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Abstract

Communication in practice typically occurs through multiple channels, not all of
which permit costless misrepresentation of private information. Accordingly, I study a
model of strategic information transmission based on Crawford and Sobel (1982), but
allow for communication through both cheap talk and messages on a second dimension
where misreporting is costly. Using a forward-induction refinement, I characterize a
class of equilibria with appealing properties. As the costs of misreporting become small,
talk is almost-cheap, and the model is arbitrarily close to the pure cheap talk model.
However, not all equilibria of the pure cheap talk model are limits of the equilibria with
misreporting costs, and a simple condition is derived to determine which cheap talk
equilibria are robust in this sense. I show that under a standard assumption, the most-
informative cheap talk equilibrium is indeed robust, whereas the babbling equilibrium
is not unless it is the unique cheap talk equilibrium. This provides a novel rationale for
focussing on the more informative equilibria of the cheap talk game, without invoking

cooperative justifications such as the Pareto criterion.
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1 Introduction

Consider a sales agent in a firm who must forecast demand for the forthcoming year in his
geographic territory to his manager. The manager must use this information for various
decisions, one of which involves setting the target quota for this sales agent, and she would
therefore like the best forecast available. The sales agent knows more than the manager on
this matter, owing to his familiarity with the territory. For any given demand forecast, the
agent prefers a slightly lower quota than what the manager would like to set (this would aid
his ex-post performance measures), but does not want the quota to be set overly low either
(this would make him expendable should layoffs be necessary). The question of interest
is: how much information can the agent effectively convey to the manager about forecasted
demand?

This is an example of a privately informed agent, the Sender, who must commu-
nicate to an uninformed decision-maker, the Receiver, in a situation where their prefer-
ences over the decision are not congruent.! The seminal and most widely used model
of such information transmission is due to Crawford and Sobel (1982), hereafter CS (see
also Green and Stokey (1980)). The analysis has been applied fruitfully to problems
in bargaining (Matthews 1989), finance (Morgan and Stocken 2003), organizational design
(Dessein 2002, Harris and Raviv 2002), political economy (Gilligan and Krehbiel 1987, 1989;
Krishna and Morgan 2001a, 2001b), and other areas.

However, an outstanding problem with this literature — indeed, with any cheap
talk analysis — is that the theory is generally plagued by a multiplicity of equilibria. In
particular, in CS, there generally is a range of equilibria that can be ranked in terms of

2 At one end of the spectrum is the most-informative equilibrium,

their informativeness.
and at the other end the completely uninformative, babbling equilibrium. Unfortunately,
there is no well-established criterion for selecting amongst these. Though the CS model is a
signaling game, standard theory for equilibrium selection in signaling games (following Cho
and Kreps (1987) and Banks and Sobel (1987)) does not apply because the messages from

3 While there have been a few alternative approaches developed for

the Sender are costless.
cheap talk games, mostly following the spirit of Farrell (1993), these have been only partially

successful in general, and particularly unsuccessful when applied to CS. Notably, there is

!As a matter of convention, I follow the literature and treat the Sender as male and the Receiver as
female throughout the paper.

2Informally, the informativeness of an equilibrium refers to how much the Receiver learns about the
Sender’s private information after communication. A more-informative equilibrium ex-ante Pareto domi-
nates a less-informative equilibrium provided that preferences satisfy a “similarity” assumption; see Condi-
tion M on p. 19. For the discussion in this Introduction, assume the Condition holds.

3 Any message from the Sender not sent in equilibrium can be interpreted by the Receiver in exactly the
same way that some message that is sent in equilibrium is interpreted. Since messages are costless, no
type of Sender would strictly prefer to send the out-of-equilibrium message over what he is supposed to in
equilibrium. Standard refinements have no bite in this case. This implies in particular that every cheap
talk equilibrium can be supported by strategies where every message is sent with positive probability in
equilibrium.



generally no CS equilibrium that survives criteria in the spirit of the neologism-proofness
principle of Farrell (1993).4

The common approach taken in the applied literature is to typically focus on the
most-informative equilibrium of the CS model. The justification usually given is that this is
the ex-ante Pareto dominant equilibrium, and hence the one that players should coordinate
on. There are at least two reasons why this is unsatisfactory. First, the Pareto criterion
is a cooperative solution concept. Accordingly, its application in equilibrium selection for
non-cooperative games is somewhat ad-hoc. Second, in some costly signaling games, Pareto
dominant equilibria do not survive standard belief-based refinements (Banks 1991). This
raises the possibility that a belief-based refinement for cheap talk games may also eliminate
the Pareto dominant equilibrium.

This paper takes the position that communication in practice rarely consists of
purely costless messages alone, especially in economically important situations. This can
be illustrated easily by returning to the motivating example. Typically the sales agent
would have to provide the manager with a formal report about forecasted demand, which
must be backed up by numbers, analysis, interpretations, and so forth. It is natural to
think that on this dimension, not only is misreporting costly, but the magnitude of cost
depends on the severity of misreporting. Concretely, if the agent chooses to report a
forecast higher or lower than his data suggests, he would have to spend time making sure
his report is internally consistent, that he has adjusted the numbers in all the right places,
etc. Moreover, the more deviant he wishes to be, the more time he must spend on this
activity. In short, there is evidence fabrication cost. In other situations, the costs may
stem from exogenous auditing probability (this applies to financial analysts as studied in
the finance applications), future reputation effects if misreporting is detected (as may be
the case with lobbyists and politicians, studied in the political economy applications), or
simply psychological “lying” penalties.

In addition to such formal reports, there is also typically informal communication.
For example, when turning in the forecast report, the sales agent might also add a brief
verbal remark to the manager. He might say “I hope I haven’t over-forecasted as usual,” or
he might say “I heard that demand is going to be stronger than anticipated,” or he might
say nothing at all. Such messages are effectively costless, since they do not directly require
any support through evidence, nor are they subject to verification. Nevertheless, they can
be influential: the first remark could be interpreted as saying that true forecasted demand
is lower than in the report, whereas the second suggests the opposite. The domain of such
relatively costless communication need not be either speech as specific as above, nor in fact
speech at all. Depending on the situation, it potentially includes not only seemingly unre-
lated speech (saying ‘hello’ as opposed to ‘hi’ can be different signals), but also things like
how one dresses, gestures made or not made, degree of enthusiasm or certainty expressed,
and so forth.

4A more detailed analysis is postponed until Section 8 of the paper.



In light of this, I present a model where a Sender is privately informed about a one-
dimensional variable but communicates to an uninformed Receiver via signals of two kinds:
one where there is some cost of misreporting his private information which increases with
the degree of misreporting, and the other which is costless, or just cheap talk. To facilitate
a comparison with CS, I assume that the basic payoffs to both players are simply the CS
payoffs, and then augment an added cost to the Sender stemming from any misreporting on
the costly dimension. Parameterizing the relative magnitude of these costs by a positive
scalar k, it is intuitively clear that we are back in the case of CS pure cheap talk when
k = 0. The case of k close to 0 is referred to as almost-cheap talk.

The model is subject to multiple equilibria just as CS and most signaling models
are. However, due to the presence of the costly report, I am able to use a variant of the
D1 refinement for signaling games to characterize a class of equilibria that are appealing
to focus on. Existence of equilibria in this class is proven for any k. When k is large,
there are equilibria with full separation through the costly report below some interior cutoff
type, and partial separation through cheap talk above this cutoff type. For small enough &
(or almost-cheap talk), generically there are equilibria with complete pooling on the costly
message, and partial separation through cheap talk. As separation through cheap talk alone
is analogous to that of CS, it follows that at least one CS equilibrium outcome is generically
an equilibrium outcome of my model for small k. I derive a simple condition that determines
whether a particular CS equilibrium outcome is an equilibrium of the current model with
almost-cheap talk. Essentially, it only needs to be checked whether the lowest type would
prefer to be pooled as in the CS equilibrium rather than separate itself. If so, the CS
equilibrium remains an equilibrium once talk is almost-cheap; if not, the CS equilibrium
fails to be an equilibrium for any magnitude of misreporting cost, and moreover, is not the
limit of any sequence of equilibria.

The intuition behind this relies on the nature of beliefs that are required to hold in
equilibrium. Regardless of how small misreporting costs are, so long as they are positive,
the belief refinement implies that the Receiver must put probability one on the lowest type
of Sender upon receiving an out-of-equilibrium costly report which is lower than all in-
equilibrium costly reports. Generically, once misreporting costs are sufficiently small, all
equilibria feature complete pooling on the costly reporting dimension with all types sending
the highest available costly report. Hence, there are unused costly reports in equilibrium
that allow the lowest type to separate itself. This implies that the lowest type must prefer
its equilibrium payoff to what it would get by separating itself.

Under general conditions, I show that one can partition the set of CS equilibria
into two classes with the following two properties: (a) all equilibria in the first class are
strictly more informative than all equilibria in the second class; and (b) every equilibrium
outcome in the first class is an equilibrium outcome of my model for small k, whereas none
of the ones in the second class ever is (nor is there is a sequence of equilibrium outcomes
of my model that converge to any of these CS outcomes). The most-informative CS
equilibrium lies in the first of these two classes, and hence is an outcome of my model



once the costly messages are almost-cheap. On the other hand, whenever there is at least
one informative CS equilibrium, the babbling outcome lies in the second class, and hence
is mot an equilibrium outcome of my model regardless of how cheap the costly messages
are (and cannot be approached by equilibrium outcomes either). I also demonstrate that
for the most common formulation of the model in the applied literature — the so-called
“uniform-quadratic” case — the only CS equilibrium that survives is the most-informative
equilibrium.

This paper therefore provides a theory of equilibrium selection for the CS frame-
work, motivated by considerations of the underlying economics of information transmission.
It justifies the applied practice of discarding the completely uninformative babbling equi-
librium. In doing so, it presents a precise rationale for why a particular CS equilibrium
may be considered more reasonable than another.

While most of the paper analysis focuses on using almost-cheap talk as a tool to
select amongst pure cheap talk equilibria, the features of almost-cheap talk equilibria are
interesting in their own right. As noted earlier, once the parameter k is sufficiently small,
there are generally equilibria with complete pooling on the costly message and partial
separation through cheap talk. I suggest in Section 8 that this may shed some light on
certain empirical phenomena. The thrust of the argument is simple: observing significant
pooling on some potentially discriminatory signaling activity should not lead one to conclude
that overall information transmission is poor.

The rest of the paper is structured as follows. I discuss the related literature in
the following section. Section 3 lays out the model, and Sections 4 and 5 characterize
equilibria. I analyze the behavior of equilibria as k gets small in Section 6, and present
the CS equilibrium selection results. Section 7 examines the leading special case of the
general model, the uniform-quadratic setup. I discuss the theory more broadly in Section
8, including its relationship to other cheap talk refinements, empirical predictions, and some
extensions. A brief conclusion follows in Section 9.

2 Related Literature

This work is connected to a few different strands of literature. The most closely related
paper is that of Bernheim and Severinov (2003). Although their setting and application is
very different, the formal structure of their model is related to this paper in some respects.
The equilibrium refinement I use was introduced by them. There are important differences
however, foremost that much of the analysis here concerns behavior as the cost of the
discriminatory signaling goes to 0, which is not the focus of their work. Moreover, their
model is one of multidirectional signaling that results in a “central pool”, whereas my model
is one of unidirectional signaling that results in pool at the top end of the type space.

In the pure cheap talk literature, the most relevant work is that of Crawford and
Sobel (1982). There is a large literature on refining cheap talk equilibria. While the most



famous are arguably those of Farrell (1993), Matthews, Okuno-Fujiwara and Postlewaite
(1991), and Rabin (1990), the closest ones in spirit to the approach taken here are the
“perturbation methods” studied by Blume (1994) and Blume (1996).

With respect to the pure discriminatory signalling literature, the refinement ap-
proaches of Cho and Kreps (1987) and Banks and Sobel (1987) are the bases for the partic-
ular refinement I adopt. Cho and Sobel (1990) were the first to obtain incomplete separation
in the manner obtained here: pooling at the top of the type space and separation at the
bottom with respect to the costly signal.

Finally, Austen-Smith and Banks (2000) also present a model with cheap talk and
signaling, but they study money-burning as opposed to discriminatory signaling. Moreover,
their focus is on how the set of outcomes is expanded vis-a-vis pure cheap talk, rather than
refining cheap talk equilibria.

3 Model

There are two players, a Sender (S) and a Receiver (R). The Sender has private information
summarized by his type t € T' = [0,1], which is drawn from a differentiable probability
distribution F'(t), with density f(¢) > 0 for all t € T. After privately observing his type
t, S sends R a signal pair (r,m) consisting of a report, » € T, and a message, m € M,
where M is an arbitrary uncountable space. R then takes an action, a € R. The report r
is payoff relevant for S (but not for R) with misreporting cost given by C (r,t), while the
message m is pure cheap talk and thus payoff irrelevant to both players. The payoff for R
is given by V (a,t), and the payoff for S is given by U (a,t) —kC (r,t), with k > 0 a measure
of the magnitude of misreporting costs. All aspects of the game except the value of ¢ are
common knowledge.

Throughout, the following assumptions on payoffs are maintained. The functions
U (a,t) and V (r,t) are twice continuously differentiable. Using one or two subscripts to
denote first and second derivatives respectively, U1 < 0 < Ui and Vi1 < 0 < Vg, so that
both the Sender and the Receiver prefer higher actions given higher types. For any t,
there exists a” (t) and a” (t) respectively such that V4 (a® (¢),t) = Uy (a® (¢),t) = 0, with
a® (t) > a®(t). That is, the most-preferred actions are well-defined for both players, and
the Sender prefers higher actions than the Receiver.® The assumptions on U and V imply
that for i € {R,S}, a} (t) > 0. Finally, C (r,t) is twice continuously differentiable, with
C11 > 0 > (2, so that the marginal cost of misreporting is increasing as the report gets
further away from the true type, and higher types prefer higher reports. Consistent with
C' being misreporting costs, Cq (t,t) = 0 for all ¢ € T, so that the cheapest report for any
type is the truth.

A few aspects of the model are worth emphasizing. First, note that the report

SWhat is important is that there is no ¢ such that a® (t) = a® (t). Given this, o (t) > o (t) is without
loss of generality.



r is a discriminatory signal, in the sense that the cost varies with type, and not non-
discriminatory or money-burning. Second, if k = 0, the model essentially collapses to that
of CS, except for the added report, r. So long as the cheap talk message space M is rich
enough (e.g. uncountable, as was assumed), the extra dimension of signaling adds nothing
when k£ = 0. However, when k& > 0, as is assumed, the costly report r can potentially play
an important role in information transmission. Third, the Sender’s report is assumed to
lie in the type space, T. While I discuss in Section 8.3 what happens if this is relaxed,
the conceptually crucial point is that there is an ordering on the report space such that
one can meaningful talk about the cost of misreporting, and how this varies across types.
The most natural modelling choice is simply that of » € T. Returning to the motivating
example, the sales agent’s type would be his estimate of demand. It is sensible to require
that in his report to the manager, he must specify some number in the commonly known
range of demand, which is normalized to [0,1].° Of course, one could also assume that the
cheap talk message space is T, and doing so would not change the analysis. It is useful
however to allow M to be any arbitrary rich space, to emphasize that these messages are
just informal communication, and need not have an ordering or any particular relationship
with the type space. Recall that these messages may be gestures, tone of voice, etc. Lastly,
I have assumed that each type’s ideal report is the truth, which seems like the most natural
assumption given the interpretation of costs as stemming from as misreporting. However,
the analysis remains essentially the same under much weaker conditions: it is sufficient if
cost minimizing reports are well-defined for each type, and increasing with type. This is
discussed further in Section 8.3.

A clarification on terminology in what follows: I use the term report or costly signal
to refer to r, the term message to refer to the cheap talk message m, and the unqualified
term signal to refer to a report-message pair (r,m). The Receiver’s decision a is termed
action.

The basic equilibrium concept is Sequential Equilibrium (Kreps and Wilson 1982),
formulated the standard way for infinite signaling games (see for example Manelli (1996)).
The Sender’s strategy is given by a pair of functions (p, u) where p : T — T defines the
Sender’s report or costly signal as given his type, and p : T' — M defines the Sender’s cheap
talk message given his type. Denote the posterior beliefs of the Receiver given r and m by
the cumulative distribution G (¢ | r,m). The Receiver’s strategy is denoted v : T'x M — R.
By the strict concavity of V, it is clear that the Receiver will never optimally play a mixed
strategy. The restriction to a pure message strategy for the Sender is also without loss of
generality since messages are costless. That the Sender uses a pure strategy on the costly
signal (the report) is a restriction that is common in the literature. Equilibrium requires
the Sender to be playing optimally given the Receiver’s strategy, and that the Receiver play
optimally with respect to his beliefs, which must be formed according to Bayes’ Law for

5The only loss of generality here is that the type space is bounded. The unbounded case is considered
in an Appendix.



every signal that is sent in equilibrium.

