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Abstract

This paper discusses the strategic manipulation of stable matching mechanisms. Stable

matching mechanisms are very successful in practice, despite theoretical concerns that they are

manipulable by participants. Our key finding is that most agents in large markets are close

to being indifferent among partners in all stable matchings. It is known that the utility gain

by manipulating a stable matching mechanism is bounded by the difference between utilities

from the best and the worst stable matching partners. Thus, the main finding implies that

the proportion of agents who may obtain a significant utility gain from manipulation vanishes

in large markets. This result reconciles the success of stable mechanisms in practice with the

theoretical concerns about strategic manipulation. We also introduce new techniques from the

theory of random bipartite graphs for the analysis of large matching markets.
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1 Introduction

1.1 Overview

In this paper, we study the most popular class of algorithms, called stable matching mechanisms,

used in centralized matching markets, such as the National Resident Matching Program (NRMP)

and School Choice Programs in NYC and Boston. A matching is regarded as stable if no agent is

matched with an unacceptable partner, and there is no pair of agents on opposite sides of the market

who prefer each other to their current partners. A stable matching mechanism takes preference

reports by participants and produces a stable matching with respect to the submitted preferences.

We ask how stable matching mechanisms remain so successful, despite the fact that the mechanisms

are easily manipulable by the participants through misrepresenting their preferences. In particular,

we analyze whether large markets, i.e. ones consisting of a large number of participants, would

mitigate incentives to manipulate a stable matching mechanism.

Two-sided matching markets are markets with two kinds of agents, in which agents of one

kind match with agents of the other kind. Examples of such markets include firms and workers

in professional labor markets (Roth and Peranson, 1999), schools and students in school choice

programs (Abdulkadiroglu and Sönmez, 2003), men and women in the marriage market or dating

sites (Choo and Siow, 2006; Hitsch, Hortaçsu, and Ariely, 2010), birth mothers and potential

adoptive parents in the market for child adoption (Bernal, Hu, Moriguchi, and Nagypal, 2007;

Baccara, Collard-Wexler, Felli, and Yariv, 2010), and cadets and branches in the military (Sönmez

and Switzer, 2011). Market designers seeking to achieve desirable outcomes to these matching

markets have introduced centralized clearinghouses.

In market design, the concept of “stability” has been considered of central importance. In

practice, successful mechanisms often implement a stable matching with respect to submitted pref-

erences (Roth and Xing, 1994; Roth, 2002). The best-known market design examples, such as

the NRMP and School Choice Programs in NYC and Boston, also use a particular stable match-

ing mechanism, called the doctor-proposing or student-proposing Gale-Shapley algorithm.1 Table 1

below lists whether each clearinghouse produces a stable matching with respect to submitted prefer-

ences, and whether these clearinghouses are still in use or no longer operating. With few exceptions,

stable matching mechanisms have been successful for the most part whereas unstable mechanisms

have mostly failed.2

From a theoretical perspective, however, stable matching mechanisms have a significant short-

coming. While the mechanisms produce stable matchings by assuming that all participants reveal

their true preferences, in fact no stable matching mechanism is strategy-proof (Roth, 1982).3 Par-

1 The algorithm is customized for each application. For details of the actual algorithms applied, see Roth and
Peranson (1999); Abdulkadiroglu, Pathak, and Roth (2009); Abdulkadiroglu, Pathak, Roth, and Sönmez (2006).

2 Table 1 is reorganized from tables in Roth (2002) and McKinney, Niederle, and Roth (2003). The clearinghouse
for the gastroenterology fellowship market is a rare case in which a stable matching mechanism started to fail in 1996,
was abandoned in 2000, and then was reinstated in 2006 (Niederle and Roth, 2005; Roth, 2008).

3 In fact, strategy-proofness is incompatible not only with stability but even with weaker conditions of Pareto
efficiency and individual rationality (Alcalde and Barberà, 1994; Sönmez, 1999).
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Still in use No longer in use

Stable

The NRMP: over 40 specialty markets and
submarkets for first year postgraduate posi-
tions, and 15 for second year positions
Specialty matching services: over 30 sub-
specialty markets for advanced medical resi-
dencies and fellowships
School choice programs: NYC, Boston
Canadian lawyers: multiple regions
British regional medical markets:
Edinburgh (≥‘69), Cardiff
Dental residencies: 3 specialties
Other healthcare markets:
Osteopaths (≥‘94), Pharmacists, Clinical
psychologists (≥‘99)

Dental residencies:
Periodontists(<‘97), Prosthodontists (<‘00)
Canadian lawyers:
British Columbia(<‘96)

Unstable
British regional medical markets:
Cambridge, London Hospital

British regional medical markets:
Birmingham, Edinburgh (<‘67), Newcastle,
Sheffield
Other healthcare markets:
Osteopaths (<‘94)

Table 1: Stable and unstable (centralized) mechanisms.

ticipants may achieve a better matching by misrepresenting their preferences, either by changing

the order of the preference lists or by announcing that some acceptable agents are unacceptable.

Even the NRMP and School Choice Programs in NYC and Boston, while widely acknowledged as

a model of successful matching programs, cannot rule out such incentives for strategic misrepresen-

tation. Indeed, the possibility of such manipulation is mostly unavoidable. Whenever there is more

than one stable matching, at least one agent can profitably misrepresent her preferences (Roth and

Sotomayor, 1990), and the conditions under which a preference profile contains a unique stable

matching seem to be quite restrictive (Eeckhout, 2000; Clark, 2006).4 Thus, markets are likely

to have agents with an incentive to manipulate a stable matching mechanism. In addition, Pittel

(1989) shows that the number of stable matchings tends to increase as the number of participants

becomes large. Accordingly, when market designers deal with large markets, concerns regarding

strategic manipulation are heightened. As stable matching mechanisms are not incentive compati-

ble, the mechanisms may be manipulated by participants, thereby not implementing the intended

matchings. Moreover, each participant’s decision may become hard to make since she needs to best

respond to other agents’ strategic manipulations.

We consider matching markets that each firm hires one worker, a model which is known as

a one-to-one matching. We measure incentives to manipulate a stable matching mechanism by

assuming that each firm-worker pair receives utilities, one for the firm and the other for the worker,

which in turn determine ordinal preferences. In order to study the likelihood of an agent having

a significant incentive to manipulate, we assume that utilities are randomly drawn from some un-

derlying distributions. The key finding of this paper is that the proportion of participants who

can potentially achieve a significant utility gain from manipulation vanishes as the market becomes

4 It is an open question to characterize the complete set of preference profiles containing a unique stable matching.
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large. This result holds both when each agent knows the preferences of all other agents (complete

information), and when an agent may not know the preferences of other agents (incomplete in-

formation). Given the tangible and intangible costs of strategic behavior in real life, we believe

that this result may reconcile the success of stable matching mechanisms with the theoretical con-

cerns about manipulability. In addition, based on this paper’s finding, market designers may more

confidently advise participants to submit their true preferences.

1.2 A Motivating Example

To understand the logic behind strategic manipulation, consider a simple labor market with three

firms and three workers. We illustrate how, in such a situation, an agent can achieve a better

partner by misrepresenting her preferences. In addition, we show that the best achievable partner

from manipulation must be a partner in a stable matching under her true preferences.

Table 2 lists preferences of firms over workers, and of workers over firms which are known to

all participants. For instance, firm 1 most prefers worker 3, followed by worker 1 and worker 2.

Similarly, worker 1 most prefers firm 2, followed by firm 3 and firm 1. Under these preferences,

there are two stable matchings: in one stable matching (marked by 〈·〉), f1, f2, and f3 are matched

with w1, w2, and w3, respectively; in the second stable matching (marked by [·]), f1, f2, and f3 are

matched with w2, w1, and w3, respectively.

f1 : w3 � 〈w1〉 � [w2]

f2 : 〈w2〉 � [w1] � w3

f3 : 〈[w3]〉 � w1 � w2

,

w1 : [f2] � f3 � 〈f1〉

w2 : [f1] � 〈f2〉 � f3

w3 : f2 � 〈[f3]〉 � f1

Table 2: An example of a two-sided matching market with 3 firms and 3 workers.

Suppose that all agents submit their true preferences, and a stable matching mechanism pro-

duces the second stable matching marked by [·]. In that case, suppose firm 1 misrepresent her

preferences and announces that workers 3 and 1 are acceptable, but not worker 2. For the submit-

ted preferences, there is a unique stable matching marked by 〈·〉. The stable matching mechanism,

which produces a stable matching for submitted preferences, will produce the matching marked by

〈·〉. Ultimately, firm 1 is better off because firm 1 is matched with worker 1 rather than worker 2.

However, whichever preference list firm 1 submits, the firm will not be matched with worker

3. The pair (f3, w3) would otherwise block the matching. For instance, if f1 declares that only w3

is acceptable, then the only stable matching matches f2 with w2, and f3 with w3, and firm 1 will

remain unmatched. More broadly, whenever a stable matching mechanism is applied, participants

cannot be matched with a partner who is strictly preferred to all stable matching partners with

respect to the initial preferences (Demange, Gale, and Sotomayor, 1987). Since participants are

guaranteed to be matched with one of their stable matching partners, the gain from manipulation
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is bounded by the difference between the most and the least preferred stable matching partners.

Based on the above observation, we mainly focus on the difference between the most and the least

preferred stable matching partners.

1.3 Outline of the Paper

Prior to describing the model in detail, we briefly discuss the outline of the model, our main results,

and the key idea behind the proof.

We consider a sequence of one-to-one matching markets, each of which has n firms and n

workers. Preferences of firms over workers, or of workers over firms are generated by utilities,

which are randomly drawn from some underlying distributions on R+.5 We formulate utilities as

the weighted sum of a common-value component and an independent private-value component.

That is, when a firm f is matched with a worker w, the firm receives

Uf,w = λUow + (1− λ) ζf,w (0 ≤ λ ≤ 1),

where Uow is the intrinsic value of w, which is common to all firms, and ζf,w is w’s value as

independently evaluated by firm f . In other words, any firm that is matched with a worker w

receives the same common-value of the worker w, but receives distinct private-value of the worker

w. We similarly define the utilities of workers.

The common-value component introduces a commonality of preferences, which is prevalent in

real matching markets. In the entry-level labor market for doctors, for instance, the US News

and World Report’s annual rankings are often referred to as a guideline to the best hospitals. We

also consider the pure private-value model (λ = 0) for theoretical reasons. In matching theory,

commonality drives the uniqueness of stable matchings (Eeckhout, 2000; Clark, 2006), a situation

in which no agent has an incentive to manipulate a stable matching mechanism (Roth and So-

tomayor, 1990). If a preference profile has several stable matchings, commonality of preferences

leads to smaller differences in utilities from stable matchings (Samet, 2011), so agents have less

of an incentive to manipulate a stable matching mechanism. By including the pure private-value

case in our model, we show that commonality may be beneficial, but is not necessary for incentive

compatibility of stable matching mechanisms.

The main finding of the paper is that while agents in a large market typically have multiple

stable partners, most agents are close to being indifferent among the all stable matching partners

(Theorem 1).6 We observed in the motivating example that when a stable matching mechanism is

applied, the best an agent can achieve (by misrepresenting her preferences) is matching with her

5 The only restrictions on distributions are bounded supports and some continuity conditions.
6 The main theorem seems quite consistent with observations from real market applications. Pathak and Sonmez

(2008) collect the data of students’ preferences over schools in the new Boston school choice program, and show that
the real market tends to have a very small number of stable matchings. (The preference data is reliable as truthfully
revealing their preferences is a dominant strategy for students.) Both suggest that large matching markets tend to
have small cores. In our theory of one-to-one matchings, we find small differences in utilities from stable matchings,
whereas in the data from a many-to-one matching market, there is a small number of stable matchings.
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best stable matching partner with regard to the true preferences (Demange, Gale, and Sotomayor,

1987). As such, our main finding implies that when a stable matching mechanism is applied and all

other agents reveal their true preferences, the expected proportion of agents who have an incentive

to manipulate the mechanism vanishes as the market becomes large.

