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Abstract

We develop a framework to assess how successfully standard time series models

explain low frequency variability of a data series. The low-frequency information is

extracted by computing a finite number of weighted averages of the original data, where

the weights are low frequency trigonometric series. The properties of these weighted

averages are then compared to the asymptotic implications of a number of common

time series models. We apply the framework to twenty-one U.S. macroeconomic and

financial time series using frequencies lower than the business cycle.
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1 Introduction

Persistence and low-frequency variability has been an important and ongoing empirical issue

in macroeconomics and finance. Nelson and Plosser (1982) sparked the debate in macroeco-

nomics by arguing that many macroeconomic aggregates follow unit-root autoregressions.

Beveridge and Nelson (1981) used the logic of the unit-root model to extract stochastic

trends from macro series, and showed that variations in these stochastic trends were a large,

sometimes dominant, source of variability in the series. Meese and Rogoff’s (1983) finding

that the random walk model produces forecasts of exchange rates more accurate than other

models of the time focused attention on the unit root model in international finance. And

in finance, interest in the random walk model arose naturally because of its relation to the

efficient markets hypothesis (Fama (1970)).

This empirical interest led to the development of econometric methods for testing the

unit root hypothesis, and for estimation and inference in systems that contain integrated

series. More recently, the focus has shifted towards more general models of persistence, such

as the fractional (or long-memory) model and the local-to-unity autoregression, which nest

the unit root model as a special case. While these models are designed to explain low-

frequency behavior of time series, they also have implications for higher frequency variation.

In fully parametric models, efficient statistical procedures thus exploit both low and high

frequency variations for inference. This raises the natural concern about the robustness of

such inference to alternative sources of higher frequency variability. These concerns have been

addressed by, for example, constructing unit-root tests using AR models that are augmented

with additional lags as in Said and Dickey (1984), by grafting stationary ARMA models

onto fractional models as in Granger and Joyeux (1980), or by using various nonparametric

estimators for long-run covariance matrices and (as in Geweke and Porter-Hudak (1983)

(GPH)) for the fractional parameter.

As useful as these approaches are, there still remains a question of how successful these

various methods are in controlling for unknown or misspecified high frequency variability.

These concerns are evident from Monte Carlo experiments for unit root tests (e.g. Schwert

(1989)) and long-run variance estimators (e.g. den Haan and Levin (1997)). In the typical

asymptotic modelling of these issues, the difficulty is represented as problem of bandwidth
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choice: large bandwidths generate estimates with low variance, but with potentially large

biases. Small bandwidths lead to more robust but potentially inefficient inference. In addi-

tion, for small bandwidths, the asymptotic approximation based on the bandwidth diverging

to infinity becomes poor, so that alternative asymptotic nestings are required — see, for in-

stance, Ng and Perron (2001) for the question of lag-length choice of unit root tests, and

Kiefer and Vogelsang (2005) for long-run variance estimation.

In this paper, we address the issue of robustness directly. The approach investigated

here begins by specifying the low-frequency band of interest. For example, in our empirical

analysis, we focus on frequencies lower than the business cycle, that is periods greater than

eight years. We extract the low frequency component of the series of interest by computing

weighted averages of the data, where the weights are low frequency trigonometric series.

Inference about the low-frequency variability of the series is exclusively based on the prop-

erties of these weighted averages, disregarding other aspects of the original data. Letting q

denote the number of weighted averages that capture below business cycle frequency vari-

ability, we find that q is small in typical applications. For example, q = 13 for the post-war

quarterly macroeconomic data studied here. This suggests basing inference on asymptotic

approximations in which q is fixed as the sample sizes tends to infinity. Such asymptotics

yield a q-dimensional multivariate Gaussian limiting distribution for the weighted averages,

with a covariance matrix that depends on the specific model of low-frequency variability. In-

ference about alternative models or model parameters can thus draw on the well-developed

statistical theory concerning multivariate normal distributions.

Several papers have addressed other empirical and theoretical questions in similar frame-

works. Bierens (1997) derives estimation and inference procedures for cointegration relation-

ships based on a finite number of weighted averages of the original data, with a joint Gaussian

limiting distribution. Phillips (2006) pursues a similar approach with an infinite number of

weighted averages. Phillips (1998) provides a theoretical analysis of ’spurious regressions’

of various persistent time series on a finite (and also infinite) number of deterministic re-

gressors. Müller (2004) finds that long-run variance estimators based on a finite number

of outer products of trigonometrically weighted averages is optimal in a certain sense. All

these approaches exploit the known asymptotic properties of weighted averages for a given
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stochastic model of low-frequency variability. In contrast, the focus of this paper is to test

alternative models of low frequency variability (and their parameters) in a robust way.

The plan of the paper is as follows. In the next section we introduce the three classes of

models that we will consider: fractional models, local-to-unity autoregressions, and the local-

level model, parameterized as an unobserved components model with a large I(0) component

and a small unit root component. We discuss the asymptotic properties of weighted averages

for these models, our choice of weights and the tests we perform. Section 3 contains the

empirical analysis for 21 U.S. series. Proofs are collected in an appendix.

2 Methodology

2.1 Models and Asymptotic Approximations

Let yt, t = 1, · · · , T denote the observed time series, and consider the decomposition of yt

into unobserved deterministic and stochastic components

yt = dt + ut.

Our attention will focus on the low-frequency variability of the stochastic component ut. In

this sense, the deterministic component is a nuisance and is modelled as a constant dt = µ,

or as a constant plus linear trend dt = µ+ βt, with unknown parameters µ and β.

Several different models have been proposed to model the low frequency variability of

ut for macroeconomic and financial time series, and we consider three leading models. The

first is a fractional (“long-memory”) model; stationary versions of the model yield a spectral

density S(λ) ∝ |λ|−2d as λ → 0, where d is the fractional parameter. The second model is

the AR model with largest root close to unity; using standard notation we will write the

dominant AR coefficient as ρT = (1− c/T ), so that the process is characterized by the local-

to-unity parameter c. For this model, normalized versions of ut behave like random variables

generated by an Ornstein-Uhlenbeck process with diffusion parameter −c. The third model
that we consider decomposes ut into an I(0) and I(1) component, ut = wt + (g/T )

Pt
s=1 ηt,

where (wt, ηt)
0 are I(0) with long-run covariance matrix ω2I2, and g is a parameter that
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governs the relative importance of the I(1) component. In this "Local Level" model (c.f.

Harvey (1989)) both components are important for the low-frequency variability of ut.

As we show below in Theorem 1, the low frequency variability implied by each of these

models can be characterized by the stochastic properties of the partial sum process for ut,

so for our purposes it suffices to define each model in terms of the behavior of these partial

sums. Letting W denote a Wiener process and ω a generic non-zero scalar constant, the

specific assumptions for each model, and their integrated counterparts are given as

1(a) Stationary Fractional Model (FR): ut follows a stationary fractional model with pa-

rameter −1/2 < d < 1/2, where T−1/2−d
P[·T ]

t=1 ut ⇒ ωW d(·), where W d is a “type I”

fractional Brownian motion defined as W d(s) = A(d)
R 0
−∞
£
(s− l)d − (−l)d

¤
dW (l) +

A(d)
R s
0
(s− l)ddW (l), where A(d) =

¡
1

2d+1
+
R∞
0

£
(1 + l)d − ld

¤
dl
¢−1/2

.

1(b) Integrated fractional model: ut follows a fractional model with parameter 1/2 < d <

3/2, when the first differences ut − ut−1 (with u0 = 0) follow a stationary fractional

model with parameter d− 1.

2 Local-to-unity model (OU ): ut follows ut = ρTut−1+ηt, ρT = 1−c/T and T−1/2
P[·T ]

t=1 ηt ⇒
ωW (·). Assumptions about the initial condition, u0, depend on whether the model is
stable (c > 0) or not (c ≤ 0). In the stable model, u0 is drawn from the stationary lim-
iting distribution and T−1/2u[·T ] ⇒ ωJc(s); the stationary Ornstein-Uhlenbeck (OU )

process Jc(s) = Ze−sc/
√
2c +

R s
0
e−c(s−l)dW (l), with Z ∼ N (0, 1) independent of W .

In the unstable model (c ≤ 0), u0 = 0, and T−1/2u[sT ] ⇒ ω
R s
0
e−c(s−l)dW (l).

3 Integrated local-to-unity model (I-OU ): ut follows an integrated local-to-unity model

with parameter c if the first differences ut − ut−1 (with u0 = 0) follow a local-to-unity

model, where for simplicity we restrict the analysis to the stable model with c > 0.