It is worthwhile to emphasize a technical issue at this point. The model is a signaling
game with a continuous signal and type space. As such, without the cheap talk dimension,
there are no general existence results on sequential equilibria. Manelli (1996) proves that
for a cheap talk extension of a continuous signaling game, sequential equilibria exist.” The
current model can be thought of as the cheap talk extension of a game where the Sender
only has available the costly report (r). In that game, it is not known whether sequential
equilibria exist in general; in the current game, on the other hand, Manelli’s (1996) results
assure it. In what follows, I prove existence in and characterize a subset of all sequential
equilibria that satisfy a forward-induction refinement along the lines of Cho and Kreps’s
(1987) D1 criterion.® The construction I use relies on the cheap talk dimension, and
indeed, without cheap talk, it is not hard to construct generic examples where equilibria
fail to exist in the class I consider. While I believe that cheap talk is economically viable
in many cases, a different interpretation of the model would be to view the cheap talk
dimension as purely a theoretical construct to study equilibria. Under this interpretation,
the pure cheap talk game of CS can be viewed as the limit of costly misreporting games
where the Sender has available only the costly report, but the formal analysis is conducted

using cheap-talk extensions of these games.’

4 No Separating Equilibria

In this section, I show that there cannot be fully separating equilibria.'® Before proceeding
to the analysis, it is worth pointing out the model does not have a single crossing property
(SCP) in (a, r)-space, unlike most traditional signaling models. This is because indifference
curves in (a,r)-space are elliptical, and hence either cross twice or not at all. This is
illustrated in Figure 1, where each type’s ideal action is a® (t) = t+b (for some exogenously
given bias parameter b > 0). Hence the most preferred point for type t in (a,r)-space is
(t+b,t).

Note that in a fully separating equilibrium, even though multiple types may be using
the same report, they are correctly identified by R, and hence any type t induces an action
of af* (t). We start with an important Lemma which says that if there is full separation

"Informally, given a signaling game, its cheap talk extension is defined as an augmented signaling game
where the Sender’s signal space is the Cartesian product space of the original signal space and the Receiver’s
action space, but everything else including payoffs stay the same. That is, in the cheap talk extension, the
Sender sends not only a signal of his type, but also a payoff-irrelevant “recommendation” to the Receiver.

8See also Banks and Sobel (1987). Manelli (1997) and Ramey (1996) prove existence of forward-induction
equilibria for certain infinite signaling games that do not include the current model.

9Trivially, the cheap talk extension of the CS model has the same set of equilibrium outcomes, i.e.
mappings from Sender types to Receiver actions, as CS.

°Tn many standard signaling games, fully separating equilibria are not only guaranteed to exist, but are
often isolated using refinement criteria (Mailath 1987, Ramey 1996). However, these arguments typically
require a sufficiently large signal space and the single crossing property.
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Figure 1: Elliptical Indifference Curves

below some type ¢, then no non-zero type t < t can be playing his ideal report. The
intuition is simple: if there were such a type, call it ¢, a slightly smaller type could imitate
t, and would suffer at most only a second-order loss through misreporting, but benefit by a
first-order gain in the induced action a.

Lemma 1. In any equilibrium, if the Sender plays (p, ) and is separating up to and in-
cluding some type t, then for all t € (0,¢], p(t) #t.

The proof (and all subsequent proofs not in the text) is relegated to the Appendix.
With this Lemma in hand, I prove that there is no separating equilibrium.

Proposition 1. There is no separating equilibrium.

The gist of the argument is as follows. By the Lemma, no non-zero type can
be using his ideal report, and in particular, the highest type cannot be using the highest
report. So if there is some type ¢ using a report p(t) > t, then the report strategy must
discontinuously jump from above the 45° line (which graphs the ideal report for each type)
to below it, at some ¢’ > ¢t. The main part of the proof shows that this cannot be the case.
Suppose p (') < t'. Then for some type t” slightly below ¢, the gain in utility for either
type by being perceived as type ' rather than type ¢’ is of the order of (¢ —t)*. On
the other hand, the change in misreporting costs is of the order of (p (t") — p(t')) (t" —t),
which is of the order of (¢ —t) since p (t") — p(¢') is bounded away from 0 by hypothesis.
Since t' values higher reports more than ", if ¢’ is willing to play p (t') < p ("), then so
will type t”, contradicting separation. Thus, the report strategy lies strictly below the



45° line for all non-zero types. It is easily verified that it must be continuous everywhere
and hence weakly increasing around type 0. But then some small type ¢t would prefer to
imitate a slightly higher type ¢/, since he gains in the induced action without losing on the
misreporting cost.

11

The Proposition implies that there must be some pooling in equilibrium."* Hence

the presence of costly signalling does not completely alleviate the information asymmetry.

5 Pooling Equilibria

Asis typically the case with signaling games, the current model may have multiple equilibria.
Accordingly, I use a refinement that is in the spirit of the well-known D1 criterion of Cho
and Kreps (1987).

5.1 The Monotonic D1 Refinement

The specific criterion I use is the monotonic D1 (mD1) criterion, introduced by Bernheim
and Severinov (2003) in a different context, but in a formally related model. The basic
idea is the same as the D1 criterion, which says that upon observing an out-of-equilibrium
signal, the Receiver should not believe it is a type t if there is some other type ¢’ who would
strictly prefer to deviate for any response from the Receiver that type ¢t would weakly prefer
to deviate for. In addition, the monotonicity requirement is that higher types use higher
signals. Let us develop these concepts formally.

Definition 1. An equilibrium is report-monotone if (i) p (¢) is weakly increasing, and (ii)
G (t | r,m) is weakly decreasing in r for all ¢, m.

The first part of the definition is straightforward. It says that higher types must
send weakly higher reports. In models where the SCP is satisfied, this is a property that
must hold in any sequential equilibrium. This guarantees that R’s beliefs when seeing a
report 7 must first order stochastically dominate (FOSD) her beliefs upon seeing report
r’ < r, whenever r and 7’ are both on the equilibrium path. Part (ii) of the definition
requires this to hold for off the equilibrium path reports as well. It is worth mentioning
that in standard models, any sequential equilibrium is outcome-equivalent to one where
beliefs satisfy this property on and off the equilibrium path (Cho and Sobel 1990). A
useful and straightforward consequence of report monotonicity is that R’s strategy must be
increasing in the report she hears.

Lemma 2. In a report-monotone equilibrium, o (r,m) is weakly increasing in r for all m.

1The proof of the Proposition makes use of the fact that the ideal report for the highest type is in fact
the highest report. This might suggest that requiring the report space to be just the type space is a severe
restriction. However, more generally, for any fixed upper bound on the report space, once k is small enough,
there cannot be a fully separating equilibrium. I discuss this further in Section 8.3.



Proof. Fix a message m. By a well-known property of FOSD, [V (a,t)d® (¢,r,m) is
increasing in r since V; is increasing in ¢t (Vig > 0). Therefore, [V (a,t)d® (t,r,m) has
increasing differences in a,t. By Topkis’ Theorem, the maximizers are weakly increasing.

O

One other piece of notation is required before the mD1 criterion is defined. We will
need to refer to the highest or lowest action played in response to reports lower or higher
than a given report. Formally, let

sup a(p(t),pu(t)) if IHtst. p(t)<r

&(r) = tp(t)<r
a® (0) otherwise
inf a(p()p(t) if st p(t)>r
& (,r-) = t:p(t)>r
a® (1) otherwise

For an out-of-equilibrium report ' such that some report » < 7’ (r > r/) is sent
in equilibrium, & (') (&, (")) gives the highest (lowest) action taken by the Receiver in
response to an equilibrium report lower (higher) than r. If 7" is such that there is no report
r <71 (r > ") sent in equilibrium, then & (') (&, (r’)) just specifies the lowest (highest)
rationalizable action for the Receiver. Obviously, for all  (on or off the equilibrium path),
a(0) < &(r) < &, (r) < aff(1); this is just a consequence of the fact that sequential
equilibrium requires R’s action to be optimal for some belief.

The following is the restriction on beliefs introduced by Bernheim and Severinov
(2003), restated for the current model.

Definition 2. An equilibrium satisfies the monotonic D1 criterion if
1. It is report-monotone.

2. For any off-the-equilibrium report r, if there is a nonempty set 2 C T such that for
each t ¢ €, there exists some ¢’ € Q such that for all a € [§(r), &, (r)],

Ula,t) — kC (r,t) Ula(p(t),u(t),t) = kC(p(t),1)

U (o (o () lt) .£) — KC (5 (¢) .0)
Then for all m, Supp G (t | r,m) C Q.

The first part of the definition is straightforward. If we replace a € [§ (), &, (7))
with just a € [aft(0),af!(1)] then part 2 of the definition would be precisely the D1
criterion of Cho and Kreps (1987). However, if the Receiver’s beliefs respect monotonicity,
then for any out of equilibrium report r, and any message m and type t, G (t|r,m) >

10



Supy.(t)<r G (t | p(t) ,m), and optimality requires a (r,m) > & (r). Similarly one sees that
a(r,m) < &, (r). Accordingly, part 2 of the definition above applies the idea behind the
D1 criterion on the restricted action space [§; (1) ,&p, (r)]. That is, it requires that for some
out-of-equilibrium report r, if there some type ¢’ who would strictly prefer to deviate for any
action a € [§ (r),&, (r)] that a type t would weakly prefer to deviate for, then R exclude
type t from the support of her beliefs.

For the main part of the paper, I restrict attention to mD1 equilibria. They are
appealing for the same reasons that D1 equilibria are appealing in standard signaling games.
The added monotonicity requirement imposed by mD1 is reasonable and desirable in the
current context because higher types prefer higher reports.

Remark 1. The mD1 criterion is at least weakly stronger than the D1 criterion, so that the
set of mD1 equilibria is a weak subset of the set of D1 equilibria. However, in standard
“monotonic” signaling games (Cho and Sobel 1990) where all types of the Sender wish to be
perceived as the highest type, and a single-crossing property in Sender’s signal-Receiver’s
action space holds, the set of mD1 equilibria is identical to the set of D1 equilibria.'? The
issue is that for the current model, the D1 criterion does not restrict the set of sequential
equilibrium outcomes in general.

Remark 2. As with all standard signaling game refinements, the mD1 criterion does not
help restrict the set of sequential equilibrium outcomes when k& = 0. To see this, consider
a sequential equilibrium when £ = 0. Given that M is uncountable and & = 0, there is
an essentially equivalent sequential equilibrium (i.e. one that induces the same mapping
from types to actions) where all types send the same report, call it 7*, and use possibly
different cheap talk messages. I claim that this equilibrium can be supported by strategies
that satisfy mD1. As in CS (see Lemma 3 on p. 14 of this paper), there can only be a
finite number of actions induced in equilibrium when & = 0; hence the equilibrium can be
supported with finitely many distinct cheap talk messages. Denote the highest and lowest
actions induced in equilibrium by a; and a; respectively with corresponding messages my,
and m;. For any m and ¢, define for all r < r*, G(t | r,m) = G(t | r*,m;), and for
all m > r*, G(t | r,m) = G(t | r*,myp). Then for all m, if r < r*, a(r,m) = a; and if
r > r* «a(r,m) = ap. Clearly these strategies continue to form a sequential equilibrium
that supports the same outcome as the original equilibrium. Since p(t) = r* for all ¢,
the given specification of G makes the equilibrium report monotone; hence part 1 of the
mD1 criterion is satisfied. To see that part 2 also is, suppose by way of contradiction
that it is not for some out-of-equilibrium report r > r* (the argument is analogous for
r < r*). First observe &(r) = aj, and &,(r) = af¥(1). Given that part 2 of mD1 is being
violated, there must be either (i) a type ¢ in the support of G(- | r,m) for some m who
strictly prefers the equilibrium action he induces to ap; or (ii) a type ¢ who strictly prefers
ap, to the equilibrium action he induces. But (i) but cannot be true because then ¢ does

12This is a straightforward observation given Cho and Sobel’s (1990, Lemma 4.1) characterization of D1
equilibria in this class of games.
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not induce ay in equilibrium, and since G(- | 7*,my) is derived by Bayes’ Rule ((r*,my,)
is an on-the-equilibrium-path signal), ¢ cannot be in the support of G(- | r*,my), and by
definition, G(t | r,m) = G(t | r*,my). Yet (ii) cannot be true either because then ¢’ would
have a strictly profitable deviation to (7*,my) over his equilibrium signal, which contradicts
equilibrium.

5.2 Characterization

In this section, mD1 equilibria are characterized; existence is then established in Section
5.3. 1 first state the main theorem and discuss it. Thereafter, the remainder of the section
is devoted to presenting the key steps in proving the Theorem.

Let p* be the unique solution to the following Initial Value ODE Problem. (That
there is a unique solution is established in Lemma 6.)

Uy (a" (1)) af (1)
kCy(p(t), ) ’

As discussed later, p* is strictly increasing, and accordingly there is a unique solution to
p*(t) = 1, which I denote by ¢. It is established later that ¢ < 1. Lastly, define for any
t" <+t a(t”,t') to be the optimal action for the Receiver if the only information she has is
that the Sender’s type lies in [¢”,¢/]. That is,

p(0) =0 (DE)

p(t) =

a(t" 1) = argmaxftt,: V(a,t)dF (t) ift' >t"
’ B () if ¢/ ="

Theorem 1. In any mD1 equilibrium, (p, fi, &), there exists some t € [O,ﬂ and a partition
of [t, 1] given by {to = t,t1,....,t;_1,t; =1} (J > 1) such that

i Vi=1,..,J—1,

Ula(ty,tjv1),tj) = Ualtj-1,t5), t5) (A)

i. Ift > 0 then
U(a®™(f),) — kC(p*(£),t) = U(a(t, t1),t) — kC(1,1) (CIN)

iii. If t = 0 then
U(a™(0),0) — kC(0,0) < U(a@(0,t1),0) — kC(1,0) (ZWP)
and there is a set of J distinct messages {my,...,mj_1} such that strategies satisfy

a. YVt < t, p(t) = p*(t); Vt € (1],

, /3( ) =1; p(t) € {p*(¥),1}; if t = 0 and (ZWP) holds
with strict inequalzty then p(0) =

12



b Vj=0,..,J—1,

(b.1) Vt € (tj,tj41), a(t) =m;  (m; #my Vn #j)
(b.2) d(Lmj) = a(t]'?thrl)
c. Yt <t, a(p(t), p(t)) = ai(t)

Conversely, for any t € [O,ﬂ and {ty = t,t1,....,ty_1,t; = 1} that satisfy (i)-
(iii) above, there is an mD1 equilibrium with full separation below t, and bunching above t
according to the given partition, with strategies satisfying (a)-(c).

In words, the Theorem says that any mD1 equilibrium can be described by a cutoff
type, t, and a sequence of boundary types {to = t,ty,...,t; = 1} (J > 1) such that three
conditions are satisfied: (i) for any j € {1,...,J — 1}, the boundary type t; is indifferent
between being perceived as a member of [t;_1,t;] or a member of [t;,¢;41] (this is condi-
tion A, for arbitrage, following CS); (ii) if the cutoff type f is strictly interior, then # is
indifferent between being perceived as a member of [, ;] and incurring the cost of report
1, or separating himself and incurring the cost of report p*(f) (this is condition CIN, for
cutoff indifference); (iii) if the cutoff type is 0 then type 0 weakly prefers being perceived
as a member of [0, ;] and incurring the cost of report 1 to separating himself and incurring
the cost of report 0 (this is condition ZWP, for zero weak preference). Conversely, any #
and {tg = £,t1,...,t;_1,t; = 1} that satisfy these three conditions characterizes an mD1
equilibrium.

In any mD1 equilibrium, all types below ¢ are separating themselves using report
strategy p*(t), and all types above £ are pooling on report 1, but separating themselves
according to the given partition of [f, 1] by using cheap talk messages. Figure 2 illustrates
the structure of an mD1 equilibrium with a strictly positive cutoff type and two distinct
cheap talk messages sent in equilibrium. The function p* is plotted as the brown line, the
equilibrium reporting strategy is the red line, and the actions induced by each type is the
blue line. The figure illustrates that types t < f separate themselves by reporting p*(t),
whereas all type ¢t > t report 1. Nonetheless, there is segmentation within the upper pool
through cheap talk: types ¢t € (£,¢;) send cheap talk message m1, whereas types t € (t1,1)
send mgy (m2 # mq). Assuming that the Receiver’s optimal action is the expectation of
the Sender’s type and that the Sender types are distributed ez-ante uniformly over [0, 1],
the induced mapping from types to actions is the 45° line for ¢ < ¢, t‘;tl for types t € [t,t1),
and H% for types t € [t1,1].

5.2.1 Proving the Theorem

We begin the analysis with some preliminary observations. Report monotonicity has a
direct implication on what set of types could be pooling on any report.

Observation 1. In a report-monotone equilibrium, the set of types using the same report
must be connected.

