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Abstract

We prove a Folk Theorem for infinitely repeated private monitoring games with

virtually enforceable actions. In these monitoring situations with scarce signals,

players need to depart from the efficient outcome occasionally to acquire the in-

formation that detects the profitable deviations of the others. We design a novel

Budget Mechanism with Cross-Checking (BMCC) in a finite horizon setting with

monetary transfers and public communication, and embed it in the construction of

Perfect Bayesian Equilibria of the infinitely repeated game to sustain the interior

of the set of payoffs that Pareto dominate the Nash Equilibrium outcome when

players are sufficiently patient. BMCC links actions choices over time and virtually

implements the efficient outcome at a vanishing incentive cost as the horizon grows

and the players become patient. It outperforms Mechanisms with Public Commu-

nication and Public Strategies (MPP), which incur a non-vanishing incentive cost

by restricting actions to be independent over time.
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1 Introduction

From the perspective of game theorists who study infinitely repeated games, the success

of long-term relationships hinges critically on the availability of the information that

detects profitable deviations. So far, the literature on imperfect monitoring games has

been interested mainly in situations with rich signals, in which profitable deviations are

detectable from the exact outcome we want to sustain in equilibrium. These games in-

clude the ones with Pairwise Identifiable Signals in Fudenberg, Levine and Maskin (1994)

(henceforth FLM), for which a Folk Theorem with public monitoring is established; the

ones in Hörner and Olszewski (2006), which extend the framework of FLM to settings

with Almost Public Signals ; and the ones in Sugaya (2010), which allow for signals that

are genuinely imperfect and private.

Unfortunately, these assumptions of rich signals rule out certain important monitor-

ing situations, where players need to take costly activities to acquire the information that

detects the profitable deviations of their opponents. As an example, consider the problem

of providing costly subjective performance evaluation in employment relationships:

Example 1. There is a principal (she) and an agent (he). The agent can either Work

or Shirk, aa ∈ {0, 1}, while the principal can either Inspect or Rest, ap ∈ {0, 1}.
Cost of working and inspection is ca > 0 and cp > 0, respectively, and no player directly

observes the action of his or her opponent. Upon inspecting, the principal receives a noisy

private signal s ∈ {H,L} of the agent’s performance; otherwise she observes nothing.

Signal s takes value H with probability p if the agent works, q if the agent shirks, where

1 > p > 1
2
> q > 0.

In the above example, lack of signals makes deviations difficult to detect if our

objective was to sustain pure action profiles. Indeed, we cannot detect the agent’s

deviation from Work at the efficient outcome (Rest, Work), where he is unmonitored

by the principal. Nor can we detect the principal’s deviation from Inspect at either

(Inspect, Work) or (Inspect, Shirk), where she is supposed to monitor the agent. Take,

for instance, the principal’s problem at (Inspect, Work): given that the agent works for

sure, the principal can deviate to Rest, and when asked to report what she observes from

inspecting, randomly announce a faked message that takes value H with probability p

and L with probability 1 − p. Judging from the reported signal, no one can tell if the

principal has actually inspected or not. Indeed, in our example, the only pure action

profile that is enforceable is (Rest, Shirk).
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Nevertheless, we can still detect profitable deviations if we allow players to randomize.

Indeed, in our example, every profitable deviation is detectable at every totally mixed

action profile. To see this, note that to detect the agent’s deviation from Work, it suffices

to ask the principal to inspect occasionally, since then the agent’s deviation changes the

distribution of what the principal observes from inspecting. To detect the principal’s

deviation from Inspect, it suffices to let the agent shirk occasionally and to let both

players announce their actions and signals at the end of the game. The reason is that, if

the principal rests, then there is no reporting strategy she can adopt that fully replicates

the conditional distribution of the signals she truly observes from inspecting. Indeed, if

the principal inspects, then the signal she receives takes value H with probability p if

the agent works, and with probability q if the agent shirks. If she deviates to Rest, then

her problem becomes to choose a single probability π of announcing a faked message H,

and there is clearly no π that equals to both p and q. In the opposite direction, note that

while the principal’s deviation from Rest is by no means detectable, it is not profitable

either. Therefore, while the efficient outcome (Rest, Work) is not exactly enforceable,

it is virtually enforceable in the sense that it is the limit of a sequence of mixed action

profiles from which every profitable deviation is detectable.

In a static setting with monetary transfers, the implementation of virtually enforce-

able actions typically involves surplus destruction.1 This raises the question as to whether

it is possible to reduce the surplus destruction in repeated games, where we can poten-

tially benifit from linking periods. For the case in which a disinterested mediator is used

to recommend randomized actions to the players and to enforce the recommendations

through joint reward or punishment,2 Tomala (2009) provides an affirmative answer to

this question. In this paper, we address this question without invoking the mediator.

Our main result shows that in an infinitely repeated private monitoring game with pub-

lic communication, if every pure action profile that attains a Pareto optimal payoff is

virtually enforceable, then every interior point of the set of payoffs that Pareto dominate

1See Rahman (2010) for a formal treatment. To see this intuitively, note that in our example,
the fact that L is being excessively reported at the recommendation profile (Inspect, Work) can be
rationalized by the deviation of either the principal or the agent. Therefore, we must punish both of
them through surplus destruction, which does not vanish as the probability of inspecting goes to zero
and the probability of working goes to one.

2More specifically, the mediator sends privately recommended actions to the players, elicits their
reports of the privately observed signals and punishes the players if the reported signals are inconsistent
with the recommended actions. In our example, a mediator who targets an Inspect-Work frequency
of (.05, .9) will recommend the principal to inspect with probability .05 and the agent to work with
probability .9, keeping their recommendations secret from each other, and punish both players if the
principal’s signal is H (L) while the agent is recommended shirk (work). See Section 5.1 for details.
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the Nash Equilibrium outcome can be attained in a Perfect Bayesian Equilibrium when

players are sufficiently patient.

Our proof borrows heavily from ideas in mechanism design. As a key step of our equi-

librium construction, we consider an auxiliary finite-horizon mechanism design problem

with monetary transfers and public communication. In this setting, we devise a Budget

Mechanism with Cross-Checking (BMCC) to virtually implement every action profile

with a vanishing average surplus destruction as the horizon T goes to infinity and the

players become arbitrarily patient. We then use the methodology of Fudenberg and

Levine (1994) to replace the monetary transfers in BMCC with continuation values in

the infinitely repeated game when players are sufficiently patient.

A BMCC is composed of two parts, a budget and a transfer scheme. Formally, a

budget is a set of T -period action profiles whose empirical frequencies are tightly bounded

around the outcome distribution we want to enforce. For example, a BMCC that targets

an Inspect-Work frequency of (.05, .9) over a 1000-period horizon may specify a budget

for the principal that restricts her to inspect between 49 and 51 times, and a budget

for the agent that restricts him to work between 899 and 901 times. At the end of the

1000th period, the BMCC asks the players to announce publicly their histories of private

actions and private signals, and restricts the reported actions to those in the budget. In

particular, it requires the principal to claim to have inspected between 49 and 51 times

and to supplement her claim with 49 to 51 performance evaluations.

The budget must be carefully designed to balance two competing objectives. On the

one hand, by correlating action choices across periods, it allows us to use joint monetary

punishment or reward to link the players’ incentives over time. On the other hand, it

bounds such intertemporal correlation in action choices, and thus the scope of inference

that each player can draw about his or her opponents. To see the first point, it is

useful to contrast BMCC with Mechanisms with Public Recommendation and Public

Communication (MPP). Roughly speaking, a MPP induces the players to use public

strategies, i.e., strategies that depend only on the public history, to make action choices

in each period. For example, a MPP may induce the principal to inspect with probability

.05 in each period, regardless of how many inspections she has conducted in the past.

Unfortunately, while BMCC achieves a vanishing incentive cost as the horizon goes to

infinity, MPP does not. This can be best understood in the numerical example described

above. In the MPP that induces an inspection frequency of .05 in each period, observe

that the principal’s decision on whether or not to inspect at any date is independent

of what she has done or observed in the past, and that it is totally legitimate for her
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to choose Rest, leaving us no information to link her remuneration at this date with

those at the other dates. That is, the principal needs to be paid separately in each

period, resulting in a non-vanishing incentive cost no matter how long the horizon is.

In contrast, in the BMCC that restricts the number of inspections to 49 and 51, the

principal’s decisions are correlated across periods. In case she under-inspects in the

first half of the horizon, she needs to make it up in the second half. The linkage in

action choices allows us to link her incentives over time through joint monetary reward

or punishment, resulting a vanishing incentive cost as the horizon goes to infinity.

In the mean time, the budget is fine-tuned to bound the players’ beliefs everywhere

along their private histories. To see why this is important, note that in our example, if

the agent is asked to work for exactly 900 times out of 1000 periods, then the principal’s

prediction about the future actions of the agent becomes increasingly precise over time.

This makes it more and more difficult for us to provide her the right incentive, since

our predictions of the agent’s future working probability diverge as her private history

expands. As discussed in Section 4, a budget with the right degree of laxity would remain

slack with a probability close to one even if the players were to choose their actions

independently over time according to the target outcome distribution. In equilibrium,

if players do use this strategy with a high probability, then the belief that each of them

holds about the others should be tightly bounded around what she would infer if actions

were truly i.i.d. over time. Given this belief system, we construct transfer payments to

the players such that in equilibrium, each of them randomly chooses an action profile

from the budget at the outset of the game and adheres to it everywhere along her private

history. The resulting incentive cost vanishes as the horizon grows and the players become

increasingly patient.

2 Related Literature

2.1 Efficiency Gain from Linking Periods

BMCC benefits from two types of linkages across periods: linked payments and linked ac-

tions. The first type of linkage is achieved through the use of a long-term transfer scheme

(or continuation value in repeated games) that pools over time the information regard-

ing the players’ performances. The idea that linked payments save incentive cost dates

back to Radner (1981) and Abreu, Milgrom and Pearce (1991). In a repeated agency

setting, Radner sustains approximately efficient outcomes through a transfer scheme
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that punishes persistent low performance. In repeated games with public monitoring,

Abreu, Milgrom and Pearce illustrate how delay in information release may enhance the

efficiency of long-term partnerships. By now, linking payments has become a standard

technique in the equilibrium construction of repeated games with imperfect private mon-

itoring. For example, Fuchs (2007) applies this method to a repeated agency setting with

costless private monitoring and establishes the optimality of efficiency wage contract.

The second type of linkage is achieved by restricting the players to take correlated

actions over time. This idea manifests itself in the context of dynamic screening, where

a number of players observe evolving private information and face severe constraints on

the use of monetary transfers. In each period, players decide which public action to

take based on the types they jointly announce. In their poineering work, Jackson and

Sonnenschein (2007) study an environment with i.i.d information, and illustrate how

to link incentives over time by forcing the empirical distribution of reported types to

resemble the theoretical distribution of true types. Among other papers sharing this

idea, Escobar and Toikka (2009) extend the analysis of Jackson and Sonnenschein to

allow for persistent private information, and Frankel (2010) establishes the optimality of

a simple quota scheme in a range of dynamic delegation problems where the agent’s payoff

function is privately known to himself. Antecedents of these works include Townsend

(1982) and Casella (2005). In a long-term risk sharing problem between a risk-neutral

principal and a risk-averse agent, Townsend illustrates how approximate efficiency can

be achieved by limiting the number of times the risk-averse agent can claim to have a low

state. In settings where people vote repeatedly, Casella (2005) proposes a mechanism that

links voting decisions across periods and demonstrates its superiority over mechanisms

that involve independent decisions over time.