4 Local-Level model (LL): ut follows a local level model with parameter g ≥ 0, when
ut = wt +

g
T

Pt
s=1 ηs, and (T

−1/2P[·T ]
t=1wt, T

−1/2P[·T ]
t=1 ηt)

0 ⇒ ω(W1(·),W2(·))0, where
W1 and W2 are independent Wiener processes.

5 Integrated local-level model (I-LL): ut follows an integrated local-level model with

parameter g ≥ 0 if the first differences ut − ut−1 (with u0 = 0) follow a local level
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model with parameter g.

Strictly speaking, the specifications (2)-(5) require ut and yt to be modelled as double arrays,

but we omit any dependence on T to ease notation.

Table 1 summarizes the assumptions about convergence of the partial sum process for each

model and provides and a description of the covariance kernel of the limiting process. A large

number of primitive conditions have been used to justify these convergences. Specifically, for

the stationary fractional model (1a), weak convergence to the fractional Wiener process W d

has been established under various primitive conditions for ut by Taqqu (1975) and Chan and

Terrin (1995)–see Marinucci and Robinson (1999) for additional references and discussion.

Mandelbrot and Ness (1968) showed thatW d so defined has almost surely continuous sample

paths. Model (1b) uses Velasco’s (1999) definition of a fractional process for 1/2 < d < 3/2.

The local-to-unity model (2) and local level model (4) rely on a Functional Central Limit

Theorem applied to (wt ηt)
0; various primitive conditions are given, for example, in McLeish

(1974), Woolridge and White (1988), Phillips and Solo (1992), and Davidson (2002); see

Stock (1994) for general discussion.

The unit root and I(0) models are nested in several of the models in Table 1. The unit

root model corresponds to the integrated fractional model (1b) with d = 1, the local-to-unity

model (2) with c = 0, and the integrated local-level model (5) with g = 0. Similarly, the

I(0) model corresponds to the stationary fractional model (1a) with d = 0 and the local-level

model (4) with g = 0.

The objective of this paper is to assess how well these specifications do in modelling the

low-frequency variability of ut. Since the deterministic component dt is unknown, we restrict

attention to statistics that are functions of the least-square residuals of a regression of yt on

a constant (denoted uµt ) or on a constant and time trend (denoted uτt ). Because {uit}Tt=1,
i = µ, τ are maximal invariants to the groups of transformations {yt}Tt=1 → {yt+m}Tt=1 and
{yt}Tt=1 → {yt +m+ bt}Tt=1, respectively, there is no loss of generality in basing inference on
functions of {uit}Tt=1 for tests that are invariant to these transformations.
We extract the information about the low frequency variability of ut by considering a finite

number of weighted averages of uit, i = µ, τ , where the weights are known and deterministic

low-frequency trigonometric series. We discuss specific choices for these functions below, but
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first provide a general result about the asymptotic properties of these weighted averages.

Here and below, the limits of integrals are understood to be zero and one, if not indicated

otherwise.

Theorem 1 Suppose there exists α and ω > 0 such that T−α
P[·T ]

t=1 ut ⇒ ωG(·), where G

is a mean-zero Gaussian process with almost surely continuous sample paths and k(r, s) =

E[G(r)G(s)]. Define

kµ(r, s) = k(r, s)− rk(1, s)− sk(r, 1) + rsk(1, 1) (1)

kτ(r, s) = kµ(r, s)− 6s(1− s)
R
kµ(r, l)dl

−6r(1− r)
R
kµ(l, s)dl + 36rs(1− s)(1− r)

R R
kµ(l, λ)dldλ,

and let Ψ(·) = (Ψ1(·), · · · ,Ψq(·))0, where Ψl : [0, 1] 7→ R, l = 1, · · · , q, are functions with
continuous derivative ψl. Then

XT ≡ T−α
TX
t=1

Ψ(t/T )uit ⇒ N (0, ω2Σ)

where the j, lth element of Σ is given byR R
ψj(r)ψl(s)k

i(r, s)drds.

The joint distribution of the q weighted averages of uit, i = µ, τ is thus asymptotically

normal with a covariance matrix that is–up to scale–determined by the covariance kernel

of G. As Theorem 1 demonstrates, for an asymptotically justified analysis of the weighted

averages XT , the only relevant property of the models (1)-(5) is the limiting behavior of

appropriately scaled partial sums of ut.

If XT captures the information in yt about the low-frequency variability of ut, then the

question of model fit for a specific stochastic model simply becomes the question whether

XT is approximately distributed N (0, ω2Σ). For the models introduced above, Σ = Σ(θ) is

a known function of the model parameter θ ∈ {d, c, g} for the fractional, local-to-unity, and
long memory model respectively, and ω2 is an unknown constant governing the low-frequency

scale of the process. (For example, ω2 is the long-run variance of ηt in the local-to-unity

model.) Because q is finite, that is our asymptotics keep q fixed as T →∞, it is not possible

6



to estimate ω2 consistently using the q elements in XT . This suggests restricting attention

to scale invariant tests of XT . Imposing scale invariance has the additional advantage that

the value of α in XT = T−α
PT

t=1Ψ(t/T )u
i
t does not need to be known.

Thus, consider the following maximal invariant to the group of transformation XT →
cXT , c 6= 0,

vT = XT/
p
X 0

TXT .

If X ∼ N (0, ω2Σ) then the density of v = (v1, · · · , vq)0 = X/
√
X 0X with respect to the

uniform measure on the surface of a q dimensional unit sphere is proportional to (see, for

instance, Kariya (1980) or King (1980))

fv(Σ) = |Σ|−1/2
¡
v0Σ−1v

¢−q/2
. (2)

For a given model for ut, the asymptotic distribution of vT depends only on q and the model

parameter θ. Our strategy therefore is to base inference about the appropriateness of the

asymptotic implication that XT is approximately distributed N (0, ω2Σ(θ)) for the models
in Table 1 using tests based on vT , Σ(θ), and the density (2).

2.2 Continuity of the Fractional and Local-to-Unity Models

Before discussing the choice of functions Ψ and test statistics, it is useful to take a short

digression to discuss the continuity of Σ(θ) for two of the models. In the local-to-unity

model, there is a discontinuity at c = 0 in our treatment of the initial condition and this

leads to different covariance kernels in Table 1; similarly, in the fractional model there is a

discontinuity at d = 1/2 as we move from the stationary to the integrated version of the

model. As it turns out, these discontinuities do not lead to discontinuities of the density of

v in (2) as a function of c and d.

This is easily seen in the local-to-unity model (2). Location invariance implies that it

suffices to consider the asymptotic distribution of T−1/2(u[·T ]−u1). As noted by Elliott (1999),
in the stationary model T−1/2(u[·T ]−u1)⇒ Jc(·)−Jc(0) = Z(e−sc−1)/

√
2c+

R s
0
e−c(s−l)dW (l),

and limc→0(e
−sc − 1)/

√
2c = 0, so that the asymptotic distribution of T−1/2(u[·T ] − u1) is

continuous at c = 0.
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The calculation for the fractional model somewhat more involved. First, note that the

density (2) of v remains unchanged when Σ is replaced by Σ/ trΣ. Let kµFR(d)(r, s) and

kµI-FR(d)(r, s) be defined as (1) for the covariance kernels of models (1a) and (1b) from Table

1, respectively. As shown in the appendix, the limits

lim
d↑1/2

kµFR(d)(r, s)

1/2− d
and 2 lim

d↓1/2

kµI-FR(d)(r, s)

d− 1/2 (3)

exist and coincide, so that Σ(d)/ trΣ(d) can be continuously extended at d = 1/2 in the

mean and trend case. This result suggests a definition of a demeaned fractional process with

d = 1/2 as any process whose partial sums converge to a Gaussian process with covariance

kernel (3). The possibility of a continuous extension across all values of d renders Velasco’s

(1999) definition of fractional processes with d ∈ (1/2, 3/2) as the partial sums of a stationary
fractional process with parameter d− 1 considerably more attractive, as it does not lead to
a discontinuity at the boundary d = 1/2, at least for demeaned data with appropriately

chosen scale.

