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Abstract

This paper shows nonparametric identification of dynamic panel data models with

nonseparable heterogeneity and dynamic selection by nonparametrically differencing out

these two sources of bias. For T = 3, the model is identified by using a proxy variable.

For T = 6, the three additional periods construct the proxy to establish identification. As

a consequence of these identification results, a constrained maximum likelihood criterion

follows, which corrects for selection and allows for one-step estimation. Applying this

method, I investigate whether SES affects adult mortality. The method circumvents the

survivorship bias and accounts for unobserved heterogeneity. I find that employment has

protective effects on survival for the male adults in the NLS Original Cohorts: Older Men.
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1 Introduction

Dynamics, nonseparable heterogeneity, and selection have been separately treated in the panel

data literature, in spite of their joint relevance to a wide array of applications. First, common

economic variables of interest are modeled to follow dynamics, e.g., assets, income, physical

capital and human capital. Second, many economic models entail nonseparable heterogeneity,

i.e., an additively separable residual does not summarize abilities, preferences and technologies.

Third, most empirical panel data are unbalanced by (self-) selection. Indeed, consideration

of these three issues – dynamics, nonseparable heterogeneity, and selection – is essential, but

existing econometric methods do not handle them at the same time.

To fill this gap, this paper proposes a set of conditions for identification of dynamic panel

data models in the presence of both nonseparable heterogeneity and dynamic selection.1 Non-

parametric point identification is achieved by using information involving either a proxy variable

or a slightly longer panel. Specifically, the model is point-identified using T = 3 periods of un-

balanced panel data and a proxy variable. A special case of this identification result occurs by

constructing the proxy variable from three additional periods, i.e., T = 6 in total.

For example, consider the dynamics of socio-economic status (SES) and its causal effects

on adult mortality.2 Many unobserved individual characteristics such as genetics, patience and

innate abilities presumably affect both SES and survival in non-additive ways, which would

incur a bias unless explicitly accounted for. Furthermore, a death outcome of the survival

selection induces subsequently missing observations, which may result in a selection bias, often

called survivorship bias. The following dynamic panel model with selection accommodates this

example: 
Yt = g(Yt−1, U, Et) t = 2, · · · , T (Dynamic Panel Model)

Dt = h(Yt, U, Vt) t = 1, · · · , T − 1 (Selection Model)

FY1U (Initial Condition)

The first equation models the dynamics of the observed state variable Yt, such as SES, as a

first-order Markov process with unobserved heterogeneity U . The second equation models a

binary choice of the selection variable, Dt, such as survival, as a Markov decision process with

unobserved heterogeneity U . The initial condition FY1U models the dependence of the initial

state Y1 on unobserved heterogeneity U .3 The period-specific shocks (Et, Vt) are exogenous,

leaving the fixed effect U as the only source of endogeneity. The economic agent drops out of

1In the introductory section of his monograph, Hsiao (2003) particularly picks up heterogeneity and selection

as the two major sources of bias in panel data analysis, which motivates the goal of this paper.
2Among many biological and socioeconomic factors of mortality (Cutler, Deaton, and Lleras-Muney, 2006),

the role of SES and economic environments has been investigated by a number of empirical researches (e.g.,

Ruhm, 2000; Deaton and Paxson, 2001; Snyder and Evans, 2006; Sullivan and von Wachter, 2009a,b)
3The distribution FY1U features the initial conditions problem for dynamic panel data models. See Wooldridge

(2005) and Honoré and Tamer (2006) for discussions on the initial conditions problem in the contexts of nonlinear

and binary outcome models. Blundell and Bond (1998) and Hahn (1999) use semiparametric distributions to

obtain identifying restrictions and efficiency gain. In applications, the initial condition FY1U together with the

function g are important to disentangle spurious state dependence of a long-run outcome (Heckman, 1981a,b).

1



the panel upon Dt = 0, as in the case of death. Consequently, data is observed in the following

manner: (Y2, D2) is observed if D1 = 1; (Y3, D3) is observed if D1 = D2 = 1; and so on.

Heckman and Navarro (2007) introduced this formulation of dynamic selection.

How can we nonparametrically point identify the nonseparable functions (g, h) and the

initial condition FY1U under this setup of endogenously unbalanced panel data? Common ways

to handle selection include matching and weighting. These approaches, however, presume

selection on observables, parametric models, and additively separable models, none of which

is assumed in this paper. Even without selection, the standard panel data techniques such as

first differencing, demeaning, projection, and moment restrictions do not generally work for

nonseparable and nonparametric models.

The literature on nonseparable cross section models proposes constructing auxiliary vari-

ables, such as a proxy variable or a control variable, to remove endogeneity (e.g., Garen, 1984;

Imbens and Newey, 2009).4 Likewise, Altonji and Matzkin (2005) show that a control variable

can be also constructed from panel data for sibling and neighborhood panels. This paper com-

plements Altonji and Matzkin along two dimensions. First, we show that a proxy variable can

be constructed from dynamic panel data, similar to their construction of a control variable from

sibling and neighborhood panel data. Second, the proxy variable, akin to a control variable,5

handles not only nonseparable heterogeneity, but also dynamic selection. We propose a method

of using the proxy variable to nonparametrically difference out both nonseparable heterogeneity

and dynamic selection at the same time.

The nonparametric differencing relies on a nonclassical proxy variable, which we define as

a noisy signal of true unobserved heterogeneity with a nonseparable noise. This definition

is reminiscent of nonclassical measurement errors (ME).6 A natural approach to identification,

therefore, is to adapt the methods used in the nonclassical ME literature to the current context.

This paper follows the spectral decomposition approach (e.g., Hu, 2008; Hu and Schennach,

2008) to nonparametrically identify mixture components.7

The identification procedure is outlined as follows. First, the method of nonparametric

differencing removes the influence of nonseparable heterogeneity and selection. After removing

these two sources of bias, the spectral decomposition identifies the mixture component fYt|Yt−1U ,

which in turn represents the observational equivalence class of the true nonseparable function

g by normalizing the distribution of the exogenous error Et, following Matzkin (2003, 2007).

This sequence yields nonparametric point identification of g from short unbalanced panel data.

The selection function h can be similarly identified by a few additional steps of the spectral

decomposition and solving integral equations8 to identify representing mixture components.

4Chesher (2003) can be also viewed as a control variable method, cf. Imbens and Newey (2009; Theorem 2).
5Proxy and control variables are similar in that both of them are correlated with unobserved factors. But

they differ in terms of independence conditions: if X denotes an endogenous regressor and U denotes unobserved

factors, then a proxy variable Z and a control variable Z ′ satisfy Z ⊥⊥ X | U and U ⊥⊥ X | Z ′, respectively.
6See Lewbel (2006), Mahajan (2006), Schennach (2007), Hu (2008), Hu and Schennach (2008), and Schen-

nach, Song, and White (2011) for the literature on the nonclassical ME.
7See Henry, Kitamura, and Salanié (2010) for general identification results for mixture models.
8Precisely, they are the Fredholm equations of the first kind. See Carrasco, Florens, and Renault (2007).
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2 Background

Selection is of natural interest in panel data analysis because attrition is an issue in most, if

not all, panel data sets. While many applications focus on the dynamic model g as the object

of primary interest, the selection function h also helps to explain important causal effects in a

variety of economic problems. In the SES and mortality example, identification of the survival

selection function h allows us to learn about the causal effects of SES on mortality. Generally,

the selection function h can be used to model hazards of panel attrition. Examples include (i)

school dropout (Cameron and Heckman, 1998; Eckstein and Wolpin, 1999; Belzil and Hansen,

2002; Heckman and Navarro, 2007); (ii) retirement from a job (Stock and Wise, 1990; Rust

and Phelan, 1997; Karlstrom, Palme, and Svensson, 2004; French, 2005; Aguirregabiria, 2010;

French and Jones, 2011); (iii) replacement of depreciated capital (Rust, 1987) and replacement

of managers (Brown, Goetzmann, Ibbotson, and Ross, 1992); (iv) sterilization (Hotz and Miller,

1993); (v) exit from markets (Aguirregabiria and Mira, 2007; Pakes, Ostrovsky, and Berry,

2007); (vi) recovery from a disease (Crawford and Shum, 2005); and (vii) death (Contoyannis,

Jones, and Rice, 2004; Halliday, 2008). Examples (i)–(v) are particularly motivated by rational

hazards formulated in the following structural framework.

Example 1 (Optimal Stopping as a Rational Choice of Hazard). Suppose that an economic

agent knows her current utility or profit as a function π of state yt and heterogeneity u. Let

vdt denote a selection-specific private shock for each choice d ∈ {0, 1}, which is known to the

agent. She also knows her exit value as a function ν of state yt and heterogeneity u. Using the

dynamic function g, define the value function ν as the fixed point of the Bellman equation

ν(yt, u) = E[max{π(yt, u) + V 1
t + βE[ν(g(yt, u, Et+1), u)], π(yt, u) + V 0

t + βν(yt, u)}],

where β denotes the rate of time preference. The reduced-form self-selection function h is then

defined by

h(yt, u, vt) := 1{βE[ν(g(yt, u, Et+1), u)]︸ ︷︷ ︸
Continuation value

− βν(yt, u)︸ ︷︷ ︸
Exit Value

> v0t − v1t︸ ︷︷ ︸
||
vt

}.

The agent decides to exit at time t if h(Yt, U, Vt) = 0. Identification of the reduced form h

is important in many applications.9 Moreover, the reduced form h also reveals the hetero-

geneous conditional choice probability (CCP), fDt|YtU , which in turn can be used to recover

heterogeneous structural primitives by using the method of Hotz and Miller (1993).10

9Counterfactual policy analysis is often possible with reduced-form selection function as a sufficient statistic;

see the Marschak’s (1953) maxim discussed by Heckman (2000) and Heckman and Vytlacil (2007).
10I keep identification of the primitives out of the scope of this paper. Primitives are known to be generally

under-identified without additional restrictions (Rust, 1994; Magnac and Thesmar, 2002; Pesendorfer and

Schmidt-Dengler, 2008). These features may be more generally treated in the literature of set identification and

set inference, e.g., Bajari, Benkard, and Levin (2007) and the follow-up literature.

Identification of CCP under finite heterogeneous types has been discussed by Magnac and Thesmar (2002)

and Kasahara and Shimotsu (2009). Aguirregabiria and Mira (2007) considered market-level unobserved het-

erogeneity as a variant of their main model. While we focus on identification of heterogeneous CCP, Arcidiacono

and Miller (2011) suggested a method of estimating heterogeneous CCP.
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As this example suggests, nonparametric identification of the heterogeneous CCP follows as

a byproduct of our identification results,11 showing a connection between this paper and the

literature on structural dynamic discrete choice models. When attrition, Dt = 0, is associated

with hazards or ends of some duration, our identification results also entail nonparametric iden-

tification of the mixed hazard model and the distribution of unobserved heterogeneity.12 In this

sense, our objective is also related to the literature on duration analysis (e.g., Lancaster, 1979;

Elbers and Ridder, 1982; Heckman and Singer, 1984; Honoré, 1990; Ridder, 1990; Horowitz,

1999; Ridder and Woutersen, 2003).

The paper covers three econometric topics, (A) panel data, (B) selection/missing data,

and (C) nonseparable models. To show the place of this paper, I briefly discuss these related

branches of the literature. Because the field is extensive, the following list is not exhaustive.

(A) and (B): panel data with selection has been discussed from the perspective of (i) a

selection model (Hausman and Wise, 1979; Das, 2004), (ii) variance adjustment (Baltagi, 1985;

Baltagi and Chang, 1994), (iii) additional data such as refreshment samples (Ridder, 1992;

Hirano, Imbens, Ridder, and Rubin, 2001; Bhattacharya, 2008), (iv) matching (Kyriazidou,

1997), (v) weighting (Hellerstein and Imbens, 1999; Moffitt, Fitzgerald, and Gottschalk, 1999;

Wooldridge, 2002), and (vi) partial identification (Khan, Ponomareva, and Tamer, 2011). We

contribute to this literature by allowing nonseparability in addition to selection/missing data.

(A) and (C): nonseparable panel models have been treated with (i) random coefficients

and interactive fixed effects (Hsiao, 1975; Pesaran and Smith, 1995; Hsiao and Pesaran, 2004;

Graham annd Powell, 2008; Arellano and Bonhomme, 2009; Bai, 2009). (ii) bias reduction

(discussed in the extensive body of literature surveyed by Arellano and Hahn, 2005), (iii)

identification of local partial effects (Altonji and Matzkin, 2005; Altonji, Ichimura, and Otsu,

2011; Graham and Powell, 2008; Arellano and Bonhomme, 2009; Bester and Hansen, 2009;

Chernozhukov, Fernández-Val, Hahn, and Newey, 2009; Hoderlein andWhite, 2009), (iv) partial

identification (Honoré and Tamer, 2006; Chernozhukov, Fernández-Val, Hahn, and Newey,

2010), (v) partial separability (Evdokimov, 2009), and (vi) assumptions of surjective and/or

injective operators (Kasahara and Shimotsu, 2009; Bonhomme, 2010; Hu and Shum, 2010; Shiu

and Hu, 2011). The paper contributes to this literature by introducing selection/missing data

in addition to allowing nonseparability.

Identification of a nonseparable dynamic panel data model is studied by Shiu and Hu (2011)

who use independently evolving covariates as auxiliary variables, similar to one of the two iden-

tification results of this paper using a proxy as an auxiliary variable. This paper complements

Shiu and Hu along two dimensions. First, our identification result using T = 6 periods elimi-

nates the need to assume the independently evolving covariates or any other auxiliary variable.

Second, we can allow for selection/missing data in addition to dynamics and nonseparability.

11Taking the expectation of h(y, u, · ) with respect to the distribution of the exogenous error Vt yields the

heterogeneous CCP, fDt|YtU (1 | y, u) for each (y, u). The heterogeneous CCP is also identified by Kasahara and

Shimotsu (2009), which this paper complements by introducing missing observations in data.
12The nonparametric mixed hazard model and the marginal distribution FU of unobserved heterogeneity

follow from the identified survival selection function h and the initial condition FY1U , respectively.
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3 An Overview

We start out with an informal overview of the identification strategy in this section, followed

by formal identification results summarized in Section 4.

Briefly described, the nonparametric differencing method works in the following manner. Let

z denote a proxy variable. Observed data Az, which are contaminated by mixed heterogeneity

and selection, can be decomposed as Az = BzC, where Bz contains model information and C

contains the two sources of bias, i.e., heterogeneity and selection. The contaminant holder, C,

does not depend on z by an exclusion restriction. Thus, using two values of z, say z = 0, 1,

selectively eliminates C by the operator composition A1A
−1
0 = B1CC

−1B−1
0 = B1B

−1
0 , without

losing the model information Bz. This shows how heterogeneity and selection contained in C

are nonparametrically differenced out, and is analogous to the familiar first differencing method

which eliminates fixed effects by using two values of t instead of two values of z.

Section 3.1 sketches the identification strategy using T = 3 periods of panel data and a

proxy variable. An intuition is the following. First, using variations in Y1 in the equation y2 =

g(Y1, U, E2) involving the first two periods, t = 1, 2, we can retrieve information about (U, E2)
associated with Y2 = y2. This is comparable to the first stage in the cross section context except

for the endogeneity of the first-stage regressor Y1. The proxy variable, which is correlated with

Y1 only through U , disentangles U and Y1 to fix the endogeneity. We then use this knowledge

about U to identify the heterogeneous dynamic through the equation Y3 = g(y2, U, E3) involving
the latter two periods, t = 2, 3, which is comparable to the second stage.

Section 3.2 sketches the identification strategy using T = 6 periods without a proxy vari-

able. With six periods, the three consecutive observations, Y2, Y3 and Y4, together constitute

a substitute for the proxy. Intuitively, controlling for the adjacent states, Y2 and Y4, the inter-

mediate state Y3 is correlated with (Y1, Y5, Y6) only through the heterogeneity U . This allows

Y3 to serve as a proxy for U , conditionally on Y2 and Y4. The constructed proxy identifies both

FY6|Y5U , which represents the dynamic function g, and the initial condition FY1U .

3.1 A Sketch of the Identification Strategy

Consider the model (g, h, FY1U , ζ, FEt , FVt , FW ) where
Yt = g(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

Dt = h(Yt, U, Vt) t = 1, · · · , T − 1 (Selection)

FY1U (Initial Condition)

Z = ζ(U,W ) (Optional: Nonclassical Proxy)

(3.1)

The observed state variable Yt, such as SES, follows a first-order Markov process g with nonsep-

arable heterogeneity U . The selection variable Dt, such as survival, follows a Markov decision

process h with heterogeneity U . The outcome Dt = 0, such as death, indicates attrition af-

ter which the counterfactual state variable Yt becomes unobservable. The distribution FY1U
of (Y1, U) models dependence of the initial state Y1 on unobserved heterogeneity U . The last
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optional equation models the proxy variable Z as a noisy signal of the true unobserved het-

erogeneity U with a nonseparable noise variable W .13 This proxy equation is optional when

T > 6, because the three additional periods construct the proxy. The functional relations in

(3.1) together with the following exogeneity assumptions define the econometric model.

(i) Exogeneity of Et: Et ⊥⊥ (U, Y1, {Es}s<t, {Vs}s<t,W ) for all t ≥ 2.

(ii) Exogeneity of Vt: Vt ⊥⊥ (U, Y1, {Es}s6t, {Vs}s<t) for all t ≥ 1. (3.2)

(iii) Exogeneity of W : W ⊥⊥ (Y1, {Et}t, {Vt}t).

This construction of the model leaves the nonseparable fixed effect U as the only source of

endogeneity, and is in accordance with the standard assumptions in the panel data literature.

We assume that the exogenous shocks, Et, Vt, and the noise, W , are continuously distributed,

and normalize the distributions FEt , FVt , and FW to Uniform(0, 1) so that the model consists of

only the four elements (g, h, FY1U , ζ).

The nonseparable fixed effect U and the exogenous errors Et, Vt and W are unobservable

by econometricians. Observation of the the state variable Yt is contingent on self-selection by

economic agents. For a three-period panel data, the states are observed according to the rule:

Observe Y1.

Observe Y2 if D1 = 1.

Observe Y3 if D1 = D2 = 1.

Consequently, panel data reveals the parts, FY2Y1ZD1( ·, ·, ·, 1) and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1),
of the joint distributions, but they will become unobservable once a ‘1’ is replaced by a ‘0’ in

the slot of Dt.

In the current section, we consider a special case where Yt, U , and Z are Bernoulli random

variables for ease of exposition. This special case conveniently allows to describe the identifi-

cation strategy by means of matrices instead of operators. The basic idea of the identification

strategy for this special case extends to more general cases, as formally stated in Section 4. For

this setting, the function g can be represented by a heterogeneous Markov transition probability,

fYt+1|YtU . Similarly, the selection function h can be represented by the heterogeneous condi-

tional choice probability (heterogeneous CCP), fDt|YtU . In this way, the model (g, h, FY1U , ζ)

in (3.1) can be represented by the quadruple (fYt+1|YtU , fDt|YtU , fY1U , fZ|U) of conditional and

joint mass functions. Given this statistical representation, identification amounts to that

fY2Y1ZD1( ·, ·, ·, 1) & fY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1)
uniquely
determine7→ (fYt+1|YtU , fDt|YtU , fY1U , fZ|U).

The exogeneity in (3.2) implies the following two conditional independence restrictions:

Exogeneity of E3 ⇒ Markov Property: Y3 ⊥⊥ (Y1, D1, D2, Z) | (Y2, U) (3.3)

Exogeneity of W ⇒ Redundant Proxy: Z ⊥⊥ (Y2, Y1, D2, D1) | U (3.4)

13A standard proxy Z is an additively separable function of U and W (cf. Wooldridge, 2001; Ch. 4). Our

proxy model ζ allows for nonseparability and nonlinearity to avoid a misspecification bias. One can think of the

pair (U,W ) as fixed unobserved characteristics, where U is the part that enters the economic model whereas W

is the part excluded from these functions (i.e., exclusion restriction). Therefore, W is exogenous by construction.
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See Lemma 3 in the appendix for a derivation of the above conditional independence restrictions.
The Markov property (3.3) states that the current state Y2 and the heterogeneity U are sufficient
statistics for the distribution of the next state Y3. The redundant proxy (3.4) states that, once
the true heterogeneity U is controlled for, the proxy Z is redundant for the model.14 These
independence restrictions derive the following chain of equalities for each y1, y, y3, z:

fY3Y2Y1ZD2D1(y3, y, y1, z, 1, 1)︸ ︷︷ ︸
Observed Data

=
∑
u

fY3Y2Y1ZUD2D1(y3, y, y1, z, u, 1, 1)

=
∑
u

fY3|Y2Y1ZUD2D1
(y3 | y, y1, z, u, 1, 1) · fZ|Y2Y1UD2D1

(z | y, y1, u, 1, 1) · fY2Y1UD2D1(y, y1, u, 1, 1)

(∗)
=

∑
u

fY3|Y2U (y3 | y, u)︸ ︷︷ ︸
Model g

· fZ|U (z | u)︸ ︷︷ ︸
Model ζ

· fY2Y1UD2D1(y, y1, u, 1, 1)︸ ︷︷ ︸
Nonparametric Residual

Involving Selection D2 = D1 = 1
& Nonseparable Fixed Effect U

(3.5)

where the last equality (∗) follows from (3.3) and (3.4). The object fY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1)
on the left-hand side can be observed from data because the slots of D1 and D2 contain ‘1.’ The

right-hand side consists of three factors, where fY3|Y2U and fZ|U represent g and ζ, respectively.

The last factor fY2Y1UD2D1( ·, ·, ·, 1, 1) can be thought of as the nonparametric residual of

the observed data after extracting the two preceding economic components, g and ζ. This

nonparametric residual absorbs the selection, D2 = D1 = 1, which is a source of selection

bias. Moreover, the nonparametric residual also absorbs the nonparametric distribution of the

nonseparable fixed effect U , which is a source of endogeneity bias. In other words, the two

sources of bias – nonseparable heterogeneity and selection – captured by the nonparametric

residual are isolated from the economic models (g, ζ) in the decomposition (3.5).

For convenience of calculation, we rewrite the equality (3.5) in terms of matrices as

Ly,z = PyQzL̃y for each y ∈ Y and z ∈ Z, (3.6)

where Ly,z, Py, Qz, and L̃y are defined as15

Ly,z :=

[
fY3Y2Y1ZD2D1(0, y, 0, z, 1, 1) fY3Y2Y1ZD2D1(0, y, 1, z, 1, 1)

fY3Y2Y1ZD2D1(1, y, 0, z, 1, 1) fY3Y2Y1ZD2D1(1, y, 1, z, 1, 1)

]
→ Observed data

Py :=

[
fY3|Y2U(0 | y, 0) fY3|Y2U(0 | y, 1)
fY3|Y2U(1 | y, 0) fY3|Y2U(1 | y, 1)

]
→ Represents model g

Qz := diag(fZ|U(z | 0) fZ|U(z | 1))′ → Represents model ζ

L̃y :=

[
fY2Y1UD2D1(y, 0, 0, 1, 1) fY2Y1UD2D1(y, 1, 0, 1, 1)

fY2Y1UD2D1(y, 0, 1, 1, 1) fY2Y1UD2D1(y, 1, 1, 1, 1)

]
→ Residual

In (3.6), the observed matrix Ly,z is decomposed into three factors, Py, Qz, and L̃y. The matrices

Py and Qz represent the economic models g and ζ, respectively. The matrix L̃y contains the

remainder as the nonparametric residual, and particularly contains the two sources of bias.

14The redundant proxy assumption is stated in terms of conditional moments in the context of linear additively

separable models; see Wooldridge (2001), Ch. 4.
15These two-by-two matrices follow from the simplifying assumption of the current subsection that Yt, U , and

Z are Bernoulli random variables. In general cases, integral and multiplication operators replace these matrices.
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Given the decomposition (3.6), the next step is to eliminate the nonparametric residual ma-

trix L̃y in order to nonparametrically difference out the influence of selection and nonseparable

heterogeneity, or to remove biases induced by them. Using the two values of z of the proxy

variable, 0 and 1, we form the following composition:

Ly,1L
−1
y,0︸ ︷︷ ︸

Observed Data

= PyQ1L̃yL̃
−1
y Q−1

0 P−1
y = Py︸︷︷︸

g

Q1Q
−1
0︸ ︷︷ ︸

ζ

P−1
y︸︷︷︸
g

. (3.7)

The nonparametric residual matrix L̃y has been eliminated as desired. Consequently, the

observed data on the left hand side is now purely linked to a product of model components

(g, ζ) without any influence of the selection or the nonseparable heterogeneity.

The composition (3.7) is valid provided that Py, Qz, and L̃y are all non-singular. The fol-

lowing rank restrictions guarantee that they are indeed non-singular under the current setting.

Heterogeneous Dynamics: E[g(y, 0, Et)] ̸= E[g(y, 1, Et)] (3.8)

Nondegenerate Proxy Model: 0 < E[ζ(u,W )] < 1 for each u ∈ {0, 1} (3.9)

No Extinction: E[h(y, u, Vt)] > 0 for each u ∈ {0, 1} (3.10)

Initial Heterogeneity:
E[U | Y2 = y, Y1 = 0, D1 = 1] ̸=

E[U | Y2 = y, Y1 = 1, D1 = 1]
(3.11)

Restriction (3.8) requires that the dynamic model g is a nontrivial function of the unobserved

heterogeneity, and implies that the matrix Py is non-singular.
16 Restriction (3.9) requires that

the proxy model (ζ, FW ) exhibits nondegeneracy, and implies that the matrixQ0 is non-singular.

Restriction (3.10) requires a positive survival probability for each heterogeneous type u ∈ {0, 1},
and hence drives no type U into extinction. Restriction (3.11) requires that the unobserved

heterogeneity is present at the initial observation. The last two restrictions (3.10) and (3.11)

together imply that the nonparametric residual matrix L̃y is non-singular.

Now that the nonparametric residual L̃y containing the two sources of bias has gone, it

remains to identify the elements of the matrices Py and Qz from equation (3.7). This can

be accomplished by showing the uniqueness of eigenvalues and eigenvectors (e.g., Hu, 2008;

Kasahara and Shimotsu, 2009). Because the matrixQz is diagonal, (3.7) forms a diagonalization

of the observable matrix Ly,1L
−1
y,0. The diagonal elements of Q1Q

−1
0 and the columns of Py are

the eigenvalues and the eigenvectors of Ly,1L
−1
y,0, respectively. Therefore, Q1Q

−1
0 is identified by

the eigenvalues of the observable matrix Ly,1L
−1
y,0 without an additional assumption.

