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Abstract. In this paper, we consider estimation of general modern moment-condition problems in

econometrics in a data-rich environment where there may be many more control variables available

than there are observations. The framework we consider allows for a continuum of target parameters

and for Lasso-type or Post-Lasso type methods to be used as estimators of a continuum of high-

dimensional nuisance functions. As an important leading example of this environment, we first

provide detailed results on estimation and inference for relevant treatment effects, such as local

average and quantile treatment effects. The setting we work in is designed expressly to handle many

control variables, endogenous receipt of treatment, heterogeneous treatment effects, and possibly

function-valued outcomes. To make informative inference possible, we assume that key reduced form

predictive relationships are approximately sparse. That is, we require that the relationship between

the control variables and the outcome, treatment status, and instrument status can be captured

up to a small approximation error by a small number of the control variables whose identities are

unknown to the researcher. This condition permits estimation and inference to proceed after data-

driven selection of control variables. We provide conditions under which post-selection inference is

uniformly valid across a wide-range of models and show that a key condition underlying the uniform

validity of post-selection inference allowing for imperfect model selection is the use of orthogonal

moment conditions. We illustrate the use of the proposed methods with an application to estimating

the effect of 401(k) participation on accumulated assets.

We generalize the results from the treatment effects setting to accommodate more general mo-

ment condition models in a second part of the paper. In particular, we establish a functional central

limit theorem for robust estimators of a continuum of target parameters that holds uniformly in a

wide range of data generating processes (dgp’s), i.e. over dgp’s P ∈ P where P include dgp’s where

perfect model selection is theoretically impossible. We prove that the use of orthogonal moment

conditions is key to achieving uniform validity. We also establish a functional central limit theorem

for the multiplier bootstrap that resamples first-order approximations to the proposed estimators

that holds uniformly over P ∈ P. We propose a notion of differentiability, together with a func-

tional delta method, that allows us to derive approximate distributions for smooth functionals of

a continuum of target parameters that hold uniformly over P ∈ P and to establish the validity

of the multiplier bootstrap for approximating these distributions uniformly over P ∈ P. Finally,

we establish rate and consistency results for continua of Lasso or Post-Lasso type estimators for

continua of (nuisance) regression functions and provide practical, theoretically justified choices for

the penalty parameters used in these methods. Each of these results is new and of independent

interest.
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1. Introduction

The goal of many empirical analyses in economics is to understand the causal effect of a treatment

such as participation in a government program on economic outcomes. Such analyses are often

complicated by the fact that few economic treatments or government policies are randomly assigned.

The lack of true random assignment has led to the adoption of a variety of quasi-experimental

approaches to estimating treatment effects that are based on observational data. Such approaches

include instrumental variable (IV) methods in cases where treatment is not randomly assigned

but there is some other external variable, such as eligibility for receipt of a government program or

service, that is either randomly assigned or the researcher is willing to take as exogenous conditional

on the right set of control variables or simply controls. Another common approach is to assume

that the treatment variable itself may be taken as exogenous after conditioning on the right set

of controls which leads to regression or matching based methods, among others, for estimating

treatment effects.1

A practical problem empirical researchers face when trying to estimate treatment effects is de-

ciding what conditioning variables to include. When the treatment variable or instrument is not

randomly assigned, a researcher must choose what needs to be conditioned on to make the ar-

gument that the instrument or treatment is exogenous plausible. Typically, economic intuition

will suggest a set of variables that might be important to control for but will not identify exactly

which variables are important or the functional form with which variables should enter the model.

While less crucial to identifying treatment effects, the problem of selecting controls also arises in

situations where the key treatment or instrumental variables are randomly assigned. In these cases,

a researcher interested in obtaining precisely estimated policy effects will also typically consider

including additional controls to help absorb residual variation. As in the case where including

controls is motivated by a desire to make identification of the treatment effect more plausible, one

rarely knows exactly which variables will be most useful for accounting for residual variation. In

either case, the lack of clear guidance about what variables to use presents the problem of select-

ing controls from a potentially large set including raw variables available in the data as well as

interactions and other transformations of these variables.

In this paper, we consider estimation of the effect of an endogenous binary treatment, D, on

an outcome, Y , in the presence of a binary instrumental variable, Z, in settings with very many

potential controls, f(X), including raw variables, X, and transformations of these variables such

as powers, b-splines, or interactions.2 We allow for fully heterogeneous treatment effects and thus

1There is a large literature about estimation of treatment effects. See, for example, the textbook treatments

in Angrist and Pischke (2008) or Wooldridge (2010) and the references therein for discussion from an economic

perspective.
2High-dimensional f(X) typically occurs in either of two ways. First, the baseline set of conditioning variables

itself may be large so f(X) = X. Second, X may be low-dimensional, but one may wish to entertain many nonlinear

transformations of X in forming f(X). In the second case, one might prefer to refer to X as the controls and f(X)
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focus on estimation of causal quantities that are appropriate in heterogeneous effects settings such

as the local average treatment effect (LATE) or the local quantile treatment effect (LQTE). We

focus our discussion on the endogenous case where identification is obtained through the use of

an instrumental variable, but all results carry through to the exogenous case where the treatment

is taken as exogenous after conditioning on sufficient controls by simply replacing the instrument

with the treatment variable in the estimation and inference methods and in the formal results.

The methodology for estimating treatment effects we consider allows for cases where the number

of potential controls, p := dim f(X), is much larger than the sample size, n. Of course, informative

inference about causal parameters cannot proceed allowing for p� n without further restrictions.

We impose sufficient structure through the assumption that reduced form relationships such as the

conditional expectations EP [D|X], EP [Z|X], and EP [Y |X] are approximately sparse. Intuitively,

approximate sparsity imposes that these reduced form relationships can be represented up to a

small approximation error as a linear combination, possibly inside of a known link function such

as the logistic function, of a number s � n of the variables in f(X) whose identities are a priori

unknown to the researcher. This assumption allows us to use methods for estimating models in

high-dimensional sparse settings that are known to have good prediction properties to estimate

the fundamental reduced form relationships. We may then use these estimated reduced form

quantities as inputs to estimating the causal parameters of interest. Approaching the problem of

estimating treatment effects within this framework allows us to accommodate the realistic scenario

in which a researcher is unsure about exactly which confounding variables or transformations of

these confounds are important and so must search among a broad set of controls.

Valid inference following model selection is non-trivial. Direct application of usual inference

procedures following model selection does not provide valid inference about causal parameters even

in low-dimensional settings, such as when there is only a single control, unless one assumes sufficient

structure on the model that perfect model selection is possible. Such structure can be restrictive

and seems unlikely to be satisfied in many economic applications. For example, a typical condition

that allows perfect model selection in a linear model is to assume that all but a small number of

coefficients are exactly zero and that the non-zero coefficients are all large enough that they can be

distinguished from zero with probability very near one in finite samples. Such a condition rules out

the possibility that there may be some variables which have moderate, but non-zero, partial effects.

Ignoring such variables may result in non-ignorable omitted variables bias that has a substantive

impact on estimation and inference regarding individual model parameters; for further discussion,

see Leeb and Pötscher (2008a; 2008b); Pötscher (2009); and Belloni, Chernozhukov, and Hansen

(2013; 2014).

as something else, such as technical regressors. For simplicity of exposition and as the formal development in the

paper is agnostic about the source of high-dimensionality, we call the variables in f(X) controls or control variables

in either case.
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A main contribution of this paper is providing inferential procedures for key parameters used

in program evaluation that are theoretically valid within approximately sparse models allowing for

imperfect model selection. Our procedures build upon Belloni, Chernozhukov, and Hansen (2010)

and Belloni, Chen, Chernozhukov, and Hansen (2012), who were the first to demonstrate in a

highly specialized context, that valid inference can proceed following model selection, allowing for

model selection mistakes, under two conditions. We formulate and extend these two conditions

to a rather general moment-condition framework (e.g., Hansen (1982), and Hansen and Singleton

(1982)) as follows. First, estimation should be based upon “orthogonal” moment conditions that

are first-order insensitive to changes in the values of nuisance parameters that will be estimated

using high-dimensional methods. Specifically, if the target parameter value α0 is identified via the

moment condition

EPψ(W,α0, h0) = 0, (1.1)

where h0 is a function-valued nuisance parameter estimated via a post-model-selection or regu-

larization method, one needs to use a moment function, ψ, such that the moment condition is

orthogonal with respect to perturbations of h around h0. More formally, the moment conditions

should satisfy

∂h[EPψ(W,α0, h)]h=h0 = 0, (1.2)

where ∂h is a functional derivative operator with respect to h restricted to directions of possible

deviations of estimators of h0 from h0. Second, one needs to ensure that the model selection

mistakes occuring in estimation of nuisance parameters are uniformly “moderately” small with

respect to the underlying model.

The orthogonality condition embodied in (1.2) has a long history in statistics and econometrics.

For example, this type of orthogonality was used by Neyman (1979) in low-dimensional settings

to deal with crudely estimated parametric nuisance parameters. See also Newey (1990), Andrews

(1994b), Newey (1994), Robins and Rotnitzky (1995), and Linton (1996) for the use of this condition

in semi-parametric problems. To the best of our knowledge, Belloni, Chernozhukov, and Hansen

(2010) and Belloni, Chen, Chernozhukov, and Hansen (2012) were the first to use orthogonality

(1.2) to expressly address the question of the uniform post-selection inference, either in high-

dimensional settings with p � n or in low-dimensional settings (with p � n). They applied it to

a very specialized setup of the linear instrumental variables model with many instruments where

the nuisance function h0 is the optimal instrument estimated by Lasso or Post-Lasso methods

and α0 is the coefficient of the endogenous regressor. Belloni, Chernozhukov, and Hansen (2013)

and Belloni, Chernozhukov, and Hansen (2014) also exploited this approach to develop a double-

selection method that yields valid post-selection inference on the parameters of the linear part of a

partially linear model and on average treatment effects when the treatment is binary and exogenous

conditional on controls in both the p � n and the p � n setting;3 see also Farrell (2013) who

3Note that these results as well as results of this paper on the uniform post-selection inference in moment-condition

problems are new for either p� n or p� n settings. The results also apply to arbitrary model selection devices that
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extended this method to estimation of average treatment effects when the treatment is multivalued

and exogenous conditional on controls using group penalization for selection. In this paper, we

establish that building estimators based upon moment conditions with the orthogonality condition

(1.2) holding ensures that crude estimation of h0 via post-selection or other regularization methods

has an asymptotically negligible effect on the estimation of α0 in general frameworks, which results

in a regular, root-n consistent estimator of α0, uniformly with respect to the underlying model.

In the general endogenous treatment effects setting, moment conditions satisfying (1.2) can be

found as efficient influence functions for certain reduced form parameters as in Hahn (1998). We

illustrate how orthogonal moment conditions coupled with methods developed for forecasting in

high-dimensional approximately sparse models can be used to estimate and obtain valid inferential

statements about a variety of structural/treatment effects. We formally demonstrate the uniform

validity of the resulting inference within a broad class of approximately sparse models including

models where perfect model selection is theoretically impossible. An important feature of our main

theoretical results is that they cover the use of variable selection for functional response data using

`1-penalized methods. Functional response data arises, for example, when one is interested in the

LQTE at not just a single quantile but over a range of quantile indices or when one is interested

in how 1(Y ≤ u) relates to the treatment over a range of threshold values u. Considering such

functional response data allows us to provide a unified inference procedure for interesting quantities

such as the distributional effects of the treatment as well as simpler objects such as the LQTE at

a single quantile or the LATE.

A second main contribution of this paper is providing a general set of results for uniformly

valid estimation and inference in modern moment-condition problems in econometrics allowing for

both smooth and non-smooth moment functions. We prove that the use of orthogonal moment

conditions is key to achieving uniform validity. In the general framework we consider, we may have

a continuum of target parameters identified via a continuum of moment conditions that involve a

continuum of nuisance functions that will be estimated via modern high-dimensional methods such

as Lasso or Post-Lasso or their variants. These results contain the first set of results on treatement

effects relevant for program evaluation, particularly the distributional and quantile effects, as a

leading special case. These results are also immediately useful in many other contexts such as

nonseparable quantile models as in Chernozhukov and Hansen (2005), Chernozhukov and Hansen

(2006), Chesher (2003), and Imbens and Newey (2009); semiparametric and partially identified

models as in Escanciano and Zhu (2013); and many others. In our results, we first establish

a functional central limit theorem for the continuum of target parameters and show that this

functional central limit theorem holds uniformly in a wide range of data-generating processes P

with approximately sparse continua of nuisance functions. Second, we establish a functional central

limit theorem for the multiplier boostrap that resamples the first order approximations to the

are able to select good sparse approximating models; and “moderate” model selection errors are explicitly allowed in

the paper.
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standardized estimators and demonstrate its uniform-in-P validity. These uniformity results build

upon and complement those given in Romano and Shaikh (2012) for the empirical bootstrap. Third,

we establish a functional delta method for smooth functionals of the continuum of target parameters

and a functional delta method for the multiplier bootstrap of these smooth functionals both of which

hold uniformly in P using an appropriately strengthened notion of Hadamard differentiability. All

of these results are new and are of independent interest outside of the application in this paper.4

We illustrate the use of our methods by estimating the effect of 401(k) participation on measures

of accumulated assets as in Chernozhukov and Hansen (2004).5 Similar to Chernozhukov and

Hansen (2004), we provide estimates of LATE and LQTE over a range of quantiles. We differ

from this previous work by using the high-dimensional methods developed in this paper to allow

ourselves to consider a broader set of controls than have previously been considered. We find

that 401(k) participation has a moderate impact on accumulated financial assets at low quantiles

while appearing to have a much larger impact at high quantiles. Interpreting the quantile index as

“preference for savings” as in Chernozhukov and Hansen (2004), this pattern suggests that 401(k)

participation has little causal impact on the accumulated financial assets of those with low desire

to save but a much larger impact on those with stronger preferences for saving. It is interesting

that these results are similar to those in Chernozhukov and Hansen (2004) despite allowing for a

much richer set of controls.

