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Motivation - Option Pricing

Consider a call option with some illiquidity in the underlying asset
market - the asset can not be resold immediately.

At the strike time, the buyer asks himself what the value of the asset
will be at the time he can sell.

At the time he buys the option, he asks himself what he will learn
about the resale value by the strike time.

One reason for the prevalence of options (compared to contracts on
fundamentals) might be that this learning is partially subjective.

We want to talk about the price of options in terms of the buyer’s
subjective learning (more generally: a subjective model of Option
value).

What happens if the strike time is randomly distributed, with a known
distribution (e.g. tied to some random variable exceeding a particular
threshold)?
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Motivation - More general

Information is usually taken as an explicit part of economic models.

If information cannot be observed, or if it varies across economic
agents, it should be derived. How can we identify unobserved
information?

We provide an axiomatic characterization of information from choice
behavior (preferences over menus of acts).

The instrumental value of information depends on the available
options. The value of a choice set depends on the information
structure. Can we identify the link between the (subjective)
information structure and preference for flexibility?
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Outline

The relevant domain

A general model of subjective learning

A representation of second-order beliefs
A representation of subjective learning
Behavioral comparison in terms of learning

Refinement - Subjective temporal resolution of uncertainty

Motivation: Option pricing with random strike times
A representation of subjective filtration (exclusive tree)
Behavioral comparison in terms of early learning
Reevaluation of the domain in this context
A reinterpretation: Flow utilities

I will mention the most relevant literature, as I go along.
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The relevant domain

Subjective learning requires some uncertainty.
Savage (1954):

Objective state space S captures all relevant aspects of the world.
Space of possible outcomes X
DM chooses between acts f ∈ F , where f : S → X
Preferences are described by the DM’s beliefs µ over S (and a utility
on X )

If information was objective: DM and modeler observe realization of
some random variable to get to new information set S ′ ⊂ S . Beliefs
updated according to Bayes’law
We could look at choice over two-stage acts, h : 2S → F , and expect
a representation

V (h) = ∑
S ′∈2S

[
∑
s∈S ′

h
(
S ′
)
(s)

µ (s)
µ (S ′)

]
ρ
(
S ′
)

such that ∑S ′∈2S |s∈S ′
ρ(S ′)
µ(S ′) = 1.
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The relevant domain

Compound acts are not available, if information is subjective.
Instead, we have to consider menus of acts, which collect alternatives
for choice at a later point in time.

S = {s1, ..., sk} is a finite state space.

An act is a mapping f : S → [0, 1]. F denotes the set of all acts.

We interpret payoffs in [0, 1] to be in “utils”. We assume that the
utility function over outcomes is known and payoffs are stated in its
units.

K (F ) is the set of all non-empty compact subsets of F . A typical
menu is F = {f , g , h, ...} ∈ K (F )

� is a preference relation over K (F ).
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Preview -A general representation

Theorem: The relation � satisfies our axioms if and only if there is a
probability measure µ on S and a probability measure ρ on 2S , such that

∑S ′∈2S |s∈S ′
ρ(S ′)
µ(S ′) = 1 for all s, and

V (F ) = ∑
S ′∈2S

max
f ∈F

[
∑
s∈S ′

f (s)
µ (s)
µ (S ′)

]
ρ
(
S ′
)

represents �.
Furthermore, the pair (µ, ρ) is unique.
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Comparison to DLRS - Domain

“Representing preferences with a unique subjective state space”DLR
(2001) and DLRS (2007)

DLRS: Choice over menus of lotteries, A = {p, q, ...}, where the
space of outcomes X is finite. Lotteries are finite vectors with a
probability for every prize. The entries must sum to 1.

Our model: Finite objective state space, S . Acts are finite vectors
with a utility for every state. Entries do not have to sum to 1.

As a first step we will get a representation that is similar to the one in
DLRS by capitalizing on the geometric similarity between the
domains.
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Axioms

Axiom 1 (Ranking) � is a weak order.

Axiom 2 (vNM Continuity) If F � G � H, then there are
α, β ∈ (0, 1), such that αF + (1− α)H � G � βF + (1− β)H.

Axiom 3 (Nontriviality) There are F and G such that F � G .

Axiom 4 (Independence) For all F , G , H, and α ∈ [0, 1],
F � G ⇔ αF + (1− α)H � αG + (1− α)H.