On the other hand, identification of Py follows from the following additional restriction:

Relevant Proxy: E[ζ(0,W )] ̸= E[ζ(1,W )]. (3.12)

This restriction (3.12) requires that the proxy model ζ is a nontrivial function of the true

unobserved heterogeneity on average. It characterizes the relevance of Z as a proxy of U ,

16Under the current simplified setting with Bernoulli random variables, a violation of this assumption implies

absence of endogeneity in the dynamic model, and thus the dynamic function g would still be identified. However,

the other functions are not guaranteed to be identified without this assumption.
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and implies that the elements of Q1Q
−1
0 (i.e., the eigenvalues of Ly,1L

−1
y,0) are distinct. The

distinct eigenvalues uniquely determine the corresponding eigenvectors up to scale. Since an

eigenvector [fYt+1|YtU(0 | y, u), fYt+1|YtU(1 | y, u)]′ is a vector of conditional densities which

sum to one, the scale is also uniquely determined. Therefore, Py and Q1Q
−1
0 are identified

by the observed data Ly,1L
−1
y,0. The identified eigenvalues17 take the form of the proxy odds

fZ|U(1 | u)/(1−fZ|U(1 | u)), which in turn uniquely determines the diagonal elements fZ|U(z | u)
of Qz for each z. This procedure heuristically shows how the the elements (g, ζ) of the model

is identified from endogenously unbalanced panel data.

Remark 1. The general identification procedure consists of six steps. The current subsection

presents a sketch of the first step to identify (g, ζ). Five additional steps show that the remaining

two elements (h, FY1U) of the model are also identified. Figure 1 summarizes all the six steps.

Section 4 presents a complete identification result.

Discussion 1. This sketch of the identification strategy demonstrates how the proxy handles

both selection and nonseparable heterogeneity at the same time. The trick of Equation (3.5)

or (3.6) is to isolate the selection (D1 = D2 = 1) and the nonparametric distribution of the

nonseparable heterogeneity U into the nonparametric residual matrix L̃y, which in turn is elim-

inated in Equation (3.7). Our method thus can be considered as a nonparametric differencing

facilitated by a proxy variable, nonparametrically differencing out both nonseparable fixed ef-

fects and endogeneous selection. This process is analogous to the first differencing method

which differences out fixed effects arithmetically. Our nonparametric differencing occurs in the

non-commutative group of matrices (generally the group of linear operators), whereas the first

differencing occurs in (R,+). In the non-commutative group, the proxy Z plays the role of

selectively canceling out the nonparametric residual matrix L̃y while leaving the Py and Qz

matrices intact. The use of a proxy parallels the classical idea of using instruments as means

of removing endogeneity (Hausman and Taylor, 1981). Instrumental variables are useful for

additive models because projection (moment restriction) of additive models on instruments re-

moves fixed effects as in Hausman and Taylor. This projection method is not generally feasible

for nonseparable and nonparametric models. Therefore, this paper uses a proxy variable, akin

to a control variable,18 to nonparametrically difference out the nonseparable fixed effect along

with selection as argued above. This point is revisited in Section 3.2: Discussion 3.

3.2 A Sketch of the Identification Strategy for T = 6

When T = 6, we identify the model (g, h, FY1U) without using an outside proxy variable or the

proxy model ζ. In the presence of an outside proxy, the main identification strategy was to

17Even though we obtain real eigenvalues in this spectral decomposition, Ly,1L
−1
y,0 need not be symmetric.

Note that a Hermitian operator is sufficient for real spectrum, but not necessary. This identification result holds

as far as the identifying restrictions are satisfied.
18If X denotes an endogenous regressor and U denotes unobserved factors, then a proxy, a control variable,

and an instrument are characterized by Z ⊥⊥ X | U , X ⊥⊥ U | Z, and Z ⊥⊥ U , respectively. The conditional

independence (3.4) thus characterizes Z as a proxy rather than a control variable or an instrument.
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derive the decomposition Ly,z = PyQzL̃y from which L̃y was eliminated (cf. Section 3.1). A

similar idea applies to the case of T = 6 without an outside proxy.

Again, assume that Yt, U , and Z follow the Bernoulli distribution for ease of exposition. Let

Z := Y3 for notational convenience. Using the exogeneity restriction (3.3) yields the following

decomposition of the observed data fY6Y5Y4ZY2Y1D5D4D3D2D1(·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1).

fY6Y5Y4ZY2Y1D5D4D3D2D1(y6, y5, y4,

y3︷︸︸︷
z , y2, y1, 1, 1, 1, 1, 1)︸ ︷︷ ︸

Observed from Data → Ly5,y4,z,y2

=
∑
u

fY6|Y5U(y6 | y5, u)︸ ︷︷ ︸
Model g → Py5

× fY4ZD5D4D3|Y2U(y4, z, 1, 1, 1 | y2, u)︸ ︷︷ ︸
An Alternative to Proxy Model ζ → Qy4,z,y2

· fY5|Y4U(y5 | y4, u) · fY2Y1UD2D1(y2, y1, u, 1, 1)︸ ︷︷ ︸
To Be Eliminated → L̃y5,y4,y2

This equality can be equivalently written in terms of matrices as Ly5,y4,z,y2 = Py5Qy4,z,y2L̃y5,y4,y2
for each (y5, y4, z, y2), where the 2× 2 matrices are defined as

Ly5,y4,z,y2 := [fY6Y5Y4ZY2Y1D5D4D3D2D1(i, y5, y4, y3, y2, j, 1, 1, 1, 1, 1)](i,j)∈{0,1}×{0,1}

Py5 :=
[
fY6|Y5U(i | y5, j)

]
(i,j)∈{0,1}×{0,1}

Qy4,z,y2 := diag
(
fY4ZD5D4D3|Y2U(y4, z, 1, 1, 1 | y2, 0) fY4ZD5D4D3|Y2U(y4, z, 1, 1, 1 | y2, 1)

)′
L̃y5y4y2 :=

[
fY5|Y4U(y5 | y4, u) · fY2Y1UD2D1(y2, j, i, 1, 1)

]
(i,j)∈{0,1}×{0,1}

Similarly to the case with an outside proxy, varying z = y3 while fixing (y5, y4, y2) eliminates

L̃y5,y4,y2 because it does not depend on z = y3. Under rank restrictions, the composition

Ly5,y4,1,y2L
−1
y5,y4,0,y2︸ ︷︷ ︸

Observed Data

= Py5Qy4,1,y2L̃y5y4y2L̃y5y4y2Q
−1
y4,0,y2

P−1
y5

= Py5 Qy4,1,y2Q
−1
y4,0,y2︸ ︷︷ ︸

Diagonal

P−1
y5

yields the eigenvalue-eigenvector decomposition to identify the dynamic model g represented

by the matrix Py5 . Five additional steps identify the rest (h, FY1U) of the model.

Discussion 2. Why do we need T = 6? For convenience of illustration, ignore selection. The

arrows in the diagram below indicate the directions of the causal effects. We are interested in g

and FY1U enclosed by round shapes. First, note that a variation in Y6 in response to a variation

in (Y5, U) reveals g. Second, a variation in U in response to a variation in Y1 reveals FU |Y1 ,

hence FY1U . We can see from the causal diagram that Y2, Y3, and Y4 are correlated with U ,

and hence we may conjecture that they could serve as a proxy of U . However, any of them, say

Z := Y3, cannot be a genuine proxy because the redundant proxy assumption similar to (3.4),

say Z ⊥⊥ Y5 | Z, would be violated with this choice Z = Y3. That is, even if we control for U , Y3
is still correlated with Y5 through the dynamic channel along the horizontal arrows. In order to

shut out this dynamic channel, we control the intermediate state Y4 between Y3 and Y5. Using

the language of the causal inference literature, we say that (U, Y4) “d-separates” Y3 and Y5 in the

causal diagram below, and this d-separation implies the conditional independence restriction

Y3 ⊥⊥ Y5 | (U, Y4); see Pearl (2000). Therefore Y3 is now a genuine proxy of U conditionally

on the fixed Y4 to analyze the dynamic model g. Similarly, we control the intermediate state
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Y2 between Y1 and Y3 to analyze the initial condition FY1U . The causal diagram indicates that

(U, Y2) “d-separates” Y1 and Y3, hence Y3 ⊥⊥ Y1 | (U, Y2). This makes Y3 a genuine proxy of

U conditionally on the fixed Y2 to analyze the initial condition FY1U . Controlling for the two

adjacent states, Y2 and Y4, costs the consecutive three periods (Y2, Y3, Y4) for the constructed

proxy model Qy4,z,y2 . This is an intuition behind the requirement of three additional periods

for identification without an outside proxy variable. See Appendix C.2 for a formal proof.

U
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Discussion 3. The idea of using three additional time periods to construct a proxy variable

parallels the well-known idea of using lags as instruments to form identifying restrictions for

additively separable dynamic panel data models (e.g., Anderson and Hsiao, 1982; Arellano and

Bond, 1991; Ahn and Schmidt, 1995; Arellano and Bover, 1995; Blundell and Bond, 1998; Hahn,

1999). Because projection or moment restriction on instruments is not generally a viable option

for nonseparable and nonparametric models, the literature on nonseparable cross section models

proposes constructing a proxy variable or a control variable from instruments (Garen, 1984;

Florens, Heckman, Meghir, and Vytlacil, 2008; Imbens and Newey, 2009). Altonji and Matzkin

(2005) show that a control variable can also be constructed from panel data for sibling and

neighborhood panels. This paper proposes constructing a proxy variable from three additional

observations of dynamic panel data, similar to Altonji and Matzkin’s construction of a control

variable from sibling and neighborhood panels. The constructed proxy variable turns out to

account for not only nonseparable heterogeneity but also selection as argued above.

4 Identification

This section formalizes the identification result, a part of which is sketched in Section 3.

4.1 Identifying Restrictions

Identification is proved by showing the well-definition of the inverse DGP correspondence

(FY2Y1ZD1( ·, ·, ·, 1), FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1)) 7→ (g, h, FY1U , ζ, FEt , FVt , FW ),
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up to observational equivalence classes represented by a certain normalization of the error

distributions FEt , FVt , and FW a la Matzkin (2003). To this end, we invoke the following four

restrictions on the set of potential data-generating models.

Restriction 1 (Representation). Each of the functions g, h, and ζ is non-decreasing and

càglàd (left-continuous with right limit) in the last argument. The distributions of Et, Vt, and
W are absolutely continuous with convex supports, and each of {Et}t and {Vt}t is identically

distributed across t.

The weak – as opposed to strict – monotonicity of the functions with respect to idiosyncratic

errors accommodates discrete outcomes Yt, Dt, and Z under absolutely continuous distributions

of errors (Et, Vt,W ). The purpose of Restriction 1 is to construct representations of the equiv-

alence classes of nonseparable functions up to which g, h, and ζ are uniquely determined by

the distributions FYt|Yt−1U , FDt|YtU , and FZ|U , respectively. The independence restriction stated

below in addition to Restriction 1 allows for their quantile representations in particular.

Restriction 2 (Independence).

(i) Exogeneity of Et: Et ⊥⊥ (U, Y1, {Es}s<t, {Vs}s<t,W ) for all t ≥ 2.

(ii) Exogeneity of Vt: Vt ⊥⊥ (U, Y1, {Es}s6t, {Vs}s<t) for all t ≥ 1.

(iii) Exogeneity of W : W ⊥⊥ (Y1, {Et}t, {Vt}t).

In the context of Section 3.1, Restriction 2 (i) and (iii) imply the conditional independence

restrictions (3.3) and (3.4), respectively. Parts (i) and (ii) impose exogeneity of the idiosyn-

cratic errors Et and Vt, thus leaving U as the only source of endogeneity. Part (iii) requires

exogeneity of the noise W in the nonseparable proxy model ζ. This means that the unobserved

characteristics consist of two parts (U,W ) where U is the part that enters the functions g and

h, whereas W is the part excluded from those functions (i.e., exclusion restriction), and hence

is exogenous by construction. Part (iii) implies Z ⊥⊥ (Y1, {Et}t, {Vt}t) | U , which is similar to

the redundant proxy restriction in the classical sense as discussed in Section 3.1: once the true

unobserved heterogeneity U is controlled for, the proxy Z is redundant for (g, h, FY1,U). These

independence conditions play the role of decomposing observed data into model components

and the nonparametric residual, as we saw through the sketch in Section 3.

Restriction 3 (Rank Conditions). The following conditions hold for every y ∈ Y :

(i) Heterogeneous Dynamics: the integral operator Py : L2(FU) → L2(FYt) defined by Pyξ(y
′) =∫

fY3|Y2U(y
′ | y, u) · ξ(u)du is bounded and invertible.

(ii) Nondegenerate Proxy Model: there exists δ > 0 such that 0 < fZ|U(1 | u) 6 1− δ for all u.

Relevant Proxy: fZ|U(1 | u) ̸= fZ|U(1 | u′) whenever u ̸= u′.

(iii) No Extinction: fD2|Y2U(1 | y, u) > 0 for all u ∈ U .
(iv) Initial Heterogeneity: the integral operator Sy : L2(FYt) → L2(FU) defined by Syξ(u) =∫
fY2Y1UD1U(y, y

′, u, 1) · ξ(y′)dy′ is bounded and invertible.

Under the special case discussed in Section 3.1, Restriction 3 is equivalent to (3.8)–(3.12),

by which the dynamic function g and the proxy model ζ were identified in that section. The
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notion of ‘invertibility’ depends on the normed linear spaces on which the operators are defined.

We use L2 in order to exploit convenient properties of the Hilbert spaces.19 A bounded linear

operator between Hilbert spaces guarantees existence and uniqueness of its adjoint operator,

which of course presumes a pre-Hilbert space structure in particular. Moreover, the invertibility

guarantees that the adjoint operator is also invertible, which is an important property used

to derive identification of the selection rule h and initial condition FY1U . Andrews (2011)

shows that a wide variety of injective operators between L2 spaces can be constructed from an

orthonormal basis, and that the completeness assumption ‘generically’ holds.

The first part of the rank condition (ii) requires that the proxy model (ζ, FW ) exhibits

nondegeneracy. The second part of the rank condition (ii) requires that Z is a relevant proxy for

unobserved heterogeneity U , as characterized by distinct proxy scores fZ|U(1 | u) across u. The
rank condition (iii) requires that there continue to exist some survivors in each heterogeneous

type, hence no type U goes extinct. This restriction is natural because one cannot learn about

a dynamic structure of the group of individuals that goes extinct after the first time period.

Restriction 4 (Labeling of U in Nonseparable Models). u ≡ fZ|U(1 | u) for all u ∈ U .

Due to its unobservability, U has neither intrinsic values nor units of measurement. This is a

reason for potential non-uniqueness of fully nonseparable functions. The purpose of Restriction

4 is to attach concrete values to unobserved heterogeneity U ; see also Hu and Schennach (2008).

Restriction 4 is innocuous in nonseparable models in the sense that identification is considered

up to observational equivalence g(y, u, ε) ≡ gπ(y, π(u), ε) for any permutation π of U . On the

other hand, this restriction is redundant and too stringent for additively separable models, in

which U has the same unit of measurement as Y by construction. In the latter case, we can

replace Restriction 4 by the following alternative labeling assumption.

Restriction 4′ (Labeling of U in Separable Models). u ≡ E[g(y, u, E)]− g̃(y) for all u ∈ U and

y ∈ Y for some function g̃.

This alternative labeling restriction is innocuous for separable models in the sense that it is

automatically satisfied by additive models of the form g(y, u, ε) = g̃(y) + u+ ε with E[E ] = 0.

4.2 Representation

Nonparametric identification of nonseparable functions is generally feasible only up to some

equivalence classes (e.g., Matzkin, 2003, 2007). Representations of these equivalence classes are

discussed as a preliminary step toward identification. Restrictions 1 and 2 allow representations

of functions g, h, and ζ by normalizing the distributions of the independent errors.

Lemma 1 (Quantile Representations of Non-Decreasing Càglàd Functions).

(i) Suppose that Restrictions 1 and 2 (i) hold. Then FY3|Y2U uniquely determines g up to the

observational equivalence classes represented by the normalization Et ∼ Uniform(0, 1).

19Carrasco, Florens, and Renault (2007) review some important properties of operators on Hilbert spaces.
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(ii) Suppose that Restrictions 1 and 2 (ii) hold. Then FD2|Y2U uniquely determines h up to the

observational equivalence classes represented by the normalization Vt ∼ Uniform(0, 1).

(iii) Suppose that Restrictions 1 and 2 (iii) hold. Then FZ|U uniquely determines ζ up to the

observational equivalence classes represented by the normalization W ∼ Uniform(0, 1).

A proof is given in Appendix A.1. The representations under these assumptions and nor-

malizations are established by the respective quantile regressions:

g(y, u, ε) = F−1
Y3|Y2U(ε | y, u) := inf{y′ | ε ≤ FY3|Y2U(y

′ | y, u)} ∀(y, u, ε)
h(y, u, v) = F−1

D2|Y2U(v | y, u) := inf{d | v ≤ FD2|Y2U(d | y, u)} ∀(y, u, v)
ζ(u,w) = F−1

Z|U(w | u) := inf{z | w ≤ FZ|U(z | u)} ∀(u,w)

The non-decreasing condition in Restriction 1 is sufficient for almost-everywhere equivalence of

the quantile representations. Furthermore, we also require the càglàd condition of Restriction 1

for point-wise equivalence of the quantile representations. Given Lemma 1, it remains to show

that the observed distributions FY2Y1ZD1( ·, ·, · , 1) and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1)) uniquely
determine (FY3|Y2U , FD2|Y2U , FZ|U) as well as FY1U .

4.3 The Main Identification Result

Section 4.2 shows that FY3|Y2U , FD1|Y1U , and FZ|U uniquely determine g, h, and ζ, respectively, up

to the aforementioned equivalence classes. Therefore, the model (g, h, FY1U , ζ) can be identified

by showing the well-definition of the inverse DGP correspondence

(FY2Y1ZD1( ·, ·, · , 1), FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1)) 7→ (FY3|Y2U , FD2|Y2U , FY1U , FZ|U).

Lemma 2 (Identification). Under Restrictions 1, 2, 3, and 4, (FY3|Y2U , FD2|Y2U , FY1U , FZ|U) is

uniquely determined by FY2Y1ZD1( ·, ·, · , 1) and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1).

Combining Lemmas 1 and 2 yields the following main identification result of this paper.

Theorem 1 (Identification). Under Restrictions 1, 2, 3, and 4, the model (g, h, FY1U , ζ) is

identified by FY2Y1ZD1( ·, ·, ·, 1) and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1) up to the equivalence classes

represented by the normalizations Et, Vt,W ∼ Uniform(0, 1).

A proof of Lemma 2 is given in Appendix A.2, and consists of six steps of spectral decompo-

sitions, operator inversions (solving Fredholm equations of the first kind), and algebra. Figure

1 illustrates how observed data uniquely determines the model (g, h, FY1U , ζ) through the six

steps. Section 3.1 provided an informal sketch of the proof of the first step among others.

Remark 2. While the baseline model only induces a permanent dropout through Dt = 0, we

can also allow for an entry through Dt = 1. See Appendix C.1. This is useful to model entry of

firms as well as reentry of female workers into the labor market after child birth. This extension

also accommodates general unbalanced panel data with various causes of selection.
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Remark 3. Three additional time periods can be used as a substitute for a nonclassical proxy

variable. In other words, T = 6 periods of panel data alone identifies the model, and a proxy

variable is optional. See Section 3.2 and Appendix C.2.

Remark 4. The baseline model consists of the first-order Markov process. Appendix C.3

generalizes the baseline result to allow for higher-order lags in the functions g and h. Generally,

τ + 2 periods of unbalanced panel data identifies the model with τ -th order Markov process g

and (τ − 1)-st order Markov decision rule h. The baseline model is a special case with τ = 1.

Remark 5. The baseline model only allows individual fixed effects U . Suppose that the

dynamic model gt involves time effects, for example, to reflect common macroeconomic shocks

to income dynamics. Then the model ({gt}Tt=2, h, FY1U , ζ) can be identified by T + 1 periods of

unbalanced panel data from t = 0 to t = T > 3. See Appendix C.4.

Remark 6. The rule for missing observations was defined in terms of a lagged selection indi-

cator Dt−1 which depends on Yt−1. Data may instead be selected based on contemporaneous

Dt which depends on Yt. See Appendix C.5. Note that, in the latter case, we may not observe

Yt based on which the data is selected. These two selection criteria reflect the ex ante versus

ex post Roy selection processes by rational agents.

Remark 7. Restriction 3 (i) implies the cardinality relation |supp(U)| 6 |supp(Yt)|. This

cardinality restriction in particular rules out binary Yt with continuously distributed U . Fur-

thermore, the relevant proxy in Restriction 3 (ii) implies dim(U) 6 1.

Remark 8. For the result using a proxy variable, the notation appears to suggest that a proxy

is time-invariant. However, a time-variant proxy Zt = ζ(U,Wt) may also be used as far as Wt

satisfies the same independence restriction as W .

5 Estimation

The identification result is derived through six steps of spectral decompositions, operator inver-

sions (solutions to Fredholm equations of the first kind), and algebra, as illustrated in Figure

1. A sample-analog or plug-in estimation following all these steps is practically infeasible. The

present section therefore discusses how to turn this six-step procedure into a one-step procedure.

5.1 Constrained Maximum Likelihood

After showing nonparametric identification as in Section 4, one can generally proceed with the

maximum likelihood estimation of parametric or semi-parametric sub-models. In our context,

however, the presence of missing observations biases the standard maximum likelihood esti-

mator. In this section, we apply the Kullback-Leibler information inequality to translate our

main identification result (Lemma 2) into an identification-preserving criterion function, which

is robust against selection or missing data.
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Because the model (g, h, FY1U , ζ) is represented by a quadruple (FYt|Yt−1U , FDt|YtU , FY1U , FZ|U)

(see Lemmas 1 and 4), we use F to denote the set of all the admissible model representations:

F = {(FYt|Yt−1U , FDt|YtU , FY1U , FZ|U) | (g, h, FY1U , ζ) satisfies Restrictions 1, 2, 3, and 4}.

As a consequence of the main identification result, the true model (F ∗
Yt|Yt−1U

, F ∗
Dt|YtU , F

∗
Y1U

, F ∗
Z|U)

can be characterized by the following criterion, allowing for a one-step plug-in estimator.

Corollary 1 (Constrained Maximum Likelihood). If the true model (F ∗
Yt|Yt−1U

, F ∗
Dt|YtU , F

∗
Y1U

, F ∗
Z|U)

is an element of F , then it is the unique solution to

max(
FYt|Yt−1U ,FDt|YtU

,FY1U ,FZ|U
)
∈F

c1E

[
log

∫
fYt|Yt−1U

(Y2 | Y1, u)fDt|YtU (1 | Y1, u)fY1U (Y1, u)fZ|U (Z | u)dµ(u)
∣∣∣∣D1 = 1

]
+

c2E

[
log

∫
fYt|Yt−1U

(Y3 | Y2, u)fYt|Yt−1U
(Y2 | Y1, u)fDt|YtU (1 | Y2, u)fDt|YtU (1 | Y1, u)fY1U (Y1, u)fZ|U (Z | u)dµ(u)

∣∣∣∣D2 = D1 = 1

]

for any c1, c2 > 0 subject to∫
fDt|YtU(1 | y1, u)fY1U(y1, u)dµ(y1, u) = fD1(1) and∫
fYt|Yt−1U(y2 | y1, u)fDt|YtU(1 | y2, u)fDt|YtU(1 | y1, u)fY1U(y1, u)dµ(y2, y1, u) = fD2D1(1, 1).

A proof is found in Appendix B.1. The sense of uniqueness stated in the corollary is up to

the equivalence classes identified by the underlying probability measures. Once a representing

model (FYt|Yt−1U , FDt|YtU , FY1U , FZ|U) is parametrically or semi-/non-parametrically specified,

the sample analog of the objective and constraints can be formed from observed data. The first

term in the objective can be estimated since (Y2, Y1, Z) is observed conditionally on D1 = 1.

Similarly, the second term can be estimated since (Y3, Y2, Y1, Z) is observed conditionally on

D2 = D1 = 1. All the components in the two constraints are also computable from observed

data since fD1(1) and fD2D1(1, 1) are observable.

This criterion is related to the maximum likelihood. The objective consists of a convex

combination of expected log likelihoods conditional on survivors. Using this objective alone

therefore would incur a survivorship bias. To adjust for the selection bias, the constraints bind

the model to correctly predict the observed selection probabilities. Any pair of positive values

may be chosen for c1 and c2. However, there is a certain choice of these coefficients that makes

the constrained optimization problem easier, as discussed in the following remark.

Remark 9. Solutions to constrained optimization problems like Corollary 1 are characterized

by saddle points of the Lagrangean functional. Although it appears easier than the original six-

step procedure, this saddle-point problem over a function space is still practically challenging.

By an appropriate choice of c1 and c2, we can, however, turn this saddle point problem into an

unconstrained maximization problem. Let λ1 and λ2 denote the Lagrange multipliers for the two

constraints in the corollary. Under some regularity conditions (Fréchet differentiability of the

objective and constraint functionals, differentiability of the solution to the selection probability,

and the regularity of the solution for the constraint functionals), the choice of c1 = Pr(D1 = 1)
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and c2 = Pr(D2 = D1 = 1) guarantees λ∗1 = λ∗2 = 1 at the optimum (see Appendix B.2). With

this knowledge of the values of λ∗1 and λ∗2, the solution to the problem in the corollary can

now be characterized by a maximum rather than a saddle point. This fact is useful both for

implementation of numerical solution methods and for availability of the existing large sample

theories of parametric, semiparametric, and nonparametric M -estimators.

Remark 10. In case of using T = 6 periods of unbalanced panel data instead of a proxy

variable, a similar one-step criterion to Corollary 1 can be derived. See Appendix C.2.

5.2 An Estimator

The six steps of the identification strategy do not admit a practically feasible plug-in estimator.