2.3 Choice of Ψ and the resulting Σ(θ)

Recall that the functions Ψ = (Ψ1, · · · ,Ψq)
0 were introduced to extract the low-frequency

variations of ut uncontaminated by higher frequency variations. One natural measure of

accuracy for a candidateΨ is theR2 of a continuous time regression of a generic periodic series

sin(πrs + a) on Ψ1(s), · · · ,Ψq(s), where r ≥ 0 and a ∈ [0, π). Ideally, this R2 would equal
unity for r ≤ q and zero for r > q. Consider two choices of Ψ : Ψcos

l (s) =
√
2 cos(πls), the

first q functions of the Fourier cosine expansion (excluding the constant, since
PT

t=1 u
i
t = 0

for i = µ, τ); and ΨFourierl (s) =
√
2 cos(2π l+1/2

2
s) for l = 1, 3, · · · , q − 1 and ΨFourier

l (s) =
√
2 sin(2π l

2
s) for l = 2, 4, · · · , q, the first q/2 elements of the usual Fourier expansion (where

we assume q is even for convenience).
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Regressing sin(πrs+ a) on these choices of Ψ yields the following values of R2

R2cos =
8r3

π(2πr + sin(2a)− sin(2(a+ rπ))

qX
l=1

(cos(a)− (−1)q cos(a+ rπ))2

(r2 − l2)2

R2Fourier =
8r3(cos(a)− cos(a+ rπ))2

π(2πr + sin(2a)− sin(2(a+ rπ))

q/2X
l=1

1

(r2 − 4l2)2

+
8r(sin(a)− sin(a+ rπ))2

π(2πr + sin(2a)− sin(2(a+ rπ))

q/2X
l=1

4l2

(r2 − 4l2)2

(with these expression extended by continuous limits at r = 1, · · · , q). Evidently, R2cos and
R2Fourier converge to zero as r → ∞ for all fixed values of q and a, so that these choices for

Ψ do not extract any high frequency information. To get a better sense of the properties

for medium range values of r, Figure 1 depicts R2cos and R2Fourier as a function of r for two

empirically relevant values q = 14 and q = 32. In the top panel, for each value of r, R2cos and

R2Fourier are averaged over all values for the phase shift a ∈ [0, π), in the middle panel, R2cos
and R2Fourier are individually maximized over a and in the bottom panel, R

2
cos and R

2
Fourier are

individually minimized over a. For both values of q, these functions come reasonably close

to the ideal of extracting all information about cycles of frequency r ≤ q (R2 = 1) and no

information about cycles of frequency r > q (R2 = 0).

Based on these figures, there is little reason to choose one of the functions over the other.

Of course, different choices yield different expressions for Σ(θ), and, as it turns out, the

form of Σ(θ) implied by the cosine expansion is somewhat more convenient than the form

yielded by the Fourier expansion. In particular, in the demeaned case with dt = µ, the

cosine expansion produces values of Σ(θ) that are exactly diagonal for the I(0) and unit root

model, and nearly diagonal for the other models of empirical relevance. In contrast, the the

off-diagonal elements Σ(θ) are large for many models using the Fourier expansion (c.f. Akdi

and Dickey (1998) for an analysis of the unit root model).

Figure 2 plots the square roots of the diagonal elements of Σ(θ) for the cosine expansion

for the fractional, local-to-unity, and local level models, for various values of θ = {d, c, g}
in the demeaned case. Evidently, more persistent models produce larger variances for low-

frequency components, a generalization of the familiar ‘periodogram’ intuition that for sta-

tionary ut, the variance of
p
2/T

PT
t=1 cos(πlt/T )ut is an approximately unbiased estimator
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of the spectral density at frequency l/2T . For example, for the unit root model (d = 1 in

the fractional model or c = 0 in the local-to-unity model), the standard deviation of X1

is approximately 15 times larger than the standard deviation of X15. In contrast, when

d = 0.25 in the fractional model the relative standard deviation of X1 falls to 2, and when

c = 5 in the local-to-unity model, the relative standard deviation of X1 is 7. In the I(0)

model (d = 0 in the fractional model or g = 0 in the local-level model), Σ = Iq, and all of

the standard deviations are unity.

Table 2 shows the simple average of the absolute vales of all pair-wise correlations implied

byΣ(θ) for q = 15 for the various models considered in Figure 2. The correlation is identically

zero for the unit root and I(0) models, and is very nearly zero for the other parameter values.

Figure 2 and Table 2 summarize characteristics of Σ(θ) for the demeaned versions of the

data; the covariance matrices for the detrended data share many of these characteristics. For

example, the detrended data covariance matrix also exhibits pronounced heteroskedasticity,

but with attenuated values for small values of l. As in the demeaned case, the off-diagonal

elements of Σ(θ) for the detrended data are small in the empirically relevant models: all of

entries in the version of Table 2 for detrended series are less than 0.04.

2.4 Test Statistics

As is evident in Figure 2 and Table 2, the major difference in the models involves the diagonal

elements of Σ(θ). Said differently, the models imply different forms of heteroskedasticity for

the elements of XT . Thus, we begin by discussing tests of specific forms of heteroskedasticity

against flexible alternatives. To be specific, let Σ0 denote the value of Σ under a particular

null model and parameter θ0. We nest this value of Σ in the more general model Σ = ΛΣ0Λ,

where Λ = diag(exp(δ1), · · · , exp(δq)), and δ = (δ1, · · · , δq)0 is a mean zero mean Gaussian
vector withE[δδ0] = γ2Ω. Under the null hypothesis γ = 0 and Σ = Σ0; under the alternative

γ 6= 0, and the deviation from the null depends on the realization of δ. The covariance matrix
Ω determines which kind of deviations are more likely. Modelling δ as a random vector allows

the alternative to flexibly capture a wide range of specific alternatives. Conditional on δ,

the alternative covariance matrix ΛΣ0Λ has the lth diagonal elements multiplied by exp(2δl)

compared to Σ0, while the correlation structure remains unchanged.
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Formally, consider the null and alternative hypotheses

H0 : v has density fv(Σ0)

H1 : v has density Eδfv(ΛΣ0Λ)

where Eδ denotes integration over the measure of δ and fv is defined in (2). Let e be a q× 1
vector of ones, and ιj the q × 1 vector with a one in the jth row and zeros elsewhere. After
calculations that closely mirror those of Nyblom (1989), one obtains that the locally best

test at γ = 0 rejects for large values of

LB = (q/2 + 1)
d0Ωd

(v0Σ−10 v)2
+ 2

e0Ωd

v0Σ−10 v
− trDΩ

v0Σ−10 v

where d and D are a q × 1 vector and a q × q matrix, respectively, with elements

dj = vjι
0
jΣ
−1
0 v

Djl =

(
vlvjι

0
lΣ
−1
0 ιj for l 6= j

vjι
0
jΣ
−1
0 v + v2j ι

0
jΣ
−1
0 ιj for l = j

In the empirical work presented in the next section we consider three choices for Ω

that correspond to the following stochastic specifications for δ: (i) a break at [q/2 + 1], so

that δ̃l = 1[l > q/2]ε1, (ii) a Gaussian martingale model δ̃l = δ̃l−1 + εl with δ̃0 = 0 and

(iii) a linear trend of random slope δ̃l = ε1l, where εl ∼ iidN (0, 1). In all three cases,
δl = δ̃l − q−1

Pq
j=1 δ̃j, l = 1, · · · , l, where the demeaning centers the alternative model for

Σ at the null model. (The demeaning also results in a simplification of the statistic because

e0Ω = 0 for a demeaned δ.)

The critical value of the LB statistic can easily be computed by simulation, however, its

null distribution depends on Σ0. An alternative is to base the test instead on v∗ = Qv for

some matrix Q satisfying QΣ0Q0 = Iq; in this case the null hypothesis about the covariance

matrix Σ∗ of v∗ becomes H0 : Σ
∗ = Iq. The empirical analysis in the next section uses this

approach, where Q is chosen as the Cholesky factor of Σ0. Because Σ(θ) is approximately

diagonal for most empirically relevant models, there are only small differences between tests

based on v and tests based on v∗.

For Σ0 = Iq, dl = v2l and D becomes a diagonal matrix with elements Dll = 2v
2
l , resulting

in familiar formulae for the LB test statistic. For example, with q even, the LB statistic for
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a break becomes the usual F ratio that tests for a break in the mean of v2l . The test statistic

for martingale variation (which we label as LBIM to reflect that fact that is the local best

test with Σ0 = Iq for martingale variation) simplifies to

LBIM = (q/2 + 1)

qX
l=1

lX
j=1

(v2j − v2)2 − 1

3q

qX
l=1

[6l2 − 6l(1 + q) + (1 + q)(1 + 2q)]v2l .

where v2 = q−1
Pq

l=1 v
2
l . The first term, which dominates the statistic for large q, is the

usual Nyblom (1989) locally best test statistic for a martingale variation in the mean of v2l .

