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1 Introduction 
Dynamic factor models (DFM) and dynamic stochastic general equilibrium (DSGE) models are widely 

used for empirical research in macroeconomics. The traditional areas of DFM application are the 

construction of coincident and leading indicators (e.g. Stock and Watson 1989, Altissimo et al. 2001) and 

the forecasting of macro time series (Stock and Watson 1999, 2002a, b; Forni, Hallin, Lippi and Reichlin 

2003; Boivin and Ng 2005). DFMs are also in use for the real-time monitoring (Giannone, Reichlin, 

Small 2008; Aruoba, Diebold, Scotti 2009), in monetary policy applications (e.g. Factor Augmented VAR 

approach of Bernanke, Boivin, Eliasz 2005, Stock and Watson 2005) and in studying international 

business cycles (Kose, Otrok, Whiteman 2003, 2008; Del Negro, Otrok 2008). The micro-founded 

optimization-based DSGE models primarily focus on understanding the sources of business cycle 

fluctuations and on assessing the importance of nominal rigidities and various types of frictions in the 

economy. Recently, they appear to have been able to replicate well many salient features of the data (e.g. 

Christiano, Eichenbaum, Evans 2005; Smets and Wouters 2003, 2007). As a result, the versions of DSGE 

models extended to open economy and multisector contexts are increasingly used as tools for projections 

and policy analysis at major central banks (Adolfson et al 2007, 2008; Edge, Kiley and Laforte 2009; 

Coenen, McAdam, Straub 2008). 

The empirical factor literature argues that the co-movement of large panels of macroeconomic 

and financial data can be captured by relatively few common unobserved factors. Early work by Sargent 

and Sims (1977) found that the dynamic index model with two indices fits well the real variables in their 

panel. Giannone, Reichlin, Sala (2004) claim that the number of common shocks, or stochastic dimension 

of the U.S. economy in their terminology, is two. There has been a lot of theoretical work on developing 

the more objective criteria to choose the appropriate number of static/dynamic factors in empirical factor 

models. Based on these criteria, several authors (e.g. Bai, Ng 2007; Hallin, Liska 2007; Stock and Watson 

2005) argued for higher number of dynamic factors that drive large US macroeconomic panels – ranging 

from four to seven. 

The dynamics in DSGE models are also often governed by a handful of state variables and 

exogenous processes like preference and/or technology shocks. Boivin and Giannoni (2006) combine a 

DSGE and a factor model into a data-rich DSGE model, in which DSGE states are factors and factor 

dynamics are subject to DSGE model implied restrictions. They argue that the richer information coming 

from large macroeconomic and financial panel can provide better estimates of the DSGE states and of the 

structural shocks driving the economy. On top of that, they show that the data-rich DSGE model delivers 

different estimates of deep structural parameters of the model compared to standard non-data-rich 

estimation. 

If both a data-rich DSGE model and an empirical factor model are taken to the same rich data set, 

then how similar or different would be the latent empirical factors extracted by a factor model versus the 
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estimated data-rich DSGE model states? Do they span a common space? We ask this question because of 

three reasons. First, the factor spaces comparison may serve as a useful tool to evaluate a DSGE model. 

Recent research has shown that misspecification remains a concern to valid inference in DSGE models 

(Del Negro, Schorfheide, Smets and Wouters 2007 – DSSW hereafter). If a DSGE model is taken to a 

particular small set of observables, misspecification often manifests itself through the inferior fit. 

Dynamic factor models usually fit well and perform well in forecasting. So if it turns out that the spaces 

spanned by two models are close, then it is a good news for a DSGE model. This means that a DSGE 

model overall captures the sources of co-movement in the large panel of data as sort of a core, and that 

the differences in fit between a data-rich DSGE model and a DFM are potentially due to restricted factor 

loadings in the former. Second, it is well known that the latent common components extracted by 

dynamic factor models from the large panels of data do not mean much in general. That’s one of the 

biggest weaknesses of DFMs. If factor spaces in two models are closely aligned, this facilitates economic 

interpretation of a dynamic factor model, as the empirical factors become isomorphic to the DSGE model 

state variables with clear economic meaning. Third, if factor spaces are close, we are able to map the 

DSGE model concepts into empirical factors every period and therefore propagate the structural shocks in 

otherwise completely non-structural dynamic factor model to obtain predictions for a broad range of 

macro series of interest2. This way of doing policy analysis is more reliable. This is because on top of the 

impulse responses derived in the data-rich DSGE model, which might be misspecified, we are able to 

generate a second set of responses to the same shocks in the context of a factor model that is primarily 

data-driven and fits better. 

We compare a data-rich DSGE model with a standard New Keynesian core to an empirical 

dynamic factor model by estimating both on a rich panel of U.S. macroeconomic and financial data 

compiled by Stock and Watson (2008). The estimation involves Bayesian methods. 

We find that the spaces spanned by the empirical factors and by the data-rich DSGE model states 

are very close. This proximity allows us to propagate monetary policy and technology innovations in 

otherwise non-structural dynamic factor model to obtain predictions for many more series than a handful 

of traditional macro variables including measures of real activity, price indices, labor market indicators, 

interest rate spreads, money and credit stocks, exchange rates. We can therefore provide a more complete 

and comprehensive picture of the effects of monetary policy and technology shocks. 

The paper is organized as follows. In Section 2 we present the variant of a dynamic factor model 

and a data-rich DSGE model to be used in subsequent empirical analysis. Our econometric methodology 

to estimate two models and also a computational speedup due to Jungbacker and Koopman (2008) are 

discussed in Section 3. Section 4 describes our data set and transformations. In Section 5 we proceed by 

                                                 
2 This is similar in spirit to the Factor Augmented VAR approach (originally due to Bernanke, Boivin and Eliasz 
(2005) and also implemented by Stock and Watson (2005) to study the impact of monetary policy shocks on large 
panel of macro data) and to the structural factor model of Forni, Giannone, Lippi and Reichlin (2007).  
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conducting the empirical analysis. We begin by discussing the choice of the prior distributions of model 

parameters and then briefly describe the posterior estimates of deep structural parameters of the data-rich 

DSGE model. Second, we analyze the estimated empirical factors and the estimates of the DSGE model 

state variables, and explore how well they are able to capture the co-movements in the data. Third, we 

compare the spaces spanned by the latent empirical factors and by the data-rich DSGE model state 

variables. Finally, we use the proximity of the factor spaces to propagate the monetary policy and 

technology innovations in otherwise non-structural dynamic factor model to obtain the predictions for the 

core and non-core macro and financial series of interest. Section 6 concludes. 

2 Two Models 
In this section, we present two benchmark models the factor spaces of which we will ultimately compare. 

First, we describe the variant of a dynamic factor model. Then, we present a data-rich DSGE model with 

a New Keynesian core to be estimated on the same large panel of macro and financial series. 

2.1 Dynamic Factor Model 
If the forecasting performance is a right guide to choose the appropriate factor model specification, the 

literature remains rather inconclusive in that respect. For example, Forni, Hallin, Lippi and Reichlin 

(2003) found supportive results for the generalized dynamic factor specification over the static factor 

specification, while Boivin and Ng (2005) documented little differences for the competing factor 

specifications. We choose to work with the version of dynamic factor model as originally developed by 

Geweke (1977) and Sargent and Sims (1977) and recently used by Stock and Watson (2005). 

Let tF  denote the 1N ×  vector of common unobserved factors that are related to a 1J ×  large 

( J N ) panel of macroeconomic and financial data tX  according to the following factor model: 

t t tX F e= +Λ   (1) 

1 , ~  ( , )t t t tF F iid Nη η−= +G 0 Q   (2) 

1 , ~  ( , ),t t t te e v v iid N−= +Ψ 0 R   (3) 

where Λ  is the J N×  matrix of factor loadings, te  are the idiosyncratic errors allowed to be serially 

correlated, G  is the N N× matrix that governs common factor dynamics and tη  is the vector of 

stochastic innovations. The factors and idiosyncratic errors are assumed to be uncorrelated at all leads and 

lags: ,( ) 0, all ,  and t i sE F e i t s= . As in Stock and Watson (2005), we assume that matrices Q , R and Ψ  

are diagonal, which implies we have an exact dynamic factor model: , ,( ) 0i t j sE e e = , ,  all  and i j t s≠ . 

This is in contrast to approximate DFM of Chamberlain and Rothschild (1983) that relaxes this 

assumption and allows for some correlation across idiosyncratic errors ,i te  and ,j te , i j≠ . As written, the 
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model is already in static form, since data series tX  load only on contemporaneous factors, and not on 

their lags3. 

2.2 Data-Rich DSGE Model 
In any DSGE model, economic agents solve intertemporal optimization problems built from explicit 

preferences and technology assumptions. Moreover, decision rules of these agents depend upon a number 

of exogenous stochastic disturbances that characterize uncertainty in economic environment. Equilibrium 

dynamics of a DSGE model is captured by a system of non-linear expectational difference equations. 

Standard approach in the literature is to derive a log-linear approximation to this non-linear system 

around its deterministic steady state and then to solve numerically the resulting linear rational 

expectations system by one of the available methods4. 

This numerical solution delivers a vector autoregressive process for tS , the vector collecting all 

state variables of the DSGE model: 

 1 , where ~ (0, ).t t t tS S iid Nε ε−= +G(θ) H(θ) Q(θ)  (4) 

The matrices in (4) are functions of structural parameters θ  characterizing preferences and technology in 

DSGE model. For convenience, we assume that exogenous shocks tε  are mean-zero normal random 

variables with diagonal covariance matrix Q(θ) .  

In order to estimate our DSGE on a set of observables 1[ ,..., ]T
TX X X ′= , a state-space 

representation of the model is usually constructed by augmenting (4) with a number of measurement 

equations that connect model concepts in tS  to data indicators in vector tX . 

2.2.1 Regular vs Data Rich DSGE Models 
Depending on the number of data indicators and on how we connect them to model concepts, we will 

distinguish regular and data-rich DSGE models. In regular DSGE models, the number of observables 

contained in tX  is usually kept small (most often equal to the number of structural shocks) and model 

concepts are often assumed to be perfectly measured by a single data indicator5. For example, Aruoba and 

Schorfheide (2009), in money-in-the-utility version of a DSGE model with four structural shocks, specify 

                                                 
3 In general, a measurement equation is often written as ( )t t tX L f eλ= + , with data loading on current and lagged 
dynamic factors tf . However, assuming ( )Lλ  has at most p lags, and defining ( ,..., )t t t pF f f −′ ′ ′= , we can rewrite it 
as (1). Here tF  is the vector of static factors as opposed to dynamic factors tf . To make things simpler, in the 
model (1)-(3), however, the static and dynamic factors coincide. 
4 Please see Sims (2002), Blanchard and Kahn (1980), Klein (2000), Uhlig (1999), King and Watson (2002). 
5 The underlying reason is to avoid the so called stochastic singularity. The likelihood function for observables tX  
with dimension exceeding the number of structural shocks will be degenerate, since according to DSGE model some 

tX ’s can be perfectly (deterministically) predicted from others and this is obviously not true in the data. The 
solution is to add measurement errors (or theoretical gaps between the model concept and the data indicator) as e.g. 
in Altug (1989), Sargent (1989), Ireland (2004), or to add more shocks, e.g. Leeper and Sims (1994), Adolfson, 
Laseen, Linde, Villani (2008). 
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the following measurement equations for real output t̂Y , inflation ˆtπ , nominal interest rate ˆ
tR  and inverse 

money velocity ˆ ˆ
t tM Y−  (we omit intercept for simplicity): 

 

ˆ
RealGDP 1 0 0 0 0 ˆ

GDP_Def_Inflation 0 4 0 0 0 ˆ
FedFundsRate 0 0 4 0 0

ˆ
IVM_M2 1 0 0 1 0

t
t

t
t

t
t

t
t

t
t

Y

R

M

X
S

π

⎡ ⎤
⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⋅ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥

− ⎢ ⎥⎣ ⎦⎣ ⎦
⎢ ⎥⎣ ⎦Λ

 (5) 

Similarly, Smets and Wouters (2007) estimate a DSGE model with seven structural shocks on seven core 

U.S. macro variables: again assuming one-to-one model concept-data correspondence and perfect 

measurement. 

Following important contribution of Boivin and Giannoni (2006), data-rich DSGE models relax 

these assumptions and allow for: (i) presence of measurement errors or, alternatively, of terms capturing 

the theoretical gap between a particular data indicator and a model concept it is supposed to measure; (ii) 

multiple data indicators ,j tX  measuring the same model concept ,i tS , and (iii) many informational data 

series in tX  that load on all model concepts (and that may contain useful information about the state of 

the economy). Measurement equation in the data-rich DSGE model for demeaned tX looks like: 

 
F F
t t
S St
t t

tt

X e
S

X e
eX

⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

F

S

Λ (θ)
Λ

Λ(θ)

, (6) 

where each data indicator within core series F
tX  loads on a single model concept ,i tS  only (although same 

,i tS  may have several data indicators measuring it), informational non-core series S
tX  are related to all 

state variables tS , and where measurement errors te  may be serially correlated, but uncorrelated across 

different data indicators ( ,  Ψ R  are diagonal): 

 1 , where  ~  ( , )t t t te e v v iid N−= +Ψ 0 R . (7) 

So the state-space representation of the data-rich DSGE model consists of transition equation (4) and 

measurement equations (6)-(7). 

Notice that data-rich DSGE model (4), (6), (7) is very much like dynamic factor model (1)-(3) in 

which transition of unobserved factors is governed by a DSGE model solution and where some factor 

loadings are restricted by economic meaning of the DSGE model concepts. 

2.2.2 Environment 
In this paper, we use relatively standard New Keynesian business cycle model. It is more elaborate than a 

basic three-equation model used in Woodford (2003), but is “lighter” than models due to Smets and 
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Wouters (2003, 2007) and Christiano, Eichenbaum and Evans (2005). The model features capital as factor 

of production, nominal rigidities in price setting, and investment adjustment costs, but it abstracts from 

wage rigidities, habit formation in consumption and variable capital utilization. Real money stock enters 

household’s utility in additively separable fashion as in Walsh (2003), Sidrauski (1967). In terms of 

specific version of the model, we draw upon the work by Aruoba and Schorfheide (2009) and their 

money-in-the-utility specification. 

The economy is populated by households, final and intermediate goods producing firms and a 

Central bank (monetary authority). A representative household works, consumes, saves, holds money 

balances and accumulates capital. It consumes the final output manufactured by perfectly competitive 

final good firms. The final good producers produce by combining a continuum of differentiated 

intermediate goods supplied by monopolistically competitive intermediate goods firms. To manufacture 

their output, intermediate goods producers hire labor and capital services from households. Also, when 

optimizing their prices, intermediate goods firms face the nominal price rigidity a la Calvo (1983), and 

those firms that are unable to re-optimize may index their price to lagged inflation. Monetary policy is 

conducted by Central bank setting one period nominal interest rate on public debt via Taylor type interest 

rate feedback rule. Given interest rate, Central bank also supplies enough nominal money balances to 

meet equilibrium demand from households. 

Households 
In our environment, there is a continuum of households indexed by [0;1]j∈ . Each household maximizes 

the following utility function: 

 
(1 )

0 1 (1 )
0

( )( ( )) ( ) ,
1

m

t t t
t t

t m t

m jAE U x j Ah j
Z P

ν

α

χ
β

ν

−
∞

−
= ∗

⎧ ⎫⎡ ⎤⎪ ⎪− +⎨ ⎬⎢ ⎥− ⎣ ⎦⎪ ⎪⎩ ⎭
∑  (8) 

which is additively separable in consumption ( )tx j , labor supply ( )th j  and real money balances 

( )t tm j P . Here β  stands for discount factor, A  denotes disutility of labor, mν  controls the elasticity of 

money demand and tχ  is aggregate preference shifter that affects household’s marginal utility from 

holding real money balances6. The law of motion for tχ  is: 

 2
1 , ,ln (1 ) ln ln , where ~ (0, )t t t t Nχ χ χ χ χχ ρ χ ρ χ ε ε σ∗ −= − + +  (9) 

We assume that households are able to trade on a complete set of Arrow-Debreu (A-D) securities 

which are contingent on all aggregate and idiosyncratic events ω∈Ω  in the economy. Let 1( )( )ta j ω+  

denote the quantity of A-D securities (that pay 1 unit of consumption in period 1t +  in the event ω ) 

                                                 
6 As in Aruoba and Schorfheide (2009), scaling ( )t tm j P  by a factor 1 (1 )A Z α−

∗  can be viewed as reparame-
terization of tχ , in which steady state money velocity remains constant when we move around A  and Z∗ . 
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acquired by household j  at time t  at real price 1, ( )t tq j+ . Then the household j ’s budget constraint in 

nominal terms is given by: 

 
1 1 1, 1

1

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )

t t t t t t t t t t

k
t t t t t t t t t t t t t

P x j Pi j b j m j P q j a j d

PW h j PR k j R b j m j Pa j T

ω ω+ + + +
Ω

−

+ + + + =

= + +Π + + + −

∫
 (10) 

where tP  is the period t price of final good, ( )ti j  is investment, ( ) and ( )t tb j m j  are government bond 

and money holdings, tR  is the gross nominal interest rate on government bonds, tW  and k
tR  are the real 

wage and real return on capital earned by household, tΠ  stands for the profits from owning the firms, and 

tT  is the nominal amount of lump-sum taxes paid. Households also accumulate capital ( )tk j  according to 

the following law of motion: 

 1
1

( )( ) (1 ) ( ) 1 ( ),
( )

t
t t t

t

i jk j k j S i j
i j

δ+
−

⎡ ⎤⎛ ⎞
= − + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (11) 

where δ  is depreciation rate and ( )S i  is an adjustment cost function satisfying (1) 0S = , (1) 0S ′ =  and 

(1) 0S ′′ > . 