On the other hand, Corollary 1 and Remark 9 together yield the standard M -estimator by the

sample analog. We decompose the model set as F = F1×F2×F3×F4, where F1, F2, F3, and

F4 are sets of parametric or semi-/non-parametric models for fYt|Yt−1U , fDt|YtU , fY1U , and fZ|U ,

respectively. Accordingly, we denote an element of F by f = (f1, f2, f3, f4) for brevity. With

this notation, Corollary 1 and Remark 9 imply that the estimator of the true model f0 can be

characterized by a solution f̂ to the maximization problem:

max
f∈Fk(n)

1

n

n∑
i=1

l(Yi3, Yi2, Yi1, Zi, Di2, Di1; f)

for some sieve space Fk(n) = F1,k1(n) ×F2,k2(n) ×F3,k3(n) ×F4,k4(n) ⊂ F , where

l(Yi3, Yi2, Yi1, Zi, Di2, Di1; f) := 1 {Di1 = 1} · l1(Yi2, Yi1, Zi; f)
+1 {Di2 = Di1 = 1} · l2(Yi3, Yi2, Yi1, Zi; f)− l3(f)− l4(f),

l1(Yi2, Yi1, Zi; f) := log

∫
f1(Yi2 | Yi1, u)f2(1 | Yi1, u)f3(Yi1, u)f4(Zi | u)dµ(u),

l2(Yi3, Yi2, Yi1, Zi; f) := log

∫
f1(Yi3 | Yi2, u)f1(Yi2 | Yi1, u)f2(1 | Yi2, u)f2(1 | Yi1, u)

× f3(Yi1, u)f4(Zi | u)dµ(u),

l3(f) :=

∫
f2(1 | y1, u)f3(y1, u)dµ(y1, u), and

l4(f) :=

∫
f1(y2 | y1, u)f2(1 | y2, u)f2(1 | y1, u)f3(y1, u)dµ(y2, y1, u).

Note that Yi3 and Yi2 may be missing in data, but the interactions with the indicators 1 {Di1 = 1}
and 1 {Di2 = Di1 = 1} allow the expression l(Yi3, Yi2, Yi1, Zi, Di2, Di1; f) to make sense even if

they are missing.

Besides the identifying Restrictions 1, 2, 3, and 4 for the model set F , we require additional

technical assumptions, stated in the appendix for brevity of exposition, to guarantee a well-

behaved estimator in large samples.
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Proposition 1 (Consistency). Suppose that F satisfies Restrictions 1, 2, 3, 4, and the assump-

tions under Appendix B.2. If, in addition, Assumptions 1, 2, and 3 in Appendix B.3 restrict the

model set F , choice of the sieves {Fk(n)}∞n=1, and the data FY3Y2Y1ZD2D1, then
∥∥∥f̂ − f0

∥∥∥ = op(1)

holds, where this norm ∥·∥ is defined in Appendix B.3.

The estimator can also be adapted to semi-parametric and parametric sub-models which can

be more relevant for empirical analysis. Appendix B.4 introduces a semi-parametric estimator

and its asymptotic distribution. Parametric models may be estimated with the standard M -

estimation theory.

5.3 Monte Carlo Evidence

This section shows Monte Carlo evidence to evaluate the estimation method proposed in this

paper. The endogenously unbalanced panel data of N = 1, 000 and T = 3 are generated using

the following DGP:



Yt = α1Yt−1 + U + Et Et ∼ Normal(0, α2)

Dt = 1{β0 + β1Yt + β2U + Vt ≥ 0} Vt ∼ Logistic(0, 1)

FY1U (Y1, U) ∼ Normal

((
γ1

γ2

)
,

(
γ23 γ3γ4γ5

γ3γ4γ5 γ24

))
Z = 1{δ0 + δ1U +W ≥ 0} W ∼ Normal(0, 1)

Monte Carlo simulation results of the constrained maximum likelihood estimation are dis-

played in the first four rows of Table 1. The first row shows simulated distributions of parameter

estimates by the fully-parametric estimation using the true model. The inter-quartile ranges

capture the true parameter value of 0.5 without suffering from attrition bias. The second

row shows simulated distributions of parameter estimates by semiparametric estimation, where

the distribution of FY1U is assumed to be semiparametric with normality of the conditional

distribution FU |Y1 . The third row shows simulated distributions of parameter estimates by

semiparametric estimation, where the distributions of Et and Vt are assumed to be unknown.

The fourth row shows simulated distributions of parameter estimates by semiparametric esti-

mation combining the above two semiparametric assumptions. While the medians are slightly

off the true values, the inter-quartile ranges again capture the true parameter value of 0.5.

If one is interested in only the dynamic model g, then the sample-analog estimation of the

first step in the six-step identification strategy can be used instead of the constrained maximum

likelihood. With the notations from Section 3.1, minimizing ρ(L̂y,1L̂
−1
y,0, Py(α)Q1Q

−1
0 P−1

y (α))

for some divergence measure or a metric ρ yields the first-step estimation. Using the square-

integrated difference for ρ, the fifth row of Table 1 shows a semiparametric first-step estimation

for the dynamic model g. The interquartile range of the MC-simulated distribution indeed

captures the true value of 0.5, and it is reasonably tight for a semiparametric estimator. But

why is the interquartile range of this first-step estimator tighter than those of the CMLE in
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the first four rows, despite the greater degree of nonparametric specification? Recall that

the first-step estimation uses only two semi-/non-parametric functions (g, ζ) because the other

elements have been nonparametrically differenced out. This is to be contrasted with the CMLE,

which uses all the four semi-/non-parametric functions (g, h, FY1U , ζ). The first-step estimator

therefore uses less sieve spaces than the CMLE, and incurs smaller mean square errors in finite

sample.

If there were no missing observations from attrition, existing methods such as Arellano

and Bond (1991) would consistently estimate α1. Similarly, because Vt follows the logistic

distribution, the fixed-effect logit method (which is the only
√
N -consistent binary response

estimator in particular; Chamberlain, 2010) would consistently estimate β1 if the counterfactual

binary choice of dynamic selection were observable after attrition. However, missing data from

attrition causes these estimators to be biased as shown in the bottom three rows of Table 1.

Observe that the fixed effect logit estimator is not only biased, but the sign is even opposite

to the truth. This fact evidences that ignorance of selection could lead to a misleading result,

even if the true parametric and distributional model is known.

6 Empirical Illustration: SES and Mortality

6.1 Background

A large number of biological and socio-economic elements help to explain mortality (Cutler,

Deaton, and Lleras-Muney, 2006). Among others, measures of socioeconomic status (SES) in-

cluding earnings, employment, and income are important, yet puzzling as presumable economic

determinants of mortality. The literature has reached no consensus on the sign of the effects of

these measures of SES on mortality. On one hand, higher SES seems to play a malignant role.

For example, at the macroeconomic unit of observations, recessions reduce mortality (Ruhm,

2000). For another example, higher social security income induces higher mortality (Snyder

and Evans, 2006). On the other hand, higher SES has been reported to play a protective role.

Deaton and Paxson (2001) and Sullivan and von Wachter (2009a) show that higher income

reduces mortality. Job displacement, which results in a substantial drop in income, induces

higher and long-lasting mortality (Sullivan and von Wachter, 2009b). The apparent discrep-

ancy of the signs may be reconciled by the fact that these studies consider different sources of

income and different units of observations.

A major concern in empirical analysis is the issue of endogeneity. Design-based empirical

analysis often provides a solution. However, while non-labor income may allow exogenous

variations to facilitate natural and quasi-experimental studies (e.g., Snyder and Evans, 2006),

labor outcome is often harder to control exogenously. An alternative approach is to explicitly

control the common factors that affect both SES and mortality. Education, in particular, is

an important observable common factor, e.g., Lleras-Muney (2005) reports causal effects of

education on adult mortality. Controlling for this common factor may completely remove the

effect of income on mortality. For example, Adams, Hurd, McFadden, Merrill, and Ribeiro
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(2003) show that income conditional on education is not correlated with health.

Education may play a substantial role, but it may not be the only common factor that

needs to be controlled for. A wide variety of early human capital (HC) besides those reflected

on education is considered to affect SES and/or adult health in the long run. Case, Fertig, and

Paxson (2005) report long-lasting direct and indirect effects of childhood health on health and

well-being in adulthood. Maccini and Yang (2009) find that the natural environment at birth

affects adult health. Almond and Mazumder (2005) and Almond (2006) show evidence that HC

acquired in utero affects long-run health. Early HC could contain a wide variety of categories

of HC, such as genetic expression, acquired health, knowledge, and skills, all of which develop

in an interactive manner with inter-temporal feedbacks during childhood (e.g., Heckman, 2007;

Cunha and Heckman, 2008; Cunha, Heckman, and Schennach, 2010).

Failure to control for these components of early HC would result in identification of “spurious

dependence” (e.g., Heckman, 1981ab, 1991). Early HC may directly affect adult mortality via

the development of chronic conditions in childhood. Early HC may also affect earnings, which

may in turn affect adult mortality, as illustrated below.

Yt
Socioeconomic Status

Indirect Effects of Heterogeneity
via Socioeconomic Status //_________________ Dt

Mortality in Adulthood

U
Early Human Capital

Indirect Effects
of HeterogeneityL

L
L

L

ffL
L

L
L

Direct Effects
of Heterogeneityqqqqqqqq

88qqqqqqqq

Identification of these two competing causal effects of Yt and U on Dt, or distinction between

the two channels in the above diagram, requires to control for the unobserved heterogeneity

of early HC. Unlike education, however, most components of early HC are unobservable from

the viewpoint of econometricians. Suppose that early HC develops into fixed characteristics by

adulthood. How can we control for these heterogeneous characteristics? Because of the strong

cross-section correlation between SES and these heterogeneous characteristics, a variation over

time is useful to disentangle their competing effects on mortality, e.g., Deaton and Paxson (2001)

and Sullivan and von Wachter (2009a). I extend these ideas by treating early HC as a fixed

unobserved heterogeneity to be distinguished from time-varying observed measures of SES. To

account for both nonseparable heterogeneity and the survivorship bias, I use the econometric

method developed in this paper.

6.2 Empirical Model

Sullivan and von Wachter (2009b) show elaborate evidence on the malignant effects of job dis-

placement on mortality, carefully ruling out the competing hypothesis of selective displacement.

Sullivan and von Wachter (2009a), focusing on income as a measure of SES, find that there

are protective effects of higher SES on mortality whereas there is no or little evidence of causal
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effects of unobserved attributes such as patience on mortality. Using the econometric meth-

ods developed in this paper, I attempt to complement these analyses by explicitly modeling

unobserved heterogeneity and survival selection.

The following econometric model represents the causal relationship described in the above

diagram. 
(i) Yit = g(Yi,t−1, Ui, Eit) SES Dynamics

(ii) Dit = h(Yit, Ui, Vit) Survival Selection

(iii) FY1U Initial Condition

(iv) Zi = ζ(Ui,Wi) Nonclassical Proxy

where Yit, Dit, and Ui denote SES, survival, and unobserved heterogeneity, respectively. As

noted earlier, the heterogeneity U reflects early human capital (HC) acquired prior to the start

of the panel data, which play the role of sustaining employment dynamics in model (i). This

early HC may include acquired and innate abilities, knowledge, skills, patience, diligence, and

chronic health conditions, which may affect the survival selection (ii) as well as the income

dynamics. The initial condition (iii) models a statistical summary of the initial observation

of SES that has developed cumulatively and dependently on the early HC prior to the first

observation by econometrician.

For this empirical application, we consider the model in which all the random variables

are binary as in Section 3. Specifically, Yit indicates that individual i is (0) unemployed or

(1) employed, Dit indicates that individual i is (0) dead or (1) alive, and Ui indicates that

individual i belongs to (0) type I or (1) type II. Several proxy variables are used for Zi as

means of showing robustness of empirical results. The heterogeneous type U does not yet have

any intrinsic meaning at this point, but it turns out empirically to have a consistent meaning

in terms of a pattern of employment dynamics as we will see in Section 6.4.

Besides unobserved heterogeneity, other main sources of endogeneity in analysis of SES and

mortality are cohort effects and age effects. In parametric regression analysis, one can usually

control for these effects by inserting additive dummies or polynomials of age. Since additive

controls are infeasible for our setup of nonseprable models, we implement the econometric

analysis for each bin of age categories in order to mitigate the age and cohort effects.

6.3 Data

The NLS Original Cohorts: Older Men consist of 5,020 individuals aged 46–60 as of April 1,

1966. The subjects were surveyed annually or biennially starting in 1966. Attrition is frequent

in this panel data. In order for the selection model to exactly represent the survival selection,

we remove those individuals with attrition due to reasons other than death.

It is important to rule out competing hypotheses that obscure the credibility of our empirical

results. For example, health as well as wealth is an important factor of retirement deicision

(Bound, Stinebrickner, and Waidmann, 2010). It is not unlikely that individuals who have

chosen to retire from jobs for health problems subsequently die. If so, we would erroneously
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impute death to voluntary retirements. To eliminate this confounding factor, we consider

the subsample of individuals who reported that health problems do not limit work in 1971.

Furthermore, we also consider the subsample of individuals who died from acute diseases such

as heart attacks and strokes, because workers dying unexpectedly from acute diseases are less

likely to change labor status before a sudden death than those who die from cancer or diabetes.

Death certificates are used to classify causes of deaths to this end.

Recall that the econometric methods presented in this paper offer two paths of identification.

One is to use a panel of T = 3 with a nonclassical proxy variable, and the other is to use a

panel of T = 6 without a proxy. While the the survey was conducted at more than six time

points, the list of survey years do not exhibit equal time intervals (1966, 67, 68, 69, 71, 73,

75, 76, 78, 80, 81, 83, and 90). None of annual or biennial sequences consist consecutive six

periods from this anomalistic list of years. Therefore we choose the method of proxy variables.

Because one of the proxy variables is collected only once in 1973, we need to set T=1 or T=2

to year 1973 in order to satisfy the identifying restriction. We thus set T = 2 to year 1973 to

exploit a larger size of data, hence using the three-period data from years 71, 73, and 75 in our

analysis. The subjects are aged 51–65 in 1971, but we focus on the younger cohorts not facing

the retirement age.

We use height, mother’s occupation, and father’s occupation, as potential candidates for

proxy variables. Height reflects health investments in childhood (Schultz, 2002). Mother’s

education and father’s occupation reflect early endowments and investments in human capital

in the form of intergenerational inheritance; e.g., Currie and Moretti (2003) show evidence of

intergenerational transmission of human capital. We use these three proxies to aim to show

robustness of our empirical results.

6.4 Empirical Results

Table 2 summarizes estimates of the first-order Markov process of employment dynamics and

the conditional two-year survival probabilities using height as a proxy variable. The top and

bottom panels correspond to younger cohorts (aged 51–54 in 1971) and older cohorts (aged 55–

58 in 1971), respectively. The left and right columns correspond to Type I (Ui = 0) and Type

II (Ui = 1), respectively. These unobserved types exhibit a consistent pattern: off-diagonal

elements of the employment Markov matrices for Type I dominate those of Type II. In other

words, Type I and Type II can be characterized as movers and stayers, respectively. In view of

the survival probabilities in the top panel (young cohorts), we find that individuals almost surely

stay alive as far as they are employed. On the other hand, the two-year survival probabilities

drop by about 10% if individuals are unemploed. While the data indicates statistical significance

of their difference only for Type I, the magnitudes of differences in the point estimates are almost

identical between the two types. The same qualitative pattern persists in the older cohorts.

To show a robustness of this baseline result, we repeat this estimation using the other two

proxy variables, mother’s education and father’s occupation. Figure 2 graphs estimates of

Markov probabilities of employment. The shades in the bars indicate different proxy variables
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used for estimation. We see that these point estimates are robust across the three proxy

variables, implying that a choice of a particular proxy does not lead to an irregular result in

favor of certain claims. Table 3 graphs estimates of conditional two-year survival probabilities.

Again, the point estimates are robust across the three proxy variables.

As mentioned earlier, selective or voluntary retirement is a potential source of bias. To rule

out this possibility, we consider two subpopulations: 1. those individuals who reported that

health problems do not limit their work in 1971; and 2. those individuals who eventually died

from acute diseases. Figures 4 and 5 show estimates for the first subpopulation. Figures 6

and 7 show estimates for the second subpopulation. Again, robustness across the three proxies

persists, and the qualitative pattern remains the same as the baseline result. The relatively

large variations in the estimates for the second subpopulation is imputed to small sample sizes

due to the limited availability of death certificates from which we identify causes of deaths.

In summary, we obtain the following two robust results. First, accounting for unobserved

heterogeneity and survivorship bias as well as voluntary retirements, employment status has

protective effects on survival selection. This reinforces the results of Sullivan and von Wachter

(2009b). Second, there is no evidence of the effects of unobserved attributes on survival selec-

tion, since the conditional survival probabilities are almost the same between type I and type

II. This is in accord with the claim of Sullivan and von Wachter (2009a), who deduce that

lagged SES has little effect on mortality conditionally on the SES of immediate past.

Using the estimated Markov model g and the estimated initial condition FY1U , we can

simulate the counterfactual employment rates assuming that all the individuals were to remain

alive throughout the entire period. Figure 8 shows actual employment rates (black lines) and

counterfactual employment rates (grey lines) for each cohort category for each proxy variable.

I again remark that the qualitative patterns are the same across three proxy variables for each

cohort category. Not shockingly, if it were not for deaths, the counterfactual employment rates

would have been even lower than what we observed from actual data. In other words, deaths

of working age population are saving the actual figures of employment rates to look higher.

7 Summary

This paper proposes a set of nonparametric restrictions to point-identify dynamic panel data

models by nonparametrically differencing out both nonseparable heterogeneity and selection.

Identification requires either T = 3 periods of panel data and a proxy variable or T = 6 periods

of panel data without an outside proxy variable. As a consequence of the identification result,

the constrained maximum likelihood criterion follows, which corrects for selection and allows

for one-step estimation. Monte Carlo simulations are used to evidence the effectiveness of the

estimators. In the empirical application, I find protective effects of employment on survival

selection, and the result is robust.

Appendix
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A Proofs for Identification

A.1 Lemma 1 (Representation)

Proof. (i) First, we show that there exists a function ḡ such that (ḡ,Uniform(0, 1)) is observa-
tionally equivalent to (g, FE) for any (g, FE) satisfying Restrictions 1 and 2. By the absolute
continuity and the convex support in Restriction 1, FE is invertible. Hence, we can define
h := F−1

E . Now, define ḡ by ḡ(y, u, · ) := g(y, u, · ) ◦ h−1 for each (y, u). Note that, under Re-
striction 2, (ḡ, Fh(E)) is observationally equivalent to (g, FE) by construction. However, we have
h(E) ∼ Uniform(0, 1) by the definition of h. It follows that (ḡ,Uniform(0, 1)) is observationally
equivalent to (g, FE).

In light of the previous paragraph, we can impose the normalization Et ∼ Uniform(0, 1).
Let Λ(y, u, ε) denote the set Λ(y, u, ε) = {y′ ∈ g(y, u, (0, 1)) | ε ≤ FY3|Y2U(y

′ | y, u)}, where
g(y, u, (0, 1)) denotes the set {g(y, u, ε) | ε ∈ (0, 1)}. I claim that g(y, u, ε) = inf Λ(y, u, ε).

First, we note that g(y, u, ε) ∈ Λ(y, u, ε). To see this, calculate

FY3|Y2U(g(y, u, ε) | y, u) = Pr(g(y, u, E3) ≤ g(y, u, ε) | Y2 = y, U = u)

= Pr(g(y, u, E3) ≤ g(y, u, ε)) ≥ Pr(E3 ≤ ε) = ε,

where the first equality follows from Y3 = g(y, u, E3) given (Y2, U) = (y, u), the second equality
follows from Restriction 2 (i), the next inequality follows from the non-decrease of g(y, u, ·) by
Restriction 1 together with monotonicity of the probability measure, and the last equality is
due to Et ∼ U(0, 1). This shows that ε ≤ FY3|Y2U(g(y, u, ε) | y, u), hence g(y, u, ε) ∈ Λ(y, u, ε).

Second, I show that g(y, u, ε) is a lower bound of Λ(y, u, ε). Let y′ ∈ Λ(y, u, ε). Since g
is non-decreasing and càglàd (left-continuous) in the third argument by Restriction 1, we can
define ε′ := max{ε ∈ (0, 1) | g(y, u, ε) = y′}. But then,

FY3|Y2U(y
′ | y, u) = Pr(g(y, u, E3) ≤ y′ | Y2 = y, U = u)

= Pr(g(y, u, E3) ≤ y′) = ε′,

where the first equality follows from Y3 = g(y, u, E3) given (Y2, U) = (y, u), the second equality
follows from Restriction 2 (i), and the last equality follows from the definition of ε′ together
with the non-decrease of g(y, u, ·) by Restriction 1 and Et ∼ U(0, 1). Using this result, in turn,
yields

g(y, u, ε) ≤ g(y, u, FY3|Y2U(y
′ | y, u)) = g(y, u, ε′) = y′,

where the first inequality follows from ε ≤ FY3|Y2U(y
′ | y, u) by definition of y′ as well as the

non-decrease of g(y, u, ·) by Restriction 1, the next equality follows from the previous result
FY3|Y2U(y

′ | y, u) = ε′, and the last equality follows from the definition of ε′. Since y′ was
chosen as an arbitrary element of Λ(y, u, ε), this shows that g(y, u, ε) is indeed a lower bound
of it. Therefore, g(y, u, ε) = inf{y′ ∈ g(y, u, (0, 1)) | ε ≤ FY3|Y2U(y

′ | y, u)}, and g is uniquely
determined by FY3|Y2U . (Moreover, note that inf{y′ ∈ g(y, u, (0, 1)) | ε ≤ FY3|Y2U(y

′ | y, u)}
coincides with the definition of the quantile regression F−1

Y3|Y2U( · | y, u), hence g is identified

by this quantile regression, i.e., g(y, u, ε) = F−1
Y3|Y2U(ε | y, u).)

Part (ii) of the lemma can be proved in exactly the same way as in the proof of part (i).
In particular, h is identified by the quantile regression: h(y, u, v) = F−1

D2|Y2U(v | y, u). Similarly,

part (iii) of the the lemma can be proved in the same way, and ζ is identified by the quantile
regression: ζ(u,w) = F−1

Z|U(w | u).
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A.2 Lemma 2 (Identification)

Proof. We will construct six steps for a proof of this lemma. The first step shows that the
observed joint distributions uniquely determine FY3|Y2U and FZ|U by a spectral decomposition of
a composite linear operator. The second step is auxiliary, and shows that FY2Y1UD1( · , · , · , 1)
is uniquely determined from the observed joint distributions together with inversion of the
operators identified in the first step. The third step again uses spectral decomposition to
identify an auxiliary operator with the kernel represented by FY1|Y2UD2D1( · | · , · , 1, 1). In
the fourth step, solving an integral equation with the adjoint of this auxiliary operator in turn
yields another auxiliary operator with the multiplier represented by FY2UD2D1( · , · , 1, 1). The
fifth step uses the three operators identified in Steps 2, 3, and 4 to identify an operator with
the kernel represented by FD2|Y2U by solving a linear inverse problem. The last step uses results
from Steps 1, 2, and 5 to show that the initial joint distribution FY1U is uniquely determined
from the observed joint distributions. These six steps together prove that the observed joint
distributions FY2Y1ZD1( · , · , · , 1) and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1) uniquely determine the
model (FY3|Y2U , FD2|Y2U , FY1U , FZ|U) as claimed in the lemma.

Given fixed y and z, define the operators Ly,z : L2(FYt) → L2(FYt), Py : L2(FU) → L2(FYt),
Qz : L2(FU) → L2(FU), Ry : L2(FU) → L2(FU), Sy : L2(FYt) → L2(FU), Ty : L2(FYt) →
L2(FU), and T

′
y : L2(FU) → L2(FU) by

(Ly,zξ)(y3) =

∫
fY3Y2Y1ZD2D1(y3, y, y1, z, 1, 1) · ξ(y1)dy1,

(Pyξ)(y3) =

∫
fY3|Y2U(y3 | y, u) · ξ(u)du,

(Qzξ)(u) = fZ|U(z | u) · ξ(u),
(Ryξ)(u) = fD2|Y2U(1 | y, u) · ξ(u),

(Syξ)(u) =

∫
fY2Y1UD1(y, y1, u, 1) · ξ(y1)dy1,

(Tyξ)(u) =

∫
fY1|Y2UD2D1(y1 | y, u, 1, 1) · ξ(y1)dy1,

(T ′
yξ)(u) = fY2UD2D1(y, u, 1, 1) · ξ(u)

respectively. We consider L2 spaces as the normed linear spaces on which these operators
are defined, particularly in order to guarantee the existence of its adjoint operator T ∗

y to be
introduced in Step 4. (Recall that a bounded linear operator between Hilbert spaces admits
existence of its adjoint operator.) Identification of the operator leads to that of the associated
conditional density (up to null sets), and vice versa. Here, the operators Ly,z, Py, Sy, and Ty
are integral operators whereas Qz, Ry, and T

′
y are multiplication operators. Note that Ly,z is

identified from observed joint distribution FY3Y2Y1ZD2D1( · , · , · , · , · , 1, 1).
Figure 1 illustrates six steps toward identification of (FY3|Y2U , FD2|Y2U , FY1U , FZ|U) from the

observed joint distributions FY2Y1ZD1( ·, ·, ·, 1) and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1). The four objects
(g, h, FY1U , ζ) of interest are enclosed by double lines. The objects that can be observed from
data are enclosed by dashed-lines All the other objects are intermediary, and are enclosed by
solid lines. Starting out with the observed objects, we show in each step that the intermediary
objects are uniquely determined. These uniquely determined intermediary objects in turn show
the uniqueness of the four objects (g, h, FY1U , ζ) of interest.
Step 1: Uniqueness of FY3|Y2U and FZ|U
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The kernel fY3Y2Y1ZD2D1( · , y, · , z, 1, 1) of the integral operator Ly,z can be rewritten as

fY3Y2Y1ZD2D1(y3, y, y1, z, 1, 1) =

∫
fY3|Y2Y1ZUD2D1(y3 | y, y1, z, u, 1, 1)

×fZ|Y2Y1UD2D1(z | y, y1, u, 1, 1) (A.1)

×fD2|Y2Y1UD1(1 | y, y1, u, 1) · fY2Y1UD1(y, y1, u, 1) du

But by Lemma 3 (i), (iv), and (iii), respectively, Restriction 2 implies that

fY3|Y2Y1ZUD2D1(y3 | y, y1, z, u, 1, 1) = fY3|Y2U(y3 | y, u),
fZ|Y2Y1UD2D1(z | y, y1, u, 1, 1) = fZ|U(z | u),

fD2|Y2Y1UD1(1 | y, y1, u, 1) = fD2|Y2U(1 | y, u).