Thus far we have not discussed volatility in the underlying data yt despite the large

empirical literature documenting heteroskedasticity in financial data (e.g., Bollerslev, Engle,

and Nelson (1994) and Andersen, Bollerslev, Christoffersen, and Diebold (2006)) and macro-

economic data (e.g., Balke and Gordon (1989), Kim and Nelson (1999) and McConnell and

Perez-Quiros (2000)). The reason, of course, is the asymptotic results shown in Table 1 are

robust to moderate amounts of heteroskedasticity. However, severe heteroskedasticity leads

to changes in the form of Σ(θ), and it is interesting to test for these kind of alternatives. A

simple example motivates the test that we will use: suppose that ut is white noise with time

varying variance E[u2t ] = σ2(t/T ) = 1 + 2a cos(πt/T ) for |a| < 1/2. For this process, the

j, lth element of E[XTX
0
T ] converges to

R
Ψl(s)Ψj(s)σ

2(s)ds, and with Ψl(s) =
√
2 cos(πls),

we obtain

lim
T→∞

E[XTX
0
T ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 a 0 · · · 0 0

a 1 a · · · 0 0

0 a 1 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · a 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
which is recognized as the covariance matrix of a MA(1) process. This suggests checking

for serial correlation in v∗ (the transformed version of X that eliminates any model specific

correlation in Σ(θ)). We do this using bρ =Pq
l=2 v

∗
l v
∗
l−1/

Pq
l=2(v

∗
l )
2 which forms the basis of

the (one-sided) best local test for the MA(1) or AR(1) alternative (Godfrey (1981), Kariya

(1988)).

Finally, we test the unit root null hypothesis using a low-frequency point-optimal-invariant

test. Specifically, in the context of the local-to-unity model we test the unit root model
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c = c0 = 0 versus an alternative model with c = ca using the likelihood ratio statistic

LFUR = v0Σ(c0)
−1v/v0Σ(ca)

−1v

where the values of ca are those suggested by Elliott, Rothenberg, and Stock (1996) (ca = 7.5

for demeaned series and ca = 13.5 for detrended series). We label the statistic LFUR as a

reminder that it is a low-frequency unit root test statistic.

3 Empirical Results

3.1 Data

In this section we study twenty-one macroeconomic and financial time series using the low-

frequency methods discussed in the last section. We analyze post-war quarterly versions

of important macroeconomic aggregates (real GDP, aggregate inflation, nominal and real

interest rates, productivity, and employment) and longer annual versions of related series

(real GNP from 1869-2004, nominal and real bond yields from 1900-2004, and so forth).

We also study several cointegrating relations by analyzing differences between series (such

as long-short interest rate spreads) or logarithms of ratios (such as consumption-income or

dividend-price ratios). A detailed description of the data is given in the Data Appendix.

As usual, several of the data series are transformed by taking logarithms, and as discussed

above, the deterministic component of each series is modeled as a constant or a linear trend.

Table A.1 summarize these transformations for each series.

3.2 Statistics Reported

The empirical results are summarized in Tables 3 and 4. Table 3 concentrates on “traditional”

statistics for persistence. Specifically, it presents p-values for the DF-GLS unit root test of

Elliott, Rothenberg, and Stock (1996), and estimates of the fractional parameter d using a

version of the semi-parametric regression of Geweke and Porter-Hudak (1983) (GPH). Table

3 also reports the p-value for the low-frequency unit root test (LFUR) discussed in the last

section. Table 4 presents results from the other tests presented in the last section and a
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summary of the likelihood based on vT and density (2). For reasons discussed in introduction,

these traditional statistics reported in Table 3 may (or may not) lead to valid inference about

the models. We include them as useful benchmarks for comparison with the results in Table

4.

The remainder of the subsection summarizes the computational details used to produce

these results, and the next subsection discusses the empirical results.

The DF-GLS tests were constructed using an autoregressions that included 4 lags of first

differences of the data. Following the discussion in Robinson (2003), the GPH estimator

is constructed as −1/2 times the OLS regression slope coefficient from the regression of

the first m log-periodogram ordinates (excluding frequency zero) onto log-frequency and a

constant, and the standard error is computed as π2/24m. The estimator is implemented

using m = [nδ], where results are shown for δ = 0.5 and 0.65. Because inference for the GPH

estimator assumes stationarity (−0.5 < d < 0.5), results are shown for both the level and

first difference of the series.

As discussed above, the data was transformed to the q observations
PT

t=1 cos(lπt/T )u
i
t,

l = 1, ..., q, where i = µ, τ (as indicated in Table A.1), and q was chosen to isolate frequen-

cies lower than the business cycle. Using the standard 6-32 quarter definition of business

cycle periodicity, this means that attention is restricted to frequencies lower than 2π/32 for

quarterly series and 2π/8 for annual series. The post-war quarterly series span the period

1952:1-2004:4, so that T = 212, and q = [2T/32] = 13. Each annual time series is available

for a different sample period (real GNP is available from 1869-2004, while bond rates are

available from 1900-2004, for example), so the value of q is series-specific.

Confidence intervals (90%) are used Table 4 to summarize the results of the LBIM and

|bρ| tests. These confidence regions were computed numerically by inverting the relevant
test using a fine grid of values of the relevant parameter. The values that are reported as

the confidence regions are those parameters that are not rejected by the test using a 10%

significance level. For the fractional model d was restricted to be in the range −0.49 ≤ d ≤
1.49; for the local-to-unity models −3.0 ≤ c ≤ 30.0; and for the LLM models 0.0 ≤ g ≤ 30.0.
Table 4 also presents a (crude) summary of the likelihood for each of the model based on

vT , normalized to unity for the I(0) model. It reports the maximum value of the log-likelihood
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for the ranges of parameters given in the last paragraph, the corresponding maximum likeli-

hood estimate, and the set of parameter values whose likelihood value is within 2 log-points

of the maximized likelihood.

3.3 Results

The purpose of the empirical analysis is to assess the empirical adequacy of standard models

of low-frequency variability for the observed low-frequency variability. To this end, it is

useful to focus on four questions:

1. Is the unit root model (d = 1 in the fractional model, c = 0 in the local-level model,

g = 0 in the integrated local level model) consistent with data?

2. Is the I(0) model (d = 0 in the fractional model, g = 0 in the local-level model)

consistent with data?

3. Are there entire classes of models that are rejected by the tests?

4. Are the results from the low-frequency components of the data similar to the results

obtained using standard methods (unit root tests, GPH estimators, and so forth)?

Real GDP/GNP. The post-war quarterly real GDP data are consistent with a unit-

root model, but not the I(0) model. The unit-root model is included in the confidence

intervals of Table 4, while the I(0) model is not. From Table 3, the unit-root model is

not rejected by the low-frequency POI test (p-value = 0.13), nor by the DF-GLS test (p-

value = 0.39). The GPH regression using the differences of the data with n0.65 yields an

insignificant t-statistic (−0.09/0.06), consistent with the unit root model for the level of the
series. The absolute value of the t-statistic for the n0.5 GPH estimator exceeds 2.0, but the

regression uses only 14 observations, so the asymptotic normal distribution is likely to be

a poor approximation to the exact small distribution. (All of the post-war series have a

common sample period with n = 212, [n0.5] = 14, and [n0.65] = 32.) The log-likelihood for

the unit root model is 8.81; this corresponds to the MLE in the I-LLM model, and is close

the maximized value in the fractional and OU models (where the maximized values are 8.95

and 9.02, respectively).
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The results are somewhat less clear using the annual observations on real GNP from 1869-

2004. The unit-root model is not rejected by the LBIM and |bρ| tests, but Table 3 reports
a p-value of 0.05 for the low-frequency unit-root test statistic, and the DF-GLS p-value is

0.02. The log-likelihood for the unit root model (11.01) is more than 2.5 log points from the

maximized value of the OU log-likelihood, where the MLE is bcMLE = 24.5. On the other

hand, the I(0) model is rejected. The GPH results are rather nonsensical, perhaps because

they are based on few observations ([n0.65] = 24).

Inflation. The unit-root model for inflation is not rejected using the post-war quarterly

data, while the I(0) model is rejected. Results are shown for inflation based on the GDP

deflator, but similar conclusions follow from the PCE deflator and CPI. Stock and Watson

(2005) document instability in the “size” of the unit root component (corresponding to the

value of g in the local-level model) over the post-war period, but apparently this instability

is not severe enough to lead to rejections based on the tests considered here. Both the

unit-root and I(0) models are rejected using the annual observations on inflation over the

1869-2004. Indeed the OU, I-OU and I-LL models are rejected for all of the parameter values

considered. The series appears consistent with a stationary fractional model with positive

value of d. This is perhaps not surprising given the instability in monetary policy regimes

over the past two centuries and the connection between regime switching and long-memory

models discussed in Diebold and Inoue (2001).

Labor productivity and employee hours. The LBIM test rejects both the unit-

root and I(0) model for productivity. Productivity appears to be better characterized by a

process that remains persistent even after taking first differences. This additional persistence

is consistent with long-swings in trend productivity growth in the post-war period such as

the productivity slowdown of the 1970’s and 1980’s and the productivity rebound of the

1990’s. This persistence is missed by the DF-GLS statistic, which does not reject a unit root

for the level of productivity, but does reject a unit root for the first differences (not reported

in the Tables). It is also missed by the GPH regressions, which are consistent with the unit

root model.