Now the problem of each household j  is to maximize the utility function (8) subject to budget 

constraint (10) and capital accumulation equation (11) for all t . Associate Lagrange multipliers ( )t jλ  

and ( )tQ j  with constraints (10) and (11), respectively. Then, the First Order Conditions with respect to 

( )tx j , ( )th j , 1( )tm j+ , ( )ti j , 1( )tk j+  and 1( )tb j+  are: 

 ( ( ))( ) t
t

t

U x jj
P

λ
′

=  (12) 

 ( )t
t t

Aj
PW

λ =  (13) 

 
(1 )

1 1 1
1 (1 )

1 1 1

( ( )) ( ) ( ( ))mm

t t t t
t

t t t t

U x j m j U x jAE
P P Z P P

νν

α

χ
β

−−

+ + +
−

+ ∗ + +

⎧ ⎫⎛ ⎞′ ⎛ ⎞ ′⎪ ⎪= +⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 (14) 

2

1 1 1
1

1 1 1

( ) ( ) ( ) ( ( )) ( ) ( )1 ( ) 1 ( )
( ) ( ) ( ) ( ( )) ( ) ( )

t t t t t t
t t t

t t t t t t

i j i j i j U x j i j i jj S S E j S
i j i j i j U x j i j i j

μ β μ + + +
+

− − −

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤′⎪ ⎪′ ′= − − +⎢ ⎥ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥′⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎩ ⎭
 (15) 

 ( )1
1 1

( ( ))( ) ( )(1 )
( ( ))

kt
t t t t

t

U x jj E R j
U x j

μ β μ δ+
+ +

⎧ ⎫′
= + −⎨ ⎬′⎩ ⎭

 (16) 

 1

1

( ( ))1 ,
( ( ))

t t
t

t t

U x j RE
U x j

β
π

+

+

⎧ ⎫′
= ⎨ ⎬′⎩ ⎭

 (17) 
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where 1t t tP Pπ −=  denotes inflation and where we have substituted out Lagrange multiplier ( )t jλ  with 

its equivalent expression using marginal utility of consumption and have introduced the normalized 

shadow price of installed capital ( )( )
( ( ))

t
t

t

Q jj
U x j

μ =
′

.  

We do not take first order conditions with respect to A-D securities holdings 1( )ta j+  explicitly, 

because we make use of the result due to Erceg, Henderson and Levin (2000). This result says that under 

the assumption of complete markets for A-D securities and under the additive separability of labor and 

money balances in household’s utility, the equilibrium price of A-D securities will be such that optimal 

consumption will not depend on idiosyncratic shocks. Hence, all households will share the same marginal 

utility of consumption, and given (12), Lagrange multiplier ( )t jλ  will also be the same across all 

households: ( )t tjλ λ= , all j and t. This implies that in equilibrium all households will choose the same 

consumption, money and bond holdings, investment and capital. Note that we don’t have wage rigidity in 

this model – therefore the choice of optimal labor will also be same. From now on we can safely drop 

index j  from all equilibrium conditions of households and proceed accordingly. 

The first two FOCs could be combined to yield labor supply equation relating real wage to 

marginal rate of substitution between consumption and labor. (14) is an Euler equation for money 

holdings, which together with (17) – an Euler equation for bond holdings – implies household’s optimal 

demand for real money balances. Equation (15) determines the law of motion for shadow price of 

installed capital. If there were no investment adjustment costs, this price will be equal to 1, which is 

standard in neoclassical growth model. Also note that if we were to have an investment specific 

technology shock, this shadow price will be equal to relative price of capital in consumption units. 

Equation (16) is an Euler equation for capital holdings. The shadow cost of purchasing one unit of capital 

today should be equal to the real return from renting it to firms plus the tomorrow’s resale value of capital 

that has not yet depreciated. 

Running a bit ahead, let us define the stochastic discount factor 1|
p
t t+Ξ  that the firms – whose 

behavior we are going to describe shortly – will use to value streams of future profits: 

 1 1
1|

1

( ) 1
( )

p t t
t t

t t t

U x
U x

λ
λ π
+ +

+
+

′
Ξ = =

′
 (18) 

Final Good Firms 
There is single final good tY  in our economy manufactured by combining a continuum of intermediate 

goods ( )tY i  indexed by [0;1]i∈  according to the following production function: 

 
(1 )1 1

1

0

( ) ,t tY Y i di
λ

λ

+

+
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∫  (19) 
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where the elasticity of substitution between any goods i and j is 1 λ
λ
+ . 

The final good firms purchase intermediate goods in the market, package them into a composite 

final good, and sell the final good to households. These firms are perfectly competitive and maximize one 

period profits subject to production function (19), taking as given intermediate goods prices ( )tP i  and 

own output price tP : 

 

1

0

(1 )1 1
1

0

max ( ) ( )
, ( )

  s.t. ( )

t t t t

t t

t t

PY P i Y i di
Y Y i

Y Y i di
λ

λ

+

+

−

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∫

∫
 (20) 

The first order condition of a representative final good firm is: 

 (1 ) (1 )( ) ( ) ,t t t tP i PY Y i
λ λ
λ λ

−
+ +=  (21) 

which leads to the optimal demand for good i: 

 

(1 )

( )( ) .t
t t

t

P iY i Y
P

λ
λ
+

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (22) 

Since final good firms are perfectly competitive and there is free entry, they earn zero profits in 

equilibrium: 

 
1

0

( ) ( ) 0,t t t tPY P i Y i di− =∫  (23) 

which, together with optimal demand (22), yields the price of final good: 

 
1 1

0

( ) .t tP P i di
λ

λ

−
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦
∫  (24) 

Intermediate Goods Firms 
Our economy is populated by a continuum of intermediate goods firms. Each intermediate goods firm i  

uses the following technology to produce its output: 

 { }(1 )( ) max ( ) ( ) ,0 ,t t t tY i Z K i H i Fα α−= −  (25) 

where ( )tK i  is the amount of capital that the firm i  rents from households, ( )tH i  is the amount of labor 

input and tZ  is the level of neutral technology evolving according to the law of motion: 

 2
1 , ,ln (1 )ln ln , where ~ (0, ).t Z Z t Z t Z t ZZ Z Z Nρ ρ ε ε σ∗ −= − + +  (26) 
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Parameter α  stands for the capital share of production, while parameter F  controls the amount of fixed 

costs in production that guarantee economic profits of the firm will be zero in steady state. Unlike final 

good producers, we do not allow for free entry or exit on the part of the intermediate goods firms. 

All intermediate goods producers are monopolistically competitive, in that they take all factor 

prices ( tW  and k
tR ), as well as prices of other firms, as given, but can optimally choose their own price 

( )tP i  subject to optimal demand (22) for good i  from final good firms. Intermediate firms solve a two-

stage optimization problem. 

In the first stage, the firms hire capital and labor from households to minimize total nominal 

costs: 

 
{ }

( ), ( )

(1 )

min ( ) ( )

   s.t. ( ) max ( ) ( ) ,0
t t

k
t t t t t tK i H i

t t t t

PW H i PR K i

Y i Z K i H i Fα α−

+

= −
 (27) 

Assuming interior solution, optimality conditions imply ( ( )t iη  is Lagrange multiplier attached to (25)): 

 ( ) ( )(1 ) ( ) ( )t t t t t t tPW i P i Z K i H iα αη α −= −  

 1 1( ) ( ) ( ) ( )k
t t t t t t tPR i P i Z K i H iα αη α − −=  

Take the ratio of two conditions to obtain: 

 ( )
( ) 1

t t
k

t t

K i W
H i R

α
α

=
−

 (28) 

If we define aggregate capital stock 
1

0

( )t tK K i di= ∫  and aggregate labor 
1

0

( )t tH H i di= ∫ , integrating both 

sides of (28) yields: 

 
1

t
t tk

t

WK H
R

α
α

=
−

 (29) 

Now we can factorize total real variable cost ( )tVC i  into real marginal cost tMC  and the variable 

part of firm i ’s output var (1 )( ) ( ) ( )t t t tY i Z K i H iα α−= : 

 var( ) ( ) ( )1( ) ( ) ( )
( ) ( ) ( )

k kt t t
t t t t t t t

t t t t

K i K i K iVC i W R H i W R Y i
H i H i Z H i

α−
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (30) 

Plugging in the optimal capital labor ratio (28), real marginal cost tMC  turns out to be the same across all 

intermediate goods firms: 

 
( )1(1 )( ) ( )1 1 1

( ) ( ) 1

kdef t tk t t
t t t

t t t t

W RK i K iMC W R
H i Z H i Z

αα αα α

α α

− −−⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠
 (31) 

The intuition is that all firms face identical technology shocks and hire inputs at the same factor prices. 
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In the second stage, all intermediate goods firms have to choose their own price ( )tP i  that 

maximizes total discounted nominal profits subject to demand curve (22). Given optimal choices of inputs 

from the first stage, the one-period nominal profits of firm i  are: 

 
( )

( )

var( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

k
t t t t t t t t t t t t t t

t t t t t t

i P i Y i PW H i PR K i P i Y i P MC Y i

P i PMC Y i PMC F

Π = − − = − =

= − −
 (32) 

Note that we can ignore the term t tPMC F  since it doesn’t depend on firm’s choice. 

We assume that intermediate goods firms face nominal price rigidity a la Calvo (1983). In each 

period, a fraction (1 )ζ−  of firms can optimize their prices. As in Aruoba and Schorfheide (2009), we 

modify original Calvo’s setup and assume that all other firms cannot adjust their prices and can only 

index ( )tP i  by a geometric weighted average of the fixed rate π∗∗  and of previous period’s inflation 1tπ − , 

with weights (1 )ι−  and ι  respectively. The corresponding price adjustment factor is: 

 ( )| (1 )
1

1

1, 0

, 0
adj s
t s t

t l
l

s

sι ιπ
π π+ −

+ − ∗∗
=

=⎧
⎪= ⎨ >⎪⎩
∏

 (33) 

The firms allowed to re-optimize must choose the optimal price ( )o
tP i  that maximizes discounted value 

of profits in all states of nature in which the firm faces that price in the future: 

 

| | |
( ) 1

(1 )

|

max ( ( ) ) ( ) ( ) ( ( ) ) ( )

( )
s.t. ( ) , 0,1,2,....

o
t

p o s p o adj
t t t t t t t t s t t t s t t s t s t s

P i s

o adj
t t s t

t s t s
t s

P i PMC Y i E P i P MC Y i

P i
Y i Y s

P

λ
λ

ζβ π

π

∞

+ + + + +
=

+
−

+
+ +

+

⎧ ⎫
Ξ − + Ξ −⎨ ⎬

⎩ ⎭

⎡ ⎤
= =⎢ ⎥
⎢ ⎥⎣ ⎦

∑
 (34) 

Notice that |
s p

t s tβ +Ξ  is period t value of a future dollar for the consumer/household in period t+s. 

In Appendix A, we show in detail that the first order conditions of the problem (34) boil down to 

these three equations: 

 ( ) ( )
(1 )

(1 ) 1
(1) (1 ) (1)

1| 1
1 1

o
o pt

t t t t t t t to
t t

pf p Y E f
p

λ
λ λ

ι ιλ λζβ π π
π

+
−+

− −−
∗∗ + +

+ +

⎧ ⎫
⎛ ⎞⎪ ⎪= + Ξ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 (35) 

 ( ) ( )
(1 ) 1(1 ) (1 )1(2) (1 ) (2)

1| 1
1 1

o
o pt

t t t t t t t t to
t t

pf p MC Y E f
p

λ
λ λ λ

ι ιλ λζβ π π
π

+
− −+ +

− − −−
∗∗ + +

+ +

⎧ ⎫
⎛ ⎞⎪ ⎪= + Ξ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 (36) 

 (1) (2)(1 ) ,t tf fλ= +  (37) 
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where we have defined optimal price relative to price level 
o

o t
t

t

Pp
P

=  and 
1

t
t

t

P
P

π
−

= . Note that we have 

dropped all indices i  because we consider only symmetric equilibrium in which all firms re-optimizing 

their prices will choose the same price ( )o o
t tP i P= . 

Finally, from (24) and given Calvo pricing, the aggregate price index tP  should evolve as: 

 ( ) ( )
1 1

(1 )
1 1(1 ) o

t t t tP P P
λ

ι ιλ λζ ζ π π
−

− −−
− ∗∗ −

⎡ ⎤
= − +⎢ ⎥
⎣ ⎦

 (38) 

and, dividing by 1tP−  yields: 

 ( ) ( )
1 1

(1 )
1(1 ) o

t t t tp
λ

ι ιλ λπ ζ π ζ π π
−

− −−
− ∗∗

⎡ ⎤
= − +⎢ ⎥
⎣ ⎦

 (39) 

As is standard in literature, equations (35)-(37) and (39) connect the evolution of inflation to dynamics of 

real marginal costs and output, and thus imply the New Keynesian Phillips curve. 

Monetary and Fiscal Policy 
The Central bank sets one period nominal interest rate on public debt via Taylor type interest rate 

feedback rule responding to deviations of inflation and real output from their target levels: 

 
1 2

,

(1 )

21
,, where ~ (0, )

R
R

R tt t t t
R t R

R R Y e N
R R Y

ρρ ψ ψ
επ

ε σ
π

−

−

∗ ∗ ∗ ∗

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (40) 

where R∗ , π∗  and Y∗  are the steady state values of gross nominal interest rate, final good inflation and 

real final output, respectively. Parameter Rρ  is introduced to control for the degree of interest rate 

smoothing that we observe in postwar U.S. data. Also, the Central bank supplies enough money balances 

tM  to meet demand from households, given desired nominal interest rate. 

Every period the government spends tG  in real terms to purchase goods in the final goods market, 

issues nominal bonds 1tB +  that pay tR  in gross interest next period and collects nominal lump-sum taxes 

from households tT . Each period, combined government (Central bank + Treasury) budget constraint is: 

 1 1 1t t t t t t t tPG R B M T B M− + ++ + = + +  (41) 

Real government spending is modeled as stochastic fraction of total output (i.e. fiscal policy is passive): 

 11 ,t t
t

G Y
g

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (42) 

where tg  is an exogenous process shifting tG : 

 2
1 , ,ln (1 ) ln ln , where ~ (0, ).t g g t g t g t gg g g Nρ ρ ε ε σ∗ −= − + +  (43) 
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Aggregation 
We now derive the aggregate demand condition. To that end, we integrate budget constraints across all 

households and combine the result with government budget constraint (41), introducing aggregate 

variables: consumption 
1

0

( )t tX x j dj= ∫  and investment 
1

0

( )t tI i j dj= ∫ : 

 k
t t t t t t t t t t t t tP X PI PG PW H PR K+ + = + +Π  (44) 

We can obtain aggregate profits tΠ  from intermediate firms’ problems: 

 

1 1 1

0 0 0
1

0

( ) ( ) ( ) ( )

( ) ( )

k
t t t t t t t t t

k
t t t t t t t t

k
t t t t t t t t

P i Y i di PW H i di PR K i di

P i Y i di PW H PR K

PY PW H PR K

Π = − − =

= − − =

= − −

∫ ∫ ∫

∫  (45) 

where the last transformation is by zero profit condition of final good firms. Combine (44) and (45), and 

divide by tP  to obtain aggregate demand condition: 

 t t t tX I G Y+ + =  (46) 

From supply side, the aggregate output of intermediate goods firms tY  is given by: 

 
1 1

(1 ) (1 )

0 0

( )( ) ( ) ( ) ,
( )

t
t t t t t t t t t

t

K iY Z K i H i di F Z H i di F Z K H F
H i

α

α α α α− −⎛ ⎞
= − = − = −⎜ ⎟

⎝ ⎠
∫ ∫  (47) 

where we have used the fact that capital/labor ratio is constant across firms. However, from (22): 

 

(1 )
1 1

0 0

( )( ) t
t t t

t

P iY Y i di Y di
P

λ
λ
+

−
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

∫ ∫   (48) 

Hence, aggregate supply condition becomes: 

 11 ( ),t t t t
t

Y Z K H F
D

α α−= −  (49) 

with 

(1 )
1

0

( )t
t

t

P iD di
P

λ
λ
+

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠
∫  measuring the extent of aggregate loss of efficiency caused by price 

dispersion across intermediate goods firms. In Appendix A, we show that aggregate price dispersion tD  

evolves according to: 

 

(1 ) (1 )(1 )

1
1 (1 )

o
t t

t t
t t t

PD D
P

λ λι ι λ λπ πζ ζ
π π

+ +−− −

− ∗∗
−

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎡ ⎤
⎢ ⎥= + −⎜ ⎟ ⎜ ⎟ ⎢ ⎥
⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎣ ⎦

 (50) 
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Equilibrium Conditions and Aggregate Disturbances 
We define equilibrium in our economy in a standard way. It is determined by the optimality conditions 

and laws of motion summarized below: 

(1) Households’ optimality conditions 

 ( )t
t

AU x
W

′ =  (51) 

 
(1 )

1 1 1
1 (1 )

1 1 1

( ) ( )mm

t t t t
t

t t t t

U x m U xAE
P P Z P P

νν

α

χ
β

−−

+ + +
−

+ ∗ + +

⎧ ⎫⎛ ⎞′ ⎛ ⎞ ′⎪ ⎪= +⎨ ⎬⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎩ ⎭

 (52) 

 
2

1 1 1
1

1 1 1

( )1 1
( )

t t t t t t
t t t

t t t t t t

i i i U x i iS S E S
i i i U x i i

μ β μ + + +
+

− − −

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤′⎪ ⎪′ ′= − − +⎢ ⎥ ⎨ ⎬⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎢ ⎥′⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎩ ⎭
 (53) 

 ( )1
1 1

( ) (1 )
( )

kt
t t t t

t

U xE R
U x

μ β μ δ+
+ +

⎧ ⎫′
= + −⎨ ⎬′⎩ ⎭

 (54) 

 1

1

( )1
( )

t t
t

t t

U x RE
U x

β
π

+

+

⎧ ⎫′
= ⎨ ⎬′⎩ ⎭

 (55) 

 1
1

(1 ) 1 t
t t t

t

ik k S i
i

δ+
−

⎡ ⎤⎛ ⎞
= − + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
 (56) 

 1
1|

1

( ) 1
( )

p t
t t

t t

U x
U x π

+
+

+

′
Ξ =

′
 (57) 

Note that (52) and (55) imply money demand equation7: 

 ( )
(1 )

1 1
(1 )1 (1 )

1

.
( )( 1)

m m
m

m

t t t
t t

t t t t

m R AM E
P U x R Z

ν ν
ν

να

β χ
π

−

+ +
−−

∗ +

⎧ ⎫⎛ ⎞ ⎛ ⎞⎪ ⎪= = ⎨ ⎬⎜ ⎟ ⎜ ⎟′ − ⎝ ⎠⎝ ⎠ ⎪ ⎪⎩ ⎭
 (58) 

(2) Firms’ optimality conditions 

 
1

t
t tk

t

WK H
R

α
α

=
−

 (59) 

 
( )1(1 )1 1

1

k
t t

t
t

W R
MC

Z

ααα α

α α

−−
⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

 (60) 

 ( ) ( )
(1 )

(1 ) 1
(1) (1 ) (1)

1| 1
1 1

o
o pt

t t t t t t t to
t t

pf p Y E f
p

λ
λ λ

ι ιλ λζβ π π
π

+
−+

− −−
∗∗ + +

+ +

⎧ ⎫
⎛ ⎞⎪ ⎪= + Ξ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 (61) 

                                                 
7 We deflate nominal money stock 1tm +  by tP  (and not 1tP+ ) since it has been chosen in period t based on 
realization of period t disturbances. We denote corresponding real money balances by 1 1t t tM m P+ += . 
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 ( ) ( )
(1 ) 1(1 ) (1 )1(2) (1 ) (2)

1| 1
1 1

o
o pt

t t t t t t t t to
t t

pf p MC Y E f
p

λ
λ λ λ

ι ιλ λζβ π π
π

+
− −+ +

− − −−
∗∗ + +

+ +

⎧ ⎫
⎛ ⎞⎪ ⎪= + Ξ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

 (62) 

 (1) (2)(1 )t tf fλ= +  (63) 

 ( ) ( )
1 1

(1 )
1(1 ) ,o

t t t tp
λ

ι ιλ λπ ζ π ζ π π
−

− −−
− ∗∗

⎡ ⎤
= − +⎢ ⎥
⎣ ⎦

 (64) 

where we have denoted o o
t t tp P P=  and where equilibrium requires t tK k= , t tH h= . 