We organize the rest of the paper as follows. Section 2 introduces the structural parameters for

policy evaluation, relates these parameters to reduced form functions, and gives conditions under

which the structural parameters have a causal interpretation. Section 3 describes a three step

procedure to estimate and make inference on the structural parameters and functionals of these pa-

rameters, and Section 4 provides asymptotic theory. Section 5 generalizes the setting and results to

moment-condition problems with a continuum of structural parameters and a continuum of reduced

form functions. Section 6 derives general asymptotic theory for the Lasso and post-Lasso estima-

tors for functional response data used in the estimation of the reduced form functions. Section 7

presents the empirical application. We gather the notation, the proofs of all the results and ad-

ditional technical results in Appendices A–G. A supplementary appendix provides implementation

details for the empirical application and a Monte Carlo simulation.

4These results build upon the work of Belloni and Chernozhukov (2011) who provided rates of convergence for

variable selection when one is interested in estimating the quantile regression process with exogenous variables. More

generally, this theoretical work complements and extends the rapidly growing set of results for `1-penalized estimation

methods; see, for example, Frank and Friedman (1993); Tibshirani (1996); Fan and Li (2001); Zou (2006); Candès and

Tao (2007); van de Geer (2008); Huang, Horowitz, and Ma (2008); Bickel, Ritov, and Tsybakov (2009); Meinshausen

and Yu (2009); Bach (2010); Huang, Horowitz, and Wei (2010); Belloni and Chernozhukov (2011); Kato (2011);

Belloni, Chen, Chernozhukov, and Hansen (2012); Belloni and Chernozhukov (2013); Belloni, Chernozhukov, and

Kato (2013); Belloni, Chernozhukov, and Wei (2013); and the references therein.
5See also Poterba, Venti, and Wise (1994; 1995; 1996; 2001); Benjamin (2003); and Abadie (2003) among others.
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2. The Setting and The Target Parameters

2.1. Observables and Reduced Form Parameters. The observed random variables consist of

((Yu)u∈U , X, Z,D). The outcome variable of interest Yu is indexed by u ∈ U . We give examples of

the index u below. The variable D ∈ D = {0, 1} is a binary indicator of the receipt of a treatment

or participation in a program. It will be typically treated as endogenous; that is, we will typically

view the treatment as assigned non-randomly with respect to the outcome. The instrumental

variable Z ∈ Z = {0, 1} is a binary indicator, such as an offer of participation, that is assumed to

be randomly assigned conditional on the observable covariates X with support X . For example,

we argue that 401(k) eligibility can be considered exogenous only after conditioning on income

and other individual characteristics in the empirical application. The notions of exogeneity and

endogeneity we employ are standard, but we state them in Section 2.4 for clarity and completeness.

We also restate standard conditions that are sufficient for a causal interpretation of our target

parameters.

The indexing of the outcome Yu by u is useful to analyze functional data. For example, Yu

could represent an outcome falling short of a threshold, namely Yu = 1(Y 6 u), in the context of

distributional analysis; Yu could be a height indexed by age u in growth charts analysis; or Yu could

be a health outcome indexed by a dosage u in dosage response studies. Our framework is tailored

for such functional response data. The special case with no index is included by simply considering

U to be a singleton set.

We make use of two key types of reduced form parameters for estimating the structural param-

eters of interest – (local) treatment effects and related quantities. These reduced form parameters

are defined as

αV (z) := EP [gV (z,X)] and γV := EP [V ], (2.1)

where z = 0 or z = 1 are the fixed values of Z.6 The function gV maps ZX , the support of the

vector (Z,X), to the real line R and is defined as

gV (z, x) := EP [V |Z = z,X = x]. (2.2)

We use V to denote a target variable whose identity may change depending on the context such as

V = 1d(D)Yu or V = 1d(D) where 1d(D) := 1(D = d) is the indicator function.

All the structural parameters we consider are smooth functionals of these reduced-form parame-

ters. In our approach to estimating treatment effects, we estimate the key reduced form parameter

αV (z) using modern methods to deal with high-dimensional data coupled with orthogonal estimat-

ing equations. The orthogonality property is crucial for dealing with the “non-regular” nature of

6The expectation that defines αV (z) is well-defined under the support condition 0 < PP (Z = 1 | X) < 1 a.s. We

impose this condition in Assumption 2.1 and Assumption 4.1.
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penalized and post-selection estimators which do not admit linearizations except under very restric-

tive conditions. The use of regularization by model selection or penalization is in turn motivated

by the desire to accommodate high-dimensional data.

2.2. Target Structural Parameters – Local Treatment Effects. The reduced form parame-

ters defined in (2.1) are key because the structural parameters of interest are functionals of these

elementary objects. The local average structural function (LASF) defined as

θYu(d) =
α1d(D)Yu(1)− α1d(D)Yu(0)

α1d(D)(1)− α1d(D)(0)
, d ∈ {0, 1} (2.3)

underlies the formation of many commonly used treatment effects. The LASF identifies the average

outcome for the group of compliers, individuals whose treatment status may be influenced by

variation in the instrument in the treated and non-treated states, under standard assumptions; see,

e.g. Abadie (2002; 2003). The local average treatment effect (LATE) of Imbens and Angrist (1994)

corresponds to the difference of the two values of the LASF:

θYu(1)− θYu(0). (2.4)

The term local designates that this parameter does not measure the effect on the entire population

but on the subpopulation of compliers.

When there is no endogeneity, formally when D ≡ Z, the LASF and LATE become the average

structural function (ASF) and average treatment effect (ATE) on the entire population. Thus, our

results cover this situation as a special case where the ASF and ATE simplify to

θYu(z) = αYu(z), θYu(1)− θYu(0) = αYu(1)− αYu(0). (2.5)

We also note that the impact of the instrument Z itself may be of interest since Z often encodes

an offer of participation in a program. In this case, the parameters of interest are again simply the

reduced form parameters

αYu(z), αYu(1)− αYu(0).

Thus, the LASF and LATE are primary targets of interest in this paper, and the ASF and ATE

are subsumed as special cases.

2.2.1. Local Distribution and Quantile Treatment Effects. Setting Yu = Y in (2.3) and (2.4) provides

the conventional LASF and LATE. An important generalization arises by letting Yu = 1(Y 6 u)

be the indicator of the outcome of interest falling below a threshold u ∈ R. In this case, the family

of effects

(θYu(1)− θYu(0))u∈R, (2.6)

describe the local distribution treatment effects (LDTE). Similarly, we can look at the quantile

left-inverse transform of the curve u 7→ θYu(d),

θ←Y (τ, d) := inf{u ∈ R : θYu(d) > τ}, (2.7)



9

and examine the family of local quantile treatment effects (LQTE):

(θ←Y (τ, 1)− θ←Y (τ, 0))τ∈(0,1). (2.8)

The LQTE identify the differences of quantiles between the distribution of the outcome in the

treated and non-treated states for compliers.

2.3. Target Structural Parameters – Local Treatment Effects on the Treated. In addition

to the local treatment effects given in Section 2.2, we may be interested in local treatment effects

on the treated. The key object in defining these effects is the local average structural function on

the treated (LASF-T) which is defined by its two values:

ϑYu(d) =
γ1d(D)Yu − α1d(D)Yu(0)

γ1d(D) − α1d(D)(0)
, d ∈ {0, 1}. (2.9)

The LASF-T identifies the average outcome for the group of treated compliers in the treated and

non-treated states under assumptions stated below. The local average treatment effect on the

treated (LATE-T) introduced in Hong and Nekipelov (2010) is the difference of two values of the

LASF-T:

ϑYu(1)− ϑYu(0). (2.10)

The LATE-T may be of interest because it measures the average treatment effect for treated compli-

ers, namely the subgroup of compliers that actually receive the treatment. The distinction between

LATE-T and LATE can be relevant; for example, in our empirical application the estimated LATE-

T and LATE are substantially different.

When the treatment is assigned randomly given controls so we can take D = Z, the LASF-T and

LATE-T become the average structural function on the treated (ASF-T) and average treatment

effect on the treated (ATE-T). In this special case, the ASF-T and ATE-T simplify to

ϑYu(1) =
γ11(D)Yu

γ11(D)
, ϑYu(0) =

γ10(D)Yu − αYu(0)

γ10(D) − 1
, ϑYu(1)− ϑYu(0); (2.11)

and we can use our results to provide estimation and inference methods for these quantities.

2.3.1. Local Distribution and Quantile Treatment Effects on the Treated. Local distribution treat-

ment effects on the treated (LDTE-T) and local quantile treatment effects on the treated (LQTE-T)

can also be defined. As in Section 2.2.1, we let Yu = 1(Y 6 u) be the indicator of the outcome of

interest falling below a threshold u. The family of treatment effects

(ϑYu(1)− ϑYu(0))u∈R (2.12)

then describes the LDTE-T. We can also use the quantile left-inverse transform of the curve u 7→
ϑYu(d), namely ϑ←Y (τ, d) := inf{u ∈ R : ϑYu(d) > τ}, and define LQTE-T:

(ϑ←Y (τ, 1)− ϑ←Y (τ, 0))τ∈(0,1). (2.13)
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Under conditional exogeneity LQTE and LQTE-T reduce to the quantile treatment effects (QTE)

and quantile treatment effects on the treated (QTE-T) (Koenker, 2005, Chap. 2).

2.4. Causal Interpretations for Structural Parameters. The quantities discussed in Sections

2.2 and 2.3 are well-defined and have causal interpretation under standard conditions. We briefly

recall these conditions, using the potential outcomes notation. Let Yu1 and Yu0 denote the potential

outcomes under the treatment states 1 and 0. These outcomes are not observed jointly, and we

instead observe Yu = DYu1 + (1−D)Yu0, where D ∈ D = {0, 1} is the random variable indicating

program participation or treatment state. Under exogeneity, D is assigned independently of the

potential outcomes conditional on covariates X, i.e. (Yu1, Yu0) ⊥⊥ D | X a.s., where ⊥⊥ denotes

statistical independence.

Exogeneity fails when D depends on the potential outcomes. For example, people may drop out

of a program if they think the program will not benefit them. In this case, instrumental variables

are useful in creating quasi-experimental fluctuations in D that may identify useful effects. Let

Z be a binary instrument, such as an offer of participation, that generates potential participation

decisions D1 and D0 under the instrument states 1 and 0, respectively. As with the potential

outcomes, the potential participation decisions under both instrument states are not observed

jointly. The realized participation decision is then given by D = ZD1 +(1−Z)D0. We assume that

Z is assigned randomly with respect to potential outcomes and participation decisions conditional

on X, i.e., (Yu0, Yu1, D0, D1) ⊥⊥ Z | X a.s.

There are many causal quantities of interest for program evaluation. Chief among these are

various structural averages: d 7→ EP [Yud], the causal ASF; d 7→ EP [Yud | D = 1], the causal ASF-T;

d 7→ EP [Yud | D1 > D0], the causal LASF; and d 7→ EP [Yud | D1 > D0, D = 1], the causal LASF-T;

as well as effects derived from them such as EP [Yu1− Yu0], the causal ATE; EP [Yu1− Yu0 | D = 1],

the causal ATE-T; EP [Yu1−Yu0 | D1 > D0], the causal LATE; and EP [Yu1−Yu0 | D1 > D0, D = 1],

the causal LATE-T. These causal quantities are the same as the structural parameters defined in

Sections 2.2-2.3 under the following well-known sufficient condition.

Assumption 2.1 (Assumptions for Causal/Structural Interpretability). The following conditions

hold P -almost surely: (Exogeneity) ((Yu1, Yu0)u∈U , D1, D0) ⊥⊥ Z | X; (First Stage) EP [D1 | X] 6=
EP [D0 | X]; (Non-Degeneracy) PP (Z = 1 | X) ∈ (0, 1); (Monotonicity) PP (D1 > D0 | X) = 1.

This condition due to Imbens and Angrist (1994) and Abadie (2003) is much-used in the program

evaluation literature. It has an equivalent formulation in terms of a simultaneous equation model

with a binary endogenous variable; see Vytlacil (2002) and Heckman and Vytlacil (1999). For a

thorough discussion of this assumption, we refer to Imbens and Angrist (1994). Using this assump-

tion, we present an identification lemma which follows from results of Abadie (2003) and Hong

and Nekipelov (2010) that both in turn build upon Imbens and Angrist (1994). The lemma shows

that the parameters θYu and ϑYu defined earlier have a causal interpretation under Assumption 2.1.

Therefore, our referring to them as structural/causal is justified under this condition.
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Lemma 2.1 (Identification of Causal Effects ). Under Assumption 2.1, for each d ∈ D,

EP [Yud | D1 > D0] = θYu(d), EP [Yud | D1 > D0, D = 1] = ϑYu(d).

Furthermore, if D is exogenous, namely D ≡ Z a.s., then

EP [Yud | D1 > D0] = EP [Yud], EP [Yud | D1 > D0, D = 1] = EP [Yud | D = 1].