The behavior of employee hours has received considerable attention in the recent VAR

literature (see Gali (1999), Christiano, Eichenbaum, and Vigfusson (2003), and Francis and
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Ramey (2006a)). Results based on the LBIM test, unit root tests and GPH regression are

all consistent with unit-root but not I(0) low-frequency behavior, and Francis and Ramey

(2006b) discuss demographic trends that are potentially responsible for the persistence in

this series. Note however that |bρ| is too large to be consistent with the unit-root model.
Examination of the series suggests this rejection is associated with an increase in the low-

frequency variability in the second half of the sample period.

Interest rates. Post-war nominal interest rates are generally consistent with a unit-

root but not an I(0) process. The only contrary evidence is a p-value of 0.04 for the low-

frequency unit root test for the 1-year Treasury bond rate. Similarly, unit root test statistics,

GPH regressions, LBIM tests, and likelihood values for annual data from 1900-2004 on rates

on long-term high-grade industrial bonds are consistent with the unit-root model. However,

the low-frequency transformations of this series are highly negatively correlated (bρ = −0.64),
which is inconsistent with the unit root model. Examination of the time series plot shows

a substantial increase in volatility in this series post-1960, and this appears to be the cause

of the rejection. Post-war real interest rates are also consistent with the unit root but

not the I(0) models. Finally, the long annual time series on real industrial bond rates is

not well described by any of the models. Variability in the low frequency components is

consistent with a model with considerable mean reversion (the OU model with large value

of c or the fractional model with value of d close to zero), but the components are highly

serially correlated (bρ = 0.60) which is inconsistent with these models. Again, the high serial
correlation is caused by a large change in volatility (in this case a drop in the volatility of

postwar values of the series relative to pre-war values).

Real exchange rates. The persistence of real exchange rates is well established, and

a large empirical literature has examined the unit root or near unit root behavior of real

exchange rates. The data used here–annual observations on the real dollar/pound real ex-

change rate from 1791-1990–come from one important empirical study (Lothian and Taylor

(1996)) in this literature. Low frequency variability in this series is inconsistent with both

the unit-root and I(0) models, both of which are rejected by the LBIM statistic; the unit-

root is rejected by the unit root test statistics (DF-GLS and its low-frequency counterpart)

and the GPH regressions. Local-to-unity models with large values of c are not rejected by
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the LBIM statistics, but this model fits the data poorly relative to fractional model with d

close to 0.5 or a local-level model with a reasonably large random walk component (g = 20).

Cointegrating relations. Several of the data series, such as the spread between

10-year and 1-year Treasury bond rates, represent error correction terms from putative coin-

tegrating relationships. Under the hypothesis of cointegration, these series should be I(0).

The I(0) model is consistent with the results reported in Table 4, while the unit root model

is rejected in Table 4 and by the unit root tests reported in Table 3. Real unit labor costs

(the logarithm of the ratio of labor productivity to real wages, y−n−w in familiar notation)
display similar behavior: results in Table 4 are consistent with the I(0) model but reject the

unit-root model, as do the unit root tests in Table 3. In both cases, the GPH regression us-

ing n0.65 suggest more persistence, but again, these regressions use 32 periodogram ordinates

corresponding to periods 6.6 quarters and higher.

The “balanced growth” cointegrating relation between consumption and income (e.g.,

King, Plosser, Stock, and Watson (1991)) fares less well, where the unit-root is not rejected

and the I(0) model is rejected. The apparent source of this rejection is the large increase

in this ratio over the 1985-2004 period, a subject that has attracted much recent attention

(for example, see Lettau and Ludvigson (2004) for an explanation based on increases in

asset values.) The investment-income relationship also appears to be at odds with the null

of cointegration, although this rejection depends in part on the particular series used for

investment and its deflator.

Finally, the stability of the logarithm of the dividend-stock price ratio, and its implica-

tion for the predictability of stock prices, has been an ongoing subject of controversy (see

Campbell and Yogo (2006) for a recent discussion). Using Campbell and Yogo’s (2006)

annual data for the SP500 from 1880-2002, the unit root model is rejected by the LBIM

test; the LBIM confidence intervals suggest less persistence than a unit root (for example

the LBIM confidence interval for the fractional model includes 0.49 ≤ d ≤ 0.86 in the frac-
tional model). Similar results hold for the earning-price ratio. The shorter (1928-2004)

CRSP dividend-yield (also from Campbell and Yogo (2006)), displays more low-frequency

persistence and is consistent with the unit-root model.
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V olatility of stock returns. Ding, Granger, and Engle (1993) analyzed the absolute

value of daily returns form the SP500 and showed that the autocorrelations decayed in a

way that was remarkably consistent with a fractional process. Low frequency characteristics

of the data summarized in Table 4 are consistent with this finding. Both the unit-root and

I(0) models are rejected by the LBIM statistic, but models with somewhat less persistence

than the unit root, such as the fraction model with 0.19 < d < 0.71, are not rejected.

The GPH statistics (which are now based on a large number of observations, n = 20643 so

that [n0.5] = 143, and [n0.65] = 637) suggest some instability across frequencies: bd = 0.38

using n0.65 and bd = 0.46 using n0.5 with small standard errors in both cases. This suggests
an important role for the role of the frequency cut-off for the analysis, a point made by

Andersen and Bollerslev (1997) in the context of volatility modeling and by Bollerslev and

Mikkelsen (1999) in their study of long-term equity anticipation securities (LEAPS) on the

SP500. Also, there is again some evidence for too much autocorrelation in the transformed

series; only rather large values of d are not rejected by a test based on |ρ̂|. It seems that the
absolute returns are subject to substantial low-frequency volatility, which is not captured

well by the stationary fractional model.

3.4 Additional Empirical Results

This section will contain additional empirical results investigating the robustness of conclu-

sions reached in the body of the paper. Robustness calculations will include

1. Using the standard Fourier expansion in place of the Fourier Cosine expansion

2. Using alternative versions of Ω (for the LB test)

3. Using alternative tests for volatility of low-frequency volatility in the underlying series

4. Using different choices of q

5. Likelihood ratio tests comparing the different models (for example, local-to-unity vs.

fractional
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4 Conclusions

Standard specification tests for time series models examine the model’s appropriateness

over the whole spectrum. In contrast, the methodology developed here isolates a model’s

low frequency implications by focusing exclusively on the properties of a finite number of

weighted averages of the original data. For example, by choosing the weights as trigonometric

series with periods larger than eight years, our empirical analysis considers whether any of

five standard models of peristence successfully explain the variability of twenty-one macro

and financial time series at frequencies lower than the business cycle.

Despite this narrow focus, we find some fairly strong empirical results. Very few of

the series are compatible with the I(0) model, including many putative cointegration error

correction terms. The unit root model fares better and successfully explains low frequency

variability of many post-war macroeconomic time series. However, for a number of series

that have traditionally been analyzed in an autoregressive framework, the fractional model

seems to provide a better fit at low frequencies.

Somewhat surprisingly, the simple one-parameter models considered here seem to be rea-

sonably successful at explaining the low-frequency variability of typical macro and financial

time series. Specific models are often rejected for specific series, but all of the models are

not rejected for any series. At the same time, for several series, there seems to be too much

low-frequency variability in the second moment to provide good fits for any of the models.

From an economic perspective, this underlines the importance of understanding the sources

and implications of such low frequency volatility changes. From a statistical perspective, this

finding motivates further research into models that allow for substantial changes in second

moments.