(3) Taylor rule 

 
1 2

,

(1 )

21
,, where ~ (0, )

R
R

R tt t t t
R t R

R R Y e N
R R Y

ρρ ψ ψ
επ

ε σ
π

−

−

∗ ∗ ∗ ∗

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (65) 

(4) Aggregate demand and supply 

 11t t t t
t

X I Y Y
g

⎛ ⎞
+ + − =⎜ ⎟

⎝ ⎠
 (66) 

 11 ( )t t t t
t

Y Z K H F
D

α α−= −  (67) 

where equilibrium requires that t tX x=  and t tI i= , and that: 

 

(1 )
(1 ) (1 )

1
1 (1 ) .ot

t t t
t t

D D p

λ
ι ι λ λ

λπ πζ ζ
π π

+
−− +

−− ∗∗
−

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎡ ⎤⎢ ⎥= + −⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (68) 

(5) Aggregate disturbances (technology, money demand, government spending and monetary policy): 

 1 ,ln (1 ) ln lnt Z Z t Z tZ Z Zρ ρ ε∗ −= − + +  (69) 

 1 ,ln (1 ) ln lnt t tχ χ χχ ρ χ ρ χ ε∗ −= − + +  (70) 

 1 ,ln (1 ) ln lnt g g t g tg g gρ ρ ε∗ −= − + + , (71) 

where it is understood that innovations to the above laws of motion, as well as the monetary policy shock 

,R tε , are 2(0, )iiid N σ  random variables, { }, , ,i Z g Rχ∈ . 

For convenience, we collect all DSGE model parameters in the vector θ  and stack all innovations 

in vector , , , ,[ , , , ]t Z t t g t R tχε ε ε ε ε ′= . We then derive a log-linear approximation to the system of equations 

(51)-(71) around its deterministic steady state. The resulting linear rational expectations system is solved 

by method described in Sims (2002). 

3 Econometric Methodology 
This section discusses estimation techniques for the two models considered in this paper. First, we 

provide details on a Markov Chain Monte Carlo (MCMC) algorithm to estimate the data-rich DSGE 
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model, including the choice of the prior for factor loadings. Second, we describe the Gibbs Sampler to 

estimate a dynamic factor model. Finally, we present the novel speedup suggested by Jungbacker and 

Koopman (2008) that enhances the speed of our Bayesian estimation procedures. 

3.1 Estimation of Data-Rich DSGE Model 
As discussed in previous section, the state-space representation of our data-rich DSGE model consists of a 

transition equation of model states tS  and a set of measurement equations relating these states to data tX : 

 1

1 1 1

t t t
N N N NN N N

S S
ε ε

ε−

× ×× × ×

= +G(θ) H(θ)  (72) 

 
1 1 1
t t t

J NJ N J

X S e
×× × ×

= +Λ(θ)  (73) 

 1 ,t t te e v−= +Ψ  (74) 

where ~ ( , )t iid Nε 0 Q(θ) , ~ ( , )tv iid N 0 R  and where Q(θ) , R and Ψ  are assumed diagonal. Essential 

feature of a data-rich framework is that the panel dimension of data set J  is much higher than the number 

of DSGE model concepts N . For convenience, collect state-space matrices from the measurement 

equation into { }, ,Γ = Λ(θ) Ψ R  and DSGE states-factors into { }1 2, , ,T
TS S S S= … . Because of normality 

of structural shocks tε  and measurement error innovations tv , system (72)-(74) is a linear Gaussian state-

space model and the likelihood function of data ( | , )Tp X Γθ  can be evaluated using Kalman filter. 

Following Boivin and Giannoni (2006), we use Bayesian techniques to estimate the unknown 

model parameters ( , )Γθ . We combine prior ( , ) ( | ) ( )p p pΓ = Γθ θ θ  with likelihood function ( | , )Tp X Γθ  

to obtain posterior distribution of parameters given data: 

 ( | , ) ( , )( , | )
( | , ) ( , )

T
T

T

p X pp X
p X p d d

Γ Γ
Γ =

Γ Γ Γ∫
θ θθ

θ θ θ
 (75) 

We use Markov Chain Monte Carlo (MCMC) method to estimate posterior density ( , | )Tp XΓθ  by 

constructing a Markov Chain with the property that its limiting invariant distribution is our posterior 

distribution. Similarly to Boivin and Giannoni (2006), and building on the work by An and Schorfheide 

(2007), Kim and Nelson (2000), Carter and Kohn (1994), Chib and Greenberg (1994), Markov chain is 

constructed by the Gibbs sampling method with Metropolis-within-Gibbs step to generate draws from 

posterior distribution ( , | )Tp XΓθ  and to compute the approximations to posterior means and covariances 

of parameters of interest. 

But before we turn to describing the Gibbs Sampler, we must elaborate on how we connect the 

DSGE model states to data indicators. This is important, because, unlike Boivin and Giannoni (2006), the 

link is primarily through the prior on factor loadings Λ(θ) . Recall that we have core data series that 
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measure specific model concepts and non-core informational variables that are related to all states of 

DSGE model. Consider the following hypothetical example: 

 

1

2

1

2

,

output #1
output #2

ˆcore        inflation #1
ˆinflation #2
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As a matter of general principle, for each of the core series we center the prior mean of λ ’s at regular-

DSGE-model-implied factor loadings of a corresponding model concept. In example above, this 

corresponds to the conditional prior for core loadings being: 

 
( )
( )

1 2

1 2

( | ) ( | ) [1,0,0,...,0] , ( )

( | ) ( | ) [0,4,0,...,0] , ( ) .
Y Yp p N

p p Nπ π

λ λ

λ λ

′= = Ω

′= = Ω

θ θ θ

θ θ θ
 (77) 

This means that in regular DSGE model, the output #1 in data is equal to 1 times output t̂Y  in the model, 

inflation #1 in data is equal to 4 times inflation ˆtπ  in the model (conversion from quarterly to annual 

inflation). In data-rich DSGE model, we do not impose ,0 [1,0,0,...,0]Yλ ′=  and ,0 [0,4,0,...,0]πλ ′=  on 

loadings Yλ  and πλ , but instead use them to center the prior means for Yλ  and πλ . This is different from 

Boivin and Giannoni (2006), who restrict core factor loadings Yλ  and πλ  to be either ,0Yλ  and ,0πλ  or 

proportional to these. 

For non-core series, we center the prior mean of factor loadings at zero vector with identity 

covariance matrix. In terms of example (76), conditional prior is: 

 ( ),( | ) ( | ) [0,0,0,...,0] , ,ER S k Np p Nλ ′ ′= =θ Λ θ I  (78) 

where sub-index k selects one row from matrix SΛ . 

Note that prior means for core loadings may in general depend on DSGE model parameters θ . 

For instance, if core series contain a measure of inverse money velocity tIVM , then the DSGE model 

counterpart ˆ ˆ
t tM Y−  (real money balances minus real output in logs) depends on state tS  indirectly, say 

via ˆ ˆ ( )t t IVM tM Y d S− = θ . As a result, conditional prior for loadings in the IVM measurement equation 

would be ( )
1

( | ) ( ) , ( )IVM IVMp N dλ ′= Ωθ θ θ . 

Also note that to prevent the data-rich DSGE model from drifting too far away from parameter 

estimates of a regular DSGE model and to fix the scale of estimated model concepts (we discuss the latter 

issue in detail in the next section), we make the prior for one of the core series within each core subgroup 
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perfectly tight. In example (76), we have two subgroups of core series – output and inflation. This 

implies, without loss of generality, the perfectly tight prior on loadings in output #1 and inflation #1 

equations. Therefore, we write Λ(θ)  to underscore that some loadings will explicitly depend on the 

DSGE model structural parameters. 

Now let us turn to the description of our Gibbs sampler. MCMC implementation for linear 

Gaussian state-space model (72)-(74) is based on the following conditional posterior distributions: 

 ( | ; ) ( | , ; ) ( | , ; ) ( | ; )T T T T T Tp X p S X p S X p XΓ Γ Γ Γθ θ θ θ  (79) 

The main steps of Gibbs Sampler are (we provide full details in Appendix B): 

1. Specify initial values (0)θ  and (0)Γ . 

2. Repeat for 1,2,..., simg n=  

2.1. Solve DSGE model numerically at ( 1)g−θ  and obtain matrices ( 1) ( 1),g g− −G(θ ) H(θ )  and ( 1)g−Q(θ )  

2.2. Draw from ( 1)( | ; )g Tp X−Γ θ : 

a) Generate unobserved states ,( )T gS  from ( 1) ( 1)( | , ; )T g g Tp S X− −Γ θ  using Carter-Kohn (1994) 

forward-backward algorithm; 

b) Generate state-space parameters ( )gΓ  from ,( ) ( 1)( | , ; )T g g Tp S X−Γ θ  by drawing from a 

complete set of known conditional densities [ | , ; ]ΞR Λ Ψ , [ | , ; ]ΞΛ R Ψ  and [ | , ; ]ΞΨ Λ R , 

where { },( ) ( 1), ,T g g TS X−Ξ = θ . 

2.3. Draw DSGE parameters ( )gθ  from ( )( | ; )g Tp XΓθ  using Metropolis step: 

a) Propose 

 ( 1) ( )~ ( | ; )g gq∗ − Γθ θ θ  (80) 

b) Draw ~ (0,1)u Uniform  and set 

 
( ) ( 1)

( )
( 1)

if ( | , )
otherwise

g g
g

g

u α∗ ∗ −

−

⎧ ≤ Γ
= ⎨
⎩

θ θ θ
θ

θ
 (81) 

where acceptance probability { }( 1) ( )( ) min 1, ( , , )g grα − ∗• = Γθ θ  and  

 
( ) ( ) ( )

( 1) ( )
( 1) ( ) ( 1) ( ) ( ) ( 1) ( 1)

( , | ) ( | , ) ( | ) ( )( , , ) .
( , | ) ( | , ) ( | ) ( )

g T T g g
g g

g g T T g g g g g

p X p X p pr
p X p X p p

∗ ∗ ∗ ∗
− ∗

− − − −

Γ Γ Γ
Γ = =

Γ Γ Γ
θ θ θ θθ θ

θ θ θ θ
 (82) 

3. Return { }( ) ( )

1
, simng g

g=
Γθ  

Carter-Kohn (1994) algorithm in step 2.2.(a) proceeds as follows. First, it applies Kalman filter to 

state-space system (72)-(74) to generate filtered DSGE states |
ˆ

t tS , 1..t T= . And then, starting from |
ˆ

T TS , 

it rolls back in time along Kalman smoother recursions to draw elements of ,( )T gS  from a sequence of 

conditional Gaussian distributions. 
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The intermediate step to generate DSGE model states ,( )T gS  is used to facilitate sampling state-

space matrices ( )gΓ  in 2.2.(b). Conditional on ,( )T gS , the elements of matrices { }( ) ( ) ( ) ( ), ,g g g gΓ = Λ Ψ R  

are the parameters of simple linear regressions (73)-(74) and we can draw them equation by equation 

using the approach of Chib and Greenberg (1994). It is a straightforward procedure, since we assume 

conjugate priors for Γ  and conditional posterior densities are all of known functional forms. 

To generate DSGE model parameters ( )gθ , we introduce Metropolis step 2.3. It is required 

because density ( | ; )Tp XΓθ  is generally intractable and cannot be easily factorized into known 

conditionals. We stick to random-walk version of Metropolis step in which the proposal density ( | )q ′θ θ  

is multivariate Student-t with mean equal to previous draw ( 1)g−θ  and covariance matrix proportional to 

inverse Hessian from regular DSGE model8 evaluated at posterior mode. 

Under regularity conditions satisfied here for linear Gaussian state-space model, the Markov 

chain ( ) ( ){ , }g gΓθ  constructed by Gibbs Sampler above converges to its invariant distribution and, starting 

from some g g> , contains draws from posterior distribution of interest ( , | )Tp XΓθ . Sample averages of 

these draws (or their appropriate transformations) converge almost surely to respective population 

moments under our posterior density (Tierney 1994, Chib 2001, Geweke 2005). 

Two last implementation issues need to be clarified. To initialize our Gibbs Sampler, we first run 

a regular DSGE model estimation (see footnote 8), compute posterior mean of DSGE model parameters 

and generate smoothed model states ,T regS . Then we take the rich panel of macro and financial series TX  

and run equation-by-equation OLS regressions of T
kX  on smoothed DSGE states ,T regS  to back out initial 

values for Λ , Ψ  and R . 

On a separate note, in measurement equations (73) we keep only the non-redundant state 

variables of a DSGE model. Because some of the DSGE states are merely linear combinations of the 

other states, one can interpret this as minimum-state-variable approach in the spirit of McCallum (1983, 

1999, 2003). Here, though, the main rationale is to avoid multicollinearity on the right hand side of (73). 

We always set the corresponding factor loadings in Λ  equal to zero. 

3.2 Estimation of Dynamic Factor Model 
Consider the original dynamic factor model described in section 2.1: 

t t tX F e= +Λ   (83) 

1 , ~  ( , )t t t tF F iid Nη η−= +G 0 Q   (84) 

                                                 
8 Running a bit ahead, in our empirical analysis this regular DSGE estimation featured the same underlying 
theoretical DSGE model as in data-rich version, but only four (equal to # of shocks) core observables assumed to 
have been measured without errors. These core observables are (appropriately transformed) real GDP, GDP deflator 
inflation, Federal Funds rate and inverse velocity of money based on M2S. See details in Data and Transformations 
section. Also see the notes to Table D3. 
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1 , ~  ( , ).t t t te e v v iid N−= +Ψ 0 R   (85) 

Let us collect the state-space matrices into { }, , ,Γ = Λ Ψ R G  and the latent empirical factors into 

{ }1 2, , ,T
TF F F F= … . Similarly to the data-rich DSGE model, (83)-(85) is a linear Gaussian state-space 

model, and we are interested in joint inference about model parameters Γ  and latent factors TF . Unlike 

in the data-rich DSGE model, though, we no longer have deep structural parameters determining the 

behavior of matrices in transition equation (84). 

We sidestep the problem of proper dimension of factor space by assuming that dim( ) 6tF N= = , 

the number of non-redundant model concepts in the data-rich DSGE model. In contrast, the dynamic 

factor literature devoted considerable attention to developing the objective criteria that would determine 

the proper number of static factors by trading the fit against complexity (Bai and Ng, 2002) and of 

dynamic factors (e.g. Bai and Ng 2007, Hallin and Liska 2007, Amengual, Watson 2007, Stock and 

Watson 2005) in DFMs similar to the one above. Our choice, is, however, indirectly supported by work of 

Stock and Watson (2005) and Jungbacker and Koopman (2008) who, roughly based on these criteria, find 

seven dynamic and seven static factors driving a similar panel of macro and financial data. 

Another problem associated with dynamic factor model (83)-(85) is that the scales and signs of 

factors tF  and of factor loadings Λ  are not separately identified. Regarding scales, take any invertible 

N N×  matrix P  and notice that the transformed model is observationally equivalent to the original one: 

t t t

t

X F e

F

= +-1ΛP P
Λ

  (86) 

1

1

, ~ ( , )t t t t

t t

F F iid N

F F

η η−

−

′= +-1P PGP P 0 PQP
G Q

 (87) 

Regarding signs, for the moment think of (83)-(85) as a model with only one factor. Then multiply by -1 

the transition equation (84), as well as factor loading and factor itself in measurement equation (83). We 

obtain the new model, yet observationally equivalent to the original. 

We follow the factor literature (e.g. Geweke, Zhu 1996; Jungbacker, Koopman 2008) and make 

the following normalization assumptions to tell apart factors from factor loadings: 

(i) set N=Q I  to fix the scale of factors; 

(ii) require one loading in Λ  to be positive for each factor (sign restrictions); 

(iii) normalize some factor loadings in Λ  to pin down specific factor rotation. 