13



e

Figure 2: An mD1 equilibrium

That is, given a report r, if one defines ¢;(r) = inf{t:p(t) =7} and t (r) =
sup{t: p(t) = r}, then every type t € (t; (r),ts (r)) sends report r. It is important however
to recognize that the set of types using r need not be indistinguishable to the Receiver, since
they could potentially send different cheap talk messages. Accordingly, a pool refers to the
set of types using the same report, whereas a bunch refers a set of types using both the
same report and the same message. Obviously, the set of types bunching on some (r,m)
must be a subset of the set of types pooling on 7, hence contained within [¢; (), 5 (7)]. By
the supermodularity of U and that messages are costless, two facts follow: first, within any
pool, there can be only a finite number of bunches; and second, bunches must be connected.
The reasoning is identical to that of Crawford and Sobel (1982, Theorem 1), since within a
pool, we are basically back in the CS world where any separation can only be achieved via
cheap talk. To state this formally, let us say that an action a is elicited by report r if there
exists some message m such that a(r,m) = a. Furthermore, say that two equilibria are
essentially equivalent if they induce the same mapping from types to reports and actions.

Lemma 3. In any report-monotone equilibrium, every report elicits only a finite number
of actions. Moreover, the equilibrium is essentially equivalent to a report-monotone equi-
librium where bunches are connected.

Accordingly, I focus without loss of generality on equilibria where bunches are con-
nected. It is worth drawing out one implication of the Lemma that is often used in the
sequel: if there is a non-trivial pool on a report in a mD1 equilibrium, no type in the pool
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can be separating, and in particular, there is no separation at the top or the bottom of
the pool. This is an immediate consequence of the finiteness of elicited actions, since by
continuity of U, the set of types who most prefer a given action over all others amongst
a finite set of actions cannot be a singleton. Accordingly, a pool on a report r consists of
J > 1 bunches that can be described by a partition {tg = t;(r),t1,...,t7-1,t7 = tx(r)} such
that all the types in a given bunch, ¢ € (¢;,t;41), send the same cheap talk message, and
for any n # j, types t € (tn,tn+1) send a different cheap talk message.

The key result towards characterizing mD1 equilibria is the following Lemma, which
says three things: first, that if there is pooling on some r, < 1, then there are some reports
immediately above 7, that are unused in equilibrium; second, upon seeing such an unused
report, the Receiver must believe that it was sent by type tj (rp); and third, seeing any
unused reports that are lower than every used report must induce the Receiver to believe
it was sent by the type 0.

Lemma 4. In any mD1 equilibrium,

1. If there is pooling on some report rp, < 1, then there exists some 0 (r,) > 0 such that
reports r € (rp,mp + 0 (1)) are unused in equilibrium.'

2. For all such 1 € (rp,rp + 0 (rp)), and any message m, o (r,m) = a® (t}, (rp)).

3. If p(0) > 0, then for all m and r < p(0), o (r,m) = a'*(0).

Let us discuss the intuition behind the result. Consider the first part. If p (1) =7},
then it is obvious, so the interesting case is when p (1) > r,. I claim that to deter the
highest type in the pool on r, — which I’ll call simply ¢, to save notation — from mimicking
a slightly higher type, there must be a discontinuous jump in the report strategy at t5. If
this were not the case, then the types immediately above t;, must be separating themselves,
since by definition, ¢} is the highest possible type using r,. By the fact that no type in
a pool can be separating, type ¢, is inducing an action strictly smaller than a? (t,). But
then, by mimicking some type t; + €, type t, would get a gain in utility from the induced
action that is bounded away from 0, and only suffer an arbitrarily small loss in misreporting
cost, by the continuity of the reporting strategy. This contradicts ¢, optimally pooling on
Tp-

Now turn to the second part of the Lemma. I argue that the mD1 criterion requires
the Receiver to put probability 1 on type tp for all such reports r. To see how this works,
let a_ be the highest action elicited by any type in the pool on rp, and at be the lowest
action elicited in equilibrium by types above . If type t; would want to strictly deviate
from his equilibrium play for every response a € [a_,a™] to report r that any other type ¢
would want to weakly deviate for, then mD1 requires R to place probability 1 on ¢; upon

13 As the proof makes clear, this must hold in any report monotone equilibrium, and does not require part
2 of the mD1 criterion.
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seeing . Consider some type t < t;. In equilibrium, ¢ induces an action weakly lower
than that induced by tj, and weakly lower than a_. Moreover, t’s preferred action and
t’s preferred report are both strictly lower than ¢5’s. The supermodularity of U and the
submodularity of C' imply that if ¢ would prefer to deviate, then so would ¢;,. An analogous
argument works for ¢t > t;. Similar intuition underlies the third part of the Lemma.

Lemma 4 has two important implications. The first concerns which types can be
pooling, and on which report.

Corollary 1. If there is pooling on any report, it can only be on the highest report, and
hence must include the highest type.

Proof. Consider a pooled report r, < 1. By Lemma 4, for small enough ¢ > 0,6 > 0, a
type tj, () — € would prefer to report r, + & and induce a® (tj,(r,)) rather than report r,
and induce a < a® (t,(rp)), contradicting equilibrium. O

Consequently, there can be at most one pool in an mD1 equilibrium. Since full
separation has already been shown to be impossible, there must in fact be exactly one pool.
The basic structure of reporting in any mD1 equilibrium is now clear: there must be some
cutoff type t € [0,1) such that there is full separation below t, and pooling of all types
above t on 7, = 1. Recall that this does not mean that all types above ¢ are bunched, only
that they all use the same report. The other implication of Lemma 4 is that if the the
lowest type is separating, then it must be using the lowest report.

Corollary 2. If type 0 is separating, then p(0) = 0.

Proof. Suppose not, i.e. a(p(0),u(0)) = a’*(0) and p(0) > 0. By Lemma 4, for all m,
a(0,m) = a(0). But then since C (0,0) < C(p(0),0), type 0 strictly prefers to play
)

(0, m) for any m, rather than (p(0), x(0)), contradicting equilibrium. O

Next, I characterize the cutoff type £. A useful fact (Lemma A.4 in the Appendix)
is that the function p is continuous everywhere except possibly at . Moreover, if £ > 0,
then p is either left- or right-continuous at . This implies that if £ > 0, and limyzp () <1,
then either ¢ separates itself by reporting lim,,; p (t), or it pools with all higher types by
reporting 1. On the other hand, when ¢ = 0, then by Corollary 2, p(0) = 0 if type 0 is
separating, and if type 0 is not separating, then it must be that p(0) = 1. Equilibrium
imposes an indifference condition for ¢ > 0, and a weak preference condition for £ = 0. To
state these formally, let my = lim, ;4 (¢) and 71 = lim,;p(¢). Note that the former is
well-defined by the fact that there is bunching at the bottom of the pool.

Lemma 5. In any mD1 equilibrium, if the cutoff t > 0 and r1 < 1 then t is indifferent
between playing (r1,m) and playing (1,m1), for any message m. If t = 0, type 0 weakly
prefers playing (1,m1) to (0,m) for any m.
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That the second statement of the Lemma must hold is clear. The rationale behind
the first statement is the following. Suppose it were not true. Then type ¢ strictly prefers
playing (1,m1) to (r1,m) for some message m. It is easy to check that for any message
m, a(ry,m) > alt (f) by the fact that there is separation below ¢ and report monotonicity.
One can show that the mD1 criterion implies that in fact « (r1,m) = a® (f), simply because
amongst all types t > ¢, ¢ has the most to gain by deviating from the pool down to r1. So
type ¢ strictly prefers being perceived as the bottom bunch of the pool and incurring the
cost of report 1, rather than being perceived as type ¢ and incurring the cost of 71. But
then continuity implies that so will some type slightly lower than £, contradicting separation
below .

It remains to analyze the separating portion of the type space. Since p must be

1

strictly increasing in this region, p~" is well-defined, and optimality requires

p(t) € arg mTz}XU (a® (p~t(r)),t) — kC (r,t)

Since p is increasing it is a.e. differentiable, and must satisfy the following first order
condition at all points of differentiability:

1
Ur (a® (). 1) af' (1) s = KCL(p (9).8) = 0
This is an ordinary non-linear differential equation. By Corollary 2, the initial
condition is p (0) = 0, and the resulting initial value problem is therefore that specified by
(DE).

Lemma 6. There is a unique solution to (DE).

The proof is complicated by the lack of a Lipschitz condition on (¢, p) € [0, 1] x [0, 00).
Existence is established by first considering a perturbed problem with initial condition of
p(0) = e > 0, proving existence of a solution to this problem (which still lacks a Lipschitz
condition on the entire region, but does possess one in a neighborhood of the initial condi-
tion, unlike (DE)), then taking the limit of the solutions as ¢ — 0, and showing that this
defines a function which in fact solves (DE). Uniqueness is established by showing that
any solution to (DE) must be the limit of solutions to the perturbed problems, and proving
that that those are unique.

Let p* denote the unique solution to (DE). The proof of the Lemma also shows that
p* is strictly increasing, continuously differentiable, and satisfies p* (t) > ¢, with equality
only for ¢ = 0. Thus there is a unique solution to p*(t) = 1, which I denote ¢. It is easily
verified that p* is indeed a separating function below ¢ in the sense that if the Receiver plays
(p*) " (r) for all 7 < 1, then every type t < T prefers sending p* (£) to sending p* (') for any
t' <t (with the cheap talk message being irrelevant). It follows that ¢ < 1; otherwise there
is a fully separating equilibrium, which cannot be the case by Proposition 1.
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We can now conclude. Arguments similar to that of Mailath (1987) establish that
in the separating part of the type space, the reporting strategy must in fact be exactly p*.
Thus, the previous discussion implies that any mD1 equilibrium involves separation below
some type ¢ < 7 using the report strategy p*, satisfies the indifference/weak preference
condition for type ¢, and has a partition of [f, 1] into some finite number of bunches using
cheap talk. It is straightforward to see that each type on the boundary between two
bunches on the pooling report must be indifferent between being perceived as a member of
either bunch, just as in Crawford and Sobel (1982, Theorem 1). Obviously there can be an
inessential multiplicity among equilibria in the sense that the cheap talk messages played
in equilibrium are arbitrary, but this is of no economic consequence. This proves necessity
of parts (i)-(iii) of the Theorem. Sufficiency is straightforward, since when the conditions
are satisfied, the proposed strategies (a)-(c) constitute an mD1 equilibrium.

5.3 Existence

Thus far, I have only characterized necessary and sufficient conditions for an mD1 equilib-
rium. The next result assures that these conditions can always be met.

Theorem 2. An mD1 equilibrium exists.

The details of the proof are quite involved, but the basic idea is constructive, as
follows. Assume k is small for the sake of illustration. Starting with type ¢ and working
down to type 0, traces the indifference curves for each type t in (a,r) space that keep type
¢ indifferent with (a” (t),p* (t)). These are elliptical and hence generally pass through the
r = 1 line twice. For each type ¢ < %, there are two types (assume they exist) p} (t) and
p}(t) such that he is indifferent between separating himself with report p*(¢) and eliciting
the responses a(t, p}(t)) or a(t, p;(t)) from the Receiver by sending report 7 = 1 and some
cheap talk message. Thus if ¢ is the candidate cutoff type for an mD1 equilibrium, p’ ()
and pf(t) are the candidate boundary types in the first bunch on » = 1. The indifference
conditions (A) then implies a unique sequence of p? (t) (1 =2,..., g € {l,r}) that define the
successive boundaries of bunches on the report r = 1. An mD1 equilibrium exists when
either (i) there is some type t € (0,¢] such that for some integer j > 1, p;]. (t) =1 for a
q € {l,r}; or (ii) there is an integer j > 1 such that pj- (0) =1 for a ¢ € {l,r}. Continuity
of each p? is shown to guarantee that one of these two cases can be satisfied.

One consequence of the proof of Theorem 2, which I note here for completeness,
is that when k is sufficiently large, there is always an equilibrium with a strictly positive
measure of types at the bottom end of the type space that separate themselves.

Proposition 2. There exists k > 0 such that if k > k, there is an mD1 equilibrium with a
strictly positive measure of separating types.
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6 Almost-Cheap Talk

Given the existence result, I will henceforth refer to “mD1 equilibria” as just “equilibria” for
brevity. The previous section established that any equilibrium for a given k is completely
described by a cutoff t* > 0 and a sequence {t’g = fk,tlf, ...,tﬁ_l,tﬁ = 1}. I shall refer to

14 We are now ready to

such a sequence as an equilibrium outcome, or simply, an outcome.
consider the set of equilibria as k£ gets small, and compare them to the CS equilibria. First,

I briefly recapitulate the relevant results of CS.

6.1 CS Equilibria

The main result of CS (Crawford and Sobel 1982, Thereom 1) is that any equilibrium in
the their model is essentially equivalent to one where the type space is partitioned into
N segments {ty = 0,t1,...,txy—1,txy = 1} such that each type only reveals which segment
he is in, and upon hearing the message that the type is in (¢;,%;41), the Receiver plays
a(tj,tj+1). The boundaries of the segments must satisfy the arbitrage condition A for
all j € {1,...,N —1}. Moreover, there exists an integer N > 1 such that there is an
equilibrium with N segments if and only if N € {1, ,N} The equilibrium with N =1
is the babbling equilibrium, and this always exists. The magnitude of N depends upon the
similarity of preference between S and R: the more similar they are, the higher is N. Any
equilibrium with N > 1 is said to be an informative equilibrium. CS also use the following
condition for welfare and comparative statics (Crawford and Sobel 1982, p. 1444).

Condition M. For any two increasing sequences, {to,t1,....,tx} and {fo,fl,...,tK} that
both satisfy the arbitrage condition (A) for j € {1,...,K}: ift1 >t > to = to, thent; > i;
forallje{l,...,K}.

Although this is not stated in terms of primitives of the model, CS provide sufficient
conditions on primitives that guarantee it (Crawford and Sobel 1982, Theorem 2). Roughly,
Condition M requires that the preferred actions a® and af shift similarly with t. All applied
papers following CS use this assumption either implicitly (by choosing a specification that
satisfies it) or explicitly. The reason is that Condition M guarantees some certain attractive
properties of equilibria, as summarized below. Let ¢;(N) denote the 4" boundary type
(j €{0,1,...,N}) in a N-segment CS equilibrium.

Lemma 7. (CS Lemma 3) If Condition M holds, then
1. there is a unique CS partition equilibrium of size N € {1,...,N}.

2. forall N € {1,...,N—1} and j € {1,...,N}, , t;(N +1) < t;(N).

Y This is a little non-standard since outcomes as I have defined them ignore the payoff-relevant misreporting
cost for the Sender. However, this definition is simple and sufficient since the focus henceforth is on equilibria
as k — 0, hence payoffs are arbitrarily well approximated by U and the equilibrium partition.
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CS use this Lemma to prove that both players ex-ante (i.e. before S learns his
type) strictly prefer equilibria with more segments,'® which implies that the equilibrium
with N segments is the ex-ante Pareto-dominant equilibrium; this is also referred to as the
most-informative equilibrium. More generally, R’s expected utility in any equilibrium is a
measure of the informativeness of the equilibrium. Therefore, the Lemma says that under
Condition M, equilibria are strictly ranked by informativeness, and an equilibrium with
N + 1 segments is more informative than an equilibrium with N segments.

Remark 3. In what follows, Condition M is not assumed unless explicitly stated. However,
it is important to emphasize that without Condition M, it is not guaranteed that (a) CS
equilibria with more segments are more informative; nor (b) informativeness coincides with
ex-ante Pareto dominance.

6.2 Small k£ Equilibria

In the ensuing discussion, I refer to any partition of the type space [0,1] that is sup-
ported by a CS equilibrium as a CS outcome and denote it {tJ = 0,#7,...,t%, = 1}. Re-
call that an outcome of the current model for a given k is described by a t* > 0 and
{th =tk ¢k ...,tf‘}fl,tﬁ =1}. To maintain the distinction between CS and the current
model, I shall often to refer to an equilibrium [outcome] of the current model as an “equi-
librium [outcome] with reporting”.

The analysis revolves around the following critical type. Define

o { t>0:U@(0,t),0) = U(a™0),0) if U@(0,1),0) < U(a™(0),0)

oo otherwise

That is, if ¢t* < 1, then t* > 0 is the type such that the Sender of type 0 is
indifferent between revealing his true type exactly and revealing only that he lies in in the
non-degenerate interval [0, ¢*]. If the type 0 Sender strictly prefers revealing no information
at all to revealing his true type, then t* = co. Since @ is strictly increasing in both arguments
so long as they are in the type space [0,1] (and @ is constant in the arguments outside the
type space), and @(0,0) = a(0) < a®(0), it follows that ¢* is unique, and t* € (0, 1] U {oc}.
Note that for any t € (0,1], t < (>)t* < U(a@(0,t),0) > (<)U(a*(0),0).

I first confirm an analogue of “upper hemi-continuity”, i.e. that every convergent
sequence of outcomes with reporting converges to a CS outcome. The intuition stems from
the observation that when k is small, the cutoff type, t*, in any equilibrium with reporting
is close to 0, and the boundary conditions for segmentation within the reporting pool are
the same as CS.

Proposition 3. Ve > 0, 36 > 0 such that when k < §, for any equilibrium outcome with
reporting, {t* = tlg,tlf, e t’} = 1}, there is a CS outcome, {t(()}S =0,t95,... ,t%s = 1}, such

15Crawford and Sobel (1982, Theorems 3 and 5).