Axiom 5 (Set Monotonicity) F ⊂ G implies G � F .

Axiom 6 (Domination) f ≥ g and f ∈ F imply F ∼ F ∪ {g} .
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A representation of second-order beliefs

Theorem
The relation � satisfies axioms 1-6 if and only if it can be represented by

V (F ) =
∫
J

max
f ∈F

(
∑S
s=1 f (s)πj (s)

)
dp (j)

where πj (·) is a unique (up to a set of p−measure zero) probability
measure on S and p (·) is a unique probability measure on the space of all
those measures.

A similar result appears in Takeoka (2004).
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Comparison to DLRS - Representation

Our representation

V (F ) =
∫
J

max
f ∈F

(
∑
s∈S

f (s)πj (s)

)
dp (j)

DLRS: Choice over menus of lotteries, A = {p, q, ...}, where space of
outcomes, X , is finite.

U (A) =
∫
S

max
p∈A

(
∑
x∈X

p (x) us (x)

)
dη (s)

The following objects are analogous. Objective: S ↔ X ,
f (s)↔ p (x) Subjective: J ↔ S , p (j)↔ η (s), πj (s)↔ us (x)
In DLRS the pair (u, η) describes behavior, but the two parameters
are only jointly identified.
In contrast, in our representation the pair (π, p) is unique, because
∑S πj (s) = 1 must hold for all j .
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Subjective learning

Suppose that S fully describes the individual’s uncertainty. The
modeler does have access to the state space that is relevant for the
DM’s decisions.

Savage idea: “ [S] represents a description of the world, leaving no
relevant aspect undescribed”

The DM’s uncertainty about his beliefs can be understood as
uncertainty about the information set he will be in at the time of
choosing from the menu.
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Definitions

J∗ ⊂ J is the support of the measure p (·)

Given f ∈ F , define

f 0−s
(
s ′
)
=

{
f (s ′) if s ′ 6= s
0 if s ′ = s

Given f ∈ F with f (s) < 1− ε, define

f ε
s

(
s ′
)
=

{
f (s ′) if s ′ 6= s
f (s ′) + ε if s ′ = s

The support of an act f is σ (f ) = {s ∈ S : f (s) > 0}.
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Maximin (“Maximal Fat Free”) menus

We provide a general definition of maximin menus. Our axioms (including
the next one) allow us to establish that all maximin menus are finite.
Taking into account that maximin sets are finite, our definition boils down
to the following:

A menu of acts F is minimal if for all f ∈ F and for all s ∈ σ (f ),
F � (F\f ) ∪ f 0−s .

all acts on a minimal set are “fat-free’: reducing an outcome in any
state in the support results in an inferior set.

A menu F is maximin if it is minimal and
1 for all f ∈ F and for all s /∈ σ (f ), there exists ε > 0 such that
F ∼ F ∪ f ε

s for all ε < ε, and

2 there exists no menu G * F such that F ∪ G is minimal.

(2) You cannot add items to a Maximin set without making it “fatty”
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Identification of acts and beliefs

Claim: A maximin set F always exists
Claim: If F is maximin and finite, then F is isomorphic to the set of
first order beliefs, J∗. Intuition:

Suppose f ∈ F does best for two (or more) first-order beliefs, i and j
Construct g that does better in only one of them ⇒ F was not
maximin.
If f ∈ F does not do best for any i ∈ I , then F is not minimal, and
therefore not maximin.

Claim: Suppose F is maximin and f ∈ F . Let i (f ) ∈ J be the belief
such that f = argmax 〈f ,π (· |i (f ) )〉. Then
σ (f ) = {s ∈ S : π (s |i (f ) ) > 0}

The isomorphism is such that s ∈ σ (f ) if and only if s is also in the
support of the corresponding first-order belief.
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A representation of subjective learning

Axiom 7 (Constant MRS) If F is maximin, f , g ∈ F , and
s, s ′ ∈ σ (f ) ∩ σ (g), then there is ε > 0 such that for all ε ≤ ε.

F ∪ f ε
s ∼ F ∪ f δ

s ′ ⇒ F ∪ g ε
s ∼ F ∪ g δ

s ′

Idea: the relative weight of two states should not change between two
information sets that contain both states.