Denote by 1Λ  the upper N N×  block of Λ  so that [ ]; ′′ ′= 1 2Λ Λ Λ . One way to implement (ii) and (iii) 

would be to assume that 1Λ  is lower triangular (i.e. 0 for , 1,2,..., 1ij j i i Nλ = > = − ) with strictly positive 

diagonal 0, 1,ii i Nλ > =  (see Harvey 1989, p.451). However, our data set in estimation, to be described 

later in section Data and Transformations, will consist of core and non-core macro and financial series. 
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Furthermore, within core series we will have four blocks of variables: real output, inflation, nominal 

interest rate and inverse velocity of money blocks, respectively; each block contains several measures of 

the same concept. For this reason, we choose another alternative to implement normalizations (ii) and (iii) 

– the block-diagonal scheme that to some degree exploits group structure of core series in data tX : 

 

1 2 3 4 5 6F F F F F F
Real output #1 1 1 1 0 0 0
Real output #2 1 1 1 0 0 0
Real output #3 1 1 1 0 0 0

Inflation #1 1 1 0 1 0 0
Inflation #2 1 1 0 1 0 0
Inflation #3 1 1 0 1 0 0

Interest rate #1 1 1 0 0 1 0
Interest rate #2 1 1 0 0 1 0
Interest rate #3 1 1 0 0 1 0

IVM 

+
+

+

+

#1 1 1 0 0 0 1
IVM #2 1 1 0 0 0 1
IVM #3 1 1 0 0 0 1

1 1 1 1 1 1non coreX −

+

 (88) 

where 1s stand for non-zero elements in Λ . 

We acknowledge that our block-diagonal scheme imposes some overidentifying restrictions on 

factor loadings beyond those minimally necessary. However, scheme (88) can also be interpreted as a 

special case of the appealing dynamic hierarchical factor model of Moench, Ng, and Potter (2008), which 

– on top of aggregate common factors – introduces intermediate block factors and makes use of the block 

structure of the data. 

Now, to estimate the model (83)-(85) under normalizing assumptions (i)-(iii), we apply the same 

line of reasoning as in estimation of the data-rich DSGE model. We construct a Gibbs Sampler that 

iterates on a complete set of known conditional posterior densities to generate draws from the joint 

posterior distribution ( , | )T Tp F XΓ  of model parameters { }, , ,Γ = Λ Ψ R G  and latent factors TF : 

 ( | ; ) ( | ) ( | , )T T T T Tp F X p F p X FΓ ∝ Γ Γ  (89) 

 ( | ; ) ( ) ( | ) ( | , )T T T T Tp F X p p F p X FΓ ∝ Γ Γ Γ  (90) 

The main steps of the Gibbs Sampler are: 

1. Specify initial values (0)Γ  and ,(0)TF . 

2. Repeat for 1,2,..., simg n=  

2.1. Generate latent factors ,( )T gF  from ( 1)( | ; )T g Tp F X−Γ  using Carter-Kohn (1994) forward-

backward algorithm; 

2.2. Generate state-space parameters ( )gΓ  from ,( )( | ; )T g Tp F XΓ  by drawing from a complete set of 

known conditional densities. 
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3. Return { }( ) ,( )

1
, simng T g

g
F

=
Γ  

Compared to MCMC algorithm for the data-rich DSGE model, this Gibbs sampler is easier and it 

differs in two key respects: 

1. We no longer have complicated Metropolis step, since there is no deep structural 

parameters θ  coming from the economic model; 

2. Inside Γ , we have to draw matrix G from transition equation of factors (in data-rich 

DSGE model it was pinned down by numerical solution of a DSGE model given 

structural parameters θ ). 

To draw the latent factors TF  from ( | ; )T Tp F XΓ , we use the familiar Carter-Kohn (1994) 

machinery. First, we apply the Kalman filter to linear Gaussian state-space system (83)-(85) to generate 

filtered latent factors |
ˆ , 1,t tF t T= . Then, starting from |T̂ TF , we roll back in time along the Kalman 

smoother recursions and generate { }1 2, , ,T
TF F F F= …  by recursively sampling from a sequence of 

conditional Gaussian distributions: | ;T
TF X⎡ ⎤Γ⎣ ⎦ , 1

1 | , ;T
T TF F X −
−⎡ ⎤Γ⎣ ⎦ , … 1| , ;t

t tF F X+⎡ ⎤Γ⎣ ⎦… [ ]1 2 1| , ;F F X Γ , 

where { }1,...,t
tX X X= . 

To sample from conditional posterior ( | ; )T Tp F XΓ , we notice the following: with diagonality of 

matrices  and Ψ R  and conditional on factors TF , (83) and (85) are a set of standard multivariate linear 

regressions with AR(1) errors and Gaussian innovations ( 1,k J= ): 

 , , , , 1 , ,, , ~ (0, ).k t k t k t k t kk k t k t k t kkX F e e e v v iid N Rψ −′= + = +Λ  (91) 

Hence, under conjugate prior ( , , )p Λ Ψ R , we can apply the insight of Chib and Greenberg (1994) to 

derive conditional posteriors | ( , ); , ,T TF X⎡ ⎤⎣ ⎦R Λ Ψ G , | ( , ); , ,T TF X⎡ ⎤⎣ ⎦Λ R Ψ G , | ( , ); , ,T TF X⎡ ⎤⎣ ⎦Ψ Λ R G  

and to sample accordingly. 

What remains to be drawn is the transition matrix G . Given factors TF , conditional posterior 

( | ( , , ); , )T Tp F XG Λ R Ψ  can be derived from a VAR(1) in (84): 

 1 , ~  ( , ).t t t t NF F iid Nη η−= +G 0 I  (92) 

We assume the so called Minnesota prior (Doan, Litterman and Sims, 1984; specific version comes from 

Lubik and Schorfheide, 2005) on transition matrix G  and truncate it to the region consistent with 

stationarity of (92). We implement our prior by a set of dummy observations that tilt the VAR to a 

collection of univariate random walks. 

3.3 Speedup: Jungbacker, Koopman 2008 
Consider the original pure dynamic factor model that we have described in section 2.1. The same 

argument will in essence apply to a data-rich DSGE model written in the state-space form. 
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1 1 1×× × ×

= +t t t
J NJ N J

X F eΛ   (93) 

1
1 1 1

, ~ (0, )t t t t
N NN N N

F F iid Nη η−
×× × ×

= +G Q   (94) 

1
1 1 1

, ~ (0, )t t t t
J JJ J J

e e v v iid N−
×× × ×

= +Ψ R   (95) 

Here the matrices Q , R and Ψ  are assumed diagonal, which implies we have an “exact” DFM: 

, ,( ) 0, ,  all  and = ≠i t j sE e e i j t s . First-order dynamics of errors te  allows us to rewrite the system (93)-

(95) in state-space form as follows: 

[ ]
1−

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦
t

t t
t

t

F
X v

F

F

Λ ΨΛ

Λ

  (96) 

1t t tF F η−
⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

G 0 I
I 0 0

HG

,  (97) 

where we denoted 1−= −t t tX X XΨ . Collect all the matrices in { }, , , , ,=Θ Λ Ψ R G H Q . 

Our dynamic factor model (96)-(97) is potentially a high-dimensional object (panel dimension J 

is high) and therefore the MCMC algorithms outlined in 3.1 and 3.2 spend a lot of time evaluating 

likelihood with Kalman filter and sampling unobserved factors tF  at every iteration. 

To reduce computational costs associated with likelihood-based analysis of (96)-(97), Jungbacker 

and Koopman (2008) proposed to use the Kalman filter and smoother techniques based on a lower-

dimensional transformation of original data vector tX . Suppose this transformation is implemented by 

some ×J J  invertible matrix A  such that ∗ =t tX XA , 1..=t T . Also, suppose that we partition ∗
tX  and 

A  as below: 

, , where  ,   ,∗
⎡ ⎤⎡ ⎤

= = = =⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

LL
t L L H H

t t t t tHH
t

X
X X X X X

X

A
A A A

A
 (98) 

with matrices LA  and HA  being ×m J  and ( ) ,− × <J m J m J . 

Jungbacker and Koopman are able to show (Lemma 1, Lemma 2) that you can find a suitable 

matrix A  such that L
tX  and H

tX  are uncorrelated and only the low-dimensional sub-vector L
tX  depends 

on factors tF : 

,

,

= +

=

L L L
t t t
H H
t t

X F v

X v

A Λ
 ~ , ,

⎡ ⎤ ⎛ ⎞⎡ ⎤⎡ ⎤
⎢ ⎥ ⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎝ ⎠⎣ ⎦

L
t L
H

Ht

v
iidN

v

Σ 00
0 Σ0

 (99) 
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where ′= L L
LΣ A RA  and ′= H H

HΣ A RA . Moreover, they show that the knowledge of a high-

dimensional matrix HA  and a data vector H
tX  is not required to estimate the unobserved factors tF  and 

to compute the likelihood of the original DFM. 

In terms of matrix LA , Jungbacker and Koopman prove that it should be of the form: 

 1,−′=LA CΛ R  (100) 

for some invertible ×m m  matrix C  and ×J m  matrix Λ , columns of which form a basis of column 

space of Λ . In practice, they recommend setting =Λ Λ  and ( ) 11 −−′=C Λ R Λ  in case the matrix of factor 

loadings Λ  has full column rank. 

Now that we know LA  we can sample factors tF  using Carter-Kohn (1994) forward-backward 

algorithm applied to a lower-dimensional model 

, ~ ( , )L L L L
t t t t LX F v v iid N= +A Λ 0 Σ  (101) 

1 , ~ ( , )t t t tF F iid Nη η−= +G H 0 Q . (102) 

We can also compute the log-likelihood of data ( | )L X Θ as 

 1

1

1 ˆ ˆ( | ) ( | ) log ,
2 2

−

=

′= + − − ∑
T

L
t t

L t

TL X c L X v v
R

Θ Θ R
Σ

 (103) 

where 1
2 ( ) log(2 )π= − −c J m T  and ( )1 1ˆ − −⎡ ⎤′ ′= − ⎣ ⎦t t tv X XΛ Λ R Λ Λ R . The term ( | )LL X Θ  is the log-

likelihood of transformed data evaluated by Kalman filter during the forward pass of Carter-Kohn 

algorithm on low-dimensional model (101)-(102). 

In ensuing empirical analysis of a data-rich DSGE model and an empirical DFM, we have applied 

the Jungbacker-Koopman algorithm presented in this section to improve the speed of computations in 

both models. To get a sense of CPU time gains, we have also estimated the models – though on fewer 

draws – without the speedup. We find that the “improved” estimation of the empirical DFM runs 10.5 

times faster (a magnitude consistent with CPU gains reported by Jungbacker and Koopman for a DFM of 

similar size in their study) and the “improved” estimation of the data-rich DSGE model runs 2.5 times 

faster. Differences in time savings are due to a significant chunk of time that it takes to solve numerically 

the underlying DSGE model in data-rich DSGE model estimation, a step absent in DFM estimation and 

not affected by Jungbacker-Koopman speedup. 
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4 Data and Transformations 
To estimate the dynamic factor model and the data-rich DSGE model, we employ a large panel of U.S. 

quarterly macroeconomic and financial time series compiled by Stock and Watson (2008)9. The panel 

covers 1959:Q1 – 2006:Q4, however, our sample in this paper spans only 1984:Q1 – 2005:Q4. We focus 

on this later period primarily for two reasons: (i) to avoid dealing with Great Moderation issue10; (ii) to 

concentrate on a period with relatively stable monetary policy regime. 

Our data set consists of 12 core series that either measure specific DSGE model concepts or are 

used in DFM normalization scheme (88), and 77 non-core informational series that load on all DSGE 

states (DFM factors) and may contain useful information about the aggregate state of the economy. The 

core series include three measures of real output (real GDP, index of total industrial production and index 

of industrial production: manufacturing), three measures of price inflation (GDP deflator inflation, 

personal consumption expenditure (PCE) deflator inflation, and CPI inflation), three indicators of nominal 

interest rates (Federal Funds rate, 3-month T-bill rate and the yield on AAA rated corporate bonds), and 

three series measuring the inverse velocity of money (IVM based on M1 aggregate, M2 aggregate and 

IVM based on adjusted monetary base). 77 non-core series include the measures of real activity, labor 

market variables, housing indicators, prices and wages, financial variables (interest rate spreads, exchange 

rate depreciations, credit stocks, stock returns) and, together with appropriate transformations to eliminate 

trends, are described in Appendix C. 

Most of the core series are computed based on the raw indicators from Stock and Watson (2008) 

database and from Fred-II database11 maintained by Federal Reserve Bank of St. Louis (database 

mnemonics are in italics). To obtain three measures of real per-capita output, we take real GDP 

(SW2008::GDP251), total industrial production (SW2008::IPS10) and industrial production in 

manufacturing sector (SW2008::IPS43), and divide each series by civilian non-institutional population 

(Fred-II::CNP16OV). We then take natural logarithm and extract the linear trend by an OLS regression. 

The resulting detrended series are multiplied by 100 to convert them to percentage deviations from 

respective means. The inflation measures are computed as the first difference of the natural logarithm of 

GDP deflator (SW2008::GDP272A), of PCE deflator (SW2008::GDP273A), and of Consumer Price Index 

– All Items (SW2008::CPIAUCSL), all multiplied by 400 to get to the annualized percentages. Our 

indicators of nominal interest rate are (i) the effective Federal Funds rate (SW2008::FYFF), (ii) 3-month 

U.S. Treasury bill rate in the secondary market (SW2008::FYGM3) and (iii) the yield on Moody’s AAA 

                                                 
9 The data set is available online at: 
http://www.princeton.edu/~mwatson/ddisk/hendryfestschrift_replicationfiles_April28_2008.zip 
10 The “Great Moderation” refers to a decline in volatility of output and inflation observed in the U.S. since the mid-
1980s until recent financial crisis. For evidence and implications, please see Bernanke (2004), Stock and Watson 
(2002c), Kim and Nelson (1999), and McConnell and Perez-Quiros (2000). The last two papers attribute a break in 
the volatility of U.S. GDP growth to 1984:Q1. 
11 Fred-II database is available online at: http://research.stlouisfed.org/fred2/ 
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rated corporate bonds (SW2008::FYAAAC). We use simple 3-month average to obtain quarterly 

annualized interest rates from monthly raw data. 

To generate the appropriate inverse money velocities, we take three monetary aggregates: sweep-

adjusted money stock M1 (CDJ::M1S), sweep-adjusted money stock M2 (CDJ::M2S) and the monetary 

base adjusted for changes in reserve requirements (SW2008::FMFBA). The sweep-adjusted stocks M1S 

and M2S are provided by Cynamon, Dutkowsky and Jones (2006)12 and correct the distortionary impact 

(on conventional measures M1 and M2) of the financial innovation started in early 1990s. These 

distortions take the form of underreporting of actual transactions balances and arise because of retail 

sweep programs and commercial demand deposit sweep programs, in which U.S. banks move a portion of 

funds from their customer demand deposits or other checkable deposits into instruments with zero reserve 

requirements. Since our DSGE model does not have any explicit open economy context, we further adjust 

the monetary base FMFBA by deducting the amount of U.S. dollar currency held physically outside the 

United States13. We take M1S, M2S and the adjusted FMFBA, divide each series by the nominal GDP 

(Fred-II::GDP) to obtain respective inverse velocities of money. For each IVM, we take the natural 

logarithm of the M/GDP ratio and scale it by 100. Finally, we remove the linear deterministic trend from 

IVM based on M1S. 

Because measurement equations (73) and (83) are modeled without intercepts, we estimate a 

dynamic factor and a data-rich DSGE models on a demeaned data set. Also, in line with standard practice 

in factor literature, we standardize each time series so that its sample variance is equal to unity (however, 

we do not scale the core series when estimating the data-rich DSGE model). 

5 Empirical Analysis 
The next step in our analysis is to take a dynamic factor model and a data-rich DSGE model to the data 

using MCMC algorithms described above and to present the empirical results. We begin by discussing the 

choice of the prior distributions of model parameters and then briefly describe the posterior estimates of 

deep structural parameters of the data-rich DSGE model. Second, we analyze the estimated empirical 

factors and the estimates of the DSGE model state variables, and explore how well they are able to 

capture the co-movements in the data. Third, we compare the spaces spanned by the latent empirical 

factors and by the data-rich DSGE model concepts. Finally, we use the proximity of the factor spaces to 

propagate the monetary policy and technology innovations in otherwise non-structural dynamic factor 

model and obtain the predictions from both models for the core and non-core macro and financial series 

of interest. 

                                                 
12 Sweep-adjusted money stocks are available online at: http://www.sweepmeasures.com.  
13 Federal Reserve Board: Flow of Funds Accounts of the United States: Z.1 Statistical Release for Mar 12, 2009 
(available at http://www.federalreserve.gov/releases/z1/20090312/). Table L.204 “Checkable Deposits and 
Currency”, line 23 (Rest of the world: Currency), unique identifier: Z1/Z1/FL263025003.Q 
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5.1 Priors and Posteriors 
Since we estimate the DFM (83)-(85) and the data-rich DSGE model (72)-(74) using Bayesian 

techniques, we have to provide prior distributions for both models’ parameters. 

Let us first turn to a dynamic factor model. Let kΛ  and kkR  be the factor loadings and a variance 

of the measurement error innovation for the kth measurement equation, 1..k J= . Similarly to Boivin and 

Giannoni (2006) and Kose, Otrok and Whiteman (2008), we assume a joint Normal-InverseGamma prior 

distribution for ( ),k kkRΛ  so that 2 0 0~ ( , )kkR IG s ν  with location parameter 0 0.001s =  and degrees of 

freedom 0 3ν = , and the prior mean of factor loadings is centered around the vector of zeros | ~k kkRΛ  

1
,0 0( , )k kkN R −Λ M  with ,0k =Λ 0  and 0 N=M I . Originally, we allowed for a fairly diffuse (0,1)N  prior for 

the kth measurement equation’s autocorrelation kkΨ , all k. However, because our data transformations are 

different from the usual Stock and Watson (2008) procedures aimed at achieving approximate stationarity 

in all series and there could still be series with stochastic trends which we seek to capture with potentially 

highly persistent dynamic factors, we have decided to make this prior perfectly tight. This implies that all 

measurement errors are iid mean-zero normal random variables. Finally, as explained in Section 3.2, for 

the factor transition matrix G , we implement a version of Minnesota prior (Lubik and Schorfheide, 2005) 

and tilt the transition equation (84) to a collection of univariate random walks14.  

We use the Gibbs Sampler presented above to estimate our dynamic factor model. We do not 

discuss the posterior estimates of DFM parameters here, since we are more interested in comparing factor 

spaces spanned by the estimated latent factors and by the DSGE model states. However, all the parameter 

estimates are collected in the technical appendix to this paper available upon request. 