The key distinction between these budget mechanisms and BMCC is that, since the

former applies to situations with public monitoring, it does not need to cross-check the

players’ messages. To deal with the complication of private monitoring, BMCC budgets

only the empirical frequency of reported actions and compares messages across the players

to determine the monetary transfer that each of them should receive.

2.2 Virtual Detectability and Enforcement

Our work is closely related to the literature on virtual detectability and enforcement,

whose objective is to implement approximately efficient outcomes in environments where

the scarcity of information makes deviations difficult to detect. In these settings, we typ-
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ically benefit from the use of a mediator, who recommends randomized actions to the

players and cross-checks their reports of private signals with the recommended actions.

For example, in static monitoring games with monetary transfers, Rahman (2010) il-

lustrates how certain outcomes like (Rest, Work) can be virtually implemented with

a mediator. In a distinct but related setting, Obara and Rahman (2010) demonstrate

that a signal structure that allows the mediator to identify the obedient agent (IOA) is

sufficient and necessary for the existence of a mediated mechanism that simultaneously

achieves approximate efficiency and ex-post budget-balanceness.3 Antecedents of Obara

and Rahman (2010) include Legros and Matthews (1993) and Kandori (2003). In Holm-

strom’s partnership problem, Legros and Matthews achieve approximate efficiency and

ex-post budget-balanceness by asking the agents to play mixed strategies and to report

the realization of the mixtures. In repeated games with public monitoring, Kandori ap-

plies a similar idea to weaken FLM’s Pairwise Identifiability Condition and establishes

a Folk Theorem when actions have a strong complementary effect on the distribution of

public signals.

We use the notion of virtual enforceability in Rahman (2010), except for a caveat

mentioned below. Our contribution is to replace the mediator with a self-enforcing public

communication mechanism, namely the BMCC, when people have repeated interactions.

2.3 Mediated vs. Unmediated Communication

There is a literature that explores the extent to which mediated communication can

be replicated by unmediated communication. Research along this line includes Forges

(1990), Ben-Porath (1998) and Gerardi (2004). Forges considers static games with ratio-

nal parameters and uses Bayesian Nash Equilibrium as the solution concept. She demon-

strates that in games with at least four players, the set of communication equilibria fully

characterizes the set of outcomes that are achievable with unmediated communication.

Ben-Porath and Geradi use Sequential Equilibrium as the solution concept. In games

with at least three players, Ben-Porath provides sufficient conditions for a communication

equilibrium to be implementable with unmediated communication. In games with five or

more players, Gerardi establishes the equivalence between the set of correlated equilibria

and the set of outcomes that are implementable with unmediated communication.

The unmediated communication in these papers typically involves both public and

3See Appendix A.3 for a Folk Theorem of infinitely repeated games with IOA monitoring technologies.
There construction does not invoke BMCC.
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private communications. Our approach differs from theirs, as we restrict communications

to be solely public. In repeated games with virtually enforceable actions, we demonstrate

that every totally mixed action profile is implementable with public communication,

provided that randomizations are independent across the players.

2.4 Repeated Games of Imperfect Private Monitoring

Our analysis lends new insights to repeated games of imperfect private monitoring. By

cross-checking the players’ reports of private signals and punishing inconsistent reports,

we depart from the widely adopted method of equilibrium construction in the literature

on private monitoring games—unidirectional monitoring. Roughly speaking, unidirec-

tional monitoring corresponds to the situation where players are evaluated solely by the

signals of their opponents. To facilitate the comparison between these two methods, note

that in Example 1, if we were to construct an equilibrium using unidirectional monitor-

ing, then we would assign the agent as the principal’s monitor and punish the principal

for bad realizations of the agent’s signals. One can see immediately that unidirectional

monitoring breaks down in our example, as the agent observes no signal of the principal’s

actions.

The benefit of using cross-checking goes well beyond situations with scarce signals.

For instance, we can apply cross-checking to rich-signal environments and establish a

Folk Theorem for infinitely repeated private monitoring games with exactly enforceable

actions (see Section 3 for formal definition). Formally, we claim that if every pure action

profile that attains a Pareto optimal payoff is exactly enforceable, (see Section 3 for

formal definition), then any interior point of the set of payoffs that Pareto dominate the

Nash Equilibrium outcome can be sustained by a Perfect Bayesian Equilibrium of the

infinitely repeated game when players are sufficiently patient. That such a result has

remained inaccessible so far is perhaps not surprising, as cross-checking totally dispenses

with the statistical inference problem created by unidirectional monitoring. In generic

environments with correlated signals, unidiretional monitoring makes incentive provision

increasingly hard as the players’ private histories expand. The reason is that, over

time, a player tends to have a better and better idea of the signals observed by her

monitors. If at some point, she believes that her monitors have received an excessive

amount of bad signals and will punish her accordingly, then her incentive to continue

cooperating breaks down. The statistical inference problem is a well-known challenge

faced by most existing studies on private monitoring games, including those that allow
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public communication. In both Compte (1998) and Kandori and Matsushima (1998)—

the first papers that introduce public communication to private monitoring games—the

problem is solved by assuming signals to be conditionally independent. Several recent

papers replace conditional independence with weaker assumptions, including Fong et

al. (2007) and Sugaya (2010). Unfortunately, their equilibrium constructions are either

game-specific or are too sensitive to any perturbation to the environment. For instance,

the strategy of Sugaya (2010) fixates actions throughout the review block, and thus

cannot be direclty applied to our setting, where randomization is necessary for detection

and enforcement. Interestingly, cross-checking changes the player’s focus from inferring

her monitor’s sigals to matching the messages announced by her opponents. In this

way, it allows us to circumvent the statistical inference problem altogether at the cost

of introducing public communication to private monitoring games. For the case with a

large number of players, the possibility of replacing public communication with pairwise

private communication remains an open question for future research.

The paper proceeds as follows: Section 3 describes the model and states the main

results; Section 4 formally defines BMCC; Section 5 highlights the main idea of the

proof in a motivating example; Section 6 describes the proof of the general case; Section

7 concludes. Omitted details can be found in the Appendix.

3 The Model

3.1 Stage Game

There are finite n players indexed by i ∈ N = {1, 2, ..., n}, who move simultaneously

in the stage game G. Each player takes a private action ai from a finite action space

Ai, and observes a private signal si from a finite signal space Si. Let A =
∏

iAi and

S =
∏

i Si denote the set of joint actions and joint signals, respectively. Without loss

of generality, assume that player i’s payoff ui(ai, si) reveals no information beyond her

private action ai and private signal si.
4 Denote by gi(a) = Es̃i [ui(ai, s̃i)|a] the expected

payoff of player i at an action profile a, and by V the set of feasible and individually

rational payoff vectors that give each player at least her Nash Equilibrium payoff:

V =
{
v ∈ co (g(A)) : vi ≥ vNEi , ∀i ∈ N

}
4That is, we let other players’ actions affect i’s payoff solely through her private signal si.
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To make the analysis interesting, assume that V has a non-empty interior, i.e., it satifies

the full dimensionality condition:

Assumption 1 (Full Dimensionality). dimV = n.

Our notion of enforceability is essentially the same as that of Rahman (2010).5 In the

stage game G, let there be a disinterested mediator who sends privately recommended

actions â = (âi)i∈N to the players and elicits their reports of the signals they privately

observe. Let µi ∈ ∆(Ai) denote the probability distribution of the recommendations

to player i, and µ =
∏

i µi the induced distribution of joint recommendations. Under

µi, let Ri = {ρi : supp(µi) × Ai × Si → ∆(Si)} be the set of reporting strategies of

player i that maps (1) the recommended action âi, (2) the action bi she truly takes and

(3) the signal si she truly observes, to the signal ŝi she reports back to the mediator.

Player i’s strategy is σi : supp(µi)→ ∆(Ai)×∆(Ri), where σi(âi) = (bi, ρi(.)) maps her

recommended action âi to the action bi she truly takes and the reporting strategy ρi(.)

she uses. Player i is obedient and truthful at âi if σi(âi) = (âi, ρ
tr
i (.)), where ρtri (.) is the

truth-telling strategy such that ρtri (âi, si) = si, ∀si ∈ Si. She is obedient and truthful if

she is obedient and truthful at every âi ∈ supp(µi).

Let P(ŝ|â) denote the distribution of joint reported signals at some recommenda-

tion profile â ∈ supp(µ) if all players are obedient and truthful at â ∈ supp(µ), and

P(ŝ|â−i, σi(âi)) denote the distribution of joint reported signals if player i unilaterally

deviates from obedience and truthtelling at âi. Given the distribution µ−i of the other

players’ recommendations, we say that a unilateral deviation σi from obedience and

truth-telling is unprofitable if it generates a strictly lower expected payoff than obedi-

ence and truth-telling, i.e., E[ui(ãi, s̃i)|µ−i, σi] < E[ui(âi, s̃i)|µ−i]. In the mean time, we

say that a unilateral deviation σi from obedience and truthtelling is detectable for µ if it

changes the distribution of joint reported signals at some joint recommendation profile

â ∈ supp(µ). Formally,

Definition 1. At a given an outcome distribution µ, a unilateral deviation σi from

obedience and truth-telling is detectable for µ if there exists â ∈ supp(µ), ŝ ∈ S such that

P(ŝ|â, σi(âi)) 6= P(ŝ|â).

Definition 2. An outcome distribution µ is exactly enforceable if for every i ∈ N ,

every unilateral deviation σi from obedience and truth-telling is either unprofitable or is

detectable for µ.

5The only difference is that, since our ultimate goal is to dispense with the mediator, we restrict
actions to be independent across the players.
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Definition 3. An outcome distribution µ is virtually enforceable if there exists a se-

quence {µk}∞k=1 of exactly enforceable outcome distributions such that (1) µk is exactly

enforceable for each k = 1, 2, ..., and (2) µk → µ.

Roughly speaking, virtual enforceability says that to implement certain outcome

distribution in the limit, it suffices to detect profitable deviations at action profiles that

are perturbed around such outcome. Virtual enforceability is clearly weaker than exact

enforceability, which is commonly assumed in the literature on imperfect monitoring

games. Throughout the analysis, we consider games with virtually enforceable actions:

Assumption 2 (Virtual Enforceability). In the stage game G, every pure action profile

that attains a Pareto optimal payoff is virtually enforceable.

3.2 Repeated Game With Public Communication

In an infinitely repeated game Γ(G, δ, {Mt}∞t=1) with public communication, all players

share a common discount factor δ. In each period t = 1, 2, ..., they first play the stage

game G and then announce a public message mi,t from a message space Mi,t.
6 We

allow the use of a public randomizing device but will economize on its notation. The

solution concept we use is Perfect Bayesian Equilibrium. Denote by E the limiting set of

discounted average payoffs that are attainable in a PBE of an infinitely repeated game

with public communication when the players become infinitely patient.

4 Main Results

We now state the main result of this paper: in stage game G, if every pure action

profile that attains a Pareto optimal payoff is virtually enforceable, then under certain

regularity conditions, every interior point of the set of payoffs that Pareto dominate the

Nash Equilibrium outcome can be attained in a PBE of an infinitely repeated game with

public communication when the players are sufficiently patient. Formally,

Theorem 1. Under Assumptions 1-2, for every v ∈ int(V ), there exists δ ∈ (0, 1) such

that for all δ > δ, there exists a Perfect Bayesian Equilibrium of an infinitely repeated

game with public communication that attains a discounted average payoff of v.