Furthermore, we identify an ε-Nash equilibrium in which most participants report their true

preferences.7 In a large market, a small proportion of agents may still have large incentives to

manipulate a stable matching mechanism. Under the identified equilibrium, we let those agents

with significant incentives to manipulate do misrepresent their preferences. Nevertheless, the rest

of participants still have no incentive to respond to such manipulations. More precisely, we show

that for any ε > 0 with high probability a large market has an ε-Nash equilibrium in which most

participants reveal their true preferences (Corollary 2).

From a methodological standpoint, our paper is the first to introduce techniques from random

bipartite graph theory to matching models. To prove the main theorem, we basically need to count

the number of firms and workers satisfying certain conditions. The theory of random bipartite

graphs provides techniques to count the likely numbers of firms and workers satisfying the specified

conditions. More precisely, we draw a graph with a set of firms and workers whose common-values

are above certain levels. We join each firm-worker pair by an edge if one of their independent

private-values is significantly lower than the upper bound of the support. It turns out that every

firm-worker pair where both the firm and the worker fail to achieve certain threshold levels of

utility in a stable matching must be joined by an edge. Their private-values would otherwise both

be so high that they would prefer each other to their current partners, and thus block the stable

matching. For each realized graph, we consider the bi-partitioned subset of nodes, i.e. firms and

workers, such that every pair of nodes, one from each partition, is joined by an edge. It is known

that the possibility of having a relatively large such subset of nodes ultimately becomes infinitesimal

as the initial set of nodes becomes large (Dawande, Keskinocak, Swaminathan, and Tayur, 2001).

That is, in terms of the matching model, the set of firms and workers, whose common-values are

high but who fail to achieve high levels of utility, will remain relatively small as the market becomes

large.

This paper mainly focuses on the case of complete information, in which all participants are

aware of all other agents’ preferences. Nevertheless, we can extrapolate its findings to a market with

incomplete information, in which each agent is partially informed about other agents’ preferences.

Various setups are conceivable: an agent may know (i) only her own utilities from matching with

agents on the other side; (ii) her own utilities and common-values from matching with agents

on the other side; (iii) her own utilities, common-values from matching with agents on the other

side, and her own common-value to agents matching with her; or (iv) her own utilities and all

agents’ common-values. Regardless of the information structure, the key finding from the complete

information case still holds with incomplete information. That is, most agents are ex-ante close

7Under an ε-Nash equilibrium, agents are approximately best responding to other agents’ strategies such that no
one can gain more than ε by switching to an alternative strategy.
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to being indifferent among all stable matchings in a large market (Theorem 4). This is because

with high probability agents are close to being indifferent among realized stable matching partners,

which is this study’s key finding in the context of complete information.

However, we do not find an equilibrium corresponding to the ε-Nash equilibrium under complete

information. If some agents manipulate a stable matching mechanism based on the expected utility

gain from manipulation, they may become worse off afterwards. This may, in turn, expand the

differences between utilities generated by stable matchings to other agents. Consequently, other

agents may misrepresent their preferences as a best response to the manipulation.

1.4 Related Literature

Strategic manipulability has been a major concern in market design. Hence, a number of studies

have addressed the incentives to manipulate a stable matching mechanism (Roth and Peranson,

1999; Immorlica and Mahdian, 2005; Kojima and Pathak, 2009). These studies consider a particular

stable matching mechanism, the worker-proposing Gale-Shapley algorithm, which implements a

stable matching favorable to workers. As truthfully revealing their preferences is a dominant

strategy for workers in this mechanism (Roth, 1982; Dubins and Freedman, 1981), the papers focus

on firms’ incentives to misrepresent their preferences.

Unlike the current paper, these studies assume that firms will manipulate a mechanism regard-

less of how much benefit the firms can obtain by so doing. In particular, a firm has no incentive

to misrepresent its preferences if and only if it has a unique stable matching partner (Roth and

Sotomayor, 1990). Thus, the primary goal is to find conditions on a preference profile in which

most firms have a unique stable matching partner. As Roth and Peranson (1999) also point out,

a crucial assumption is that agents on one side (say workers) consider only up to a fixed number

of agents on the other side acceptable, even when the market size has become large. Under this

assumption, Roth and Peranson, based on a computational analysis, show that the proportion of

firms who have more than one stable matching partner converges to zero as the market becomes

large. This convergence is theoretically proven by Immorlica and Mahdian and extended to the

case of many-to-one matchings by Kojima and Pathak.

The main advantage of our approach is that we obtain non-manipulability of stable matching

mechanisms as a pure property of market size, without resorting to the assumption of limited

acceptability. In fact, the assumption of limited acceptability may leads to large market models

that do not match basic features of real applications. Even with a weak commonality of preferences,

the proportion of firms who are accepted by at least some workers may become small as the market

becomes large. In this case, most firms do have a unique stable matching partner, but quite often

the unique stable matching partner is only the firm itself: i.e. a large proportion of agents remain

unmatched.

Figure 1 presents this phenomenon with simulations in which each worker considers only up to

30 most preferred firms acceptable. The utility of a firm is defined as Uf,w = λUow+(1−λ) ζf,w, and

the utility of a worker is similarly defined. The value of each component is drawn from the uniform

7



distribution over [0, 1]. Each graph depicts the proportion of firms (or workers) unmatched in stable

matchings averaged over 10 repetitions.8 Even with modest levels of commonality of preferences,

the proportion of unmatched agents in stable matchings increases as the market becomes large.

It is worth noting that these simulations are based on preferences generated, not by the previous

studies’ model, but by our own. Thus, the simulations do not directly represent features of the

previous studies. However, we observe the similar effects of the limited acceptability assumption

in simulations based on the previous studies’ model. We provide additional simulation results in

Appendix E.
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Figure 1: Proportion of agents unmatched in stable matchings.

Another strand of literature on large matching markets considers a market where a finite number

of firms are matched with a continuum of workers (Azevedo and Leshno, 2011). It is shown that

generically each market has a unique stable matching, to which the set of stable matchings in

markets with large discrete workers converges. Based on this model, Azevedo (2010) studies firms’

incentives to manipulate capacities to hire workers. The paper also compares welfare effects between

situations where each firm pays its employees equally (uniform wages) and those where each firm

may pay different wages to different workers (personalized wages). While previous studies with fixed

capacities suggest that a uniform wage may induce inefficient matching and compress workers’ wages

(Bulow and Levin, 2006; Crawford, 2008), if firms can manipulate their capacities, the uniform wage

may produce higher welfare as they cause less capacity reduction.

The large market approach is not limited to the standard matching model. Ashlagi, Braverman,

and Hassidim (2011) and Kojima, Pathak, and Roth (2010), for instance, develop models of large

matching markets with couples. When couples are present, notwithstanding the concerns about

strategic manipulation, a market does not necessarily have a stable matching (Roth, 1984). These

8 Given a preference profile, the set of unmatched agents is the same for all stable matchings (McVitie and Wilson,
1970).
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studies show that the probability that a market with couples contains a stable matching converges

to one as the market becomes large. Moreover, when a mechanism produces a stable matching

with high probability, it is an approximate equilibrium for all participants to submit their true

preferences. The results are based on the condition that the number of couples grows slower than

the market size, with some additional regularity conditions.9

In the assignment problem of allocating a set of indivisible objects to agents, Kojima and

Manea (2010) study incentives in the probabilistic serial mechanism (Bogomolnaia and Moulin,

2001). The probabilistic serial mechanism is proposed as a mechanism that improves the ex-ante

efficiency of the random priority mechanism: All agents have higher chances of obtaining more

preferred objects by using the probabilistic serial mechanism. However, while the random priority

mechanism is strategy-proof, the probabilistic serial mechanism is not. Kojima and Manea show

that for a fixed set of object types and an agent with a given utility function, if there is a sufficiently

large number of copies of each object type, then reporting true preferences is a weakly dominant

strategy for the agent.10

The rest of this paper is organized as follows. In Section 2, we introduce our model – a sequence

of matching markets with random utilities. In Section 3, we state the main theorem informally

and then formally, and find an equilibrium behavior which may reconcile the conflicting features

of stable matching mechanisms. In Section 4, we illustrate the intuition of the proof using a

random bipartite graph model. In Section 5, we study a market with incomplete information.

The conclusion of the paper is provided in Section 6. All detailed proofs and simulation results

are relegated to the Appendix, which also includes definitions and related theorems of asymptotic

statistics.

2 Model

The model is based on the standard one-to-one matching model. We introduce latent utilities,

which in turn generate ordinal preferences.

2.1 Standard Two-sided Matching Model (Roth and Sotomayor (1990))

There are n firms and an equal number of workers. We denote the set of firms by F and the set of

workers by W . Each firm has a strict preference list �f such as

�f= w1, w2, w3, f, . . . , w4.

9 Ashlagi, Braverman, and Hassidim (2011) considers a market where the number of positions offered by firms
exceeds the number of workers. Kojima, Pathak, and Roth (2010) inherits the assumption from Kojima and Pathak
(2009) that agents on one side consider only up to a fixed number of agents on the other side acceptable.

10 Che and Kojima (2010) show that the random assignments in the two mechanisms converge to each other as the
number of copies of each object type goes to infinity. More generally, Liu and Pycia (2011) show that, including the two
mechanisms, all sensible and asymptotically symmetric, strategy-proof, and ordinal efficient allocation mechanisms
coincide asymptotically.
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This preference list indicates that w1 is firm f ’s first choice, w2 is the second choice, and that w3

is the least preferred worker that the firm still wants to hire. We also write w �f w′ to mean that

f prefers w to w′. We call a worker w acceptable to f if w �f f , otherwise we call the worker

unacceptable. We define �w similarly for each w ∈ W , and call �:= ((�f )f∈F , (�w)w∈W ) a

preference profile.

A matching µ is a function from the set F ∪ W onto itself such that (i) µ2(x) = x, (ii)

if µ(f) 6= f then µ(f) ∈ W , and (iii) if µ(w) 6= w then µ(w) ∈ F . We say a matching µ is

individually rational if each firm or worker is matched to an acceptable partner, or otherwise

remains unmatched. For a given matching µ, a pair (f, w) is called a blocking pair if w �f µ(f)

and f �w µ(w). We say a matching is stable if it is individually rational and has no blocking pair.

For two stable matchings µ and µ′, we write µ �i µ′ if an agent i weakly prefers µ to µ′: i.e.

µ(i) �i µ′(i) or µ(i) = µ′(i). We also write µ �F µ′ if every firm weakly prefers µ to µ′: i.e

µ(f) �f µ′(f) for every f ∈ F . Similarly, we write µ �W µ′ if every worker weakly prefers µ to

µ′: i.e. µ(w) �w µ′(w) for every w ∈ W . A stable matching µF is firm-optimal if every firm

weakly prefers it to any other stable matching µ: i.e. µF �F µ. Similarly, a stable matching µW is

worker-optimal if every worker weakly prefers it to any other stable matching µ: i.e. µW �W µ.

It is known that every market instance has a firm-optimal stable matching µF and a worker-optimal

stable matching µW (Gale and Shapley, 1962): i.e. for any stable matching µ, we have µF �F µ

and µW �W µ. Moreover if µ and µ′ are both stable matchings, then µ �F µ′ if and only if µ′ �W µ

(Knuth, 1976). Thus for any stable matching µ, it must be the case that µ �F µW and µ �W µF .

With some abuse of notation, we let µ denote a function �7−→ µ(�) from the set of all preference

profiles to the set of all matchings. We call the function µ a matching mechanism, and say that

a mechanism µ is stable if µ(�) is a stable matching with respect to preference profile �. We also

let µF and µW denote firm-optimal and worker-optimal stable matching mechanisms. A matching

mechanism induces a game in which each agent i ∈ F ∪W states her preference list �i. If for all

�i and �−i,
µ(�∗i ,�−i) �i µ(�i,�−i),

then we call �∗i a dominant strategy for the agent i. A mechanism µ is called strategy-proof

if it is a dominant strategy for every agent to state her true preference list.