3. Estimation of Reduced-Form and Structural Parameters in a Data-Rich

Environment

Recall that the key objects used to define the structural parameters in Section 2 are the expec-

tations

αV (z) = EP [gV (z,X)] and γV = EP [V ], (3.1)

where gV (z,X) = EP [V |Z = z,X] and V denotes a variable whose identity will change with the

context. Specifically, we shall vary V over the set Vu:

V ∈ Vu := {Vuj}5j=1 := {Yu,10(D)Yu,10(D),11(D)Yu,11(D)}. (3.2)

It is clear that gV (z,X) will play an important role in estimating αV (z). A related function that

will also play an important role in forming a robust estimation strategy is the propensity score

mZ : ZX 7→ R defined by

mZ(z, x) := PP [Z = z|X = x]. (3.3)

We will denote other potential values for the functions gV and mZ by the parameters g and m,

respectively. A first approach to estimating αV (z) is to try to recover gV and mZ directly using

high-dimensional modelling and estimation methods.

As a second approach, we can further decompose gV as

gV (z, x) =
1∑
d=0

eV (d, z, x)lD(d, z, x), (3.4)

where the regression functions eV and lD map the support of (D,Z,X), DZX , to the real line and

are defined by

eV (d, z, x) := EP [V |D = d, Z = z,X = x] and (3.5)

lD(d, z, x) := PP [D = d|Z = z,X = x]. (3.6)

We will denote other potential values for the functions eV and lD by the parameters e and l. In

this second approach, we can again use high-dimensional methods for modelling and estimating eV

and lD, and we can then use the relation (3.4) to estimate gV . Given the resulting estimate of gV

and an estimate of mZ obtained using high-dimensional methods to model the propensity score,

we will then recover an estimate of αV (z).
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This second approach may be seen as a “special” case of the first. However, this approach

could in fact be more principled. For example, if we use linear or generalized linear models to

approximate each of the elements eV , lD and mZ , then the implied approximations can strictly

nest some coherent models such as the standard binary endogenous variable model with normal

disturbances.7 This strict nesting of coherent models is less easily guaranteed in the first approach

which directly approximates gV using linear or generalized linear forms. Indeed, the “natural”

functional form for gV is not of the linear or generalized linear form but rather is given by the affine

aggregation of cross-products shown in (3.4). While these potential differences exist, we expect to

see little quantitative difference between the estimates obtained via either approach if sufficiently

flexible functional forms are used. For example, we find little difference between the two approaches

in our empirical example.

In the rest of this section, we describe the estimation of the reduced-form and structural param-

eters. The estimation method consists of 3 steps:

(1) Estimation of the predictive relationships mZ and gV , or mZ , lD and eV , using high-

dimensional nonparametric methods with model selection.

(2) Estimation of the reduced form parameters αV and γV using orthogonal estimating equa-

tions to immunize the reduced form estimators to imperfect model selection in the first

step.

(3) Estimation of the structural parameters and effects via the plug-in rule.

3.1. First Step: Modeling and Estimating the Regression Functions gV , mZ , lD, and eV

in a Data-Rich Environment. In this section, we elaborate the two strategies to estimate gV

and mZ .

Strategy 1. We first discuss direct modelling and estimation of gV and mZ , which corresponds

to the first strategy suggested in the previous subsection. Since these functions are unknown and

potentially complicated, we use a generalized linear combination of a large number of control terms

f(X) = (fj(X))pj=1, (3.7)

to approximate gV and mZ . Specifically, we use

gV (z, x) =: ΛV [f(z, x)′βV ] + rV (z, x), (3.8)

f(z, x) := ((1− z)f(x)′, zf(x)′)′, βV := (βV (0)′, βV (1)′)′, (3.9)

and

mZ(1, x) =: ΛZ [f(x)′βZ ] + rZ(x), mZ(0, x) = 1− ΛZ [f(x)′βZ ]− rZ(x). (3.10)

In these equations, rV (z, x) and rZ(x) are approximation errors, and the functions ΛV (f(z, x)′βV )

and ΛZ(f(x)′βZ) are generalized linear approximations to the target functions gV (z, x) andmZ(1, x).

7“Generalized linear” means “linear inside a known link function” in the context of the present paper.
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The functions ΛV and ΛZ are taken to be known link functions Λ. The most common exam-

ple is the linear link Λ(u) = u. When the response variable is binary, we may also use the

logistic link Λ(u) = Λ0(u) = eu/(1 + eu) and its complement 1 − Λ0(u) or the probit link

Λ(u) = Φ(u) = (2π)−1/2
∫ u
−∞ e

−z2/2dz and its complement 1 − Φ(u). For clarity, we use links

from the finite set L = {Id,Φ, 1− Φ,Λ0, 1− Λ0} where Id is the identity (linear) link.

In order to allow for a flexible specification, the dictionary of controls, denoted by f(X), can be

“rich” in the sense that its dimension p = pn may be large relative to the sample size. Specifically,

our results require only that

log p = o(n1/3)

along with other technical conditions. High-dimensional regressors f(X) could arise for different

reasons. For instance, the list of available variables could be large, i.e. f(X) = X as in e.g. Koenker

(1988). It could also be that many technical controls are present; i.e. the list f(X) = (fj(X))pj=1

could be composed of a large number of transformations of elementary variables X such as B-

splines, indicators, polynomials, and various interactions as in, e.g., Chen (2007), Newey (1997),

Tsybakov (2009), and Wasserman (2006). The functions f forming the dictionary can depend on

n, but we suppress this dependence.

Having very many controls f(X) creates a challenge for estimation and inference. A useful

condition that makes it possible to perform constructive estimation and inference in such cases is

termed approximate sparsity or simply sparsity. Sparsity imposes that there exist approximations

of the form given in (3.8)-(3.10) that require only a small number of non-zero coefficients to render

the approximation errors small relative to estimation error. More formally, sparsity relies on two

conditions. First, there must exist βV and βZ such that, for all V ∈ V := {Vu : u ∈ U},

‖βV ‖0 + ‖βZ‖0 6 s. (3.11)

That is, there are at most s = sn � n components of f(Z,X) and f(X) with nonzero coefficient

in the approximations to gV and mZ . Second, the sparsity condition requires that the size of the

resulting approximation errors is small compared to the conjectured size of the estimation error;

namely, for all V ∈ V,

{EP [r2
V (Z,X)]}1/2 + {EP [r2

Z(X)]}1/2 .
√
s/n. (3.12)

Note that the size of the approximating model s = sn can grow with n just as in standard series

estimation, subject to the rate condition

s2 log2(p ∨ n) log2 n/n→ 0.

These conditions ensure that the functions gV and mZ are estimable at o(n−1/4) rate and are used to

derive asymptotic normality results for the structural and reduced-form parameter estimators. They

could be relaxed through the use of sample splitting methods as in Belloni, Chen, Chernozhukov,

and Hansen (2012).
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The high-dimensional-sparse-model framework outlined above extends the standard framework

in the program evaluation literature which assumes both that the identities of the relevant controls

are known and that the number of such controls s is small relative to the sample size.8 Instead, we

assume that there are many, p, potential controls of which at most s controls suffice to achieve a

desirable approximation to the unknown functions gV and mZ ; and we allow the identity of these

controls to be unknown. Relying on this assumed sparsity, we use selection methods to choose

approximately the right set of controls.

Current estimation methods that exploit approximate sparsity employ different types of regu-

larization aimed at producing estimators that theoretically perform well in high-dimensional set-

tings while remaining computationally tractable. Many widely used methods are based on `1-

penalization. The Lasso method is one such commonly used approach that adds a penalty for the

weighted sum of the absolute values of the model parameters to the usual objective function of an

M-estimator. A related approach is the Post-Lasso method which performs re-estimation of the

model after selection of variables by Lasso. These methods are discussed at length in recent pa-

pers and review articles; see, for example, Belloni, Chernozhukov, and Hansen (2013). We provide

further discussion of these methods for estimation of a continuum of functions in Section 6, and

we specify detailed implementation algorithms used in the empirical example in a supplementary

appendix.

In the following, we outline the general features of the Lasso and Post-Lasso methods focusing

on estimation of gV . Given the data (Ỹi, X̃i)
n
i=1 = (Vi, f(Zi, Xi))

n
i=1, the Lasso estimator β̂V solves

β̂V ∈ arg min
β∈Rdim(X̃)

(
En[M(Ỹ , X̃ ′β)] +

λ

n
‖Ψ̂β‖1

)
, (3.13)

where Ψ̂ = diag(l̂1, . . . , l̂dim(X̃)
) is a diagonal matrix of data-dependent penalty loadings, M(y, t) =

(y−t)2/2 in the case of linear regression, and M(y, t) = −{1(y = 1) log Λ(t)+1(y = 0) log(1−Λ(t))}
in the case of binary regression. In the binary case, the link function Λ could be logistic or

probit. The penalty level, λ, and loadings, l̂j , j = 1, ...,dim(X̃), are selected to guarantee good

theoretical properties of the method. We provide theoretical choices and further detail regarding

the implementation in Section 6.9 A key consideration in this paper is that the penalty level needs

to be set to account for the fact that we will be simultaneously estimating potentially a continuum

of Lasso regressions since our V varies over the list Vu with u varying over the index set U .

The Post-Lasso method uses β̂V solely as a model selection device. Specifically, it makes use of

the labels of the regressors with non-zero estimated coefficients,

ÎV = support(β̂V ).

8For example, one would select a set of basis functions, {fj(X)}∞j=1, such as power series or splines and then use

only the first s� n terms in the basis under the assumption that sC/n→ 0 for some number C whose value depends

on the specific context in a standard nonparametric approach using series.
9We also provide a detailed description of the implementation we used in the empirical example in a supplementary

appendix.
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The Post-Lasso estimator is then a solution to

β̃V ∈ arg min
β∈Rdim(X̃)

(
En[M(Ỹ , X̃ ′β)] : βj = 0, j 6∈ ÎV

)
. (3.14)

A main contribution of this paper is establishing that the estimator ĝV (Z,X) = Λ(f(Z,X)′β̄V ) of

the regression function gV (Z,X), where β̄V = β̂V or β̄V = β̃V , achieves the near oracle rate of con-

vergence
√

(s log p)/n and maintains desirable theoretic properties while allowing for a continuum

of response variables.

Estimation of mZ proceeds similarly. The Lasso estimator β̂Z and Post-Lasso estimator β̃Z

are defined analogously to β̂V and β̃V using the data (Ỹi, X̃i)
n
i=1= (Zi, f(Xi))

n
i=1. The estimator

m̂Z(1, X) = ΛZ(f(X)′β̄Z) of mZ(X), with β̄Z = β̂Z or β̄Z = β̃Z , also achieves the near oracle rate

of convergence
√

(s log p)/n and has other good theoretic properties. The estimator of m̂Z(0, X)

is then formed as 1− m̂Z(1, X).

Strategy 2. The second strategy we consider involves modeling and estimating mZ as above via

(3.10) while modeling gV through its disaggregation into the parts eV and lD via (3.4). We model

and estimate each of the unknown parts of eV and lD using the same approach as in Strategy 1.10

Specifically, we model the conditional expectation of V given D, Z, and X by

eV (d, z, x) =: ΓV [f(d, z, x)′θV ] + %V (d, z, x), (3.15)

f(d, z, x) := ((1− d)f(z, x)′, df(z, x)′)′, (3.16)

θV := (θV (0, 0)′, θV (0, 1)′, θV (1, 0)′, θV (1, 1)′)′. (3.17)

We model the conditional probability of D taking on 1 or 0, given Z and X by

lD(1, z, x) =: ΓD[f(z, x)′θD] + %D(z, x), (3.18)

lD(0, z, x) = 1− ΓD[f(z, x)′θD]− %D(z, x), (3.19)

f(z, x) := ((1− z)f(x)′, zf(x)′)′, (3.20)

θD := (θD(0)′, θD(1)′)′. (3.21)

Here %V (d, z, x) and %D(z, x) are approximation errors, and the functions ΓV (f(d, z, x)′θV ) and

ΓD(f(z, x)′θD) are generalized linear approximations to the target functions eV (d, z, x) and lD(1, z, x).

The functions ΓV and ΓD are taken again to be known link functions from the set L = {Id,Φ, 1−
Φ,Λ0, 1− Λ0} defined following equation (3.10).

As in the first strategy, we maintain approximate sparsity. We assume that there exist βZ , θV

and θD such that, for all V ∈ V,

‖θV ‖0 + ‖θD‖0 + ‖βZ‖0 6 s. (3.22)

10Upon conditioning on D = d some parts become known; e.g., e1d(D)Y (d′, x, z) = 0 if d 6= d′ and e1d(D)(d
′, x, z) =

1 if d = d′.
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That is, there are at most s = sn � n components of θV , θD, and βZ with nonzero values in the

approximations to eV , lD and mZ . The sparsity condition also requires the size of the approximation

errors to be small compared to the conjectured size of the estimation error: For all V ∈ V, we assume

{EP [%2
V (D,Z,X)]}1/2 + {EP [%2

D(Z,X)]}1/2 + {EP [r2
Z(X)]}1/2 .

√
s/n. (3.23)

Note that the size of the approximating model s = sn can grow with n just as in standard series

estimation as long as s2 log2(p ∨ n) log2(n)/n→ 0.