Equation (A.1) thus can be rewritten as

fY3Y2Y1ZD2D1(y3, y, y1, z, 1, 1) =

∫
fY3|Y2U(y3 | y, u) · fZ|U(z | u)

×fD2|Y2U(1 | y, u) · fY2Y1UD1(y, y1, u, 1) du

But this implies that the integral operator Ly,z is written as the operator composition

Ly,z = PyQzRySy.

Restriction 3 (i), (ii), (iii), and (iv) imply that the operators Py, Qz, Ry, and Sy are invertible,
respectively. Hence so is Ly,z. Using the two values {0, 1} of Z, form the product

Ly,1L
−1
y,0 = PyQ1/0P

−1
y

where Qz/z′ := QzQ
−1
z′ is the multiplication operator with proxy odds defined by

(Q1/0ξ)(u) =
fZ|U(1 | u)
fZ|U(0 | u)

ξ(u).

By Restriction 3 (ii), the operator Ly,1L
−1
y,0 is bounded. The expression Ly,1L

−1
y,0 = PyQ1/0P

−1
y

thus allows unique eigenvalue-eigenfunction decomposition similarly to that of Hu and Schen-
nach (2008).

The distinct proxy odds as in Restriction 3 (ii) guarantee distinct eigenvalues and single
dimensionality of the eigenspace associated with each eigenvalue. Within each of the single-
dimensional eigenspace is a unique eigenfunction pinned down by L1-normalization because of
the unity of integrated densities. The eigenvalues λ(u) yield the multiplier of the operator Q1/0,
hence λ(u) = fZ|U(1 | u)/fZ|U(0 | u). This proxy odds in turn identifies fZ|U( · | u) since Z is
binary. The corresponding normalized eigenfunctions are the kernels of the integral operator Py,
hence fY3|Y2U( · | y, u). Lastly, Restriction 4 facilitates unique ordering of the eigenfunctions
fY3|Y2U( · | y, u) by the distinct concrete values of u = λ(u). This is feasible because the
eigenvalues λ(u) = fZ|U(1 | u)/fZ|U(0 | u) are invariant from y. That is, eigenfunctions
fY3|Y2U( · | y, u) of the operator Ly,1L

−1
y,0 across different y can be uniquely ordered in u

invariantly from y by the common set of ordered distinct eigenvalues u = λ(u).
Therefore, FY3|Y2U and FZ|U are uniquely determined by the observed joint distribution

FY3Y2Y1ZD2D1( · , · , · , · , 1, 1). Equivalently, the operators Py and Qz are uniquely determined
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for each y and z, respectively.

Step 2: Uniqueness of FY2Y1UD1( · , · , · , 1)
By Lemma 3 (ii), Restriction 2 implies fY2|Y1UD1(y

′ | y, u, 1) = fY2|Y1U(y
′ | y, u). Using this

equality, write the density of the observed joint distribution FY2Y1D1( · , · , 1) as

fY2Y1D1(y
′, y, 1) =

∫
fY2|Y1UD1(y

′ | y, u, 1)fY1UD1(y, u, 1)du

=

∫
fY2|Y1U(y

′ | y, u)fY1UD1(y, u, 1)du (A.2)

By Lemma 4 (i), FY3|Y2U(y
′ | y, u) = FY2|Y1U(y

′ | y, u) for all y′, y, u. Therefore, we can write
the operator Py as

(Pyξ)(y
′) =

∫
fY3|Y2U(y

′ | y, u) · ξ(u)du =

∫
fY2|Y1U(y

′ | y, u) · ξ(u)du.

With this operator notation, it follows from (A.2) that

fY2Y1D1( · , y, 1) = PyfY1UD1(y, · , 1).

By Restriction 3 (i), this operator equation can be solved for fY1UD1(y, · , 1) as

fY1UD1(y, · , 1) = P−1
y fY2Y1D1( · , y, 1) (A.3)

Recall that Py was shown in Step 1 to be uniquely determined by the observed joint dis-
tribution FY3Y2Y1ZD2D1( · , · , · , · , 1, 1). The function fY2Y1D1( · , y, 1) is also uniquely
determined by the observed joint distribution FY2Y1D1( · , · , 1) up to null sets. Therefore,
(A.2) shows that fY1UD1( · , · , 1) is uniquely determined by the observed joint distributions
FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1).

Using the solution to the above inverse problem, we can write the kernel of the operator Sy
as

fY2Y1UD1(y
′, y, u, 1) = fY2|Y1UD1(y

′ | y, u, 1) · fY1UD1(y, u, 1)

= fY2|Y1U(y
′ | y, u) · fY1UD1(y, u, 1)

= fY3|Y2U(y
′ | y, u) · fY1UD1(y, u, 1)

= fY3|Y2U(y
′ | y, u) · [P−1

y fY2Y1D1( · , y, 1)](u)

where the second equality follows from Lemma 3 (ii), the third equality follows from Lemma
4 (i), and the forth equality follows from (A.3). Since fY3|Y2U was shown in Step 1 to be
uniquely determined by the observed joint distribution FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and
[P−1
y fY2Y1D1( · , y, 1)] was shown in the previous paragraph to be uniquely determined for each

y by the observed joint distributions FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1), it
follows that fY2Y1UD1( · , · , · , 1) too is uniquely determined by the observed joint distributions
FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1). Equivalently, the operator Sy is uniquely
determined for each y.

Step 3: Uniqueness of FY1|Y2UD2D1( · | · , · , 1, 1)
First, note that the kernel of the composite operator T ′

yTy can be written as

fY2UD2D1(y, u, 1, 1) · fY1|Y2UD2D1(y1 | y, u, 1, 1) = fY2Y1UD2D1(y, y1, u, 1, 1) (A.4)

= fD2|Y2Y1UD1(1 | y, y1, u, 1) · fY2Y1UD1(y, y1, u, 1)

= fD2|Y2U(1 | y, u) · fY2Y1UD1(y, y1, u, 1)
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where the last equality is due to Lemma 3 (iii). But the last expression corresponds to the
kernel of the composite operator RySy, thus showing that T ′

yTy = RySy. But then, Ly,z =
PyQzRySy = PyQzT

′
yTy. Note that the invertibility of Ry and Sy as required by Assumption

3 implies invertibility of T ′
y and Ty as well, for otherwise the equivalent composite operator

T ′
yTy = RySy would have a nontrivial nullspace.
Using Restriction 3, form the product of operators as in Step 1, but in the opposite order

as
L−1
y,0Ly,1 = T−1

y Q1/0Ty

The disappearance of T ′
y is due to commutativity of multiplication operators. By the same

logic as in Step 1, this expression together with Restriction 3 (ii) admits unique left eigenvalue-
eigenfunction decomposition. Moreover, the point spectrum is exactly the same as the one
in Step 1, as is the middle multiplication operator Q1/0. This equivalence of the spectrum
allows consistent ordering of U with that of Step 1. Left eigenfunctions yield the kernel of Ty
pinned down by the normalization of unit integral. This shows that the operator Ty is uniquely
determined by the observed joint distribution FY3Y2Y1ZD2D1( · , · , · , · , 1, 1).

Step 4: Uniqueness of FY2UD2D1( · , · , 1, 1)
Equation (A.4) implies that∫

fY1|Y2UD2D1(y1 | y, u, 1, 1) · fY2UD2D1(y, u, 1, 1)du = fY2Y1D2D1(y, y1, 1, 1)

hence yielding the linear operator equation

T ∗
y fY2UD2D1(y, ·, 1, 1) = fY2Y1D2D1(y, ·, 1, 1)

where T ∗
y denotes the adjoint operator of Ty. Since Ty is invertible, so is its adjoint T ∗

y . But
then, the multiplier of the multiplication operator T ′

y can be given by the unique solution to
the above linear operator equation, i.e.,

fY2UD2D1(y, ·, 1, 1) = (T ∗
y )

−1fY2Y1D2D1(y, ·, 1, 1)

Note that Ty hence T
∗
y was shown to be uniquely determined by FY3Y2Y1ZD2D1( · , · , · , · , 1, 1)

in Step 3, and fY2Y1D2D1( ·, ·, 1, 1) is also available from observed data. Therefore, the operator
T ′
y is uniquely determined by FY3Y2Y1ZD2D1( · , · , · , · , 1, 1).

Step 5: Uniqueness of FD2|Y2U(1 | · , · )
First, the definition of the operators Ry, Sy, Ty, and T

′
y and Lemma 3 (iii) yield the operator

equality RySy = T ′
yTy, where Ty and T ′

y have been shown to be uniquely determined by the
observed joint distribution FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) in Steps 3 and 4, respectively. Recall
that Sy was also shown in Step 2 to be uniquely determined by the observed joint distributions
FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1). Restriction 3 (iv) guarantees invertibility
of Sy. It follows that the operator inversion Ry = (RySy)S

−1
y = (T ′

yTy)S
−1
y yields the operator

Ry, in turn showing that its multiplier fD2|Y2U(1 | y, · ) is uniquely determined for each y by
the observed joint distributions FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1).

Step 6: Uniqueness of FY1U
Recall from Step 2 that fY2Y1UD1( · , · , · , 1) is uniquely determined by the observed joint
distributions FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1). We can write

fY2Y1UD1(y
′, y, u, 1) = fY2|Y1UD1(y

′ | y, u, 1)fD1|Y1U(1 | y, u)fY1U(y, u)
= fY2|Y1U(y

′ | y, u)fD1|Y1U(1 | y, u)fY1U(y, u)
= fY3|Y2U(y

′ | y, u)fD2|Y2U(1 | y, u)fY1U(y, u),
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where the second equality follows from Lemma 3 (ii), and the third equality follows from
Lemma 4 (i) and (ii). For a given (y, u), there must exist some y′ such that fY3|Y2U(y

′ | y, u) > 0
by a property of conditional density functions. Moreover, Restriction 3 (iii) requires that
fD2|Y2U(1 | y, u) > 0 for a given y for all u. Therefore, for such a choice of y′, we can write

fY1U(y, u) =
fY2Y1UD1(y

′, y, u, 1)

fY3|Y2U(y
′ | y, u)fD2|Y2U(1 | y, u)

Recall that fY3|Y2U( · | · , · ) was shown in Step 1 to be uniquely determined by the observed
joint distribution FY3Y2Y1ZD2D1( · , · , · , · , 1, 1), fY2Y1UD1( · , · , · , 1) was shown in Step 2
to be uniquely determined by the observed joint distributions FY3Y2Y1ZD2D1( · , · , · , · , 1, 1)
and FY2Y1D1( · , · , 1), and fD2|Y2U(1 | · , · ) was shown in Step 5 to be uniquely determined
by the observed joint distributions FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1).
Therefore, it follows that the initial joint density fY1U is uniquely determined by the observed
joint distributions FY3Y2Y1ZD2D1( · , · , · , · , 1, 1) and FY2Y1D1( · , · , 1).

A.3 Lemma 3 (Independence)

Lemma 3 (Independence). The following implications hold:
(i) Restriction 2 (i) ⇒ E3 ⊥⊥ (U, Y1, E2, V1, V2,W ) ⇒ Y3 ⊥⊥ (Y1, D1, D2, Z) | (Y2, U).
(ii) Restriction 2 (i) ⇒ E2 ⊥⊥ (U, Y1, V1,W ) ⇒ Y2 ⊥⊥ (D1, Z) | (Y1, U).
(iii) Restriction 2 (ii) ⇒ V2 ⊥⊥ (U, Y1, E2, V1) ⇒ D2 ⊥⊥ (Y1, D1) | (Y2, U).
(iv) Restriction 2 (iii) ⇒ W ⊥⊥ (Y1, E2, V1, V2) ⇒ Z ⊥⊥ (Y2, Y1, D2, D1) | U .

Proof. In order to prove the lemma, we use the following two properties of conditional inde-
pendence:
CI.1. A ⊥⊥ B implies A ⊥⊥ B | ϕ(B) for any Borel function ϕ.
CI.2. A ⊥⊥ B | C implies A ⊥⊥ ϕ(B,C) | C for any Borel function ϕ.

(i) First, note that Restriction 2 (i) E3 ⊥⊥ (U, Y1, E2, V1, V2,W ) together with the structural
definition Z = ζ(U,W ) implies E3 ⊥⊥ (U, Y1, E2, V1, V2, Z). Applying CI.1 to this independence
relation E3 ⊥⊥ (U, Y1, E2, V1, V2, Z) yields

E3 ⊥⊥ (U, Y1, E2, V1, V2, Z) | (g(Y1, U, E2), U).

Since Y2 = g(Y1, U, E2), it can be rewritten as E3 ⊥⊥ (U, Y1, E2, V1, V2, Z) | (Y2, U). Next, applying
CI.2 to this conditional independence yields

E3 ⊥⊥ (Y1, h(Y1, U, V1), h(Y2, U, V2), Z) | (Y2, U).

Since Dt = h(Yt, U, Vt) for each t ∈ {1, 2}, it can be rewritten as E3 ⊥⊥ (Y1, D1, D2, Z) | (Y2, U).
Lastly, applying CI.2 again to this conditional independence yields

g(Y2, U, E3) ⊥⊥ (Y1, D1, D2, Z) | (Y2, U).

Since Y3 = g(Y2, U, E3), it can be rewritten as Y3 ⊥⊥ (Y1, D1, D2, Z) | (Y2, U).
(ii) Note that Restriction 2 (i) E2 ⊥⊥ (U, Y1, V1,W ) together with the structural definition

Z = ζ(U,W ) implies E2 ⊥⊥ (U, Y1, V1, Z). Applying CI.1 to this independence relation E2 ⊥⊥
(U, Y1, V1, Z) yields

E2 ⊥⊥ (U, Y1, V1, Z) | (Y1, U).
Next, applying CI.2 to this conditional independence yields

g(Y1, U, E2) ⊥⊥ (U, Y1, V1, Z) | (Y1, U).
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Since Y2 = g(Y1, U, E2), it can be rewritten as Y2 ⊥⊥ (U, Y1, V1, Z) | (Y1, U). Lastly, applying
CI.2 again to this conditional independence yields

Y2 ⊥⊥ (h(Y1, U, V1), Z) | (Y1, U).

Since D1 = h(Y1, U, V1), it can be rewritten as Y2 ⊥⊥ (D1, Z) | (Y1, U).
(iii) Applying CI.1 to Restriction 2 (ii) V2 ⊥⊥ (U, Y1, E2, V1) yields

V2 ⊥⊥ (U, Y1, E2, V1) | (g(Y1, U, E2), U).

Since Y2 = g(Y1, U, E2), it can be rewritten as V2 ⊥⊥ (U, Y1, E2, V1) | (Y2, U). Next, applying
CI.2 to this conditional independence yields

V2 ⊥⊥ (Y1, h(Y1, U, V1)) | (Y2, U).

Since D1 = h(Y1, U, V1), it can be rewritten as V2 ⊥⊥ (Y1, D1) | (Y2, U). Lastly, applying CI.2
to this conditional independence yields

h(Y2, U, V2) ⊥⊥ (Y1, D1) | (Y2, U).

Since D2 = h(Y2, U, V2), it can be rewritten as D2 ⊥⊥ (Y1, D1) | (Y2, U).
(iv) Note that Restriction 2 (iii) W ⊥⊥ (Y1, E2, V1, V2) together with the structural definition

Z = ζ(U,W ) yields Z ⊥⊥ (Y1, E2, V1, V2) | U . Applying CI.2 to this conditional independence
relation Z ⊥⊥ (Y1, E2, V1, V2) | U yields

Z ⊥⊥ (Y1, g(Y1, U, E2), h(Y1, U, V1), h(g(Y1, U, E2), U, V2)) | U.

Since Dt = h(Yt, U, Vt) for each t ∈ {1, 2} and Y2 = g(Y1, U, E2), this conditional independence
can be rewritten as Z ⊥⊥ (Y1, Y2, D1, D2) | U.

A.4 Lemma 4 (Invariant Transition)

Lemma 4 (Invariant Transition).
(i) Under Restrictions 1 and 2 (i), FY3|Y2U(y

′ | y, u) = FY2|Y1U(y
′ | y, u) for all y′, y, u.

(ii) Under Restrictions 1 and 2 (ii), FD2|Y2U(d | y, u) = FD1|Y1U(d | y, u) for all d, y, u.

Proof. (i) First, note that Restriction 2 (i) E3 ⊥⊥ (U, Y1, E2, V1, V2,W ) implies E3 ⊥⊥ (U, Y1, E2),
which in turn implies that E3 ⊥⊥ (g(Y1, U, E2), U), hence E3 ⊥⊥ (Y2, U). Second, Restriction 2
(i) in particular yields E2 ⊥⊥ (Y1, U). Using these two independence results, we obtain

FY3|Y2U(y
′ | y, u) = Pr[g(y, u, E3) ≤ y′ | Y2 = y, U = u]

= Pr[g(y, u, E3) ≤ y′]

= Pr[g(y, u, E2) ≤ y′]

= Pr[g(y, u, E2) ≤ y′ | Y1 = y, U = u] = FY2|Y1U(y
′ | y, u)

for all y′, y, u, where the second equality follows from E3 ⊥⊥ (Y2, U), the third equality follows
from identical distribution of Et by Restriction 1, and the forth equality follows from E2 ⊥⊥
(Y1, U).
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(ii) Restriction 2 (ii) V2 ⊥⊥ (U, Y1, E1, E2, V1) implies that V2 ⊥⊥ (g(Y1, U, E2), U), hence
V2 ⊥⊥ (Y2, U). Restriction 2 (ii) also implies V1 ⊥⊥ (Y1, U). Using these two independence
results, we obtain

FD2|Y2U(d | y, u) = Pr[h(y, u, V2) ≤ d | Y2 = y, U = u]

= Pr[h(y, u, V2) ≤ d]

= Pr[h(y, u, V1) ≤ d]

= Pr[h(y, u, V1) ≤ d | Y1 = y, U = u] = FD1|Y1U(d | y, u)

for all d, y, u, where the second equality follows from V2 ⊥⊥ (Y2, U), the third equality follows
from identical distribution of Vt from Restriction 1, and the forth equality follows from V1 ⊥⊥
(Y1, U).

B Proofs for Estimation

B.1 Corollary 1 (Constrained Maximum Likelihood)

Proof. Denote the supports of conditional densities by I1 = {(y2, y1, z) | fY2Y1Z|D2D1(y2, y1, z |
1) > 0} and I2 = {(y3, y2, y1, z) | fY3Y2Y1Z|D2D1(y3, y2, y1, z | 1, 1) > 0}. The Kullback-Leibler
information inequality requires that∫

I1

log

[
fY2Y1Z|D1(y2, y1, z | 1)

φ(y2, y1, z)

]
fY2Y1Z|D1(y2, y1, z | 1)dµ(y2, y1, z) ≥ 0 and∫

I2

log

[
fY3Y2Y1Z|D2D1(y3, y2, y1, z | 1, 1)

ψ(y3, y2, y1, z)

]
fY3Y2Y1Z|D2D1(y3, y2, y1, z | 1, 1)dµ(y3, y2, y1, z) ≥ 0

for all non-negative measurable functions φ and ψ such that
∫
φ =

∫
ψ = 1. These two inequal-

ities hold with equalities if and only if fY2Y1Z|D1( ·, ·, · | 1) = φ and fY3Y2Y1Z|D2D1( ·, ·, ·, · |
1, 1) = ψ, respectively. (Equalities and uniqueness are stated up to the equivalence classes
identified by the underlying probability measures.) Let the set of such pairs of functions (φ, ψ)
satisfying the above two Kullback-Leibler inequalities be denoted by

Λ =

{
(φ, ψ)

∣∣∣∣ φ and ψ are non-negative measurable functions with

∫
φ =

∫
ψ = 1

}
.

With this notation, the maximization problem

max
(φ,ψ)∈Λ

c1E [logφ(Y2, Y1, Z)|D1 = 1] + c2E [logψ(Y3, Y2, Y1, Z)|D2 = D1 = 1] (B.1)

has the unique solution (φ, ψ) = (fY2Y1Z|D1( ·, ·, · | 1), fY3Y2Y1Z|D2D1( ·, ·, ·, · | 1, 1)).
Now, let F ( · ;M) denote a distribution function generated by model M ∈ F . For the true

model M∗ := (F ∗
Yt|Yt−1U

, F ∗
Dt|YtU , F

∗
Y1U

, F ∗
Z|U), we have

FY2Y1ZD1( ·, ·, ·, 1) = FY2Y1ZD1( ·, ·, ·, 1;M∗)

FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1) = FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1;M∗)
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Moreover, the identification result of Lemma 2 showed that this true model M∗ is the unique
element in F that generates the observed parts of the joint distributions FY2Y1ZD1( ·, ·, ·, 1)
and FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1), i.e.,

FY2Y1ZD1( ·, ·, ·, 1) = FY2Y1ZD1( ·, ·, ·, 1;M) if and only if M =M∗

FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1) = FY3Y2Y1ZD2D1( ·, ·, ·, ·, 1, 1;M) if and only if M =M∗

But this implies that F ∗ is the unique model that generates the observable conditional densities
fY2Y1Z|D1( ·, ·, · | 1) and fY3Y2Y1Z|D2D1( ·, ·, ·, · | 1, 1) among those models M ∈ F that are
compatible with the observed selection frequencies fD1(1) and fD2D1(1, 1), i.e.,

fY2Y1Z|D1( ·, ·, · | 1) = fY2Y1Z|D1( ·, ·, · | 1;M) if and only if M =M∗

given fD1(1;M) = fD1(1), and (B.2)

fY3Y2Y1Z|D2D1( ·, ·, ·, · | 1, 1) = fY3Y2Y1Z|D2D1( ·, ·, ·, · | 1, 1;M) if and only if M =M∗

given fD2D1(1, 1;M) = fD2D1(1, 1) (B.3)

Since (φ, ψ) = (fY2Y1Z|D1( ·, ·, · | 1), fY3Y2Y1Z|D2D1( ·, ·, ·, · | 1, 1)) is the unique solution to
(B.1), the statements (B.2) and (B.3) imply that the true model M∗ is the unique solution to

max
M∈F

c1E
[
log fY2Y1Z|D1(Y2, Y1, Z | 1;M)

∣∣D1 = 1
]

+c2E
[
log fY3Y2Y1Z|D2D1(Y3, Y2, Y1, Z | 1, 1;M)

∣∣D2 = D1 = 1
]

s.t. fD1(1;M) = fD1(1) and fD2D1(1, 1;M) = fD2D1(1, 1)

or equivalently

max
M∈F

c1E [log fY2Y1ZD1(Y2, Y1, Z, 1;M)|D1 = 1]

+c2E [log fY3Y2Y1ZD2D1(Y3, Y2, Y1, Z, 1, 1;M)|D2 = D1 = 1]

s.t. fD1(1;M) = fD1(1) and fD2D1(1, 1;M) = fD2D1(1, 1) (B.4)

since what have been omitted are constants due to the constraints.
By using Lemmas 3 and 4, we can write the equalities

fY2Y1ZD1(y2, y1, z, 1;M) =

∫
fYt|Yt−1U(y2 | y1, u)fDt|YtU(1 | y1, u)fY1U(y1, u)fZ|U(z | u)dµ(u)

fD1(1;M) =

∫
fDt|YtU(1 | y1, u)fY1U(y1, u)dµ(y1, u)

fY3Y2Y1ZD2D1(y3, y2, y1, z, 1, 1;M) =

∫
fYt|Yt−1U(y3 | y2, u)fYt|Yt−1U(y2 | y1, u)fDt|YtU(1 | y2, u)

fDt|YtU(1 | y1, u)fY1U(y1, u)FZ|U(z | u)dµ(u)

fD2D1(1, 1;M) =

∫
fYt|Yt−1U(y2 | y1, u)fDt|YtU(1 | y2, u)

fDt|YtU(1 | y1, u)fY1U(y1, u)dµ(y2, y1, u)

for any model M := (FYt|Yt−1U , FDt|YtU , FY1U , FZ|U) ∈ F . Substituting these equalities in (B.4),
we conclude that the true model (F ∗

Yt|Yt−1U
, F ∗

Dt|YtU , F
∗
Y1U

, F ∗
Z|U) is the unique solution to

max(
FYt|Yt−1U ,FDt|YtU

,FY1U ,FZ|U
)
∈F

c1E

[
log

∫
fYt|Yt−1U

(Y2 | Y1, u)fDt|YtU (1 | Y1, u)fY1U (Y1, u)fZ|U (Z | u)dµ(u)
∣∣∣∣D1 = 1

]
+

c2E

[
log

∫
fYt|Yt−1U

(Y3 | Y2, u)fYt|Yt−1U
(Y2 | Y1, u)fDt|YtU (1 | Y2, u)fDt|YtU (1 | Y1, u)fY1U (Y1, u)FZ|U (Z | u)dµ(u)

∣∣∣∣D2 = D1 = 1

]
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subject to∫
fDt|YtU(1 | y1, u)fY1U(y1, u)dµ(y1, u) = fD1(1) and∫
fYt|Yt−1U(y2 | y1, u)fDt|YtU(1 | y2, u)fDt|YtU(1 | y1, u)fY1U(y1, u)dµ(y2, y1, u) = fD2D1(1, 1)

as claimed.