2.2 Random Utilities

In order to measure incentives to manipulate a stable matching mechanism, we assume that pref-

erences are induced by underlying utilities. Moreover, in order to measure likely incentives, we

assume that the utilities are drawn from some underlying probability distributions.

We represent utilities by n × n random matrices U = [Uf,w] and V = [Vf,w]. When a firm f

and a worker w match with one another, the firm f receives utility Uf,w and the worker w receives

utility Vf,w. We let u and v denote realized matrices of U and V . For each pair (f, w), utilities are
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defined as

Uf,w = λ Uow + (1− λ) ζf,w and

Vf,w = λ V o
f + (1− λ) ηf,w (0 ≤ λ ≤ 1).

We call Uow and V o
f common-values, and ζf,w and ηf,w independent private-values.

Common-values are defined as random vectors

Uo := 〈Uow〉w∈W and V o := 〈V o
f 〉f∈F .

Each Uow and V o
f are drawn from distributions with positive density functions and with bounded

supports in R+.11 Independent private-values are defined as n× n random matrices

ζ := [ζf,w] and η := [ηf,w].

Each ζf,w and ηf,w are randomly drawn from continuous distributions with bounded supports in

R+. We assume that the utility of remaining unmatched is equal to 0.12

A random market is defined as a tuple 〈F,W,U, V 〉, and a market instance is denoted by

〈F,W, u, v〉. Each firm f receives distinct utilities from different workers with probability 1. Thus

for each 〈F,W, u, v〉, we can derive a strict preference list �f as

�f= w,w′, . . . , w′′

if and only if

uf,w > uf,w′ > · · · > uf,w′′ .

We study properties of stable matchings in a sequence of random markets 〈Fn,Wn, Un, Vn〉∞n=1. The

index n will be omitted whenever to do so does not lead to confusion.

The model includes both cases of a commonality of preferences (λ > 0) and pure private-values

(λ = 0). The common-values introduce a commonality of preferences among firms over workers,

and among workers over firms. When λ > 0, firms with high level of common-values tend to be

ranked higher by workers, and vice versa. If λ = 0, all utilities are i.i.d, so a firm’s ordering of

workers are equally likely to be any permutation from the set of all permutations of n workers.

Similarly, a worker’s ordering of firms are equally likely to be any permutation from the set of all

permutations of n firms.

In practice, commonality of preferences is prevalent. In the NRMP, some hospitals are consid-

11 The bounded support condition of common-values is not necessary for the results with complete information
(Theorem 1 and Corollary 2), and thus is not used in the proofs in Section C. We use the condition later for results
with incomplete information (Theorem 4). When the supports are not bounded, the difference in the utilities of a
firm from its most preferred workers tends to increase as the market becomes large.

12 In terms of preferences induced by utilities, this assumption implies that all workers are acceptable to firms,
and all firms are acceptable to workers. We impose this condition to keep the model tractable. If we relax the
assumption, however, we obtain even stronger incentive compatibility, as far as all firms and workers are matched in
stable matchings under true preferences. The intuition is similar to that behind the proof of Corollary 2.
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ered prestigious and some doctors are considered very well-qualified. The common-value compo-

nent provides a way of taking into account such commonality of preferences, while retaining the

tractability of the model.

Although the pure private-value case (λ = 0) hardly represents any real application, it is theo-

retically valuable to include it in our model. Commonality drives the uniqueness of stable matchings

(Eeckhout, 2000; Clark, 2006), a condition in which no agent has an incentive to misrepresent her

preferences in a stable matching mechanism (Roth and Sotomayor, 1990). Samet (2011) also pro-

poses commonality as a source establishing a small core: the small difference between utilities from

the stable matchings favorable to firms, and to workers. By including the pure private-value case in

our model, we can highlight that non-manipulability of stable matching mechanisms is a property

solely derived from market size. Commonality may contribute to, but is not necessary for, incentive

compatibility of stable matching mechanisms.13

3 Main Results

We informally state the main theorem, and then restate it with formal expressions. Later, we find

an equilibrium behavior of a game induced by a stable matching mechanism in which most agents

reveal their true preferences.

3.1 Stable Matchings in Large Markets

We first show that, while agents in a large market typically have multiple stable matching partners,

most agents are close to being indifferent among the stable matching partners.

Theorem For every ε > 0, the expected proportion of firms (and workers) whose utility from one

stable matching is within ε of the utility from any other stable matching, converges to one as the

market becomes large.

Corollary For any positive cost of misrepresenting preferences, if other agents truthfully reveal

their preferences, the expected proportion of agents who have no incentive to manipulate a stable

matching mechanism converges to one as the market becomes large.

It has been known that no stable matching mechanism is strategy-proof (Roth, 1982). For

instance, when the worker-optimal matching mechanism (e.g. worker-proposing Gale-Shapley al-

gorithm) is applied, although it is a dominant strategy for every worker to state her true preference

list (Roth, 1982; Dubins and Freedman, 1981), there might be a firm which can become better

off by misrepresenting its preference list. Noting that a matching mechanism is defined over all

possible preference profiles, we may expect that a stable matching mechanism is not manipulable in

13 When preferences have a strong commonality, a stable matching mechanism may have a higher chance to fail by
unraveling instead of strategic preference misrepresentation (Halaburda, 2010). In any case, our model includes all
degrees of commonality of preferences.
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most cases of preference profiles. Unfortunately, though, it turns out that whenever there is more

than one stable matching, at least one agent can profitably misrepresent her preferences (Roth and

Sotomayor, 1990), and the condition of a preference profile containing a unique stable matching

seems to be quite restrictive (Eeckhout, 2000; Clark, 2006).

However, the gain by manipulation is bounded even when agents form a coalition and coordinate

the members’ strategic behavior. Not all firms in the coalition will prefer the new matching outcome

to the firm-optimal stable matching with respect to the true preferences, and not all workers in

the coalition will prefer the new matching outcome to the worker-optimal stable matching with

respect to the true preferences (Demange, Gale, and Sotomayor, 1987). Formally, let � be a true

preference profile, and let �′ differ from � in that some coalition S of firms and workers misstate

their preferences. Then, there is no matching, stable under �′, which is strictly preferred to every

stable matching under � by all members of S. If a coalition consists of a single firm, then the best

the firm can achieve is matching with the firm-optimal stable matching partner with respect to

the true preferences. Likewise, the best a worker can achieve is matching with the worker-optimal

stable matching partner. Since every firm and worker is guaranteed to be matched with a stable

matching partner without any strategic manipulation, the gain by manipulation is bounded by the

difference between utilities from the firm-optimal and the worker-optimal stable matching partners.

As such, the main theorem implies that agents in a large market are most likely to have only a

slight utility gain by misrepresenting their preferences, given that all other agents reveal their true

preferences. For any given cost of misrepresenting preferences, if a market is large, participants are

most likely to find no incentive to manipulate a stable matching mechanism.

In order to see whether a real market is large enough to mitigate incentives to manipulate

stable matching mechanisms, we simulate our model with a market size of 26,000, roughly the

same size of the NRMP in 2011.14 We generate firms’ and workers’ utilities from common-values

and independent private-values, each of which is randomly drawn from the uniform distribution

over [0, 1]. Table 3 presents the proportion of firms whose differences in utilities generated by

stable matchings are less than 0.05 (upper table) and 0.01 (lower table). The results show that for

reasonable degrees of commonality of preferences, the size of the NRMP is large enough such that

most agents would not have a significant incentive to manipulate a stable matching mechanism.

Formal Statement Given a market instance 〈F,W, u, v〉 and a matching µ, we let uµ(·) and vµ(·)
denote utilities from the matching outcome: i.e. uµ(f) := uf,µ(f) and vµ(w) := vµ(w),w. For each

f ∈ F , we define ∆(f ;u, v) as the difference between utilities from firm-optimal and worker-optimal

stable matching outcomes: i.e.

∆(f ;u, v) := uµF (f)− uµW (f).

14 In 2011, there were 30,589 active applicants and 26,158 positions offered by 4,235 programs. See http://www.

nrmp.org/data/resultsanddata2011.pdf and http://www.nrmp.org/res_match/about_res/impact.html.
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λ 0.2 0.4 0.6 0.8

Result 1 97.41% 98.83% 99.39% 99.93%
Result 2 97.44% 98.79% 99.42% 99.92%
Result 3 97.43% 98.67% 99.47% 99.95%

(Differences in utilities < 0.05)

λ 0.2 0.4 0.6 0.8

Result 1 92.84% 96.64% 98.00% 99.44%
Result 2 93.04% 96.70% 98.10% 99.32%
Result 3 92.91% 96.52% 98.28% 99.48%

(Differences in utilities < 0.01)

Table 3: Proportions of firms with small differences in utilities (n=26,000)

Then, for every ε > 0, we have the set of firms whose utilities are within ε of one another for all

stable matchings, which is denoted by

AF (ε;u, v) := {f ∈ F | ∆(f ;u, v) < ε} .

The previous theorem is an informal statement of the following theorem. We have similar

notations and a theorem for workers, which are omitted here.

Theorem 1. For every ε > 0,

E

[∣∣AF (ε;U, V )
∣∣

n

]
→ 1, as n→∞.

3.2 Equilibrium Analysis

Previously, we showed that most agents have no incentive to manipulate a stable matching mecha-

nism as a market becomes large. However, the result requires the condition that all other partici-

pants reveal their true preferences. This condition is problematic since a small proportion of agents

may still have large incentives to misrepresent their preferences. We may want to derive incentive

compatibility as equilibrium behavior of a game induced by a stable matching mechanism.

In fact, the main theorem implies that with high probability a large market has a natural

equilibrium in which most agents reveal their true preferences. We first state this finding as a

corollary, and then describe appealing aspects of the equilibrium behavior and the intuition behind

the proof.

Corollary 2. For any ε, δ, θ > 0, there exists N such that with probability at least (1− δ) a market

of size n > N has an ε-Nash equilibrium in which (1 − θ) proportion of agents reveal their true

preferences.

This corollary is based on simple equilibrium behavior. Most agents simply reveal their true

preferences. Agents misrepresenting their preferences use truncation strategies: an agent submits
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a preference list of the first k (k < n) in the same order as her true preference list. Truncations

are natural strategies. Agents do not need to carefully devise the order of the preference list. In

addition, truncation strategies are undominated, or, in other words, have “a best response property”

(Roth and Vande Vate, 1991). If a stable matching mechanism is applied, for any given submitted

preferences by other agents, an agent always has a best response that is a truncation of her true

preference list.15

For each market instance 〈F,W, u, v〉, we consider an ε-Nash equilibrium in which some (not nec-

essarily all) agents, who have potential gains from manipulations larger than ε, submit truncations

of their true preferences. If there exists a stable matching under the true preferences remaining

individually rational under the announced preferences, then for all participants the difference be-

tween utilities from firm-optimal and worker-optimal stable matchings decreases. Specifically, let

� be a true preference profile and �′ differ from � in that some coalition of firms and workers

misstate their preferences using truncations. If there exists at least one matching µ stable under

� remaining individually rational under �′, then all stable matchings for �′ are also stable under

�. Thus, truncations by some agents result in smaller differences in utilities from stable matchings

for all participants.

This property follows because truncations do not create additional blocking pairs. If a matching

µ, which is stable under �, remains individually rational under �′, then µ is indeed stable under �′

since no blocking pair has been generated by truncations. Noting that the set of unmatched agents

is the same for all stable matchings (McVitie and Wilson (1970)), all participants are matched in

stable matchings under �′.16 Then, any stable matching µ′ with regard to �′ is also stable under

�. If (f, w) is a blocking pair of µ′ with respect to �, then it would have been a blocking pair of

µ′ with respect to �′, which contradicts that µ′ is stable under �′.
For any preference profile and for any coalition of participants, there exist truncations by

members of the coalition such that at least one stable matching under true preferences remains

individually rational, and those who truncate their preferences have no incentive to truncate further.