We proceed with the estimation of eV and lD analogously to the approach outlined in Strategy

1. The Lasso estimator θ̂V and Post-Lasso estimator θ̃V are defined analogously to β̂V and β̃V

using the data (Ỹi, X̃i)
n
i=1= (Vi, f(Di, Zi, Xi))

n
i=1 and the link function Λ = ΓV . The estimator

êV (D,Z,X) = ΓV [f(D,Z,X)′θ̄V ], with θ̄V = θ̂V or θ̄V = θ̃V , has the near oracle rate of convergence√
(s log p)/n and other desirable properties. The Lasso estimator θ̂D and Post-Lasso estimators

θ̃D are also defined analogously to β̂V and β̃V using the data (Ỹi, X̃i)
n
i=1= (Di, f(Zi, Xi))

n
i=1 and

the link function Λ = ΓD. Again, the estimator l̂D(Z,X) = ΓD[f(Z,X)′θ̄D] of lD(Z,X), where

θ̄D = θ̂D or θ̄D = θ̃D, has good theoretical properties including the near oracle rate of convergence,√
(s log p)/n. The resulting estimator for gV is then

ĝV (z, x) =

1∑
d=0

êV (d, z, x)l̂D(d, z, x). (3.24)

3.2. Second Step: Robust Estimation of the Reduced-Form Parameters αV (z) and γV .

Estimation of the key quantities αV (z) will make heavy use of orthogonal moment functions as

defined in (1.2). These moment functions are closely tied to efficient influence functions, where effi-

ciency is in the sense of locally minimax semi-parametric efficiency. The use of these functions will

deliver robustness with respect to the non-regularity of the post-selection and penalized estimators

needed to manage high-dimensional data. The use of these functions also automatically delivers

semi-parametric efficiency for estimating and performing inference on the reduced-form parameters

and their smooth transformations – the structural parameters.

The efficient influence function and orthogonal moment function for αV (z), z ∈ Z = {0, 1}, are

given respectively by

ψαV,z(W ) := ψαV,z,gV ,mZ (W,αV (z)) and (3.25)

ψαV,z,g,m(W,α) :=
1(Z = z)(V − g(z,X))

m(z,X)
+ g(z,X)− α. (3.26)

This efficient influence function was derived by Hahn (1998); it was also used by Cattaneo (2010)

in the series context (with p� n) and Rothe and Firpo (2013) in the kernel context. The efficient

influence function and the moment function for γV are trivially given by

ψγV (W ) := ψγV (W,γV ), and ψγV (W,γ) := V − γ. (3.27)
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We then define the estimator of the reduced-form parameters αV (z) and γV (z) as solutions

α = α̂V (z) and γ = γ̂V to the equations

En[ψαV,z,ĝV ,m̂Z (W,α)] = 0, En[ψγV (W,γ)] = 0, (3.28)

where ĝV and m̂Z are constructed as in Section 3.1. Note that ĝV may be constructed via either

Strategy 1 or Strategy 2. We apply this procedure to each variable name V ∈ Vu and obtain the

estimator11

ρ̂u :=
(
{α̂V (0), α̂V (1), γ̂V }

)
V ∈Vu of ρu :=

(
{αV (0), αV (1), γV }

)
V ∈Vu . (3.29)

The estimator and the parameter are vectors in Rdρ with dimension dρ = 3× dimVu = 15.

In the next section, we formally establish a principal result which shows that

√
n(ρ̂u − ρu) N(0,VarP (ψρu)), ψρu := ({ψαV,0, ψαV,1, ψ

γ
V })V ∈Vu , (3.30)

uniformly in P ∈ Pn,

where Pn is a rich set of data generating processes P . The notation “Zn,P  ZP uniformly in

P ∈ Pn” is defined formally in Appendix A and can be read as “Zn,P is approximately distributed

as ZP uniformly in P ∈ Pn.” This usage corresponds to the usual notion of asymptotic distribution

extended to handle uniformity in P . Here Pn is a “rich” set of data generating processes P which

includes cases where perfect model selection is impossible theoretically.

We then stack all the reduced form estimators and parameters over u ∈ U as

ρ̂ = (ρ̂u)u∈U and ρ = (ρu)u∈U ,

giving rise to the empirical reduced-form process ρ̂ and the reduced-form function-valued parameter

ρ. We establish that
√
n(ρ̂− ρ) is asymptotically Gaussian: In `∞(U)dρ ,

√
n(ρ̂− ρ) ZP := (GPψ

ρ
u)u∈U , uniformly in P ∈ Pn, (3.31)

where GP denotes the P -Brownian bridge (van der Vaart and Wellner, 1996, p. 81–82). This result

contains (3.30) as a special case and again allows Pn to be a “rich” set of data generating processes

P that includes cases where perfect model selection is impossible theoretically. Importantly, this

result verifies that the functional central limit theorem applies to the reduced-form estimators in

the presence of possible model selection mistakes.

Since some of our objects of interest are complicated, inference can be facilitated by a multiplier

bootstrap method (Giné and Zinn, 1984). We define ρ̂∗ = (ρ̂∗u)u∈U , a bootstrap draw of ρ̂, via

ρ̂∗u = ρ̂u + n−1
n∑
i=1

ξiψ̂
ρ
u(Wi). (3.32)

11By default notation, (aj)j∈J returns a column vector produced by stacking components together in some con-

sistent order.
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Here (ξi)
n
i=1 are i.i.d. copies of ξ which are independently distributed from the data (Wi)

n
i=1 and

whose distribution Pξ does not depend on P . We also impose that

E[ξ] = 0, E[ξ2] = 1, E[exp(|ξ|)] <∞. (3.33)

Examples of ξ include (a) ξ = E −1, where E is a standard exponential random variable, (b) ξ = N ,

where N is a standard normal random variable, and (c) ξ = N1/
√

2 + (N 2
2 − 1)/2, where N1 and

N2 are mutually independent standard normal random variables.12 The choices of (a), (b), and (c)

correspond respectively to the Bayesian bootstrap (e.g., Hahn (1997) and Chamberlain and Imbens

(2003)), the Gaussian multiplier method (e.g, Giné and Zinn (1984) and van der Vaart and Wellner

(1996, Chap. 3.6)), and the wild bootstrap method (Mammen, 1993).13 ψ̂ρu in (3.32) is an estimator

of the influence function ψρu defined via the plug-in rule:

ψ̂ρu = (ψ̂ρV )V ∈Vu , ψ̂ρV (W ) := {ψαV,0,ĝV ,m̂Z (W, α̂V (0)), ψαV,1,ĝV ,m̂Z (W, α̂V (1)), ψγV (W, γ̂V )}. (3.34)

Note that this bootstrap is computationally efficient since it does not involve recomputing the

influence functions ψ̂ρu.14 Each new draw of (ξi)
n
i=1 generates a new draw of ρ̂∗ holding the data

and the estimates of the influence functions fixed. This method simply amounts to resampling

the first-order approximations to the estimators. Here we build upon prior uses of this or similar

methods in low-dimensional settings such as Hansen (1996) and Kline and Santos (2012).

We establish that the bootstrap law of
√
n(ρ̂∗− ρ̂) is uniformly asymptotically consistent: In the

metric space `∞(U)dρ , conditionally on the data,
√
n(ρ̂∗ − ρ̂) B ZP , uniformly in P ∈ Pn,

where  B denotes weak convergence of the bootstrap law in probability, as defined in Appendix

B.

3.3. Step 3: Robust Estimation of the Structural Parameters. All structural parameters

we consider take the form of smooth transformations of the reduced-form parameters:

∆ := (∆q)q∈Q, where ∆q := φ(ρ)(q), q ∈ Q. (3.35)

The structural parameters may themselves carry an index q ∈ Q that can be different from u; for

example, the LQTE is indexed by a quantile index q ∈ (0, 1). This formulation includes as special

cases all the structural functions of Section 2. We estimate these quantities by the plug-in rule.

We establish the asymptotic behavior of these estimators and the validity of the bootstrap as a

corollary from the results outlined in Section 3.2 and the functional delta method (extended to

handle uniformity in P ).

12We do not consider the nonparametric bootstrap, which corresponds to using multinomial multipliers ξ, to

reduce the length of the paper; but we note that the conditions and analysis could be extended to cover this case.
13 The motivation for method (c) is that it is able to match 3 moments since E[ξ2] = E[ξ3] = 1. Methods (a) and

(b) do not satisfy this property since E[ξ2] = 1 but E[ξ3] 6= 1 for these approaches.
14Chernozhukov and Hansen (2006) and Hong and Scaillet (2006) proposed a related computationally efficient

bootstrap scheme that resamples the influence functions.
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For the application of the functional delta method, we require that the functional ρ 7→ φ(ρ)

be Hadamard differentiable uniformly in ρ ∈ Dρ, where Dρ is a set that contains the true values

ρ = ρP for all P ∈ Pn, tangentially to a subset that contains the realizations of ZP for all P ∈ Pn
with derivative map h 7→ φ′ρ(h) = (φ′ρ(h)(q))q∈Q.15 We define the estimators of the structural

parameters and their bootstrap versions via the plug-in rule as

∆̂ := (∆̂q)q∈Q, ∆̂q := φ (ρ̂) (q), and ∆̂∗ := (∆̂∗q)q∈Q, ∆̂∗q := φ (ρ̂∗) (q). (3.36)

We establish that these estimators are asymptotically Gaussian

√
n(∆̂−∆) φ′ρ(ZP ), uniformly in P ∈ Pn, (3.37)

and that the bootstrap consistently estimates their large sample distribution:

√
n(∆̂∗ − ∆̂) B φ′ρ(ZP ), uniformly in P ∈ Pn. (3.38)

These results can be used to construct simultaneous confidence bands and test functional hypotheses

on ∆.

4. Theory of Estimation and Inference on Local Treatment Effects Functionals

Consider fixed sequences of numbers δn ↘ 0, εn ↘ 0, ∆n ↘ 0, at a speed at most polynomial

in n (for example, δn > 1/nc for some c > 0), `n → ∞, and positive constants c, C, and c′ < 1/2.

These sequences and constants will not vary with P . The probability P can vary in the set Pn
of probability measures, termed “data-generating processes”, where Pn is typically a set that is

weakly increasing in n, i.e. Pn ⊆ Pn+1.

Assumption 4.1 (Basic Assumptions). (i) Consider a random element W with values in a mea-

sure space (W,AW) and law determined by a probability measure P ∈ Pn. The observed data

((Wui)u∈U )ni=1 consist of n i.i.d. copies of a random element (Wu)u∈U = ((Yu)u∈U , D, Z,X), where

U is a Polish space equipped with its Borel sigma-field and (Yu, D, Z,X) ∈ R3+dX . Each Wu is

generated via a measurable transform t(W,u) of W and u, namely the map t :W ×U 7→ R3+dX is

measurable, and the map can possibly depend on P . Let

Vu := {Vuj}j∈J := {Yu,10(D)Yu,10(D),11(D)Yu,11(D)}, V := (Vu)u∈U ,

where J = {1, ..., 5}. (ii) For P := ∪∞n=n0
Pn, the map u 7→ Yu obeys the uniform continuity

property:

lim
ε↘0

sup
P∈P

sup
dU (u,ū)6ε

‖Yu − Yū‖P,2 = 0, sup
P∈P

EP sup
u∈U
|Yu|2+c <∞,

where the second supremum is taken over u, ū ∈ U , and U is a totally bounded metric space equipped

with a semi-metric dU . The uniform covering entropy of the set FP = {Yu : u ∈ U}, viewed as a

15We give the definition of uniform Hadamard differentiability in Definition B.1 of Appendix B.
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collection of maps (W,AW) 7→ R, obeys

sup
Q

logN(ε‖FP ‖Q,2,FP , ‖ · ‖Q,2) 6 C log(e/ε) ∨ 0

for all P ∈ P, where FP (W ) = supu∈U |Yu|, with the supremum taken over all finitely discrete

probability measures Q on (W,AW). (iii) For each P ∈ P, the conditional probability of Z = 1

given X is bounded away from zero or one, namely c′ 6 mZ(1, X) 6 1− c′ P -a.s., the instrument

Z has a non-trivial impact on D, namely c′ 6 |lD(1, 1, X) − lD(1, 0, X)| P -a.s, and the regression

function gV is bounded, ‖gV ‖P,∞ <∞ for all V ∈ V.

Assumption 4.1 is stated to deal with the measurability issues associated with functional response

data. This assumption also implies that the set of functions (ψρu)u∈U , where ψρu := ({ψαV,0, ψαV,1, ψ
γ
V })V ∈Vu ,

is P -Donsker uniformly in P. That is, it implies

Zn,P  ZP in `∞(U)dρ , uniformly in P ∈ P, (4.1)

where

Zn,P := (Gnψ
ρ
u)u∈U and ZP := (GPψ

ρ
u)u∈U , (4.2)

with GP denoting the P -Brownian bridge (van der Vaart and Wellner, 1996, p. 81–82) and with

ZP having bounded, uniformly continuous paths uniformly in P ∈ P:

sup
P∈P

EP sup
u∈U
‖ZP (u)‖ <∞, lim

ε↘0
sup
P∈P

EP sup
dU (u,ũ)6ε

‖ZP (u)− ZP (ũ)‖ = 0. (4.3)

Other assumptions will be specific to the strategy adopted.