Theorem
� satisfies Axioms 1-7 if and only if there is a probability measure µ on S

and a probability measure ρ on 2S , such that ∑S ′∈2S |s∈S ′
ρ(S ′)
µ(S ′) = 1 for all

s, and

V (F ) = ∑
S ′∈2S

max
f ∈F

[
∑
s∈S ′

f (s)
µ (s)
µ (S ′)

]
ρ
(
S ′
)

represents �.

Furthermore, the pair (µ, ρ) is unique.
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Intuition

If two beliefs i and j in J∗ disagree on the relative weight of two
states in their support, then the MRS of utility in one state versus the
other must be different, which contradicts Axiom 7.
In particular, no two beliefs can have the same support ⇒ the
measure ρ on 2S is identified by p in Theorem 1
The measure µ must satisfy

µ (s) = ∑
J ∗

πj (s) p (j)

It immediately follows that

µ (s) = ∑
S ′∈2S |s∈S ′

µ (s)
µ (S ′)

ρ
(
S ′
)

or

∑
S ′∈2S |s∈S ′

ρ (S ′)
µ (S ′)

= 1
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Behavioral comparison in terms of learning

Definition: DM1 has more preferences for flexibility than DM2 if for
all f ∈ F and for all G ∈ K (F )

{f } �1 G ⇒ {f } �2 G

Definition: DM1 has the same beliefs as DM2 if µ1 = µ2

Definition: DM1 learns more than DM2, if for all E ∈ 2S

∑
E ′⊆E

ρ1
(
E ′
)
≥ ∑

E ′⊆E
ρ2
(
E ′
)

Theorem
DM1 has more preference for flexibility than DM2, if and only if DM1
learns more than DM2 and they have the same beliefs.
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Intuition

If: DM1 can always imitate DM2’s choice and hence must be weakly
better off with a menu rather than a singleton, whenever DM2 is.
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Intuition

Only if: Taking G = {g} implies that they have same preferences on
singletons, hence same beliefs.

Suppose that there is E ∈ 2S with ∑E ′⊆E ρ2 (E
′) > ∑E ′⊆E ρ1 (E

′) .
Obviously E is a strict subset of the support of µ.

Define the act f :=
{

δ > 0 if s ∈ E
0 if s /∈ E

Let c denote the constant act that gives c > 0 in every state, such
that δ > c > µ(E )

µ(S ′)δ for all S
′ that are a strict superset of E . Then

Vi ({f , c}) = c + (δ− c)∑E ′⊆E ρi (E
′)

Finally, pick c ′ such that

(δ− c) ∑
E ′⊆E

ρ2
(
E ′
)
> c ′ − c > (δ− c) ∑

E ′⊆E
ρ1
(
E ′
)

to find {f , c} �2 {c ′} but {c ′} �1 {f , c}, and hence DM1 can not
have more preference for flexibility than DM2.
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Motivation - options with random strike time

As before, consider a call option with some illiquidity in the
underlying asset market - the asset can not be resold immediately.

But now assume that the strike time is randomly distributed on time
interval [0, 1] with a known distribution (e.g. tied to some random
variable exceeding a particular threshold)

At the time the buyer contemplates the option, he asks himself what
he will learn about the resale value by the strike time.

The question then becomes when exactly the buyer expects to receive
information, as his information set at any point in time t ∈ [0, 1]
might end up being the relevant one.

We want to model a DM who anticipates the (subjective) gradual
resolution of uncertainty over time: He faces a filtration {Pt} on S ,
which is indexed by t ∈ [0, 1]
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Preview - a subjective, exclusive tree representation

Definition: The pair (µ, {Pt}) is an exclusive tree, if µ is a
probability measure on S and {Pt} is a filtration indexed by t ∈ [0, 1].
Suppose for simplicity, that stopping time is distributed uniformly on
[0, 1]

Theorem � satisfies our axioms if and only if there is an exclusive
tree, (µ, {Pt}) , such that

V (F ) =
∫
[0,1]

(
∑
P∈Pt

max
f ∈F

[
∑
s∈P

f (s) µ (s)

])
dt

represents �.

Furthermore, (µ, {Pt}) is unique.
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Definitions

Definition: An act f contains act g if σ (g) ⊂ σ (f ).

Definition: Acts f and g do not intersect if σ (g) ∩ σ (f ) = ∅.

Definition: F ε
f ,s := F ∪ {g ε

s : g ∈ F , f contains g and s ∈ σ (g)}
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Axioms

Axiom 8 (Exclusivity): If F is maximin and f , g ∈ F , then either f
and g do not intersect or one contains the other.