Then, participants who initially have smaller than ε differences in utilities from stable matchings

will have even less differences in utilities from stable matchings under the announced preferences.

Thus, these participants have no incentive to respond to others’ truncations, thereby submitting

their true preferences. Lastly, Theorem 1 guarantees that most participants are the ones revealing

their true preferences.17

15 Furthermore, when agents do not have complete information about the preference profile, truncation strategies
require less information to manipulate a stable mechanism (Roth and Rothblum, 1999).

16 Here, we use the condition that all participants are matched in stable matchings under �. If some agents
are unmatched in stable matchings due to, for instance, unequal populations or unacceptable agents, we need an
additional condition that agents would truncate their preferences only when truncations are strictly profitable. In
particular, if an agent is unmatched in stable matchings under �, the agent will remain unmatched when she truncates
her preference list. If these unmatched agents do not truncate their preference lists, then we obtain the same result:
all stable matchings under �′ are stable under �, provided that there exists a stable matching under � remaining
individually rational under �′. The proof is easy to derive, and thus we omit it here.

17 We use an equivalent statement of Theorem 1. Note that |AF (ε;U, V )|/n is bounded above by 1 with probability
1. By using Theorem A.1 and Theorem A.2, we shall rewrite Theorem 1, written as convergence in mean, as the
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4 Intuition Behind the Proof of Theorem 1

To prove Theorem 1, we take distinct approaches for the pure common-value case (λ = 1), the pure

private-value case (λ = 0), and the general cases (0 < λ < 1).

For the pure common-value case (λ = 1), there exists a unique stable matching, so the theorem

follows immediately. A stable matching sorts firms and workers such that a firm and a worker in

the same rank will be matched with one another. Consider the firm-worker pair with the highest

common-values. The pair must be matched in a stable matching. If it were otherwise, the firm

would prefer the worker to its partner and the worker would prefer the firm to her partner, and

thus they would form a blocking pair. By sequentially applying the same argument to pairs with

the next highest common-values, we find that assortative matching is a unique stable matching.

For the pure private-value case (λ = 0), we still derive the theorem relatively easily from Pittel

(1989). Pittel considers a model that is essentially the same as our pure private-value model (λ = 0),

and analyzes the sum of each firm’s partner’s rank number in the worker-optimal stable matching.18

When each firm ranks workers in order of preferences (i.e. the most preferred worker is ranked 1,

the next worker is ranked 2, and so on), Pittel shows that the sum of the rank numbers of firms’

partners in the worker-optimal stable matching is asymptotically equal to n2 log−1 n. Then, the

rank number of each firm is roughly n log−1 n on average. In turn, as we normalize the rank number

by the market size n, the normalized average rank number is roughly equal to log−1 n, converging

to 0. As the private-values are randomly drawn from distributions with bounded supports, even

the worst stable matching gives utilities asymptotically close to the upper bound. Therefore, all

stable matchings yield only slightly different utilities.

For the general cases (0 < λ < 1), however, the probability distribution over preference profiles

becomes complicated and intractable. Accordingly, we directly analyze the asymptotic utilities

rather than referring to the corresponding preference rank numbers. Basically, we want to count

participants whose utilities from all stable matchings are slightly different from each other. We

therefore need techniques of counting for which we use the bipartite graph theory. We interpret

the set of firms and workers as a bi-partitioned set of nodes and draw a graph based on the realized

utilities. Then, since the utilities are random, the theory of random bipartite graphs provides us

with techniques to count the likely numbers of nodes, i.e. firms and workers, meeting specified

conditions. Since the theory of random bipartite graphs has not been used before in the matching

literature, we describe the techniques in greater depth in the following subsection.

We relegate detailed proofs for the cases of λ = 0 and 0 < λ < 1 to Appendix B and Appendix C,

respectively.

following convergence in probability: for any ε, δ, θ > 0, there exists N such that

P

(∣∣AF (ε;U, V )
∣∣

n
> 1− θ

)
> 1− δ, for every n > N.

18 Pittel does not consider utilities, but a model with random preference profiles. As all preference profiles are
equally likely to occur, though, the model is essentially the same as our pure private-value model (λ = 0).
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4.1 A Random Bipartite Graph Model

A graph G is a pair (V,E), where V is a set called nodes and E is a set of unordered pairs (i, j)

or (j, i) of i, j ∈ V called edges. The nodes i and j are called the endpoints of (i, j). We say

that a graph G = (V,E) is bipartite if its node set V can be partitioned into two disjoint subsets

V1 and V2 such that each of its edges has one endpoint in V1 and the other in V2. A biclique of

a bipartite graph G = (V1 ∪ V2, E) is a set of nodes U1 ∪ U2 such that U1 ⊂ V1, U2 ⊂ V2, and for

all u1 ∈ U1 and u2 ∈ U2, (u1, u2) ∈ E. In other words, a biclique is a complete bipartite subgraph

of G. We say that a biclique is balanced if |U1| = |U2|, and refer to a balanced biclique with the

maximum number of nodes as a maximum balanced biclique.

Given a partitioned set V1∪V2, we consider a random bipartite graph G(V1∪V2, p). A bipartite

graph G = (V1 ∪ V2, E) is constructed so that each pair of nodes, one in V1 and the other in V2, is

included in E independently with probability p. We use the following theorem in the proof.

Theorem 3 (Dawande, Keskinocak, Swaminathan, and Tayur (2001)). Consider a random bipar-

tite graph G(V1 ∪ V2, p), where 0 < p < 1 is a constant, |V1| = |V2| = n, and β(n) = logn/ log 1
p . If

the maximum balanced biclique of this graph has size B ×B, then

P (β(n) ≤ B ≤ 2β(n))→ 1, as n→∞.

4.2 Intuition of the Proof (0 < λ < 1)

Roughly stated, we observe that stable matchings become assortative-like matchings as a market

becomes large: firms with higher common-values become more likely to match with workers with

higher common-values. We illustrate this assortative-like feature of stable matchings by introducing

a 3-tier market. In a 3-tier market, firms and workers are partitioned into three tiers, and endowed

with tier-specific common-values. Then, most firms and workers in the same tier are matched with

each other in assortative-like stable matchings. In this situation, the expected proportion of firms

in tier-1, which fail to achieve high levels of utility converges to 0 as the market becomes large. We

demonstrate how to use techniques from the theory of random bipartite graphs as we prove this

observation formally.

In a 3-tier market, F is partitioned into F1, F2, and F3; and W is partitioned into W1, W2, and

W3. For simplicity, we assume that all tiers are of equal size:

|Fk| = |Wk| = n/3 (k = 1, 2, 3).

If f ∈ Fk and w ∈Wl are matched with one another, then they receive utilities

Uf,w = uol + ζf,w and Vf,w = vok + ηf,w.
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Common-values are uniquely determined by tiers such that

uo1 > uo2 > uo3 and vo1 > vo2 > vo3.

Private-values, ζf,w and ηf,w, are randomly drawn from uniform distributions over [0, ū] and [0, v̄],

respectively. In other words, the firm receives tier-specific common-value corresponding to the

worker’s tier added to independent private-value, and the worker receives tier-specific common-

value corresponding to the firm’s tier added to independent private-value. We, without loss of

generality, ignore λ and (1 − λ) by incorporating the weights into the tier-specific common-values

and the distributions of independent private-values.

We find an asymptotic lower bound on utilities that tier-1 firms receive in a stable matching

mechanism. The lower bound is defined as the level arbitrarily close to the maximal utility that a

firm can achieve by matching with tier-2 workers: i.e. uo2 + ū − ε. That is, firms in tier-1 achieve

high levels of utility by levering on the existence of tier-2 workers. Although not necessarily being

matched with tier-2 workers, firms in tier-1 would otherwise make blocking pairs with workers in

tier-2. Formally, we define the set of tier-1 firms that fail to achieve the specified utility level in

the worker-optimal stable matching as

F̄ := {f ∈ F1 | uµW (f) ≤ uo2 + ū− ε} ,

and show that

E

[
|F̄ |
n/3

]
→ 0, as n→∞.

Given realized private-values, we draw a bipartite graph with the set of firms in tier-1, and

workers in tiers up to 2 (i.e. tier-1 and tier-2) as a bi-partitioned set of nodes (see the left figure

in Figure 2). Each pair of f ∈ F1 and w ∈W1 ∪W2 is joined by an edge if and only if one of their

private-values is low:

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − (vo1 − vo2).

We define the set of workers in tiers up to 2 matched with non tier-1 firms as

W̄ := {w ∈W1 ∪W2 | µW (w) /∈ F1} .

Then, F̄ ∪ W̄ is a biclique: i.e. every firm-worker pair from F̄ and W̄ is joined by an edge (as

illustrated by the right figure in Figure 2).

To see why F̄ ∪ W̄ is a biclique, suppose that f ∈ F̄ and w ∈ W̄ are not joined. Since f ∈ F̄ ,

uµW (f) ≤ uo2 + ū− ε.

Since w ∈ W̄ , the worker is not matched with a tier-1 firm, and thus

vµW (w) ≤ vo2 + v̄.
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Figure 2: For each realized utility, we draw a bipartite graph with firms in tier-1 and workers in tiers up to
2 as the partitioned set of nodes (left). Firms in tier-1 receiving low utilities (F̄ ) and workers in tiers up to
2 matched with non tier-1 firms (W̄ ) form a biclique (right).

That is, f and w mutually fail to achieve high levels of utility.

On the other hand, since they are not joined by an edge,

ζf,w > ū− ε and ηf,w > v̄ − (vo1 − vo2),

and therefore

uf,w > uo2 + ū− ε and vf,w > vo1 + v̄ − (vo1 − vo2) = vo2 + v̄.

In other words, the firm-worker pair’s private-values are mutually so high that they would have

achieved high utilities by making a blocking pair. This contradicts that µW is a stable matching.

This construction of a bipartite graph fits into a random bipartite graph model. Given that

the tier-structure specifies a bi-partitioned set of nodes, we draw a bipartite graph based on the

realized private-values. Since the private-values are i.i.d, each firm-worker pair is joined by an edge

independently and with an identical probability. By Theorem 3, if the bi-partitioned set of nodes

has a size on the order of n, and each pair of nodes is joined by an edge independently with a fixed

probability, then the maximum balanced biclique has a size on the order of log(n) with a sequence

of probabilities converging to 1 as n gets large. In addition, W̄ contains at least n/3 workers, since

there are 2n/3 workers in tiers up to 2, but only n/3 firms in tier-1: i.e. W̄ has a size on the order

of n. Therefore, F̄ must have a size, at most, on the order of log(n) with a sequence of probabilities

converging to 1. The biclique F̄ ∪W̄ would otherwise contain a balanced biclique with a size bigger

than on the order of log(n), violating the Theorem 3. Lastly, E
[
|F̄ |
n/3

]
→ 0 follows immediately

from log(n)/n→ 0.

For the main theorem (without tier structure), we begin the proof by partitioning the supports

of distributions for common-values. Suppose the common-values are drawn from the uniform dis-

tribution over [0, 1]. We partition the unit interval into K subintervals with equal lengths. Workers
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and firms are, in turn, grouped into tiers where firms or workers in the same tier have common-

values in the same subinterval. Basically, we continue the proof as if we have a model with a

finite number K of tiers. The tiers, though, need to be handled with care. This time, because the

common-values are random, the tier structure is random. Moreover, agents in adjacent tiers may

have arbitrarily close common-values.

As we increase the number of partitions K, the asymptotic lower bound on the utilities of firms

in tier-k becomes close to the maximal utility achievable by matching with a worker in tier-k. With

a similar exercise, we find an asymptotic lower bound on utilities of workers in each tier. Then,

workers in tiers significantly higher than k are most likely to match with firms in tiers higher than

k. This assortative-like feature of stable matchings induces an asymptotic upper bound on utilities

of tier-k firms. As we finely partition the supports of the distributions of common-values, the

differences in the common-values of firms or workers in similar tiers become slightly distinct from

each other. Therefore, the asymptotic upper bound on utilities of firms in tier-k also becomes close

to the maximal utility achievable by matching with a worker in tier-k. That is, we can find an

asymptotic lower bound and an asymptotic upper bound, which are arbitrarily close to each other.