5 Appendix

Proof of Theorem 1:

Define St =
Pt

s=1 us and Si
t =

Pt
s=1 u

i
s, i = µ, τ . With T−αS[·T ] ⇒ ωG(·), we find by least
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squares algebra and the CMT

T−αSµ
[λT ] = T−αS[λT ] − λT−αST +Rµ

T (λ)

T−αSτ
[λT ] = T−αSµ

[λT ] − 6λ(1− λ)
R
Sµ
[lT ]dl +Rτ

T (λ)

where supλ∈[0,1] |Ri
T (λ)|

p→ 0 for i = µ, τ . Thus, by the CMT

T−αω−1Sµ
[λT ] ⇒ G(λ)− λG(1) ≡ Gµ(λ) (4)

T−αω−1Sτ
[λT ] ⇒ Gµ(λ)− 6λ(1− λ)

R
Gµ(l)dl ≡ Gτ(λ) (5)

and

E[Gµ(r)Gµ(s)] = E[(G(r)− rG(1))(G(s)− sG(1))]

= kµ(r, s)

and similarly, kτ(r, s) = E[Gτ (r)Gτ(s)]. By summation by parts

TX
t=1

Ψl(t/T )u
i
t = Si

TΨl(1)−
TX
t=1

Si
t−1(Ψl(t/T )−Ψl((t− 1)/T ))

= −
R
Si
[λT ]ψl(λ)dλ+

R
Si
[λT ](ψl(λ)−

Ψl([λT ]/T + T−1)−Ψl([λT ]/T )

T−1
)dλ,

since Si
T = 0 for i = µ, τ . Application of the mean-value theorem yields

sup
λ∈[0,1]

|ψl(λ)−
Ψl([λT ]/T + T−1)−Ψl([λT ]/T )

T−1
| ≤ sup

λ∈[0,1]
sup

λ0∈[0,1],|λ0−λ|≤T−1
|ψl(λ)−ψl(λ

0)|→ 0

and the uniform convergence follows from continuity (and hence uniform continuity) of ψl(·)
on the unit interval. Thus

T−α|
R
Si
[λT ](ψl(λ)−

Ψl([λT ]/T + T−1)−Ψl([λT ]/T )

T−1
)dλ|

≤ sup
λ∈[0,1]

|ψl(λ)−
Ψl([λT ]/T + T−1)−Ψl([λT ]/T )

T−1
|
R
|T−αSi

[λT ]|dλ
p→ 0

since
R
|T−αSi

[λT ]|dλ ⇒ ω
R
|Gi(λ)|dλ by the CMT. Using this result row by row and the

convergences (4) and (5), we obtain by the CMT

XT = T−α
TX
t=1

Ψ(t/T )uit

= −
R
Si
[λT ]ψ(λ)dλ+ op(1)⇒−

R
Gi(λ)ψ(λ)dλ
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where ψ(·) = (ψ1(·), · · · , ψq(·))0, and the result follows.

Continuity of fractional process at d = 1/2:

By the definition of kµFR(d)(r, s) and kµI-FR(d)(r, s), we find for s ≤ r

kµFR(d)(r, s) =
1
2
[s1+2d + r1+2d − (r − s)1+2d + 2rs

− s(1− (1− r)1+2d + r1+2d)− r(1− (1− s)1+2d + s1+2d)]

and

kµI-FR(d)(r, s) =
1

4d(1 + 2d)
[−r1+2d(1− s)− s(s2d + (r − s)2d + (1− r)2d − 1)

+ r(s1+2d + 1− (1− s)2d + (r − s)2d) + sr((1− s)2d + (1− r)2d − 2))]

so that

lim
d↑1/2

kµFR(d)(r, s) = lim
d↓1/2

kµI-FR(d)(r, s) = 0.

Now for 0 < s < r, using that for any real a > 0, limx↓0(a
x − 1)/x = ln a, we find

lim
d↑1/2

kµFR(d)(r, s)

1/2− d
= −(1− r)2s ln(1− r)− r2(1− s) ln r − r(1− s)2 ln(1− s)

+ (r − s)2 ln(r − s) + (r − 1)s2 ln(s)

and

lim
d↑1/2

kµFR(d)(r, r)

1/2− d
= 2(1− r)r(−(1− r) ln(1− r)− r ln r).

Performing the same computation for kµI-FR(d)(r, s) yields the result.

6 Data Appendix

Table A1 lists the series used in section 3, the sample period, transformation, and data source

and notes. In the column labeled Smpl (sample period), PWQ denotes postwar quarterly

observations over 1952:1-2004:4, other series are annual over the period shown with the

exception on absolute returns, which are daily daily over the period shown. In the column

labeled Trans (transformation), the transformation are: demeaned levels (lev µ), detrended
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levels (lev τ), demeaned logarithms (ln µ), detrended logarithms (ln τ), and ln(rat) denotes

the logarithm of the indicated ratio. In the column labeled Source and Notes, DRI denotes

the DRI Economics Database (formerly Citibase) and NBER denotes the NBER historical

data base.
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Figure 1 
R2 From Regression of sin(rπs + a) onto Ψ1(s) … Ψq(s) 
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Notes: The first column shows the R2 for q = 14 and the second column for q = 32. The 
first row shows average values over values of the phase a, the second column shows the 
R2 maximized over a, and the final row shows the R2 minimized over a.  The (thin) black 
curve shows results for the Fourier cosine expansion and the (thick) red curve for the 
Fourier expansion. 



Figure 2 
Standard Deviation of Xl Implied by Different Models  

 
                  A. Fractional Model                                            B. OU Model 

       
 
 
                           C. LL Model 

 
 
Notes: These figures show the square roots of the diagonal elements of Σ(θ) for different 
values of the parameter θ  = (d, c, g), where Σ(θ) is computed for the demeaned data. 



 



Table 2 
Average Absolute Correlations for Σ(θ) for Demeaned Series. 

 
d = −0.25 d = 0.00 d = 0.25 d = 0.75 d = 1.00 d = 1.25 Fractional Model 

0.03 0.00 0.01 0.01 0.00 0.03 
 

c = 30 c = 20 c = 20 c = 5 c = 0 c = − 1 Local-to-Unity Model 
0.02 0.02 0.02 0.02 0.00 0.03 

 
g = 0 g = 2 G = 5 g = 10 g = 20 g = 30 Local-Level Model 
0.00 0.00 0.00 0.00 0.00 0.00 

 
Notes: Entries in the table are the average values of the absolute values of the correlations 
associated with Σ(θ) with q = 15 for the various models associated with demeaned series. 



Table 3 
Unit Root and GPH Regression Statistics 

 
 

GPH Regressions Unit Root Statistics 
(p-values) Levels Differences 

Series Sample 
Period 

DF-GLS LFUR n0.5 n0.65 n0.5 n0.65 
Real GDP PWQ 0.39 0.13 1.00 (0.09) 0.98 (0.06) -0.19 (0.09) -0.09 (0.06) 
Real GNP 1869-2004 0.02 0.05 0.98 (0.10) 0.98 (0.07) -0.84 (0.10) -0.46 (0.07) 
Inflation PWQ 0.22 0.07 0.84 (0.09) 0.91 (0.06) -0.10 (0.09) -0.02 (0.06) 
Inflation 1870-2004 0.00 0.01 0.52 (0.10) 0.30 (0.07) -0.85 (0.10) -0.93 (0.07) 
Productivity  PWQ 0.96 0.71 0.95 (0.09) 0.97 (0.06) 0.07 (0.09) -0.03 (0.06) 
Hours PWQ 0.54 0.42 0.75 (0.09) 0.99 (0.06) -0.11 (0.09) 0.09 (0.06)  
10YrTBond PWQ 0.47 0.13 1.05 (0.09) 1.08 (0.06) 0.13 (0.09) 0.10 (0.06)  
1YrTBond PWQ 0.23 0.04 0.85 (0.09) 0.95 (0.06) -0.05 (0.09) -0.03 (0.06) 
3mthTbill PWQ 0.23 0.07 0.74 (0.09) 1.00 (0.06) -0.21 (0.09) 0.04 (0.06)  
Bond Rate 1900-2004 0.32 0.16 1.07 (0.10) 1.22 (0.07) 0.08 (0.10) 0.09 (0.07)  
Real Tbill Rate PWQ 0.06 0.01 0.72 (0.09) 0.79 (0.06) -0.19 (0.09) -0.12 (0.06) 
Real Bond Rate  1900-2004 <0.01 <0.01 0.46 (0.10) 0.35 (0.07) -0.55 (0.10) -0.65 (0.07) 
Dollar/Pound  
Real Ex. Rate 

1792-1990 <0.01 0.01 0.58 (0.09) 0.49 (0.06) -0.48 (0.09) -0.55 (0.06) 

TBond Spread PWQ <0.01 . 0.18 (0.09) 0.61 (0.06) -0.80 (0.09) -0.41 (0.06) 
Unit Labor Cost PWQ 0.03 0.00 0.57 (0.09) 0.75 (0.06) -0.55 (0.09) -0.31 (0.06) 
real C-GDP PWQ 0.84 0.81 0.96 (0.09) 0.96 (0.06) 0.19 (0.09) -0.10 (0.06) 
real I-GDP PWQ 0.66 0.24 0.62 (0.09) 0.87 (0.06) -0.74 (0.09) -0.25 (0.06) 
Div/Price  
(SP500) 

1880-2002 0.19 0.17 0.35 (0.10) 0.63 (0.07) -0.31 (0.10) -0.34 (0.07) 

Earnings/Price  
(SP500) 

1880-2002 0.03 0.01 0.70 (0.10) 0.62 (0.07) -0.36 (0.10) -0.35 (0.07) 

Div/Price 
 (CRSP) 

1926-2002 0.46 0.47 0.72 (0.11) 0.72 (0.08) -0.28 (0.11) -0.43 (0.08) 

Abs.Returns 
 (SP500) 

Daily <0.01 <0.01 0.46 (0.03) 0.38 (0.01) -0.52 (0.03) -0.61 (0.01) 

 
 
Notes: Smpl is the sample period where PWQ denotes post-war quarterly (1952:1-
2004:4), Daily denotes daily data from January 3, 1928 – November 22, 2005, and the 
other entries denote annual observations over the period listed.  Entries under DF-GLS 
and LFUR are p-values for the tests. The values under GPH are the estimated values of d 
using the levels and differences of the data using the number of periodogram ordinates 
listed with estimated standard error in parentheses.   