Assumption 4.2 (Approximate Sparsity for Strategy 1). Under each P ∈ Pn and for each n > n0,

uniformly for all V ∈ V: (i) The approximations (3.8)-(3.10) hold with the link functions ΛV and

ΛZ belonging to the set L, the sparsity condition ‖βV ‖0 + ‖βZ‖0 6 s holding, the approximation

errors satisfying ‖rV ‖P,2 + ‖rZ‖P,2 6 δnn−1/4 and ‖rV ‖P,∞+ ‖rZ‖P,∞ 6 εn, and the sparsity index

s and the number of terms p in the vector f(X) obeying s2 log2(p ∨ n) log2 n 6 δnn. (ii) There

are estimators β̄V and β̄Z such that, with probability no less than 1 − ∆n, the estimation errors

satisfy ‖f(Z,X)′(β̄V − βV )‖Pn,2 + ‖f(X)′(β̄Z − βZ)‖Pn,2 6 δnn
−1/4, Kn‖β̄V − βV ‖1 + Kn‖β̄Z −

βZ‖1 6 εn; the estimators are sparse such that ‖β̄V ‖0 + ‖β̄Z‖0 6 Cs; and the empirical and

population norms induced by the Gram matrix formed by (f(Xi))
n
i=1 are equivalent on sparse subsets,

sup‖δ‖06`ns |‖f(X)′δ‖Pn,2/‖f(X)′δ‖P,2 − 1| 6 εn. (iii) The following boundedness conditions hold:

‖‖f(X)‖∞||P,∞ 6 Kn and ‖V ‖P,∞ 6 C.

Comment 4.1. Assumption 4.2 imposes simple intermediate-level conditions which encode both

the approximate sparsity of the models as well as some reasonable behavior of the sparse estimators

of mZ and gV . Sufficient conditions for the equivalence between empirical and population norms

and primitive examples of functions admitting sparse approximations are given in Belloni, Cher-

nozhukov, and Hansen (2014). Primitive conditions for the estimators obeying the bounds above

while addressing the problem of estimating continua of approximately sparse nuisance functions
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are given in Section 6. These conditions extend and generalize the conditions employed in the

literature on adaptive estimation using series methods. The boundedness conditions are made to

simplify arguments, and they could be removed at the cost of more complicated proofs and more

stringent side conditions. �

Assumption 4.3 (Approximate Sparsity for Strategy 2). Under each P ∈ Pn and for each n >

n0, uniformly for all V ∈ V: (i) The approximations (3.15)-(3.21) and (3.10) apply with the

link functions ΓV , ΓD and ΛZ belonging to the set L, the sparsity condition ‖θV ‖0 + ‖θD‖0 +

‖βZ‖0 6 s holding, the approximation errors satisfying ‖%D‖P,2 + ‖%V ‖P,2 + ‖rZ‖P,2 6 δnn−1/4 and

‖%D‖P,∞ + ‖%V ‖P,∞ + ‖rZ‖P,∞ 6 εn, and the sparsity index s and the number of terms p in the

vector f(X) obeying s2 log2(p ∨ n) log2 n 6 δnn. (ii) There are estimators θ̄V , θ̄D, and β̄Z such

that, with probability no less than 1−∆n, the estimation errors satisfy ‖f(D,Z,X)′(θ̄V −θV )‖Pn,2 +

‖f(Z,X)′(θ̄D − θD)‖Pn,2 + ‖f(X)′(β̄Z − βZ)‖Pn,2 6 δnn−1/4 and Kn‖θ̄V − θV ‖1 +Kn‖θ̄D − θD‖1 +

Kn‖β̄Z − βZ‖1 6 εn; the estimators are sparse such that ‖θ̄V ‖0 + ‖θ̄D‖0 + ‖β̄Z‖0 6 Cs; and the

empirical and population norms induced by the Gram matrix formed by (f(Xi))
n
i=1 are equivalent

on sparse subsets, sup‖δ‖06`ns |‖f(X)′δ‖Pn,2/‖f(X)′δ‖P,2 − 1| 6 εn. (iii) The following boundedness

conditions hold: ‖‖f(X)‖∞||P,∞ 6 Kn and ‖V ‖P,∞ 6 C.

Under the stated assumptions, the empirical reduced form process Ẑn,P =
√
n(ρ̂− ρ) defined by

(3.29) obeys the following relations. We recall definitions of convergence uniformly in P ∈ Pn in

Appendix A.

Theorem 4.1 (Uniform Gaussianity of the Reduced-Form Parameter Process). Under

Assumptions 4.1 and 4.2 or 4.1 and 4.3, the reduced-form empirical process admits a linearization;

namely,

Ẑn,P :=
√
n(ρ̂− ρ) = Zn,P + oP (1) in `∞(U)dρ, uniformly in P ∈ Pn. (4.4)

The process Ẑn,P is asymptotically Gaussian, namely

Ẑn,P  ZP in `∞(U)dρ, uniformly in P ∈ Pn, (4.5)

where ZP is defined in (4.2) and its paths obey the property (4.3).

Another main result of this section shows that the bootstrap law of the process

Ẑ∗n,P :=
√
n(ρ̂∗ − ρ̂) :=

1√
n

n∑
i=1

ξiψ̂
ρ
u(Wi),

where ψ̂ρu is defined in (3.34), provides a valid approximation to the large sample law of
√
n(ρ̂− ρ).

Theorem 4.2 (Validity of Multiplier Bootstrap for Inference on Reduced-Form Param-

eters). Under Assumptions 4.1 and 4.2 or 4.1 and 4.3, the bootstrap law consistently approximates

the large sample law ZP of Zn,P uniformly in P ∈ Pn, namely,

Ẑ∗n,P  B ZP in `∞(U)dρ, uniformly in P ∈ Pn. (4.6)
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Next we consider inference on the structural functionals ∆ defined in (3.35). We derive the large

sample distribution of the estimator ∆̂ in (3.36), and show that the multiplier bootstrap law of ∆̂∗

in (3.36) provides a consistent approximation to that distribution. We rely on the functional delta

method in our derivations, which we modify to handle uniformity with respect to the underlying

dgp P . Our argument relies on the following assumption on the structural functionals.

Assumption 4.4 (Uniform Hadamard Differentiability of Structural Functionals). Suppose that

for each P ∈ P, ρ = ρP ∈ Dρ, a compact metric space. Suppose % 7→ φ(%), a functional of interest

mapping Dφ ⊂ D = `∞(U)dρ to `∞(Q), where Dρ ⊂ Dφ, is Hadamard differentiable in % tangentially

to D0 = UC(U)dρ uniformly in % ∈ Dρ, with the linear derivative map φ′% : D0 7→ D such that the

mapping (%, h) 7→ φ′%(h) from Dρ × D0 to `∞(Q) is continuous.

The definition of uniform Hadamard differentiability is given in Definition B.1 of Appendix B.

Assumption 4.4 holds for all examples of structural parameters listed in Section 2.

The following corollary gives the large sample law of
√
n(∆̂ − ∆), the properly normalized

structural estimator. It also shows that the bootstrap law of
√
n(∆̂∗− ∆̂), computed conditionally

on the data, approaches the large sample law
√
n(∆̂ −∆). It follows from the previous theorems

as well as from a more general result contained in Theorem 5.3.

Corollary 4.1 (Limit Theory and Validity of Multiplier Bootstrap for Smooth Struc-

tural Functionals). Under Assumptions 4.1, 4.2 or 4.3, and 4.4,

√
n(∆̂−∆) TP := φ′ρP (ZP ), in `∞(Q), uniformly in P ∈ Pn, (4.7)

where TP is a zero mean tight Gaussian process, for each P ∈ P. Moreover,

√
n(∆̂∗ − ∆̂) B TP , in `∞(Q), uniformly in P ∈ Pn. (4.8)

5. A General Problem of Inference on Function-Valued Parameters with

Approximately Sparse Nuisance Functions

In this section, we consider a general setting where possibly a continuum of target parameters is

of interest and Lasso-type or Post-Lasso-type methods are used to estimate a continuum of high-

dimensional nuisance functions. This setting covers a rich variety of modern moment-condition

problems in econometrics including the treatment effects problem. We establish a functional central

limit theorem for the estimators of the continuum of target parameters that holds uniformly in P ∈
P, where P includes a wide range of data-generating processes with approximately sparse continua

of nuisance functions. We also derive a functional central limit theorem for the multiplier bootstrap

that resamples the first order approximations to the standardized estimators of the continuum of

target parameters and establish its uniform validity. Moreover, we establish the uniform validity

of the functional delta method and the functional delta method for the multiplier bootstrap for
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smooth functionals of the continuum of target parameters using an appropriate strengthening of

Hadamard differentiability.

We are interested in function-valued target parameters indexed by u ∈ U ⊂ Rdu . We denote the

true value of the target parameter by

θ0 = (θu)u∈U , where θu ∈ Θu ⊂ Θ ⊂ Rdθ , for each u ∈ U .

We assume that for each u ∈ U , the true value θu is identified as the solution to the following

moment condition:

EP [ψu(Wu, θu, hu(Zu))] = 0, (5.1)

where Wu is a random vector that takes values in a Borel set Wu ⊂ Rdw and contains as a

subcomponent the vector Zu taking values in a Borel set Zu, the moment function

ψu :Wu ×Θu × Tu 7→ Rdθ , (w, θ, t) 7→ ψu(w, θ, t) = (ψuj(w, θ, t))
dθ
j=1 (5.2)

is a Borel measurable map, and the function

hu : Zu 7→ Rdt , z 7→ hu(z) = (hum(z))dtm=1 ∈ Tu(z), (5.3)

is another Borel measurable map that denotes the possibly infinite-dimensional nuisance parameter.

The sets Tu(z) are assumed to be convex for each u ∈ U and z ∈ Zu.

We assume that the continuum of nuisance functions (hu)u∈U is approximately sparse and thus

can be modelled and estimated using modern regularization and post-selection methods such as

Lasso and Post-Lasso. We let ĥu = (ĥum)dtm=1 denote the estimator of hu, which we assume obeys

the conditions in Assumption 5.3. The estimator θ̂u of θu is constructed as any approximate εn-

solution in Θu to a sample analog of the moment condition (5.1), i.e.,

‖En[ψu(Wu, θ̂u, ĥu(Zu))]‖ 6 inf
θ∈Θu

‖En[ψ(Wu, θ, ĥu(Zu))]‖+ εn, where εn = o(n−1/2). (5.4)

The key condition needed for regular estimation of θu is an orthogonality or immunization con-

dition. The simplest to explain, yet strongest, form of this condition can be expressed as follows:

∂tEP [ψu(Wu, θu, hu(Zu))|Zu] = 0, a.s., (5.5)

subject to additional technical conditions such as continuity (5.6) and dominance (5.7) stated

below, where we use the symbol ∂t to abbreviate ∂
∂t′ .

16 This condition holds in the previous

setting of inference on relevant treatment effects after interchanging the order of the derivative and

expectation. The formulation here also covers certain non-smooth cases such as structural and

instrumental quantile regression problems.

In the formal development, we use a more general form of the orthogonality condition.

16The expression ∂tEP [ψu(Wu, θu, hu(Zu))|Zu] is understood to be ∂tEP [ψu(Wu, θu, t)|Zu]|t=hu(Zu).
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Definition 5.1 (Orthogonality for Moment Condition Models, General Form). For each

u ∈ U , suppose that (5.1)–(5.3) hold. Consider Hu, a set of measurable functions z 7→ h(z) ∈ Tu(z)

from Zu to Rdt such that ‖h(Zu)−hu(Zu)‖P,2 <∞ for all h ∈ Hu. Suppose also that the set Tu(z)

is a convex subset of Rdt for each z ∈ Zu. We say that ψu obeys a general form of orthogonality with

respect to Hu uniformly in u ∈ U , if the following conditions hold: For each u ∈ U , the derivative

t 7→ ∂tEP [ψu(Wu, θu, t)|Zu] is continuous on t ∈ Tu(Zu) P -a.s., (5.6)

is dominated, ∥∥∥∥∥ sup
t∈Tu(Zu)

∥∥∥∂tEP [ψu(Wu, θu, t)|Zu]
∥∥∥∥∥∥∥∥

P,2

<∞, (5.7)

and obeys the orthogonality condition:

EP

[
∂tEP

[
ψu(Wu, θu, hu(Zu))|Zu

]
(h(Zu)− hu(Zu))

]
= 0 for all h ∈ Hu. (5.8)

The orthogonality condition (5.8) reduces to (5.5) when Hu can span all measurable functions

h : Zu 7→ Tu such that ‖h‖P,2 <∞ but is more general otherwise.