5 Market with Incomplete Information

We have so far considered a market with complete information. Agents are assumed to be able to

assess the exact gain by misrepresenting preferences. It is a strong assumption, especially when

we consider large markets. More realistically, we may want to consider a market with incomplete

information, where each agent is only partially informed about the preferences of other participants.

Nevertheless, we have mainly focused on the case of complete information since we can extrapo-

late its findings to show that the incentive to misrepresent preferences vanishes under incomplete

information.

In relaxing the complete information assumption, we may consider various information struc-

tures. Each agent may know only the probability distributions in addition to either (i) her own

utilities; (ii) her own utilities and the common-values of the other side; (iii) her own utilities, the

common-values of the other side, and her own common-value evaluated by the other side; or (iv)

her own utilities and all agents’ common-values. The following results in the context of incomplete

information correspond to the main theorem and its direct corollary for the model with complete

information. As before, we first state the theorem informally, and then restate it with formal

expressions.

Theorem Regardless of information structure and for every ε > 0, the expected proportion of

firms (and workers) whose expected differences in utilities generated by all stable matchings are less

than ε, converges to one as the market becomes large.

Corollary For any positive cost of misrepresenting preferences, if other agents truthfully reveal

their preferences, the expected proportion of agents who have no incentive to manipulate a stable
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matching mechanism converges to one as the market becomes large.

The intuition behind the theorem is clear. An expectation is a convex combination of all re-

alizations. The expected difference between utilities from firm-optimal and worker-optimal stable

matchings under incomplete information is simply a convex combination of the differences between

utilities from the two stable matchings in all realized market instances. The differences between

utilities are most likely to be insignificant (Theorem 1). Therefore, the expected difference in

utilities is most likely to be negligible as well. We relegate the detailed proofs to Appendix D.

There are two advantages of showing the result in the context of complete information first, and

then deriving the same result in the context of incomplete information. First, the results are robust

to the information structure. The intuition of showing the results with incomplete information

by using convex combinations remains valid regardless of the details of the information structure.

Secondly, we can stress that non-manipulability of stable matching mechanisms is a property of the

two-sided matching market itself, rather than stemming from insufficient information to manipulate

the mechanism. Even when an agent can obtain complete knowledge of a preference profile at a

small cost, it is not worth incurring that cost since the gain from manipulation will be small.

Formal Statement Let Πf denote what f knows about a preference profile, and let πf de-

note its realization. Then, the various incomplete information structures are denoted by (i)

Πf = 〈Uf,w〉w∈W ; (ii) Πf = 〈Uf,w, Uow〉w∈W ; (iii) Πf = 〈Uf,w, Uow〉w∈W ∪ {V o
f }; and (iv) Πf =

〈Uf,w, Uow〉w∈W ∪ 〈V o
f ′〉f ′∈F . Given a market instance 〈F,W, u, v〉, we define ∆E(f ;u, v) as the

expected difference between utilities from firm-optimal and worker-optimal stable matchings con-

ditioned on πf . That is,

∆E(f ;u, v) := EU,V [uµF (f)− uµW (f) | πf ] ,

where the expectation is applied to firm-optimal and worker-optimal stable matchings. For every

ε > 0, we correspondingly have the set of firms, whose expected differences in utilities from all

stable matchings are less than ε, which is denoted by

AFE(ε;u, v) := {f ∈ F | ∆E(f ;u, v) < ε} .

The previous theorem is an informal statement of the following theorem. We have similar

notations and a theorem for workers, which are omitted here.

Theorem 4. For any given information structure and for every ε > 0,

E

[∣∣AFE(ε;U, V )
∣∣

n

]
→ 1, as n→∞.

Equilibrium Analysis Unfortunately, we do not obtain an equilibrium corresponding to the

ε-Nash equilibrium in the context of complete information by using convex combinations. The ob-
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stacle to obtaining an equilibrium is that truncations by some agents may increase the differences

in utilities generated by stable matchings for other participants. When preferences are known to

all participants, truncations can preserve a stable matching under true preferences as individually

rational under the announced preferences. The following example shows that this condition is nec-

essary for truncations by some agents to decrease the differences in utilities from stable matchings

for other participants.

f1: 〈w1〉 � w2 � w3

f2: 〈w2〉 � w3 � w1

f3: w1 � w2 � 〈w3〉

f1: 〈w1〉 � [w2] � w3

f2: 〈w2〉 � w3 � [w1]

f3: w1 � w2

,

w1: f2 � 〈f1〉 � f3

w2: f1 � 〈f2〉 � f3

w3: f1 � f2 � 〈f3〉

w1: [f2] � 〈f1〉 � f3

w2: [f1] � 〈f2〉 � f3

w3: f1

Table 4: True preferences (upper) and their truncations (lower).

Table 4 lists true preferences of firms and workers (upper tables) and their truncations (lower

tables). In the example, there is a unique stable matching (marked by 〈·〉) under the true prefer-

ences. When f3 and w3 truncate their preferences, however, there are two stable matchings (marked

by 〈·〉 and [·]). If some agents announce that all stable matching partners are unacceptable, other

agents may have larger differences in utilities from all stable matchings.

Given incomplete information of a preference profile, an agent may submit a truncation of

her true preference list based on the expected utility gain by manipulation. She may then re-

main unmatched afterwords depending on the realized preference profile. In this case, truncations

may expand differences in utilities from stable matchings of other participants. Although most

agents initially have small differences in utilities from stable matchings, participants may want to

misrepresent their preferences as a best response to other agents’ truncations.

6 Conclusions

This paper demonstrates an asymptotic similarity of stable matchings as the number of partici-

pants becomes large. Our measure of similarity is based on utilities, by which ordinal preferences

are determined. As the utilities are drawn from some underlying probability distributions, one can

analyze the likely differences in utilities from all stable matchings. We show that the expected pro-

portion of firms and workers who are close to being indifferent among all stable partners converges
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to one as the market becomes large.

The result also implies that the expected proportion of agents who have a significant incentive to

manipulate the mechanism vanishes in large markets. This is because the gain from manipulation

of a stable matching mechanism is bounded above by the difference between utilities from the firm-

optimal and the worker-optimal stable matchings. In addition, we show that with high probability

a large market has an ε-Nash equilibrium in which most agents reveal their true preferences. We

prove our results using techniques from the theory of random bipartite graphs, which is a new

approach in the matching literature.

This paper is one of many recent studies exploring how the popularly used matching mechanisms

really work in practice. It is essential to have a better understanding of stable matching mechanisms

as market design applications expand from the NRMP and the School Choice Programs to many

other markets, including dental residencies, various medical specialty matching programs, and labor

markets for law clerks. Of particular relevance here is the fact that market designers are hoping to

investigate the desirability of a clearinghouse in the market for economics Ph.D.s (Coles, Cawley,

Levine, Niederle, Roth, and Siegfried, 2010). As such, understanding stable matching mechanisms

in real applications becomes not only a market designers’ question in theory, but is of concrete

interest for economists in general.

Appendix

First in Appendix A, we summarize definitions and related theorems of asymptotic statistics. We

prove Theorem 1 for the case of λ = 0 in Appendix B, and for the case of 0 < λ < 1 in Appendix C.

The proof of Theorem 4 is given in Appendix D. Lastly in Appendix E, we provide additional

simulation results of effects of limited acceptability assumption on the proportion of unmatched

agents.

A Asymptotic Statistics (Serfling, 1980)

Let X1, X2, . . . and X be random variables on a probability space (Ω,A, P ). We say that Xn

converges in probability to X if

lim
n→∞

P (|Xn −X| < ε) = 1, every ε > 0.

This is written Xn
p−→ X.

For r > 0, we say that Xn converges in the rth mean (or in the Lr-norm) to X if

lim
n→∞

E (|Xn −X|r) = 0.

This is written Xn
Lr−→ X.
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Theorem A.1. If Xn
Lr−→ X, then Xn

p−→ X.

Theorem A.2. Suppose that Xn
p−→ X, |Xn| ≤ |Y | with probability 1 (for all n), and E (|Y |r) <

∞. Then, Xn
Lr−→ X.

Remark 1. In this paper, most random variables represent proportions, which are bounded above

by 1 with probability 1. As such, convergence in probability and convergence in the rth mean are

equivalent.

Theorem A.3. Let X1,X2, . . . , and X be random k-vectors defined on a probability space, and let

g be a vector-valued Borel function defined on Rk. If g is continuous with PX-probability 1, then

Xn
p−→ X =⇒ g(Xn)

p−→ g(X).

In particular, if Xn
p−→ X and Yn

p−→ Y , then Xn + Yn
p−→ X + Y and XnYn

p−→ XY .

Given a univariate distribution function F and 0 < q < 1, we define qth quantile ξq as

ξq := inf{x : F (x) ≥ q}.

Consider an i.i.d sequence 〈Xi〉 with distribution function F . For each sample of size n, {X1, X2, . . . , Xn},
a corresponding empirical distribution function Fn is constructed as

Fn(x) :=
1

n

n∑
i=1

1 {Xi ≤ x} , −∞ < x <∞.

The empirical qth quantile ξ̂q:n is defined as the qth quantile of the empirical distribution

function. That is

ξ̂q:n := inf{x : Fn(x) ≥ q}.

For each x, Fn(x) is a random variable, and therefore, ξ̂q:n is also a random variable.

Theorem A.4. Suppose that qth quantile ξq is the unique solution x of F (x−) ≤ q ≤ F (x). Then,

for every 0 < q < 1 and ε > 0,

P
(∣∣∣ξ̂q:n − ξq∣∣∣ > ε

)
≤ 2e−2nλ2

ε

for all n, where λ1,ε = F (ξq + ε)− q, λ2,ε = q − F (ξq − ε), and λε = min{λ1,ε, λ2,ε}.

For each sample of size n, {X1, X2, . . . , Xn}, the ordered sample values

X1:n ≤ X2:n ≤ · · · ≤ Xn:n

are called the order statistics.

In view of

Xk:n = ξ̂k/n:n, 1 ≤ k ≤ n, (1)
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we will carry out proofs in terms of empirical quantiles, even when variables are defined as order

statistics.

B Proof of Theorem 1 (λ = 0)

Let ζ = [ζf,w] be an i.i.d sample from a continuous distribution ΓW with support [0, ū], and

η = [ηf,w] be an i.i.d sample from a continuous distribution ΓF with support [0, v̄].19

For ε > 0 and for each 〈F,W, u, v〉, we define

BF (ε;u, v) := F\AF (ε;u, v) = {f ∈ F | ∆(f ;u, v) ≥ ε} ,

and prove that

E

[∣∣BF (ε;U, V )
∣∣

n

]
→ 0, as n→∞. (2)

We define the set of firms whose utilities from the worst stable matching are significantly below

the upper bound ū, which we shall write as

B̄(ε;u, v) := {f ∈ F |uµW (f) ≤ ū− ε} .

Note from uµF (f) ≤ ū that

uµF (f)− uµW (f) ≤ ū− uµW (f),

and thus

BF (ε;u, v) ⊂ B̄(ε;u, v).

Therefore, (2) follows immediately from the following proposition.

Proposition B.1. For every ε > 0,

E

[∣∣B̄(ε;U, V )
∣∣

n

]
→ 0 as n→∞.

We divide the proof of Proposition B.1 into two lemmas. For every market instance 〈F,W, u, v〉,
we let RµW (f) be the rank number of firm f ’s worker-optimal stable matching partner: e.g.

RµW (f) = 1 if f matches with its most preferred worker. We first observe that for most firms,

the rank number of worker-optimal matching partner normalized by n converges to 0. The second

lemma shows that the corresponding utility level must become close to the upper bound ū as the

market becomes large.