6We will be more precise about what constitutes a message space in Section 4. For the time being,
it suffices to say that it has to be large enough to allow us to detect profitable deviations of the players.

11



Using the method of Fudenberg and Levine (1994), we prove Theorem 1 in two steps.

First, we consider an auxiliary finite-horizon mechanism design problem where the players

are allowed to communicate publicly and to receive monetary transfers that are functions

of the public announcements. In this setting, we devise the Budget Mechanisms with

Cross-Checking (BMCC) to virtually implement every v ∈ V at a vanishing incentive

cost as the horizon grows and the players become patient.

A BMCC has two components, a message space and a transfer scheme. Formally,

player i’s message space Mi = (Budgeti, S
T
i ) consists of a budget and the set of private

signals that player i can observe in t = 1, 2, ..., T . Budgeti is a set of T -period action

profiles whose empirical frequencies are bounded around a target outcome distribution

µi by some Bi,T :

Budgeti =
{
aTi :

∥∥∥µi,T |aTi − µi∥∥∥ ≤ Bi,T

}
where ‖.‖ denotes the sup-norm and hence ‖µi,T |aTi − µi‖ = supai∈supp(µi)

{µi,T |aTi (ai) −
µi(ai)}.

In a BMCC, players take private actions ai,t in t = 1, 2, ..., T , and publicly announce

a sequence of private actions and private signals (âTi , ŝ
T
i ) from the message space at the

end of t = T . In particular, the reported action profile âTi must belong to the budget

such that ‖µi,T |âTi − µi‖ ≤ Bi,T , ∀i. Given a joint message m = (âT , ŝT ), the BMCC

assigns each player a monetary transfer (in present value) ψi(m
T ), subject to the self-

financing constraint that the Pareto-weighted sum of transfers is weakly negative for

every realization of mT , i.e.,
∑

i∈N νi · ψi(mT ) ≤ 0,∀mT .

In a BMCC, a t-period private history of player i is a sequence of private actions and

private signals, denoted by hti = (ati, s
t
i). Her strategy is σi = ((bi,t)

T
t=1, ρi), where bi,t :

Hi,t−1 → ∆(Ai) determines the period-t action she takes, and ρi : Hi,T → Budgeti × ST

stands for the end-of-game reporting strategy she uses. A strategy profile constitutes a

Bayesian Nash Equilibrium (BNE) of the BMCC if players take only budgeted action

profiles and report truthfully at the review stage. An outcome distribution µ is imple-

mentable by a BMCC if there exists a BNE of the BMCC in which E[
∑T

t=1 at]/T = µ.

It is virtually implemented by BMCCs if there exists µk → µ such that each µk is

implementable by a BMCC.

As one of our key results, we show that every virtually enforceable action profile is

virtually implementable by BMCCs with a vanishing incentive cost as the horizon grows

and the players become patient. Formally,
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Proposition 1. Under Assumption 2, for every v ∈ int(V ), there exists a Bugdet Mech-

anism with Cross-Checking (BMCC) and a threshold T such that for all T > T , there

exists δ(T ) such that for all δ > δ(T ), there exists a Bayesian Nash Equilibrium of the

game form of the BMCC that attains a discounted average payoff of v.

In the second step of equilibrium construction, we replace the monetary transfers

in BMCC with the player’s continuation payoffs in the infinitely repeated game when

the discount factor is close enough to one. Since this step amounts to a straightforward

extension of Fudenberg and Levine (1994), we omit it for parsimony’s sake-see Compte

(1998) for almost the same extension of Fudenberg and Levine (1994) to allow multi-

period review blocks and delayed public communication.

The rest of the paper is devoted to the proof of Proposition 1: Section 5 motivates the

construction of BMCC in a concrete setting of labor contracting with costly subjective

performance evaluation, and Section 6 describes the proof of the general case. Omitted

details can be found in Appendices A.2.

5 Motivating Example

We now motivate the construction of BMCC. Let the employment relationship in Ex-

ample 1 last for a large but finite number of T periods without discounting, and use

Ω = {µ : E[s̃ −
∑

i ciãi|µ] ≥ 0, µp > 0, µa ∈ (0, 1)} to denote the set of enforceable

Inspect-Work frequencies that generate a weakly positive social surplus. The objective

of this section is to compare the incentive cost of BMCC with that of two other mecha-

nisms.

We begin with the mediated mechanism considered in Tomala (2009) and Rahman

(2010), who invoke a disinterested mediator to recommend private and randomized ac-

tions to the players and to elicit their reports of the private signals. In this setting, we

implement any µ ∈ Ω with an average surplus destruction7 of the order O(T−1)8 when

we combine the mediator’s recommendations with a payment scheme that pools the out-

come of cross-checking across periods. Based on the idea of Abreu, Milgrom and Pearce

(1991), we illustrate how to link the principal’s incentives across the periods when she

is recommended to inspect by forcing her to report back to the mediator and charging

7Average surplus destruction equals to expected total surplus destruction divided by T .
8Indeed, the mediated mechanism we devise achieves the fastest rate of convergence in incentive cost,

as any mechanism that implements any µ ∈ Ω must incur an average surplus destruction of the order
O(T−1).
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her a large penalty if and only if all her signals are contradicted by the recommended

actions to the agent.

Next, we explore what can be achieved without a mediator. First, we experiment

with Mechanisms with Public Communication and Public Strategies (MPP). Roughly

speaking, a MPP allows the players to make pubic announcements and induces them

to use public strategies, i.e., strategies that depend only on the public history, to deter-

mine their action choices in each period. When it comes to equilibrium construction in

dynamic games, strategies with a public component are particularly appealing to game

theorists—see the Perfect Public Equilibrium of Fudenberg et al. (1994) for games of

imperfect public monitoring, and the Semi-Perfect Public Equilibrium of Compte (1998)

and Kandori and Matsushima (1998) for games of imperfect private monitoring. Follow-

ing their approaches, we want to see what we can get from MPP.

Nevertheless, this attempt turns out to be futile, as we show that any MPP that

implements an inspection frequency that is strictly less than one must incur an average

surplus destruction of the order O(1). Underlying this negative result are three reasons.

First, we observe that public history is a less effective enforcement mechanism than the

mediator’s recommendations, as it is used to specify only the mixing probabilities rather

than the exact actions to be taken. Second, we claim that it is without loss to focus on the

case where players’ action choices are independent over time, since we can construct for

every MPP an equivalent one9 in which the mixing probabilities are independent of the

history of public announcements. Finally, we argue that in the presence of the action

Rest from which deviations are non-detectable, it is impossible to link the principal’s

payment over the instances when she inspects with a probability strictly less than one.

This is shown by observing that at each of these instances, the principal can always

choose Rest, regardless of what she has done or observed in the past. Then the fact

that Rest leaves us no information to link her remueration between this instance and the

other instances implies that the principal needs to be paid separately over time, resulting

in an incentive cost of the order O(1) no matter how large T is.

Based on the lessons from these two mechanisms, we devise the budget (see Section

4 for formal definition) and use it as a substitute for the mediator’s recommendations.

In particular, we illustrate how the budget can be fine-tuned to balance two competing

considerations: (1) the need to introduce intertemporal correlation to actions in order to

invoke linked payments, and (2) the need to constrain such correlation so as to bound

9In the sense that the newly constructed MPP implements the same outcome distribution and incurs
the same incentive cost.
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people’s beliefs around the benchmark case with i.i.d. actions. In general, a BMCC

achieves a vanishing incentive cost as the horizon T goes to infinity.

5.1 Mediated Mechanism

Suppose there exists a disinterested mediator. In each period t = 1, 2, ..., T , it recom-

mends independent and private actions (âp,t, âa,t) to the players, and elicits the principal’s

private report ŝt of the signal she observes.10 At the end of the last period T , the mediator

assigns monetary transfers to the players based on the entire history of recommendations

and reported signals. A t-period private history of the mediator is a sequence of private

recommendations and private reports, denoted by htm = (ât, ŝt). A t-period private his-

tory of player i consists of all the private information he or she observes by the end of

period t, with htp = (âtp, a
t
p, s

t, ŝt) and hta = (âta, a
t
a).

A mediated mechanism is
〈
(µ̂t)

T
t=1, ψ(.)

〉
, where µ̂t : Hm,t−1 → ∆(A) stands for the

period-t probability with which it recommends the principal to inspect and the agent to

work, respectively, and ψ = (ψp, ψa) : Hm,T → R2 is the monetary transfer it assigns at

the end of the last period. In particular, we require the mechanism to be self-financing,

i.e.,
∑

i ψi(.) ≤ 0, ∀hTm, and define the cost of incentive as the average expected surplus

destruction −E[ψp(.) + ψa(.)]/T .

A mediated mechanism is incentive compatible if there exists a Bayesian Nash Equi-

librium in which ap,t = âp,t, ŝt = st, ∀ht−1
p and aa,t = âa,t, ∀ht−1

a . It implements an

outcome distribution µ if it is incentive compatible and E[
∑T

t=1 µ̂t]/T = µ. Within the

class of mediated mechanisms that implement µ, we look for the ones that achieve a

vanishing average surplus destruction as T grows to infinity.

Proposition 2. Fix any µ ∈ Ω,

(i) There exists a mediated mechanism that implements µ and attains an average sur-

plus destruction of the order O(T−1), in which the recommendations (âi,t)
T
t=1 evolves

i.i.d. over time for both players;

(ii) Any mediated mechanism that implements µ incurs an average surplus destruction

that is at least of the order O(T−1).

Proof. See Appendix A.1.

10This is without loss of generality by Revelation Principle.
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The superb asymptotic performance of mediated mechanism can be explained by the

mediator’s ability to enforce the recommendations through linked payments. To see this,

consider the situation where the mediator adopts a stationary recommendation policy

with µ̂t ≡ (.05, .9) for all t and ht−1
m , and charges the principal a large penalty if and only

if in each period when she is recommended to inspect, the principal either gives a good

evaluation to a shirking agent, or a bad evaluation to a working agent:

ψp(h
T
m) =


− λp

E[
∏T

t=1 πp(ât, ŝt)]

T∏
t=1

πp(ât, ŝt) if

T∑
t=1

âp,t ≥ 1

0 if
T∑
t=1

âp,t = 0

(5.1)

where πp(ât, ŝt) = 1 if âp,t = 1 and ŝt = â¬a,t, 0 otherwise,11 and λp is a positive number

that is independent of T . By forcing an inspecting principal to report back to her and

pooling the outcome of cross-checking across periods, the mediator links the principal’s

incentives over time in a way similar to Abreu, Milgrom and Pearce (1991). Indeed,

the mediator needs to satisfy only one single incentive constraint of the principal: the

one when she recommends the principal to inspect for the first time. This can be un-

derstood as follows.12 First, consider a particular type of the deviation of the principal

who rests when she is recommended to inspect for the first time. In case of deviating,

note that the principal is still obliged to report back to the mediator, and that the op-

timal reporting strategy ρ(.) chooses a probability π of announcing a faked message H

that minimizes the chance of penalty. This one-shot deviation increases the expected

likelihood of punishment by 100×∆%, or the expected penalty by λp∆, where

∆ =
minπ∈[0,1] .9(1− π) + .1π

.9(1− p) + .1q
− 1 > 0

and thus is deterrable if

λp∆ ≥ cp

Second, we argue that if ψp(.) deterrs such a deviation, then it suffices to deter all

the other deviations. For example, consider any strategy of the principal that deviates

from the recommendation to inspect for twice. Such a strategy increases the expected

11We write ŝ = â¬a if (ŝ, âa) = (H, 0) or (L, 1).
12See Fuchs (2007) for a similar argument.