Comment 5.1. It is important to use a moment function ψu that satisfies the orthogonality

property given in (5.8). Generally, if we have a moment function ψ̃u which identifies θu but does

not have this property, we can construct a moment function ψu that identifies θu and has the

required orthogonality property by projecting the original function ψ̃u onto the orthocomplement

of the tangent space for the nuisance functions hu; see, for example, van der Vaart and Wellner

(1996), van der Vaart (1998, Chap. 25), Kosorok (2008), Belloni, Chernozhukov, and Kato (2013),

and Belloni, Chernozhukov, and Hansen (2014). �

Comment 5.2 (An alternative formulation of the orthogonality condition). A slightly

more general, though less primitive definition is as follows. For each u ∈ U , suppose that (5.1)-

(5.3) hold. Consider Hu, a set of measurable functions z 7→ h(z) ∈ Tu(z) from Zu to Rdt such that

‖h(Zu) − hu(Zu)‖P,2 < ∞ for all h ∈ Hu, where the set Tu(z) is a convex subset of Rdt for each

z ∈ Zu. We say that ψu obeys a general form of orthogonality with respect to Hu uniformly in

u ∈ U , if the following conditions hold: The Gateaux derivative map

Du,t[h− hu] := ∂tEP

(
ψu

{
Wu, θu, hu(Zu) + t

[
h(Zu)− hu(Zu)

]})
exists for all t ∈ [0, 1), h ∈ Hu, and u ∈ U and vanishes at t = 0 – namely,

Du,0[h− hu] = 0 for all h ∈ Hu. (5.9)

Definition 5.1 implies this definition by the mean-value expansion and the dominated convergence

theorem. �

In what follows, we shall denote by δ, c0, c, and C some positive constants. For a positive integer

d, [d] denotes the set {1, . . . , d}.
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Assumption 5.1 (Moment condition problem). Consider a random element W , taking values in

a measure space (W,AW), with law determined by a probability measure P ∈ Pn. The observed

data ((Wui)u∈U )ni=1 consist of n i.i.d. copies of a random element (Wu)u∈U which is generated

as a suitably measurable transformation with respect to W and u. Uniformly for all n > n0 and

P ∈ Pn, the following conditions hold: (i) The true parameter value θu obeys (5.1) and is interior

relative to Θu ⊂ Θ ⊂ Rdθ , namely there is a ball of radius δ centered at θu contained in Θu for

all u ∈ U , and Θ is compact. (ii) For ν := (νk)
dθ+dt
k=1 = (θ, t), each j ∈ [dθ] and u ∈ U , the map

Θu × Tu(Zu) 3 ν 7→ EP [ψuj(Wu, ν)|Zu] is twice continuously differentiable a.s. with derivatives

obeying the integrability conditions specified in Assumption 5.2. (iii) For all u ∈ U , the moment

function ψu obeys the orthogonality condition given in Definition 5.1 for the set Hu = Hun specified

in Assumption 5.3. (iv) The following identifiability condition holds: ‖EP [ψu(Wu, θ, hu(Zu))]‖ >
2−1(‖Ju(θ − θu)‖ ∧ c0) for all θ ∈ Θu, where the singular values of Ju := ∂θE[ψu(Wu, θu, hu(Zu))]

lie between c > 0 and C for all u ∈ U .

The conditions of Assumption 5.1 are mild and standard in moment condition problems. Assump-

tion 5.1(iv) encodes sufficient global and local identifiability to obtain a rate result. The suitably

measurable condition, defined in Appendix A, is a mild condition satisfied in most practical cases.

Assumption 5.2 (Entropy and smoothness). The set (U , dU ) is a semi-metric space such that

logN(ε,U , dU ) 6 C log(e/ε) ∨ 0. Let α ∈ [1, 2], and let α1 and α2 be some positive constants.

Uniformly for all n > n0 and P ∈ Pn, the following conditions hold: (i) The set of functions

F0 = {ψuj(Wu, θu, hu(Zu)) : j ∈ [dθ], u ∈ U}, viewed as functions of W is suitably measurable; has

an envelope function F0(W ) = supj∈[dθ],u∈U ,ν∈Θu×Tu(Zu) |ψuj(Wu, ν)| that is measurable with respect

to W and obeys ‖F0‖P,q 6 C, where q > 4 is a fixed constant; and has a uniform covering entropy

obeying supQ logN(ε‖F0‖Q,2,F0, ‖ · ‖Q,2) 6 C log(e/ε) ∨ 0. (ii) For all j ∈ [dθ] and k, r ∈ [dθ + dt],

and ψuj(W ) := ψuj(Wu, θu, hu(Zu)),

(a) supu∈U ,(ν,ν̄)∈(Θu×Tu(Zu))2 EP [(ψuj(Wu, ν)− ψuj(Wu, ν̄))2|Zu] 6 C‖ν − ν̄‖α, P -a.s.,

(b) supdU (u,ū)6δ EP [(ψuj(W )− ψūj(W ))2] 6 Cδα1 , supdU (u,ū)6δ ‖Ju − Jū‖ 6 Cδα2 ,

(c) EP supu∈U ,ν∈Θu×Tu(Zu) |∂νrEP [ψuj(Wu, ν) | Zu] |2 6 C,

(d) supu∈U ,ν∈Θu×Tu(Zu) |∂νk∂νrEP [ψuj(Wu, ν)|Zu]| 6 C, P -a.s.

Assumption 5.2 imposes smoothness and integrability conditions on various quantities derived

from ψu. It also imposes conditions on the complexity of the relevant function classes.

In what follows, let ∆n ↘ 0, δn ↘ 0, and τn ↘ 0 be sequences of constants approaching zero

from above at a speed at most polynomial in n (for example, δn > 1/nc for some c > 0).

Assumption 5.3 (Estimation of nuisance functions). The following conditions hold for each n > n0

and all P ∈ Pn. The estimated functions ĥu = (ĥum)dtm=1 ∈ Hun with probability at least 1 −∆n,
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where Hun is the set of measurable maps Zu 3 z 7→ h = (hm)dtm=1(z) ∈ Tu(z) such that

‖hm − hum‖P,2 6 τn,

and whose complexity does not grow too quickly in the sense that F1 = {ψuj(Wu, θ, h(Zu)) : j ∈
[dθ], u ∈ U , θ ∈ Θu, h ∈ Hun} is suitably measurable and its uniform covering entropy obeys:

sup
Q

logN(ε‖F1‖Q,2,F1, ‖ · ‖Q,2) 6 sn(log(an/ε)) ∨ 0,

where F1(W ) is an envelope for F1 which is measurable with respect to W and satisfies F1(W ) 6

F0(W ), for the F0 defined in Assumption 5.2. The complexity characteristics an > max(n, e) and

sn > 1 obey the growth conditions:

n−1/2
(√

sn log(an) + n−1/2snn
1
q log(an)

)
6 τn and τα/2n

√
sn log(an) + snn

1
q
− 1

2 log(an) log n 6 δn,

where q and α are defined in Assumption 5.2.

Assumption 5.3 imposes conditions on the estimation rate of the nuisance functions hum and on

the complexity of the functions sets that contain the estimators ĥum. Within the approximately

sparse framework, the index sn corresponds to the maximum of the dimension of the approximating

models and of the size of the selected models; and an = p ∨ n. Under other frameworks, these

parameters could be different; yet if they are well-behaved, then our results still apply. Thus, these

results potentially cover other frameworks, where assumptions other than approximate sparsity

are used to make the estimation problem manageable. It is important to point out that the class

F1 need not be Donsker because its entropy is allowed to increase with n. Allowing for non-

Donsker classes is crucial for accommodating modern high-dimensional estimation methods for the

nuisance functions as we have seen in the previous section. This feature makes the conditions

imposed here very different from the conditions imposed in various classical references on dealing

with nonparametrically estimated nuisance functions; see, for example, van der Vaart and Wellner

(1996), van der Vaart (1998), and Kosorok (2008).

The following theorem is one of the main results of the paper:

Theorem 5.1 (Uniform Functional Central Limit Theorem for a Continuum of Target

Parameters). Under Assumptions 5.1, 5.2, and 5.3, for an estimator (θ̂u)u∈U that obeys equation

(5.4),
√
n(θ̂u − θu)u∈U = (Gnψ̄u)u∈U + oP (1) in `∞(U)dθ , uniformly in P ∈ Pn,

where ψ̄u(W ) := −J−1
u ψu(Wu, θu, hu(Zu)), and

(Gnψ̄u)u∈U  (GP ψ̄u)u∈U in `∞(U)dθ , uniformly in P ∈ Pn,

where the paths of u 7→ GP ψ̄u are a.s. uniformly continuous on (U , dU ) and

sup
P∈Pn

EP sup
u∈U
‖GP ψ̄u‖ <∞ and lim

δ→0
sup
P∈Pn

EP sup
dU (u,ū)6δ

‖GP ψ̄u −GP ψ̄ū‖ = 0.
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Comment 5.3. It is important to mention here that this result on a continuum of parameters

solving a continuum of moment conditions is completely new. The prior approaches dealing with

continuums of moment conditions with infinite-dimensional nuisance parameters, for example, the

ones given in Chernozhukov and Hansen (2006) and Escanciano and Zhu (2013), impose the Donsker

conditions on the class of functions, following Andrews (1994a), that contain the values of the

estimators of these nuisance functions. This approach is completely precluded in our setting,

since the resulting class of functions in our case has entropy that grows with the sample size and

therefore the class is not Donsker. Hence, we develop a new approach to establishing the results

which exploits the delicate interplay between the rate of growth of entropy, the biases, and the size

of the estimation error. In addition, the new approach allows for obtaining results that are uniform

in P . �

We can estimate the law of ZP with the bootstrap law of

Ẑ∗n,P :=
√
n(θ̂∗u − θ̂u)u∈U :=

(
1√
n

n∑
i=1

ξiψ̂u(Wi)

)
u∈U

, (5.10)

where (ξi)
n
i=1 are i.i.d. multipliers as defined in equation (3.33), ψ̂u(Wi) is the estimated score

ψ̂u(Wi) := −Ĵ−1
u ψu(Wui, θ̂u, ĥu(Zui)),

and Ĵu is a suitable estimator of Ju.17 The bootstrap law is computed by drawing (ξi)
n
i=1 conditional

on the data.

The following theorem shows that the multiplier bootstrap provides a valid approximation to

the large sample law of
√
n(θ̂u − θu)u∈U .

Theorem 5.2 (Uniform Validity of Multiplier Bootstrap). Suppose Assumptions 5.1, 5.2,

and 5.3 hold, the estimator (θ̂u)u∈U obeys equation (5.4), and that, for the constant α defined in

Assumption 5.2 and some positive constant α3, uniformly in P ∈ Pn with probability 1− δn,

(u 7→ Ĵu) ∈ Jn = {u 7→ J̄u : ‖J̄u − J̄ū‖ 6 C‖u− ū‖α3 , ‖J̄u − Ju‖ 6 τα/2n , for all (u, ū) ∈ U2}.

Then,

Ẑ∗n,P  B ZP in `∞(U)dθ , uniformly in P ∈ Pn.

We next derive the large sample distribution and validity of the multiplier bootstrap for the

estimator ∆̂ := φ(θ̂) := φ((θ̂u)u∈U ) of the functional ∆ := φ(θ0) = φ((θu)u∈U ) using the functional

delta method. The functional θ0 7→ φ(θ0) is defined as a uniformly Hadamard differentiable trans-

form of θ0 = (θu)u∈U . The following result gives the large sample law of
√
n(∆̂−∆), the properly

normalized estimator. It also shows that the bootstrap law of
√
n(∆̂∗−∆̂), computed conditionally

on the data, is consistent for the large sample law of
√
n(∆̂−∆). Here ∆̂∗ := φ(θ̂∗) = φ((θ̂∗)u∈U )

17We do not discuss the estimation of Ju since it is often a problem-specific matter. In Section 3, Ju was equal to

the identity matrix, so we did not need to estimate it.
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is the bootstrap version of ∆̂, and θ̂∗u = θ̂u + n−1
∑n

i=1 ξiψ̂u(Wi) is the multiplier bootstrap version

of θ̂u defined via equation (5.10).

Theorem 5.3 (Uniform Limit Theory and Validity of Multiplier Bootstrap for Smooth

Functionals of θ). Suppose that for each P ∈ P := ∪n>n0Pn, θ0 = θ0
P is an element of a compact

set Dθ. Suppose θ 7→ φ(θ), a functional of interest mapping Dφ ⊂ D = `∞(U)dθ to `∞(Q), where

Dθ ⊂ Dφ, is Hadamard differentiable in θ tangentially to D0 = UC(U)dθ uniformly in θ ∈ Dθ, with

the linear derivative map φ′θ : D0 7→ D such that the mapping (θ, h) 7→ φ′θ(h) from Dθ×D0 to `∞(Q)

is continuous. Then,

√
n(∆̂−∆) TP := φ′θ0P

(ZP ) in `∞(Q), uniformly in P ∈ Pn, (5.11)

where TP is a zero mean tight Gaussian process, for each P ∈ P. Moreover,

√
n(∆̂∗ − ∆̂) B TP in `∞(Q), uniformly in P ∈ Pn. (5.12)

To derive Theorem 5.3, we strengthen the usual notion of Hadamard differentiability to a uniform

notion introduced in Definition B.1. Theorems B.3 and B.4 show that this uniform Hadamard

differentiability is sufficient to guarantee the validity of the functional delta uniformly in P . These

new uniform functional delta method theorems may be of independent interest.

6. Generic Lasso and Post-Lasso Methods for Functional Response Data

In this section, we provide estimation and inference results for Lasso and Post-Lasso estimators

with function-valued outcomes and linear or logistic links. These results are of interest beyond the

context of treatment effects estimation, and thus we present this section in a way that leaves it

autonomous with respect to the rest of the paper.

6.1. The generic setting with function-valued outcomes. Consider a data generating process

with a functional response variable (Yu)u∈U and observable covariates X satisfying for each u ∈ U ,

EP [Yu | X] = Λ(f(X)′θu) + ru(X), (6.1)

where f : X → Rp is a set of p measurable transformations of the initial controls X, θu is a p-

dimensional vector, ru is an approximation error, and Λ is a fixed known link function. The notation

in this section differs from the rest of the paper with Yu and X denoting a generic response and a

generic vector of covariates to facilitate the application of these results to other contexts. We only

consider the linear link function, Λ(t) = t, and the logistic link function, Λ(t) = exp(t)/{1+exp(t)},
in detail.

Considering the logistic link is useful when the functional response is binary, though the linear

link can be used in that case as well under some conditions. For example, it is useful for estimating a

high-dimensional generalization of the distributional regression models considered in Chernozhukov,

Fernández-Val, and Melly (2013) where the response variable is the continuum (Yu = 1(Y 6 u))u∈U .
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Even though we focus on these two cases we note that the principles discussed here apply to many

other convex (or near-convex) M -estimators. In the remainder of the section, we discuss and

establish results for `1-penalized and post-model selection estimators of (θu)u∈U that hold uniformly

over u ∈ U .