In our data-rich DSGE model, we have two groups of parameters – state-space model parameters 

comprising matrices Λ , Ψ  and R , and deep structural parameters θ  of an underlying DSGE model. The 

prior for the state-space matrices is elicited differently for the core and the non-core data indicators 

contained in tX . Regarding the non-core measurement equations, the prior for ( ),k kkRΛ  and for kkΨ  is 

identical to the one assumed in DFM. In contrast, the prior distribution for the factor loadings in the core 

measurement equations follows the scheme explained in example (76). Instead of hypothetical “output” 

and “inflation” groups, we substitute four categories of the core series: real output, inflation, nominal 

interest rate, and inverse velocity of money, with three specific measures within each category, as 

described in Data and Transformations section. The joint prior distribution is still Normal-InverseGamma 

,0 0 0( , , , )k os νΛ M , but now, for each of the core series, the prior mean of the factor loadings ,0kΛ  is 

centered at the regular-DSGE-model-implied factor loadings of a corresponding DSGE model variable 

                                                 
14 The hyperparameters in actual implementation of the Minnesota prior were set as follows: 5τ = , 0.5d = , 1w = , 

0λ = , 0μ = . We have also truncated the prior to the region consistent with stationarity of the factor transition 
equation. 
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(real output t̂Y , inflation ˆtπ , nominal interest rate ˆ
tR  or inverse money velocity ˆ ˆ

t tM Y− ), evaluated at 

the current draw of deep structural parameters θ . The covariance scaling matrix 0M  is assumed diagonal 

0 ( ( ))diag=M Ω θ , where ( )Ω θ  is the unconditional covariance matrix of the DSGE model state variables 

evaluated at current draw of θ . 0M  is the same across all core measurement equations. This choice 

implies that the prior will be tighter for the loadings on more volatile DSGE states. A similar approach is 

pursued in Schorfheide, Sill and Kryshko (2010). The scale 0s  and degrees of freedom 0ν  are the same as 

in DFM case. Finally, as argued in section 3.1, we make this prior perfectly tight for real GDP, GDP 

deflator inflation, Federal Funds rate and IVM based on M2S monetary aggregate. 

Our choice of prior distribution for the deep structural parameters of a DSGE model broadly 

follows Aruoba and Schorfheide (2009). A subset of these parameters that are fixed in estimation is 

reported in Table D1. We choose to have a logarithmic utility of household consumption by fixing 1γ = . 

We set depreciation rate of capital δ  to 0.014, which is the average quarterly ratio of depreciation of 

fixed assets to the stock of these fixed assets in 1959-2005 (NIPA-FAT11 for stocks, NIPA-FAT13 for 

depreciation of fixed assets and consumer durables). Steady state annualized inflation rate Aπ  is fixed at 

2.5 percent – the average GDP deflator inflation in our sample. We implicitly impose the Fischer equation 

and let the steady state annualized real interest rate Ar  be equal to 2.84 percent. This value is obtained as 

the average Federal Funds interest rate in our sample minus Aπ . The households’ discount factor is 

therefore 1 (1 400)Arβ = + . 

We also introduce several normalizations. We normalize to 1 the steady state real output Y∗  and 

steady state money demand shock χ∗ . We use average log inverse velocity of money (log[M2S/GDP]) in 

our sample to pin down log( )M Y∗ ∗ . Finally, as in Aruoba and Schorfheide (2009), we fix log( )H Y∗ ∗  to 

-3.5. This number is derived from the average inverse labor productivity in the data. In our sample, on 

average a worker produces roughly 33$ of real GDP per one hour. Hence average H Y  in data is 1 33 . 

From the average share of government spending (consumption plus investment) in nominal GDP, we 

calibrate g∗  to be 1.2. 

We also want our data-rich DSGE model to be broadly consistent – in terms of the monetary 

policy conduct – with the other regular DSGE models estimated on post-1983 data. Therefore, we shut 

down “data-richness” for a moment and estimate our DSGE model on just three standard observables: 

real GDP, GDP deflator inflation and Federal Funds rate. The resulting estimates of the Taylor (1993) 

rule coefficients were: 1 1.82ψ = , 2 0.18ψ =  and 0.78Rρ = . In estimation of the data-rich DSGE model, 

we set the policy rule coefficients to these values. This procedure is similar in spirit to Boivin and 

Giannoni (2006) who assume that the policy rate tR  is measured in the data by the Federal Funds rate 
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without an error. This assumption guarantees that the estimated monetary policy rule coefficients will not 

drift far away from the conventional post-1983 values documented in the literature. 

Despite detrending performed on all three measures of real per-capita output, they are still highly 

persistent. To strike a balance between the observed output persistence and the need to have stationarity 

in the model, we fix the autocorrelation of the technology shock Zρ  at 0.98. In the intermediate goods 

producing sector, we further assume no fixed costs ( 0F = ) and the absence of static indexation for non-

optimizing firms ( 1π∗∗ = ). 

The prior distributions for other parameters are summarized in Table D2. The prior for the steady-

state related parameters represents the view that capital share of α  in Cobb-Douglas production function 

of intermediate goods firms is about 0.3 and that the average markup these firms charge is about 15 

percent. The prior for the Calvo (1983) probability ζ  controlling nominal price rigidity is quite agnostic 

and spans the range of values consistent with fairly rigid and fairly flexible prices. As in Del Negro and 

Schorfheide (2008), the prior density for the price indexation parameter ι  is close to uniform on a unit 

interval. Parameter mν  controlling the interest-rate elasticity of money demand is a priori distributed 

according to a Gamma distribution with mean 20 and standard deviation 5. Existing literature (e.g. 

Aruoba, Schorfheide 2009, Levin, Onatsky, Williams and Williams 2005, Christiano, Eichenbaum and 

Evans 2005) documents fairly large estimates of the money demand elasticity ranging from 10 to 25. The 

90 percent interval for the investment adjustment cost parameter S ′′  spans values that Christiano, 

Eichenbaum, Evans (2005) find when matching DSGE and vector autoregression impulse response 

functions. The priors for the parameters determining the exogenous shock processes are taken from 

Aruoba and Schorfheide (2009). They reflect the belief that the money demand and government spending 

shocks are quite persistent. 

Using the Gibbs Sampler with Metropolis step outlined in section 3.1, we estimate the data-rich 

DSGE model and report the posterior means and 90% credible intervals of deep structural parameters in 

the last two columns of Table D3. We find the capital share of output and the average price markup to be 

in line with estimates from regular – few observables, perfect measurement – DSGE estimation. We find 

little evidence on dynamic indexation by intermediate goods firms. The implied average duration of 

nominal price rigidity is about 1 (1 0.797)−  = 4.9 quarters. On the one hand, this is close to what Aruoba 

and Schorfheide (2009) find in their money-in-the-utility specification of a DSGE model and what Del 

Negro and Schorfheide (2008) document under the “standard” agnostic prior about nominal price 

rigidities (their Table 6, p. 1206). On the other hand, this is much higher than the price contracts duration 

of about 3 quarters found by Smets and Wouters (2007) and Schorfheide, Sill and Kryshko (2010). In the 

context of a data-rich DSGE model similar to ours, Boivin and Giannoni (2006)’s estimates imply that the 

firms change prices very slowly – on average once per at least 7 quarters. As anticipated, we have 
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obtained a fairly high elasticity of money demand. Our estimate of mν  implies that a 100 basis points 

increase in the interest rate leads to a 3.2 percent decline in real money balances. A very large estimate of 

the investment adjustment cost parameter, as Aruoba and Schorfheide (2009) argue, has something to do 

with the need to reduce the volatility of the return to capital and to dampen its effect on marginal costs 

which in turn affect current inflation through the New Keynesian Phillips curve relationship. This is 

reasonable given that in our data-rich DSGE model the industrial production measures of real output are 

more volatile than the GDP-based measure, while the volatilities of inflation measures are fairly similar. 

The money demand shock tχ  turns out to be highly serially correlated, and the persistence of the 

government spending shock tg  is high as well, but more moderate. This is hardly surprising as these 

shocks are now the common factors for a large sub-panel of non-core informational series, many of which 

are fairly persistent. 

5.2 Empirical Factors and Estimated DSGE Model Concepts 
Our empirical analysis proceeds by plotting the estimated empirical factors extracted by a dynamic factor 

model and the estimated DSGE state variables from our data-rich DSGE model. Please note that in 

addition to these two models, we have also estimated the regular DSGE model using standard Bayesian 

techniques. The underlying theoretical New Keynesian core is the same as in data-rich DSGE model. The 

difference comes in the measurement equation (73): we keep only 4 core observable data series (real 

GDP, GDP deflator inflation, Federal Funds interest rate and inverse velocity of money based M2S 

aggregate), impose the factor loadings as in (5) and assume perfect measurement of all four model 

concepts (see also the notes to Table D3, p.55). 

Figure D1 depicts the posterior means and 90% credible intervals of the estimated data-rich 

DSGE model states. These include three endogenous variables (model inflation ˆtπ , nominal interest rate 

ˆ
tR  and real household consumption ˆ

tX ) and three structural AR(1) shocks (government spending tg , 

money demand tχ  and neutral technology tZ ). It is these states that are included in measurement 

equation (73) with potentially non-zero loadings.  The figure depicts as well the smoothed versions of 

these same variables in a regular DSGE model estimation derived by Kalman smoother at posterior mean 

of deep structural parameters. 

Four observations stand out. First, all three structural disturbances exhibit large swings and 

prolonged deviations from zero capturing the persistent low frequency movements in the data. Second, 

the estimated data-rich DSGE model states are much smoother than their counterparts in the regular 

DSGE model. The intuition is straightforward. In data-rich context, the model states are the common 

components of a large panel of data, and they have capture well not only a few core macro series (as is the 

case in regular DSGE model), but also very many non-core informational series. 
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The third observation is that the money demand shock tχ  appears to be very different in the data-

rich versus regular DSGE model estimation. The underlying reason is that in regular DSGE model case it 

was mainly responsible for capturing the dynamics of inverse money velocity based on M2S in the small 

4-series data set. Once we allow for the rich panel of macro and financial observables, tχ  helps explain 

other series as well (for example, housing variables and non-GDP measures of real output – see Table 

D5), yet at the cost of the fit for the IVM_M2S. The fourth observation is a counterfactual behavior of 

government spending shock and real consumption during recessions: the former tends to fall and the latter 

to rise when times are bad. In reality, of course, it is the other way around: as recession unfolds, the real 

consumption falls and the government purchases are usually intensified to mitigate the negative impact of 

recession on aggregate demand. The estimated path of tg  would be ok, however, if we think of it as a 

general aggregate demand shock not specifically connected to government purchases. In spite of our 

DSGE model being able to track well the total output dynamics, it cannot discriminate properly the 

components, in particular ˆ
tX . The solution would seem to be to enlarge the model by incorporating, say, 

an investment specific technology shock a la Greenwood, Hercowitz and Krusell (1997) and to make the 

real consumption in the data one of the core observables, as for example is done in Smets and Wouters 

(2007) and Boivin and Giannoni (2006). 

We proceed by discussing the latent empirical factors extracted by our DFM from the same rich 

data set. Figure D2 plots the posterior means and 90% credible intervals of the estimated factors. First, 

note that unlike the DSGE model states, these factors have in general no economic interpretation. This is 

less so about factors F3-F6, because of the assumed normalization scheme (88). Second, while factors 3 

and 5 indeed look much like the data on real output and nominal interest rate, the factors 4 and 6 – despite 

the normalization – do not. This shows that the exclusion normalizations favoring certain ex-ante 

meaning of a particular factor are not a sufficient condition to guarantee this meaning ex-post after 

estimation. The third observation is that the credible intervals for F1 and F2 – the latent factors common 

to all macro and financial series in the panel – are not uniformly wide or narrow, as is more or less the 

case for factors F3-F6. During several years prior to 1990-91 recession, the 90% credible bands for factor 

F1 expand, and then quickly shrink after recession is over. The same pattern is observed for factor F2 for 

several years preceding 2001 recession. One interpretation of this finding could be that the volatility of 

these two factors is not constant over time and follows a regime switching dynamics over the business 

cycle. Clearly, to have a stronger case, one might like to estimate a DFM on the full postwar sample of 

available U.S. data. 

5.3 How Well Factors Trace Data 
Let us now turn to the question of how well the factors and the DSGE states are able to trace the actual 

data. A priori we should expect that the unrestricted dynamic factor model will do a better job on that 
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dimension than the data-rich DSGE model whose cross-equation restrictions might be misspecified and 

the factor loadings in which might be unduly restricted. And that’s indeed what we find and what can be 

concluded from inspecting Table D4 and Table D5 that present the (posterior mean of) fraction of 

unconditional variance of data series captured by the empirical factors and by the DSGE model states. On 

average, the data-rich DSGE model concepts “explain” about 75 percent of variance for the core macro 

series and 72 percent of variance for the non-core. The latent empirical factors extracted by a DFM are 

able to account for 95 and 94 percent of variance for core and non-core series, respectively. So overall, 

the empirical factors capture more than the DSGE states. 

More specifically, within core series it is the measures of inflation and of inverse money 

velocities that are traced relatively poorer than the real output and nominal interest rates in both models. 

The same picture is observed in the non-core block of series: price and wage inflation measures and the 

financial variables in both models tend to have a higher fraction of unconditional variance due to 

measurement errors. In the data-rich DSGE model, the state variables capture about 15 to 25 percent of 

variance in exchange rate depreciations and stock returns, but about 65 to 85 percent of variance of 

interest rate spreads and credit stocks. This is not surprising given that our theoretical model does not 

have New Open Economy Macroeconomics mechanisms (e.g. Lubik and Schorfheide, 2005 or Adolfson, 

Laseen, Linde, Villani, 2005, 2008) and does not feature financial intermediation (e.g. Bernanke, Gertler, 

Gilchrist, 1999). In dynamic factor model, these percentages are much higher: the latent factors explain 

about 97-98 percent of variance of the interest spreads and credit stocks, about 65-82 percent of the 

variability in exchange rate depreciations and 80-82 percent of stock returns (Table D6). This suggests 

that our DSGE model is potentially misspecified along this “financial” dimension. 

5.4  Comparing Factor Spaces 
Up to this point, we have done two things: (i) we have estimated the empirical latent factors in a dynamic 

factor model and the DSGE states in a data-rich DSGE model; (ii) we have established that both factors 

and DSGE states are able to explain a significant portion of the co-movement in the rich panel of U.S. 

macro and financial series. From Figure D1 and Figure D2 we have learned that the factors and the states 

look quite different, therefore now comes our central question – can the empirical factors and estimated 

DSGE model concepts span the same factor space? Or, in other words, can we predict the true estimated 

DFM latent factors from the DSGE model states with a fair amount of accuracy? 

Let ( )pm
tF  and ( )pm

tS  denote the posterior means of the empirical factors and of the data-rich 

DSGE model state variables. For each latent factor ( )
,

pm
i tF , we estimate, by Ordinary Least Squares, the 

following simple linear regression: 

 ( ) ( )
, 0, 1, ,

pm pm
i t i i t i tF S uβ ′= + +β  (104) 
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with mean zero and homoscedastic error term ,i tu . We report the 2R s for the collection of linear 

predictive regressions (104) in Table D9. Denoting the OLS estimates by 0 0,1 0,
ˆ [ ,..., ]Nβ β ′=β  and by 

1 1,1 1,
ˆ [ ,..., ]N ′=β β β , we then construct the predicted empirical factors ( )ˆ pm

tF : 

 ( ) ( )
0 1

ˆˆ pm pm
t tF S= +β β  (105) 

The Figure D3 overlays true estimated DFM factors ( )pm
tF  versus the DSGE-states-predicted ones ( )ˆ pm

tF . 

From both Table D9 and Figure D3 we can clearly conclude that the DSGE states predict 

empirical factors really well and therefore the factor spaces spanned by the DSGE model state variables 

and by DFM latent factors are very closely aligned. What are the implications of this important finding? 

First, this implies that a DSGE model indeed captures the essential sources of co-movement in the large 

panel of data as sort of a core and that the differences in fit between a data-rich DSGE model and a DFM 

are potentially due to restricted factor loadings in the former. Second, this also implies a greater degree of 

comfort about propagation of structural shocks to a wide array of macro and financial series – which is 

the essence of many policy experiments. Third, the proximity of factor spaces facilitates economic 

interpretation of a dynamic factor model, as the empirical factors are now isomorphic – through the link 

(105) – to the DSGE model state variables with clear economic meaning. 

Regarding the first and second points, we would like to emphasize that our factor spaces 

comparison is rather informal, approximate tool to evaluate a DSGE model. A more formal and full-

fledged approach to DSGE model evaluation is implemented in Del Negro, Schorfheide, Smets and 

Wouters (2007) where the authors first approximate a DSGE model by a vector autoregression and then 

systematically relax the DSGE-model-implied cross-equation restrictions documenting how the model fit 

changes. 

5.5 Propagation of Monetary Policy and Technology Innovations 
The final and the most appealing implication of the factor spaces proximity in two models is that it allows 

us to map DSGE model state variables into DFM empirical factors every period and therefore propagate 

any structural shocks from the DSGE model in otherwise completely non-structural dynamic factor model 

to obtain predictions for a broad range of macro series of interest. Suppose dfm dsge−Λ  and dfmΛ  denote the 

posterior means of factor loadings in the data-rich DSGE model (72)-(74) and in empirical DFM (83)-

(85), respectively. Then, for any structural shock ,i tε , we can generate two sets of impulse responses of 

large panel of data tX : 

 
, ,

dfm dsget h t h

i t i tdfm dsge

X S
ε ε

−+ +
×

−

⎛ ⎞∂ ∂
=⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠
Λ  (106) 
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, , ,

ˆ ,dfm dfmt h t h t h

i t i t i tdfm

X F S
ε ε ε

+ + +
×

⎛ ⎞ ⎡ ⎤∂ ∂ ∂
= =⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎣ ⎦
Λ Λ β  (107) 

where ,t h i tS ε+∂ ∂  is computed from the transition equation of the data-rich DSGE model for every 

horizon 0,1,2,...h =  and where we have used the link between tS  and tF  determined by (105).  