16



likelihood of punishment by

(1 + ∆)2 − 1 = ∆2 + 2∆

or the expected penalty by

λp[∆
2 + 2∆]

and thus is deterrable if

λp[∆
2 + 2∆] ≥ 2cp

Note that this condition is automatically satisfied if λp∆ ≥ cp.

Finally, observe that the average surplus destruction induced by ψp(.) equals λp/T ,

which is of the order O(T−1).

5.2 Mechanism with Public Communication and Public Strate-

gies

Now we formally define mechanisms with public communication. A mechanism with

public communication 〈(Mt)
T
t=1, ψ(.)〉 constitutes a sequence of message spaces (Mt)

T
t=1

and a payment scheme ψ(.). In each period t = 1, 2, ..., T , player i take a private action

first and then announce a public messages mi,t from the message space Mi,t. At the

end of the last period T , she receives a monetary transfer ψi : MT → R, subject to the

self-financing constraint
∑

i ψi(m
T ) ≤ 0, ∀mT .

In a mechanism with public communication, a t-period public history is a sequence of

public messages mt and a t-period private history of player i is a sequence of private ac-

tions, private signals and public messages, denoted by hti = (ati, s
t
i,m

t). Player i’s strategy

is σi = (µi,t, ρi,t)
T
t=1, where µi,t : Hi,t−1 → ∆(Ai) stands for her mixing probability, and

ρi,t : Hi,t−1×Ai×Si → ∆(Mi,t) determines the public message she announces. A mecha-

nism with public communication induces the players to use public strategies (henceforth

MPP) if it there exists a Bayesian Nash Equilibrium in which the players’ mixing prob-

abilities depend only on the public history, i.e., ∀i, t, ht−1
i , µi,t : M t−1 → ∆(Ai). A

MPP implements an outcome distribution µ if E[
∑T

t=1 µt]/T = µ in the Bayesian Nash

Equilibrium described above.

When it comes to equilibrium construction in dynamic games, strategies with a public
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component are particularly appealing to game theorists, due to the simple structures they

entail. Therefore, we want to see what we can get from MPP. Nevertheless, we find that

in the presence of actions from which deviations are non-detectable, we do not benefit

from linking periods if we restrict action choices to those that depend only on the public

history.13 Formally,

Proposition 3. Fix any µ ∈ Ω such that µp < 1. Then any MPP that implements µ

incurs an average surplus destruction of the order O(1).

Proof. See Appendix A.1.

The proof is divided into three steps. We begin by noticing that in MPP, the realiza-

tion of randomizations are observed by players themselves rather than by a disinterested

third party. Next, we argue that for every MPP, we can construct another that imple-

ments the same outcome distribution with the same incentive cost, in which the mixing

probabilities are independent of the history of public announcements. This is shown

by replacing any annoucement-dependent variation in mixing probabilities by the out-

come of a public randomizing device that is announcement-independent, and modifying

the transfer schemes accordingly.14 Finally, we demonstrate that in the presence of the

action Rest from which deviations are non-detectable, the principal must be paid sepa-

rately across the dates when she inspects with a probability strictly less than one. To

see this, consider her incentive at some date t with µp,t ∈ (0, 1), when she chooses inde-

pendently between Inspect and Rest, regardless of what she has done or observed in the

past. Since the principal can always rest and leave us no information to link her perfor-

mance at t with those at the other dates, we must pay her separately at t to provide her

the right incentive. Applying this argument to all the dates when the principal inspects

with a probability strictly less than one—whose expected number is of the order O(T ) if

the target inspection frequency µp is strictly less than one—we get an expected surplus

destruction of the order O(T ), or an average surplus destruction of the order O(1).

5.3 Budget Mechanism with Cross-Checking

Now we explain how BMCC can significantly improve upon MPP and achieve a vanishing

average surplus destruction as T goes to infinity.

13Ben-Porath and Kahneman (2003) make a similar observation.
14See Gershkov and Szentes (2009) for a similar argument in a different settng.
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As mentioned above, a fine-tuned budget balances two considerations. First, by link-

ing action choices over time, it serves as a substitute for the mediator’s recommendations

and reopens the door to the use of linked payments. To see this, imagine that the hori-

zon lasts for 1000 periods and consider a BMCC which requires the principal to inspect

exactly 50 times. For simplicity, assume that the agent works with probability .9 in each

period and always reports truthfully at the review stage. The payment to the principal

is described in Equation 5.2. Essentially, it restricts the principal to report exactly 50

signals and charges her a large penalty if all these signals are contradicted by the agent’s

reported actions, i.e.,

ψp(â
T , ŝT ) =


− λp

E[
∏T

t=1 πp(ât, ŝt)|âTp , ŝT ]

T∏
t=1

πp(ât, ŝt) if
T∑
t=1

âp,t = 50

−K if
∑T

t=1 âp,t 6= 50

(5.2)

where πp(â, ŝ) = 1 if âp,t = 1 and ŝt = â¬t ,15 0 otherwise, λp is a positive number that

is independent of T , and −K is sufficiently negative that makes it unprofitable for the

principal to report a number of signals that is different than 50. Note that under ψp(.),

we need to satisfy only one single incentive compatibility constraint of the principal: the

one when she is tempted to stop after conducting 49 inspections. To see this, consider

first a particular type of deviation of the principal who has just finished 49 inspections

and is pondering on deviating from the last one. In case of deviating, she still needs

to announce a faked signal at the end of the employment relationship, and the optimal

reporting strategy under ψp(.) is to announce H with the unconditional probability that

the true signal takes value H, i.e., P(s̃ = H|µa = .9). As in the mediated mechanism

(see Section 5.1), such a one-shot deviation increases the expected punishment by λp∆

(see Section 5.1 for the computation of ∆), and thus is deterrable if the parameter λp

in Equation 5.2 is set large enough that λp ≥ cp/∆. Second, we argue that if ψp(.)

deters such a deviation, then it suffices to deter all the other deviations. For example,

in case the principal inspects only 48 times, then she increases her expected likelihood

of punishment by

(1 + ∆)2 − 1 = ∆2 + 2∆

15Recall that we write s = a¬a if (s, aa) = (H, 0) or (L, 1)
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or her expected penalty by

λp[∆
2 + 2∆]

Thus, she will refrain from such a deviation if

λp[∆
2 + 2∆] ≥ 2cp

which is automatically satisfied if λp∆ ≥ cp. Finally, note that as in the case of the

mediated mechanism, the average surplus destruction incurred by ψp(.) equals λp/T ,

which is of the order O(T−1).

So far, the budget in our example is either totally rigid (the principal’s) or totally

lax (the agent’s). In general, we need something in between so that the intertemporal

correlation in one’s action choices does not upset the inference problems of the others.

To see why a rigid budget may not work in general, consider the situation where the

agent is asked to work for exactly 900 times out of 1000 periods, rather than to work

with probability .9 in each period. In this setting, the principal’s prediction about the

future actions of the agent becomes increasingly precise over time as she receives more

and more signals from inspecting. If at some point, her belief about the agent’s working

probability begins to differ substantially from .9, then the transfer payment described

in Equation 5.2 may not provide her the right incentive to continue inspecting from this

point onward.

This problem is solved by designing for each player a permissive budget—see Section

6 for details. To give a flavor of the construction, let us conduct the following thought

experiment. At the outset, suppose that the agent, who is asked to choose a T -period

action profile from his budget .9±Ba,T , observes the outcome of T independent random

draws from Bernoulli (.9) in the first step of his selection procedure, and adopts such

outcome immediately if it entails a budgeted empirical frequency. Then by the Law of

Large Numbers, the event that the agent completes the selection procedure in one single

step occurs with a probability close to one if Ba,T is set to some number of the order

O(T−1/2)—see Figure 5.3 for a graphical illustration.

It turns out that if (1) the entire selection procedure involves sufficiently many itera-

tions of the first step, and (2) the agent is willing to adhere to the output of the selection

procedure everywhere along his private history, then we can bound the principal’s be-

lief tightly around what she would expect if the agent’s action choices were truly i.i.d.

over time. That is, everywhere along her private history, the principal must believe that
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the agent will work tomorrow with a probability close to .9, and that he worked with

probability P(Work|st) at every past date t. Based on this belief system, we modify the

transfer payment in Equation 5.2 to make it optimal for the principal to use a similar

selection procedure. In this way, we show that under the modified transfer scheme, it is a

indeed a Bayesian Nash Equilibrium of the BMCC for the players (1) to determine their

T -period action profiles using the above mentioned selection procedure, (2) to adhere to

these action profiles everywhere along their private histories, and (3) to report truthfully

at the review stage. In general, the modified transfer scheme incurs an average surplus

destruction of the order O(T−1), which vanishes as the horizon T goes to infinity.

6 Proof of Proposition 1

This section states the proof of Proposition 1 for the general case. We begin by describing

the strategy profile that we sustain as a Bayesian Nash Equilibrium of the BMCC:

• Before the game starts, each player i chooses a T -period action profile using the

following k(T )-step-procedure, where k(T ) ∼ logε(O(T−3/2))/(n− 1): in each Step

k = 1, 2, ..., k(T ) − 1, she observes the outcome of T independent random draws

from µi: if the outcome belongs to the budget, then she selects it immediately and

21



terminates the process; otherwise she discards it and proceeds to the next step. At

the end of Step k(T )−1, if the outcome is yet budgeted, then she replaces it with a

randomly element ǎTi from the budget with probability P(ǎTi )/
∑

ãTi ∈Budgeti
P(ãTi ).

• At the beginning of each period t = 1, 2, ..., T , given any private history ht−1
i , player

i adheres to the action profile she chooses at the outset.

• At the end of the last period, she truthfully announces the entire history of private

actions and private signals, i.e., mT
i = (aTi , s

T
i ).

Next, we turn to the construction of the budget. As mentioned above, out goal

is to pick a permissive budget with the right degree of laxity so as to correlate the

players’ action choices over time on the one hand and to bound their beliefs on the other

hand. The budget described below suffices for our purpose. Based on the Law of Large

Numbers, it is designed in a way that allows each player to finalize her action choices

with a probability close to one after each of the first k(T )− 1 steps. Formally,

Lemma 1. Fix any µi and let µi,T be the empirical frequency of the outcome of T

independent random draws from µi. Then for every ε > 0, there exists T ∗ and a sequence

(Bi,T )∞T=1 with Bi,T ∼ O(T−1/2) such that for all T > T ∗,

P(‖µi,T − µi‖ ≤ Bi,T , min
ai∈supp(µi)

µi,T (ai) > 0) ≥ 1− ε

In the discussion below, let Ei denote the event that the action profiles of all the

players other than i are budgeted in the first k(T )− 1 steps of the selection procedure.

By construction, P(Ei) = 1− ε(n−1)k(T ).

We now turn to the construction of the transfer scheme. First, let us revisit the

notion of exact enforceability of an outcome distribution µ (see Section 3 for formal

definition). The following Lemma, adapted from Theorems 1 and 2 of Rahman (2010),

says that an outcome distribution µ is exactly enforceable if and only if every detectable

deviation from obedience and truth-telling can be punished by the mediator:

Lemma 2. If an outcome distribution µ is exactly enforceable, then for every i ∈ N ,

there exists πi : supp(µ)× S → [0, 1] such that

inf
bi,ρi(.)6=(âi,ρtri )

∑
â−i∈supp(µ−i),ŝ

µ(â−i)πi(â, ŝ) [P(ŝ|â−i, (bi, ρi(.)))− P(ŝ|â)] ≥ 0, ∀i ∈ N, âi ∈ supp(µi)

22



Futhermore, the inequality is strict if (bi, ρi(.)) constitutes a detectable deviation from

obedience and truth-telling at âi.