Table 4 
Confidence Intervals and Likelihood Summary for Low-Frequency Components 

 
 

90% CI Model 
LBIM ˆ| |ρ  

LLF MLE (LLR < 2) 

A. Real GDP (1952:1-2004:4)  
Frac. (d) (0.24 1.49) (-0.49 1.49) 8.95   0.83  (0.26 1.49) 
OU (c) (-3.00 28.00) (-3.00 30.00) 9.02   6.00  (-3.00 30.00) 
LL (g) (7.00 30.00) (0.00 30.00) 8.45  30.00  (6.50 30.00) 
I -OU (c) (17.50 30.00) (11.50 30.00) 8.37  30.00  (10.50 30.00) 
I – LL (g) (0.00 19.00) (0.00 22.50) 8.81   0.00  (0.00 12.00) 

B. Real GNP (1869-2004) 
Frac. (d)  (0.31 1.12) (-0.49 1.49) 12.71   0.64  (0.28 1.03) 
OU (c)  (-3.00 30.00) (-3.00 30.00) 13.52  24.50  (4.50 30.00) 
LL (g)  (25.00 30.00) (0.00 30.00) 10.36  30.00  (13.50 30.00) 
I -OU (c)  (. .) (-3.00 30.00)  3.03  30.00  (22.00 30.00) 
I – LL (g)  (0.00 16.00) (0.00 30.00) 11.01   0.00  (0.00 8.50) 

C. Inflation, GDP Deflator (1952:1-2004:4) 
Frac. (d) (0.41 1.42) (-0.49 1.49)  4.33   0.79  (0.28 1.30) 
OU (c)  (-3.00 19.50) (-3.00 30.00)  4.61   5.00  (-2.00 23.00) 
LL (g)  (12.00 30.00) (0.00 30.00)  4.12  30.00  (9.00 30.00) 
I -OU (c)  (23.00 30.00) (-3.00 30.00)  3.10  30.00  (12.00 30.00) 
I – LL (g)  (0.00 15.00) (0.00 30.00)  4.01   0.00  (0.00 8.00) 

D. Inflation, GNP Deflator (1870-2004) 
Frac. (d)  (0.06 0.49) (-0.49 0.93)  2.70   0.30  (0.05 0.60) 
OU (c)  (. .) (18.00 30.00)  0.62  30.00  (17.00 30.00) 
LL (g)  (3.00 30.00) (0.00 30.00)  2.38   9.00  (1.50 30.00) 
I -OU (c)  (. .) (. .) -20.26  30.00  (24.00 30.00) 
I – LL (g)  (. .) (. .) -6.33   0.00  (0.00 5.00) 

E. Labor Productivity (1952:1-2004:4) 
Frac. (d) (1.03 1.49) (-0.49 1.49) 17.35   1.49  (1.00 1.49) 
OU (c)  (. .) (-3.00 30.00) 15.36   0.00  (-2.50 7.00) 
LL (g)  (. .) (0.00 30.00) 13.36  30.00  (17.50 30.00) 
I -OU (c)  (-3.00 30.00) (-3.00 30.00) 17.57  10.50  (-1.50 30.00) 
I – LL (g)  (1.50 30.00) (0.00 30.00) 16.99  21.50  (0.00 30.00) 

F. Employee Hours per Capita (1952:1-2004:4) 
Frac. (d) (0.41 1.49) (-0.49 -0.22)  9.59   0.90  (0.32 1.49) 
OU (c)  (-3.00 17.50) (-3.00 -2.00)  9.57   3.00  (-3.00 23.50) 
LL (g)  (10.50 30.00) (. .)  9.28  30.00  (8.00 30.00) 
I -OU (c)  (17.00 30.00) (. .)  9.01  30.00  (10.50 30.00) 
I – LL (g)  (0.00 16.00) (3.50 11.50)  9.53   0.00  (0.00 15.00) 

G. 10Yr Treasury Bond Rate (1952:1-2004:4) 
Frac. (d)  (0.61 1.49) (-0.49 1.49)  7.09   0.99  (0.52 1.41) 
OU (c)  (-3.00 10.50) (-3.00 30.00)  7.25   1.50  (-2.00 11.00) 
LL (g)  (17.50 30.00) (0.00 30.00)  6.65  30.00  (12.00 30.00) 
I -OU (c)  (12.50 30.00) (-3.00 30.00)  6.71  30.00  (10.50 30.00) 
I – LL (g)  (0.00 23.50) (0.00 30.00)  7.09   0.00  (0.00 12.50) 
 

 
 



Table 4 Continued  
 

90% CI Model 
LBIM ˆ| |ρ  

LLF MLE (LLR < 2) 

H. 10Yr Treasury Bond Rate (1952:1-2004:4) 
Frac. (d)  (0.32 1.08) (-0.49 1.49)  3.64   0.71  (0.21 1.18) 
OU (c)  (-3.00 24.00) (-3.00 30.00)  3.43   5.50  (-1.50 30.00) 
LL (g)  (9.00 30.00) (0.00 30.00)  3.81  24.00  (6.50 30.00) 
I -OU (c)  (. .) (-3.00 30.00)  1.13  30.00  (15.50 30.00) 
I – LL (g)  (0.00 3.00) (0.00 30.00)  2.89   0.00  (0.00 7.50) 

I. 3-Month Treasury Bill Rate (1952:1-2004:4) 
Frac. (d)  (0.30 1.11) (-0.49 1.49)  3.68   0.71  (0.21 1.19) 
OU (c)  (-3.00 25.00) (-3.00 30.00)  3.48   5.50  (-2.00 30.00) 
LL (g)  (8.50 30.00) (0.00 30.00)  3.84  24.00  (6.50 30.00) 
I -OU (c)  (. .) (-3.00 30.00)  1.25  30.00  (15.50 30.00) 
I – LL (g)  (0.00 4.00) (0.00 30.00)  2.95   0.00  (0.00 7.50) 

J. Long-term Industrial Bond Rate (1900-2004) 
Frac. (d)  (0.75 1.37) (. .) 21.03   0.99  (0.69 1.32) 
OU (c)  (-3.00 10.00) (. .) 21.50   3.50  (-2.00 10.50) 
LL (g)  (. .) (. .) 17.48  30.00  (22.50 30.00) 
I -OU (c)  (. .) (. .) 18.43  30.00  (19.00 30.00) 
I – LL (g)  (0.00 22.00) (. .) 21.02   0.00  (0.00 13.50) 

K. Real 3-Month Treasury Bill Rate (1952:1-2004:4) 
Frac. (d) (-0.20 1.49) (-0.49 1.49)  0.57   0.39  (-0.28 1.21) 
OU (c)  (-3.00 30.00) (-3.00 30.00)  1.14  15.50  (-0.50 30.00) 
LL (g)  (0.00 30.00) (0.00 30.00)  0.03   2.00  (0.00 30.00) 
I -OU (c)  (-3.00 30.00) (-3.00 30.00) -0.77  30.00  (9.50 30.00) 
I – LL (g)  (0.00 30.00) (0.00 30.00) -0.49   0.00  (0.00 8.50) 

L. Real Long-Term Industrial Bond Rates (1900-2004) 
Frac. (d)  (-0.06 0.58) (-0.49 -0.08)  0.97   0.24  (-0.10 0.62) 
OU (c)  (28.00 30.00) (. .)  0.32  30.00  (15.50 30.00) 
LL (g)  (0.00 30.00) (. .)  0.09   4.00  (0.00 30.00) 
I -OU (c)  (. .) (. .) -14.55  30.00  (22.50 30.00) 
I – LL (g)  (. .) (. .) -6.03   0.00  (0.00 5.00) 