19 We use ΓW , instead of ΓF , to represent the distribution of utilities of firms, interpreting it as the distribution
of private-values of workers. This notation will be consistent with the additional notation GW representing the
distribution of workers’ common-values. By the same reason, we use ΓF to denote the distribution of utilities of
workers, or private-values of firms.
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Lemma B.2. For γ > 0, let

B̄q(γ;u, v) :=

{
f ∈ F | RµW (f)

n
≥ γ

}
=

{
f ∈ F | 1− RµW (f)

n
≤ 1− γ

}
.

Then, for every sequence 〈γn〉 such that γn → 0 and (log n) · γn →∞,

E

[∣∣B̄q(γn;U, V )
∣∣

n

]
→ 0 as n→∞.

Proof. For every instance 〈F,W, u, v〉 and for every sequence 〈γn〉 satisfying the conditions,

1

n
γn
∣∣B̄q(γn;u, v)

∣∣ ≤ 1

n

∑
f∈B̄q(γn;u,v)

RµW (f)

n

≤ 1

n

∑
f∈Fn

RµW (f)

n
.

We use Theorem 2 in Pittel (1989) showing that∑
f∈Fn RµW (f)

n2 log−1 n

p−→ 1. (3)

Applying (3), we shall write∣∣B̄q(γn;U, V )
∣∣

n
≤
∑

f∈Fn RµW (f)

n2

1

γn

=

∑
f∈Fn RµW (f)

n2 log−1 n

1

log n · γn
p−→ 0 as n→∞.

We obtain Lemma B.2 since
|B̄q(γn;U,V )|

n is bounded above by 1 with probability 1 for all n so

that convergence in probability implies convergence in mean (Theorem A.2).

Lemma B.3. For any γ > 0, let

B̄′(ε, 1− γ;u, v) :=
{
f ∈ F | ξ̂f1−γ;n ≤ ū− ε

}
,

where ξ̂f1−γ;n is the realized value of the empirical (1− γ)th quantile of Uf = 〈Uf,w〉w∈Wn.

Then, for every ε > 0 and sequence 〈γn〉 such that γn → 0 and (log n) · γn →∞,

E

[∣∣B̄′(ε, 1− γn;U, V )
∣∣

n

]
→ 0 as n→∞.
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Proof. For each n, let fn ∈ Fn and consider the resulting sequence 〈fn〉∞n=1. Note that

E

[
|B̄′(ε, 1− γn;U, V )|

n

]
=

1

n

∑
f∈Fn

E
[
1
{
ξ̂f1−γn;n ≤ ū− ε

}]
= E

[
1
{
ξ̂fn1−γn;n ≤ ū− ε

}]
= P

(
ξ̂fn1−γn;n ≤ ū− ε

)
.

Thus, it is enough to show that

P
(
ξ̂fn1−γn;n ≤ ū− ε

)
→ 0, as n→∞.

Take any q from the interval
(
ΓW (ū− ε), 1

)
such that qth quantile ξq is the unique solution x

of ΓW (x−) ≤ q ≤ ΓW (x).20 For any large n, we have 1− γn > q, and thus

ξ̂fn1−γn;n ≥ ξ̂
fn
q;n.

Therefore, we shall write

P
(
ξ̂fn1−γn;n ≤ ū− ε

)
≤ P

(
ξ̂fnq;n ≤ ū− ε

)
= P

(∣∣∣ξ̂fnq;n − ξq∣∣∣ ≥ ξq − (ū− ε)
)
,

which converges to 0 by Theorem A.4.

We complete the proof of Proposition B.1 using the following observation. For each 〈F,W, u, v〉
and for every sequence 〈γn〉 such that γn → 0 and (log n) · γn →∞,

B̄(ε;u, v) =
(
B̄(ε;u, v) ∩ B̄q(γn;u, v)

)
∪
(
B̄(ε;u, v) ∩ (F\B̄q(γn;u, v))

)
⊂ B̄q(γn;u, v) ∪

(
B̄(ε;u, v) ∩ (F\B̄q(γn;u, v)

)
.

Each f in F\B̄q(γn;u, v) matches in µW with a worker of a normalized rank less than γn.

Nevertheless if f obtains utility less than ū − ε in µW (i.e. f ∈ B̄(ε;u, v)), then the realized

empirical (1− γn)th quantile of his utilities is below ū− ε.
That is,

B̄(ε;u, v) ∩ F\B̄q(γn;u, v) ⊂ B̄′(ε, 1− γn;u, v),

20 There exists such a q. For every q in
(
ΓW (ū− ε), 1

)
, we have xq in (ū − ε, ū) such that ΓW (xq) = q by

Intermediate Value Theorem. Suppose toward contradiction that every q has two distinct xq and x̄q in (ū − ε, ū)

such that ΓW (xq) = ΓW (x̄q) = q. Since ΓW (·) is a distribution, every q then has a closed interval [xq, x̄q] such that

ΓW (x) = q for all x ∈ [xq, x̄q]. Moreover, if q 6= q′, then [xq, x̄q] and [xq′ , x̄q′ ] are disjoint. There are uncountable

number of elements in
(
ΓW (ū− ε), 1

)
, whereas there are at most countable number of closed disjoint intervals in

(ū− ε, ū).
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and therefore

B̄(ε;u, v) ⊂ B̄q(γn;u, v) ∪ B̄′(ε, 1− γn;u, v).

We proved in Lemma B.2 and B.3 that both
|B̄q(γn;U,V )|

n and |B̄′(ε,1−γn;U,V )|
n converge to 0 in

mean, which completes the proof.

C Proof of Theorem 1 (0 < λ < 1).

To simplify notations, we compress λ and 1− λ, and consider utilities defined as

Uf,w = Uow + ζf,w and Vf,w = V o
f + ηf,w.

We do not lose generality since we can regard common-values and private-values as the ones already

multiplied by λ and 1− λ, respectively.

Let Uon and V o
n be i.i.d samples of size n from distributions GW and GF , respectively. GW and

GF have strictly positive density functions on supports in R+.21 ζ = [ζf,w] is an i.i.d sample from a

continuous distribution ΓW with support [0, ū], and η = [ηf,w] is an i.i.d sample from a continuous

distribution ΓF with support [0, v̄].

We define

BF (ε;u, v) := F\AF (ε;u, v) = {f ∈ F | ∆(f ;u, v) ≥ ε}

and prove that |B
F (ε;U,V )|
n converges to 0 in probability, which is equivalent to proving convergence

to 0 in mean (Theorem A.2). That is, we fix ε > 0 and K ∈ N, and prove that

P

(
|BF (ε;U, V )|

n
>

9

K

)
→ 0, as n→∞.

First, we partition the supports of the common-value distributions into K intervals. Then for

each market instance, in particular for each realized profile of common-values, we group firms and

workers into two versions of a finite number of tiers, where agents in the same tier have similar

common-values. We first find that tier-k firms are most likely to achieve a utility level higher than an

arbitrary ε less than the maximal utility achievable from workers in tier-(k+3) (Proposition C.1).22

For the proof, we use techniques from a theory of random bipartite graphs.

Once we find an asymptotic lower bound on utilities of firms in each tier, we find an asymptotic

upper bound on utilities of firms in a tier, say k, by referencing to the asymptotic lower bounds

21 The bounded support condition of common-value distributions is not necessary for Theorem 1. We use the
condition later for Theorem 4 of incomplete information case.

22 In Section 4, we showed with a market with tiers that firms in tier-t are most likely to achieve a utility level
higher than an arbitrary ε less than the maximal utility from a worker in tier-(k + 1). In the model with tiers, each
tier has a distinct tier-specific common-value, so there is a clear-cut distinction between tier-k and tier-(k+1) specific
values. In the general model (without tiers), however, there is no such distinction in common-values between adjacent
tiers. The highest common-value of workers in tier-(k + 1) can be arbitrarily close to the lowest common-value of
workers in tier-k. This leads us to use the maximal utility from a worker in tier-(k+ 3) rather than tier-(k+ 1) as an
asymptotic lower bound on utilities of tier-k firms.
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on utilities of workers in tiers higher than k (Proposition C.2). As workers in higher tiers achieve

high utilities, they are most likely to match with firms in high tiers, rather than firms in tier-k.

Accordingly, the utilities of tier-k firms are asymptotically bounded above by the maximal utility

that they can achieve by matching with workers in tiers near k.

As we finely partition the supports of the common-value distributions, the differences in common-

values between adjacent tiers become small. Then, the asymptotic lower bound on utilities of tier-k

firms will become close to the maximal utility achievable from workers in tier-k. In addition, the

asymptotic upper bound also becomes close to the same level, since the maximal utility achievable

from workers in tiers near k will also become close to the maximal utility achievable from workers

in tier-k.

We divide the proof into three subsections. First, in Subsection C.1, we construct two tier

structures from each profile of realized common-values. Then in Subsection C.2, we define three

events related to the tier structures, and show that the all three events occur with a probability

converging to 1 as the market becomes large. The real proof begins in subsection C.3. During the

proof, we shall focus on the market instances where realized firms’ or workers’ common-values are

all distinct. GF and GW are continuous, ensuring that realized common-values are all distinct with

probability 1.

C.1 Tier-Grouping

We use the following notations.

1. ξFq and ξWq : qth quantile of GF and GW .

2. ξ̂Fq;n and ξ̂Wq;n: empirical qth quantile of n-size samples from distributions GF and GW , respec-

tively. We also use ξ̂Fq;n and ξ̂Wq;n to denote their realizations.

Since realized common-values uon = 〈uow〉w∈Wn and von = 〈vof 〉f∈Fn are all distinct with probability

1, we index firms and workers from i = 1 to n in the order of their common-values: i.e.

vofi > vofj and uowi > uowj , if i < j.

Then, Uowi;n and V o
fi;n

represent ith highest values of n order statistics from GW and GF . Note

that Uowi;n = ξ̂W
(1− i−1

n
);n

by the relationship between order statistics and empirical quantiles (see

Equation (1)).
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We partition the support of GW into

IW1 := (ξW
1− 1

K

,∞]

IW2 := (ξW
1− 2

K

, ξW
1− 1

K

]

...

IWk := (ξW
1− k

T

, ξW
1− k−1

K

]

...

IWK := [0, ξW1
K

].

We define the set of workers in tier-k (with respect to workers’ common-values) as

Wk(u) :=
{
w | uow ∈ IWk

}
for k = 1, 2, . . . ,K,

and define the set of firms in tier-k (with respect to workers’ common-values) as

Fk(u) := {fi ∈ Fn | wi ∈Wk(u)}.

We will use the following notations.

1. lk(u) := |Fk(u)| = |Wk(u)|: The size of tier-k (with respect to workers’ common-values).

2. uok := ξW
1− k

K

: The threshold level of tier-k and tier-(k + 1) workers’ common-values. Note,

w ∈Wk(u) if and only if uok < uow ≤ uok−1.

Remark 2. The set of tier-k workers is defined with respect to workers’ common-values, which is

a random sample. Therefore, Wk(U) is random, and so is Fk(U). In particular, the size of tier-k,

lk(U), is random; whereas, uok is a constant.

In parallel, we partition the support of GF into

IF1 := (ξF
1− 1

K

,∞]

IF2 := (ξF
1− 2

K

, ξF
1− 1

K

]

...

IFk := (ξF
1− k

K

, ξF
1− k−1

K

]

...

IFK := [0, ξF1
K

].

We define the set of firms in tier-k (with respect to firms’ common-values) as

Fk(v) :=
{
f | vof ∈ IFk

}
for k = 1, 2, . . . ,K,
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and define the set of workers in tier-k (with respect to firms’ common-values) as

Wk(v) := {wi ∈Wn | fi ∈ Fk(v)}.

Accordingly, we use the following notations.

1. lk(v) := |Fk(v)| = |Wk(v)|: The size of tier-k (with respect to firms’ common-values).