By interpreting πi(â, ŝ) as the likelihood that i is punished if the mediator recom-

mends a joint action profile â and receives a joint reported signal ŝ, we can translate the

above inequality into the following: given that the other players’ recommendations are

distributed according to µ−i, player i strictly increases her chance of getting punished if

she engages in any detectable deviation from obedience and truth-telling at any recom-

mendation âi ∈ supp(µi). In the discussion below, we will make use of the following two

numbers, which can be thought of as the minimum relative likelihood of punishment and

the maximum relative likelihood of reward (compared to obedience and truth-telling),

respectively, under a detectable deviation (bi, ρi(.)) 6= (ai, ρ
tr
i ):

γi = min
âi∈supp(µi)

inf(bi,ρi)det 6=(âi,ρtri )

∑
â−i,ŝ

µ(â−i)πi(â, ŝ)P(ŝ|â−i, bi, ρi)∑
â−i,ŝ

µ(â−i)πi(â, ŝ)P(ŝ|â)

βi = max
âi∈supp(µi)

sup(bi,ρi)det 6=(âi,ρtri )

∑
â−i,ŝ

µ(â−i)(1− πi(â, ŝ))P(ŝ|â−i, bi, ρi)∑
â−i,ŝ

µ(â−i)(1− πi(â, ŝ))P(ŝ|â)

Observe that γi > 1 > βi.

With the first two Lemmas, we now fully describe the transfer scheme ψ(.), which,

together with the budget, sustains the strategy profile described at the beginning of this

section as a Bayesian Nash Equilibrium of the BMCC. ψi(m
T ) is the sum of two parts,

a deterrence transfer ψDi (mT ) and an adjustment transfer ψAi (mT
i ). For player i with a

non-negative Pareto weight νi ≥ 0, set her deterrence transfer at a given a joint message

mT = (âT , ŝT ) to

ψDi (âT , ŝT ) =
−λi

E
[∏T

t=1 πi(ât, ŝt)|mT
i

]
︸ ︷︷ ︸

(2)

T∏
t=1

πi(ât, ŝt)︸ ︷︷ ︸
(1)

where πi(.) is taken from Lemma 2 and λi is a positive number. In the mean time, set

her adjustment transfer to

ψAi (âTi , ŝ
T
i ) =

1− δ
1− δT

[
T∑
t=1

χi,t(â
T
i , ŝ

t−1
i )− 1

(n− 1)νi

∑
j 6=i

νjχj,1(â
T
j )]
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where

χi,τ (â
T
i ŝ

τ−1
i ) = min

(a′i,t)
T
t=τ

E
[ T∑
t=τ

δt−1

(
ui(a

′
i,t, s̃i,t)− ui(âi,t, s̃i,t)

)
|âτ−1
i , ŝτ−1

i , σeqm−i

]

− min
(a′i,t)

T
t=τ

E
[ T∑
t=τ

δt−1

(
ui(a

′
i,t, s̃i,t)− ui(âi,t, s̃i,t)

)
|âτ−2
i , ŝτ−2

i , σeqm−i

]

For player i with a negative Pareto weight νi < 0, set her deterrence transfer at a given

joint message mT = (âT , ŝT ) to

ψDi (âT , ŝT ) =
λi

E
[∏T

t=1(1− πi(ât, ŝt))|mT
i

]
︸ ︷︷ ︸

(2)

T∏
t=1

(1− πi(ât, ŝt))︸ ︷︷ ︸
(1)

where λi is a positive number, and her adjustment transfer to

ψAi (âTi , ŝ
T
i ) =

1− δ
1− δT

[
T∑
t=1

χi,t(â
T
i , ŝ

t−1
i )− 1

(n− 1)νi

∑
j 6=i

νjχj,1(â
T
j )]

where

χi,τ (â
T
i , ŝ

τ−1
i ) = max

(a′i,t)
T
t=τ

E
[ T∑
t=τ

δt−1

(
ui(a

′
i,t, s̃i,t)− ui(âi,t, s̃i,t)

)
|âτ−1
i , ŝτ−1

i , σeqm−i

]

− max
(a′i,t)

T
t=τ

E
[ T∑
t=τ

δt−1

(
ui(a

′
i,t, s̃i,t)− ui(âi,t, s̃i,t)

)
|âτ−2
i , ŝτ−2

i , σeqm−i

]

Let us try to understand these two payment schemes. First, observe that they punish

the players with a positive Pareto weight and reward those with a negative Pareto weight

so as to satisfy the self-financing constraint. Second, notice the resemblance between the

deterrence transfer and the payment scheme discussed in the motivating example (see

Section 5). Indeed, they play a similar role that deters a player from engaging activities

that differ from what she plans to announce. For a player with a non-negative Pareto

weight, we interpret (1) as her likelihood of being punished at a joint message mT , and

(2) as the face value of her penalty. For a player with a negative Pareto weight, we treat

(1) as her chance of being rewarded at a joint message mT , and (2) as the face value of

her reward. As before, ψDi (.) links player i’s incentives over time at a vanishing cost as

the horizon grows and the discount factor goes to one.

24



The interpretation of the adjustment transfer is more subtle. For simplicity, let

us work with player i with a negative Pareto weight. If the message she announces

mT
i = (âTi , ŝ

T
i ) coincides with the true history she observes, then χi,1(â

T
i ) is the maximum

expected gain she could obtain from choosing a different budgeted action profile (a′i,t)
T
t=1

at the outset. Since E0[χi,τ (â
T
i , ŝ

t−1
i )] = 0 for all τ ≥ 2, it is easy to see that χi,1(â

T
i )

makes player i indifferent between all budgeted action profiles at the outset of the game.

Meanwhile, χi,t(â
T
i , ŝ

t−1
i ) represents the “marginal flow contribution”16 of i’s information

towards the maximum expected gain she could obtain from switching to a different

ensuing sequence of actions (a′i,τ )
T
τ=t from period t onward, provided that the new action

profile (ât−1
i , (a′i,τ )

T
τ=t) remains budgeted. Since E[χi,τ (â

T
i , ŝ

τ−1
i )|ât−1

i , ŝt−1
i ] = 0 for all

τ ≥ t+ 1, it is straightforward to check that χi,t(â
T
i , ŝ

t−1
i ) makes i indifferent between all

ensuing action profiles (a′i,τ )
T
τ=t at the beginning of period t, provided that she plans to

announce (ât−1
i , ŝt−1

i ) truthfully at the review stage.

By construction, ψi(.) enjoys the following properties:

Lemma 3. The transfer payment to player i satisfies:

(i) E0[ψ
D
i (.)] ∼ O(T−1(1 + T (1− δ)));

(ii) E0[ψ
A
i (.)|σi, σeqm−i ] = E0[χi,1(.)|σi, σeqm−i ], ∀σi;

(iii) For every (âTi , ŝ
T
i ),

• | 1−δ
1−δT χi,1(.)| ∼ O(T−1/2(1 + T (1− δ)));

• For every τ ≥ 2, | 1−δ
1−δT

∑T
t=τ χi,t(.)| ∼ O(ε(n−1)k(T )T 1/2(1 + T (1− δ))).

Part (i) of Lemma 3 is an immediate consequence of the Law of Iterated Expectations,

and Part (ii) follows the construction of the budget and the equilibrium strategy—see

Appendix A.2 for detailed proofs.

We now verify that under ψ(.), the strategy profile described at the beginning of this

section is indeed a Bayesian Nash Equilibrium of the BMCC. First, we claim that when

the horizon is sufficiently long and the discount factor is close enough to one, we can set

the face value of the penalty (reward) in the deterrence transfer large enough to make

any unilateral deviation outside the budget unprofitable:

Lemma 4. For every ε > 0, there exists λi, T and δ(T ) such that for all T > T

and δ > δ(T ), every unilateral deviation outside the budget is unprofitable compared to

16See Athey and Segal (2007) and Bergemann and Välimäki (2010) for an introduction to this concept.
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a certain strategy in which the player takes only budgeted action profiles and reports

truthfully at the review stage. If νi ≥ 0, then δ(T ) is independent of T ; if νi < 0, then

δ(T ) ∼ O(1− T−1).

The proof is reminiscent of the argument in the motivating example (See Section

5). For any deviation σi outside the budget, we construct a new strategy σ′i in which

player i takes each reported action profile âTi in σi (which must be budgeted) with the

same probability ρi(â
T
i ) as in σi, but always reports her private history truthfully at the

review stage. These two strategies generate the same expected adjustment transfer to

player i by Part (i) of Lemma 3. Thus, they can be compared solely based on the benefit

of taking an action profile outside the budget versus the cost of misrepresenting it as

something within the budget. As before, we show that there exists a large enough λi that

suffices to make σi unprofitable when the horizon is sufficiently long and the discount

factor is close enough to one.

Second, we demonstrate that the combination of ψD(.) and ψA(.) makes it optimal

for players to adhere to the action profiles they choose at the outset everywhere along

their private histories:

Lemma 5. It is a Bayesian Nash Equilibrium of the BMCC for players to use the T -

step-procedure at the outset, to adhere to the action profiles they choose at the outset

everywhere along their private histories and to report truthfully at the review stage.

The proof is delicate, but the intuition is as follows. Consider player i’s problem at

the end of period t − 1. If she has yet deviated from the action profile chosen at the

outset and will announce the history in the first t−1 periods (at−1
i , st−1

i ) truthfully, then

by construction of ψAi (.), she finds all ensuing action profiles (a′i,τ )
T
τ=t equally profitable.

However, if she plans to misreport (at−1
i , st−1

i ), and if such misreporting is detectable,

then we argue based on Part (ii) of Lemma 3 that the gains from manipulating the set of

ensuing action profiles she can potentially choose from doesn’t justify the cost induced

by the deterrence transfer. In the mean time, if such misreporting is undetectable, then

she must pretend to take the action with undetectable deviations more frequently than

she actually does, resulting in a lower chance to take this action in the future. But since

this action is the most profitable when all the other players randomize roughly according

to µ−i, the misreporting does her nothing good but only lowers her adjustment transfer

from period t onward.

The discussion so far completes the proof of Proposition 1. We conclude this section

by quantifying the incentive cost incurred at the equilibrium we construct:
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Corollary 1. The Bayesian Nash Equilibrium described in Lemma 5 incurs a discounted

average surplus destruction of the order O(T−1(1 + T (1− δ))).

Proof. By the construction of ψA, for every mT ,

n∑
i=1

νi · χi,1(mT ) =
n∑
i=1

νi · χi,1(âTi )− 1

n− 1

∑
j 6=i

νjχj,1(â
T
j ) = 0

Thus,

∑
i

ψAi (mT ) =
1− δ

1− δT
n∑
i=1

T∑
t=2

χi,t(â
T
i , ŝ

t−1
i )

∼ O(ε(n−1)k(T )T 1/2(1 + T (1− δ)))

∼ O(T−1(1 + T (1− δ)))

Meanwhile, since
∑n

i=1 E[ψDi ] ∼ O(T−1),

n∑
i=1

E[ψDi (mT ) + ψAi (mT )] ∼ O(T−1(1 + T (1− δ)))

7 Conclusion

In this paper, we demonstrate how to sustain virtually enforceable outcome in long-

term economic relationships without a mediator. In particular, we propose the Budget

Mechanism with Cross-Checking as the building block for equilibrium construction and

illustrate how, by picking a permissive budget with the right degree of laxity, we can link

the players’ incentives over time on the one hand and bound their beliefs on the other

hand. Our construction combines several ideas from mechanism design, and circumvents

the inherent challenge faced by conventional equilibrium construction methods in the

literature on imperfect private monitoring games.