20



that N = J and ’tﬁ—tfsj <eforallje{0,1,...,J}.

Proof. Fix an € > 0. From Theorem 1 and the definition of p* (DE), it follows that for
sufficiently small &, every equilibrium with reporting has t’g < €. It suffices to argue that t’f
must be close to some ¢, because then the indifference conditions (A) in Theorem 1 assure
that every boundary type in the equilibrium with reporting is close to the corresponding
boundary type in the CS equilibrium. Suppose by way of contradiction that there is no t{
such that |tlf - t?‘ < e. It cannot be that t§ = 0 because then there is a CS equilibrium
with ¢{ = }. Given that t§ > 0, Theorem 1 implies that

U(a®(t§), 16) — U alts, t),16) = kC(p"(t5),t5) — C(1,15)]

For k sufficiently small, the RHS is arbitrarily close to 0 (since C' is bounded), and hence
the LHS must be close to 0. Since t’g can be made arbitrarily close to 0 by picking k
small enough, it follows from continuity that ‘t’f — t*‘ < €. By the hypothesis towards
contradiction, there is no CS equilibrium with first segment [0,¢*]. Since there are only a
finite number of CS equilibria, there is no CS equilibrium with first segment boundary in a
small neighborhood of t*. Equivalently, if {ro = 0,71 = t*, 79, 73,...} is a solution to the the
difference equation (A), there is a # > 0 such that no 7; (j > 0) lies in (1 -6, 1]. Since each
t? in the equilibrium with reporting is arbitrarily close to 7; when k is sufficiently small, it
follows that there is no J such that tﬁ = 1. This however contradicts the conditions for an
equilibrium with reporting. ]

The more interesting issue is that of “lower hemi-continuity”, or robustness of a
given CS outcome. Two notions of robustness are useful, where implicitly this refers to
robustness with respect to almost-cheap talk (i.e. the reporting dimension with & small).

Definition 3. A CS outcome, {tJ = 0,89,...,tQ = 1}, is robust if for all € > 0, there exists
§ > 0 such that for all k < 4, there is an outcome with reporting {tf, ¥, ... tk = 1} where

for all j € {0,1,..., N}, ‘t;?—tg‘ <e

That is, a CS outcome is robust to almost-cheap talk if there is a sequence of
outcomes with reporting that converges to it as k — 0.

Definition 4. A CS outcome {tg = O,t(l),...,t?V = 1} is strongly robust if there exists
§ > 0 such that for all k < 6, {0 =tf =3, tf =19,...,t5 =% = 1} is an outcome with
reporting.

In words, a CS outcome is strongly robust to almost-cheap talk if it remains an
outcome when misreporting costs are sufficiently small. Plainly, strong robustness implies
robustness.

It is useful to define « (¢1) as the cost that would make type 0 indifferent between
inducing a? (0) with report 0, and pooling with report 1 given that the lowest bunch is
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defined by [0,¢1]. That is,

U (@(0,t1),0) — U (a?(0),0)

r(h) C(1,0) - C(0,0)

Note that « (1) may be non-positive, in which case type 0 is never indifferent be-
tween the relevant alternatives for any k£ > 0. Our first comparison result gives necessary
and sufficient conditions for when a CS outcome can be an outcome of our model.

Proposition 4. A CS outcome with first segment [O,t[l)] is an outcome with reporting if
and only if k < k (t(l)).

Proof. (Necessity) If k > k (t(l)), then by the definition of x, type 0 strictly prefers to separate
with report 0 rather than bunch with [0, t(l)] using report 1. But then, by Theorem 1 (iii),
there cannot be an equilibrium outcome where the cutoff type is ¢t = 0 and the first bunch
is [0,9].

(Sufficiency) Since k < £ (1}), the CS outcome partition satisfies Theorem 1 with
the cutoff type being ¥ = 0, hence it is an equilibrium outcome. ]

Using this result, I now derive a simple condition that determines whether or not a
CS outcome is robust.

Theorem 3. A CS outcome with first segment [O,t(l)] 18
1. strongly robust if and only if t < t*
2. not robust if t9 > t*
3. robust if t) = t* and Condition M holds

Proof.

1. The first part is consequence of Proposition 4, since t; < t* < k(1) > 0. Hence
if ;1 > t*, then the CS outcome is not an outcome with reporting for any k, and if
t1 < t*, it is an outcome for all k < k(t1).

2. For the second part, suppose the statement is false. Then t(l) > t* (which implies that
t* € (0,1)) and yet there is a sequence of equilibria with reporting such that for every
6 > 0, there exists an € > 0 such that if £ < ¢ then the equilibrium for cost k has
cutoff type (the highest type who is separated) £ < § and the boundary of the first
bunch, call it ¢}, satisfies [tf — tJ| < §. Inow argue to a contradiction. Since t{ > ¢*,
U(a®(0),0) > U(a(0,t9),0). For small enough k, t* and ¢¥ are arbitrarily close to 0
and t{ respectively, and hence by continuity of @ and U, for small enough £,

U (aR (tk> ,fk) >U (a (fk,tff) ,fk)
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Since C' (1, fk) >C (p* (fk) ,fk) (because 1 > p* (fk) > {¥), this implies that for small
enough k,

U (aR (tk) ,fk) —kC (p* (fk) ,fk) > U (a (fk, t’f) ,fk) —kC (1, fk)

which means that type ¢* strictly prefers separating to bunching with [fk , t’f], contra-

3. The third of the Theorem is proved as Lemma A.6 in the Appendix. g

Fix a CS equilibrium partition with first segment [0, ¢1]. The condition that ¢; < t*
requires that the lowest type strictly prefers the action induced by pooling with the lowest
segment of the partition over the action he would induce if he separated himself. It is
crucial to emphasize that t; < t* is not part of the equilibrium requirement in CS. CS
equilibrium only requires that given a partition, each type — and in particular, the lowest
type — weakly prefer the action induced by truthfully revealing which segment he is in over
claiming that he is in some other segment of the partition. In equilibrium, a type does not
have the ability to separate himself even if he would desire to. However, in the current
model with reporting, any type below the cutoff type does have the ability to separate itself
in a given equilibrium. Hence, in any equilibrium, the lowest type can separate itself.
It is this feature that places a restriction on the set of CS equilibria that are robust to
almost-cheap talk.

Turning to the second part of the Theorem, it does not just say that when t; > t*,
the relevant CS outcome is not an outcome with reporting for any & (this fact is immediate
from Proposition 4), but moreover, that no sequence of equilibrium outcomes converges to
the CS outcome. So when t; > t*, it is not the case that with almost-cheap talk, there is
an equilibrium outcome that “approximates” the CS outcome. On the other hand, when
t1 < t*, the first part of the Theorem says the CS outcome itself is an equilibrium outcome
with almost-cheap talk, and hence in a sense extremely robust to the introduction of small
misreporting costs. The third part of the Theorem says that at least when Condition M
holds, a CS outcome with first segment boundary ¢* is the limit of equilibrium outcomes
with reporting.!®

The issue of robustness therefore reduces to which CS equilibrium outcomes satisfy
t1 < t*, and which do not. Clearly, if some CS outcome is strongly robust, then so is every
CS outcome with shorter first segment. Conversely, if some CS outcome is not robust, then
neither is any CS outcome with longer first segment. To facilitate exposition, a simple
observation about CS equilibria is useful. By ‘generic’ below, I mean for “almost all”

16While it is natural to conjecture that this generalizes even without Condition M, a proof has proved
elusive. Proposition 5 extends to cover the case when there is no CS outcome with first segment boundary
smaller than t*. In any case, this issue is not especially important, since cases where there is a CS outcome
with first segment boundary t* are non-generic, as noted in Observation 2.
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preferences that satisfy the assumptions of the model.'”18

Observation 2. For generic preferences, no CS equilibrium has a first segment [0, t*].

This is intuitive, since given U and V, if the first segment boundary ¢; = t*, each
successive segment boundary ¢; (j > 2) is uniquely pinned down by the arbitrage condition
(A), and this sequence will form a CS equilibrium if and only if there is some J > 1 such
that t; = 1, which will generally not be true. The reason to make this observation is that it
implies that for generic preferences, every CS equilibrium satisfies either ¢; < t* or t; > t*,
and by Theorem 3, is either strongly robust or not robust. Now I turn to identifying which
of the CS equilibria satisfies which of the two inequalities.

Lemma 8. At least one CS outcome has first segment [O,t?] satisfying t§ < t*.

This is trivial if t* > 1, so suppose that t* < 1. The proof is constructive. Briefly,
start by considering the type t* such that type 0 is indifferent between actions a® (0)
and @ (0,t*). For every type t € [0,t*], set po(t) = 0 and p; (f) = ¢t. Successively
construct the segment boundaries p; (t) (j > 2) that would keep type pj—1 (t) indifferent
between @ (pj—2 (t),pj—1 (t)) and @(pj—1(t),p;(t)). The key is to observe that for all
Jj > 1, pj(0) = pj—1(t*) by definition. ~There will be some (unique) integer M > 1
such that pas (0) = par—1 (t*) < 1 < ppr (t*), and by continuity of pas, some t' such that
pm (t') = 1. By construction, the partition {0 = po(t'),t’ = pi(t'), p2(t'),...,pm(t') = 1}
is a CS equilibrium with first segment boundary ¢ < ¢*.

The result says that there is always at least one CS equilibrium in which the lowest
type weakly prefers the action he induces by pooling with the lowest segment over the
action he would induce if he could separate himself. In particular, the CS equilibrium with
shortest first segment satisfies this. By the earlier observation, it follows that generically,
this preference will in fact be strict. When combined with Theorem 3, this yields an
important conclusion.

Proposition 5. At least one CS outcome is robust, and generically, at least one CS outcome
1s strongly robust.

Proof. The second part is an immediate consequence of the preceding discussion. To prove
the first part, I argue that the CS outcome with smallest first segment amongst all CS
outcomes is robust. Denote this segment [0,29]. By Lemma 8, t? < ¢*. If ] < t*, then

Y Formally, let U be the set of all (U, V) pairs that satisfy the assumptions of the model. Every pair
(U,V) € U induces a well-defined pair (a®,a®®). Let A be the space of all such (a”,a”) pairs. Endow U
with the topology induced by the product topology of uniform C' convergence on A (so that two pairs (U, V)
and (U, V) are close if their induced pairs (a°,a?) and (@°,a") have values and first derivatives that are
close everywhere on [0, 1] x [0,1]). A property is said to hold generically on ¥ if it holds for an open-dense
subset of U.

8The definition of genericity given above is topological, and this is convenient given the difficulties with
measure-theoretic notions of “almost all” in infinite dimensional subspaces. However, following ideas in
Anderson and Zame (2000), a measure-theoretic definition can be provided.
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Theorem 3 implies that the CS equilibrium is strongly robust and hence robust, and we
are done. So assume t9 = t*; hence in every CS outcome type 0 gets no more utility than
he would through separation. Pick any sequence of outcomes with reporting indexed by
k, {t’g = fk,t’f,...,t{‘}(k) = 1}. It must be that for all k, #* > 0. This is because any
outcome with reporting with cutoff of type 0 is a CS outcome, and due to the presence
of the misreporting cost, type 0 strictly prefers separation to being pooled with the first
segment. But by hypothesis, there is no such CS outcome. By Theorem 1 (ii), equilibrium
with reporting requires

U(a(i*, 1), ) = U(a"(*),1") = k[C(1,7") = C(p" ("), "))

Note that the RHS is weakly positive for all £ > 0. Hence the LHS is weakly
positive. It is easy to check that 7 is strictly decreasing as k decreases, hence t* can be
made arbitrarily small by choosing k small enough. It is now sufficient to prove that by
picking k small enough, we can also make t]f arbitrarily close to ¢, since then all subsequent
boundary types t? (j > 2) will also be arbitrarily close to t?. To see that we can do this,
observe that since C(1,t)—C(p*(t),t) is bounded for all ¢t < ¢, the RHS above is approaching
0 as k — 0. Hence the LHS must also approach 0. Since t* is arbitrarily close to 0 for small
enough k, this requires that t'f be arbitrarily close to t*, and by hypothesis t* = ¢J. O

Hence, there is always a CS outcome that is the limit of equilibrium outcomes with
reporting, and moreover, generically, at least one CS outcome remains an outcome with
reporting once k is sufficiently small. This assures that if one interprets robustness to
almost-cheap talk as a selection criterion amongst CS equilibria, then at least once CS
equilibrium survives the criterion. The next result gives a converse: it says that if there is
more than one CS equilibria under Condition M, then at least the babbling equilibrium is
eliminated by this selection criterion.

Theorem 4. Assume Condition M. There exists an integer L € {1,..., N} such that
1. Every CS outcome of size N > L 1is strongly robust
2. The CS outcome of size L is robust
3. None of the CS outcomes of size N < L are robust
Furthermore, if N > 2 then L > 2, and in particular the babbling equilibrium is not robust.

Proof. Denote the CS equilibrium partition of size N by tV = {O =)y, ... ,t% = 1}.
Define L as the smallest IV such that the CS outcome of size N is robust. Since there are
only a finite number of CS outcomes, L > 1 is well-defined by Proposition 5. Theorem
3 implies that t¥ < ¢*. Given Condition M, CS’s result (Lemma 7 in this paper) implies
that tlL > tjlv for all N € {L, . ,W}. Theorem 3 then implies that tV is strongly robust
for all N € {L, . ,W}. On the other hand, by the definition of L and Theorem 3, every
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CS outcome of size N < L has first segment boundary ) < ¢*, hence is not robust. This
proves the first part of the Theorem.

To prove the second, we show that if babbling is the limit of outcomes with reporting,
then babbling must be the unique CS equilibrium. Suppose babbling (CS outcome with
N =1 and t! = 1) is the limit of equilibrium outcomes with reporting. By Theorem 3,
t* > 1, or equivalently, U(@(0,1),0) > U(a*(0),0). Since Condition M holds by hypothesis,
this implies that there cannot be a type ¢t > 0 such that U(a(0,t),t) = U(a(t,1),t). But
then, there is no CS equilibrium with two segments, and babbling is therefore the unique
CS outcome. ' O

Hence, under Condition M, the set of CS equilibria can be partitioned into two
groups, call them &5 # () and &y (possibly empty), such that:

1. The least-informative equilibrium in &7 is more informative than the most-informative
equilibrium of & .

2. All the outcomes in &7 are limits of the equilibrium outcomes with almost-cheap talk,
whereas none of those in &y are. Moreover, all but at most one of the elements in £
are equilibriums outcomes with almost-cheap talk.

3. If babbling is not the unique CS equilibrium, then both £ and &y are non-empty.2°
&y contains the babbling equilibrium, and £; contains the most-informative equilib-
rium. Robustness to almost-cheap talk as a selection criterion eliminates the babbling
equilibrium, and does not eliminate the most-informative equilibrium.

Remark 4. Even when Condition M fails, if a CS outcome with first segment [0, ;] is an
outcome with almost-cheap talk, then so is a CS outcome with first segment [0,#,], for any
1 <t (Theorem 3). This implies that if the babbling outcome is robust to almost-cheap
talk, then so is every other CS outcome. Condition M guarantees that there is no other
CS outcome in this case.

7 Uniform-Quadratic Example

The leading special case of the CS model is the “uniform-quadratic” setup.?! It is convenient
because it can be analytically solved. I now discuss this example in some detail, both to
illustrate some of the results already obtained, and to derive some additional predictions.
Fix the prior density f(t) = 1, and preferences V (a,t) = — (a — t)*, and U (a,t) =
U(a,t,b)=—(a—1t— b)z, where b > 0 is a bias parameter measuring the degree of prefer-
ence divergence between S and R. Note that I now write U (a, t,b) to keep the dependence

19Gee also Crawford and Sobel (1982, Corollary 1 and subsequent Remark).
20Tf babbling is unique, £r contains it, and &y is empty.

21See for example Crawford and Sobel (1982, Section 4), de Garidel-Thoron and Ottaviani (2000), Gilligan
and Krehbiel (1987), Harris and Raviv (2002), and Krishna and Morgan (2002), among others.
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on the parameter b explicit. The reporting cost function is irrelevant for what follows, so
long as it satisfies the basic assumptions. I shall refer to this setup as the U-Q model. It
can be verified that Condition M is satisfied here. It is also well-known that the necessary
and sufficient condition for there be an informative CS equilibrium is b < i, and the maxi-

mal CS equilibrium size is given by N = <—% + %\ /14 %>, where (z) denotes the smallest

integer greater than or equal to z. Clearly, N is decreasing in b, so that the more dissonant
preferences are, the less informative communication can be.

As in the previous section, let t*(b) be the solution to U (a@(0, t*(b)), 0, b) = U(a®(0),0)
if it exists, and oo otherwise. It is straightforward to compute that ¢*(b) = 4b for b < %,
and oo for b > %. Recall that Lemma 8 said that there is at least one CS equilibrium
such that the lowest type weakly prefers being pooled with the first segment to separating
himself, and that generically, the preference is strict. The following is a specialization of

this statement to the current setting. Define
B b:b ! fi int J>1
=4b:b=——— for some integer
27 (J+1) et =

Obviously, B is not dense in R, and hence any b € B is non-generic.