In what follows we focus on propagating monetary policy ,( )R tε  and technology ,( )Z tε  

innovations in both data-rich DSGE and dynamic factor model to generate predictions for the core and 

non-core macro series. The corresponding impulse response functions (IRFs) are presented in Figure D4, 

Figure D5, Figure D6 and Figure D7. It is natural to compare our results to findings in two strands of 

literature: Factor Augmented Vector Autoregression (FAVAR) literature (e.g. Bernanke, Boivin, Eliasz, 

2005; Stock and Watson, 2005) and regular DSGE literature (e.g. Christiano, Eichenbaum, Evans, 2005; 

Smets and Wouters, 2003, 2007; DSSW 2007; Aruoba and Schorfheide, 2009; Adolfson, Laseen, Linde, 

and Villani, 2008). In FAVAR studies, we are able to obtain predictions for a rich panel of U.S. data 

similar to ours, but only of the monetary policy innovations. In regular DSGE literature, one can 

propagate any structural shocks including monetary policy and technology innovations, but to a limited 

number of core macro variables (e.g. real GDP, consumption, investment, inflation, interest rate, wage 

rate and hours worked in Smets and Wouters, 2007). The framework that we propose in this paper is able 

to deliver on both fronts: we are able to compute the responses of the core and non-core variables to both 

monetary policy and technology shocks. Moreover, we will have two sets of responses: from the data-rich 

DSGE model, which might be misspecified, and from the dynamic factor model that is primarily data-

driven and fits better. This provides a more complete and comprehensive picture of underlying effects of 

monetary policy and technology innovations. 

One general observation from comparing IRFs should be emphasized from the very beginning. 

The responses of core variables like real GDP, real consumption and investment, inflation in regular 

DGSE studies are often hump-shaped matching well the empirical findings from identified VARs. Our 

IRFs do not have many humps, because the underlying theoretical DSGE model, as presented in section 

2.2, abstracts from, say, habit in consumption or variable capital utilization – mechanisms that help get 

the humps in those often more elaborate models. This, however, can be fixed by replacing the present 

DSGE model with a more elaborate one. 

Let us turn first to the effects of monetary policy innovation which are summarized in Figure D4 

and Figure D5. Contractionary monetary policy shock corresponds to 0.75 percent (or 75 basis points) 

increase in the Federal Funds rate. As nominal policy rate rises and the opportunity costs of holding 

money for households increase, we observe strong liquidity effect associated with falling real money 

balances. Also, high interest rates make the saving motive and buying more bonds temporarily a more 

attractive option. This raises households’ marginal utility of consumption and discourages current 

spending in favor of the future consumption. Because the household faces investment adjustment costs 
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and cannot adjust investment quickly, and the government spending in the model is exogenous, the lower 

consumption leads to a fall in aggregate demand. The firms respond to lower demand in part by 

contracting real output and in part by reducing the optimal price. Hence the aggregate price level falls, but 

not as much given nominal rigidities in the intermediate goods producing sector. 

Why the monopolistically competitive firms respond to falling demand in part by charging a 

lower price? The short answer is that because they are able to cut their marginal costs. On the one hand, 

higher interest rates inhibit investment and the return on capital is falling. On the other hand, firms may 

now economize on real wages. The market for labor is perfectly competitive, since we assume no wage 

rigidities. This implies that the real wage is equal to the marginal product of labor, but also that it is equal 

to the household’s marginal rate of substitution between consumption and leisure, as in (51). Since 

disutility of labor in our model is fixed, and the marginal utility of consumption is higher, the household 

accepts lower real wage and the firms are able to pass their losses in revenues onto households by 

reducing own wage bills. 

Now given lower marginal costs, the New Keynesian Phillips curve suggests we should observe 

falling aggregate prices and negative rates of inflation (in terms of a deviation from the steady state 

inflation). That’s what we see in the 2nd column of Figure D4. Notice that channeling the monetary policy 

shock through the pure dynamic factor model helps correct the so-called “price puzzle”15 for the data-rich-

DSGE-model-implied responses of PCE deflator inflation and CPI inflation. Interestingly, a positive 

response of CPI inflation to monetary policy contraction is also documented in Stock and Watson (2005), 

despite the fact that they use a data-rich Factor Augmented VAR. It has been argued (e.g. Bernanke, 

Boivin, Eliasz, 2005) that the rich information set helps eliminate this sort of anomalies. 

As can be seen from the 1st column of Figure D4, the response of industrial production (IP) to the 

monetary policy tightening seems counterfactual compared to FAVAR findings. First, this may have 

something to do with inherent inertia of IP in responding to monetary policy. It continues to be driven by 

excessive optimism from the previous phase of the business cycle and it takes time to adjust to new 

conditions. But once IP falls below the trend, it remains subdued for a long time. Second, this may have 

something to do with the way the monetary policy shock is identified in FAVAR literature. By 

construction, in Factor Augmented VAR the industrial production is contained in the list of “slow 

moving” variables, and the identification of the monetary policy shock is achieved by postulating that it 

does not affect slow variables contemporaneously. Regarding the responses of real GDP, we document 

that the data-rich DSGE and DFM models disagree about the magnitude of the contraction. The DFM-

implied response is almost negligible implying the costs of disinflation are very small (which is hard to 

                                                 
15 “Price puzzle” (Sims, 1992) refers to the counterfactual finding in VAR literature that a measure of prices or 
inflation responds positively to a contractionary monetary policy shock associated with the unexpected increase in 
the policy interest rate. 
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believe), whereas the data-rich-DSGE-model-implied response is about minus 0.5 percent – hump shape 

aside, a value in the ballpark of findings in regular DSGE literature. 

If we look at the effects of the monetary policy tightening on non-core macro and financial 

variables (Figure D5), they complete the picture for the core series with details. The real activity measures 

such as real consumption of durables, real residential investment and housing starts broadly decline. 

Prices go down as well; in particular we observe negative rates of commodity price inflation and 

investment deflator inflation. The measures of employment fall (e.g. employment in services sector) 

indicating tensions in the labor market, while the unemployment gains momentum with a lag before 

eventually returning to normal. The interest rate spreads (for instance, 6-month over 3-month Treasury 

bill rate) widen considerably, reflecting tighter money market conditions and increased liquidity risks and 

credit risks. Consumer credit is contracted, in part due to lower demand from borrowers facing higher 

interest rates and in part owing to reduced availability of funds. Dollar appreciates, reflecting intensified 

capital inflows lured by higher returns in domestic financial market. As a result, both export and import 

price indices fall, thereby translating – according to the magnitudes in Figure D5 – into a deterioration of 

the U.S. terms of trade. 

Broadly speaking, the reported results are very similar to FAVAR findings of Bernanke, Boivin 

and Eliasz (2005) and Stock and Watson (2005). Except for the humps, they also accord well with the 

monetary policy effects on the core variables documented in regular DSGE literature. On top of that, the 

responses of the non-core variables seem to provide a reasonable and consistent picture of monetary 

tightening as well. 

We plot the effects of a positive technology innovation in Figure D6 (core series) and Figure D7 

(non-core series). Following the positive TFP shock, the real output broadly increases (although there is a 

disagreement between DFM and data-rich DSGE model as to the response of real GDP), as our economy 

becomes more productive and the firms find it optimal to produce more. New demand comes primarily 

from the higher capital investment reflecting much better future return on capital, and also from additional 

household consumption fueled by greater income. The higher output on the supply side plus improved 

efficiency implies a downward pressure on prices. Through the lenses of New Keynesian Phillips curve, 

the current period inflation is positively related to expected future inflation and to current marginal costs. 

A positive technology shock has raised production efficiency and reduced the current marginal costs 

(elevated real wage resulting from increased labor demand was not enough to prevent that). However, 

because technology innovation is very persistent, the firms expect future marginal costs and thus future 

inflation to be lower as well. This anticipation effect, coupled with currently low marginal costs, leads to 

prices falling now, as is evident from the column 2 of the Figure D6. 

The increase in real output above steady state and the fall of inflation below target level, under 

estimated monetary policy Taylor rule, requires the Fed to move the policy rate in opposite directions. 

The fact that the Fed actually lowers the policy rate means that the falling prices effect dominates, with 
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other interest rates following the course of the Federal Funds rate (column 3, Figure D6). Declining 

interest rates boost the real output even more, which in turn raises further the return on capital. As the 

positive impact of technological innovation dissipates, this higher return, through the future marginal 

costs channel, fuels inflationary expectations that ultimately translate into contemporaneous upward price 

pressures. The Fed reacts by increasing the policy rate, which explains the observed hump in the interest 

rate IRF. Given temporarily lower interest rates, the households choose to hold, with some lag, relatively 

higher real money balances (from column 4, Figure D6, this applies more to M1S and monetary base, and 

less to M2S aggregate that comprises a hefty portion of interest-bearing time deposits). A part of the 

growing money demand comes endogenously from the elevated level of economic activity. 

These results – both in terms of the magnitudes and shapes of responses – align fairly closely with 

findings in regular DSGE literature (e.g. Smets and Wouters, 2007; Aruoba, Schorfheide, 2009; DSSW 

2007). 

The responses of the non-core macroeconomic series (Figure D7) appear to enrich the story for 

core variables with additional details. Following positive technology innovation, the subcomponents of 

real GDP (real consumption of durables, real residential investment) or components of industrial 

production (e.g. production of business equipment) generally expand (although there is weaker agreement 

between DFM and data-rich DSGE model predictions). Measures of employment (e.g. employment in 

services sector) increase. This is however in contrast to Smets and Wouters (2003) and Adolfson, Laseen, 

Linde, Villani (2005) who find on European data that the employment actually falls after positive 

stationary TFP shock. As marginal costs fall, commodity price inflation (P_COM) and investment 

deflator inflation (PInv_GDP) follow the overall downward price pressures trend. The interest rate 

spreads (SFYGM6) shrink, in part reflecting the lower level of perceived risks, while credit conditions 

ease leading to growth in business loans. Despite the interest rates being below average for a prolonged 

period of time, the dollar appreciates, but by less than after the monetary tightening. Finally, the real wage 

(RComp_Hour) increases, while the average hours worked (Hours_AVG) decline. The rise in real wage 

and the initial fall in hours worked are in line with evidence documented by Smets and Wouters (2007). 

However, the subsequent dynamics of hours are quite different: in Smets and Wouters the hours turn 

significantly positive after about two years. Here they stay below steady state for much longer. This may 

have something to do with a greater amount of persistence in the technology process in our model. 

6 Conclusions 
In this paper, we have compared a data-rich DSGE model with a standard New Keynesian core to an 

empirical dynamic factor model by estimating both on a rich panel of U.S. macroeconomic and financial 

indicators compiled by Stock and Watson (2008). We have established that the spaces spanned by the 

empirical factors and by the data-rich DSGE model states are very closely aligned. 
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What can we learn from that? First, this implies that a DSGE model indeed captures the essential 

sources of co-movement in the data and that the differences in fit between a data-rich DSGE model and a 

DFM are potentially due to restricted factor loadings in the former. Second, this also implies a greater 

degree of comfort about propagation of structural shocks to a wide array of macro and financial series. 

Third, the proximity of factor spaces facilitated economic interpretation of a dynamic factor model, as the 

empirical factors become isomorphic to the DSGE model state variables with clear economic meaning. 

Most importantly, the proximity of factor spaces in two models has allowed us to propagate the 

monetary policy and technology innovations in otherwise completely non-structural dynamic factor 

model to obtain predictions for many more series than a handful of traditional macro variables including 

measures of real activity, price indices, labor market indicators, interest rate spreads, money and credit 

stocks, exchange rates. The responses of these non-core variables therefore provided a more complete and 

comprehensive picture of the effects of monetary policy and technology shocks and may serve as a check 

on empirical plausibility of a DSGE model. 
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Appendix A. DSGE Model 
Appendix A1. First Order Conditions of Intermediate Goods Firm 
Monopolistically competitive intermediate goods producer i , which is allowed to re-optimize, chooses 

the optimal price ( )o
tP i that maximizes discounted stream of profits subject to optimal demand from final 

good producers: 
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Now the first order condition for the problem (108), where we will plug optimal demand ( )t sY i+  into the 

objective function and assume interior solution, is: 
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Consider expression inside square brackets: 
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Cancelling out 1 0λ ≠  and multiplying (110) by -1, we could rewrite the FOC as follows: 
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To express FOC (111) recursively, we define two auxiliary variables: 
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so that FOC becomes: 

 (1) (2)(1 ) .t tf fλ= +  (114) 

Recalling that | 1p
t tΞ = , | 1adj

t tπ =  and using results from Remarks 1, 2 and 3, we can rewrite (112) as: 
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Similarly, the recursion for (2)
tf  becomes: 
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Equilibrium conditions (115), (116) and (114) correspond to equations (35), (36) and (37) in the main 

text. 

Appendix A2. Evolution of Price Dispersion 

Aggregate price dispersion across intermediate goods firms is captured by variable
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The last line implies: 
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Appendix A3. Steady State and Log-Linearized Equilibrium Conditions 
In what follows we specialize the household’s utility to be constant-relative-risk-aversion function: 
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In addition, for any generic variable tV  the corresponding “star” variable V∗ denotes its steady state value 

and “hat” variable stands for log-deviation from steady state: ˆ ln( )t tV V V∗=  

Steady State Conditions 
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Log-Linearized Equilibrium Conditions 
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Appendix B. Markov Chain Monte Carlo Algorithms 
Appendix B. Estimation Procedure: Details of the Markov Chain Monte Carlo Algorithms   

(to be completed) 
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Appendix C. Data: Description and Transformations 
SW Trans

# Short Name Mnemonic Code Description

Core Series

Real Output
1. RGDP 4 Real Per-capita Gross Domestic Product
2. IP_TOTAL 4 Per-capita Industrial Production Index: Total
3. IP_MFG 4 Per-capita Industrial Production Index: Manufacturing

Inflation
4. PGDP 4 GDP Deflator Inflation
5. PCED 4 Personal Consumption Expenditure Deflator Inflation
6. CPI_ALL 4 Consumer Price Index (All Items) Inflation

Nominal Interest Rate
7. FedFunds 4 Interest Rate: Federal Funds (effective), % per annum
8. TBill_3m 4 Interest Rate: U.S. Treasury bills, secondary market, 3 month, % per annum
9. AAABond 4 Bond Yield: Moody's AAA Corporate, % per annum

Inverse Velocity of Money (M/Y)
10. IVM_M1S_det 4 Inverse Velocity of Money based on M1S aggregate
11. IVM_M2S 4 Inverse Velocity of Money based on M2S aggregate
12. IVM_MBase_bar 4 Inverse Velocity of Money based on adjusted Monetary Base

Non-Core Series

Output and Components
1. IP_CONS_DBLE IPS13   3* INDUSTRIAL PRODUCTION INDEX -  DURABLE CONSUMER GOODS
2. IP_CONS_NONDBLE IPS18   3* INDUSTRIAL PRODUCTION INDEX -  NONDURABLE CONSUMER GOODS
3. IP_BUS_EQPT IPS25   3* INDUSTRIAL PRODUCTION INDEX -  BUSINESS EQUIPMENT
4. IP_DBLE_MATS IPS34   3* INDUSTRIAL PRODUCTION INDEX -  DURABLE GOODS MATERIALS
5. IP_NONDBLE_MATS IPS38   3* INDUSTRIAL PRODUCTION INDEX -  NONDURABLE GOODS MATERIALS
6. IP_FUELS IPS306  3* INDUSTRIAL PRODUCTION  INDEX -  FUELS
7. PMP PMP     0 NAPM PRODUCTION INDEX (PERCENT)
8. RCONS GDP252  3* Real Personal Consumption Expenditures, Quantity Index (2000=100) , SAAR
9. RCONS_DUR GDP253  3* Real Personal Consumption Expenditures - Durable Goods , Quantity Index (2000=100), SAAR

10. RCONS_SERV GDP255  3* Real Personal Consumption Expenditures - Services, Quantity Index (2000=100) , SAAR
11. REXPORTS GDP263  3* Real Exports, Quantity Index (2000=100) , SAAR
12. RIMPORTS GDP264  3* Real Imports, Quantity Index (2000=100) , SAAR
13. RGOV GDP265  3* Real Government Consumption Expenditures & Gross Investment, Quantity Index (2000=100), SAAR

Labor Market
14. EMP_MINING CES006  3* EMPLOYEES, NONFARM - MINING
15. EMP_CONST CES011  3* EMPLOYEES, NONFARM - CONSTRUCTION
16. EMP_DBLE_GDS CES017  3* EMPLOYEES, NONFARM - DURABLE GOODS
17. EMP_NONDBLES CES033  3* EMPLOYEES, NONFARM - NONDURABLE GOODS
18. EMP_SERVICES CES046  3* EMPLOYEES, NONFARM - SERVICE-PROVIDING
19. EMP_TTU CES048  3* EMPLOYEES, NONFARM - TRADE, TRANSPORT, UTILITIES
20. EMP_WHOLESALE CES049  3* EMPLOYEES, NONFARM - WHOLESALE TRADE
21. EMP_RETAIL CES053  3* EMPLOYEES, NONFARM - RETAIL TRADE
22. EMP_FIRE CES088  3 EMPLOYEES, NONFARM - FINANCIAL ACTIVITIES
23. EMP_GOVT CES140  3 EMPLOYEES, NONFARM - GOVERNMENT
24. URATE_ALL LHUR    0 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%,SA)
25. U_DURATION LHU680  0 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATION IN WEEKS (SA)
26. U_L5WKS LHU5    3 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,SA)
27. U_5_14WKS LHU14   3 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA)
28. U_M15WKS LHU15   3 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS.,SA)
29. U_15_26WKS LHU26   3 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA)
30. U_M27WKS LHU27   3 UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,SA)
31. HOURS_AVG CES151  0 AVG WKLY HOURS, PROD WRKRS, NONFARM - GOODS-PRODUCING