M. Real Dollar/Pound Exchange Rate (1792-1990) 
Frac. (d)  (0.27 0.62) (-0.49 1.49) 16.78   0.46  (0.29 0.69) 
OU (c)  (23.00 30.00) (-3.00 30.00) 13.30  27.00  (9.00 30.00) 
LL (g)  (11.00 30.00) (0.00 30.00) 17.94  21.50  (9.50 30.00) 
I -OU (c)  (. .) (0.50 30.00) -6.31  30.00  (23.50 30.00) 
I – LL (g)  (. .) (0.00 30.00)  8.91   0.00  (0.00 5.50) 

N. Interest Rate Term Spread (10Yr-1Yr, 1952:1-2004:4) 
Frac. (d)  (-0.49 0.33) (-0.49 1.49)  0.04   0.07  (-0.39 0.57) 
OU (c)  (23.50 30.00) (-3.00 30.00) -0.76  30.00  (11.50 30.00) 
LL (g)  (0.00 8.00) (0.00 30.00)  0.41   4.00  (0.00 17.00) 
I -OU (c)  (. .) (-3.00 30.00) -8.63  30.00  (18.00 30.00) 
I – LL (g)  (. .) (0.00 30.00) -5.71   0.00  (0.00 5.00) 

O. Real Unit Labor Cost (y-n-w, 1952:1-2004:4) 
Frac. (d)  (-0.04 0.53) (-0.49 1.49)  1.19   0.34  (-0.10 0.83) 
OU (c)  (12.50 30.00) (-3.00 30.00)  0.42  26.50  (2.50 30.00) 
LL (g)  (0.00 13.50) (0.00 30.00)  2.03   7.00  (0.50 25.50) 
I -OU (c)  (. .) (-3.00 30.00) -3.95  30.00  (15.50 30.00) 
I – LL (g)  (. .) (0.00 30.00) -2.06   0.00  (0.00 5.50) 

 



Table 4 Continued  
 

90% CI Model 
LBIM ˆ| |ρ  

LLF MLE (LLR < 2) 

P. Consumption-Income Ratio  (1952:1-2004:4) 
Frac. (d)  (0.58 1.49) (-0.49 1.49) 10.14   1.10  (0.69 1.46) 
OU (c)  (-3.00 8.50) (-2.50 30.00) 10.79  -1.50  (-3.00 2.00) 
LL (g)  (11.00 30.00) (0.00 30.00)  9.70  30.00  (9.00 30.00) 
I -OU (c)  (9.50 30.00) (-3.00 30.00)  9.86  30.00  (8.50 30.00) 
I – LL (g)  (0.00 30.00) (0.00 30.00) 10.24   2.00  (0.00 10.50) 

Q. Investment/Income Ratio (1952:1-2004:4) 
Frac. (d)  (0.52 1.21) (-0.49 0.68)  8.08   0.89  (0.51 1.29) 
OU (c)  (-3.00 10.50) (3.50 30.00)  8.03  -0.50  (-3.00 7.50) 
LL (g)  (9.50 30.00) (0.00 8.00)  8.42  28.50  (8.50 30.00) 
I -OU (c)  (. .) (. .)  6.60  30.00  (14.50 30.00) 
I – LL (g)  (0.00 5.50) (. .)  7.94   1.00  (0.00 8.00) 

R. Dividend-Price Ratio (SP500, 1880-2002) 
Frac. (d)  (0.49 0.86) (0.69 1.49) 12.45   0.72  (0.45 1.00) 
OU (c)  (6.00 25.00) (-3.00 14.00) 11.15   7.50  (-3.00 24.50) 
LL (g)  (26.00 30.00) (. .) 12.43  30.00  (17.50 30.00) 
I -OU (c)  (. .) (-3.00 30.00)  0.78  30.00  (23.00 30.00) 
I – LL (g)  (. .) (0.00 30.00) 10.52   0.00  (0.00 6.50) 

S. Earnings-Price (SP500, 1880-2002) 
Frac. (d)  (0.37 0.83) (-0.49 -0.29) (0.23 

1.49) 
 7.71   0.59  (0.30 0.90) 

OU (c)  (10.00 30.00) (-3.00 30.00)  7.01  18.50  (2.50 30.00) 
LL (g)  (19.00 30.00) (6.00 30.00)  7.26  30.00  (13.50 30.00) 
I -OU (c)  (. .) (-3.00 30.00) -5.32  30.00  (23.00 30.00) 
I – LL (g)  (. .) (0.00 30.00)  4.42   0.00  (0.00 5.50) 

T. Dividend/Price (CRSP 1926-2002) 
Frac. (d)  (0.65 1.23) (-0.49 -0.04) (0.49 

1.49) 
10.00   0.93  (0.57 1.28) 

OU (c)  (-3.00 12.00) (-3.00 24.00)  9.95   1.00  (-3.00 12.00) 
LL (g)  (29.00 30.00) (15.00 30.00)  9.20  30.00  (16.50 30.00) 
I -OU (c)  (. .) (9.50 30.00)  7.46  30.00  (18.50 30.00) 
I – LL (g)  (0.00 10.00) (0.00 30.00)  9.96   1.00  (0.00 10.50) 

U. Absolute Returns (SP500)  
Frac. (d)  (0.19 0.71) (0.60 1.49)  2.96   0.48  (0.10 0.88) 
OU (c)  (9.50 30.00) (-3.00 13.00)  2.41  18.00  (2.50 30.00) 
LL (g)  (5.50 30.00) (20.50 30.00)  3.37  16.50  (5.00 30.00) 
I -OU (c)  (. .) (0.50 30.00) -3.58  30.00  (18.00 30.00) 
I – LL (g)  (. .) (0.00 30.00) -0.15   0.00  (0.00 5.50) 

 
 

Notes: Entries under the 90% CI columns are 90% confidence intervals for the parameter 
of the model obtained by inverting 10% level tests based on the LBIM and ˆ| |ρ  statistics, 
respectively. The four numbers in the fourth column are the maximum of the log-
likelihood, the parameter that maximizes the log-likelihood, and the set of values of the 
parameter that yield likelihoods within 2 log-points of the maximum.  



Table A1 
Data Description and Sources 

 
Series SMPL Trans Source and Notes 
Real GDP PWQ ln τ CB:  GDP157 
Real GNP 1869-2004 ln τ 1869-1928: Balke and Gordon (1989) 

1929-2004: BEA (Series are linked in 1929) 
Inflation  
(GDP Deflator) 

PWQ lev µ CB: 400×ln(GDP272(t)/GDP272(t−1)) 

Inflation 
(GNP Deflator) 

1870-2004 lev µ GNP Deflator (PGNP): 
1869-1928: Balke and Gordon (1989) 
1929-2004: BEA (Series are linked in 1929) 
Inflation Series is 100×ln(PGNP(t)/PGNP(t−1)) 

Productivity  PWQ ln τ CB: LBOUT (Output per hour, business sector) 
Hours PWQ ln µ CB: LBMN(t)/P16(t) (Employee hours/population) 
10YrTBond PWQ lev µ CB: FYGT10 
1YrTBond PWQ lev µ CB: FYGT1 
3mthTbill PWQ lev µ CB:FYGM3 
Bond Rate: 
Industrial Bonds 
Highest Rating 

1900-2004 lev µ NBER: M13108 (1900-1946) 
CB: FYAAAI (1947-2004) 

Real Tbill Rate: 
Ex-post 3-month  
real rate using PCE 
inflation 

PWQ lev µ CB: FYGM3(t)-400×ln(GDP273(t+1)/GDP273(t)) 

Real Bond Rate: 
Nominal Rates 
minus 
Inflation (GNP 
Defl.)  

1900-2004 lev µ R(t) – 100×ln(PGNP(t)/PGNP(t−1)) 
R(t) = Bond Rate (described above) 
PGNP = GNP deflator (described above) 

Dollar/Pound  
Real Ex. Rate 

1792-1990 ln µ Lothian and Taylor (1996) 

TBond Spread PWQ lev µ CB: FYGT10-FYGT1 
Unit Labor Cost 
(Real, Bus. Sector) 

PWQ ln µ CB: LBLCP(t)/LBGDP(t) 

real C-GDP PWQ ln(rat) µ CB: GDP 158/GDP157 
real I-GDP PWQ ln(rat) µ CB: GDP 177/ GDP 157 
Div/Price (SP500) 1880-2002 ln(rat) µ Campbell and Yogo (2006) 
Earnings/Price 
(SP500) 

1880-2002 ln(rat) µ Campbell and Yogo (2006) 

Div/Price (CRSP) 1926-2002 ln(rat) µ Campbell and Yogo (2006) 
Abs.Returns 
(SP500) 

Daily  
1/3/1928 – 
11/22/2005 

lev µ SP: SP500(t) is the closing price at date t. Absolute 
returns are |ln[SP500(t)/SP500(t−1)]| 

 
 