In the future, we plan to apply our construction to real-world settings where infor-

mationacquisition is costly and deviation from such activity is difficult to detect. For

example, see Li (2011 (b)) for a companion paper on labor contract design when perfor-

mance evaluation is subjective and is costly to come up with. Another setting to which

our theory is potentially applicable is online prediction market, in which people bet on
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the likelihood of future events. While online prediction market has been promoted as

an effective means of “pooling the wisdom of the crowds”, it inevitably falls prey to free-

riding. The potential efficiency gain through imposing rigid rules on people’s long-term

betting behavior and/or checking the bets across different people remains an interesting

avenue for future research.

A Appendix

A.1 Proofs in Section 5

Proof of Proposition 2

Proof. Fix any enforceable outcome distribution µ. We claim that any mediated mech-

anism that implements µ incurs an average surplus destruction of at least the order

O(T−1). To derive this lower bound, let us consider the players’ incentive compatibility

constraints in the last period. Denote by

∆ψp(h
T−1
m , ŝT , ŝ

¬
T ) = ψp(h

T−1
m , ŝT , ŝ

¬
T )− ψp(hT−1

m , ŝT , âa,T )

∆ψa(h
T−1
m , âa,T , â

¬
a,T ) = ψa(h

T−1
m , âa,T , â

¬
a,T )− ψa(hT−1

m , âa,T , ŝT )

where H¬ = 0, L¬ = 1 and vice versa. Let µ−i(h
T−1
i ) be player i’s belief that −i will

take a−i,T = 1, given her private history ht−1
i . For simplicity, we drop the notation for

hT−1
i , i = m, p, a in the exposition below.

Consider the situation where the principal deviates from the last period recommen-

dation to inspect. Since she is still obliged to report back to the mediator, her problem

becomes to choose the distribution π of the faked messages that maximizes her expected

payoff:

max
π∈[0,1]

∆ψp(L, 1)µa(p− π) + ∆ψp(H, 0)(1− µa)(π − q)

Thus, for the principal to be willing to inspect in the last period, we need the cost of

deviation to outweigh the benefit:

max
π(.)∈[0,1]

∆ψp(L, 1)µa(p− π) + ∆ψp(H, 0)(1− µa)(π − q) ≤ −cp (A.1)

Similarly, denote the agent’s benefit of disobeying the last-period recommendation âa by
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∆ψa(â
¬
a , âa). To satisfy the agent’s IC constraint in the last period, we need

∆ψa(L, 1) ≤ −ca
µp(p− q)

, ∆ψa(H, 0) ≤ ca
µp(p− q)

(A.2)

We now argue that there exists no ex-post budget-balanced transfer scheme that

satisfies both players’ IC constraints in the last period. Suppose not, that there ex-

ists ∆ψp(.) and ∆ψa(.) that satsify (A.1), (A.2) and ex-post budget-balanceness, i.e.,

∆ψa(â
¬
a , âa) = −∆ψp(â

¬
a , âa) for every âa. Then rewrite (A.1) and (A.2) as

max
π(.)∈[0,1]

∆ψp(L, 1)µa(p− π) + ∆ψp(H, 0)(1− µa)(π − q) ≤ −cp;

∆ψp(L, 1) ≥ ca
µp(p− q)

;

∆ψp(H, 0) ≥ −ca
µp(p− q)

There are two cases to consider:

(i) If ∆ψp(H, 0)(1 − µa) − ∆ψp(L, 1)µa ≥ 0, then π∗ = 1 is a solution to the LHS of

(A.1) and

∆ψp(L, 1)µa(p− π∗) + ∆ψp(H, 0)(1− µa)(π∗ − q) > ∆ψp(L, 1)µa(p− q) >
caµa
µp

> −cp

(ii) If ∆ψp(H, 0)(1− µa)−∆ψp(L, 1)µa < 0, then π∗ = 0 is a soluation to the LHS of

(A.1) and

∆ψp(L, 1)µa(p− π∗) + ∆ψp(H, 0)(1− µa)(π∗ − q)

= ∆ψp(L, 1)µap−∆ψp(H, 0)(1− µa)q

> ∆ψp(L, 1)µa(p− q) > 0 > −cp

In either case, the principal’s IC constraint is violated.

The discussion so far suggests that any incentive compatible mechanism that imple-

ments µ must incur an expected total surplus destruction of at least the order O(1), or

an average surplus destruction of at least the order O(T−1).

Proof of Proposition 3

Proof. Fix any µ ∈ Ω. For every MPP that implements µ, we construct another that
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• Implements the same outcome distribution;

• Incurs the same average surplus destruction;

• In which the players’ mixing probabilities are independent of the history of public

announcements.

This is shown in three steps:

(i) First, we reintroduce the mediator (she). At the end of each period t = 1, 2, ..., T ,

the mediator elicits private reports from the players of their period-t actions and

signals. Given a history of reported actions and signals (âti, ŝ
t
i) and a history of

public messages mt−1, the mediator makes a public announcement mi,t on behalf

of player i using her period-t reporting strategy ρi,t(â
t
i, ŝ

t
i,m

t−1), and publicly rec-

ommends the players to mix according to the same probabilities µ̂t+1(â
t, ŝt) =

µt+1({{ρi,t(âti, ŝti,mt−1)}Tt=1}i∈{p,a}) as before in period t+ 1. At the end of the last

period T , the mediator assigns each player the same monetary transfer as before,

i.e.,

ψ
′

i(â
T , ŝT , {µ̂t(ât−1, ŝt−1)}Tt=1) = ψi({{ρi(âti, ŝti,mt−1)}Tt=1}i∈{p,a})

In the new mechanism, it is incentive compatible for the players to follow the rec-

ommended mixing probabilities {µ̂t(.)}Tt=1 and to report truthfully to the mediator

in each period.

(ii) Second, we replace public messages with the outcome of the mediator’s randomizing

device. Suppose there exists a period-(t − 1) public history ht−1
P and two period-t

public histories htP and ht
′
P , such that htP ∩ ht

′
P = ht−1

P and µ̂t+1(h
t
P ) 6= µ̂t+1(h

t′
P ).

Then construct a new mechanism in which the mediator publicly recommends at the

beginning of period t+1 a mixing probability µ̂t+1(h
t
P ) with probability P(htP |ht−1

P )

and a mixing probability µ̂t+1(h
t′
P ) with probability P(ht

′
P |ht−1

P ), regardless of what

the players report to her at the end of period t. The only time the players’ reports

matter is at the end of the last period, when they are used to determine the transfer

payment ψ
′′
i (âT , ŝT , µ̂T ):

ψ
′′

i (âT , ŝT , µ̂T ) =


ψ
′
i(â

T , ŝT , {µ̂t(ât−1, ŝt−1)}Tt=1)

P(âT , ŝT )
if µ̂T = {µ̂t(ât−1, ŝt−1)}Tt=1

0 otherwise
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That is, for every realization of (âT , ŝT , µ̂T ), the new mechanism assigns player i a

probability augmented transfer if conditional on the players’ reports being equal to

(âT , ŝT ), the outcome of the mediator’s randomizing device µ̂T coincides with the

history of mixing probabilities in the old mechanism, and nothing otherwise. It is

straightforward to show that in the new mechanism, it remains incentive compat-

ible for the players to obey the recommended mixing probabilities and to report

truthfully to the mediator. Note that in the new mechanism, the recommended

mixing probabilities is independent of the players’ reports to the mediator.

(iii) Finally, we replace the outcome of the mediator’s randomzing device with that of a

public randomizing device. That is, we construct a new MPP which uses a public

randomizing device to recommend a mixing probability µ̂t in period t with the same

probability as the mediator’s randomizing device in Step (iii), and let both players

announce simultaneously their histories of private actions and private signals at

the end of the last period T . Given a history of public recommendations µ̂T and a

joint message (âT , ŝT ), the new MPP assigns each player the same monetary transfer

ψ
′′
i (âT , ŝT , µ̂T ) as the mechanism in Step (iii). Clearly, the new MPP implements µ,

incurs the same average surplus destruction as the MPP prior to the transformation,

and adopts a recommendation policy that is independent of the history of public

announcements at each interim stage.

We now argue that every new MPP that implements an inspection frequency µp < 1

incurs an average surplus destruction of the order O(1). First, observe that in such

mechanism, the expected number of periods when the principal inspects with a proba-

bility strictly less than one is of the order O(T ). Without loss of generality,17 assume

that µp,t < 1 for every t = 1, 2, ..., T .

Consider the principal’s problem. For her to be indifferent between inspecting and

resting at t, regardless of what she does or observes at any τ < t, we need

EIt,Ia,τ [ψp(It, Iτ )− ψp(It)] = EIa,τ [ψp(Iτ )]− ψp(∅) (A.3)

where Ii,t is a random variable of i’s information in period t. Without loss of generality,

write

EIa,t,Ia,τ [ψp(It, Iτ )] = EIa,t [ψp(It)] + EIa,τ [ψp(Iτ )] + g(Ip,t, Ip,τ ) (A.4)

17Since we can always make the transfer payment discussed below conditional on the expectation or
the realization of the information in periods when the principal inspects for sure.
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where g(., .) can be any arbitrary function of Ip,t and Ip,τ . Combine Equations (A.3)

and (A.4),

EIt,Ia,τ [ψp(It, Iτ )− ψp(It)] = EIa,τψp(Iτ ) + EIp,t [g(Ip,t, Ip,τ )] = EIa,τψp(Iτ )

which implies that g(Ip,t, Ip,τ ) is independent of Ip,τ . Therefore, rewrite Equation (A.4)

as

EIa,t,Ia,τ [ψp(It, Iτ )] = EIa,t [ψp(It)] + g(Ip,t)︸ ︷︷ ︸
related to period-t information

+EIa,τ [ψp(Iτ )]

Furthermore, since ψp(It) is the optimal incentive scheme that provides the principal the

right incentive in period t only, we simplify the above equation to

EIa,t,Ia,τ [ψp(It, Iτ )] = EIa,t [ψp(It)] + EIa,τ [ψp(Iτ )]

Finally, since Ia,t and Ip,τ have no interaction in ψp(.), we conclude that

ψp(It, Iτ ) = ψp(It) + ψp(Iτ )

By induction, we show that ψp(IS) =
∑

t∈S ψp(It) for every S ⊆ {1, 2, ..., T}. By

Proposition 2, ψp(IS) incurs an expected surplus destruction of the order O(S). Taking

expectation of S, we get an expected total surplus destruction of the order O(T ), or an

average surplus destruction of the order O(1).