Throughout the section, we assume that u ∈ U ⊂ [0, 1]du and that n i.i.d. observations from

dgps where (6.1) holds, {(Yui)u∈U , Xi)}ni=1, are available to estimate (θu)u∈U . For each u ∈ U , a

penalty level λ, and a diagonal matrix of penalty loadings Ψ̂u, we define the Lasso estimator as

θ̂u ∈ arg min
θ∈Rp

En[M(Yu, f(X)′θ)] +
λ

n
‖Ψ̂uθ‖1 (6.2)

where M(y, t) = 1
2(y − Λ(t))2 in the case of linear regression, and M(y, t) = −{1(y = 1) log Λ(t) +

1(y = 0) log(1 − Λ(t))} in the case of the logistic link function for binary response data. For each

u ∈ U , the Post-Lasso estimator based on a set of covariates T̃u is then defined as

θ̃u ∈ arg min
θ∈Rp

En[M(Yu, f(X)′θ)] : supp(θ) ⊆ T̃u (6.3)

where the set T̃u contains supp(θ̂u) and possibly additional variables deemed as important.18 We

will set T̃u = supp(θ̂u) unless otherwise noted.

The chief departure between the analysis when U is a singleton and the functional response case

is that the penalty level needs to be set to control selection errors uniformly over u ∈ U . To do so,

we will set λ so that with high probability

λ

n
> c sup

u∈U

∥∥∥Ψ̂−1
u En

[
∂θM(Yu, f(X)′θu)

]∥∥∥
∞
, (6.4)

where c > 1 is a fixed constant. When U is a singleton the strategy above is similar to Bickel,

Ritov, and Tsybakov (2009), Belloni and Chernozhukov (2013), and Belloni, Chernozhukov, and

Wang (2011), who use an analog of (6.4) to derive the properties of Lasso and Post-Lasso. When U
is not a singleton, this strategy was first employed in the context of `1-penalized quantile regression

processes by Belloni and Chernozhukov (2011).

To implement (6.4), we propose setting the penalty level as

λ = c
√
nΦ−1(1− γ/{2pndu}), (6.5)

where du is the dimension of U , 1 − γ with γ = o(1) is a confidence level associated with the

probability of event (6.4), and c > 1 is a slack constant.19 When implementing the estimators, we

set c = 1.1. and γ = .1/ log(n), though other choices are theoretically valid.

18The total number of additional variables ŝa should also obey the same growth conditions that s obeys. For

example, if the additional variables are chosen so that ŝa . |supp(θ̂u)| the growth condition is satisfied with probability

going to one for the designs covered by Assumptions 6.1 and 6.2. See also Belloni, Chernozhukov, and Hansen (2014)

for a discussion on choosing additional variables.
19When the set U is a singleton, one can use the penalty level in (6.5) with du = 0. This choice corresponds to

that used in Belloni, Chernozhukov, and Hansen (2014).
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In addition to the penalty parameter λ, we also need to construct a penalty loading matrix

Ψ̂u = diag({l̂uj , j = 1, . . . , p}). This loading matrix can be formed according to the following

iterative algorithm.

Algorithm 1 (Estimation of Penalty Loadings). Choose γ ∈ [1/n,min{1/ log n, pndu−1}] and

c > 1 to form λ as defined in (6.5), and choose a constant K > 1 as an upper bound on the

number of iterations. (0) Set k = 0, and initialize l̂uj,0 for each j = 1, . . . , p. For the linear link

function, set l̂uj,0 = {En[f2
j (X)(Yu − Ȳu)2]}1/2 with Ȳu = En[Yu]. For the logistic link function, set

l̂uj,0 = 1
2{En[f2

j (X)]}1/2. (1) Compute the Lasso and Post-Lasso estimators, θ̂u and θ̃u, based on

Ψ̂u = diag({l̂uj,k, j = 1, . . . , p}). (2) Set l̂uj,k+1 := {En[f2
j (X)(Yu−Λ(f(X)′θ̃u))2]}1/2. (3) If k > K,

stop; otherwise set k ← k + 1 and go to step (1).

6.2. Asymptotic Properties of a Continuum of Lasso and Post-Lasso Estimators for

Functional Responses: Linear Case. We provide sufficient conditions for establishing good

performance of the estimators discussed above when the linear link function is used. In the state-

ment of the following assumption, δn ↘ 0, `n →∞, and ∆n ↘ 0 are fixed sequences; and c, C, κ′, κ′′

and ν ∈ (0, 1] are positive finite constants.

Assumption 6.1. Consider a random element W taking values in a measure space (W,AW),

with law determined by a probability measure P ∈ Pn. The observed data ((Yui)u∈U , Xi)
n
i=1 consist

of n i.i.d. copies of random element ((Yu)u∈U , X), which is generated as a suitably measurable

transformation of W and u. The model (6.1) holds with linear link t 7→ Λ(t) = t for all u ∈ U ⊂
[0, 1]du, where du is fixed and U is equipped with the semi-metric dU . Uniformly for all n > n0 and

P ∈ Pn, the following conditions hold. (i) The model (6.1) is approximately sparse with sparsity

index obeying supu∈U ‖θu‖0 6 s and the growth restriction log(p ∨ n) 6 δnn
1/3. (ii) The set U has

uniform covering entropy obeying logN(ε,U , dU ) 6 du log(1/ε) ∨ 0, and the collection (ζu = Yu −
EP [Yu | X], ru)u∈U are suitably measurable transformations of W and u. (iii) Uniformly over u ∈ U ,

the moments of the model are boundedly heteroscedastic, namely c 6 EP [ζ2
u | X] 6 C a.s., and

maxj6pEP [|fj(X)ζu|3 + |fj(X)Yu|3] 6 C. (iv) For a fixed ν > 0 and a sequence Kn, the dictionary

functions, approximation errors, and empirical errors obey the following boundedness and empirical

regularity conditions: (a) c 6 EP [f2
j (X)] 6 C, j = 1, . . . , p; maxj6p |fj(X)| 6 Kn a.s.; K2

ns log(p∨
n) 6 δnn. (b) With probability 1−∆n, supu∈U En[r2

u(X)] 6 Cs log(p∨n)/n; supu∈U maxj6p |(En−
EP )[f2

j (X)ζ2
u]| ∨ |(En − EP )[f2

j (X)Y 2
u ]| 6 δn; log1/2(p ∨ n) supdU (u,u′)61/n maxj6p{En[fj(X)2(ζu −

ζu′)
2]}1/2 6 δn, and supdU (u,u′)61/n‖En[f(X)(ζu − ζu′)]‖∞ 6 δnn−1/2. (c) With probability 1−∆n,

the empirical minimum and maximum sparse eigenvalues are bounded from zero and above, namely

κ′ 6 inf‖δ‖06s`n ‖f(X)′δ‖Pn,2 6 sup‖δ‖06s`n ‖f(X)′δ‖Pn,2 6 κ′′.

Assumption 6.1 is only a set of sufficient conditions. The finite sample results in the Appendix

allow for more general conditions (for example, du can grow with the sample size). We verify that

the more technical conditions in Assumption 6.1(iv)(b) hold in a variety of cases, see Lemma G.2
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in Appendix G. Under Assumption 6.1, we establish results on the performance of the estimators

(6.2) and (6.3) for the linear link function case that hold uniformly over u ∈ U and P ∈ Pn.

Theorem 6.1 (Rates and Sparsity for Functional Responses under Linear Link). Under Assump-

tion 6.1 and setting the penalty and loadings as in Algorithm 1, for all n large enough, uniformly for

all P ∈ Pn with PP probability 1− o(1), for some constant C̄, the Lasso estimator θ̂u is uniformly

sparse, supu∈U ‖θ̂u‖0 6 C̄s, and the following performance bounds hold:

sup
u∈U
‖f(X)′(θ̂u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
and sup

u∈U
‖θ̂u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n
.

For all n large enough, uniformly for all P ∈ Pn, with PP probability 1 − o(1), the Post-Lasso

estimator corresponding to θ̂u obeys

sup
u∈U
‖f(X)′(θ̃u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
, and sup

u∈U
‖θ̃u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n
.

We note that the performance bounds are exactly of the type used in Assumptions 4.2 and

4.3. Indeed, under the condition s2 log2(p ∨ n) log2 n 6 δnn, the rate of convergence established in

Theorem 6.1 yields
√
s log(p ∨ n)/n 6 o(n−1/4).

6.3. Asymptotic Properties of a Continuum of Lasso and Post-Lasso Estimators for

Functional Responses: Logistic Case. We provide sufficient conditions to state results on the

performance of the estimators discussed above for the logistic link function. This case corresponds

to M(y, t) = −{1(y = 1) log Λ(t)+1(y = 0) log(1−Λ(t))} with Λ(t) = exp(t)/{1+exp(t)} where the

response variable is assumed to be binary, Yu ∈ {0, 1} for all u ∈ U . Consider the fixed sequences

δn ↘ 0, `n →∞, and ∆n ↘ 0 and the positive finite constants c, C, κ′, κ′′, and c 6 1/2.

Assumption 6.2. Consider a random element W taking values in a measure space (W,AW),

with law determined by a probability measure P ∈ Pn. The observed data ((Yui)u∈U , Xi)
n
i=1 con-

sist of n i.i.d. copies of random element ((Yu)u∈U , X), which is generated as a suitably mea-

surable transformation of W and u. The model (6.1) holds with Yui ∈ {0, 1} with the logistic

link t 7→ Λ(t) = exp(t)/{1 + exp(t)} for each u ∈ U ⊂ [0, 1]du, where du is fixed and U is

equipped with the semi-metric dU . Uniformly for all n > n0 and P ∈ Pn, the following conditions

hold. (i) The model (6.1) is approximately sparse with sparsity index obeying supu∈U ‖θu‖0 6 s

and the growth restriction log(p ∨ n) 6 δnn
1/3. (ii) The set U has uniform covering entropy

obeying logN(ε,U , dU ) 6 du log(1/ε) ∨ 0, and the collection (ζu = Yu − EP [Yu | X], ru)u∈U is

a suitably measurable transformation of W and u. (iii) Uniformly over u ∈ U the moments

of the model satisfy maxj6pEP [|fj(X)|3] 6 C, and c 6 EP [Yu | X] 6 1 − c a.s. (iv) For

a sequence Kn, the dictionary functions, approximation errors, and empirical errors obey the

following boundedness and empirical regularity conditions: (a) supu∈U |ru(X)| 6 δn a.s.; c 6

EP [f2
j (X)] 6 C, j = 1, . . . , p; maxj6p |fj(X)| 6 Kn a.s.; and K2

ns
2 log2(p ∨ n) 6 δnn. (b) With

probability 1 − ∆n, supu∈U En[r2
u(X)] 6 Cs log(p ∨ n)/n; supu∈U maxj6p |(En − EP )[f2

j (X)ζ2
u]| 6
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δn; supu,u′∈U ,dU (u,u′)61/n maxj6p{En[fj(X)2(ζu−ζu′)2]}1/2 6 δn, and supu,u′∈U ,dU (u,u′)61/n‖En[f(X)(ζu−
ζu′)]‖∞ 6 δnn−1/2. (c) With probability 1−∆n, the empirical minimum and maximum sparse eigen-

values are bounded from zero and above: κ′ 6 inf‖δ‖06s`n ‖f(X)′δ‖Pn,2 6 sup‖δ‖06s`n ‖f(X)′δ‖Pn,2 6
κ′′.

The following result characterizes the performance of the estimators (6.2) and (6.3) for the logistic

link function case under Assumption 6.2.

Theorem 6.2 (Rates and Sparsity for Functional Response under Logistic Link). Under Assump-

tion 6.2 and setting the penalty and loadings as in Algorithm 1, for all n large enough, uniformly for

all P ∈ Pn with PP probability 1− o(1), the following performance bounds hold for some constant

C̄:

sup
u∈U
‖f(X)′(θ̂u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
and sup

u∈U
‖θ̂u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n
.

and the estimator is uniformly sparse: supu∈U ‖θ̂u‖0 6 C̄s. For all n large enough, uniformly for

all P ∈ Pn, with PP probability 1− o(1), the Post-Lasso estimator corresponding to θ̂u obeys

sup
u∈U
‖f(X)′(θ̃u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
, and sup

u∈U
‖θ̃u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n
.

Comment 6.1. We note that the performance bounds satisfy the conditions of Assumptions 4.2

and 4.3. Moreover, since in the logistic case the link function is 1-Lipschitz and the approximation

errors are assumed to be small, the results above establish the same rates of convergence for the

estimators of the conditional probabilities, for example

sup
u∈U
‖EP [Yu | X]− Λ(f(X)′θ̂u)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
.

7. Estimating the Effect of 401(k) Participation on Financial Asset Holdings

As a practical illustration of the methods developed in this paper, we consider the estimation of

the effect of 401(k) participation on accumulated assets as in Abadie (2003) and Chernozhukov and

Hansen (2004). Our goal here is to explain the practical implementation details of our methods,

to illustrate how to interpret the estimation results and inference statements, and to make the

following points that underscore our theoretical findings: 1) In a low-dimensional setting, where

the number of controls is low and therefore there is no need for selection, our robust post-selection

inference methods perform well. That is, the results of our methods agree with the results of

standard methods that do not employ any selection. 2) In a high-dimensional setting, where there

are (moderately) many controls, our post-selection inference methods perform well, producing

well-behaved estimates and confidence intervals compared to the erratic estimates and confidence

intervals produced by standard methods that do not employ selection as a means of regularization.