Claim 1. In the U-Q model, if [O,t?(b)] denotes the first segment of the most-informative
CS equilibrium, then t1(b) < t*(b) with equality if and only b € B.

The proof just relies on straightforward manipulations, since given b, the set of CS
equilibria can be solved explicitly. Observe that the inequality in the Claim holds with
equality for only a countable number of b, viz. those b € B, so it holds with strict inequality
generically. The more interesting result is the converse.

Claim 2. In the U-Q model, if [O,t[l)(b)] denotes the first segment of any CS equilibrium
that is not the most-informative CS equilibrium, then t9(b) > t*(b).

Again, the proof just involves straightforward manipulations. Putting the two
Claims together yields the following powerful conclusion.

Proposition 6. In the U-Q model, the only robust CS equilibrium is the most-informative
CS equilibrium. Moreover, generically, it is strongly robust.

Proof. By Claim 2, Theorem 3 (part 2) applies to every non-most-informative CS equilib-
rium, and no CS equilibrium apart from the most-informative one is robust. By Proposi-
tion 5, it follows that the most-informative equilibrium is robust and generically strongly
robust. ]

Thus, in the U-QQ model, the selection criterion of robustness to almost-cheap talk
isolates the most-informative CS equilibrium uniquely.
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8 Discussion

8.1 Relation to Other Refinements

Arguably the most well-known cheap talk refinement in the literature is the concept of
neologism-proof equilibrium (hereafter, NPE), due to Farrell (1993). The criterion is follows:
assume that given any equilibrium of a cheap talk game, for every subset of types, Q C T,
there exists a distinct neologism, or out-of-equilibrium message, mq. For any 2 C T, define
r(Q2) as the optimal response for the Receiver if the only information she has is that ¢ € Q.
An equilibrium is not a NPE if there exists some set  C T s.t. a type t strictly prefers
action 7(£2) to the equilibrium action he induces if and only if ¢ € Q.

The NPE concept is developed for general cheap talk games, and unfortunately its
applicability to CS is limited. In the CS model, the set of NPE is generally empty whenever
babbling is not the unique outcome (Farrell 1993, p.529).22 In contrast, the approach in this
paper guarantees that at least one CS equilibrium survives, while simultaneously ruling out
some CS equilibria in general. On the other hand, it is not clear that the present approach
will generalize to arbitrary cheap talk games, whereas NPE can be a useful tool in those
settings where it exists.?3

That being said, it is useful to connect the two approaches. In the current model,
observe that when k is small, all reports but the highest one are neologisms in any equilib-
rium with reporting that supports a CS outcome. However, and this is the crucial point,
because these reports are not cheap talk, I have appealed to out-of-equilibrium reasoning to
determine their equilibrium meaning.?* A few sentences from Farrell (1993, p. 519) may
be instructive:

“[First, the] meaning of messages that are used in equilibrium ... is established
by Bayes’ rule, which tells us their meaning-in-use. Secondly, ... [a message]
may have a meaning that can be determined, or at least somewhat restricted, by
introspection. This yields restrictions on out-of-equilibrium beliefs in generic
signaling games: but they do not apply to cheap-talk games. Finally ... a
message may have a focal meaning, if it is phrased in a preexisting language.”

On the costly reporting dimension, regardless of k, we ultimately only have messages
of the first and second kind, not of the third. More precisely, it is not that the messages must
not have a focal meaning, but instead that the first and second considerations mentioned
above override any others, including focal meanings, and pin down the meaning of all reports

22For the same reasons, none of the CS equilibria are announcement proof in the sense of Matthews et al.
(1991).

23Grossman and Perry (1986) define perfect sequential equilibrium for general signaling games. This
concept is in the spirit of NPE, and can also suffer from non-existence. Grossman and Perry (1986, p. 110)
suggest that it [only] be used whenever it exists.

240f course, as always, this is “endogenous” with respect to the assumptions of the model.
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on the costly dimension. In particular, all out-of-equilibrium reports mean “I am the lowest
type” and are responded to accordingly by the Receiver. In this sense, all neologisms in
the relevant equilibria have the same meaning, despite the existence of a plethora of unused
reports.25

The critical difference between Farrell (1993) and this paper is that I start out by
specifying completely the set of available messages. Thus, each of these messages has a
meaning that is determined based upon usage or introspection, whereas his approach relies
upon messages whose meaning is determined outside the model. Consequently, which
messages are neologisms with respect to any equilibrium (in addition to what they mean)
is determined within the model in this paper, unlike in Farrell (1993). So while both
approaches share the common feature of augmenting the CS model with “extra” messages,
how these messages influence a putative CS outcome is very different.26

8.2 Predictions

While most of the paper has focused on the equilibrium selection aspect of the analysis, the
actual structure of equilibria with almost-cheap talk is worth discussing further. Consider
an empirical situation where the model applies. If costs of misreporting are small, then
equilibrium play involves significant (possibly complete) pooling on the costly report dimen-
sion, and partial separation through the cheap talk dimension amongst the types pooling on
the costly report. As observers, should we however only take into account the reports and
not the cheap talk, we might be very mislead about the nature of signaling: we conclude
that there is no useful information transmitted, whereas in fact, there is. I turn to two
examples to elaborate on this.

2°0On a related note, notice that the neologisms in our equilibrium for small k are not credible in the
sense that Farrell defines credibility of a neologism. Even though the Receiver believes that the Sender
is of the lowest type when she sees any neologism, it is not the case that the only type of Sender who
prefers a® (0) to the response he induces in equilibrium is the Sender of type 0. Recall that generically in
those CS equilibrium that fail our selection criterion, U(a@(0, t1),0) < U(a®(0),0). By continuity, all types
¢ small enough prefer getting a™(0) to what they get in equilibrium. So in the sense of Farrell, none of
the neologisms available in our model are credible. This point is not really a puzzle though: the notion of
credibility that Farrell defines for a neologism is appropriate for a neologism whose meaning is given outside
the model - the third source of meaning in the earlier quote. For those neologisms that derive meaning
through introspection within the model (as is the case with all our neologisms, at the risk of belaboring the
point), their credibility and the Receiver’s beliefs upon seeing them are determined accordingly.

26To emphasize the point, one can augment the current model to include the out-of-model neologisms of
Farrell (1993), and carry over the definition of neologism-proofness appropriately. Based upon the logic of
his non-existence result for the CS model, it is clear that the same problem would apply to our model. As
an example, consider the uniform-quadratic setup (with quadratic misreporting costs), with b = .2. Then
when k = .02, it can be checked that there is a unique mD1 equilibrium, and this involves complete pooling
on the costly report, and implementation of the CS 2-segment partition {0,.1,1} through cheap talk. But
the same neologism that breaks this equilibrium for CS - “I belong to the set [.43333,1]” - breaks the mD1
equilibrium.
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8.2.1 Self-Evaluation Forms

In firms, managers often require their subordinates to submit self-evaluation forms period-
ically. These forms typically involve the employee evaluating himself on some scale over a
variety of attributes, skills, or competence domains. Often, the purpose of these forms is
not to evaluate any single employee per se, but instead for the manager to determine what
training programs are needed for the workforce/team as a whole. Accordingly, to elicit
accurate responses, attempts may be made to preserve anonymity somehow, or the manager
explicitly says that the forms are for training guides only, and so forth. Nonetheless, the
outcome often is that responses on these forms tend to be uniformly clustered around the
highest ratings on each category. However, when the form is turned in by an employee to
the manager, the employee might say something like, “Though I think I am skilled with
using our software packages, I could use some additional training on this.” Somewhat para-
doxically, this comment may be concurrent with the employee rating himself maximally on
the evaluation form category, ‘knowledge of software packages’.

Let us see how the model may apply to this situation. The self-evaluation forms
are almost-cheap talk to employees because despite their putative use for designing training
alone, there is always the small chance that can be used “against” an employee when it
comes to bonuses, possible layoffs, promotions, etc. That is, self-reported weakness on the
evaluation form can be used to justify withholding rewards from, or even punishing, the
employee.2” On the other hand, a verbal remark to the manager is indeed [relatively] cheap
talk - the employee can simply deny having made it should he need to, or it may even be
likely that the manager would not remember down the line what a particular employee said
verbally. As far as preferences are concerned, it is reasonable to think that if intensity of
training is the choice variable, then preferences between the manager and employees are
incongruent - either the employees want more training for a given level of competence (say
they want to shirk on more difficult job tasks), or maybe they want less training, since they
underestimate the value of training.

Therefore, the basic assumptions of the model are satisfied, and what is observed
is then consistent with equilibrium: pooling on the formal self-evaluation dimension, and
some separation on the informal, verbal dimension. The model emphasizes that it would
be a mistake to conclude that the manager learns little from the employees purely on the
basis of the uniformity of responses on the evaluation forms - the useful information is
transmitted on the cheap talk dimension. Of course, this raises the question as to why the
firm would bother having the self-evaluation in the first place. This is beyond the scope
of the paper, but there are potentially many reasons. For example, it may help morale in
terms of employees feeling like they are being seriously consulted (more so than if they were
just asked verbally), or it may be needed to prove to stock holders that efforts to customize
training are being taken, and so forth.

2"For instance: ‘You yourself said that you aren’t very good in closing a sale, so how can we give you a
bonus this year?’
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8.2.2 Political Candidate Speeches

It is often lamented that political candidates convey very little information in their speeches

28 The current model may help shed

to the electorate about their policy preferences.
some light on this phenomenon. Following the the spatial model of politics, imagine that
policy preferences are unidimensional. A candidate’s type depends on how extreme his
policy preferences are with respect to the electorate’s: the lowest type is the one that with

.29 If we

the most extreme policy preferences, and the highest types is the most centris
think of the cumulative of all speeches during a campaign as one net speech, then one
can loosely interpret the phenomenon of uninformative speeches as pooling by candidates
of different types by reporting that they are the high type (centrist).3’ It is reasonable
to assume that these speeches have misreporting costs, in the sense that even after the
election, if a candidate reveals himself through policy choices to be more or less centrist
than he claimed in speech during the campaign, this is costly to his future political career,
through loss of reputation, possible recall, reduced mandate, etc. On the other, there are
other “messages” that are less costly in this sense. For example, candidates choose to get
photographed with certain people, speak at particular venues, attend one event but not
another, dress in particular ways, and so forth.3! These cannot be directly used against
the candidate in the same way the content a speech can, since it is much harder to prove
motive or intent in these choices. So, these dimensions of actions are [relatively] cheap
talk. As far are responses and preferences are concerned, I suggest treating the electorate’s
response directly as its inference about the candidate’s policy preferences. The electorate
would like to infer accurately, whereas we can assume that for any level of extremism, the
candidate would like the electorate to infer something slightly closer to the center - but not
overly so, since that could hurt the candidate in other ways, for example with respect to
maintaining the party line, lobbyist commitments, and so forth.32 The model then applies

28Shepsle (1972, p. 555) cites one U.S. presidential campaign manager as saying about his candidate: “Let
him say not one single word about his principles, or his creed - let him say nothing - promise nothing. Let
no Committee, no convention - no town meeting ever extract from him a single word, about what he thinks
now, or what he will do hereafter. Let the use of pen and ink be wholly forbidden ...”

2930 type only refers to the distance from the center, not whether one is to the left or right of the center.

300f course, this is significant simplification and abstraction of reality. In particular, one might really
want to treat ambiguity of speech much more richly, for e.g. by allowing report strategies of the form, “I
am a type in the interval [t',t"]”.

31For example, during the recent California recall election, one analyst discussed Gray Davis’ attempt to
change his dress style to be more informal, to “connect with the working man”, and thus convey a “different
message” to voters.

32This is the crucial assumption that distinguishes the application from Banks (1990). That paper
shares the assumption that misreporting is costly, but assumes effectively that any type of candidate would
like the electorate to believe he is completely centrist. While I would agree that this is the preferred
inference a candidate would like to induce purely from the perspective of voter beliefs, the point is that
other considerations such as those mentioned in the text would mitigate against this. To elaborate, an
extreme candidate would indeed want voters to think he is centrist to maximize election chances. But
this must be balanced by the fact that party members or potential donors are also forming inferences based
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and predicts that we might expect to see separation through these other communication
avenues amongst the candidates who pool on their speech content. Moreover, when costs
of misreporting through speeches are small, we should expect to see most of the useful
information transmitted through non-speech actions. Thus, the fact that speeches by
candidates are largely uninformative need not reflect the true level of information obtained
by the electorate, and conclusions based largely upon the uninformativeness of candidate
speeches may be overly pessimistic.

8.3 Extensions

8.3.1 Other Report Spaces

The analysis thus far assumed that the Sender must sender a report r € T. While this
might be the natural and most reasonable assumption in many cases, one might imagine
that the report space could also be different. So suppose instead r must lie in some set
R = [0, P], with P € (0, 00|, with some abuse of notation.

Theorem 5. There exists k*(P) € [0,00] such that a fully separating equilibrium exists if
and only if k > k*(P). Moreover,

1. k* is weakly decreasing in P and strictly decreasing for P > 1
2. k*(1) = o0

3. k*(c0) =0

4. k*(P) >0 for all P < o0

The theorem says that regardless of how large the report space is, as long as it
is finite, there cannot be full separation in equilibrium once misreporting costs are small
enough. The no full separation result in Proposition 1 earlier is a special case of this
Theorem (Part 2 above). Note that if the report space is unbounded, then there will be a
fully separating equilibrium for any & > 0.

8.3.2 Cost Functions

It was thus far assumed that the the most-preferred report for each type is the truth,
ie. that Cy(¢t,t) = 0 for all ¢t € T. As already noted, I consider this to be the most
natural assumption given the interpretation of C' as misreporting costs. However, a close
examination of all the arguments will reveal that nothing substantive changes if instead
there is some strictly increasing function 6 : T — T such that Cy((t),t) = 0 for all £.33> So

upon the same actions by the candidate. Making them believe he is overly centrist could be harmful to his
support from these sources.

33¢f. Bernheim and Severinov (2003).
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what is important is that the most-preferred report is monotonic in type. This extension
can be useful in allowing for more general interpretations of the cost function. For example,
as I discuss in more detail in Remark B.1 in the Appendix, this permits costs to stem from
“crazy” types of Receivers, as introduced by Ottaviani and Squintani (2002).

8.3.3 Limited Costly Talk

In the main part of the paper, I discussed robustness of a cheap talk equilibrium to the
availability of costly signaling as the magnitude of costs shrinks, i.e. &k — 0. There is
another alternative that might be conceptually appealing in certain applied cases. Consider
the report space being [0, P]. Instead of taking k — 0, one could instead fix the magnitude
k, and then take the limit P — 0. Clearly, the case of P = 0 is equivalent to the CS
model. It is straightforward given the main arguments of the paper that the condition for
robustness of a CS equilibrium does not change whether one studies £k — 0 or P — 0.

8.4 Other Equilibria

Thus far, I have focussed on equilibria that satisfy the mD1 criterion. I now discuss what
happens if this is criterion is dropped. Without imposing monotonicity (of Sender’s report-
ing strategy and Receiver’s beliefs), it is not clear how much can be said about robustness
of CS equilibria in general. I illustrate by proving that in the uniform-quadratic model,
babbling can be supported as a D1 equilibrium once misreporting costs are sufficiently
small.

Proposition 7. In the U-Q model, babbling is a D1 equilibrium for small enough k.

In the U-Q model, the action elicited in equilibrium is @(0, 1) = %, whereas a(0) =
0. If U(3,0) > U(0,0) then the proposition is immediate since Theorem 3 assures that
babbling can be supported for small enough & as an mD1 equilibrium, hence a D1 equilib-
rium. So assume U (%, 0) < U(0,0), or equivalently the bias parameter b is no greater than
%. The proposition is proved by showing that all types pooling on r = % — b is part of a
D1 equilibrium once k is sufficiently small.

Another possibility is to require monotonicity but drop the further belief restriction
of D1. It remains an open question whether there is sequence of monotonic equilibria to
this model that converges to a given CS equilibrium. The difficulty is characterizing the

set of monotonic equilibria (even when k is small).

9 Conclusion

This paper has presented a model of communication between an informed Sender and an
uninformed Receiver, wherein the Sender uses two kinds of messages: a pure costless mes-
sage, and message where misreporting private information is costly. In the absence of the
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costly message, the model reduces to that of CS. Using a refinement approach on the costly
message dimension, I have analyzed a class of equilibria that are appealing. By analyz-
ing these equilibria when the magnitude of costly misreporting shrinks to arbitrarily small
amounts, a theory of equilibrium selection amongst CS equilibria emerges. The selection
criterion of robustness to almost-cheap talk is summarized by a very simple condition: given
a CS equilibrium, one only needs to check whether lowest type prefers being pooled with
the lowest segment of types to separating himself. At least one CS equilibrium satisfies
this property, and under a regularity condition (Condition M), the most-informative equi-
librium survives whereas the least-informative equilibrium is eliminated so long as there
is more than one CS equilibrium. While most of the paper focused on the equilibrium
selection aspect of the analysis, I have also suggested that the equilibrium characteristics
with almost-cheap talk are important in their own right.