B.2 Remark 9 (Unit Lagrange Multipliers)

For short-hand notation, we write f = (f1, f2, f3, f4) ∈ F for an element of F , p1 := Pr(D1 = 1),
p2 := Pr(D2 = D1 = 1), and p := (p1, p2)

′. The solution f ∗(· ; p) ∈ F has Lagrange multipliers
λ∗(p) = (λ∗1(p), λ

∗
2(p))

′ ∈ Λ such that (f∗(· ; p), λ∗(p)) is a saddle point of the Lagrangean
functional

L(f, λ; p) = p1L1(f ; p1) + p2L2(f ; p2)− λ1(L3(f)− p1)− λ2(L4(f)− p2),

where the functionals L1, · · · , L4 are defined as

L1(f ; p1) =

∫ [
log

∫
f1(y2 | y1, u)f2(1 | y1, u)f3(y1, u)f4(z | u)dµ(u)

]
× fY2Y1Z|D1(y2, y1, z | 1)dµ(y2, y1, z)

L2(f ; p2) =

∫ [
log

∫
f1(y3 | y2, u)f1(y2 | y1, u)f2(1 | y2, u)f2(1 | y1, u)f3(y1, u)f4(z | u)dµ(u)

]
× fY3Y2Y1Z|D2D1(y3, y2, y1, z | 1, 1)dµ(y3, y2, y1, z)

L3(f) =

∫
f2(1 | y1, u)f3(y1, u)dµ(y1, u) and

L4(f) =

∫
f1(y2 | y1, u)f2(1 | y2, u)f2(1 | y1, u)f3(y1, u)dµ(y2, y1, u).

Moreover, f∗(· ; p) maximizes L(f, λ∗(p); p) given λ is restricted to λ∗(p). We want to claim
that λ∗(p) = (1, 1)′. The following assumptions are imposed to this end.

Assumption (Regularity for Unit Lagrange Multipliers).
(i) Selection probabilities are positive: p1, p2 > 0.
(ii) The functionals L1, L2, L3, and L4 are Fréchet differentiable with respect to f at the
solution f ∗(· ; p) for some norm ∥·∥ on a linear space containing F .
(iii) The solution (f ∗(· ; p), λ∗(p)) is differentiable with respect to p.
(iv) The solution f ∗(· ; p) is a regular point of the constraint functionals L3 and L4.

A sufficient condition for part (ii) of this assumption will be provided later in terms of a concrete
normed linear space.

Proof. Since the Chain Rule holds for a composition of Fréchet differentiable transformations
(cf. Luenberger, 1969; pp.176), we have

d

dp1
L(f ∗(· ; p), λ∗(p); p) = Df,λL(f

∗(· ; p), λ∗(p); p) ·Dp1(f
∗(· ; p), λ∗(p))

+
∂

∂p1
L(f∗(· ; p), λ∗(p); p) =

∂

∂p1
L(f ∗(· ; p), λ∗(p); p)

33



where the second equality follows from the equality constraints and the stationarity of L(·, λ∗(p); p)
at f ∗(· ; p), which is a regular point of the constraint functionals L3 and L4 by assumption.

On one hand, the partial derivative is

∂

∂p1
L(f ∗(· ; p), λ∗(p); p) = λ∗1(p).

On the other hand, the complementary slackness yields

d

dp1
L(f ∗(· ; p), λ∗(p); p) =

d

dp1
[p1L1(f

∗(· ; p); p1)].

In order to evaluate the last term, we first note that

p1L1(f ; p1) =

∫ [
log

∫
f1(y2 | y1, u)f2(1 | y1, u)f3(y1, u)f4(z | u)dµ(u)

]
× fY2Y1ZD1(y2, y1, z, 1)dµ(y2, y1, z).

In view of the proof of Corollary 1, we recall that f∗(· ; p) maximizes p1L1(· ; p1), and the
solution f ∗(· ; p) satisfies∫

f∗
1 (y2 | y1, u; p)f∗

2 (1 | y1, u; p)f ∗
3 (y1, u; p)f

∗
4 (z | u; p)dµ(u) = fY2Y1Z|D1(y2, y1, z | 1) · p1,

where the conditional density fY2Y1Z|D1(·, ·, · | 1) is invariant from variations in p, and the scale
of the integral varies by p1 which defines the L1-equivalence class of non-negative functions over
which the Kullback-Leibler information inequality is satisfied. Therefore, we have

d

dp1

[
log

∫
f ∗
1 (y2 | y1, u; p)f ∗

2 (1 | y1, u; p)f∗
3 (y1, u; p)f

∗
4 (z | u; p)dµ(u)

]
=

1

p1
.

It then follows that

d

dp1
L(f ∗(· ; p), λ∗(p); p) =

d

dp1
[p1L1(f

∗(· ; p); p1)] =
1

p1

∫
fY2Y1ZD1(y2, y1, z, 1)dµ(y2, y1, z) = 1,

showing that λ∗1(p) = 1. Similar lines of argument prove λ∗2(p) = 1.

Part (ii) of the above assumption is ambiguous about the definition of underlying topological
spaces, as we did not explicitly define the norm. In order to complement for it, here we
consider a sufficient condition. Write F = F1 × F2 × F3 × F4. Define a norm on F by
∥f∥s := ∥f1∥2 + ∥f2∥2 + ∥f3∥2 + ∥f4∥2, where ∥·∥2 denotes the L2-norm. Also, define the set
Bj(M) = {fj ∈ Fj | ∥fj∥∞ 6M} for M ∈ (0,∞) for each j = 1, 2, 3, 4. The following uniform
boundedness and integrability together imply part (ii).

Assumption (A Sufficient Condition for Part (ii)). There exists M < ∞ such that F1 ⊂
L1 ∩ B1(M), F2 ⊂ L1 ∩ B2(M), F3 ⊂ L1 ∩ B3(M), and F4 ⊂ L1 ∩ B4(M) hold with the
respective Lebesgue measurable spaces.

Note that F1 ⊂ L1 ∩ L∞, F2 ⊂ L1 ∩ L∞, F3 ⊂ L1 ∩ L∞, and F4 ⊂ L1 ∩ L∞ follow from this
assumption, since B(M) ⊂ L∞ for each j = 1, 2, 3, 4. But then, each of these sets is also square
integrable as L1 ∩ L∞ ⊂ L2 (cf. Folland, 1999; pp. 185).
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To see the Fréchet differentiability of L1, observe that for any η ∈ F∥∥∥∥∫ (f1 + η1)(f2 + η2)(f3 + η3)(f4 + η4)dµ(u)−
∫
f1f2f3f4dµ(u)−DL1(f ; η)

∥∥∥∥
1

6 ∥f1f2η3η4∥1 + ∥f1η2η3f4∥1 + ∥η1η2f3f4∥1 + ∥f1η2f3η4∥1 + ∥η1f2η3f4∥1 + ∥η1f2f3η4∥1
+ ∥f1η2η3η4∥1 + ∥η1f2η3η4∥1 + ∥η1η2f3η4∥1 + ∥η1η2η3f4∥1 + ∥η1η2η3η4∥1

6 ∥f1∥∞ ∥f2∥∞ ∥η3∥2 ∥η4∥2 + ∥f1∥∞ ∥f4∥∞ ∥η2∥2 ∥η3∥2 + ∥f3∥∞ ∥f4∥∞ ∥η1∥2 ∥η2∥2
+ ∥f1∥∞ ∥f3∥∞ ∥η2∥2 ∥η4∥2 + ∥f2∥∞ ∥f4∥∞ ∥η1∥2 ∥η3∥2 + ∥f2∥∞ ∥f3∥∞ ∥η1∥2 ∥η4∥2
+ ∥f1∥∞ ∥η2∥∞ ∥η3∥2 ∥η4∥2 + ∥η1∥∞ ∥f2∥∞ ∥η3∥2 ∥η4∥2 + ∥η1∥∞ ∥f3∥∞ ∥η2∥2 ∥η4∥2
+ ∥η1∥∞ ∥f4∥∞ ∥η2∥2 ∥η3∥2 + ∥η1∥∞ ∥η2∥∞ ∥η3∥2 ∥η4∥2

6 (∥f1∥∞ ∥f2∥∞ + ∥f1∥∞ ∥f4∥∞ + ∥f3∥∞ ∥f4∥∞ + ∥f1∥∞ ∥f3∥∞ + ∥f2∥∞ ∥f4∥∞
+ ∥f2∥∞ ∥f3∥∞ + ∥f1∥∞ ∥η2∥∞ + ∥η1∥∞ ∥f2∥∞ + ∥η1∥∞ ∥f3∥∞ + ∥η1∥∞ ∥f4∥∞
+ ∥η1∥∞ ∥η2∥∞) ∥η∥2s 6 11M2 ∥η∥2s ,

where the L1-norm in the first line is by integration with respect to (y2, y1, z), all the remaining
Lp-norms are by integration with respect to (y2, y1, z, u), DL1(f ; η) :=

∫
(f1f2f3η4 + f1f2η3f4 +

f1η2f3f4 + η1f2f3f4)dµ(u), the first inequality follows from the triangle inequality, the second
inequality follows from the Hölder’s inequality, the third inequality follows from our definition
of the norm on F , and the last inequality follows from our assumption. But then,

lim
∥η∥s→0

∥∥∫ (f1 + η1)(f2 + η2)(f3 + η3)(f4 + η4)dµ(u)−
∫
f1f2f3f4dµ(u)−DL1(f ; η)

∥∥
1

∥η∥s
= 0,

showing that DL1(f ; η) is the Fréchet derivative of the operator f 7→
∫
f1f2f3f4dµ(u). This

in turn implies Fréchet differentiability of the functional L1 at the solution f ∗(· ; p), since
the functional L1 ∋ η 7→

∫
log ηdFY2Y1Z|D1=1 is Fréchet differentiable at η = fY2Y1ZD1(·, ·, ·, 1).

Similar lines of arguments will show Fréchet differentiability of the other functionals L2, L3,
and L4 at f ∗(· ; p).

B.3 Proposition 1 (Consistency of the Nonparametric Estimator)

As a setup, we define a normed linear space (L, ∥·∥) containing the model set F = F1 × F2 ×
F3 ×F4 as follows. We define the uniform norm of f as the essential supremum

∥f∥∞ = ess supx |f(x)| .

Following Newey and Powell (2003) and others, we also define the following version of the
uniform norm when characterizing compactness:

∥f∥R,∞ = ess supx |f(x)(1 + x′x)| .

Noted that ∥·∥∞ 6 ∥·∥R,∞ holds. Similarly define the version of the L1 norm

∥f∥R,1 =
∫

|f(x)| (1 + x′x)dx.

Define a norm ∥·∥ on a linear space containing F by

∥f∥ := ∥f1∥R,∞ + ∥f2∥R,∞ + ∥f3∥R,∞ + ∥f4∥R,∞ .
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We consider F with the subspace topology of this normed linear space, where Assumption 3
below imposes restrictions on how to appropriately choose such a subset F .

We assume that the data is i.i.d.

Assumption 1 (Data). The data {(Yi3, Yi2, Yi1, Zi, D2i, D1i)}ni=1 is i.i.d.

In order to model the rate at which the complexity of sieve spaces evolve with sample size
n, we introduce the notation N(· , · , ∥·∥) for the covering numbers without bracketing. Let
B(f, ε) = {f ′ ∈ F | ∥f − f ′∥ < ε} denote the ε-ball around f ∈ F with respect to the norm ∥·∥
defined above. For each ε > 0 and n, let N(ε,Fk(n), ∥·∥) denote the minimum number of such
ε-balls covering Fk(n), i.e., min{|C| | ∪f∈CB(f, ε) ⊃ Fk(n)}. With this notation, we assume the
following restriction.

Assumption 2 (Sieve Spaces).
(i) {Fk(n)}∞n=1 is an increasing sequence, Fk(n) ⊂ F for each n, and there exists a sequence
{πk(n)f0}∞n=1 such that πk(n)f0 ∈ Fk(n) for each n.
(ii) logN(ε,Fk(n), ∥·∥) = o(n) for all ε > 0.

The next assumption facilitates compactness of the model set and Hölder continuity of
the objective functional, both of which are important for nice large sample behavior of the
estimator. We assume that the true model f0 belongs to F satisfying the following.

Assumption 3 (Model Set).
(i) L1 Compactness: Each of F2 and F3 is compact with respect to ∥·∥R,1. Thus, let M < ∞
be a number such that supfi∈Fi

∥fi∥R,1 6M for each i = 2, 3.

(ii) L∞ Compactness: Each of F1, F2, F3, and F4 is compact with respect to ∥·∥R,∞. Thus, let

M∞ <∞ be a number such that supfi∈Fi
∥fi∥R,∞ 6M∞ for each i = 1, 2, 3, 4.

(iii) Uniformly Bounded Density of E : There exists M1 <∞ such that

sup
f1∈F1

sup
y2,y1

∫
|f1(y2 | y1, u)| du 6M1.

(iv) Uniformly Bounded Density of Y1: There exists M3 <∞ such that

sup
f3∈F3

sup
y1

∫
|f3(y1, u)| du 6M3.

(v) Bounded Objective:

E

[(
inf
f∈F

∫
f1(Y2 | Y1, u)f2(1 | Y1, u)f3(Y1, u)f4(Z | u)dµ(u)

)−1
]
< ∞ and

E

[(
inf
f∈F

∫
f1(Y3 | Y2, u)f1(Y2 | Y1, u)f2(1 | Y2, u)f2(1 | Y1, u)f3(Y1, u)f4(Z | u)dµ(u)

)−1
]
< ∞

Part (i) of this assumption is not redundant, since fi are not densities, but conditional
densities. Despite their appearance, parts (iii) and (iv) of this assumption are not so stringent.
Suppose, for example, that the true model f0 consists of the traditional additively separable
dynamic model Yt = αYt−1 + U + Et with a uniformly bounded density of Et. In this case, the
true model f0 can indeed reside in an F satisfying the restriction of part (iii) for a suitable
choice of M1. Similarly, the true model f0 can reside in an F satisfying the restriction of part
(iv) for a suitable choice of M3, whenever the density of Y1 is uniformly bounded.
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Proof. We show the consistency claim of Proposition 1 by showing that Conditions 3.1, 3.2,
3.4, and 3.5M of Chen (2007) are satisfied by our assumptions (Restrictions 1, 2, 3, and 4
and Assumptions 1, 2, and 3). Restrictions 1, 2, 3, and 4 imply her Condition 3.1 by our
identification result yielding Corollary 1 together with Remark 9. Her Condition 3.2 is directly
assumed by our Assumption 2 (i). Her Condition 3.4 is implied by our Assumption 3 (ii)
applied to the Tychonoff’s Theorem. Her Conditions 3.5M (i) and (iii) are directly assumed by
our Assumptions 1 and 2 (ii), respectively, provided that we will prove her Condition 3.5M (ii)
with s = 1. It remains to prove Hölder continuity of l(y3, y2, y1, z, d2, d1; · ) : (F , ∥·∥) → R for
each (y3, y2, y1, z, d2, d1), which in turn implies her Condition 3.5M (ii).

In order to show Hölder continuity of the functional l(y3, y2, y1, z, d2, d1; · ), it suffices to
prove that of l1(y2, y1, z; · ), l2(y3, y2, y1, z; · ), l3, and l4. First, consider l1(y2, y1, z; · ). For a
fixed (y2, y1, z), observe∣∣exp(l1(y2, y1, z; f))− exp(l1(y2, y1, z; f̄))

∣∣
6

∣∣∣∣∫ (f1 − f̄1)f2f3f4du

∣∣∣∣+ ∣∣∣∣∫ f̄1(f2 − f̄2)f3f4du

∣∣∣∣
+

∣∣∣∣∫ f̄1f̄2(f3 − f̄3)f4du

∣∣∣∣+ ∣∣∣∣∫ f̄1f̄2f̄3(f4 − f̄4)du

∣∣∣∣
6

∥∥f1 − f̄1
∥∥
∞ ∥f2∥∞

∫
|f3| du ∥f4∥∞ +

∥∥f̄1∥∥∞

∥∥f2 − f̄2
∥∥
∞

∫
|f3| du ∥f4∥∞

+

∫ ∣∣f̄1∣∣ du∥∥f̄2∥∥∞

∥∥f3 − f̄3
∥∥
∞ ∥f4∥∞ +

∫ ∣∣f̄1∣∣ du ∥∥f̄2∥∥∞

∥∥f̄3∥∥∞

∥∥f4 − f̄4
∥∥
∞

6 2M2
∞(M1 +M3)

∥∥f − f̄
∥∥ ,

where the first inequality follows from the triangle inequality, the second inequality follows from
the Hölder’s inequality, and the third inequality uses Assumption 3 (ii), (iii), and (iv), together
with the fact that ∥·∥∞ 6 ∥·∥R,∞. By Assumption 3 (v), there exists a function κ1 such that

E[κ1(Y2, Y1, Z)] <∞ and∣∣l1(y2, y1, z; f)− l1(y2, y1, z; f̄)
∣∣ 6 2M2

∞(M1 +M3)
∥∥f − f̄

∥∥κ1(y2, y1, z).
This shows Hölder (in particular Lipschitz) continuity of the functional l1(y2, y1, z; · ).

By similar calculations using Assumption 3 (ii) and (iii), we obtain∣∣exp(l2(y3, y2, y1, z; f))− exp(l2(y3, y2, y1, z; f̄))
∣∣

6
∥∥f1 − f̄1

∥∥
∞

∫
|f1| du ∥f2∥2∞ ∥f3∥∞ ∥f4∥∞ +

∫ ∣∣f̄1∣∣ du ∥∥f1 − f̄1
∥∥
∞ ∥f2∥2∞ ∥f3∥∞ ∥f4∥∞

+

∫ ∣∣f̄1∣∣ du ∥∥f̄1∥∥∞

∥∥f2 − f̄2
∥∥
∞ ∥f2∥∞ ∥f3∥∞ ∥f4∥∞

+

∫ ∣∣f̄1∣∣ du ∥∥f̄1∥∥∞

∥∥f̄2∥∥∞

∥∥f2 − f̄2
∥∥
∞ ∥f3∥∞ ∥f4∥∞

+

∫ ∣∣f̄1∣∣ du ∥∥f̄1∥∥∞

∥∥f̄2∥∥2

∞

∥∥f3 − f̄3
∥∥
∞ ∥f4∥∞ +

∫ ∣∣f̄1∣∣ du ∥∥f̄1∥∥∞

∥∥f̄2∥∥2

∞

∥∥f̄3∥∥∞

∥∥f4 − f̄4
∥∥
∞

6 6M4
∞M1

∥∥f − f̄
∥∥ .

By Assumption 3 (v), there exists a function κ2 such that E[κ2(Y3, Y2, Y1, Z)] <∞ and∣∣l2(y3, y2, y1, z; f)− l2(y3, y2, y1, z; f̄)
∣∣ 6 6M4

∞M1

∥∥f − f̄
∥∥κ2(y3, y2, y1, z).
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This shows Lipschitz continuity of the functional l2(y3, y2, y1, z; · ).
Next, using Assumption 3 (i) yields∣∣l3(f)− l3(f̄)

∣∣ 6
∣∣∣∣∫ (f2 − f̄2)f3

∣∣∣∣+ ∣∣∣∣∫ f̄2(f3 − f̄3)

∣∣∣∣
6

∥∥f2 − f̄2
∥∥
∞ ∥f3∥1 +

∥∥f̄2∥∥1

∥∥f3 − f̄3
∥∥
∞ 6 2M

∥∥f − f̄
∥∥ ,

Similarly, using Assumption (i) and (ii) yields∣∣l4(f)− l4(f̄)
∣∣ 6

∥∥f1 − f̄1
∥∥
∞ ∥f2∥2∞ ∥f3∥1 +

∥∥f̄1∥∥∞

∥∥f2 − f̄2
∥∥
∞ ∥f2∥∞ ∥f3∥1

+
∣∣f̄1∣∣∞ ∥∥f̄2∥∥∞

∥∥f2 − f̄2
∥∥
∞ ∥f3∥1 +

∣∣f̄1∣∣∞ ∥∥f̄2∥∥∞ ∥f2∥1
∥∥f3 − f̄3

∥∥
∞

6 4MM2
∞
∥∥f − f̄

∥∥ .
It follows that l3 and l4 are also Lipschitz continuous. These in particular implies Hölder conti-
nuity of the functionals l1(y2, y1, z; · ), l2(y3, y2, y1, z; · ), l3, and l4, hence l(y3, y2, y1, z, d2, d1; · ).
Therefore, Chen’s Condition 3.5M (ii) is satisfied with s = 1 by our assumptions.

B.4 Semiparametric Estimation

Section 5.2 proposed an estimator which treats the quadruple (fYt|Yt−1U , fDt|YtU , fY1U , fZ|U) of
the density functions nonparametrically. In practice, it may be more useful to specify one or
more of these densities semi-parametrically. For example, the dynamic model g is conventionally
specified by

g(y, u, ε) = αy + u+ ε.

By denoting the nonparametric density functions of Et by fE , we can represent the density
fYt|Yt−1U by fYt|Yt−1U(y

′ | y, u) = fE(y
′ − αy − u). Consequently, a model is represented by

(α, fE , fDt|YtU , fY1U , fZ|U). For ease of writing, let this model be denoted by θ = (α, f̃1, f2, f3, f4).

Accordingly, write a set of such models by Θ = A× F̃1 × F2 × F3 × F4
Under these notations, Corollary 1 and Remark 9 characterize a sieve semiparametric esti-

mator θ̂ of θ0 as the solution to

max
θ∈Θk(n)

1

n

n∑
i=1

l(Yi3, Yi2, Yi1, Zi, Di2, Di1; θ)

for some sieve space Θk(n) = Ak(n) × F̃1,k1(n) ×F2,k2(n) ×F3,k3(n) ×F4,k4(n) ⊂ Θ, where

l(Yi3, Yi2, Yi1, Zi, Di2, Di1; θ) := 1 {Di1 = 1} · l1(Yi2, Yi1, Zi; θ)
+1 {Di2 = Di1 = 1} · l2(Yi3, Yi2, Yi1, Zi; θ)− l3(θ)− l4(θ),

l1(Yi2, Yi1, Zi; θ) := log

∫
f̃1(Yi2 − αYi1 − u)f2(1 | Yi1, u)f3(Yi1, u)f4(Zi | u)dµ(u),

l2(Yi3, Yi2, Yi1, Zi; θ) := log

∫
f̃1(Yi3 − αYi2 − u)f1(Yi2 − αYi1 − u)

× f2(1 | Yi2, u)f2(1 | Yi1, u)f3(Yi1, u)f4(Zi | u)dµ(u),

l3(θ) :=

∫
f2(1 | y1, u)f3(y1, u)dµ(y1, u), and

l4(θ) :=

∫
f̃1(y2 − αy1 − u)f2(1 | y2, u)f2(1 | y1, u)f3(y1, u)dµ(y2, y1, u).
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The asymptotic distribution of α̂ can be derived by following the method of Ai and Chen
(2003), which was also used in Blundell, Chen, Kristensen (2007) and Hu and Schennach (2008).
First, I introduce auxiliary notations. Define the path-wise derivative

l′θ0(y3, y2, y1, z, d2, d1; θ − θ0) = lim
r→0

l(y3, y2, y1, z, d2, d1; θ(θ0, r))− l(y3, y2, y1, z, d2, d1; θ0)

r

where θ(θ0, ·) : R → Θ denotes a path such that θ(θ0, 0) = θ0 and θ(θ0, 1) = θ. Similarly define

the path-wise derivative with respect to each component of (f̃1, f2, f3, f4) by

d

df̃1
lθ0(y3, y2, y1, z, d2, d1; f̃1 − f̃10) = lim

r→0

l(y3, y2, y1, z, d2, d1; f̃1(θ0, r))− l(y3, y2, y1, z, d2, d1; θ0)

r

d

df2
lθ0(y3, y2, y1, z, d2, d1; f2 − f20) = lim

r→0

l(y3, y2, y1, z, d2, d1; f2(θ0, r))− l(y3, y2, y1, z, d2, d1; θ0)

r

d

df3
lθ0(y3, y2, y1, z, d2, d1; f3 − f30) = lim

r→0

l(y3, y2, y1, z, d2, d1; f3(θ0, r))− l(y3, y2, y1, z, d2, d1; θ0)

r

d

df4
lθ0(y3, y2, y1, z, d2, d1; f4 − f40) = lim

r→0

l(y3, y2, y1, z, d2, d1; f4(θ0, r))− l(y3, y2, y1, z, d2, d1; θ0)

r

where f̃1(θ0, ·) : R → F̃1, f2(θ0, ·) : R → F2, f3(θ0, ·) : R → F3, and f4(θ0, ·) : R → F4 denote
paths as before.

Recenter the set of parameters by Ω = Θ− θ0 so that

⟨v1, v2⟩ = E
[
l′θ0(Y3, Y2, Y1, Z,D2, D1; v1)l

′
θ0
(Y3, Y2, Y1, Z,D2, D1; v2)

]
defines an inner product on Ω. Furthermore, by taking the closure Ω, we obtain a complete
space Ω with respect to the topology induced by ⟨·, ·⟩, hence a Hilbert space (Ω, ⟨·, ·⟩). It can

be written as Ω = R × W where W = F̃1 × F2 × F3 × F4 − (f̃10, f20, f30, f40). Given these
notations, define

w∗ := (f̃ ∗
1 , f

∗
2 , f

∗
3 , f

∗
4 ) = arg min

w∈W
E

[(
d

dα
l(Y3, Y2, Y1, Z,D2, D1; θ0)−

d

df̃1
lθ0(Y3, Y2, Y1, Z,D2, D1; f̃1)

− d

df2
lθ0(Y3, Y2, Y1, Z,D2, D1; f2)−

d

df3
lθ0(Y3, Y2, Y1, Z,D2, D1; f3)

− d

df4
lθ0(Y3, Y2, Y1, Z,D2, D1; f4)

)2
]
.

Given this w∗, next define

Φw∗(y3, y2, y1, z, d2, d1) :=
d

dα
l(y3, y2, y1, z, d2, d1; θ0)−

d

df̃1
lθ0(y3, y2, y1, z, d2, d1; f̃1)

− d

df2
lθ0(y3, y2, y1, z, d2, d1; f2)−

d

df3
lθ0(y3, y2, y1, z, d2, d1; f3)

− d

df4
lθ0(y3, y2, y1, z, d2, d1; f4).

The next assumption sets a moment condition.
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Assumption 4 (Bounded Second Moment). σ := E [Φw∗(Y3, Y2, Y1, Z,D2, D1)
2] <∞

The mapping θ− θ0
s7→ α−α0 is a linear functional on Ω. Since (Ω, ⟨·, ·⟩) is a Hilbert space,

the Riesz Representation Theorem guarantees the existence of v∗ ∈ Ω such that s(θ − θ0) =
⟨v∗, θ − θ0⟩ for all θ ∈ Θ under Assumption 4. Moreover, this representing vector has the explicit
formula v∗ = (σ−1,−σ−1w∗). Using Corollary 1 of Shen (1997) yields asymptotic distribution

of
√
N(α− α0) =

√
N

⟨
v∗, θ̂ − θ0

⟩
, which is N(0, σ−1).