2. vok := ξF
1− k

K

: The threshold level of tier-k and tier-(k + 1) firms’ common-values. Note,

f ∈ Fk(u) if and only if vok < vof ≤ vok−1.

Remark 3. Tiers with respect to workers’ common-values are in general not the same as tiers with

respect to firms’ common-values. In particular, we are most likely to have lk(u) 6= lk(v).

Throughout the proof, we mainly use tiers defined with respect to workers’ common-values.

However, we need both tier structures in the last part of the proof. We simply write “tier-k” to

denote tier-k with respect to workers’ common-values, and use “(w.r.t firm) tier-k” to denote tier-k

with respect to firms’ common-values.

C.2 High-Probability Events

We introduce three events and show that the events occur with probabilities converging to 1 as

the market becomes large. We provide proofs for completeness, but the main ideas are simply

from the (weak) law of large numbers. In the next section, we will leave the probability that the

following events do not occur as a remainder term converging to zero, and focus on the probabilities

conditioned that the following events all occur.

C.2.1 No vanishing tiers

Event 1 (E1). Let K̄ > K. For all k = 1, 2, . . . ,K,

lk(U)

n
>

1

K̄
.

Proof. By definition,
lk(U)

n
:=

1

n

∑
w∈Wn

1{Uow ∈ IWk },

which converges to 1
K in probability by the (weak) law of large numbers.

C.2.2 Distinct common-values of the firms in non-adjacent tiers.

Let ε̃ > 0 be such that for any v, v′ ∈ [0, ξF1−1/K ] and |v − v′| ≤ ε̃,

|GF (v)−GF (v′)| < 1

3K
.
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There exists such an ε̃ since GF is uniformly continuous on [0, ξF1−1/K ].

Event 2 (E2). For every k = 1, 2, . . . ,K − 2,

min
f∈Fk(U)

f ′∈Fk+2(U)

|V o
f − V o

f ′ | > ε̃.

Proof. Fix k ∈ 1, 2, . . . ,K − 2 and realized u. For every wi ∈Wk(u) and wj ∈Wk+2(u),

uowi > uok = ξW
1− k

K

, and uowj ≤ u
o
k+1 = ξW

1− k+1
K

. (4)

For any q ∈ (0, 1), ξ̂Wq;n
p−→ ξWq (Theorem A.4), from which the following inequalities hold with

probability converging to 1 as n→∞.

ξW
1− k

K

> ξ̂W
1− k

K
− 1

4K

and ξW
1− k+1

K

< ξ̂W
1− k+1

K
+ 1

4K

. (5)

Considering (4) and the relation between order statistics and empirical quantiles (Equation (1)),

if (5) holds, we have

1− k

K
− 1

4K
< min

wi∈Wk(u)

(
1− i− 1

n

)
= min

fi∈Fk(u)

(
1− i− 1

n

)
and

1− k + 1

K
+

1

4K
> max

wj∈Wk+2(u)

(
1− j − 1

n

)
= max

fj∈Fk+2(u)

(
1− j − 1

n

)
.

Then for every fi ∈ Fk(u) and fj ∈ Fk+2(u),

vofi > ξ̂F
1− k

K
− 1

4K

and vofj < ξ̂F
1− k+1

K
+ 1

4K

.

Therefore,

P
(

inf
fi∈Fk(U)
fj∈Fk+2(U)

∣∣∣V o
fi
− V o

fj

∣∣∣ ≤ ε̃) ≤ P
(∣∣∣ξ̂F

1− k
K
− 1

4K

− ξ̂F
1− k+1

K
+ 1

4K

∣∣∣ ≤ ε̃)+Rn

≤ P

(∣∣∣GF (ξ̂F
1− k

K
− 1

4K

)−GF (ξ̂F
1− k+1

K
+ 1

4K

)
∣∣∣ < 1

3K

)
+Rn, (6)

where Rn corresponds to the probability that (5) is violated: i.e. Rn → 0. The last inequality is

by the definition of ε̃.

Note that

GF (ξ̂F
1− k

K
− 1

4K

)−GF (ξ̂F
1− k+1

K
+ 1

4K

)
p−→ 1

2K

by Theorem A.4 and continuity of GF (Theorem A.3). As a result, the right hand side of (6)

converges to 0.
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C.2.3 Similarity between tiers w.r.t workers’ common-values and tiers w.r.t firms’

common-values

The following event is the case that all firms in tier-k with respect to workers’ common-values are

in a tier near k with respect to firms’ common-values, and vice versa.

Event 3 (E3). For every k = 1, 2, 3, . . . ,K,

Fk(U) ⊂
k+1⋃

k′=k−1

Fk′(V ) and Wk(V ) ⊂
k+1⋃

k′=k−1

Wk′(U).23

Proof. We prove the first part and omit the proof of the second part.

For each realized (u, v), we have

{uow|w ∈Wk(u)} ⊂
(
uok, u

o
k−1

]
=
(
ξW

1− k
K

, ξW
1− k−1

K

]
. (7)

Suppose (
ξW

1− k
K

, ξW
1− k−1

K

]
⊂
(
ξ̂W

1− k
K
− 1

2K

, ξ̂W
1− k−1

K
+ 1

2K

]
, (8)

and (
ξ̂F

1− k
K
− 1

2K

, ξ̂F
1− k−1

K
+ 1

2K

]
⊂
(
ξF

1− k+1
K

, ξF
1− k−2

K

]
. (9)

If (8) hold, then (7) implies that for every tier-k worker wi, we have

uowi ∈
(
ξ̂W

1− k
K
− 1

2K

, ξ̂W
1− k−1

K
+ 1

2K

]
,

and thus,

1− i− 1

n
∈
(

1− k

K
− 1

2K
, 1− k − 1

K
+

1

2K

]
.

Then for any tier-k firm fi, we have

vofi ∈
(
ξ̂F

1− k
K
− 1

2K

, ξ̂F
1− k−1

K
+ 1

2K

]
,

which implies that {
vof | f ∈ Fk(u)

}
⊂
(
ξ̂F

1− k
K
− 1

2K

, ξ̂F
1− k−1

K
+ 1

2K

]
.

Consequently if both (8) and (9) hold, then

{
vof | f ∈ Fk(u)

}
⊂
(
ξ̂F

1− k
K
− 1

2K

, ξ̂F
1− k−1

K
+ 1

2K

]
⊂
(
ξF

1− k+1
K

, ξF
1− k−2

K

]
=

k+1⋃
k′=k−1

IFk′ .

23 We simply assume that F0(V ), F0(V ), WK+1(U), and WK+1(U) are empty sets.
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In other words,

Fk(u) ⊂
k+1⋃

k′=k−1

Fk′(v).

(8) and (9) occur with probability converging to 1 (Theorem A.4), and thus the event E3 also

occurs with probability converging to 1.

C.3 Proof of the Theorem 1

We choose K large enough that

max
1≤k≤K−1

∣∣uok − uok+1

∣∣ ≡ max
1≤k≤K−1

∣∣∣ξW
1− k

K

− ξW
1− k+1

K

∣∣∣ < ε

9
.24 (10)

We divide the proof into two propositions. The first proposition finds an asymptotic lower

bound on utilities of firms in each tier, using techniques from the theory of random bipartite

graphs. Similarly, we have a proposition for an asymptotic lower bound on utilities of workers in

each tier. The second proposition derives an asymptotic upper bound on utilities of firms in each

tier, by referencing the lower bounds on utilities of workers in higher tiers. The Theorem 1 follows

from the fact that the lower bound and the upper bound are close to each other.

Proposition C.1. For each instance 〈F,W, u, v〉 and for each k̄ = 1, 2, . . . ,K − 2, define

B̂F
k̄ (ε;u, v) :=

{
f ∈ Fk̄(u) : uµW (f) ≤ uok̄+2 + ū− ε

}
.25

Then for any ε > 0,
|B̂F

k̄
(ε;U, V )|
n

p−→ 0 as n→∞.

Proof. For each instance 〈F,W, u, v〉 and for each k = 1, 2, . . . ,K, let F≤k(u) :=
⋃
k′≤k Fk′(u) and

F<k(u) :=
⋃
k′<k Fk′(u). Similarly, we define W≤k(u) and W<k(u).

Take any k̄ from {1, 2, . . . ,K − 2}. We construct a bipartite graph with Fk̄(u) ∪W≤k̄+2(u) as

a partitioned set of nodes. (see Section 3 for the related definitions.) Two vertices f ∈ Fk̄(u) and

w ∈W≤k̄+2(u) are joined by an edge if and only if

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − ε̃,

where ε̃ is the value taken before, while defining E2.

Let W̄≤k̄+2(u, v) be the set of workers in tiers up to k̄ + 2 who are not matched with firms in

tiers up to k̄ + 1 in µW . That is,

W̄≤k̄+2(u, v) :=
{
w ∈W≤k̄+2(u) |µW (w) /∈ F≤k̄+1(u)

}
.

24 We can always satisfy the condition since GW has a strictly positive density function.
25 Note that uok̄+2 + ū is the maximal utility level a firm can achieve by matching with a worker in tier-(k̄ + 3).
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We now show that if E2 holds, then

B̂F
k̄ (ε;u, v) ∪ W̄≤k̄+2(u, v)

is a biclique.

Suppose, towards a contradiction, that a pair of f ∈ B̂F
k̄

(ε;u, v) and w ∈ W̄≤k̄+2(u, v) is not

joined by an edge: i.e.

ζf,w > ū− ε and ηf,w > v̄ − ε̃.

Then, we first have

uf,w = uow + ζf,w > uok̄+2 + ζf,w > uok̄+2 + ū− ε, (11)

and also have

vf,w = vof + ηf,w ≥ min
f ′∈Fk̄(u)

vof ′ + ηf,w > min
f ′∈Fk̄(u)

vof ′ + v̄ − ε̃.26

Conditioned on E2, we can proceed further and obtain

vf,w > min
f ′∈Fk̄(u)

vof ′ + v̄ −

(
min

f ′∈Fk̄(u)
vof ′ − max

f ′′∈Fk̄+2(u)
vof ′′

)
= max

f ′′∈Fk̄+2(u)
vof ′′ + v̄. (12)

On the other hand, f ∈ B̂F
k̄

(ε;u, v) implies that

uµW (f) ≤ uok̄+2 + ū− ε,

and w ∈ W̄≤k̄+2(u, v) implies that

vµW (w) ≤ max
f ′′∈Fk̄+2(u)

vof ′′ + v̄,

since a worker can obtain utility higher than maxf ′′∈Fk̄+2(u) v
o
f ′′ + v̄ only by matching with a firm

in F≤k̄+1(u).

Then, (11) and (12) implies that (f, w) would have blocked µW , contradicting that µW is stable.

Therefore,

B̂F
k̄ (ε;u, v) ∪ W̄≤k̄+2(u, v).

is a biclique, which is not necessarily balanced.

We now control the size of B̂F
k̄

(ε;U, V ) by referencing Theorem 3. Let uo and vo be realized

common-values such that events E1 and E2 hold. Then, the remaining randomness of U and V is

from ζ and η. Consider a random bipartite graph with Fk̄(U) ∪W≤k̄+2(U) as a bi-partitioned set

26 We should not replace minf ′∈Fk̄(u) v
o
f ′ with vok̄. Fk̄(u) is defined with respect to workers’ common-values, rather

than firms’ common-values.
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of nodes, where each pair of f ∈ Fk̄(U) and w ∈W≤k̄+2(U) is joined by an edge if and only if

ζf,w ≤ ū− ε or ηf,w ≤ v̄ − ε̃.

In other words, every pair is joined by an edge independently with probability

p(ε) = 1−
(
1− ΓW (ū− ε)

)
·
(
1− ΓF (v̄ − ε̃)

)
.