A potentially interesting issue for future research to pursue the approach of this
paper to other classes of cheap talk games, for example games where more than one player
possesses and communicates private information before actions are taken.
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Appendix A: Proofs

Proof of Lemma 1 on Page 8. Suppose not, by way of contradiction. Then there exists ¢ € (0,ﬂ
s.t. p(f) =1. For small ¢ > 0, define g (¢) as the expected utility gain for a type £ — ¢ by deviating
from p (f — E) to p (f) Since by hypothesis all types below and including ¢ are separating, we have

g(e) = [U(aR(f),f—E)—kC(f,f—s)] — [U(aR(f—a),f—a)—k:C(p(f—E),f—E)]

That C (p(t—¢),t—¢) > C (i — e, —€) implies

g(e)>¢(e)=[U(af (), t—c)—kC ({,t—¢)| - [U(a®(f—¢),t—¢) —kC (f—e,t —¢)]
Clearly ¢ (0) = 0. Differentiating yields

¢ (e) = —Us(af(f),t—¢)+kCo(tt—e)—kCy(t—e,t—e) —kCy(t—c,t—¢)
+Uy (a® (f—¢),t—e)af (f—e) + Uz (a® (t—¢),t —¢)

Recalling that C (f, f) = 0, it follows that ¢’ (0) = U (aR (f) ,f) ol (f) > 0. So for
sufficiently small € > 0, g (¢) > ¢(¢) > 0, implying that a type ¢ — ¢ strictly prefers to imitate £,
contradicting equilibrium separation. O

Proof of Proposition 1 on Page 8. Assume that there is a separating equilibrium. By Lemma 1,
p(t) #t for all ¢ > 0 (implying in particular that p(1) < 1) . The next step is to establish that
p(0) =0and p(t) <tforallt < 1. To do this, it suffices to show that if p (£) > 7 for some 7 € [0, 1),
then p(t) >t for all ¢ € [¢,1], since we already know that p (1) < 1.
Claim: If p (¢) > 1 for some 7 € [0,1), then p(t) >t for all t € [¢,1
Proof: Suppose not. Then there exists ¢ € [0,1) such that p (%)
such that p () < ¢'. Define

]
> 1, and some ¢’ € ({,1]

t*= sup {t:p(t) >t}
te[t,t]

By the previous step, there are two possibilities: (a) p (%) < t%; (b) p (t*) > t°.3% Suppose
first p (t°) < t°. Then there exists an increasing sequence ¢, /' t* with p(t,) > t,. Let the limit
of p(t,) be p (if necessary, take a convergent subsequence, whose existence is assured since this is a
bounded sequence.) Obviously, p > t* > p(t°). Equilibrium incentive compatibility implies that
for all n,

U(&R(tn) ) k‘C( (tn) t )
U (a®(t*),1°) — kC (p (t*) ,t*)

AVARLVS

Rearranging and adding yields

U (a®(t*),t°) = U (a"(t),t°) — [U (a®(t*), t) — U (a"(tn),
> E[C(p#),t7) = Clp(tn)1°) = (C(p () ,tn) = C(p(tn) s tn

tn)]
)]

34More explicitly, if t° > 0, then p(t°) # t° from the previous step. If t* = 0, then it must be that
t> =1 =0 and by hypothesis, p () > 1.
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This can be rewritten as

s aR(tS) s
/ / U12 (a, b) dadb 2 k/
tn alt(ty,) t

n

p(t%)
/ 012 (a, b) dadb
p(tn)

Since U and C' are smooth, Ui (a,b) is bounded above by some constant v > 0 for any a, b,
and similarly Cs is bounded below by some 17 < 0. So we have that for all n,

(t° = t)* 0 = K (t° = ) (0 (¢°) = p (ta)) 1

or equivalently
(£ = ta) v = k (p () = p (ta))

But the LHS is converging down to 0,whereas the RHS is converging up to k (p — p (¢*)) |n| >
0, contradicting the inequality for large enough n.

Now consider case (b), p(t*) > t*. Note that this implies ¢t* < 1. So there is a decreasing
sequence t, \, t* with p(t,) < t,.3> The rest of the argument proceeds mutatis mutandis to
case (a). Let the limit (of a convergent subsequence if necessary) of p(t,) be p.  Obviously,
p <t < p(t*). Equilibrium incentive compatibility implies that for all n,

U (aR(tn), tn) —kC (p(tn),tn)
U (a®(t%),t*) — kC (p (t*) ,t°)

v

U (a®(t*),tn) — kC (p () , tn)
U (a"(tn),t°) = kC (p (tn) ,t°)

Y

Rearranging, adding, and rewriting yields

tn pal(tn) tn ppltn)
/ / Uiz (a,b) dadb > k/ / C12 (a,b) dadb
t* aft(ts) ts p(t%)

Defining v > 0 and 7 < 0 as before, we have that for all n,

(tn - ts) v 2 k (p (tn) - p(ts)) n

But the LHS is converging down to 0, whereas the RHS is converging up to &k (5 — p (t)) |n| >
0, contradicting the inequality for large enough n. ||

Combined with Lemma 1, we have established that p(0) = 0 and p (t) < ¢ for all ¢ > 0.
Now we argue that p must be continuous.

Claim: p is continuous.

Proof: By way of contradiction, suppose there is a discontinuity at some ¢’. Take a sequence
t, — t', and let p be the limit of (if necessary, a convergent subsequence of) p (t,).3® There are two
cases: either p < p ('), or p > p(t').

Consider first p < p (¢'). Note that this requires ' # 0. So we have t' > p (¢') > p. Since
C (-, -) is continuous, there exists € > 0 and N such that for alln > N, C(p (t,) ,tn)—C (p (t') , t) >
€. Moreover, by picking n large enough, we can make U (aR(tn), tn) -U (aR(t’), tn) arbitrarily close
to 0. It follows that for large enough n, t,, prefers to imitate ¢’, contradicting equilibrium.

Consider next p > p(t'). Note that p < t, because otherwise for sufficiently large t,, we
would have p (t,) > t,. So we have t’ > p > p(t'). Since C (-,-) is continuous, there exists ¢ > 0

35We know this because since p(t') < t', it must cannot be that t* = ', and hence t* < t', and by
definition of t* and step 1, p(t) < ¢ for all t € (¢°,¢'].

36Since p is bounded, there is a convergent subsequence.

36



and N such that for all n > N, C(p(t'),t') — C(p(tn),t’) > . Moreover, by picking n large

enough, we can make U (aR(tn),t/) -U (aR(t’),t’) arbitrarily close to 0. It follows that for large
enough t, ¢’ prefers to imitate ¢,, contradicting equilibrium. ||

We conclude as follows. Since p is continuous with p (0) = 0, it must be weakly increasing

n (0,t') for some ¢ > 0. Given that p(t) < t for all t > 0, we can choose £ > 0 small enough

to make U (af® (')t —¢) > U (a (' —¢),t' —¢) and yet C(p(t'),t' —¢) < C(p(t' —¢),t' —2).

But then type ¢’ — ¢ prefers to imitate type t’, contradiction. a

Proof of Lemma 3 on Page 14. Given that in a report-monotone equilibrium, the set of types using
any report is connected, the argument is completely analogous to Crawford and Sobel (1982, Theorem
1), hence omitted. O

Lemma A.1l. If in a report-monotone equilibrium there is pooling on a report r, < 1, then there
exists 8 > 0 such that reports v € (rp,r, + 0) are not sent in equilibrium.

Proof. Suppose there is pooling on r, < 1. Define t;, = sup{t: p(t) =r,}. If p(ty) > rp, then by
report monotonicity, we are done, since reports in (7, p (t)) are unused. So assume that p (¢t,) = rp.
Similarly, if ¢, = 1, then we are done, since reports r € (r,, 1) are unused. So assume ¢, < 1. Let
mp =N (th).

Claim: There must be non-trivial bunching on (r,,my,).

Proof: If not, then since bunches are connected, there is no other type t < tj playing (r, ms),
whence type t5, is separating. But then, for small enough £ > 0, some type t;, — ¢ would prefer to
mimic type t,, contradicting equilibrium. ||

So there is bunching on (r,,my), whence a (r,,my) < aft (t,). Let p’ = limyyq, p(t). (p
is well-defined by report monotonicity, though it may not be played in equilibrium.)

Claim: p’ > ry.

Proof: Suppose not. By report monotonicity, it must be that p’ = r, = p(t5). Note that
p is then continuous at t5. Since p(t) > 7, for all t > ¢, it follows that p is strictly increasing on
(th,tn + 6) for some § > 0. Hence, defining a. = a (p (t, +¢), u (tn +¢)), we have a. = a® (t, +¢)
for small enough € > 0. By picking € > 0 small enough, we can make C (p (tn, +¢),tn) — C (rp, tn)
arbitrarily close to 0, whereas U (ac,tn) — U (a (rp, mp) , tp) is positive and bounded away from 0,
because a (rp,my) < af (t) < a. < a¥(t,). Therefore, for small enough £ > 0, ¢, prefers to
imitate t;, + €, contradicting equilibrium. ||

This completes the argument because reports in (r,, ') are unused. (]

/

Lemma A.2. In any mD1 equilibrium, Vr € [0, p(0)) and any m, o (r,m) = a* (0).

Proof. Pick any 7 < p(0) and any m. We claim that ® (0,7, m) = 1, which suffices to prove the
Lemma. Let ag = a(p(0),1(0)). Since & (#) = a®(0), and &, (#) = ay, it suffices to show that
Ya € [aR (0) ,ao] , Vit >0,

Ula,t) = kC (1) Ulal(p(t),pn(t),t) —kC(p(t),1)

U (a,0) — kC (7, 0) U (ag,0) — kC (p (0),0)

Equilibrium requires

Ula(p(t),u(t),t) = kC(p(t),t) = U(ao,t) — kC (p(0),1)
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and hence it suffices to show that

U (a,0) — kC (7,0) — [U (ao, 0) — kC (p (0),0)]
> Ula,t) — kC (7,t) — [U (ag, t) — kC (p (0) ,¢)]

This inequality can be rewritten as

ag t 1 t
/ / Uiz (y,2) dzdy > k/ / Ch2 (y, z) dzdy
a 0 7 0

which holds because Ci5 < 0 < Upa. O

Proof of Lemma 4 on Page 15. Part 1 was proved in Lemma A.1, and Part 3 in Lemma A.2. We
prove part 2 now. Suppose not, so that there is pooling on r, < p(1). Obviously r, < 1. We'll
write 5, (1) as just ¢, and ¢; () as just ¢;, to reduce notation. There are two conceptually different
cases: either t;, < 1, or tp = 1.

Case 1: t;, < 1

Note that by definition, for small enough ¢ > 0, p(t), —€) = rp,, whereas for all ¢ > 0,
p(tn +€) > rp. Clearly, for any m, a (rp, m) € (a® (t;),a” (t,)). Lemma A.1 established that there
is @ > 0 such that reports in (r}, 7, + 6) are not played in equilibrium. So pick any 7 € (rp, 7, +0).
Report monotonicity implies that for any m, a (r, +6,m) > a(#,m) > a(rp,m). We will prove
that the mD1 criterion requires o (7) = a® (¢;,) via two Claims.

Let p* = infysy, p(t), pt = infysy, p(t), and p_ = sup,, pu(t). Note that all three
are well-defined by report monotonicity and the fact that bunches are connected. Obviously,
w (tn, —€) = p— for small enough ¢ > 0.

Claim: Type t;, is indifferent between playing (p™, u™), (p (tn), g (t)), and (rp, p—).

Proof: We first prove indifference between (p (¢4),p (¢)) and (rp, u—). Suppose not, by
way of contradiction. Equilibrium implies

Ula(p(tn);pn(tn)) s tn) = kC(p(tn)  tn) > U (a (rp, p) tn) = KC (rp, th)

But then by continuity of U and C, for small enough £ > 0, a type t;, — e would rather play
(p (tn), p (tn)) than (rp, p—), which contradicts equilibrium.
Next we prove indifference between (p™, u) and (r,, u—). Define

Wie)=U(a(pt,n®),th—e) —kC (p*,th —€) = [U (a(rp, p—) ,tr, — &) — kC (rp, t, — €)]

Note that W is continuous since U and C' are. If ¢}, is not indifferent between (p*, u™) and

(rp, p—), then W (0) # 0. Consider first W (0) > 0. Then by continuity, W (¢) > 0 for small enough

£ > 0, so that a type t;, — ¢ would strictly prefer to play (p*, u") rather than (r,, u—), contradicting

equilibrium. If W (0) < 0, then type ¢, strictly prefers to play (p*, ut) rather than (r,,u—). But

we already showed that ¢, is indifferent between playing (p (¢1,), 1 (¢)) and (7, u—). So ¢, strictly

prefers (pT, u) over (p(t),u (tn)), contradicting equilibrium. ||

Claim: For all 7 € (rp, 7, + 0) and all m, « (r,m) = a’* (t3,).

Proof: Pick any # € (1,7, +6). Note that § (7) = a(rp, p—) and &, (7) = a(p™, p™).
Therefore, we must show that Va € [a (rp, u—), o (p™, u™)], Vt # 4,

Ula,t) —kC(7,1) = Ula(p(t),n(t),t)—kC(p(t),1) (A-1)

U

Ula,tn) = kC (F,tn) > Ula(p(tn),p(tn)) tn) —kC (p(tn) tn) (A-2)
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Consider first ¢ < t;,. Equilibrium requires
Ula(p),pn(t).t) —kC(p(t),t) > U (a(rp,p-),t) —kC (rp,1)

and we know that ¢ is indifferent between (p (¢n), 1 (tn)) and (rp, u—). So it suffices to
show that

U(avt) —kC (f'vt) U(a (Tpmu'—)vt) —kC (Tpvt)

V &= IV

Ula,tn) = kC (7, tn) Ul(a(rp, p-) th) = kC (rp, th)

This is true if

Ula,tn) — kC (7, tn) — [U (a(rp, p—) ,tn) — kC (rp, tn)]
> Ula,t) —kC(#,t) = [U(a(rp, u—),t) — kC (rp,t)]

which can be be rewritten as

a th 7 th
/ Uiz (y,2) dzdy > k/ Crz2 (y, 2) dzdy

(Tp:N—) t p t

which is true because Uip > 0 > (4.
Now consider the other case, ¢t > t;,. Equilibrium requires

U(a(p(t),pm(t),t) —kC(p(t),t) > U (a(pt, "), t) —kC (o', t)

and we know that ¢, is indifferent between (p (t,),u (tn)) and (p™, u*). So to show that
(A-2) follows from (A-1), it suffices to show that

Ul(a,t) —kC(7,t) > Ula(pt,put),t) —kC (p*,t)
\
U(a,tp) — kC (F,tp) > U (a (p+,u+) ,th) — kC (p+,th)

This is true if

U (a,tp) — kC (7, ty) — [U (oz (p+,u+) ,th) —kC (er,th)}
> Ula,t)—kC(F,t) — [U (a(pt,put),t) — kC (pT,t)]

which can be rewritten as

+ ot

(p*m®) gt P
/ Urz (y, ) dzdy > k/ Ci2 (y, z) dzdy

th th

which is true because Uy > 0 > Cia. ||

This complete the proof for ¢, < 1.

Case 2: t;, =1

If p(1) > rp, then the same arguments as in Case 1 work, except that we now define
pt =p(1), and p* = p(1). So consider p(1) =7, < 1. Pick any # > r,. Since &, (7) = a’* (1),
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we must show that Va € [a (rp, (1)), a" (1)], VE < 1,

Ula,t) =kC(7,t) = Ula(p(t),u(t),t) —kC(p(t),1)
I
Ula,1) =kC(#,1) > Ula(rp,p(1)),1) = kC (rp, 1)

Equilibrium requires that for all ¢,

U(a (p(t) 7/1'(t)) 7t> - kC(p(t),t) > U(Oé (Tp7/1'(1))7t) - /CC(T‘;,,J)

So it suffices to show that for all ¢ < 1,

Ula,1) - kC(?2 1) = [U(a(rp,p(1)),1) = kC (rp, 1)]
> U( >) (72 ) [ ( (rpau(l))at)_kc(rp’t)]

This can be rewritten as

a 1 7ol
/ / Uiz (y, 2) dzdy > k/ / Chz (y, 2) dzdy
O‘(Tpv/"(l)) t rp Jt

This inequality holds because C12 < 0 < Uys. O
Lemma A.3. In any monotonic D1 equilibrium, p (t) >t for all t € (0,1).

Proof. Denote the cutoff type by £ < 1. First, we prove the Lemma for t € (O,f) . Suppose not.
It is straightforward to check that Lemma 1 implies that p (t) # ¢ for all ¢ € (O, f). So there exists
"€ (0,%) such that p (') < ¢’. By report monotonicity, p (t' —¢) < p(t') for all € > 0. It follows
that for small enough e > 0, C(p(t' —¢),t' —¢) > C(p(t'),t’ —€). On the other hand, since we
are on the separating part of the type space, U (a”® (t') ,t' —¢) > U (a® (' —¢) ,t/ — ). Therefore,
a type t' — ¢ strictly prefers to imitate #’, contradicting equilibrium separation.