In order to invoke Shen’s corollary, a couple of additional notations need to be introduced.
The remainder of the linear approximation is

r(y3, y2, y1, z, d2, d1; θ − θ0) := l(y3, y2, y1, z, d2, d1; θ)− l(y3, y2, y1, z, d2, d1; θ0)

−l′θ0(y3, y2, y1, z, d2, d1; θ − θ0)

A divergence measure is defined by

K(θ0, θ) :=
1

N

N∑
i=1

E [l(Yi3, Yi2, Yi1, Zi, Di2, Di1; θ0)− l(Yi3, Yi2, Yi1, Zi, Di2, Di1; θ)] .

Denote the empirical process induced by g by

νn(g) :=
1√
N

N∑
i=1

(g(Yi3, Yi2, Yi1, Zi, Di2, Di1)− Eg(Yi3, Yi2, Yi1, Zi, Di2, Di1))

For a perturbation ϵn such that ϵn = o(n−1/2), let θ∗(θ, ϵn) = (1− ϵn)θ+ ϵn(u
∗+ θ0) where u

∗ =
±v∗. Lastly, Pn denote the projection Θ → Θn. The following high-level assumptions of Shen

(1997) guarantees asymptotic normality of
√
N

⟨
v∗, θ̂ − θ0

⟩
, or equivalently of

√
N(α− α0).

Assumption 5 (Regularity). (i) sup{θ∈Θn|∥θ−θ0∥6δ0} n
−1/2νn(r(Y3, Y2, Y1, Z,D2, D1; θ − θ0) −

r(Y3, Y2, Y1, Z,D2, D1;Pn(θ
∗(θ, ϵn))−θ0)) = Op(ϵ

2
n). (ii) sup{θ∈Θn|0<∥θ−θ0∥6δn} [K(θ0, Pn(θ

∗(θ, ϵn))−
K(θ0, θ)] − 1

2

[
∥θ∗(θ, ϵn)− θ0∥2 − ∥θ − θ0∥2

]
= O(ϵ2n). (iii) sup{θ∈Θn|0<∥θ−θ0∥6δn} ∥θ

∗(θ, ϵn) −
Pn(θ

∗(θ, ϵn))∥ = O(δ−1
n ϵ2n). (iv) sup{θ∈Θn|∥θ−θ0∥6δn} n

−1/2νn(l
′
θ0
( · · · ; θ∗(θ, ϵn)−Pn(θ∗(θ, ϵn)))) =

Op(ϵ
2
n. (v) sup{θ∈Θn|∥θ−θ0∥6δn} n

−1/2νn(l
′
θ0
( · · · ; θ − θ0)) = Op(ϵn).

Proposition 2 (Asymptotic Distribution of a Semiparametric Estimator). Suppose that Re-

strictions 1, 2, 3, and 4 and Assumptions 4 and 5 hold. Then,
√
N(α− α0)

d→ N(0, σ−1).

C Special Cases and Generalizations of the Baseline Model

C.1 A Variety of Missing Observations

While the baseline model considered in the paper induces a permanent dropout from data by
a hazard selection, variants of the model can be encompassed as special cases under which the
main identification remains to hold. Specifically, we consider the following Classes 1 and 2 as
special models of Class 3.
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Class 1 (Nonseparable Dynamic Panel Data Model).
Yt = g(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

FY1U (Initial joint distribution of (Y1, U))

Z = ζ(U,W ) (Optional: nonclassical proxy of U)

Class 2 (Nonseparable Dynamic Panel Data Model with Missing Observations).
Yt = g(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

Dt = h(Yt, U, Vt) t = 1, · · · , T − 1 (Selection)

FY1U (Initial joint distribution of (Y1, U))

Z = ζ(U,W ) (Optional: nonclassical proxy of U)

where Yt is censored by the binary indicator Dt of sample selection as follows:{
Yt is observed if Dt−1 = 1 or t = 1.

Yt is unobserved if Dt−1 = 0 and t > 1.

A representative example of this instantaneous selection is the Roy model such as h(y, u, v) =
1{E[π(g(y, u, Et+1), u)] > c(u, v)} where π measures payoffs and cmeasures costs. The following
is the baseline model considered in the paper.

Class 3 (Nonseparable Dynamic Panel Data Model with Hazards).
Yt = g(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

Dt = h(Yt, U, Vt) t = 1, · · · , T − 1 (Hazard Model)

FY1U (Initial joint distribution of (Y1, U))

Z = ζ(U,W ) (Optional: nonclassical proxy of U)

where Dt = 0 induces a hazard of permanent dropout in the following manner:
Y1 is observed,

Y2 is observed if D1 = 1,

Y3 is observed if D1 = D2 = 1.

The present appendix section proves that identification of Class 3 implies identification of
Classes 1 and 2. The observable parts of the joint distributions in each of the three classes
include (but are not limited to) the following:

Class 1: Observe FY3Y2Y1ZD2D1 , FY2Y1ZD1 , FY3Y1ZD2 , and FY3Y2ZD2

Class 2: Observe FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1), and FY3Y1ZD2(·, ·, ·, 1)
Class 3: Observe FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1) and FY2Y1ZD1(·, ·, ·, 1)
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Since the selection variable Dt in Class 1 is not defined, we assume without loss of generality
that it is degenerate at Dt = 1 in Class 1.

The problem of identification under each class can be characterized by the well-definition
of the following maps:

Class 1: (FY3Y2Y1ZD2D1 , FY2Y1ZD1 , FY3Y1ZD2 , FY3Y2ZD2)
ι17→ (g, FY1U , ζ)

Class 2: (FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1), FY3Y1ZD2(·, ·, ·, 1))
ι27→ (g, h, FY1U , ζ)

Class 3: (FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1)
ι37→ (g, h, FY1U , ζ)

The main identification result of this paper was to show well-definition of the map ι3. Therefore,
in order to argue that identification of Class 3 implies identification of Classes 1 and 2, it suffices
to claim that the well-definition of ι3 implies well-definition of the maps ι1 and ι2.

First, note that the trivial projections

(FY3Y2Y1ZD2D1 , FY2Y1ZD1 , FY3Y1ZD2 , FY3Y2ZD2)
π17→ (FY3Y2Y1ZD2D1 , FY2Y1ZD1 , FY3Y1ZD2) and

(FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1), FY3Y1ZD2(·, ·, ·, 1))
π27→ (FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1))

are well-defined. Second, by the construction of degenerate random variable Dt = 1 in Class 1,
the map

(FY3Y2Y1ZD2D1 , FY2Y1ZD1 , FY3Y1ZD2 , FY3Y2ZD2)
κ17→ (FY3Y2Y1ZD2D1(·, ·, ·, ·, 1, 1), FY2Y1ZD1(·, ·, ·, 1), FY3Y1ZD2(·, ·, ·, 1))

is well-defined in Class 1. Third, the trivial projection

(g, h, FY1U , ζ)
ρ7→ (g, FY1U , ζ)

is well-defined.
Now, notice that

ι1 = ρ ◦ ι3 ◦ κ1 ◦ π1 in Class 1, and

ι2 = ι3 ◦ π2 in Class 2.

Therefore, the well-definition of ι3 implies well-definition of ι1 and ι2 in particular. Therefore,
identification of Class 3 implies identification of Classes 1 and 2.

C.2 Identification without a Nonclassical Proxy Variable

The main result of this paper assumed use of a nonclassical proxy variable Z. However, this
use was mentioned to be optional, and one can substitute a slightly longer panel T = 6 for use
of a proxy variable. In this section we show how the model (g, h, FY1U) can be identified from
the endogenously censored joint distribution FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1)
that follows from T = 6 time periods of unbalanced panel data without additional information
Z.

Restriction 5 (Independence).
(i) Exogeneity of Et: Et ⊥⊥ (U, Y1, {Es}s<t, {Vs}s<t,W ) for all t ≥ 2.
(ii) Exogeneity of Vt: Vt ⊥⊥ (U, Y1, {Es}s6t, {Vs}s<t) for all t ≥ 1.

For simplicity of notation, we compress the nondegenerate random variable Y3 into a binary
random variable Z := η(Y3) with a known transformation η such that part (iii) of the follow-
ing rank condition is satisfied. As the notation suggests, this Z serves as a substitute for a
nonclassical proxy variable.
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Restriction 6 (Rank Conditions). The following conditions hold for every y ∈ Y :
(i) Heterogeneous Dynamics: the integral operator Py : L2(FU) → L2(FYt) defined by Pyξ(y

′) =∫
fY3|Y2U(y

′ | y, u) · ξ(u)du is bounded and invertible.
(ii) There exist y4 and y2 satisfying the following conditions:
Nondegeneracy: fY4ZD5D4D3|Y2U(y4, 1, 1, 1, 1 | y2, u) is bounded away from 0 and 1 for all u.

Relevance:
fY4ZD5D4D3|Y2U (y4,1,1,1,1|y2,u)
fY4ZD5D4D3|Y2U (y4,0,1,1,1|y2,u) ̸=

fY4ZD5D4D3|Y2U (y4,1,1,1,1|y2,u′)
fY4ZD5D4D3|Y2U (y4,0,1,1,1|y2,u′) whenever u ̸= u′.

(iii) No Extinction: fD2|Y2U(1 | y, u) > 0 for all u ∈ U .
(iv) Initial Heterogeneity: the integral operator Sy : L2(FYt) → L2(FU) defined by Syξ(u) =∫
fY2Y1UD1U(y, y

′, u, 1) · ξ(y′)dy′ is bounded and invertible.

Lemma 5 (Independence). The following implications hold:
(i) Restriction 5 (i) ⇒ E6 ⊥⊥ (U, Y1, E2, E3, E4, E5, V1, V2, V3, V4, V5)

⇒ Y6 ⊥⊥ (Y1, Y2, Y3, Y4, D1, D2, D3, D4, D5) | (Y5, U).
(ii) Restriction 5 (i) & (ii) ⇒ (E3, E4, E5, V3, V4, V5) ⊥⊥ (U, Y1, E2, V1, V2)

⇒ (Y3, Y4, Y5, D3, D4, D5) ⊥⊥ (Y1, D1, D2) | (Y2, U).
(iii) Restriction 5 (i) ⇒ E2 ⊥⊥ (U, Y1, V1) ⇒ Y2 ⊥⊥ D1 | (Y1, U).
(iv) Restriction 5 (ii) ⇒ V2 ⊥⊥ (U, Y1, E2, V1) ⇒ D2 ⊥⊥ (Y1, D1) | (Y2, U).
Proof. In order to prove the lemma, we use the following two properties of conditional inde-
pendence:
CI.1. A ⊥⊥ B implies A ⊥⊥ B | ϕ(B) for any Borel function ϕ.
CI.2. A ⊥⊥ B | C implies A ⊥⊥ ϕ(B,C) | C for any Borel function ϕ.

(i) First, applying CI.1 to the independence E6 ⊥⊥ (U, Y1, E2, E3, E4, E5, V1, V2, V3, V4, V5) and
using the definition of g yield

E6 ⊥⊥ (U, Y1, E2, E3, E4, E5, V1, V2, V3, V4, V5) | (Y5, U).

Next, applying CI.2 to this conditional independence and using the definitions of g and h yield

E6 ⊥⊥ (Y1, Y2, Y3, Y4, D1, D2, D3, D4, D5, Z) | (Y5, U).

Applying CI.2 again to this conditional independence and using the definition of g yield

Y6 ⊥⊥ (Y1, Y2, Y3, Y4, D1, D2, D3, D4, D5, Z) | (Y5, U).

(ii) First, applying CI.1 to the independence (E3, E4, E5, V3, V4, V5) ⊥⊥ (U, Y1, E2, V1, V2) and
using the definition of g yield

(E3, E4, E5, V3, V4, V5) ⊥⊥ (U, Y1, E2, V1, V2) | (Y2, U)

Next, applying CI.2 to this conditional independence and using the definitions of g and h yield

(E3, E4, E5, V3, V4, V5) ⊥⊥ (Y1, D1, D2) | (Y2, U)

Applying CI.2 again to this conditional independence and using the definition of g yield

(Y3, Y4, Y5, D3, D4, D5) ⊥⊥ (Y1, D1, D2) | (Y2, U)

(iii) The proof is the same as that of Lemma 3 (ii).
(iv) The proof is the same as that of Lemma 3 (iii).

Lemma 6 (Invariant Transition).
(i) Under Restrictions 1 and 5 (i), FYt|Yt−1U(y

′ | y, u) = FYt′ |Yt′−1U
(y′ | y, u) for all y′, y, u, t, t′.

(ii) Under Restrictions 1 and 5 (ii), FD2|Y2U(d | y, u) = FD1|Y1U(d | y, u) for all d, y, u.
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This lemma can be proved similarly to Lemma 4.

Lemma 7 (Identification). Under Restrictions 1, 4, 5, and 6, (FY3|Y2U , FD2|Y2U , FY1U) is uniquely
determined by FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D1( · , · , 1).

Proof. Given fixed (y5, y4, z, y2), define the operators Ly5,y4,z,y2 : L2(FYt) → L2(FYt), Py5 :
L2(FU) → L2(FYt), Qy5,y4,z,y2 : L2(FU) → L2(FU), Ry2 : L2(FU) → L2(FU), Sy2 : L2(FYt) →
L2(FU), Ty2 : L2(FYt) → L2(FU), and T

′
y2

: L2(FU) → L2(FU) by

(Ly5,y4,z,y2ξ)(y6) =

∫
fY6Y5Y4ZY2Y1D5D4D3D2D1(y6, y5, y4, z, y2, y1, 1, 1, 1, 1, 1) · ξ(y1)dy1,

(Py5ξ)(y3) =

∫
fY6|Y5U(y6 | y5, u) · ξ(u)du,

(Qy5,y4,z,y2ξ)(u) = fY5Y4ZD5D4D3|Y2U(y5, y4, z, 1, 1, 1 | y2, u) · ξ(u),
(Ry2ξ)(u) = fD2|Y2U(1 | y2, u) · ξ(u),

(Sy2ξ)(u) =

∫
fY2Y1UD1(y2, y1, u, 1) · ξ(y1)dy1,

(Ty2ξ)(u) =

∫
fY1|Y2UD2D1(y1 | y2, u, 1, 1) · ξ(y1)dy1,

(T ′
y2
ξ)(u) = fY2UD2D1(y2, u, 1, 1) · ξ(u)

respectively.
Step 1: Uniqueness of FY6|Y5U and FY5Y4ZD5D4D3|Y2U( ·, ·, ·, 1, 1, 1 | ·, ·)
The kernel fY6Y5Y4ZY2Y1D5D4D3D2D1( ·, y5, y4, z, y2, ·, 1, 1, 1, 1, 1) of the integral operator Ly5,y4,z,y2
can be rewritten as

fY6Y5Y4ZY2Y1D5D4D3D2D1(y6, y5, y4, z, y2, y1, 1, 1, 1, 1, 1)

=

∫
fY6|Y5Y4ZY2Y1UD5D4D3D2D1(y6 | y5, y4, z, y2, y1, u, 1, 1, 1, 1, 1)

×fY5Y4ZD5D4D3|Y2Y1UD2D1(y5, y4, z, 1, 1, 1 | y2, y1, u, 1, 1) (C.1)

×fD2|Y2Y1UD1(1 | y2, y1, u, 1) · fY2Y1UD1(y2, y1, u, 1) du

But by Lemma 5 (i), (ii), and (iv), respectively, Restriction 5 implies that

fY6|Y5Y4ZY2Y1UD5D4D3D2D1(y6 | y5, y4, z, y2, y1, u, 1, 1, 1, 1, 1) = fY6|Y5U(y5 | y5, u),
fY5Y4ZD5D4D3|Y2Y1UD2D1(y5, y4, z, 1, 1, 1 | y2, y1, u, 1, 1) = fY5Y4ZD5D4D3|Y2U(y5, y4, z, 1, 1, 1 | y2, u),

fD2|Y2Y1UD1(1 | y2, y1, u, 1) = fD2|Y2U(1 | y2, u).

Equation (C.1) thus can be rewritten as

fY6Y5Y4ZY2Y1D5D4D3D2D1(y6, y5, y4, z, y2, y1, 1, 1, 1, 1, 1)

=

∫
fY6|Y5U(y6 | y5, u) · fY5Y4ZD5D4D3|Y2U(y5, y4, z, 1, 1, 1 | y2, u)

×fD2|Y2U(1 | y2, u) · fY2Y1UD1(y2, y1, u, 1) du

But this implies that the integral operator Ly4,y3,y2 is written as the operator composition

Ly5,y4,z,y2 = Py5Qy5,y4,z,y2Ry2Sy2 .
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Restriction 6 (i), (ii), (iii), and (iv) imply that the operators Py5 , Qy5,y4,z,y2 , Ry2 , and Sy2
are invertible, respectively. Hence so is Ly5,y4,z,y2 . Using the two values {0, 1} of Z, form the
product

Ly5,y4,1,y2L
−1
y5,y4,0,y2

= Py5Qy4,1/0,y2P
−1
y5

where Qy4,1/0,y2 = Qy5,y4,1,y2Q
−1
y5,y4,0,y2

is the multiplication operator with proxy odds defined by

(Qy4,1/0,y2ξ)(u) =
fY5Y4ZD5D4D3|Y2U(y5, y4, 1, 1, 1, 1 | y2, u)
fY5Y4ZD5D4D3|Y2U(y5, y4, 0, 1, 1, 1 | y2, u)

ξ(u)

=
fY5|Y4U(y5 | y4, u) · fY4ZD5D4D3|Y2U(y4, 1, 1, 1, 1 | y2, u)
fY5|Y4U(y5 | y4, u) · fY4ZD5D4D3|Y2U(y4, 0, 1, 1, 1 | y2, u)

ξ(u)

=
fY4ZD5D4D3|Y2U(y4, 1, 1, 1, 1 | y2, u)
fY4ZD5D4D3|Y2U(y4, 0, 1, 1, 1 | y2, u)

ξ(u).

Note the invariance of this operator in y5, hence the notation. By Restriction 6 (ii), the operator
Ly5,y4,1,y2L

−1
y5,y4,0,y2

is bounded. The expression Ly5,y4,1,y2L
−1
y5,y4,0,y2

= Py5Qy4,1/0,y2P
−1
y5

thus allows
unique eigenvalue-eigenfunction decomposition as in the proof of Lemma 2.

The distinct proxy odds as in Restriction 6 (ii) guarantee distinct eigenvalues and single
dimensionality of the eigenspace associated with each eigenvalue. Within each of the single-
dimensional eigenspace is a unique eigenfunction pinned down by L1-normalization because
of the unity of integrated densities. The eigenvalues λ(u) yield the multiplier of the opera-
tor Qy4,1/0,y2 , hence λy4,y2(u) = fY4ZD5D4D3|Y2U(y4, 1, 1, 1, 1 | y2, u)/fY4ZD5D4D3|Y2U(y4, 0, 1, 1, 1 |
y2, u). This proxy odds in turn identifies fY4ZD5D4D3|Y2U(y4, ·, 1, 1, 1 | y2, u) since Z is bi-
nary. The corresponding normalized eigenfunctions are the kernels of the integral operator Py5 ,
hence fY6|Y5U( · | y5, u). Lastly, Restriction 4 facilitates unique ordering of the eigenfunctions
fY6|Y5U( · | y5, u) by the distinct concrete values of u = λy4,y2(u). This is feasible because the
eigenvalues λy4,y2(u) = fY4ZD5D4D3|Y2U(y4, 1, 1, 1, 1 | y2, u)/fY4ZD5D4D3|Y2U(y4, 0, 1, 1, 1 | y2, u) are
invariant from y5. That is, eigenfunctions fY6|Y5U( · | y5, u) of the operator Ly5,y4,1,y2L

−1
y5,y4,0,y2

across different y5 can be uniquely ordered in u invariantly from y5 by the common set of
ordered distinct eigenvalues u = λy4,y2(u).

Therefore, FY6|Y5U and FY4ZD5D4D3|Y2U(y4, ·, 1, 1, 1 | y2, u) are uniquely determined by the
joint distribution FY6Y5Y4ZY2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1), which in turn is uniquely
determined by the observed joint distribution FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1).
The multiplier of the operator Qy5,y4,z,y2 is of the form

fY5Y4ZD5D4D3|Y2U(y5, y4, z, 1, 1, 1 | y2, u) = fY5|Y4U(y5 | y4, u) · fY4ZD5D4D3|Y2U(y4, z, 1, 1, 1 | y2, u)
= fY6|Y5U(y5 | y4, u) · fY4ZD5D4D3|Y2U(y4, z, 1, 1, 1 | y2, u)

by Lemma 6 (i), where the right-hand side object has been identified. Consequently, the
operators Py5 and Qy5,y4,z,y2 are uniquely determined for each combination of y5, y4, z, y2.

Step 2: Uniqueness of FY2Y1UD1( · , · , · , 1)
By Lemma 5 (iii), Restriction 5 implies fY2|Y1ZUD1(y

′ | y, z, u, 1) = fY2|Y1U(y
′ | y, u). Using this

equality, write the density of the observed joint distribution FY2Y1ZD1( · , · , · , 1) as

fY2Y1D1(y2, y1, 1) =

∫
fY2|Y1UD1(y2 | y1, u, 1)fY1UD1(y1, u, 1)du

=

∫
fY2|Y1U(y2 | y1, u)fY1UD1(y1, u, 1)du (C.2)
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By Lemma 4 (i), FY6|Y5U(y
′ | y, u) = FY2|Y1U(y

′ | y, u) for all y′, y, u. Therefore, we can write
the operator Py as

(Py1ξ)(y2) =

∫
fY6|Y5U(y2 | y1, u) · ξ(u)du =

∫
fY2|Y1U(y2 | y1, u) · ξ(u)du.

With this operator notation, it follows from (C.2) that

fY2Y1D1( · , y1, 1) = Py1fY1UD1(y1, · , 1).

By Restriction 6 (i) and (ii), this operator equation can be solved for fY1UD1(y, · , 1) as

fY1UD1(y1, · , 1) = P−1
y1
fY2Y1D1( · , y1, 1) (C.3)

Recall that Py was shown in Step 1 to be uniquely determined by the observed joint distribution
FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1). The function fY2Y1D1( · , y, 1) is also uniquely
determined by the observed joint distribution FY2Y1D1( · , · , 1) up to null sets. Therefore, (C.2)
shows that fY1UD1( · , · , 1) is uniquely determined by the pair of the observed joint distributions
FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D1( · , · , 1).

Using the solution to the above inverse problem, we can write the kernel of the operator Sy2
as

fY2Y1UD1(y2, y1, u, 1) = fY2|Y1UD1(y2 | y1, u, 1) · fY1UD1(y1, u, 1)

= fY2|Y1U(y2 | y1, u) · fY1UD1(y1, u, 1)

= fY6|Y5U(y2 | y1, u) · fY1UD1(y1, u, 1)

= fY6|Y5U(y2 | y1, u) · [P−1
y1
fY2Y1D1( · , y1, 1)](u)

where the second equality follows from Lemma 5 (iii), the third equality follows from Lemma 4
(i), and the forth equality follows from (C.3). Since fY6|Y5U was shown in Step 1 to be uniquely
determined by the observed joint distribution FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1)
and [P−1

y1
fY2Y1D1( · , y1, 1)] was shown in the previous paragraph to be uniquely determined for

each y1 by the observed joint distributions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1)
and FY2Y1D1( · , · , 1), it follows that fY2Y1UD1( · , · , · , 1) too is uniquely determined by the ob-
served joint distributions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D1( · , · , 1).
Equivalently, the operator Sy2 is uniquely determined for each y2.

Step 3: Uniqueness of FY1|Y2UD2D1( · | · , · , 1, 1)
This step is the same as Step 3 in the proof of Lemma 2, except that Ly,z and Q1/0 are re-
placed by Ly5,y4,z,y2 and Qy4,1/0,y2 , respectively, which were defined in Step 1 of this proof.
FY1|Y2UD2D1( · | · , · , 1, 1) or the operator Ty is uniquely determined by the observed joint
distribution FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1).

Step 4: Uniqueness of FY2UD2D1( · , · , 1, 1)
This step is the same as Step 4 in the proof of Lemma 2. FY2UD2D1( · , · , 1, 1) or the
auxiliary operator T ′

y is uniquely determined by the pair of the observed joint distributions
FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).

Step 5: Uniqueness of FD2|Y2U(1 | · , · )
This step is the same as Step 5 in the proof of Lemma 2. FD2|Y2U(1 | · , · ) or the
auxiliary operator T ′

y is uniquely determined by the pair of the observed joint distributions
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FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).

Step 6: Uniqueness of FY1U
Recall from Step 2 that fY2Y1UD1( · , · , · , 1) is uniquely determined by the observed joint
distributions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D1( · , · , 1). We can
write

fY2Y1UD1(y2, y1, u, 1) = fY2|Y1UD1(y2 | y1, u, 1)fD1|Y1U(1 | y1, u)fY1U(y1, u)
= fY2|Y1U(y2 | y1, u)fD1|Y1U(1 | y1, u)fY1U(y1, u)
= fY6|Y5U(y2 | y1, u)fD2|Y2U(1 | y1, u)fY1U(y1, u),

where the second equality follows from Lemma 5 (iii), and the third equality follows from Lemma
4 (i) and (ii). For a given (y1, u), there must exist some y2 such that fY6|Y5U(y2 | y1, u) > 0
by a property of conditional density functions. Moreover, Restriction 6 (iii) requires that
fD2|Y2U(1 | y1, u) > 0 for a given y1 for all u. Therefore, for such a choice of y2, we can write

fY1U(y1, u) =
fY2Y1UD1(y2, y1, u, 1)

fY6|Y5U(y2 | y1, u)fD2|Y2U(1 | y1, u)

Recall that fY6|Y5U( · | · , · ) was shown in Step 1 to be uniquely determined by the observed
joint distribution FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1), fY2Y1UD1( · , · , · , 1)
was shown in Step 2 to be uniquely determined by the pair of the observed joint distribu-
tions FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D1( · , · , 1), and fD2|Y2U(1 |
· , · ) was shown in Step 5 to be uniquely determined by the observed joint distributions
FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D1( · , · , 1). Therefore, it follows
that the initial joint density fY1U is uniquely determined by the observed joint distributions
FY6Y5Y4Y3Y2Y1D5D4D3D2D1( ·, ·, ·, ·, ·, ·, 1, 1, 1, 1, 1) and FY2Y1D1( · , · , 1).