We write β(n) := 2 · log(l≤k̄+2(U))/ log 1
p(ε) , and show that

P
(
|B̂F

k̄ (ε;U, V )| ≤ β(n)
)
→ 1 as n→∞.27

First, observe that W̄≤k̄+2(U, V ) is the size of at least lk̄+2(U). Among l≤k̄+2(U) workers in

tiers up to k̄ + 2 at most l≤k̄+1(U) are matched with firms in tiers up to k̄ + 1. In addition,

lk̄+2(U) > β(n) with large n, since E1 holds. Therefore, with large n, we shall write

P
(
|B̂F

k̄ (ε;U, V )| ≤ β(n)
)

= P
(

min
{
|B̂F

k̄ (ε;U, V )|, |W̄≤k̄+2(U, V )|
}
≤ β(n)

)
. (13)

Let α(U, V )× α(U, V ) be the size of a maximum balance biclique of the random graph

G
(
Fk̄(U) ∪W≤k̄+2(U) , p(ε)

)
.

Since every realized B̂F
k̄

(ε;u, v) ∪ W̄≤k̄+2(u, v) is a biclique, it contains a balanced biclique of

the size equals to

min
{
|B̂F

k̄ (ε;u, v)| , |W̄≤k̄+2(u, v)|
}
.

Therefore,

P
(

min
{
|B̂F

k̄ (ε;U, V )|, |W̄≤k̄+2(U, V )|
}
≤ β(n)

)
≥ P (α(U, V ) ≤ β(n)) . (14)

Applying Theorem 3 to (14) and using (13),

P
(
|B̂F

k̄ (ε;U, V )| ≤ β(n)
)
≥ P (α(U, V ) ≤ β(n))→ 1. (15)

Lastly, we consider random utilities U and V , in which common-values are yet realized. For

every ε′ > 0,

P

(
|B̂F

k̄
(ε;U, V )|
n

> ε′

)
= P

(
|B̂F

k̄ (ε;U, V )| > ε′ · n
)

≤ P
(
|B̂F

k̄ (ε;U, V )| > β(n) | E1, E2

)
+Rn, with large n,

27 Note that we fixed common-values as a realization uo and vo such that the events E1 and E2 occur. Thus for
now, the tier-structure is deterministic, and β(n) is, in turn, a deterministic sequence.
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where Rn is the probability that either E1 or E2 does not hold: i.e. Rn → 0. The inequality is from

the fact that ε′ · n > β(n) with large n. We complete the proof by applying (15).

We also obtain the counterpart proposition of Proposition C.1 in terms of tiers defined with

respect to firms’ common-values.

Proposition C.1∗ For each k̄ = 1, 2, . . . ,K − 2, define

B̂W
k̄ (ε;u, v) :=

{
w ∈Wk̄(v)|vµF (w) ≤ vok̄+2 + v̄ − ε

}
.

Then for any ε > 0,
|B̂W

k̄
(ε;U, V )|
n

p−→ 0 as n→∞.

Proof. We omit the proof since it is analogous to the proof of Proposition C.1.

For each instance 〈F,W, u, v〉 and for each k̄ = 1, 2, . . . ,K, we define

BF
k̄ (ε;u, v) := {f ∈ Fk̄(u)|∆(f ;u, v) ≥ ε}.

Proposition C.2. If k̄ = 7, 8, . . . ,K − 2, then for any ε > 0,

|BF
k̄

(ε;U, V )|
n

p−→ 0 as n→∞.

Proof. In Proposition C.1∗ with k = 1, 2, . . . ,K − 3, we replace ε with

εk := vok+2 − vok+3,

and write

B̂W
k (εk;u, v) =

{
w ∈Wk(v)|vµF (w) ≤ vok+3 + v̄

}
.28

Then,
|B̂W

k (εk;U, V )|
n

p−→ 0 as n→∞. (16)

Note that a worker receives utility higher than vok+3 + v̄ only by matching with a firm in (w.r.t

firm) tiers up to k + 3.29 Thus for k = 5, 6, . . . ,K,

{w ∈W≤k−4(V ) : µ(w) ∈ Fk(V )} ⊂
k−4⋃
k′=1

B̂W
k′ (εk′ ;U, V ). (17)

28 Recall that vok is a constant, defined as vok := ξF
1− k

K
.

29 Recall that f ∈ Fk(v) if and only if vok < vof ≤ vok−1. Thus, if f ∈ F>k+3(v) then vof ≤ vok+3.
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If event E3 holds, we can translate (17) into an expression with tiers w.r.t workers’ common-

values. That is, for k = 7, 8, . . . ,K,

{w ∈W≤k−6(U) : µF (w) ∈ Fk(U)} ⊂
k+1⋃

k′=k−1

{w ∈W≤k−6(U) : µF (w) ∈ Fk′(V )}

⊂
k+1⋃

k′=k−1

{w ∈W≤k−5(V ) : µF (w) ∈ Fk′(V )}

⊂
k+1⋃

k′=k−1

{w ∈W≤k′−4(V ) : µF (w) ∈ Fk′(V )}

where the first and second inequalities are from E3.

By applying (17), we obtain

{w ∈W≤k−6(U) : µF (w) ∈ Fk(U)} ⊂
k−3⋃
k′=1

B̂W
k′ (εk′ ;U, V ).

It follows that
|{f ∈ Fk(U) : µF (f) ∈W≤k−6(U)}|

n

p−→ 0, (18)

because for every ε > 0,

P

(
|{f ∈ Fk(U) : µF (f) ∈W≤k−6(U)}|

n
> ε

)
≤ P

(
k−3∑
k′=1

|B̂W
k′ (εk′ ;U, V )|

n
> ε

)
+Rn,

where Rn is the probability that E3 does not hold: i.e. Rn → 0. The right hand side converges to

0 by (16).

We complete the proof of Proposition C.2 by proving the following claim. Proposition C.1 and

(18) show that the normalized sizes of two sets on the right hand side of (19) converge to 0 in

probability.

Claim C.1. For k̄ = 7, 8, . . . ,K − 2 and each instance 〈F,W, u, v〉,

BF
k̄ (ε;u, v) ⊂ B̂F

k̄ (ε/9;u, v) ∪
{
f ∈ Fk̄(u)|µF (f) ∈W≤k̄−6(u)

}
. (19)

Proof of Claim C.1. If a firm f ∈ Fk̄(u) is not in B̂F
k̄

(ε/9;u, v), then

uµW (f) > uok̄+2 + ū− ε/9,

and if the firm f is not in
{
f ∈ Fk̄(u)|µF (f) ∈W≤k̄−6(u)

}
, then

uµF (f) ≤ uok̄−6 + ū.
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Therefore, using (10) we obtain

uµF (f)− uµW (f) ≤ uok̄−6 − u
o
k̄+2 + ε/9 < ε,

and thus f is not in BF
k̄

(ε;u, v).

Lastly, we complete the proof of Theorem 1 by the following inequalities.

P

(
|BF (ε;U, V )|

n
>

9

K

)
= P

 ∑
1≤k≤K

|BF
k (ε;U, V )|

n
>

9

K


< P

 ∑
7≤k≤K−2

|BF
k (ε;U, V )|

n
+

∑
k=1,...,6,K−1,K

lk(U)

n
>

9

K

 .

The last probability converges to 0. For each k = 7, . . . ,K− 2, the proportion
|BFk (ε;U,V )|

n converges

to 0 in probability (Proposition C.2). For each k = 1, . . . , 6,K−1,K, the proportion lk(U)
n converges

to 1
K in probability by the (weak) law of large numbers.

D Proof of Theorem 4

For each ε > 0, we first define

BF
E (ε;u, v) := F\AFE(ε;u, v) = {f ∈ F | ∆E(f ;u, v) ≥ ε} ,

and show that

E

[∣∣BF
E (ε;U, V )

∣∣
n

]
→ 0 as n→∞.

For each n, let fn ∈ Fn and consider the resulting sequence 〈fn〉∞n=1. For any ε > 0,

E

[
|BF

E (ε;U, V )|
n

]
= E

[
1{fn ∈ BF

E (ε;U, V )}
]

= P (∆E(fn;U, V ) ≥ ε) .

Thus if ∆E(fn;U, V )
p−→ 0, then for every ε,

|BFE (ε,U,V )|
n converges to zero in mean, thereby

completing the proof.

Claim D.1.

∆E(fn;U, V )
p−→ 0, as n→∞.
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Proof. For every ε > 0,

P (∆(fn;U, V ) ≥ ε) = E [1{∆(fn;U, V ) ≥ ε}]

= E

[
|F\AF (ε;U, V )|

n

]
.

The last term converges to 0 by Theorem 1, and thus ∆(fn;U, V )
p−→ 0.

Let ūo and ū be upper bounds of common-value distribution and private-value distribution of

workers, respectively. Then, ∆(fn;U, V ) is bounded above by λ ūo + (1 − λ)ū with probability 1.

We obtain by Theorem A.2 that

lim
n→∞

E[∆E(fn;U, V )] = lim
n→∞

E [E [∆(fn;U, V )|Πfn ]] = lim
n→∞

E [∆(fn;U, V )] = 0.

The Claim D.1 follows by Theorem A.1.

E Additional Simulations on the Proportion of Unmatched Agents

The simulation results in Section 1.4 show that the short preference condition assumed in Roth

and Peranson (1999), Immorlica and Mahdian (2005), and Kojima and Pathak (2009) may leave

most agents in a large market unmatched in stable matchings. It is worth noting that random

preferences in the previous simulations were generated by the setup of our model, rather than the

previous studies’ model. That is, the previous simulations do not directly represent features of

previous models. In this section, we show the increasing proportions of unmatched agents with

simulations based on the previous studies’ model.

Let L be the maximum number of firms that each worker considers acceptable. We generate

random preferences following the previous model, in particular Immorlica and Mahdian (2005).

Immorlica and Mahdian studied one-to-one matching markets with generally distributed random

preferences. For each market size n, a market is given two underlying distributions, one for firms

and the other for workers, called popularity distributions.30 A worker’s preference list is constructed

by sequentially sampling L firms from the popularity distribution without replacement. The firm

chosen first is the most preferred, and the next chosen firm becomes the second most preferred.

We similarly construct firms’ preferences, except that firms’ preferences are of length n: i.e., all

workers are acceptable.

We use two classes of popularity distributions.

1. Normalized geometric distribution

30 Immorlica and Mahdian (2005) construct random preferences only for workers: firms’ preferences are arbitrarily
given. In our simulation, we also generate firms’ preferences randomly, rather than assuming particular preferences.
Accordingly, we can measure the general likely proportions of unmatched agents.
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For each market size n, we define the normalized geometric distribution as:

PDF : pk =
(1− q)k∑n
k′=1(1− q)k′

, (0 ≤ q < 1, k = 1, 2, . . . , n).

Consider a pair of firms, fk1 and fk2 (k1 < k2 ≤ n). For each worker, the probability of

choosing fk1 before fk2 , conditioned on at least one of the firms chosen, equals to

(1− q)k1

(1− q)k1 + (1− q)k2
=

1

1 + (1− q)k2−k1
.

which is independent of the market size n. If q = 0, we have the uniform popularity dis-

tribution over firms, so all firms have an equal chance of being chosen before another. As

q becomes close to 1, more popular firms have higher chances of being chosen before other

firms, which generates a commonality of preferences among workers.

2. Normalized log-normal distribution

Let F ( · ;µ, σ) be the cumulative distribution function of a log-normal distribution. For each

market size n, we define the normalized log-normal distribution as:

PDF : pk =
F ( k ;µ, σ)− F ( k − 1 ;µ, σ)

F (n ;µ, σ)
, (µ, σ ∈ R, k = 1, 2, . . . , n).

For each µ, as σ increases, firms have similar probabilities to be chosen. This generates a

weaker commonality of preferences among workers.
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(a) Normalized geometric distribution
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(b) Normalized log-normal distribution

Figure 3: Proportions of unmatched agents in stable matchings.

Figure 3 shows that the proportion of unmatched agents in stable matchings increases as a

market becomes large. Each graph represents the proportion of unmatched agents, when workers
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consider 30 most preferred firms acceptable. The proportions are averaged over 10 repetitions.
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