Next, observe that 1 = p(t) > ¢ for all ¢t € (£,1). So it only remains to prove p (f) > ¢. If
is part of the top pool then p (f) =1 >t, and we are done. If { is not part of the pool, then there
is separation up to and including ¢, and Lemma 1 implies that p (f) #t. Report monotonicity and
that p () >t for all t € (0,%) then implies that p (£) > £. O

Lemma A.4. In any mD1 equilibrium with cutoff t, (i) p is continuous at all t # t; and (i) if
t > 0, then p is either right- or left-continuous at t.

Proof. (i) We prove the continuity at all ¢ # £ first. Trivially, p is continuous above . Suppose to-
wards a contradiction that there is a discontinuity at some ¢’ < ¢t. First assume p (') < limg 4 p (t) =
p. By the continuity of C' and the monotonicity of p, as € \, 0,

Clpt' +e),0+e)~Clpt) . +e) — C{B)—Cp(t),1)
> 0

where the inequality follows from p > p (') > ¢. On the other hand, since we are on the
separating portion of the type space,

U@t +¢e),t' +e)—U (@), t' +¢) =0

40



Therefore, for small enough € > 0, ¢’ + ¢ prefers to imitate ', contradicting equilibrium
separation.

The argument for the other case where p (t') > lim;yy p (¢) is similar, establishing that ¢/
prefers to imitate ¢’ — & for small enough ¢ > 0.

(ii) Suppose not. Since p is not right-continuous at £, then type by report monotonicity, £ is
separating. Since p is not left-continuous, report monotonicity implies p (£) > lim,;; p (t) = p. We
will argue that ¢ prefers to imitate a type £ — e small enough € > 0, which contradicts equilibrium
separation below ¢. Suppose not. Then for all € > 0,

U(aR (f—a),f) — kC (p(f—s),f) §U(aR (f),f) - kC (p(f),f)

Since lim.|g p (f — 5) = p, the LHS is converging to U (aR (f) ,f) — kC (B, f). So the above
inequality can hold for all ¢ > 0 only if C (B, f) > C (p (f) ,f). But by Lemma A.3 and the
left-discontinuity hypothesis, p (f) >p> t, whence C (p (f) ,f) >C (B, f), contradiction. |

Proof of Lemma 5 on Page 16. The second part is obvious, so we’ll prove the first. Assume r; < 1.
By the Lemma A .4, either p (t) =ryorp (t) = 1. So suppose first p (t) = r1, in which case t is
separating. Define for € > 0,

W (e) EU(aR (f),f+€) — kC (rl,f+£) — [U (a(l,ml),f—i—fs) — kC (17f+£)]

If the Lemma does not hold, then W (0) > 0 (equilibrium prevents W (0) < 0). But then
by continuity of W, a type t + ¢ would prefer to imitate ¢ rather than pool at the top, contradicting
equilibrium. It remains to consider p (f) = 1, in which case t is pooling. Note that then (f) =mj.

Claim: For all m, U (a (1,my),t) > U (a(1,m),{).

Proof: Suppose not. Then there exist some m such that U (a (1,mq) ,f) <U (a (1,m) ,f).
By continuity, it follows that there exists ¢ > 0 such that for all ¢ € (f,f—ke), U(a(l,my),t) <
U(a(1,m),t). But then none of these types ¢t can being playing message m;, contradicting m; =
lim, 0 (0). |

By the Claim, if the Lemma does not hold, it must be that for some m/’,

U (o (1,m),8) — kC (1,1) > U (a (ry,m/) 1) — kC (r1,1)

Claim: For all m, a (r1,m) = a® (£).

Proof: Suppose not, for some message m. Lemma 2 implies that « (r1,m) > «a(r,m) for
all 7 < ry. Since all types below # are separating and using reports smaller that 7y, it follows that
a(ry,m) > alt (f) But this can only be optimal for the Receiver if she puts positive probability on
some type t > t when seeing ;. We claim that this is ruled out by the mD1 criterion. To show
this, it suffices to show that for all a € [aR (f) ya (1, ml)} and t > ¢

Ula,t) —kC(r,t) > U(a(l,pu(t),t) —kC(1,1)
U
>

U(a,f) — kC (rl,f) U(a (l,ml),f) —kC (1,f)

Since equilibrium requires

U(a(lp(t),t)—kC(1,t) >2U (a(l,my),t) —kC (1,t)
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it is sufficient if the following inequality holds

U(a,f) —kC (rl,f) - [U (a(l,ml) ,f) — kC (1,f)]
> Ula,t) —kC (r1,t) — [U(a(1,mq),t) — kC (1,1)]

This can be rewritten as

a(l,my) gt 1 pt
/ / Uiz (y, 2) dzdy > k/ / Ci2 (y, 2) dzdy
a t 7 t

which holds because Ujs > 0 > Cia. ||
So it must be that

U(a(l,m),t) —kC (1,1) > U (a® (f) ,1) — kC (r1,1)
But then by continuity, for small enough & > 0,
Ul(a(l,mi),t—e) —kC (L,t—¢) > U (a® (£) ,£) — kC (r1,7)
Also, by continuity of U and C, and lim,; p (t) = 71, we have that as e \, 0,
U(a®(t—¢e),t—e)—kC(p(t—c),t—¢) = U (a"(t),t) — kC (r1,1)

We conclude that for small enough ¢ > 0,

U(a(l,ml),f—a)—kC(Lf—a) >U(aR(f—5)7£—£)—kC(p(f—a),t—E)

implying that a type ¢ — ¢ prefers playing (1,m;) rather than separating, contradicting
equilibrium. 0

Lemma A.5. There is a unique solution to the differential equation

) a® (1)

Uy (aR (t),t)a
),t)

kC1 (p(

pt)=g(pt) = tt

with initial value p (0) = €.

Proof. Since we can’t rely on standard ODE results, we proceed as follows.

Step 1: Local existence.

Set to = 0 and ry = e. Observe that Cy (rg,tp) > 0. Since C and U are C?, g is C' in a
small neighborhood around (¢g, ), and hence satisfies a Lipschitz condition in this neighborhood.
By standard local existence theorems (e.g. Coddington and Levinson (1955, Theorem 2.3)), there is
a unique solution, call it 3 (t), satisfying 3 (tg) = ro and defined on some neighborhood [tg, to + 6),
d > 0. This solution is C!.

Step 2: Continuation of the solution.

Note that Ci (8(t),t) > 0 for t close enough to ¢y because Ci (r9,t9) > 0, and hence
B (t) > 0 for t € [0,d1) and small enough é; > 0. To prove that a unique extension of 3 to [0,1]
exists, it is sufficient to prove an inductive step that given a solution 5 (¢) on [0,0), 6 > 0, satisfying
G (t) > 0, we can extend it uniquely to [0, + 6) for some # > 0 while maintaining that it is
continuously differentiable and 8’ > 0. To see that this is sufficient, suppose that some ¢ < 1 is the
sup over all t such that 8 can be continued to [0,¢). This means that 8 cannot be continued to
[0,f + 9) for any 6 > 0, contradicting the inductive step.
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The inductive step.

Assume a solution 8 € C* on [0,6) with 3’ > 0.

Claim: rs = limyys 0 (t) exists and is finite.

Proof: Since ( is continuous and & (t) > 0 on [0,0), it follows immediately that rs =
limy15 5 (t) exists and lies in (rg,00]. Suppose by way of contradiction that rs = co. Since 3 is
continuously differentiable on [0, d), and lims 3 (t) = oo for finite §, it must be that limys 5/ (t) =
0o. Observe that a (§) and U® (af®(8),6,b) are finite (by continuity of the relevant functions),
whereas lim;15 C1 (8 () ,t) = oo since limyys 5 (t) = oo and C1q > 0. Therefore, we can find a small
enough ¢ > 0 such that

US (af(6—¢),6 —e,b)a® (0 —¢)

Fo-e> KO (B0 —2),0 —¢)

which means that 3 is not a solution to the differential equation for t = § — ¢, contradiction.

Claim: g is continuous in a neighborhood of (4, 7s) .

Proof: Tt is sufficient to establish that Cy (rs,d) # 0, since then continuity of g around (4, r5)
follows from the continuity of C; in a neighborhood around (4,7s), and continuity of U® and a’.
Suppose C1 (r5,0) = 0, by way of contradiction. Note that the RHS numerator of the differential
equation is continuous in ¢ and strictly positive at ¢ = §. But then the continuity of 8’ on [0, )
implies that limy;s 8 (t) = 0o, which contradicts what we established in the previous Claim. ||

Given these two Claims, the argument used in the proof of the Continuation Theorem in
Coddington and Levinson (1955, p. 14) allows us to conclude that there is a unique extension, which
is C1, of 3 to [0, + ) for some 6 > 0.37 Note that since the continuation maintains continuity of
B, it must be that 8’ > 0 on [0,d + 6). O

Proof of Lemma 6 on Page 17. First tackle existence.?® Consider a perturbed problem defined by

a parameter € > 0: ( R ) n
s Ui(a(t),t)a™ (1)
A FIOI

p(0)=¢

37The details are as follows. Given the continuity of g around (8, 7s), the Picard Local Existence Theorem
implies a unique solution, call it ¢ (¢), satisfying ¢ (§) = rs and defined on some interval (6 — 6,0 + 6), 6 > 0.

So define B by
B(t) if t €0,0)
B(t)y={ rsift=2¢

C(t) iftes,6+p)

To show that § is a continuously differentiable extension of 3 to the right of 4, the only point to check is
the existence and continuity of the derivative of 8 at §. We claim that for any ¢ € [0,d + )

5(t):ro+/0tg(z,ﬁ(z)> dz

This is obvious for ¢ € [0,d). For t =4, it follows immediately from the definition of rs. For ¢ > 4, it
follows from the fact that ¢ (§) = s and that ' (t) = g (¢,{ (¢)) for t > §. The continuity of 8 (which is

obvious by construction) implies that of g ( z, B (2)), and by differentiation of the above integral equation
for 3, we obtain that 3’ (t) = ¢ (t, ¢ (t))7 whereby (3’ (t) exists and is continuous.

38 As noted in the text, standard results don’t apply because we don’t have a Lipschitz condition on
(t.p) € [0,1] x [0, 00).
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where the relevant domain is ¢t € [0,1] and p € [¢,00). Lemma A.5 proves existence of a
unique solution to this initial value problem. Denote this solution as o. (t), and recall that it is
continuously differentiable and satisfies oL > 0. Since o, (0) =& > 0, and 0. (t) — o0 as o (t) — t,
the continuity of o (t) implies that there some d. > 0 s.t V¢ € [0,1], oo (t) > t + d.. Observe
that the DE is Lipschitz on the restricted domain {¢,p:t € [0,1], p >t + ¢} for arbitrary £ > 0.
Therefore, standard arguments imply that o. (t) is continuous in ¢ for all ¢ > 0.3% Consequently,
oo (t) = lim. | 0. (t) is well-defined. Since each o (¢) is continuously differentiable, it is immediate
that for all ¢ € [0,1], of, (¢) is well-defined, with

oo (t) = limol ()
Uy (aft (t),t) a® (t)
kCl (1im6l0 O¢ (t) 5 t)

Uy (a® (t),t) aft (2)
kCl (O'O (t) ,t)

Since 0g (0) = lim, o 0. (0) = 0, we conclude that oy is a solution to (DE).

To prove uniqueness, suppose by way of contradiction that n # o is a solution to (DE).
Note that 1 must be continuously differentiable. On account of 1’ (0) = o{, (0) = oo, it must be
that there is some £ > 0 such that min { (t), 00 (t)} >t for all t € (0,¢). Since we can prove that
for all t € (0, f), there is a unique solution to the DE with initial condition (¢, 7 (¢)), it follows that
for all ¢t € (O, f), 1 (t) # oo (t). By continuity of both functions, one of them must be strictly above
the other in this region, so assume without loss of generality that for all t € (0,%), 5 (t) > oo (t) > t.
By C11 > 0, the DE implies that #’ (t) < o{ (¢) for all ¢t € (O,f). But by continuity, this implies
oo (t) > n(0) for small ¢. Contradiction. O

Proof of Theorem 2 on Page 18. The proof is constructive.
Step 0: Preliminaries
Start by defining the function

o) =U (a° (t),t) —kC (1,t) — [U (a® (t) ,t) — kC (p* () ,1)]

¢ (t) is the gain for type ¢ from sending the highest report and receiving his ideal action
over separating himself (thus inducing a®(¢)) with report p*(t). Note that in equilibrium, the gain
from pooling over separating can be no more than ¢ (t), and will generally be strictly less. Clearly
¢ is continuous, and ¢ (f) > 0. There are two conceptually distinct cases: one where ¢ (¢t) = 0 for
some t < ¢, and the other where ¢ (¢) > 0 for all ¢ <{¢. Define

[0 ifg(t)>0forallt <t
| supyepp{t: ¢ (t) =0} otherwise

Note that a necessary condition for ¢ = 0 is that ¢(0) > 0. In everything that follows, we
are mainly concerned with ¢ € [L, f]. So statements such as “for all ¢” are to be read as “for all
t € [t,7]” and so forth unless explicitly specified otherwise. Note that for all t € (¢,], ¢(t) > 0.

Step 1: Constructing the necessary sequences.

39Gee for example Coddington and Levinson (1955, Theorem 7.1, p. 22) or Birkhoff and Rota (1989,
Theorem 2, p. 175).
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Initialize pd (t) = pff (t) =t, and af (t) = alf (t) = a® (t). Define
A(a,t) = U (a,t) — kC (1,t) — [U (a™ (t) ,t) — kC (p* (t) ,1)]

Clearly, A is continuous in both arguments, and strictly concave in @ with a maximum at
a¥ (t). Since A (a(t),t) <0 < A(a”(t),t) for all t € [t,7], it follows for any relevant ¢, in the
domain a € [a’ (t),a® (t)] there exists a unique solution to A (a,t) = 0. Call this af (¢). Similarly,
on the domain a € [a® (t),00), there exists a unique solution to A (a,t) = 0. Call this af’ (t). Note
that by continuity of A, af and af’ are continuous, af () = af’ (7), and af' (t) = af (t) = a” (¢)
if £t > 0. Since the function @ (t1,t2) is strictly increasing in both arguments for ¢1,t2 € [0,1]
and constant outside [0,1], given ¢ there is either no or a unique ¢’ that solves @ (¢,t') = af (t) for
q € {L,R}. 1If there is a solution, call it p{ (t), otherwise set p{(¢t) = 1 (for each ¢ € {L,R}). It
follows that that pf and pf are continuous functions, p (t) > pf (¢) with equality if and only if
t =1, and pft (t) > pf¥ (t). Note that pf (t) > p¥ (), and p¥ (t) = pf (¢) if t > 0.

For j > 2 and ¢q € {L, R}, recursively define pg- (t) as the solution to

U (5 (pg,l (t) 7P? (t)) 7p§-,1 (t)) -U (6 (p}lz (t) >p§‘71 (t)) ’pg;l (t)) =0

if a solution exists that is strictly greater than pg_l(t), and otherwise set pg (t) = 1. By the
monotonicity (constancy) of @ in (outside) the type space, and concavity of U in the first argument,
pj (t) is well-defined and unique Define af (t) = @ (p]_, (),p} (t)).  Note that for all j > 2,
pj (t) >pj_y (t) and af (t) > af_, (t ) 1fandonly1fp 1(t) < 1. Forall j and g € {L, R}, p§ (t) is
continuous, pf‘ (t) > p]L (t) for all ¢, p] t) = pj (t)ift > 0, and ij (t) = pf’ (¢) (these follow easily
by induction, given that we noted all these properties for j = 1).

Step 2: The critical segment M

I now argue that exists M > 1 such that p}'&f1 (E) <1l= pf\} (f) (Obviously, if it exists, it is
unique.) To prove this, first note that by definition, p{f (£) =% < 1. Let K= inf{K pK B(t) =1}.40
It is sufficient to show that 3 > 0 such that for any j € {0,...,K — 1}, |af, (t) —af (¢ )| > e
For any j € {0,..., K — 1}, type pf’ (?) is indifferent between af” (7) and a]+1 (), by constructlon.
Since aff () < affy, (), it must be that of (I) < a (pf (f)) < af, (t). On the other hand, by
their deﬁnltlons we also have a; (t) <a (pf‘ (t)) < aj ‘1 (Z) Since there is a uniform lower bound

A>0on |a®(t) —al? |,1tf0110wsthat laft ) () —alt ()] > A > 0 for all j € {0,..., K —1}.

Step 3: Existence When t> O.