Housing
32. HSTARTS_NE HSNE    1 HOUSING STARTS:NORTHEAST (THOUS.U.)S.A.
33. HSTARTS_MW HSMW    1 HOUSING STARTS:MIDWEST(THOUS.U.)S.A.
34. HSTARTS_SOU HSSOU   1 HOUSING STARTS:SOUTH (THOUS.U.)S.A.
35. HSTARTS_WST HSWST   1 HOUSING STARTS:WEST (THOUS.U.)S.A.  
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35. HSTARTS_WST HSWST   1 HOUSING STARTS:WEST (THOUS.U.)S.A.
36. RRESINV GDP261  3* Real Gross Private Domestic Investment - Residential, Quantity Index (2000=100), SAAR

Financial Variables
37. SFYGM6 Sfygm6 0 fygm6-fygm3

fygm6: INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA)
fygm3: INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA)

38. SFYGT1 Sfygt1 0 fygt1-fygm3
fygt1: INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA)

39. SFYGT10 Sfygt10 0 fygt10-fygm3
fygt10: INTEREST RATE: U.S.TREASURY CONST MATURITIES,10-YR.(% PER ANN,NSA)

40. SFYBAAC sFYBAAC  0 FYBAAC-Fygt10
FYBAAC: BOND YIELD: MOODY'S BAA CORPORATE (% PER ANNUM)

41. BUS_LOANS BUSLOANS 3 Commercial and Industrial Loans at All Commercial Banks (FRED) Billions $ (SA)
42. CONS_CREDIT CCINRV  3* CONSUMER CREDIT OUTSTANDING - NONREVOLVING(G19)
43. DLOG_EXR_US EXRUS   2 UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)(INDEX NO.)
44. DLOG_EXR_CHF EXRSW   2 FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$)
45. DLOG_EXR_YEN EXRJAN  2 FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$)
46. DLOG_EXR_GBP EXRUK   2 FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)
47. DLOG_EXR_CAN EXRCAN  2 FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$)
48. DLOG_SP500 FSPCOM  2 S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)
49. DLOG_SP_IND FSPIN   2 S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10)
50. DLOG_DJIA FSDJ    2 COMMON STOCK PRICES: DOW JONES INDUSTRIAL AVERAGE

Investment, Inventories, Orders
51. NAPMI PMI     0 PURCHASING MANAGERS' INDEX (SA)
52. NAPM_NEW_ORDRS PMNO    0 NAPM NEW ORDERS INDEX (PERCENT)
53. NAPM_VENDOR_DEL PMDEL   0 NAPM VENDOR DELIVERIES INDEX (PERCENT)
54. NAPM_INVENTORIES PMNV    0 NAPM INVENTORIES INDEX (PERCENT)
55. RINV_GDP GDP256  3* Real Gross Private Domestic Investment, Quantity Index (2000=100) , SAAR
56. RNONRESINV_STRUCT GDP259  1 Real Gross Private Domestic Investment - Nonresidential - Structures, Quantity Index (2000=100), SAAR
57. RNONRESINV_BEQUIPT GDP260  3* Real Gross Private Domestic Investment - Nonresidential - Equipment & Software

Prices and Wages
58. RAHE_CONST CES277R  3* REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - CONSTRUCTION (CES277/PI071)
59. RAHE_MFG CES278R 3 REAL AVG HRLY EARNINGS, PROD WRKRS, NONFARM - MFG (CES278/PI071)
60. P_COM PSCCOMR 2 Real SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100) (PSCCOM/PCEPILFE)

PSCCOM: SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES(1967=100)
PCEPILFE: PCE Price Index Less Food and Energy (SA) Fred

61. P_OIL PW561R   2 PPI Crude (Relative to Core PCE) (pw561/PCEPiLFE)
pw561: PRODUCER PRICE INDEX: CRUDE PETROLEUM (82=100,NSA)

62. P_NAPM_COM PMCP    2 NAPM COMMODITY PRICES INDEX (PERCENT)
63. RCOMP_HOUR LBPUR7  1* REAL COMPENSATION PER HOUR,EMPLOYEES:NONFARM BUSINESS(82=100,SA)
64. ULC LBLCPU  1* UNIT LABOR COST: NONFARM BUSINESS SEC (1982=100,SA)
65. PCED_DUR GDP274A 2 Personal Consumption Expenditures:   Durable goods Price Index
66. PCED_NDUR GDP275A 2 Personal Consumption Expenditures:   Nondurable goods Price Index
67. PCED_SERV GDP276A 2 Personal Consumption Expenditures:   Services Price Index
68. PINV_GDP GDP277A 2 Gross private domestic investment Price Index
69. PINV_NRES_STRUCT GDP280A 2 GPDI Price Index:      Structures
70. PINV_NRES_EQP GDP281A 2 GPDI Price Index:      Equipment and software Price Index
71. PINV_RES GDP282A 2 GPDI Price Index:    Residential Price Index
72. PEXPORTS GDP284A 2 GDP:  Exports Price Index
73. PIMPORTS GDP285A 2 GDP:  Imports Price Index
74. PGOV GDP286A 2 Government consumption expenditures and gross investment Price Index

Other
75. UTL11 UTL11   0 CAPACITY UTILIZATION - MANUFACTURING (SIC)
76. UMICH_CONS HHSNTN  1 U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83)
77. LABOR_PROD LBOUT   1* OUTPUT PER HOUR ALL PERSONS: BUSINESS SEC(1982=100,SA)

 
Notes: Transformation codes: 0 – nothing; 1 – log(); 2 – dlog(); 3 – log of the ratio of subaggregate to aggregate; 4 – transformation 

described in the main text, p. 27. Asterisk (*) indicates the transformed variable has been further linearly detrended. 

 Source of data: Stock and Watson (2008), “Forecasting in Dynamic Factor Models Subject to Structural Instability,”  
available online at http://www.princeton.edu/~mwatson/ddisk/hendryfestschrift_replicationfiles_April28_2008.zip 

 Full sample available: 1959:Q1-2006:Q4. Sample used in estimation: 1984:Q1-2005:Q4. 

 All series available at monthly frequency have been converted to quarterly by simple averaging in native units. 
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Appendix D. Tables and Figures 
 
Table D1. Data-Rich DSGE Model: Parameters Fixed During Estimation - 
Calibration and Normalization 
 
Parameter Name Mnemonics Value 

Depreciation rate δ  0.014 
Risk aversion in HH utility function γ  1 
Money demand shock in steady state *χ  1 

Share of govt spending in steady state *g  1.2 
Fixed costs in production F 0 
MP rule: response to inflation 1ψ  1.82 

MP rule: response to output gap 2ψ  0.18 

MP rule: int rate smoothing parameter Rρ  0.78 

Persistence: TFP shock Zρ  0.98 

Steady state inflation (in % pa) Aπ  2.5 

Steady state real interest rate (in % pa) Ar  2.84 

Price indexation parameter **π  1 

Steady state real GDP *Y  1 

Log inverse velocity of money in SS )/log( ** YM 0.778 
Steady state of log average inverse 
labor productivity 

)/log( ** YH  –3.5 

Transformations: 
400

1;
4001

1 A

Ar
π

πβ +=
+

= ∗  
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Table D2. Data-Rich DSGE Model: Prior Distributions 
 
Parameter Name  Domain Density Para 1 Para 2 

Firms 
Share of capital α  [0;1) Beta 0.3 0.025 
Average economy wide markup λ  R+ Gamma 0.15 0.01 

ζ−1  prob of reoptimizing firm’s price ζ  [0;1) Beta 0.6 0.15 
Indexation parameter ι  [0;1) Beta 0.5 0.25 
Households 
Elasticity of money demand mν  R+ Gamma 20 5 
Investment adjustment cost parameter S ′′  R+ Gamma 5.0 2.5 
Shocks 
Persistence: govt spending process gρ  [0;1) Beta 0.8 0.1 

Persistence: money demand shock χρ  [0;1) Beta 0.8 0.1 

Stdev: govt spending process gσ  R+ InvGamma 1 4 

Stdev: money demand shock χσ  R+ InvGamma 1 4 

Stdev: monetary policy shock Rσ  R+ InvGamma 0.5 4 

Stdev: TFP shock Zσ  R+ InvGamma 1 4 

 
Notes: Para 1 and Para 2 are (i) the means and the standard deviations for Beta, Gamma, and Normal 
distributions; (ii) the upper and the lower bound of support for the Uniform distribution; (iii) s  and ν   
for the Inverse Gamma distribution, where 1 2 2( | , ) exp( 2 )IGp s sνσ ν σ ν σ− −∝ − . 
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Table D3. Data-Rich DSGE Model: Posterior Estimates 
 
  Regular DSGE model Data-Rich DSGE model 

Parameter Name  Mean 90% CI Mean 90% CI 

Firms 
Share of capital α  0.282 [0.269, 0.296] 0.2766 [0.266, 0.292] 
Average economy wide markup λ  0.15 [0.133, 1.166] 0.134 [0.117, 0.154] 

ζ−1  prob of reoptimizing firm’s price ζ  0.759 [0.709, 0.809] 0.797 [0.777, 0.819] 
Indexation parameter ι  0.05 [0.00, 0.101] 0.0326 [0.001, 0.0636] 
Households 

Elasticity of money demand mν  25.943 [19.581, 31.65] 23.199 [17.13, 31.27] 
Investment adjustment cost 
parameter S ′′  11.079 [6.299, 15.683] 30.754 [26.506, 35.29] 

Shocks 

Persistence: govt spending process gρ  0.886 [0.85, 0.92] 0.870 [0.839, 0.909] 

Persistence: money demand shock χρ  0.974 [0.958, 0.992] 0.961 [0.936, 0.981] 

Stdev: govt spending process gσ  1.227 [1.062, 1.388] 0.851 [0.605, 1.238] 

Stdev: money demand shock χσ  0.865 [0.757, 0.972] 0.396 [0.327, 0.464] 

Stdev: monetary policy shock Rσ  0.199 [0.175, 0.223] 0.2404 [0.211, 0.275] 

Stdev: TFP shock Zσ  0.557 [0.471, 0.639] 0.375 [0.322, 0.439] 
      
Implied Slope of NK Phillips Curve κ  0.0745  0.0517  
      

 
Notes: Results labeled “Regular DSGE model” refer to the standard Bayesian estimation of the same 
underlying theoretical DSGE model as presented in the paper, but only on 4 core observable data series (real 
GDP, GDP deflator inflation, Federal Funds rate and inverse velocity of money based on M2S aggregate) 
assumed to be perfectly measured. In terms of the state-space representation (72)-(74), this means that the 
vector of data tX  contains just these 4 core observables, the factor loadings Λ  are restricted as in (5), and there 
are no measurement errors te . 
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Table D4. Pure DFM: Fraction of Unconditional Variance  
Captured by Factors 
 
 iid Measurement Errors; Dataset = DFM3.txt
on average, 100K draws, 20K burn-in

All Error
Factors term

Core Variables 0.948 0.052
Real output 0.993 0.007
Inflation 0.896 0.104
Interest rates 0.990 0.010
Money velocities 0.914 0.086

Non-Core Variables 0.941 0.059
Output and components 0.982 0.018
Labor market 0.981 0.019
Investment, inventories, orders 0.986 0.014
Housing 0.970 0.030
Prices and wages 0.908 0.092
Financial variables 0.854 0.146
Other 0.973 0.027

 
 
 
Table D5. Data-Rich DSGE Model: Fraction of Unconditional Variance 
Captured by Model Concepts 
 
iid Measurement Errors; Dataset = DFM3.txt
on average, 20K draws, 4K burn-in

GOV CHI MP Z All Error
Shocks term

gov chi mp Z all_shocks error

Core Variables 0.05 0.08 0.06 0.56 0.749 0.251
Real output 0.14 0.21 0.03 0.48 0.852 0.148
Inflation 0.01 0.02 0.01 0.70 0.733 0.267
Interest rates 0.01 0.00 0.15 0.76 0.925 0.075
Money velocities 0.07 0.09 0.04 0.29 0.489 0.512

Non-Core Variables 0.09 0.13 0.06 0.45 0.719 0.281
Output and components 0.07 0.27 0.08 0.45 0.873 0.127
Labor market 0.19 0.14 0.06 0.46 0.848 0.152
Investment, inventories, orders 0.10 0.13 0.02 0.63 0.882 0.118
Housing 0.04 0.26 0.07 0.42 0.794 0.206
Prices and wages 0.03 0.05 0.04 0.45 0.568 0.432
Financial variables 0.06 0.03 0.05 0.32 0.451 0.549
Other 0.02 0.12 0.09 0.64 0.866 0.134
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Table D6. Pure DFM: Unconditional Variance Captured by Factors 
 
iid Measurement Errors; Dataset = DFM3.txt
on average, 100K draws, 20K burn-in

Algorithm: Jungbacker-Koopman
Identification: Scheme 2 - Block Diagonal

All Measurement
F1 F2 F3 F4 F5 F6 Factors Error

Real GDP 0.119 0.142 0.301 0.160 0.115 0.148 0.984 0.016
IP_Total 0.137 0.105 0.343 0.135 0.113 0.164 0.996 0.004
IP_MFG 0.131 0.105 0.350 0.136 0.114 0.162 0.997 0.003
GDP Def inflation 0.147 0.173 0.166 0.169 0.110 0.142 0.907 0.094
PCE Def inflation 0.148 0.177 0.168 0.173 0.110 0.145 0.921 0.079
CPI ALL Inflation 0.130 0.167 0.159 0.166 0.102 0.138 0.862 0.138
FedFunds 0.135 0.169 0.185 0.169 0.186 0.148 0.993 0.008
3m T-Bill rate 0.136 0.166 0.185 0.168 0.189 0.148 0.991 0.009
AAA Bond yield 0.118 0.114 0.192 0.150 0.267 0.147 0.988 0.012
IVM_M1S_det 0.117 0.164 0.149 0.151 0.097 0.130 0.808 0.193
IVM_M2S 0.206 0.141 0.197 0.145 0.114 0.192 0.994 0.006
IVM_MBASE_bar 0.197 0.154 0.175 0.146 0.116 0.152 0.940 0.060
IP_CONS_DBLE 0.134 0.139 0.217 0.159 0.121 0.169 0.938 0.062
IP_CONS_NONDBLE 0.133 0.115 0.253 0.142 0.149 0.201 0.992 0.008
IP_BUS_EQPT 0.161 0.142 0.199 0.191 0.134 0.157 0.984 0.017
IP_DBLE_MATS 0.135 0.110 0.226 0.154 0.137 0.233 0.994 0.006
IP_NONDBLE_MATS 0.147 0.133 0.175 0.185 0.113 0.242 0.996 0.004
IP_FUELS 0.147 0.144 0.212 0.175 0.133 0.149 0.959 0.041
PMP 0.145 0.146 0.216 0.170 0.143 0.170 0.989 0.011
UTL11 0.141 0.181 0.184 0.183 0.143 0.165 0.997 0.003
RAHE_CONST 0.147 0.152 0.192 0.167 0.121 0.180 0.958 0.042
RAHE_MFG 0.166 0.137 0.184 0.149 0.120 0.228 0.983 0.017
EMP_MINING 0.130 0.118 0.211 0.210 0.123 0.169 0.960 0.040
EMP_CONST 0.153 0.141 0.193 0.166 0.112 0.234 0.998 0.002
EMP_DBLE_GDS 0.201 0.140 0.203 0.160 0.133 0.160 0.996 0.004
EMP_NONDBLES 0.158 0.120 0.183 0.183 0.116 0.236 0.995 0.005
EMP_SERVICES 0.164 0.155 0.211 0.141 0.126 0.201 0.997 0.003
EMP_TTU 0.140 0.159 0.184 0.173 0.139 0.176 0.971 0.029
EMP_WHOLESALE 0.144 0.167 0.168 0.142 0.114 0.145 0.879 0.121
EMP_RETAIL 0.162 0.157 0.177 0.163 0.143 0.164 0.967 0.033
EMP_FIRE 0.219 0.142 0.181 0.160 0.121 0.156 0.979 0.021
EMP_GOVT 0.150 0.135 0.266 0.137 0.152 0.155 0.996 0.004
URATE_ALL 0.124 0.175 0.255 0.157 0.141 0.141 0.993 0.007
U_DURATION 0.135 0.143 0.197 0.223 0.116 0.183 0.997 0.003
U_L5WKS 0.128 0.144 0.201 0.211 0.142 0.169 0.995 0.005
U_5_14WKS 0.145 0.143 0.195 0.167 0.154 0.163 0.966 0.034
U_M15WKS 0.132 0.153 0.198 0.218 0.121 0.177 0.998 0.002
U_15_26WKS 0.123 0.153 0.196 0.190 0.160 0.155 0.976 0.024
U_M27WKS 0.136 0.149 0.196 0.218 0.113 0.184 0.997 0.003
HOURS_AVG 0.151 0.147 0.207 0.163 0.145 0.178 0.991 0.009
HSTARTS_NE 0.132 0.135 0.193 0.173 0.154 0.175 0.962 0.038
HSTARTS_MW 0.118 0.121 0.240 0.163 0.155 0.145 0.942 0.058  
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HSTARTS_MW 0.118 0.121 0.240 0.163 0.155 0.145 0.942 0.058
HSTARTS_SOU 0.133 0.121 0.194 0.240 0.119 0.183 0.990 0.010
HSTARTS_WST 0.128 0.143 0.190 0.223 0.120 0.180 0.982 0.018
SFYGM6 0.138 0.143 0.201 0.167 0.152 0.168 0.970 0.030
SFYGT1 0.133 0.139 0.189 0.164 0.191 0.160 0.976 0.025
SFYGT10 0.150 0.197 0.182 0.160 0.132 0.153 0.974 0.026
SFYBAAC 0.151 0.188 0.178 0.170 0.129 0.171 0.988 0.012
BUS_LOANS 0.140 0.138 0.189 0.199 0.167 0.154 0.986 0.014
CONS_CREDIT 0.140 0.145 0.184 0.176 0.123 0.208 0.976 0.024
P_COM 0.139 0.133 0.189 0.151 0.112 0.150 0.874 0.126
P_OIL 0.117 0.121 0.181 0.139 0.104 0.130 0.792 0.208
P_NAPM_COM 0.138 0.128 0.197 0.147 0.125 0.148 0.882 0.118
DLOG_EXR_US 0.127 0.107 0.141 0.121 0.095 0.118 0.709 0.291
DLOG_EXR_CHF 0.107 0.100 0.135 0.112 0.090 0.111 0.655 0.345
DLOG_EXR_YEN 0.128 0.125 0.168 0.134 0.126 0.134 0.814 0.186
DLOG_EXR_GBP 0.098 0.095 0.129 0.111 0.088 0.105 0.626 0.374
DLOG_EXR_CAN 0.136 0.130 0.160 0.142 0.126 0.132 0.825 0.175
DLOG_SP500 0.133 0.136 0.171 0.138 0.111 0.137 0.827 0.173
DLOG_SP_IND 0.129 0.139 0.167 0.138 0.110 0.136 0.819 0.181
DLOG_DJIA 0.128 0.126 0.174 0.134 0.111 0.133 0.807 0.193
UMICH_CONS 0.142 0.121 0.246 0.142 0.130 0.167 0.949 0.051
NAPMI 0.144 0.149 0.219 0.173 0.140 0.170 0.994 0.006
NAPM_NEW_ORDRS 0.146 0.146 0.214 0.169 0.139 0.170 0.983 0.017
NAPM_VENDOR_DEL 0.142 0.147 0.222 0.170 0.137 0.168 0.985 0.015
NAPM_INVENTORIES 0.137 0.155 0.211 0.176 0.145 0.161 0.985 0.015
RCONS 0.172 0.144 0.187 0.175 0.127 0.177 0.982 0.018
RCONS_DUR 0.141 0.118 0.203 0.175 0.114 0.230 0.980 0.020
RCONS_SERV 0.139 0.134 0.186 0.202 0.115 0.214 0.990 0.010
RINV_GDP 0.153 0.125 0.225 0.155 0.145 0.192 0.995 0.005
RNONRESINV_STRUCT 0.165 0.138 0.187 0.153 0.118 0.224 0.984 0.016
RNONRESINV_BEQUIPT 0.141 0.168 0.185 0.198 0.128 0.156 0.976 0.024
RRESINV 0.176 0.155 0.182 0.186 0.128 0.150 0.977 0.023
REXPORTS 0.152 0.130 0.177 0.226 0.117 0.192 0.993 0.007
RIMPORTS 0.129 0.106 0.236 0.149 0.137 0.222 0.978 0.022
RGOV 0.203 0.133 0.207 0.141 0.138 0.171 0.994 0.006
LABOR_PROD 0.173 0.144 0.175 0.199 0.115 0.166 0.972 0.028
RCOMP_HOUR 0.183 0.161 0.190 0.153 0.123 0.177 0.987 0.014
ULC 0.134 0.151 0.187 0.225 0.122 0.170 0.989 0.011
PCED_DUR 0.135 0.133 0.178 0.174 0.181 0.150 0.950 0.050
PCED_NDUR 0.133 0.152 0.174 0.163 0.108 0.136 0.866 0.134
PCED_SERV 0.131 0.117 0.200 0.139 0.134 0.144 0.865 0.135
PINV_GDP 0.154 0.162 0.174 0.176 0.116 0.142 0.925 0.075
PINV_NRES_STRUCT 0.129 0.165 0.189 0.177 0.137 0.149 0.945 0.055
PINV_NRES_EQP 0.172 0.129 0.182 0.151 0.113 0.149 0.897 0.103
PINV_RES 0.121 0.135 0.191 0.173 0.110 0.140 0.870 0.130
PEXPORTS 0.164 0.147 0.204 0.170 0.123 0.155 0.963 0.037
PIMPORTS 0.149 0.142 0.192 0.162 0.117 0.144 0.906 0.094
PGOV 0.122 0.125 0.156 0.140 0.111 0.124 0.778 0.222