We next discuss an identification-preserving criterion analogously to Corollary 1. Let F
denote the set of all the admissible model representations

F = {(FYt|Yt−1U , FDt|YtU , FY1U , FZ|U) | (g, h, FY1U , ζ) satisfies Restrictions 1, 4, 5, and 6}.

A natural consequence of the main identification result of Lemma 7 is that the true model
(F ∗

Yt|Yt−1U
, F ∗

Dt|YtU , F
∗
Y1U

, F ∗
Z|U) is the unique maximizer of the following criterion.

Corollary 2 (Constrained Maximum Likelihood). If the true model (F ∗
Yt|Yt−1U

, F ∗
Dt|YtU , F

∗
Y1U

, F ∗
Z|U)

is an element of F , then it is the unique solution to

max(
FYt|Yt−1U ,FDt|YtU

,FY1U ,FZ|U
)
∈F

c1E

[
log

∫
fYt|Yt−1U

(Y2 | Y1, u)fDt|YtU (1 | Y1, u)fY1U (Y1, u)dµ(u)

∣∣∣∣D1 = 1

]
+

c2E

[
log

∫ 5∏
s=1

fYt|Yt−1U
(Ys+1 | Ys, u)fDt|YtU (1 | Ys, u)fY1U (Y1, u)dµ(u)

∣∣∣∣∣D5 = · · · = D1 = 1

]

for any c1, c2 > 0 subject to∫
fDt|YtU(1 | y1, u)fY1U(y1, u)dµ(y1, u) = fD1(1) and∫ 5∏
s=2

fYt|Yt−1U(ys | ys−1, u)fDt|YtU(1 | ys, u)fDt|YtU(1 | y1, u)fY1U(y1, u)dµ(y2, y1, u)

= fD5D4D3D2D1(1, 1, 1, 1, 1).
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C.3 Models with Higher-Order Lags

The model discussed in this paper can be extended to the following model
Yt = g(Yt−1, · · · , Yt−τ , U, Et) for t = τ + 1, · · · , T
Dt = h(Yt, · · · , Yt−τ+1, U, Vt) for t = τ, · · · , T − 1

FYτ ···Y1UDτ−1···D1(· · · , · , (1))
Z = ζ(U,W )

where g is a τ -th order Markov process with heterogeneity U , and the attrition model de-
pends on the past as well as the current state. In this set up, we can observe the parts,
FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1ZDτ ···D1(· · · , · , (1)), of the joint distributions if
T = τ+2. I claim that T = τ+2 suffices for identification. In other words, it can be shown that
(g, h, FYτ ···Y1UDτ−1···D1(· · · , · , (1)), ζ) is uniquely determined by FYτ+2···Y1ZDτ+1···D1(· · · , · , (1))
and fYτ+1···Y1ZDτ ···D1(· · · , · , (1)) up to equivalence classes. To this end, we replace Restrictions
2 and 3 by the following restrictions.

Restriction 7 (Independence).
(i) Exogeneity of Et: Et ⊥⊥ (U, {Ys}τs=1, {Ds}τs=1, {Es}s<t, {Vs}s<t,W ) for all t ≥ τ + 1.
(ii) Exogeneity of Vt: Vt ⊥⊥ (U, {Ys}τ−1

s=1 , {Ds}τ−1
s=1 , {Es}s6t, {Vs}s<t) for all t ≥ τ .

(iii) Exogeneity of W : W ⊥⊥ ({Yt}τt=1, {Dt}τt=1, {Et}t, {Vt}t).
Restriction 8 (Rank Conditions). The following conditions hold for every (y) ∈ Yτ :
(i) Heterogeneous Dynamics: the integral operator P(y) : L2(FU) → L2(FYt) defined by
P(y)ξ(y

′) =
∫
fYτ+2|Yτ+1···Y2U(y

′ | (y), u) · ξ(u)du is bounded and invertible.
(ii) Nondegenerate Proxy Model: fZ|U(1 | u) is bounded away from 0 and 1 for all u.

Relevant Proxy: fZ|U(1 | u) ̸= fZ|U(1 | u′) whenever u ̸= u′.
(iii) No Extinction: fDτ+1|Yτ+1···Y2U(1 | (y), u) > 0 for all u ∈ U .
(iv) Initial Heterogeneity: the integral operator S(y) : L2(FYt) → L2(FU) defined by S(y)ξ(u) =∫
fYτ+1···Y2Y1UDτ ···D1((y), y

′, u, (1)) · ξ(y′)dy′ is bounded and invertible.

Lemma 8 (Independence). The following implications hold:
(i) Restriction 7 (i) ⇒ Yτ+2 ⊥⊥ (Y1, {Dt}τ+1

t=1 , Z) | ({Yt}τ+1
t=2 , U).

(ii) Restriction 7 (i) ⇒ Yτ+1 ⊥⊥ ({Dt}τt=1, Z) | ({Yt}τt=1, U).
(iii) Restriction 7 (ii) ⇒ Dτ+1 ⊥⊥ (Y1, {Dt}τt=1) | ({Yt}τ+1

t=2 , U).
(iv) Restriction 7 (iii) ⇒ Z ⊥⊥ ({Yt}τ+1

t=1 , {Dt}τ+1
t=1 ) | U .

Proof. As in the proof of Lemma 3, we use the following two properties of conditional indepen-
dence:
CI.1. A ⊥⊥ B implies A ⊥⊥ B | ϕ(B) for any Borel function ϕ.
CI.2. A ⊥⊥ B | C implies A ⊥⊥ ϕ(B,C) | C for any Borel function ϕ.

(i) First, note that Restriction 2 (i) Eτ+2 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1,W ) together
with the structural definition Z = ζ(U,W ) implies Eτ+2 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1, Vτ , Z).
Applying CI.1 to this independence relation Eτ+2 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1, Z) yields

Eτ+2 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1, Z) | (g(Yτ , · · · , Y1, U, Eτ+1), {Yt}τt=2, U).

Since Yτ+1 = g(Yτ , · · · , Y1, U, Eτ+1), this conditional independence relation can be rewritten as
Eτ+2 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1, Z) | ({Yt}τ+1

t=2 , U). Next, applying CI.2 to this condi-
tional independence yields

Eτ+2 ⊥⊥ (Y1, h(Yτ+1, · · · , Y2, U, Vτ+1), {Dt}τt=1, Z) | ({Yt}τ+1
t=2 , U).

48



Since Dτ+1 = h(Yτ+1, · · · , Y2, U, Vτ+1)), it can be rewritten as Eτ+2 ⊥⊥ (Y1, {Dt}τ+1
t=1 , Z) |

({Yt}τ+1
t=2 , U). Lastly, applying CI.2 again to this conditional independence yields

g(Yτ+1, · · · , Y2, U, Eτ+2) ⊥⊥ (Y1, {Dt}τ+1
t=1 , Z) | ({Yt}τ+1

t=2 , U).

Since Yτ+2 = g(Yτ+1, · · · , Y2, U, Eτ+2), this conditional independence relation can be rewritten
as Yτ+2 ⊥⊥ (Y1, {Dt}τ+1

t=1 , Z) | ({Yt}τ+1
t=2 , U).

(ii) Note that Restriction 2 (i) Eτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1,W ) together with the struc-
tural definition Z = ζ(U,W ) implies Eτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Z). Applying CI.1 to this
independence relation yields

Eτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Z) | ({Yt}τt=1, U).

Next, applying CI.2 to this conditional independence yields

g(Yτ , · · · , Y1, U, Eτ+1) ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Z) | ({Yt}τt=1, U).

Since Yτ+1 = g(Yτ , · · · , Y1, U, Eτ+1), this conditional independence relation can be rewritten
as Yτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τt=1, Z) | (D1, U). Lastly, applying CI.2 again to this conditional
independence yields Yτ+1 ⊥⊥ ({Dt}τt=1, Z) | ({Yt}τt=1, U).

(iii) Applying CI.1 to Restriction 2 (ii) Vτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τ−1
t=1 , Eτ+1, Vτ ) yields

Vτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τ−1
t=1 , Eτ+1, Vτ ) | (g(Yτ , · · · , Y1, U, Eτ+1), {Yt}τt=2, U).

Since Yτ+1 = g(Yτ , · · · , Y1, U, Eτ+1), it can be rewritten as Vτ+1 ⊥⊥ (U, {Yt}τt=1, {Dt}τ−1
t=1 , Eτ+1, Vτ ) |

({Yt}τ+1
t=2 , U). Next, applying CI.2 to this conditional independence yields

Vτ+1 ⊥⊥ (Y1, h(Yτ , · · · , Y1, U, Vτ ), {Dt}τ−1
t=1 ) | ({Yt}τ+1

t=2 , U).

Since Dτ = h(Yτ , · · · , Y1, U, Vτ ), it can be rewritten as Vτ+1 ⊥⊥ (Y1, {Dt}τt=1) | ({Yt}τ+1
t=2 , U).

Lastly, applying CI.2 to this conditional independence yields

h(Yτ+1, · · · , Y2, U, V2) ⊥⊥ (Y1, {Dt}τt=1) | ({Yt}τ+1
t=2 , U).

SinceDτ+1 = h(Yτ+1, · · · , Y2, U, Vτ+1), it can be rewritten asDτ+1 ⊥⊥ (Y1, {Dt}τt=1) | ({Yt}τ+1
t=2 , U).

(iv) Note that Restriction 2 (iii)W ⊥⊥ ({Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1) together with the struc-
tural definition Z = ζ(U,W ) yields Z ⊥⊥ ({Yt}τt=1, {Dt}τt=1, Eτ+1, Vτ+1) | U . Applying CI.2 to
this conditional independence relation yields

Z ⊥⊥ (g(Yτ , · · · , Y1, U, Eτ+1), {Yt}τt=1, h(g(Yτ , · · · , Y1, U, Eτ+1), U, Vτ+1), {Dt}τt=1) | U.

Since Yτ+1 = g(Yτ , · · · , Y1, U, Eτ+1) and Dτ+1 = h(Yτ+1, U, Vτ+1), this conditional independence
can be rewritten as Z ⊥⊥ ({Yt}τ+1

t=1 , {Dt}τ+1
t=1 ) | U.

Lemma 9 (Invariant Transition).
(i) Under Restrictions 1 and 7 (i), FYτ+2|Yτ+1···Y2U(y

′ | (y), u) = FYτ+1|Yτ ···Y1U(y
′ | (y), u) for all

y′, (y), u.
(ii) Under Restrictions 1 and 7 (ii), FDτ+1|Yτ+1···Y2U(d | (y), u) = FD1|Yτ ···Y1U(d | (y), u) for all
d, (y), u.
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Proof. (i) First, note that Restriction 7 (i) implies Eτ+2 ⊥⊥ (U, Yτ , · · · , Y1, Eτ+1), which in turn
implies that Eτ+2 ⊥⊥ (g(Yτ , · · · , Y1, U, Eτ+1), Yτ , · · · , Y2, U), hence Eτ+2 ⊥⊥ (Yτ+1, · · · , Y2, U).
Second, Restriction 7 (i) in particular yields Eτ+1 ⊥⊥ (Yτ , · · · , Y1, U). Using these two indepen-
dence results, we obtain

FYτ+2|Yτ+1···Y2U(y
′ | (y), u) = Pr[g((y), u, Eτ+2) ≤ y′ | (Yτ+1, · · · , Y2) = (y), U = u]

= Pr[g((y), u, Eτ+2) ≤ y′]

= Pr[g((y), u, Eτ+1) ≤ y′]

= Pr[g((y), u, Eτ+1) ≤ y′ | (Yτ , · · · , Y1) = (y), U = u]

= FYτ+1|Yτ ···Y1U(y
′ | (y), u)

for all y′, (y), u, where the second equality follows from Eτ+2 ⊥⊥ (Yτ+1, · · · , Y2, U), the third
equality follows from identical distribution of Et by Restriction 1, and the forth equality follows
from Eτ+1 ⊥⊥ (Yτ , · · · , Y1, U).

(ii) Restriction 7 (ii) implies that Vτ+1 ⊥⊥ (g(Yτ+1, · · · , Y1, U, Eτ+1), Yτ , · · · , Y1, U), hence
Vτ+1 ⊥⊥ (Yτ+1, · · · , Y2, U). Restriction 7 (ii) also implies Vτ ⊥⊥ (Yτ , · · · , Y1, U). Using these two
independence results, we obtain

FDτ+1|Yτ+1···Y2U(d | (y), u) = Pr[h((y), u, Vτ+1) ≤ d | (Yτ+1, · · · , Y2) = (y), U = u]

= Pr[h((y), u, Vτ+1) ≤ d]

= Pr[h((y), u, Vτ ) ≤ d]

= Pr[h((y), u, Vτ ) ≤ d | (Yτ , · · · , Y1) = (y), U = u]

= FD1|Yτ ···Y1U(d | (y), u)

for all d, (y), u, where the second equality follows from Vτ+1 ⊥⊥ (Yτ+1, · · · , Y2, U), the third
equality follows from identical distribution of Vt from Restriction 1, and the forth equality
follows from Vτ ⊥⊥ (Yτ , · · · , Y1, U).

Lemma 10 (Identification). Under Restrictions 1, 4, 7, and 8, (FYτ+2|Yτ+1···Y2U , FDτ+1|Yτ+1···Y2U ,
FYτ ···Y1UDτ−1···D1(· · · , · , (1)), FZ|U) is uniquely determined by FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and
FYτ+1···Y1ZDτ ···D1(· · · , · , (1)).

Proof. Given fixed (y) and z, define the operators L(y),z : L2(FYt) → L2(FYt), P(y) : L2(FU) →
L2(FYt), Qz : L2(FU) → L2(FU), R(y) : L2(FU) → L2(FU), S(y) : L2(FYt) → L2(FU), T(y) :
L2(FYt) → L2(FU), and T

′
(y) : L2(FU) → L2(FU) by

(L(y),zξ)(yτ+2) =

∫
fYτ+2···Y1ZDτ+1···D1(yτ+2, (y), y1, z, (1)) · ξ(y1)dy1,

(P(y)ξ)(yτ+2) =

∫
fYτ+2|Yτ+1···Y2U(yτ+2 | (y), u) · ξ(u)du,

(Qzξ)(u) = fZ|U(z | u) · ξ(u),
(R(y)ξ)(u) = fDτ+1|Yτ+1···Y2U(1 | (y), u) · ξ(u),

(S(y)ξ)(u) =

∫
fYτ+1···Y2Y1UDτ ···D1((y), y1, u, (1)) · ξ(y1)dy1,

(T(y)ξ)(u) =

∫
fY1|Yτ+1···Y2UDτ+1D1(y1 | (y), u, (1)) · ξ(y1)dy1,

(T ′
(y)ξ)(u) = fYτ+1···Y2UDτ+1···D1((y), u, (1)) · ξ(u)
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respectively. The operators L(y),z, P(y), S(y), and T(y) are integral operators whereas Qz, R(y),
and T ′

(y) are multiplication operators. Note that L(y),z is identified from observed joint distri-

bution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)).
Step 1: Uniqueness of FYτ+2|Yτ+1···Y2U and FZ|U
The kernel fYτ+2···Y1ZDτ+1···D1( · , (y), · , z, (1)) of the integral operator L(y),z can be rewritten
as

fYτ+2···Y1ZDτ+1···D1(yτ+2, (y), y1, z, (1)) =

∫
fYτ+2|Yτ+1···Y1ZUDτ+1···D1(yτ+2 | (y), y1, z, u, (1))

×fZ|Yτ+1···Y1UDτ+1···D1(z | (y), y1, u, (1))
×fDτ+1|Yτ+1···Y1UDτ ···D1(1 | (y), y1, u, (1))
×fYτ+1···Y1UDτ ···D1((y), y1, u, (1)) du (C.4)

But by Lemma 8 (i), (iv), and (iii), respectively, Restriction 7 implies that

fYτ+2|Yτ+1···Y1ZUDτ+1···D1(yτ+2 | (y), y1, z, u, (1)) = fYτ+2|Yτ+1···Y2U(yτ+2 | (y), u),
fZ|Yτ+1···Y1UDτ+1···D1(z | (y), y1, u, (1)) = fZ|U(z | u),
fDτ+1|Yτ+1···Y1UDτ ···D1(1 | (y), y1, u, (1)) = fDτ+1|Yτ+1···Y2U(1 | (y), u).

Equation (C.4) thus can be rewritten as

fYτ+2···Y1ZDτ+1···D1(yτ+2, (y), y1, z, (1)) =

∫
fYτ+2|Yτ+1···Y2U(yτ+2 | (y), u) · fZ|U(z | u)

×fDτ+1|Yτ+1···Y2U(1 | (y), u)
×fYτ+1···Y1UDτ ···D1((y), y1, u, (1)) du

But this implies that the integral operator Ly,z is written as the operator composition

L(y),z = P(y)QzR(y)S(y).

Restriction 8 (i), (ii), (iii), and (iv) imply that the operators P(y), Qz, R(y), and S(y) are
invertible, respectively. Hence so is L(y),z. Using the two values {0, 1} of Z, form the product

L(y),1L
−1
y,0 = P(y)Q1/0P

−1
(y)

where Qz/z′ := QzQ
−1
z′ . By Restriction 8 (ii), the operator L(y),1L

−1
(y),0 is bounded. The expres-

sion L(y),1L
−1
(y),0 = P(y)Q1/0P

−1
(y) thus allows unique eigenvalue-eigenfunction decomposition.

The distinct proxy odds as in Restriction 8 (ii) guarantee distinct eigenvalues and single
dimensionality of the eigenspace associated with each eigenvalue. Within each of the single-
dimensional eigenspace is a unique eigenfunction pinned down by L1-normalization because of
the unity of integrated densities. The eigenvalues λ(u) yield the multiplier of the operator Q1/0,
hence λ(u) = fZ|U(1 | u)/fZ|U(0 | u). This proxy odds in turn identifies fZ|U( · | u) since Z is
binary. The corresponding normalized eigenfunctions are the kernels of the integral operator
P(y), hence fYτ+2|Yτ+1···Y2U( · | (y), u). Lastly, Restriction 4 facilitates unique ordering of the
eigenfunctions fYτ+2|Yτ+1···Y2U( · | (y), u) by the distinct concrete values of u = λ(u). This is
feasible because the eigenvalues λ(u) = fZ|U(1 | u)/fZ|U(0 | u) are invariant from (y). That is,
eigenfunctions fYτ+2|Yτ+1···Y2U( · | (y), u) of the operator L(y),1L

−1
(y),0 across different (y) can be

uniquely ordered in u invariantly from (y) by the common set of ordered distinct eigenvalues
u = λ(u).
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Therefore, FYτ+2|Yτ+1···Y2U and FZ|U are uniquely determined by the observed joint distri-
bution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)). Equivalently, the operators P(y) and Qz are uniquely
determined for each (y) and z, respectively.

Step 2: Uniqueness of FYτ+1···Y1UDτ ···D1(· · · , · , (1))
By Lemma 8 (ii), Restriction 7 implies fYτ+1|Yτ ···Y1UDτ ···D1(y

′ | (y), u, (1)) = fYτ+1|Yτ ···Y1U(y
′ |

(y), u). Using this equality, write the density of the observed joint distribution FYτ+1···Y1Dτ ···D1(· · · , (1))
as

fYτ+1···Y1Dτ ···D1(y
′, (y), (1)) =

∫
fYτ+1|Yτ ···Y1UDτ ···D1(y

′ | (y), u, (1))

×fYτ ···Y1UDτ ···D1((y), u, (1))du

=

∫
fYτ+1|Yτ ···Y1U(y

′ | (y), u)

×fYτ ···Y1UDτ ···D1((y), u, (1))du (C.5)

By Lemma 9 (i), FYτ+2|Yτ+1···Y2U(y
′ | (y), u) = FYτ+1|Yτ ···Y1U(y

′ | (y), u) for all y′, (y), u. Therefore,
we can write the operator P(y) as

(P(y)ξ)(y
′) =

∫
fYτ+2|Yτ+1···Y2U(y

′ | (y), u) · ξ(u)du =

∫
fYτ+1|Yτ ···Y1U(y

′ | (y), u) · ξ(u)du.

With this operator notation, it follows from (C.5) that

fYτ+1···Y1Dτ ···D1( · , (y), (1)) = P(y)fYτ ···Y1UDτ ···D1((y), · , (1)).

By Restriction 8 (i) and (ii), this operator equation can be solved for fYτ ···Y1UDτ ···D1((y), · , (1))
as

fYτ ···Y1UDτ ···D1((y), · , (1)) = P−1
(y) fYτ+1···Y1Dτ ···D1( · , (y), (1)) (C.6)

Recall that P(y) was shown in Step 1 to be uniquely determined by the observed joint distri-
bution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)). The function fYτ+1···Y1Dτ ···D1( · , (y), (1)) is also uniquely
determined by the observed joint distribution fYτ+1···Y1Dτ ···D1(· · · , (1)). Therefore, (C.5) shows
that fYτ ···Y1UDτ ···D1(· · · , · , (1)) is uniquely determined by the observed joint distributions
FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)).

Using the solution to the above inverse problem, we can write the kernel of the operator
S(y) as

fYτ+1···Y1UDτ ···D1(y
′, (y), u, (1)) = fYτ+1|Yτ ···Y1UDτ ···D1(y

′ | (y), u, (1)) · fYτ ···Y1UDτ ···D1((y), u, (1))

= fYτ+1|Yτ ···Y1U(y
′ | (y), u) · fYτ ···Y1UDτ ···D1((y), u, (1))

= fYτ+2|Yτ+1···Y2U(y
′ | (y), u) · fYτ ···Y1UDτ ···D1((y), u, (1))

= fYτ+2|Yτ+1···Y2U(y
′ | (y), u)

×[P−1
(y) fYτ+1···Y1ZDτ ···D1( · , (y), z, (1))](u)

where the second equality follows from Lemma 8 (ii), the third equality follows from Lemma
9 (i), and the forth equality follows from (C.6). Since fYτ+2|Yτ+1···Y2U was shown in Step 1
to be uniquely determined by the observed joint distribution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1))
and [P−1

(y) fYτ+1···Y1ZDτ ···D1( · , (y), z, (1))] was shown in the previous paragraph to be uniquely

determined for each y by the observed joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and
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fYτ+1···Y1Dτ ···D1(· · · , (1)), it follows that fYτ+1···Y1UDτ ···D1(· · · , · , (1)) too is uniquely determined
by the observed joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)).
Equivalently, the operator S(y) is uniquely determined for each (y).

Step 3: Uniqueness of FY1|Yτ+1···Y2UDτ+1···D1( · | · · · , · , (1))
First, note that the kernel of the composite operator T ′

(y)T(y) can be written as

fYτ+1···Y2UDτ+1···D1((y), u, (1)) · fY1|Yτ+1···Y2UDτ+1···D1(y1 | (y), u, (1))
= fYτ+1···Y1UDτ+1···D1((y), y1, u, (1))

= fDτ+1|Yτ+1···Y1UDτ ···D1(1 | (y), y1, u, (1)) · fYτ+1···Y1UDτ ···D1((y), y1, u, (1))

= fDτ+1|Yτ+1···Y2U(1 | (y), u) · fYτ+1···Y1UDτ ···D1((y), y1, u, (1)) (C.7)

where the last equality is due to Lemma 8 (iii). But the last expression corresponds to the
kernel of the composite operator R(y)S(y), thus showing that T ′

(y)T(y) = R(y)S(y). But then,

L(y),z = P(y)QzR(y)S(y) = P(y)QzT
′
(y)T(y). Note that the invertibility of R(y) and S(y) as required

by Assumption 8 implies invertibility of T ′
(y) and T(y) as well, for otherwise the equivalent

composite operator T ′
(y)T(y) = R(y)S(y) would have a nontrivial nullspace.

Using Restriction 8, form the product of operators as

L−1
(y),0L(y),1 = T−1

(y)Q1/0T(y)

The disappearance of T ′
(y) is due to commutativity of multiplication operators. By the same

logic as in Step 1, this expression together with Restriction 8 (ii) admits unique left eigenvalue-
eigenfunction decomposition. Moreover, the point spectrum is exactly the same as the one in
Step 1, as is the middle multiplication operator Q1/0. This equivalence of the spectrum allows
consistent ordering of U with that of Step 1. Left eigenfunctions yield the kernel of T(y) pinned
down by the normalization of unit integral. This shows that the operator T(y) is uniquely
determined by the observed joint distribution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)).

Step 4: Uniqueness of FYτ+1···Y2UDτ+1···D1(· · · , · , (1))
Equation (C.7) implies that∫

fY1|Yτ+1···Y2UDτ+1···D1(y1 | (y), u, (1)) · fYτ+1···Y2UDτ+1···D1((y), u, (1))du

= fYτ+1···Y1Dτ+1···D1((y), y1, (1))

hence yielding the linear operator equation

T ∗
(y)fYτ+1···Y2UDτ+1···D1((y), ·, (1)) = fYτ+1···Y1Dτ+1···D1((y), ·, (1))

where T ∗
(y) denotes the adjoint operator of T(y). Since T(y) is invertible, so is its adjoint operator

T ∗
(y). But then, the multiplier of the multiplication operator T ′

(y) can be given by the unique
solution to the above linear operator equation, i.e.,

fYτ+1···Y2UDτ+1···D1((y), ·, (1)) = (T ∗
(y))

−1fYτ+1···Y1Dτ+1···D1((y), ·, (1))

Note that T(y) hence T
∗
(y) was shown to be uniquely determined by FYτ+2···Y1ZDτ+1···D1(· · · , · , (1))

in Step 3, and fYτ+1···Y1Dτ+1···D1(· · · , (1)) is also available from observed data. Therefore, the
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operator T ′
(y) is uniquely determined by FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)).