Consider the functions p%, and pJ;. These are continuous, and p%; (f) = p¥_, ({) <1 =
p%; (£). Moreover, pk; (t) = p&; (t); hence either p¥ (t) < 1 or p;(t) = 1. It follows that there is
some type t € [t,?] such that either (i) pk, (f) = 1 and p%;(t) < 1 for all ¢ > £; or (ii) p§,(f) = 1 and
pli(t) <1lforallt< t. By construction, there is an mD1 equilibrium where all types t € [0, f) play
p* (t), and all types t € [f, 1] play p(t) = 1, and further segment themselves using the cheap-talk
messages into the partition {Z,p? (£),...,p%, (£)}.

Step 4: Existence when t = 0.

By the continuity of p%, and p¥;, the logic in Step 3 can fail when ¢t = 0 only if pf, (0) <
1 = pf (0). So suppose this is the case. Note that this requires p¥ (0) < pf(0). For any
telp f(O),pfz(O)L

U (@(0,t),0) — kC (1,0) — [U (a™(0),0) — kC (0,0)] >0

40Recall that the infimum of an empty set is +oo.
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with strict inequality for interior ¢. In words, when ¢ € [p{ (0),pff (0)], type 0 weakly
prefers (indifference at the endpoints and strict preference for interior ¢t) inducing @ (0, t) with report
1 over inducing a’? (0) with report 0. This follows from the construction of pI and pf*. Given any
t € [0,1], define 79 (t) = 0, 71 (t) = t, and recursively, for j > 2, 7; (¢) as the solution to

U(@(rj-1(t),7 1), 7-1 () =U (@(7j-2(t),75-1 (1)), 75-1(t)) =0

if a solution exists that is strictly greater than 7;_1(t), and otherwise set 7; (t) = 1. By the
monotonicity (constancy) of @ in (outside) the type space, and concavity of U in the first argument,
7; (t) is well-defined and unique for all j. It is straightforward that for all j > 0, 7; (¢) is continuous
in t. Since

7 (pT (0)) = pir (0) < 1=pi (0) = 7ar (p77 (0))
it follows that .
t= min {t:mn(t) =1}
te[pl (0),p7(0))
is well-defined and lies in (pf (0),pf (0)]. By construction, there is an mD1 equilibrium where
all types send the costly report of 1, and segment themselves using cheap talk messages into the

partition {OZTQ (ﬂ,rl (f),...,TM (f)} O
Lemma A.6. Assume Condition M. A CS equilibrium with first segment [0, t*] is robust.

Proof. For there to be a CS equilibrium with first segment [0, ¢*], it must be that ¢* < 1, so assume
that holds in what follows.

Some preliminaries are needed. First, extend the notation in the proof of Theorem 2 in
the obvious way to be explicit about the dependence of various objects on k. This defines ¢(t, k),
t(k), t(k), and for 5 € {0,1,...}, the sequences pJL(t, k), pfz(t7 k). Note that the functions 7; do not
depend on k. Finally, note that the critical segment M defined in Step 2 of in the proof of Theorem
2 does depend generally on k and ¢, but picking sufficiently small k, ¢ can be made arbitrarily close
to 0, and hence by continuity of U and C, once k is small enough, M is independent of k and ¢; it
is equal to the the smallest integer n > 1 such that 7,41(0) = 1 and 7,,(0) < 1 (recall that 74(t) =0
and 71(t) = t).

Now observe that for sufficiently small k, ¢(k) = 0 because ¢(¢,k) > 0 for all ¢, for all k
small enough. Hence once k is small enough, p?(O, k) is well-defined for all j > 0, ¢ € {L, R}. From
the definition of p¥(0, k),

U(@(0,pf(0,k),0) — U(a®(0),0) = k[C(1,0) — C(0,0)]

and @(0, pf*(0,k) > a®(0). It is straightforward that for any k& > 0, pf(0,k) < t*, and as k — 0,
pl(0,k) Tt*. Next, the construction of pf and 7; implies that for all j, pf(O, k) = 7;(pf(0, k)), and
in particular, p&, (0, k) = 7as (p*(0, k)).

By the definition of M and t*, 75;(¢t*) = 1, and given Condition M, 7as(t) < 1 for all ¢ < ¢*
(this is because 737(0) < 1 and if there exists some ¢ < t* such that 7p/(f) = 1, by continuity of
7y there is more than one CS equilibrium with M segments, a contradiction under Condition M).
Combined with the previous arguments, this implies that for small k, p]@ (0,k) < 1. The argument
in Step 3 of the proof of Theorem 2 then applies to yield an mD1 equilibrium with strictly positive
cutoff type, t(k), for all k sufficiently small.

The proof is completed by picking any sequence of mD1 equilibria with strictly positive
cutoffs as k — 0, and noting that since the cutoffs are converging to 0 and the sequence of the
boundaries of the first bunch is converging to ¢t*, the sequence of mD1 outcomes must be converging
to the CS outcome with first segment [0, t*]. O

46



Proof of Proposition 2 on Page 18. Define k as the cost that would make ¢ (0) = 0 (where ¢ is
defined in the proof of Theorem 2), i.e. at k, type 0 is indifferent between inducing a® (0) with
costly report of 0, and inducing a® (0) by sending costly report of 1. Explicitly,

U (aS (0) ’0) -U (aR (0)’0)

b= C(1,0)— C(0,0)

Since k > k implies ¢ (0) < 0, we have ¢ > 0 in the proof of Theorem 2, and hence
pl (t) = pf* (t), which is sufficient for existence of equilibrium with cutoff strictly above 0. O

Proof of Lemma 8 on Page 24. If t* > 1, then t{ < t* for the babbling equilibrium, and we are
done. So assume henceforth t* < 1. By its definition, note also that ¢t* > 0.

For t € [0,t*], let po (t) = 0, p1 (t) = ¢, and a1 (¢) = @(0,t). For j > 2, recursively define
p; (t) as the solution to

U@(pj-1@),p;(t),pj—1 ) —U@(pj—2(t),pj-1(t),pj-1(t)) =0

if a solution exists that is strictly greater than p;_,(t), and otherwise set p; (t) = 1. By the
monotonicity (constancy) of @ in (outside) the type space, and concavity of U in the first argument,
pj (t) is well-defined and unique for all j. Define for all j > 1, a; (t) = a(p;—1 (¢),p; (t)). One can
show by induction that p; is continuous for all j > 1.  Since p, (0) = t*, induction also yields that
p;j (0) =pj_q (t*) for all j > 1.

It can be shown that there exists an M > 1 such that pps—1 (t*) < 1 = pas (t*). (Obviously,
given that it exists, it is unique.) The proof is analogous to Step 2 of Theorem 2. This implies
that par(0) = par—1(t*) < 1 = pp(t*). Since pys is continuous, it follows that

is well-defined and lies in (0,¢*]. By construction, the partition

O=po @ .F=p1 (B)...ons (1) =1)

is a CS equilibrium with first segment boundary £ < t*. ]

Proof of Claim 1 on Page 27. 1t is straightforward to verify that in the U-Q model, t; < t* < ¢ <
4b. Tt is also easy to derive that in an equilibrium with IV segments, ¢; is defined by

b 1-2N(N-1)b

' N

So we must prove that -
4bN+2N(N71)b7120

with equality if and only if b = for some integer J > 1.

1
o 2J(J+1)
Substituting for N, the inequality can be rewritten as

(R () o

It can be checked that —é + % 1+ % is an integer if and only if b = m for some
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integer J > 1. If b satisfies this, then after some algebra, the inequality simplifies to % —-1>0,
which holds with equality. Now consider the case where b # m for any integer J > 1. Then

there is an integer J > 1 such that b € (m, ﬁ) So—2+1,/1+2¢€(J—1,J), whence
<—% + %\/1 + %> = J, and the inequality simplifies to 2bJ (1+J) —1 > 0. This holds strictly

since b > m O

Proof of Claim 2 on Page 27. If N = 1, the Claim holds trivially, so assume that N > 2.  We
must show that for any non-most-informative outcome {0,¢1,...,tn}, 4b —¢t; < 0. Recall that in
%. It is easy to check that ¢; is strictly decreasing
1-2(N-2)(N-1)b

™)

an equilibrium with N segments, t; =
in N for all N € {1, ,W} So it is sufficient to prove that 4b — t; < 0 for ¢; =

That is,
4b(N-1)+2(N-2)(N-1)b—-1<0

With some algebra, this simplifies to
ON(N—1)b—1<0

into which we substitute for N and obtain

1 1 2 1 1 2

There are two cases. If b= ﬁ for some integer J > 1, then —% + % 1+ % = J, and
then inequality simplifies to j—_ﬁ — 1 < 0, which is true. If b € (M’ m) for some J > 1,
then <—% + %m> = J, and the inequality simplifies to 2bJ (J — 1) — 1 < 0, which holds since
b < ﬁ O

Proof of Proposition 7 on Page 33. It has already been proved in Theorem 3 that babbling can be
supported for small enough k in an mD1, and hence D1, equilibrium if U(@(0,1),0) > U(a’(0),0),
so assume henceforth that U (@ (0,1),0) < U (a®(0),0), which in the U-Q model is equivalent to
the bias parameter b satisfying b < %. Also, define a,, = a(0,1) = % Define r, by Uj (ay, ) = 0,
so that r, = a, —b. 1 will argue that a D1 equilibrium exists where all type pool on the costly
report of r, and all send the same cheap talk message.

Claim: For all t < 7y, if (a,r) =t (ay, ) then (a,7) =g (Qy, ).

Proof: We must show that if ¢ < r,, then

—(a—t—b)°—k(r—t)’ —(ay —t—b)? —k(r, —t)° (A-3)

>

3
—(a=b*—kr? > —(au—b*—kr?
It suffices to show that whenever (A-3) holds,

(au —b)% = (a—b)® —k (r2 — r2) Z(au—t—b)Q—(a—t—b)Q—k((r—t)Q—(ru—t)2>
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which after some algebra simplifies to
ay —a > k(r—ry) (A-4)
After some algebra, we can also rewrite inequality (A-3) as
[a—=b+ry, —2t] (ay —a) > [r+1ry — 2tk (r —ry) (A-5)

So it suffices to show that (A-5)=(A-4). We’ll break it into three cases.
Case 1: r > r,. Then (A-5) can only hold if a,, > a (given that ¢ < r,, = a, — b), whence
it suffices to show that
e t+ta—2t—b<r-+r, —2t

This holds because r > r, = a, —b>a —b.

Case 2: r <1y and a < ay. Then (A-4) trivially holds since the LHS is weakly positive,
whereas the RHS is strictly negative.

Case 3: r < r, and a > a,. Then it is easy to see that a — b+ r, — 2t > 0 (since
a—>b>a, —b=r, >t)and therefore (A-5) can only hold if r + 7, — 2t > 0. But then, (A-5) is
equivalent to k7t > a;i'::jgtzt >1 (since a —b>a, —b=r, >r)and (A-4) holds. ||

Claim: For all ¢t > 7y, if (a,7) = (ay, ) then (a,r) =1 (ay, 7).

Proof: Similar to above. ||

The two claims together show that in (a,r) space, the indifference curve for any type ¢t €
[0,7,] is weakly “to the left” of that of type 0, and the indifference curve for any type ¢ € [ry, 1] is
weakly “to the right” of that of type 1. Now I show that the indifference curve for type 1 is strictly
“to the right” of the indifference curve for type 0.

Claim: For any r # 7y, if (a,7) =1 (ay, ) then (a,r) <o (@, 7y)-

Proof: With some algebra, (a,r) =1 (ay,7,) is equivalent to

2—ry—a+b)(ay—a)<k(r—ry)2—r,—1) (A-6)
and (a,r) <o (@y,Ty,) is equivalent to
(ra +a—="0)(ay —a) <k(r—+ry)(r—ry) (A-7)

Since (a,r) (ay, ry) is true if r > r, and a > a,, and conversely (a,r) =1 (aq, ) is not true
if a < a,, and r < ry, we only need to show that (A-6)=-(A-7) in two regions: {r > ry,a < a,} and
{r <ru,a>ay}.

Case 1: 7 > ry,a < a,. Then (A-6) implies

1 < =Ty 2—r,—T1T
kK — Ay — a 2—r,—a+b
=Ty
< [
Ay — @
<

r—Tu r+ Ty
ay —a ry+a—>b
where the second inequality follows from r > 1, = a, —b > a— b, and the third follows from
Ty =ay —b>a—"0b. So (A-7) holds.
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Case 2: 7 < 1y,a > ay. Then (A-6) implies

l S Tu—T 2—1r,—T
kK — a— Ay 2—r,—a+b
Ty —T
>
a — Gy
>

Ty — T Tty

(a—au> <ru+a—b>

where the second inequality follows from r < r,, = a, —b < a —b, and the third follows from
Ty =0y —b<a—b. So (A-7) holds. ||

Note that the contrapositive to this Claim establishes that for all r # 7, if (a,7) =¢ (au, )
then (a,r) <1 (@y,m,). Now observe that when k is small enough (and up to now we haven’t used
the smallness of k yet), for all r # r,, there exists some ag (r) and ay (r) such that (a: (r),r) is
strictly preferred to (a,,7,) by type t € {0,1}.41 By continuity of preferences and the previous
claims, it follows that for all r # r,, there exists some a* () such that (a* (r),r) <¢ (ay, ) for
all t € [0,1]. Set a*(ry) = ay. Pick some cheap talk message m,. I claim that p(¢) = r, and
u(t) = my, for all t and « (r,m) = a* (r) is a D1 equilibrium. By construction, the Sender is playing
optimally. The D1 criterion cannot rule out putting probability on type 0 or type 1 since by the
arguments above, there is no type who strictly prefers deviating for every response than either type
0 or type 1 weakly prefers deviating for; hence the Receiver can hold any beliefs that only puts
probability on these two types.*? Since each a* (r) can be rationalized by some mixture of beliefs

over these two types, the strategies constitute a D1 equilibrium.
|

“f k is too large, then for instance type 1 will prefer (a, 1) to (au, ) for any a € [0, 1], which means that
babbling on 7, cannot be an equilibrium.

42Though the Claims didn’t assert this, one can further check that the Receiver cannot put positive
probability on any interior type under D1.
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Appendix B: Unbounded Type Space

The body of the paper assumed that the type space is bounded, normalized to T = [0,1]. In
this Appendix, I discuss briefly what happens if instead the type space is unbounded, so that
T = (—00,00).43  Assume that the report space is also R = (—o0,00). CS only characterize their
pure cheap talk model for a bounded type space. However, with an added technical condition, it is
easy to verify that their main results go through when communication is through cheap talk alone.

Assumption B.1. There exists A > 0 such that for allt € T, a®(t) — af*(t) > \.

Note that this is automatically satisfied with a bounded type space. Given this, we can
state

Lemma B.1. (CS Lemma 1) Assume k =0. Then there exists v > 0 such that if a1 and ag are
two actions played in equilibrium, | a1 — as |> v.

The proof is exactly the same as Crawford and Sobel (1982, Lemma 1). Whereas this
implies a finite number of actions played in equilibrium with a bounded type space (as in CS), it
only implies a countable number of actions played in the unbounded case. Nonetheless, it does
imply no full separation.*4

In contrast, for any k& > 0, a fully separating equilibrium does exist. In fact, it can be
constructed so that all the reports are used in equilibrium, so that the mD1 criterion is automatically
satisfied.

Proposition B.1. There is a fully-revealing mD1 equilibrium for any k > 0.

Proof Sketch. The same differential equation as in (DE) applies, but one does not need to impose
the initial value condition. So picking any € > 0 and setting p(0) = ¢, the argument of Lemma A.5
can be extended to show that there is a solution to the differential equation on the entire domain
r € (—oo,00). It is easy to check that this solution does constitute an equilibrium. Since all reports
are used in equilibrium, the mD1 criterion is satisfied.*? O

Remark B.1. This Proposition is closely related to Ottaviani and Squintani (2002). In a sense, it
subsumes Proposition 1 in their paper. In their model, reports are not directly costly, but with
some probability 3 the Receiver’s naively plays a = r, and with probability 1 — 3, she plays the
optimal response a = «a(r). Accordingly, the Sender’s utility from a report r given the Receiver’s
strategy is

(1 - ﬁ)U(a(r), t) + ﬁU(T, t)

Compare this with the Sender’s utility in the current model (ignoring cheap talk), which is

U(a(r),t) — kC(rt)

Clearly, if we set k = % and C(r,t) = —U(r,t), then we have the specification of Ottaviani and

Squintani (2002). This choice of C' does satisfy the assumptions of the model in this paper (where
we now no longer have Cj(t,t) = 0, but instead C1(a®(t),t) = 0, which is ok by the discussion in

“30f course, one might also want to consider bounded below (above) and unbounded above (below). The
analysis is similar.

“Moscarini (2004) and Ottaviani and Squintani (2002) also study pure cheap talk models with an un-
bounded type space and note the no full-separation result.

“Details of the proof are available from the author.
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Section 8.3.2), and the above Proposition applies to give existence of a fully separating equilibrium,
which is what is shown in Proposition 1 of Ottaviani and Squintani (2002). This is not surprising,
since the possibility of naivety of the Receiver imposes a cost of misreporting (where the ideal report
is defined as a”(t)) on the Sender. Ottaviani and Squintani (2002) also discuss other interesting
forms and implications of non-strategic behavior from either of the players.
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