 
Notes: Please see the Appendix C. Data: Description and Transformations for the corresponding mnemonics of data 

indicators reported here. 
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Table D7. Data-Rich DSGE Model: Fraction of Unconditional Variance 
Captured by Model Concepts 
 p
iid Measurement Errors; Dataset = DFM3.txt
on average, 20K draws, 4K burn-in

Algorithm: Jungbacker-Koopman

All Measurement
GOV CHI MP Z Shocks Error

Real GDP 0.081 0.000 0.040 0.648 0.770 0.230
IP_Total 0.167 0.308 0.021 0.395 0.891 0.110
IP_MFG 0.166 0.317 0.020 0.392 0.894 0.106
GDP Def inflation 0.011 0.000 0.011 0.789 0.811 0.189
PCE Def inflation 0.004 0.035 0.003 0.703 0.745 0.255
CPI ALL Inflation 0.005 0.031 0.006 0.600 0.642 0.358
FedFunds 0.004 0.000 0.135 0.817 0.956 0.044
3m T-Bill rate 0.007 0.003 0.160 0.788 0.958 0.042
AAA Bond yield 0.013 0.008 0.168 0.672 0.861 0.139
IVM_M1S_det 0.055 0.174 0.016 0.404 0.648 0.352
IVM_M2S 0.042 0.063 0.003 0.071 0.178 0.822
IVM_MBASE_bar 0.099 0.031 0.104 0.406 0.639 0.361
IP_CONS_DBLE 0.051 0.090 0.018 0.650 0.810 0.190
IP_CONS_NONDBLE 0.151 0.551 0.025 0.109 0.836 0.164
IP_BUS_EQPT 0.259 0.103 0.106 0.407 0.874 0.126
IP_DBLE_MATS 0.069 0.677 0.024 0.131 0.901 0.099
IP_NONDBLE_MATS 0.060 0.229 0.028 0.645 0.962 0.038
IP_FUELS 0.081 0.136 0.044 0.457 0.718 0.282
PMP 0.085 0.046 0.014 0.702 0.848 0.153
UTL11 0.010 0.002 0.066 0.913 0.991 0.010
RAHE_CONST 0.131 0.010 0.035 0.566 0.742 0.258
RAHE_MFG 0.116 0.024 0.124 0.651 0.915 0.085
EMP_MINING 0.055 0.030 0.007 0.596 0.688 0.312
EMP_CONST 0.094 0.190 0.134 0.546 0.964 0.037
EMP_DBLE_GDS 0.137 0.272 0.177 0.381 0.967 0.034
EMP_NONDBLES 0.035 0.117 0.186 0.609 0.947 0.053
EMP_SERVICES 0.111 0.400 0.069 0.379 0.958 0.042
EMP_TTU 0.012 0.320 0.011 0.399 0.743 0.258
EMP_WHOLESALE 0.011 0.020 0.056 0.248 0.335 0.665
EMP_RETAIL 0.011 0.237 0.059 0.455 0.761 0.239
EMP_FIRE 0.022 0.150 0.111 0.501 0.784 0.216
EMP_GOVT 0.162 0.237 0.016 0.467 0.882 0.118
URATE_ALL 0.175 0.056 0.014 0.619 0.864 0.136
U_DURATION 0.656 0.149 0.015 0.147 0.967 0.033
U_L5WKS 0.384 0.051 0.031 0.463 0.928 0.072
U_5_14WKS 0.143 0.033 0.011 0.523 0.710 0.290
U_M15WKS 0.575 0.099 0.018 0.284 0.977 0.023
U_15_26WKS 0.096 0.006 0.043 0.715 0.859 0.141
U_M27WKS 0.664 0.160 0.014 0.135 0.973 0.027
HOURS_AVG 0.019 0.032 0.095 0.816 0.961 0.039  
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HSTARTS_NE 0.009 0.115 0.016 0.679 0.819 0.181
HSTARTS_MW 0.017 0.193 0.115 0.273 0.598 0.402
HSTARTS_SOU 0.058 0.601 0.059 0.152 0.870 0.130
HSTARTS_WST 0.019 0.328 0.075 0.404 0.826 0.174
SFYGM6 0.090 0.041 0.029 0.642 0.802 0.198
SFYGT1 0.067 0.024 0.054 0.698 0.843 0.157
SFYGT10 0.157 0.006 0.025 0.460 0.648 0.352
SFYBAAC 0.034 0.004 0.082 0.811 0.931 0.069
BUS_LOANS 0.279 0.032 0.230 0.251 0.791 0.209
CONS_CREDIT 0.064 0.212 0.065 0.275 0.616 0.384
P_COM 0.038 0.012 0.011 0.335 0.396 0.604
P_OIL 0.008 0.011 0.007 0.263 0.288 0.712
P_NAPM_COM 0.017 0.017 0.010 0.223 0.267 0.733
DLOG_EXR_US 0.008 0.016 0.039 0.118 0.180 0.820
DLOG_EXR_CHF 0.007 0.013 0.030 0.110 0.160 0.840
DLOG_EXR_YEN 0.011 0.010 0.010 0.116 0.147 0.853
DLOG_EXR_GBP 0.007 0.012 0.016 0.117 0.152 0.848
DLOG_EXR_CAN 0.010 0.029 0.058 0.184 0.280 0.720
DLOG_SP500 0.016 0.010 0.026 0.222 0.274 0.726
DLOG_SP_IND 0.016 0.009 0.024 0.259 0.308 0.692
DLOG_DJIA 0.010 0.010 0.017 0.147 0.183 0.817
UMICH_CONS 0.006 0.311 0.046 0.405 0.767 0.233
NAPMI 0.075 0.050 0.016 0.760 0.900 0.100
NAPM_NEW_ORDRS 0.093 0.047 0.010 0.652 0.802 0.198
NAPM_VENDOR_DEL 0.068 0.053 0.015 0.711 0.846 0.154
NAPM_INVENTORIES 0.047 0.046 0.023 0.804 0.919 0.081
RCONS 0.005 0.032 0.196 0.667 0.901 0.099
RCONS_DUR 0.044 0.319 0.144 0.353 0.859 0.141
RCONS_SERV 0.009 0.237 0.099 0.580 0.925 0.075
RINV_GDP 0.005 0.479 0.069 0.415 0.967 0.033
RNONRESINV_STRUCT 0.339 0.184 0.013 0.327 0.863 0.137
RNONRESINV_BEQUIPT 0.095 0.027 0.008 0.750 0.880 0.120
RRESINV 0.092 0.078 0.092 0.596 0.858 0.142
REXPORTS 0.018 0.093 0.196 0.635 0.942 0.058
RIMPORTS 0.055 0.615 0.025 0.119 0.813 0.186
RGOV 0.006 0.339 0.175 0.437 0.957 0.043
LABOR_PROD 0.033 0.044 0.161 0.602 0.839 0.161
RCOMP_HOUR 0.020 0.026 0.176 0.563 0.784 0.216
ULC 0.090 0.215 0.019 0.526 0.850 0.150
PCED_DUR 0.021 0.044 0.023 0.699 0.788 0.212
PCED_NDUR 0.009 0.023 0.006 0.438 0.474 0.526
PCED_SERV 0.007 0.088 0.005 0.457 0.557 0.443
PINV_GDP 0.015 0.036 0.045 0.544 0.639 0.361
PINV_NRES_STRUCT 0.019 0.048 0.023 0.397 0.486 0.514
PINV_NRES_EQP 0.008 0.118 0.023 0.447 0.596 0.404
PINV_RES 0.028 0.080 0.036 0.270 0.414 0.586
PEXPORTS 0.013 0.022 0.015 0.637 0.687 0.313
PIMPORTS 0.012 0.015 0.012 0.499 0.537 0.463
PGOV 0.009 0.019 0.029 0.177 0.233 0.767

 
Notes: Structural shocks are GOV – government spending, CHI – money demand, MP – monetary 

policy and Z – neutral technology. Please see the Appendix C. Data: Description and 
Transformations for the corresponding mnemonics of data indicators reported here. 
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Table D8. Regressing Data-Rich DSGE Model Concepts on DFM Factors 
 

Model Concept  R2 
      
   

Inflation PI_t 0.984 

Interest Rate R_t 0.991 

Real Consumption X_t 0.998 

Govt Spending shock GOV_t 0.999 

Money Demand shock CHI_t 0.999 

Technology shock Z_t 0.990 

      

 
Notes: Each line reports the 2R  from predictive 
linear regression: 

 ( ) ( )
, 0, 1, ,
pm pm

i t i i t i tS F vα ′= + +α , 
where ( )

,
pm

i tS  is the posterior mean of the ith data-
rich DSGE model state variable and ( )pm

tF  is the 
posterior mean of the empirical factors extracted 
by DFM. 
 
Table D9. Regressing DFM Factors on Data-Rich DSGE Model Concepts 
 

Factors  R2 
      

   

Factor 1  0.979 

Factor 2  0.924 

Factor 3  0.949 

Factor 4  0.981 

Factor 5  0.989 

Factor 6  0.991 

      

 
Notes: Each line reports the 2R  from predictive 
linear regression (see (104) in the main text): 

 ( ) ( )
, 0, 1, ,

pm pm
i t i i t i tF S uβ ′= + +β , 

where ( )
,

pm
i tF  is the posterior mean of the ith 

empirical factor extracted by DFM and ( )pm
tS  is 

the posterior mean of the data-rich DSGE model 
state variables. 
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Figure D1. Data-Rich DSGE Model (iid errors): Estimated Model Concepts 
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Notes: Figure depicts the posterior means and 90% credible intervals of the data-rich DSGE model concepts (blue line and bands): inflation (PI_T, tπ ), nominal interest 

rate (R_T, tR ), real consumption (X_T, tx ), government spending shock (GOV_T, tg ), money demand shock (CHI_T, tχ ), and neutral technology shock (Z_T, 
tZ ). Red line corresponds to the smoothed versions of the same variables in a regular DSGE model estimation derived by Kalman smoother at posterior mean of 

deep structural parameters (see notes to Table D3 for definition of “regular DSGE estimation”). 
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Figure D2. Pure DFM (iid errors): Estimated Factors 
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Notes: The figure plots the posterior means and 90% credible intervals of the latent empirical factors extracted by the empirical DFM (83)-(85). 

 Normalization: block diagonal. Algorithm: Jungbacker-Koopman (2008). 
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Figure D3. Do Empirical Factors and DSGE Model Concepts Span the Same Space? 
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Notes: The figure plots the actual empirical factors extracted by the DFM (83)-(85) (blue line) and the empirical factors predicted by the data-rich DSGE model state 

variables using (105) in the main text (red line). 
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Figure D4. Impact of Monetary Policy Innovation on Core Macro Series 
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Notes: The figure plots the impulse responses of data indicators to a 1-standard-deviation monetary policy innovation ,( )R tε computed in the data-rich DSGE model (blue line, “DFM-

DSGE”) and in empirical pure DFM (red line, “PDFM: all periods”) according to (106) and (107), respectively.  
The impact of structural shock is mapped from data-rich DSGE model into empirical DFM every period. 

 Data indicators are real GDP (RGDP), industrial production: total (IP_total), industrial production: manufacturing (IP_mfg), GDP deflator inflation (PGDP), PCE deflator inflation 
(PCED), CPI inflation (CPI_ALL), Federal Funds rate (FedFunds), 3-month T-Bill rate (TBill_3m), yield on AAA rated corporate bonds (AAABond), real money balances based on M1S 
aggregate (IVM_M1S_det), on M2S aggregate (IVM_M2S), and on adjusted monetary base (IVM_MBase_bar). See the corresponding mnemonics in Appendix C. Data: Description 
and Transformations. 
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Figure D5. Impact of Monetary Policy Innovation on Non-Core Macro Series 
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Notes: The figure plots the impulse responses of data indicators to a 1-standard-deviation monetary policy innovation ,( )R tε computed in the data-rich DSGE model (blue line, “DFM-

DSGE”) and in empirical pure DFM (red line, “PDFM: all periods”) according to (106) and (107), respectively.  
The impact of structural shock is mapped from data-rich DSGE model into empirical DFM every period. 

 Data indicators are real consumption of durables (RCons_Dur), real residential investment (RResInv), housing starts: West (HStarts_WST), employment in services sector 
(Emp_Services), unemployment rate (URate_all), commodity price inflation (P_COM), investment deflator inflation (PInv_GDP), consumer credit outstanding (Cons_Credit), 6-month 
over 3-month T-Bill rate spread (SFYGM6), US effective exchange rate depreciation (DLOG_EXR_US), exports price index (PExports), imports price index (PImports). See the 
corresponding mnemonics in Appendix C. Data: Description and Transformations. 
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Figure D6. Impact of Technology Innovation on Core Macro Series 
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Notes: The figure plots the impulse responses of data indicators to a 1-standard-deviation technology innovation ,( )Z tε computed in the data-rich DSGE model (blue line, “DFM-DSGE”) 

and in empirical pure DFM (red line, “PDFM: all periods”) according to (106) and (107), respectively.  
The impact of structural shock is mapped from data-rich DSGE model into empirical DFM every period. 

 Data indicators are real GDP (RGDP), industrial production: total (IP_total), industrial production: manufacturing (IP_mfg), GDP deflator inflation (PGDP), PCE deflator inflation 
(PCED), CPI inflation (CPI_ALL), Federal Funds rate (FedFunds), 3-month T-Bill rate (TBill_3m), yield on AAA rated corporate bonds (AAABond), real money balances based on M1S 
aggregate (IVM_M1S_det), on M2S aggregate (IVM_M2S), and on adjusted monetary base (IVM_MBase_bar). See the corresponding mnemonics in Appendix C. Data: Description 
and Transformations. 
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Figure D7. Impact of Technology Innovation on Non-Core Macro Series 
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Notes: The figure plots the impulse responses of data indicators to a 1-standard-deviation technology innovation ,( )Z tε computed in the data-rich DSGE model (blue line, “DFM-DSGE”) 

and in empirical pure DFM (red line, “PDFM: all periods”) according to (106) and (107), respectively. 
The impact of structural shock is mapped from data-rich DSGE model into empirical DFM every period. 

 Data indicators are real consumption of durables (RCons_Dur1), real residential investment (RResInv1), industrial production: business equipment (IP_BUS_eqpt), employment in 
services sector (Emp_Services), persons unemployed less than 5 weeks (U_l5wks), commodity price inflation (P_COM), investment deflator inflation (PInv_GDP), commercial and 
industrial loans (BUS_LOANS), 6-month over 3-month T-Bill rate spread (SFYGM6), US effective exchange rate depreciation (DLOG_EXR_US), real compensation per hour 
(RComp_Hour), average weekly hours worked (Hours_AVG). See the corresponding mnemonics in Appendix C. Data: Description and Transformations. 

 