The collection of supports of the first-order beliefs can be arranged to
form a filtration on S . The objective state space S is large enough to
capture the subjective resolution of uncertainty, that is, the filtration
on the underlying subjective state space is measurable in S .

Axiom 9 (Strong Constant MRS): If F is maximin, f ∈ F , and
s, s ′ ∈ σ (f ), then there is ε > 0 such that F ∪ f ε

s ∼ F ∪ f δ
s ′ implies

F ε
f ,s ∼ F δ

f ,s ′ for all ε ≤ ε.
If in information set S ′ the DM assigns probabilities p and p′ to two
states s and s ′, respectively, then p and p′ are also his expectations of
the probabilities of these two states for any future point in time.

Axiom 10 (No Immediate Learning): If F is maximin, then there
exist f ∈ F such that f contains g for all g ∈ F with g 6= f .

The (subjective) flow of information can not start before time 0 (at
which point his beliefs commence to be relevant for choice from the
menu).
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A subjective, exclusive tree representation

Theorem
Under the assumptions of Theorem 1, � satisfies Axioms 8 and 9 if and
only if there is an exclusive tree, (µ, {Pt}) , such that

V (F ) =
∫
[0,1]

(
∑
P∈Pt

max
f ∈F

[
∑
s∈P

f (s) µ (s)

])
dt

represents �.

If � also satisfies Axiom 10, then there is Ŝ ⊆ S, such that P0 =
{
Ŝ
}
,

that is, the tree (µ, {Pt}) has a unique initial node.

In either case, (µ, {Pt}) is unique.
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Intuition

Axiom 9 implies axiom 7 → Theorem 2.
Axiom 8 implies that information sets in Theorem 2 can be ordered so
as to form a filtration.
As in Theorem 2, the relative weights assigned to any two states by
two different information sets that support them must be the same.
But the relative weights assigned to two states that are contained in
distinct information sets may change.
The weight reflects both the probabilities and the duration for which
the DM expects to be in the relevant information set → change in
weights must be absorbed by time, such that the relative weight for
any two states is constant over time, from the ex-ante perspective (as
dictated by Bayes’law)
The strengthening from Axiom 7 to Axiom 9 implies that the
aggregated time adjustments along every branch of the tree amount
to the same.
There is a unique way to adjust time.
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Behavioral comparison in terms of early learning

Definition: DM1 learns earlier than DM2 if
{
P1t
}
is weakly finer

than
{
P2t
}
(DM1’s partition is finer than that of DM2 for all

t ∈ [0, 1])

Corollary
DM1 has more preference for flexibility than DM2, if and only if DM1
learns earlier than DM2 and they have the same beliefs.

Remark: the property that DM1 learns earlier than DM2 does not
imply that DM1’s willingness to pay to add options to a given menu
is always greater than that of DM2.
Remark: Consider the special case where neither decision maker
expects to learn over time. In that case, their respective preferences
can be described by a degenerate filtration with Pt = P for all
t ∈ [0, 1] . Then more preferences for flexibility corresponds to having
finer partition. This implication of our result is independently
observed by Lleras (2011).
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Reevaluating the domain

As argued before, compound acts are not a feasible domain, when
information is subjective.
When considering temporal resolution of subjective uncertainty, it
might seem natural to consider compound menus (menus over menus
of acts, etc.) At every stage, such a compound menu specifies the set
of feasible actions. Takeoka (2007) derives a compound lottery with
subjective probabilities based on this approach.
This domain has two drawbacks:

1 To specify the domain, the timing of the stages must be objective.
2 The domain is complicated and very large (menus of infinite
dimensional objects)

We suggest, instead, to reinterpret the familiar domain of menus of
acts: The menu specifies the collection of actions that are available to
the DM at any point in time. We show that it is rich enough for a full
identification, even of the timing of information arrival in continuous
time.
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A reinterpretation - flow utilities

At any point t ∈ [0, 1] the DM holds one act from the menu.

At time 1, the true state of the world becomes objectively known, and
the DM is paid the convex combination of the payoffs specified by all
acts on the menu, where the weight assigned to each act is simply the
amount of time the DM held it.

That is, the DM derives a flow utility from holding a particular act,
where the state dependent flow is determined ex post, at the point
where payments are made.

The information set at any point in time t ∈ [0, 1] is relevant for
choice from the menu.
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