Step 5: Uniqueness of FDτ+1|Yτ+1···Y2U(1 | · · · , · )
First, the definition of the operatorsR(y), S(y), T(y), and T

′
(y) and Lemma 8 (iii) yield the operator

equality R(y)S(y) = T ′
(y)T(y), where T(y) and T

′
(y) have been shown to be uniquely determined by

the observed joint distribution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) in Steps 3 and 4, respectively. Re-
call that S(y) was also shown in Step 2 to be uniquely determined by the observed joint distribu-
tions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)). Restriction 8 (iv) guarantees
invertibility of S(y). It follows that the operator inversion R(y) = (R(y)S(y))S

−1
(y) = (T ′

(y)T(y))S
−1
(y)

yields the operator R(y), in turn showing that its multiplier fDτ+1|Yτ+1···Y2U(1 | (y), · ) is uniquely
determined for each (y) by the observed joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and
fYτ+1···Y1Dτ ···D1(· · · , (1)).

Step 6: Uniqueness of FYτ ···Y1UDτ−1···D1(· · · , · , (1))
Recall from Step 2 that fYτ+1···Y1UDτ ···D1(· · · , · , (1)) is uniquely determined by the observed
joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)). We can write

fYτ+1···Y1UDτ ···D1(y
′, (y), u, (1)) = fYτ+1|Yτ ···Y1UDτ ···D1(y

′ | (y), u, (1))
×fDτ |Yτ ···Y1UDτ−1···D1(1 | (y), u, (1))
×fYτ ···Y1UDτ−1···D1((y), u, (1))

= fYτ+1|Yτ ···Y1U(y
′ | (y), u) · fDτ |Yτ ···Y1U(1 | (y), u)

×fYτ ···Y1UDτ−1···D1((y), u, (1))

= fYτ+2|Yτ+1···Y2U(y
′ | (y), u) · fDτ+1|Yτ+1···Y2U(1 | (y), u)

×fYτ ···Y1UDτ−1···D1((y), u, (1)),

where the second equality follows from Lemma 8 (ii), and the third equality follows from
Lemma 9 (i) and (ii). For a given ((y), u), there must exist some y′ such that fYτ+2|Yτ+1···Y2U(y

′ |
(y), u) > 0 by a property of conditional density functions. Moreover, Restriction 8 (iii) requires
that fDτ+1|Yτ+1···Y2U(1 | (y), u) > 0 for a given (y) for all u. Therefore, for such a choice of y′,
we can write

fYτ ···Y1UDτ−1···D1((y), u, (1)) =
fYτ+1···Y1UDτ ···D1(y

′, (y), u, (1))

fYτ+2|Yτ+1···Y2U(y
′ | (y), u) · fDτ+1|Yτ+1···Y2U(1 | (y), u)

fYτ+2|Yτ+1···Y2U(y
′ | (y), u) was shown in Step 1 to be uniquely determined by the observed joint

distribution FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)), fYτ+1···Y1UDτ ···D1(y
′, (y), u, (1)) was shown in Step 2

to be uniquely determined by the observed joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and
fYτ+1···Y1Dτ ···D1(· · · , (1)), and fDτ+1|Yτ+1···Y2U(1 | (y), u) was shown in Step 5 to be uniquely deter-
mined by the observed joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)).
Therefore, it follows that the joint density fYτ ···Y1UDτ−1···D1(· · · , · , (1)) is uniquely determined by
the observed joint distributions FYτ+2···Y1ZDτ+1···D1(· · · , · , (1)) and fYτ+1···Y1Dτ ···D1(· · · , (1)).

C.4 Models with Time-Specific Effects

The baseline model (3.1) that we considered in this paper assumes that the dynamic model
g is time-invariant. It is often more realistic to allow this model to have time-specific effects.
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Consider the following variant of the model (3.1).
Yt = gt(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

Dt = h(Yt, U, Vt) t = 1, · · · , T − 1 (Hazard Model)

FY1U (Initial joint distribution of (Y1, U))

Z = ζ(U,W ) (Optional: nonclassical proxy of U)

The differences from (3.1) are the t subscripts under g.
The objective is to identify the model ({gt}Tt=2, h, FY1U , ζ). The main obstacle is that the

invariant transition of Lemma 4 (i) is no longer useful. As a result, Steps 2 and 6 in the proof
of Lemma 2 break down. In order to remedy this hole, we need to observe data of an additional
time period prior to the start of the data, i.e., t = 0. For brevity, we show this result for the
case of T = 3.

Lemma 11 (Identification). Suppose that Restrictions 1, 2, 3, and 4 hold conditionally on
Pr(D0 = 1). Then the model ({FYt|Yt−1U}3t=2, FDt|YtU , FY1U |D0=1, FZ|U) is uniquely determined
by the observed joint distributions FY1Y0ZD0( ·, · , · , 1), FY2Y1Y0ZD1D0( ·, ·, · , · , 1, 1), and
FY3Y2Y1Y0ZD2D1D0( ·, ·, ·, ·, ·, 1, 1, 1).

Proof. Many parts of the proof Lemma 2 remains available. However, under the current model
with time-specific transition, the operator Py is time-specific. Therefore, we use two operators
Py : L2(FU) → L2(FYt) and P

′
y : L2(FU) → L2(FYt) for each y defined as

(Pyξ)(y2) =

∫
fY2|Y1U(y2 | y, u) · ξ(u)du,

(P ′
yξ)(y3) =

∫
fY3|Y2U(y3 | y, u) · ξ(u)du,

Accordingly, we employ the two observable operators Ly,z : L2(FYt) → L2(FYt) and L′
y,z :

L2(FYt) → L2(FYt) for each (y, z) defined as

(Ly,zξ)(y2) =

∫
fY2Y1Y0ZD1D0(y2, y, y0, z, 1, 1) · ξ(y0)dy0,

(L′
y,zξ)(y3) =

∫
fY3Y2Y1ZD2D1D0(y3, y, y1, z, 1, 1, 1) · ξ(y1)dy1.

All the other operators directly carry over from the proof of Lemma 2 as:

(Qzξ)(u) = fZ|U(z | u) · ξ(u),
(Ryξ)(u) = fD2|Y2U(1 | y, u) · ξ(u),

(Syξ)(u) =

∫
fY2Y1UD1D0(y, y1, u, 1, 1) · ξ(y1)dy1,

(Tyξ)(u) =

∫
fY1|Y2UD2D1D0(y1 | y, u, 1, 1, 1) · ξ(y1)dy1,

(T ′
yξ)(u) = fY2UD2D1D0(y, u, 1, 1, 1) · ξ(u)

except that the additional argument D0 = 1 is attached to the kernels of Sy and Ty and the
multiplier of T ′

y.
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The first task is to identify the kernels of these two integral operators. Following Step 1 of
the proof of Lemma 2 by using the observed operator L′

y,z shows that P
′
y and Qz are identified.

Equivalently, FY3|Y2U and FZ|U are identified. Similarly, following Step 1 by using the observed
operator Ly,z shows that Py and Qz are identified. Equivalently, FY2|Y1U is identified as well.

Next, follow Step 2 of the proof of Lemma 2, except that we use our current definition of
Py instead of P ′

y. It follows that

fY2Y1UD1D0(y
′, y, u, 1, 1) = fY2|Y1U(y

′ | y, u) · [P−1
y fY2Y1D1D0( · , y, 1, 1)](u)

where fY2|Y1U was identified as the kernel of Py in the previous step, Py was identified in the
previous step, and fY2Y1D1D0( ·, ·, 1, 1) is observable from data. This shows that the operator
Sy is identified for each y.

Steps 3–5 analogously follow from the proof of Lemma 2 except that the current definitions
of Ly,z, Ry, Sy, Ty, and T

′
y are used. These steps show that Ry in particular are identified for

each y.
Lastly, extending the argument of Step 6 in the proof of Lemma 2 yields

fY1U |D0(y, u | 1) = fY2Y1UD1D0(y
′, y, u, 1, 1)

fY2|Y1U(y
′ | y, u)fD2|Y2U(1 | y, u)fD0(1)

where fY2Y1UD1D0( ·, ·, ·, 1, 1) was identified in the second step, fY2|Y1U was identified in the first
step, fD2|Y2U was identified in the previous step, and fD0(1) is observable from data. It follows
that FY1U |D0=1 is identified.

C.5 Censoring by Contemporaneous Dt instead of Lagged Dt

For the main identification result discussed, we assumed that lagged selection indicator Dt
induces censored observation of Yt as follows:

observe Y1,

observe Y2 if D1 = 1,

observe Y3 if D1 = D2 = 1.

In many application, contemporaneousDt instead of laggedDt may induce censored observation
of Yt as follows:

observe Y1, if D1 = 1

observe Y2 if D1 = D2 = 1,

observe Y3 if D1 = D2 = D3 = 1.

where the model follows a slight modification of (3.1):
Yt = g(Yt−1, U, Et) t = 2, · · · , T (State Dynamics)

Dt = h(Yt, U, Vt) t = 1, · · · , T (Hazard Model)

FY1U (Initial joint distribution of (Y1, U))

Z = ζ(U,W ) (Optional: nonclassical proxy of U)

(The difference from the baseline model (3.1) is that the hazard model is defined for all t =
1, · · · , T .) In this model, the problem of identification is to show the well-definition of

(FY2Y1ZD2D1( ·, ·, ·, 1, 1), FY3Y2Y1ZD3D2D1( ·, ·, ·, ·, 1, 1, 1)) 7→ (g, h, FY1U |D1=1, ζ).

First, consider the following auxiliary lemma, which can be proved similarly to Lemma 3.
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Lemma 12 (Independence). The following implications hold:
(i) Restriction 2 (i) ⇒ Y3 ⊥⊥ (Y1, D1, D2, D3, Z) | (Y2, U).
(ii) Restriction 2 (i) ⇒ Y2 ⊥⊥ (D1, D2, Z) | (Y1, U).
(iii) Restriction 2 (ii) ⇒ D3 ⊥⊥ Y2 | (Y3, U).
(iv) Restriction 2 (iii) ⇒ Z ⊥⊥ (Y2, Y1, D3, D2, D1) | U .

Some of the rank conditions of Restriction 3 are replaced as follows.

Restriction 9 (Rank Conditions). The following conditions hold for every y ∈ Y :
(i) Heterogeneous Dynamics: the integral operator Py : L2(FU) → L2(FYt) defined by Pyξ(y

′) =∫
fY3|Y2U(y

′ | y, u) · ξ(u)du is bounded and invertible.
(ii) Nondegenerate Proxy Model: there exists δ > 0 such that δ 6 fZ|U(1 | u) 6 1− δ for all u.

Relevant Proxy: fZ|U(1 | u) ̸= fZ|U(1 | u′) whenever u ̸= u′.
(iii) No Extinction: fD2|Y2U(1 | y, u) > 0 for all u ∈ U .
(iv) Initial Heterogeneity: the two integral operators L̃y : L2(Yt) → L2(U), and Sy : L2(U) →
L2(Yt) respectively defined by L̃yξ(u) =

∫
fY2Y1UD3D2D1(y, y1, u, 1, 1, 1) · ξ(y1)dy1 and Syξ(y1) =∫

fY2Y1UD2D1(y, y1, u, 1, 1) · ξ(u)du are bounded and invertible.

Lemma 13 (Identification). Under Restrictions 1, 2, 4, and 9, (FY3|Y2U , FD3|Y3U , FY1U |D1=1, FZ|U)
is uniquely determined by FY2Y1ZD2D1( ·, ·, ·, 1, 1) and FY3Y2Y1ZD3D2D1( ·, ·, ·, ·, 1, 1, 1).

Proof. Given fixed y and z, define the operators Ly,z : L2(FYt) → L2(FYt), Py : L2(FU) →
L2(FYt), Qz : L2(FU) → L2(FU), L̃y : L2(Yt) → L2(U), and Sy : L2(U) → L2(Yt) by

(Ly,zξ)(y3) =

∫
fY3Y2Y1ZD3D2D1(y3, y, y1, z, 1, 1, 1) · ξ(y1)dy1,

(Pyξ)(y3) =

∫
fY3|Y2U(y3 | y, u) · ξ(u)du,

(Qzξ)(u) = fZ|U(z | u) · ξ(u),

(L̃yξ)(u) =

∫
fY2Y1UD3D2D1(y, y1, u, 1, 1, 1) · ξ(y1)dy1,

(Syξ)(y1) =

∫
fY2Y1UD2D1(y, y1, u, 1, 1) · ξ(u)du

respectively. Similarly to the proof of Lemma 2, the operator Ly,z is identified from observed
joint distribution FY3Y2Y1ZD3D2D1( ·, ·, ·, ·, 1, 1, 1).
Step 1: Uniqueness of FY3|Y2U and FZ|U
The kernel fY3Y2Y1ZD3D2D1( · , y, · , z, 1, 1, 1) of the integral operator Ly,z can be rewritten as

fY3Y2Y1ZD3D2D1(y3, y, y1, z, 1, 1, 1) =

∫
fY3|Y2Y1ZUD3D2D1(y3 | y, y1, z, u, 1, 1, 1)

×fZ|Y2Y1UD3D2D1(z | y, y1, u, 1, 1, 1) (C.8)

×fY2Y1UD3D2D1(y, y1, u, 1, 1, 1) du

But by Lemma 12 (i) and (iv) respectively, Restriction 2 implies that

fY3|Y2Y1ZUD3D2D1(y3 | y, y1, z, u, 1, 1, 1) = fY3|Y2U(y3 | y, u),
fZ|Y2Y1UD3D2D1(z | y, y1, u, 1, 1, 1) = fZ|U(z | u).
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Equation (C.8) thus can be rewritten as

fY3Y2Y1ZD3D2D1(y3, y, y1, z, 1, 1, 1) =

∫
fY3|Y2U(y3 | y, u) · fZ|U(z | u)

×fY2Y1UD3D2D1(y, y1, u, 1, 1, 1) du

But this implies that the integral operator Ly,z is written as the operator composition

Ly,z = PyQzL̃y

Restriction 9 (i), (ii), and (iv) imply that the operators Py, Qz, and L̃y are invertible,
respectively. Hence so is Ly,z. Using the two values {0, 1} of Z, form the product

Ly,1L
−1
y,0 = PyQ1/0P

−1
y

where Qz/z′ := QzQ
−1
z′ is the multiplication operator with proxy odds defined by

(Q1/0ξ)(u) =
fZ|U(1 | u)
fZ|U(0 | u)

ξ(u).

The rest of Step 1 is analogous to that of the proof of Lemma 2. Therefore, FY3|Y2U and
FZ|U are uniquely determined by the observed joint distribution FY3Y2Y1ZD3D2D1( ·, ·, ·, ·, 1, 1, 1).
Equivalently, the operators Py and Qz are uniquely determined for each y and z, respectively.

Step 2: Uniqueness of FY2Y1UD2D1( · , · , · , 1, 1)
By Lemma 12 (ii), Restriction 2 implies fY2|Y1UD2D1(y

′ | y, u, 1, 1) = fY2|Y1U(y
′ | y, u). Using

this equality, write the density of the observed joint distribution FY2Y1D2D1( · , · , 1, 1) as

fY2Y1D2D1(y
′, y, 1, 1) =

∫
fY2|Y1UD2D1(y

′ | y, u, 1, 1)fY1UD2D1(y, u, 1, 1)du

=

∫
fY2|Y1U(y

′ | y, u)fY1UD2D1(y, u, 1, 1)du (C.9)

By Lemma 4 (i), FY3|Y2U(y
′ | y, u) = FY2|Y1U(y

′ | y, u) for all y′, y, u. Therefore, we can write
the operator Py as

(Pyξ)(y
′) =

∫
fY3|Y2U(y

′ | y, u) · ξ(u)du =

∫
fY2|Y1U(y

′ | y, u) · ξ(u)du.

With this operator notation, it follows from (C.9) that

fY2Y1D2D1( · , y, 1, 1) = PyfY1UD2D1(y, · , 1, 1).

By Restriction 9 (i), this operator equation can be solved for fY1UD2D1(y, · , 1, 1) as

fY1UD2D1(y, · , 1, 1) = P−1
y fY2Y1D2D1( · , y, 1, 1) (C.10)

Recall that Py was shown in Step 1 to be uniquely determined by the observed joint distribution
FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1). The function fY2Y1D2D1( · , y, 1, 1) is also uniquely determined
by the observed joint distribution FY2Y1D2D1( · , · , 1, 1) up to null sets. Therefore, (C.9)
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shows that fY1UD2D1( · , · , 1, 1) is uniquely determined by the observed joint distributions
FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).

Using the solution to the above inverse problem, we can write the kernel of the operator Sy
as

fY2Y1UD2D1(y
′, y, u, 1, 1) = fY2|Y1UD2D1(y

′ | y, u, 1, 1) · fY1UD2D1(y, u, 1, 1)

= fY2|Y1U(y
′ | y, u) · fY1UD2D1(y, u, 1, 1)

= fY3|Y2U(y
′ | y, u) · fY1UD2D1(y, u, 1, 1)

= fY3|Y2U(y
′ | y, u) · [P−1

y fY2Y1D2D1( · , y, 1, 1)](u)

where the second equality follows from Lemma 12 (ii), the third equality follows from Lemma
4 (i), and the forth equality follows from (C.10). Since fY3|Y2U was shown in Step 1 to be
uniquely determined by the observed joint distribution FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1)
and [P−1

y fY2Y1D2D1( · , y, 1, 1)] was shown in the previous paragraph to be uniquely deter-
mined for each y by the observed joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and
FY2Y1D2D1( · , · , 1, 1), it follows that fY2Y1UD2D1( · , · , · , 1, 1) too is uniquely determined by
the observed joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).
Equivalently, the operator Sy is identified for each y.

Step 3: Uniqueness of FY3D3|Y3U( · , 1 | · , · )
The density of the observed joint distribution FY3Y2Y1D3D2D1(y3, y2, y1, 1, 1, 1) can be decomposed
as

fY3Y2Y1D3D2D1(y3, y2, · , 1, 1, 1) =

∫
fY3D3|Y2Y1UD2D1(y3, 1 | y2, y1, u, 1, 1)

×fY2Y1UD2D1(y2, y1, u, 1, 1)du

=

∫
fY3D3|Y2U(y3, 1 | y2, u) · fY2Y1UD2D1(y2, y1, u, 1, 1)du

= Sy2 · fY3D3|Y2U(y3, 1 | y2, · )

for each y3 and y2, where the second equality follows from Lemma 12 (i) and (iii). By Restriction
9 (iv), Sy2 is invertible, and we can rewrite the above equality as

fY3D3|Y2U(y3, 1 | y2, · ) = S−1
y2
fY3Y2Y1D3D2D1(y3, y2, · , 1, 1, 1).

Recall that Sy2 was shown to be uniquely determined in Step 2 by the observed joint distribu-
tions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1). Therefore, FY3D3|Y2U( · , 1 |
· , · ) is identified by the observed joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and
FY2Y1D2D1( · , · , 1, 1).

Step 4: Uniqueness of FD3|Y3U(1 | · , · )
The density of the observed joint distribution FY3D3|Y2U(y3, 1 | y2, u) can be decomposed as

fY3D3|Y2U(y3, 1 | y2, u) = fD3|Y3Y2U(1 | y3, y2, u) · fY3|Y2U(y3 | y2, u)
= fD3|Y3U(1 | y3, u) · fY3|Y2U(y3 | y2, u)

where the second equality follows from Lemma 12 (iii). For each pair (y3, u) in the support,
there exists y2 such that fY3|Y2U(y3 | y2, u) > 0. For such y2, rewrite the above equation as

fD3|Y3U(1 | y3, u) =
fY3D3|Y2U(y3, 1 | y2, u)
fY3|Y2U(y3 | y2, u)

.
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Recall that Step 1 showed that FY3|Y2U is uniquely determined by the observed joint distri-
bution FY3Y2Y1ZD3D2D1( ·, ·, ·, ·, 1, 1, 1), and Step 3 showed that FY3D3|Y2U( · , 1 | · , · )
is identified by the observed joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and
FY2Y1D2D1( · , · , 1, 1). Therefore, FD3|Y3U(1 | · , · ) is identified by the observed joint dis-
tributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).

Step 5: Uniqueness of FY1U |D1=1

Recall from Step 2 that fY2Y1UD2D1( · , · , · , 1, 1) is uniquely determined by the observed joint
distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1). We can write

fY2Y1UD2D1(y
′, y, u, 1, 1) = fD2|Y2Y1UD1(1 | y′, y, u, 1)fY2|Y1UD1(y

′ | y, u, 1)fY1UD1(y, u, 1)

= fD2|Y2U(1 | y′, u)fY2|Y1U(y′ | y, u)fY1UD1(y, u, 1)

= fD3|Y3U(1 | y′, u)fY3|Y2U(y′ | y, u)fY1UD1(y, u, 1)

where the second equality follows from Lemma 12 (ii), and the third equality follows from
Lemma 4 (i) and (ii). For a given (y, u), there must exist some y′ such that fY3|Y2U(y

′ | y, u) > 0
by a property of conditional density functions. Moreover, Restriction 9 (iii) requires that
fD3|Y3U(1 | y′, u) > 0 for a given y′ for all u. Therefore, for such a choice of y′, we can write

fY1UD1(y, u, 1) =
fY2Y1UD2D1(y

′, y, u, 1, 1)

fY3|Y2U(y
′ | y, u)fD3|Y3U(1 | y′, u)

Recall that fY3|Y2U( · | · , · ) was shown in Step 1 to be uniquely determined by the observed
joint distribution FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1), fY2Y1UD2D1( · , · , · , 1, 1) was shown in Step
2 to be uniquely determined by the observed joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1)
and FY2Y1D2D1( · , · , 1, 1), and fD3|Y3U(1 | · , · ) was shown in Step 4 to be uniquely determined
by the observed joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).
Therefore, it follows that the initial joint density fY1U |D1=1 is uniquely determined by the ob-
served joint distributions FY3Y2Y1ZD3D2D1( · , · , · , · , 1, 1, 1) and FY2Y1D2D1( · , · , 1, 1).
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True Parameter Values: α1 = α2 = β0 = β1 = β2 = 0.5

Dynamic Model Hazard Model

Percentile α̂1 α̂2 β̂0 β̂1 β̂2
Parametric CMLE 75% 0.556 0.519 0.673 0.855 1.293

50% 0.502 0.502 0.517 0.523 0.569

25% 0.454 0.483 0.403 0.169 −0.182

Semi-parametric∗ CMLE 75% 0.566 0.524 0.758 0.882 1.212

50% 0.513 0.508 0.555 0.523 0.475

25% 0.465 0.489 0.428 0.153 −0.288

Semi-parametric∗∗ CMLE 75% 0.558 — — 0.589

50% 0.459 — — 0.418 0.500

25% 0.368 — — 0.204 (Fixed)

Semi-parametric∗∗∗ CMLE 75% 0.686 — — 1.049

50% 0.436 — — 0.719 0.500

25% 0.271 — — 0.403 (Fixed)

Semi-parametric† 1st Step 75% 0.585 — — — —

50% 0.495 — — — —

25% 0.385 — — — —

Arellano-Bond 75% 0.464 — — — —

50% 0.412 — — — —

25% 0.352 — — — —

Fixed-Effect Logit 75% — — — −0.134 —

50% — — — −0.287 —

25% — — — −0.441 —

Random-Effect Logit 75% — — — 0.793 —

50% — — — 0.729 —

25% — — — 0.672 —

∗ The distribution of FY1U is semi-parametric.

∗∗ The distributions of Et and Vt are nonparametric.

∗ ∗ ∗ The distribution of FY1U is semi-parametric, and the distributions of Et and Vt are nonparametric.

† The distribution (Et, Vt, Y1, U) and the functions g and h are nonparametric.

Table 1: MC-simulated distributions of parameter estimates.

68



Birth year cohorts 1917–1920 (aged 51–54 in 1971)

N = 822 Type I (U = 0) Type II (U = 1)

54.2% 45.8%

Markov Yt−1 Markov Yt−1

Matrix 0 1 Matrix 0 1

Yt
0 0.930 0.128

Yt
0 1.000 0.025

1 0.070 0.872 1 0.000 0.975

2-Year Survival Probability 2-Year Survival Probability

Yt
0 0.899 (0.044)

Yt
0 0.878 (0.149)

1 1.000 (0.000) 1 0.999 (0.038)

H0: equal probability H0: equal probability

p-value = 0.021∗∗ p-value = 0.445

Birth year cohorts 1913–1916 (aged 55–58 in 1971)

N = 727 Type I (U = 0) Type II (U = 1)

53.9% 46.1%

Markov Yt−1 Markov Yt−1

Matrix 0 1 Matrix 0 1

Yt
0 0.954 0.162

Yt
0 1.000 0.066

1 0.046 0.838 1 0.000 0.934

2-Year Survival Probability 2-Year Survival Probability

Yt
0 0.912 (0.036)

Yt
0 0.890 (0.107)

1 1.000 (0.000) 1 0.983 (0.042)

H0: equal probability H0: equal probability

p-value = 0.013∗∗ p-value = 0.416

Table 2: Model estimates with height as a proxy.
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Figure 1: A sketch of the proof of the identification strategy. The four objects enclosed by

double lines are to be identified. The three objects enclosed by dashed lines are observable

from data. All the other objects enclosed by solid lines are intermediaries.
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Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 2: Markov probabilities of employment in the next two years. Colors vary by the type

of proxy used.

Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 3: Conditional survival probabilities in the next two years. Colors vary by the type of

proxy used.
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Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 4: Markov probabilities of employment in the next two years among the subpopulation

of individuals who reported health problems that limit work in 1971. Colors vary by the type

of proxy used.

Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 5: Conditional survival probabilities in the next two years among the subpopulation of

individuals who reported health problems that limit work in 1971. Colors vary by the type of

proxy used.
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Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 6: Markov probabilities of employment in the next two years among the subpopulation

of individuals who eventually died from acute diseases according to death certificates. Colors

vary by the type of proxy used.

Birth Year Cohorts 1917–1920 (aged 51–54 in 1971)

Birth Year Cohorts 1913–1916 (aged 55–58 in 1971)

Figure 7: Conditional survival probabilities in the next two years among the subpopulation of

individuals who eventually died from acute diseases according to death certificates. Colors vary

by the type of proxy used.
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Height as Mother’s Education Father’s Occupation

Cohorts a Proxy as a Proxy as a Proxy

51-54
in 1971

55-58
in 1971

Figure 8: Black lines indicate the actual employment rates among survivors in the data. Grey

lines indicate the counterfactual employment rates if all the individuals alive in the first period

in the data were to remain alive throughout the entire period.
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