A.2 Proof of Proposition 1

Proof of Lemma 1

Proof. Denote by µi,T the empirical frequency of T independent draws from µi. By

Dvoretzky et al. (1956), for every ε > 0, there exists Bi,T =
√

1
2T

log 2
ε
∼ O(T−1/2) such

that

P(‖µi,T − µi‖ ≤ Bi,T ) ≥ 1− ε for all T

Now pick T ∗ large enough that Bi,T < minai∈supp(µi) µi(ai). Then ‖µi,T − µi‖ ≤ Bi,T

implies minai∈supp(µi) µi,T (ai) > 0.
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Proof of Lemma 2

Proof. According to Theorems 1 and 2 of Rahman (2010), ∀i ∈ N , âi ∈ supp(µi),

∃ξi : supp(µ)× S → R such that

inf
bi,ρi(.) 6=(âi,ρtri )

∑
â−i∈supp(µ−i),ŝ

ξi(â, ŝ) [P(ŝ|â−i, (bi, ρi(.)))− P(ŝ|â−i, âi)] ≥ 0

and the inequality is strict if (bi, ρi(.)) constitutes a profitable deviation from obedience

and truth-telling at âi. Since µ(â−i) > 0 for all â−i ∈ supp(µ−i), rewrite the above

condition as:

inf
bi,ρi(.) 6=(âi,ρtri )

∑
â−i∈supp(µ−i),ŝ

µ(â−i)
ξi(â, ŝ)

µ(â−i)︸ ︷︷ ︸
πi(â, ŝ)

[P(ŝ|â−i, (bi, ρi(.)))− P(ŝ|â−i, âi)] ≥ 0

and normalize the term inside the bracket to πi(â, ŝ) ∈ [0, 1].

Proof of Lemma 3

Proof. Without loss of generality, assume that player i has a negative Pareto weight.

Then Part (i) follows from the Law of Iterated Expectation. To show Part (ii), observe

first that

χi,1(â
T
i ) = max

(a′i,t)
T
t=1

E
[ T∑
t=1

δt−1

(
ui(a

′
i,t, s̃i,t)− ui(âi,t, s̃i,t)

)
|σeqm−i

]
≤ 1− δ2Bi,TT

1− δ
ui

where ui = maxai,a′i∈Ai,si,s′i∈Si ui(a
′
i, s
′
i)−u(ai, si). Thus, we can bound (1− δ)χi,1(.)/(1−

δT ) from above by

1− δ2Bi,TT

1− δT
ui ∼ O(T−1/2(1 + T (1− δ)))
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Similarly, we can bound χi,τ+1(â
T
i , ŝ

τ
i ) from above by

max
(a′i,t)

T
t=τ+1

E

[
T∑

t=τ+1

δt−1
(
ui(a

′
i,t, s̃i,t)− ui(âi,t, s̃i,t)

)
|âτi , ŝτi

]

− max
(a
′
i,t)

T
t=τ+1

E

[
T∑

t=τ+1

δt−1
(
ui(a

′
i,t, s̃i,t)− ui(âi,t, s̃i,t)

)
|âτ−1
i , ŝτ−1

i

]

< (1− ε(n−1)k(T )) · 0 + ε(n−1)k(T )χi,1(â
T
i ) ≤ ε(n−1)k(T ) 1− δ2Bi,TT

1− δ
ui

Summing over τ = 2, 3, ..., T ,

1− δ
1− δT

T∑
t=2

χi,t(a
T
i , s

t−1
i )

< Tε(n−1)k(T ) 1− δ2Bi,TT

1− δT
ui

< 2ui(1 + T (1− δ))ε(n−1)k(T )Bi,TT

∼ ε(n−1)k(T ) · T 1/2(1 + T (1− δ))

Proof of Lemma 4

Proof. For any unilateral deviation σi = (bTi , ρi(.)) outside the budget, construct an-

other strategy σ′i in which player i takes every reported action profile âTi ∈ supp(ρi)

with the same probability P(ρi(b
T
i ) = âTi ) as in σi, but always reports truthfully at the

review stage. By Part (i) of Lemma 3, these two strategies generate the same expected

adjustment transfer to player i:

E0[ψ
A
i (mT

i )|σi, σeqm−i ] = E[χi,1(â
T
i )|σi, σeqm−i ] = E[χi,1(â

T
i )|σ′i, σ

eqm
−i ] = E0[ψ

A
i (mT

i )|σ′i, σ
eqm
−i ]

Now compare the expected deterrence transfer they engender. At σi, if player i takes

an action profile bTi outside the budget and announces mT
i = (aTi , s

T
i ), then her chance of
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punishment becomes EmT−i

[
T∏
t=1

πi(a−i,t, s−i,t,mi,t)|hTi

]
. Elaborate on this term and get

EmT−i

[
T∏
t=1

πi(a−i,t, s−i,t,mi,t)|hTi

]

=
∑

(aT−i∈Budgeti,sT−i)

P
(
aT−i, s

T
−i, h

T
i

)
P(hTi )

T∏
t=1

πi(a−i,t, s−i,t,mi,t)

=
∑

(aT−i∈Budgeti,s−iT )

P
(
aT−i, s

T
−i, , h

T
i |Ei

)
P(Ei) + P

(
aT−i, s

T
−i, h

T
i |Ec

i

)
P(Ec

i )

P (hTi |Ei) P(Ei) + P (hTi |Ec
i ) P(Ec

i )

T∏
t=1

πi(a−i,t, s−i,t,mi,t)

≈
∑

(aT−i∈Budgeti,sT−i)

P
(
aT−i, s

T
−i, h

T
i , Ei

)
P (hTi , Ei)

T∏
t=1

πi(a−i,t, s−i,t,mi,t)

=
∑

(aT−i∈Budgeti,sT−i)

P(hTi |aT−i, sT−i, Ei)P(aT−i, s
T
−i, Ei)∑

(ãT−i,s̃
T
−i)∈Budgeti

P(hTi |ãT−i, s̃T−i, Ei)P(ãT−i, s̃
T
−i, Ei)

T∏
t=1

πi(a−i,t, s−i,t,mi,t)

=
∑

(aT−i∈Budgeti,sT−i)

P(hTi |aT−i, sT−i)P(aT−i, s
T
−i)∑

(ãT−i,s̃
T
−i)∈Budgeti

P(hTi |ãT−i, s̃T−i)P(ãT−i, s̃
T
−i)

T∏
t=1

πi(a−i,t, s−i,t,mi,t)

≈
∑

(aT−i∈Budgeti,sT−i)

P(hTi |aT−i, sT−i)P(aT−i, s
T
−i)∑

(ãT−i,s̃
T
−i)

P(hTi |ãT−i, s̃T−i)P(ãT−i, s̃
T
−i)

T∏
t=1

πi(a−i,t, s−i,t,mi,t)

=
∑

(aT−i∈Budgeti,sT−i)

T∏
t=1

P
(
a−i,t, s−i,t|bi, ρ−1

i (si,t) : (bi, ρi) = (bi,t, ρi,t)
)
πi(a−i,t, s−i,t,mi,t)

where the third line expands the numerator and denominator in the second line as the

weighted sum of the conditional probabilities at two events, Ei and Ec
i ;

18 the fourth

line approximates the third line based on the fact that Ei is a large probability event

if the ε in Lemma 1 is small and the horizon T is sufficently long; the fifth line elab-

orates on the denominator in the fourth line; the sixth line makes use of the fact that
P(aT−i,s

T
−i,Ei)

P(ãT−i,s̃
T
−i,Ei)

=
P(aT−i,s

T
−i)

P(ãT−i,s̃
T
−i)

, where P(aT−i, s
T
−i) stands for the probability that player −i, who

face no constraints on action choices, observe an outcome aT−i of T independent random

draws from µ−i, implement aT−i and observe a sequence of signals sT−i; the seventh line

again makes use of the fact that Ei is a large probability event; the last line equates

the seventh line with the product of i’s ex-post beliefs in T independent one-shot games

18Recall that Ei denotes the event that the action profiles of player −i are budgeted in the first
k(T )− 1 rounds of the k(T )-step procedure.

35



described in Lemma 2, where her action and reporting strategy in the t-th game coin-

cide with (bi,t, ρi,t(.)). Denote by D the instances when player i engages in detectable

deviations from truth-telling.

Similarly, approximate i’s likelihood of punishment under σ′i as follows at a given

realization of a(Ti , s
T
i ):

∑
aT−i∈Budget−i,sT−i

T∏
t=1

P (a−i,t, s−i,t|ai, si : (ai, si) = (ai,t, si,t))πi(at, st)

Taking expectation of sTi s and dividing the likelihood of punishment under σi by that

under σ′i, we get a lower bound on the relative likelihood of punishment at a given

reported action profile aTi :

E
[∏

t πi(mt)|bTi , ρi
]

E [
∏

t πi(mt)|aTi ]

≈
E
[∏T

t=1

∑
a−i,t,st

µ(a−i,t)πi(at, st)P(st|a−i,t, bi,t, ρi,t)
]

E
[∏T

t=1

∑
a−i,t,st

µ(a−i,t)πi(at, st)P(st|a−i,t, ai,t)
]

≥ γ
|D|
i > 1 + |D| log γi

Integrating over aTi s (recall that σi and σ′i induce the same distribution over reported

action profiles), we get a lower bound of 1+E|D| log γi on the expected relative likelihood

of punishment, or a lower bound of λiE|D| log γi on the extra penalty that σi incurs on

top of σ
′
i. Thus, if σi constitutes a profitable deviation from σ

′
i, i.e., E|D| > 0, then there

exists a λi > 0 such that when T and δ are large enough, the increase in expected penalty

outweighs the discounted average benefit of deviating, since the latter is bounded from

above by

uiE
[

1− δ|D|

1− δT

]
≤ uiE|D|(1 + T (1− δ))/T

Meanwhile, if the deviation from σ
′
i to σi is undetectable, then it is unprofitable in the

first place.

For player i with a negative Pareto weight νi < 0, apply the argument above and
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bound the relative likelihood of reward at date-0 from above by

E
[∏T

t=1

∑
a−i,t,st

µ(a−i,t)(1− πi(at, st))P(st|a−i,t, bi,t, ρi,t)
]

E
[∏T

t=1

∑
a−i,t,st

µ(a−i,t)(1− πi(at, st))P(st|a−i,t, ai,t)
]

≤ E
[
β
|D|
i

]
≤ E

[
1− |D|/T (1− βTi )

]
= 1− (αE|D|/T )(1− βTi )

Again, if σi constitutes a profitable deviation from σ′i, i.e., E|D| > 0, then by switching

from σ′i to σi, player i decreases her expected likelihood of reward by (1−βTi )E|D|/T , or

her expected value of reward by at least λi(1−µTi )E|D|/T , while the discounted average

benefit she enjoys is at most

uiE
[

1− δ|D|

1− δT

]
≤ uiE|D|(1 + T (1− δ))/T

Thus, if we set λi large enough and if (1− δ) ∼ O(T−1), then σi is strictly less profitable

than σ′i when T is sufficiently large.

