor and a unique
direct predecessor, it follows that the graph is the union of a set of disjoint directed
cycles. Let mjwimaws . .. mpwymys1 with myi1 = my be such a cycle and consider
the set of equations

u(mi,we) = x(my, we)u(my, we) + x(my, wy)u(my, wy)
v(my,wy) = x(my, wr)v(my,wy) + z(ma, w)v(me, wr)
u(ma, w) = x(me, wi)u(me, wr) + x(me, wa2)u(msz, ws)
v(ma, we) = x(ma, wa)v(me, ws) + x(ms, we)v(ms, wa)

v(mye, we) = x(mg, we)v(me, we) + x(Myg1, we)v(Mes1, we).

Because the direct predecessor of each node is distinct from its direct successor, it

must be that £ > 1. For ¢ = 1,--- | £ the following inequalities are satisfied:
u(ml7wl) > u(mi7wi—1) > O? (Cg)
v(mig1, w;) > v(mg, w;) > 0, (C.10)

where we set wy = wy, and where the first inequality in (C.9) is from p; >pr po,
the second inequality from the individual rationality of po, and in both cases the
strictness of the inequality is from the strictness of preferences. Because of (C.3), an
analogous argument yields (C.10). Using these properties, we now argue that the
above systems of equations has a solution that satisfies

x*(mi,w;) > 0, " (mjzq,w;) >0, (C.11)
x*(mi,wi) + l‘*(m¢+1,wi) <1, x*(mi,wi,l) + x(ml,wi) <1 (0.12)

foralli=1,---,¢.
We construct a solution as follows. For any ¢ € [0,1], let 2(m1,w;) = c. Using
(C.9), the first equation determines z(mq,w;) € [0,1) as a strictly decreasing, affine
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function h; of ¢, which satisfies hi(1) = 0. Substitute x(mq,w1) = hi(c) into the
next equation, and note that (C.10) determines z(ma,w;) € (0,1) as a strictly
increasing affine function hy of ¢. Proceeding in this fashion until the last equation
is reached, this iterative procedure defines a strictly increasing and affine mapping
from [0,1] into (0,1). This function has a unique fixed point 0 < ¢* < 1. Let
x*(myy1,wg) = x*(my,we) = ¢* and use hy, he, -+ to determine the remaining
values. This yields a solution that satisfies (C.11). The inequalities in (C.12) are
then implied by (C.9) and (C.10).

Apply this argument to all cycles; and complete the specification of z* by set-
ting z*(m,w) = 0 for (m,w) satisfying x;(m,w) = za(m,w) = 0 and by setting
x*(m,w) = 1 for (m, w) satisfying x1(m,w) = x9(m,w) = 1, where 1 and x5 are the
assignment matrices corresponding to uq and ps. By construction, z* satisfies (1) —
(3) as well as (C.5) and (C.6). Thus, z* is a fractional matching supported by ;1 and
pa. For m ¢ M the matching z* satisfies U(m;x*) = u(m, p1(m)) = u(m, pz(m))
so that (C.7) is satisfied. Similarly, (C.7) holds for w ¢ W. For m € M we have (as
x* solves the set of equations given above):

u(m, pa(m)) = 2" (m, pr(m))u(m, pi(m)) + z*(m, pa(m))u(m, pz(m)).

As U(m;z*) is given by the right side of this equation, (C.7) holds. Similarly, for

w € W we have

V(w;z) = v(p(w), w) = 2" (p(w), w)v(pi (w)), w) + 2" (p2(w), w)v(ps(w), w),

yielding (C.7) for those types. O

Appendix D. Proof of Corollary 3

Let z, be the unique stable matching. By Lemma 9, there exists A, such that for
all A > ), an equilibrium matching 2 exists. By Corollary 1, we have limy_ o, 2* =
2,20 For A > ), let o’ denote the acceptance probabilities of the equilibrium
inducing z*. By Lemma 5, this is well-defined.

Because the payoff functions are continuous, limy_ o, U(m;z*) = U(m; ) and
limy oo V(w; 2*) = V(w;z4), for all sequences of equilibrium matchings. Because
the number of types is finite, we may therefore choose A\, > A, such that for all
A > A, and all equilibrium matchings z for A,

u(m, w) < U(m; ) = u(m,w) < Ulm;z), (D.1)
v(m,w) < V(w;x,) = v(im,w) < V(w;z) (D.2)

hold for all (m,w). We now restrict attention to A > A,.

2Suppose not. Because the set of matchings is compact, we can then find a sequence (\x)
converging to infinity such that the associated sequence (z) of equilibrium matchings with z, = ™k
converges to some & # x.. This contradicts Corollary 1.
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Because z, is a simple matching, we have z.(m,w) € {0, 1} for all pairs (m,w).
Consider any pair (m,w) satisfying x*(m,w) = 0. Because preferences are strict
and z, is stable, this implies either u(m,w) < U(m;x,) or v(m,w) < V(w;xy), or
both. Therefore, from (D.1) — (D.2) and the optimality condition for equilibrium
strategies, cf. (23),

z(m,w) =0 = o m,w) = 0. (D.3)

Consider any pair (m,w) satisfying x*(m,w) = 1. We then have U(m;z,) =
u(m,w) > 0 and V(w;x,) = v(m,w) > 0, where the inequalities are from the
individual rationality of z,. Because (D.3) implies z*(m,w’) = z*(m/,w) = 0
for all m’ # m and w' # w and because z*(h,h) > 0 holds for all h, we have
u(m,w) > U(m;2*) and v(m,w) > V(w;z?). Therefore, the optimality condition
for equilibrium strategies implies

z(m,w) =1 = oMNm,w) = 1. (D.4)

As z,(m,w) € {0,1} holds for all pairs (m,w), (D.3) — (D.4) imply that the equilib-
rium acceptance probabilities a* are uniquely determined and satisfy a*(m,w) =
Zx(m,w) for all (m,w).

Suppose the contact function is given by (31). Using (11) and (31), the conditions
characterizing equilibrium matches from Lemma 7 reduce to

x(m,w) < Z—Qx(m,m)x(w,w) (D.5)
and
oo, w) = {o if u(m, w) < U(m;z) or v(m,w) < V(w;z),
’ %x(m,m)x(w,w) if u(m,w) > U(m;z) and v(m,w) > V(w;x).
(D.6)
From (D.3),
Ty (m,w) =0 = 2*(m,w) = 0. (D.7)

We have also shown that for all (m,w) satisfying x.(m,w) = 1, the inequalities
u(m,w) > U(m;x*) and v(m,w) > V(w;2) hold. Using (D.6),

An N, m)a (w, w). (D.8)

To(m,w) =1 = 2(m,w) = 27

Because every m € M and every w € W has at most one partner in the simple
matching x,, we can use (D.3) and (D.4) to infer that

zo(m,w) =1 = 2)(m,m) = 2*(w,w) = 1 — 2*(m, w). (D.9)
Consequently, we can rewrite the right side of (D.8) as

M m,w) = %(1 — 2N (m, w))>. (D.10)
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Equation (D.10) has a unique solution z*(m,w) in the interval [0,1]. Since in
every stable simple matching, either x,(m,w) = 0 or x.(m,w) = 1, the equilibrium
matching 2* (m, w) is therefore uniquely determined for all pairs (m,w) via (D.7) and
(D.8). From Lemma 5, uniqueness of the equilibrium matching implies uniqueness
of equilibrium, finishing the proof. O
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