Proof of Lemma 5

Proof. Consider the incentive problem of player i who has a negative Pareto weight

νi < 0. At the beginning of t = 1, she finds all budgeted action profiles equally profitable,

since for all aTi ∈ Budgeti,

E
[
ψDi (mT ) + ψAi (mT

i ) +
1− δ

1− δT
T∑
t=1

δt−1ui(ai,t, s̃i,t)

]
≡ λi +

1− δ
1− δT

max
(a′i,t)

T
t=1

E
[ T∑
t=1

δt−1ui(a
′
i,t, s̃i,t)

]

At the beginning of t = τ , given (aτ−1
i , sτ−1

i ), she again finds all ensuing budgeted action

profiles equally profitable, provided that she will announce (aτ−1
i , sτ−1

i ) truthfully at

the review stage. However, if she plans to announce something different, i.e., mτ−1
i =

(ǎτ−1
i , šτ−1

i ) 6= (aτ−1
i , sτ−1

i ), then her expected payoff from period τ onward becomes

τ−1∑
t=1

χi,t(ǎ
T
i , š

t−1
i ) + E[ψDi |aτ−1

i , sτ−1
i , ǎτ−1

i , šτ−1
i ] +

1− δ
1− δT

E
[ T∑
t=τ

δt−1ui(ǎi,t, s̃i,t)|aτ−1
i , sτ−1

i

]
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Compared to the equilibrium strategy, the new strategy changes i’s expected payoff by

Ξ = E[ψDi |ǎti, šti, aτ−1
i , sτ−1

i ]− E[ψDi |aτ−1
i , sτ−1

i ] +
τ−1∑
t=1

χi,t(ǎ
T
i , š

t−1
i )− χi,t(aTi , st−1

i )

+
1− δ

1− δT

{
E
[ T∑
t=τ

δt−1ui(ǎi,t, s̃i,t)|aτ−1
i , sτ−1

i

]
− E

[ T∑
t=τ

δt−1ui(ai,t, s̃i,t)|aτ−1
i , sτ−1

i

]}

Since

χi,1(ǎ
T
i )− χi,1(aTi ) +

1− δ
1− δT

E
[ T∑
t=τ

δt−1

(
ui(ǎi,t, s̃i,t)− ui(ai,t, s̃i,t)

)
|aτ−1
i , sτ−1

i

]

=
1− δ

1− δT

{
E
[ T∑
t=1

δt−1ui(ai,t, s̃i,t)

]
− E

[ T∑
t=τ

δt−1ui(ai,t, s̃i,t)|aτ−1
i , sτ−1

i

]}

− 1− δ
1− δT

{
E
[ T∑
t=1

δt−1ui(ǎi,t, s̃i,t)

]
− E

[ T∑
t=τ

δt−1ui(ǎi,t, s̃i,t)|aτ−1
i , sτ−1

i

]}

=
1− δ

1− δT
E
[ τ−1∑
t=1

δt−1

(
ui(ai,t, s̃i,t)− ui(ǎi,t, s̃i,t)

)]

+
1− δ

1− δT

{
E
[ T∑
t=τ

δt−1ui(ai,t, s̃i,t)

]
− E

[ T∑
t=τ

δt−1ui(ai,t, s̃i,t)|aτ−1
i , sτ−1

i

]}

+
1− δ

1− δT

{
E
[ T∑
t=τ

δt−1ui(ǎi,t, s̃i,t)

]
− E

[ T∑
t=τ

δt−1ui(ǎi,t, s̃i,t)|aτ−1
i , sτ−1

i

]}

=
1− δ

1− δT
E
[ τ−1∑
t=1

δt−1

(
ui(ai,t, s̃i,t)− ui(ǎi,t, s̃i,t)

)]
+O(ε(n−1)k(T ))

we simplify Ξ to the expression below:

Ξ = E[ψDi |ǎi,t, s̃i,t)|aτ−1
i , sτ−1

i ]− E[ψDi |aτ−1
i , sτ−1

i ] +
τ−1∑
t=2

χi,t(ǎ
T
i , š

t−1
i )− χi,t(aTi , st−1

i )

+
1− δ

1− δT
E
[ τ−1∑
t=1

δt−1

(
ui(ai,t, s̃i,t)− ui(ǎi,t, s̃i,t)

)]
+O(ε(n−1)k(T ))

Let D denote the dates in the first τ − 1 periods when player i deviates from truth-

telling, i.e., D = {t ≤ τ − 1, (ǎi,t, ši,t) 6= (ai,t, si,t)}. If the misreporting is detectable,

then it is unprofitable when T and δ are sufficiently large, since Lemma 3 and Lemma 4
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imply that

Ξ ≤ −λi(1− βTi )|D|/T + ui|D|(1 + T (1− δ))/T +O(ε(n−1)k(T )T 1/2) < 0

Meanwhile, if the misreporting is undetectable, then at every instance when player i

misreports, she must pretend to take the action with undetectable deviations while she

actually doesn’t. Given that all the other players randomize roughly according to µ−i,

this action coincides with the most profitable action, i.e., ǎi,t = ai,t, ∀t ∈ D. But then

the change in her payoff is bounded from above by

Ξ =
1− δ

1− δT
∑
t∈D

δt−1(E[ui(ai,t, s̃i,t)]− E[ui(ai,t, s̃i,t)]︸ ︷︷ ︸
(-d)

) +O(ε(n−1)k(T )T 1/2)

≤ |D|
T
δτ−1−|D|(−d) +O(ε(n−1)k(T )T 1/2) ≤ − d

T
δτ−1−|D| +O(ε(n−1)k(T )T 1/2)

where the last term can be made strictly negative if k(T ) is appropriately chosen.

Now that Ξ is strictly negative in each case, we conclude that at any private history

hτ−1
i = (aτ−1

i , sτ−1
i ), player i has no incentive to misreport hτ−1

i so as switch to different

sequence of actions (ǎi,t)
T
t=τ 6= (ai,t)

T
t=τ from period τ onward. To complete the proof,

note that the argument carries through if we replace i with another player with a non-

negative Pareto weight.

A.3 Auxiliary Results

In this section, we establish a Folk Theorem for infinitely repeated games whose moni-

toring technologies identify the obedient agent (IOA). Our construction does not invoke

BMCC.

We begin with the formal definition of IOA.19 In the stage game G, there is a finite

number of n players. They simultaneously take a private action ai from a finite action

space Ai, observes a private signal si from a finite space Si of private signals and then

a public signal s from a finite space S0 of public signals. At the beginning of the game,

let there be a disinterested mediator who sends privately recommended actions to the

players according to µ =
∏

i µi and elicits reports of their privately observed signals. For

every µ, define strategies as in Section 3.

At a given µ, we say that player i’s deviation σdevi is (1) unprofitable if E[ui(˜̂ai, s̃i)|µ] >

19Our notion of IOA is weaker than that of Obara and Rahman (2010), who require every profitable
deviations to be attributable for every profile of utility functions.
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E[ui(σi, s̃i)|µ], and is (2) attributable if for every strategy profile σ−i of the other players,

there exists a player j whose strategy σj has a different impact on the distribution of

reported signals than σdevi at some recommendation profile â. Formally,

Definition 4. At a given µ, player i’s deviation σdevi is attributable if for every σ−i,

∃j 6= i, â ∈ supp(µ) and ŝ ∈ S such that P(ŝ|â, σdevi ) 6= P(ŝ|ŝ, σj). It is unprofitable if .

Intuitively, attributability not only allows us to detect deviations but to distinguish

the guilty from the innocent. To illustrate this concept, consider the following example:

Example 2. Two players are engaged in the prisoner’s dilemma game. Each of them

decides whether to cooperate or defect, ai ∈ {ci, di}, and observes a binary signal which

takes value of either good or bad, si ∈ {gi, bi}. Conditional on her own action, each

player is more likely to observe a good signal if the other player cooperates, i.e., ∀i,

P(gi|ci, cj) > max{P(gi|ci, cj),P(gi|di, cj)} ≥ min{P(gi|ci, dj),P(gi|di, cj)} > P(gi|di, dj)

We impose no restriction on the correlation structure between si and sj.

To see why every deviation is attributable in this setting, note that at the recom-

mendation profile â = (ci, dj), player i’s deviation from Cooperate is statistically distin-

guishable from player j’s deviation from Defect, since the former decreases the chance

that j observes a good signal, while the latter increases the chance that i observes a bad

signal, i.e., P(gj|â, σdevi ) > P(gj|â), P(gi|â) < P(gi|â, σdevj ).20 In contrast, observe that

not every deviation is attributable in Example 1. For instance, the fact that L is being

reported excessively at the recommendation profile â =(Inspect, Work) can be explained

by the disobedience of either the principal or the agent.

We now define formally monitoring technologies that satisfy IOA:

Definition 5. At an outcome distribution µ, the monitoring technology identifies the

obedient agent (IOA) if there exists µk → µ, such that at every µk, every profitable

deviation is attributable.

In the remaining of this section, assume that in the stage game G,

Assumption 3. At every pure action profile that attains a Pareto optimal payoff, the

monitoring technology satisfies IOA.21

20Apply this type of argument to show that i’s deviation from Cooperate is indeed attributable.
21We say henthforce that such pure action profiles are IOA actions.
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Upon receiving a joint reported signal ŝ, the mediator assigns each player a monetary

transfer ψi : A × S → R that depends on the joint recommendation profile â and the

joint reported signal ŝ. A mediated mechanism 〈µ, ψ(.)〉 constitutes a recommendation

policy µ and a transfer scheme ψ(.). It is incentive compatible if σi(âi) = (âi, ρi(si|âi) =

si), ∀i, âi ∈ supp(µi), si ∈ Si; it is ex-post budget-balanced if
∑

i ψi(â, ŝ) = 0, ∀â ∈
supp(µ), ŝ ∈ S.

Lemma 6. At a given µ, every profitable deviation σdevi is attributable if and only if

there exists an incentive compatible and ex-post budget-balanced mediated mechanism

that implements µ.

Proof. See Theorem 1 of Obara and Rahman (2010).

As suggested by Lemma 6, the problem of sustaining long-term cooperation without

the mediator’s intervention is significantly easier in games with IOA actions. Given the

possibility to achieve simultaneously almost full efficiency and ex-post budget-balanceness,

we no long need to link players’ incentives over time for the sake of proving a Folk The-

orem. Instead, we simply delegate the mediator’s randomzing device to the players

without invoking the BMCC, and replace the monetary transfers in the static mediated

mechanism with continuation payoffs in the infinitely repeated game when the discount

factor is close enough to one. Formally,

Proposition 4. Under Assumptions 1 and 3, for every payoff vector that Pareto dom-

inates the Nash equilibrium outcomes, there exists δ such that ∀δ > δ, there exists a

PBE with public communication of the infinite repeated game that achieves a discounted

average payoff of v. In this PBE, players truthfully announce their private histories at

the end of each period everywhere on the equilibrium path.

Proof. Take the budget-balanced mediated mechanism 〈µ, ψ(.)〉 in Lemma 6. If there

exist i, âi, â
′
i ∈ Ai such that i receives a higher expected payoff at â′i than at âi, i.e.,

Eâ−i,ŝ[ui(âi, ŝi) + ψi(â, ŝ)|âi] < Eâ−i,ŝ[ui(â
′
i, ŝi) + ψi(â

′
i, â−i, ŝ)|â′i], then set

ψ′i(â
′
i, â−i, ŝ) = ψi(â

′
i, â−i, ŝ)− Eâ−i,ŝi [ui(â

′
i, ŝi)− ui(âi, ŝi)]︸ ︷︷ ︸
d(âi, â

′
i)

ψ′j(âj, â
′
i, â−ij, ŝ) = ψi(âj, â

′
i, â−ij, ŝ) + dj

such that
∑

j 6=i νjdj − νid(âi, â
′
i) = 0. The newly constructed transfer scheme

• Makes player i indifferent between ai and a
′
i;
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• Preserves j’s indifference between all her actions âj ∈ supp(µj) for all j 6= i;

• Preserves the budget-balanceness of the mechanism at (â′i, â−i) for all â−i ∈ supp(µ−i).

Now that all players are indifferent between their recommended actions, delegate the

mediator’s randomizing device to them and apply the construction of Fudenberg and

Levine (1994) to replace the monetary transfers in the static mediated mechanism with

continuation payoffs in the infinitely repeated game as δ → 1.
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