3) Finally, in a very high-dimensional setting, where the number of controls is comparable to the
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sample size, the standard methods break down completely, while our methods still produce well-

behaved estimates and confidence intervals. These findings are in line with our theoretical results

about uniform validity of our inference methods.

The key problem in determining the effect of participation in 401(k) plans on accumulated assets

is saver heterogeneity coupled with the fact that the decision to enroll in a 401(k) is non-random.

It is generally recognized that some people have a higher preference for saving than others. It

also seems likely that those individuals with high unobserved preference for saving would be most

likely to choose to participate in tax-advantaged retirement savings plans and would tend to have

otherwise high amounts of accumulated assets. The presence of unobserved savings preferences with

these properties then implies that conventional estimates that do not account for saver heterogeneity

and endogeneity of participation will be biased upward, tending to overstate the savings effects of

401(k) participation.

To overcome the endogeneity of 401(k) participation, Abadie (2003) and Chernozhukov and

Hansen (2004) adopt the strategy detailed in Poterba, Venti, and Wise (1994; 1995; 1996; 2001)

and Benjamin (2003), who used data from the 1991 Survey of Income and Program Participation

and argue that eligibility for enrolling in 401(k) plan in this data can be taken as exogenous after

conditioning on a few observables of which the most important for their argument is income. The

basic idea of their argument is that, at least around the time 401(k)’s initially became available,

people were unlikely to be basing their employment decisions on whether an employer offered a

401(k) but would instead focus on income. Thus, eligibility for a 401(k) could be taken as exoge-

nous conditional on income, and the causal effect of 401(k) eligibility could be directly estimated

by appropriate comparison across eligible and ineligible individuals.20 Abadie (2003) and Cher-

nozhukov and Hansen (2004) use this argument for the exogeneity of eligibility conditional on

controls to argue that 401(k) eligibility provides a valid instrument for 401(k) participation and

employ IV methods to estimate the effect of 401(k) participation on accumulated assets.

As a complement to the work cited above, we estimate various treatment effects of 401(k) par-

ticipation on holdings of financial assets using high-dimensional methods. A key component of

the argument underlying the exogeneity of 401(k) eligibility is that eligibility may only be taken

as exogenous after conditioning on income. Both Abadie (2003) and Chernozhukov and Hansen

(2004) adopt this argument but control only for a small number of terms. One might wonder

whether the small number of terms considered is sufficient to adequately control for income and

other related confounds. At the same time, the power to learn anything about the effect of 401(k)

participation decreases as one controls more flexibly for confounds. The methods developed in this

paper offer one resolution to this tension by allowing us to consider a very broad set of controls

and functional forms under the assumption that among the set of variables we consider there is a

20Poterba, Venti, and Wise (1994; 1995; 1996; 2001) and Benjamin (2003) all focus on estimating the effect of

401(k) eligibility, the intention to treat parameter. Also note that there are arguments that eligibility should not be

taken as exogenous given income; see, for example, Engen, Gale, and Scholz (1996) and Engen and Gale (2000).
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relatively low-dimensional set that adequately captures the effect of confounds. This approach is

more general than that pursued in Chernozhukov and Hansen (2004) or Abadie (2003) which both

implicitly assume that confounding effects can adequately be controlled for by a small number of

variables chosen ex ante by the researcher.

We use the same data as Abadie (2003), Benjamin (2003), and Chernozhukov and Hansen (2004).

The data consist of 9,915 observations at the household level drawn from the 1991 SIPP. We

consider two different outcome variables, Y , in our analysis: net total financial assets21 and total

wealth.22 Our treatment variable, D, is an indicator for having positive 401(k) balances; and our

instrument, Z, is an indicator for being eligible to enroll in a 401(k) plan. The vector of raw

covariates, X, consists of age, income, family size, years of education, a married indicator, a two-

earner status indicator, a defined benefit pension status indicator, an IRA participation indicator,

and a home ownership indicator. Further details about the sample and variables used can be found

in Chernozhukov and Hansen (2004).

We present detailed results for five different sets of controls f(X). The first set uses the indicators

of marital status, two-earner status, defined benefit pension status, IRA participation status, and

home ownership status, a linear term for family size, five categories for age, four categories for

education, and seven categories for income (Indicator specification). We use the same definitions of

categories as in Chernozhukov and Hansen (2004) and note that this is identical to the specification

in Chernozhukov and Hansen (2004) and Benjamin (2003). The second specification augments

the Indicator specification with all two-way interactions between the variables from the Indicator

specification (Indicator plus interactions specification). The third specification uses the indicators

of marital status, two-earner status, defined benefit pension status, IRA participation status, and

home ownership status, and second, second, fourth, and eighth order polynomials in family size,

education, age, and income, respectively (Orthogonal Polynomials specification).23 The fourth

specification augments the Orthogonal Polynomials specification with all two-way interactions of

the sets of variables from the Orthogonal Polynomials specification (Orthogonal Polynomials plus

interactions specification). The final specification forms a larger set of potential controls by starting

with all of the variables from the Orthogonal Polynomials specification and forming all two-way

interactions between all of the non-income variables. The set of main effects and interactions of all

non-income variables is then fully interacted with all of the income terms (Orthogonal Polynomials

plus many interactions). The dimensions of the set of controls are thus 20, 167, 22, 196, and 756 for

the Indicator, Indicator plus interactions, Orthogonal Polynomials, Orthogonal Polynomials plus

21Net total financial assets are defined as the sum of IRA balances, 401(k) balances, checking accounts, U.S. saving

bonds, other interest-earning accounts in banks and other financial institutions, other interest-earning assets (such

as bonds held personally), stocks, and mutual funds less nonmortgage debt.
22Total wealth is net financial assets plus housing equity, housing value minus mortgage, and the value of business,

property, and motor vehicles.
23The polynomials in each variable are orthogonalized using the Gram-Schmidt process. Note that the polynomials

are not orthogonal across variables; e.g. the age and income polynomials may be correlated.



35

interactions specifications, and Orthogonal Polynomials plus many interactions, respectively. We

refer to the specifications without interactions as low-p, to the specifications with only two-way

interactions as high-p, and to the specification with two- and three-way interactions as very-high-p.

We report estimates of the LATE, LATE-T, LQTE, and LQTE-T for each specification. Esti-

mation of all of the treatment effects depends on first-stage estimation of reduced form functions

as detailed in Section 3. We estimate reduced form functions where Yu = Y is the outcome using

least squares when no model selection is used or Post-Lasso when selection is used. We estimate

propensity scores and reduced form functions where Yu = 1(Y 6 u) is the outcome by logistic

regression when no model selection is used or Post-`1-penalized logistic regression when selection

is used. We only report selection-based estimates in the very-high-p setting.24 We use the penalty

level given in (6.5) and construct penalty loadings using the method detailed in Algorithm 1. For

the LATE and LATE-T where the set U is a singleton, we use the penalty level in (6.5) with du = 0.

This choice corresponds to that used in Belloni, Chernozhukov, and Hansen (2014). We refer to

the supplementary appendix for further details on implementation.

Estimates of the LATE and LATE-T are given in Table 1. In this table, we provide point

estimates for each of the five sets of controls with and without variable selection. We also report

both analytic and multiplier bootstrap standard errors. The bootstrap standard errors are based

on 500 bootstrap replications with Mammen (1993) weights as multipliers. Looking first at the two

sets of standard error estimates, we see that the bootstrap and analytic standard are quite similar

and that one would not draw substantively different conclusions from one versus the other.

It is interesting that the estimated LATE and LATE-T are similar in six of the ten sets of

estimates reported, suggesting positive and significant effects of 401(k) participation on net finan-

cial assets and total wealth with larger effects for treated compliers than for untreated compliers.

This similarity is reassuring in the Indicator and Orthogonal Polynomials specifications as it illus-

trates that there is little impact of variable selection relative to simply including everything in a

low-dimensional setting.25 The two cases where we observe substantively different results are in

the Orthogonal Polynomials plus interactions and Orthogonal Polynomials plus many interactions

specifications. Both the LATE and LATE-T point estimates are of implausible magnitudes and

have very large estimated standard errors in the Orthogonal Polynomials plus interactions case.

24The estimated propensity score shows up in the denominator of the efficient moment conditions. As is conven-

tional, we use trimming to keep the denominator bounded away from zero with trimming set to 10−12. Trimming

only occurs when selection is not done in the Orthogonal Polynomials plus interactions (11 observations trimmed)

and Orthogonal Polynomials plus many interactions specifications (9915 observations trimmed). We choose not to

report unregularized estimates in the very-high-p specification since all observations are trimmed and, in fact, have

estimated propensity scores of either 0 or 1.
25In the low-dimensional setting, using all available controls is semi-parametrically efficient and allows uniformly

valid inference. Thus, the similarity between the results in this case is an important feature of our method which results

from our reliance on low-bias moment functions and sensible variable selection devices to produce semi-parametrically

efficient estimators and uniformly valid inference statements following model selection.
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Estimates cannot even be computed reliably in the Orthogonal Polynomials plus many interactions

case due to the empirical failure of the identification condition due to the estimated propensity

score hitting the boundary of 0 or 1 for every observation.

One would favor these imprecise estimates produced in the Orthogonal Polynomials plus inter-

actions and Orthogonal Polynomials plus many interactions specifications if there were important

nonlinearity that is missed by the simpler specifications. The concern that there is important

nonlinearity missed by the other specifications that renders the estimated treatment effects too

imprecise to be useful is alleviated by noting that the point estimates and standard errors based

on the both of these specifications following variable selection are sensible and similar to the other

estimates. The similarity in the point estimates suggests the bulk of the reduced form predictive

power is contained in a set of variables similar to those used in the other specifications and that

there is not a small number of the added variables that pick out important sources of nonlinearity

neglected by the other specifications. Thus, the large point estimates and standard errors in this

case seem to be driven by including many variables which have little to no predictive power in the

reduced form relationships but result in overfitting.

We provide estimates of the LQTE and LQTE-T based on the Indicator specification, the In-

dicator plus interactions specification, the Orthogonal Polynomials specification, the Orthogonal

Polynomials plus interactions specification, and the Orthogonal Polynomials plus many interactions

specification in Figures 1-5 respectively. The left column in each figure gives results for the LQTE,

and the right column displays the results for the LQTE-T. In the top row of each figure, we display

the results with net financial assets as the dependent variable, and we give the results based on

total wealth as the dependent variable in the middle row. The bottom row of each figure displays

the selection-based estimate of the treatment effect on net total financial assets along with the

selection-based estimate of the treatment effect on total wealth. In each graphic, we use solid lines

for point estimates and report uniform 95% confidence intervals with dashed lines.

Looking across the figures, we see a similar pattern to that seen for the LATE and LATE-

T in that the selection-based estimates are stable across all specifications and are similar to the

estimates obtained without selection from the baseline low-p Indicator and Orthogonal Polynomials

specifications. In the more flexible high-p specifications that include interactions, the estimates that

do not make use of selection start to behave erratically. This erratic behavior is especially apparent

in the estimated LQTE of 401(k) participation on total wealth where we observe that small changes

in the quantile index may result in large swings in the point estimate of the LQTE and estimated

standard errors are large enough that meaningful conclusions cannot be drawn. Again, this erratic

behavior is likely due to overfitting as the variable selection methods select a roughly common

low-dimensional set of variables that are useful for reduced form prediction in all cases.

If we focus on the LQTE and LQTE-T estimated from variable selection methods, we find that

401(k) participation has a small impact on accumulated net total financial assets at low quantiles

while appearing to have a larger impact at high quantiles. Looking at the uniform confidence
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intervals, we can see that this pattern is statistically significant at the 5% level and that we would

reject the hypothesis that 401(k) participation has no effect and reject the hypothesis of a constant

treatment effect more generally. For total wealth, we can also reject the hypothesis of zero treatment

effect and the hypothesis of a constant treatment effect, though the uniform confidence bands are

much wider. Interestingly, the only evidence of a statistically significant impact on total wealth

occurs for low and intermediate quantiles; one cannot rule out the hypothesis of no effect of 401(k)

participation on total wealth in the upper quantiles. This pattern is especially interesting when

coupled with the evidence of essentially a uniformly positive effect of participation on net total

financial assets larger than the effect on total wealth in the upper quantiles, which suggests that

some of the effect on financial assets may be attributed to substitution from non-financial assets

into the tax-advantaged 401(k) assets.

It is interesting that our results are similar to those in Chernozhukov and Hansen (2004) despite

allowing for a much richer set of controls. The fact that we allow for a rich set of controls but produce

similar results to those previously available lends further credibility to the claim that previous work

controlled adequately for the available observables.26 Finally, it is worth noting that this similarity

is not mechanical or otherwise built in to the procedure. For example, applications in Belloni,

Chen, Chernozhukov, and Hansen (2012) and Belloni, Chernozhukov, and Hansen (2014) use high-

dimensional variable selection methods and produce sets of variables that differ substantially from

intuitive baselines.

Appendix A. Notation

A.1. Overall Notation. We consider a random element W = WP taking values in the measure

space (W,AW), with probability law P ∈ P. Note that it is most convenient to think about P

as a parameter in a parameter set P. We shall also work with a bootstrap multiplier variable

ξ taking values in (R,AR) that is independent of WP , having probability law Pξ, which is fixed

throughout. We consider (Wi)
∞
i=1 = (Wi,P )∞i=1 and (ξi)

∞
i=1 to be i.i.d. copies of W and ξ, which are

also independent of each other. The data will be defined as some measurable function of Wi for

i = 1, ..., n, where n denotes the sample size.

We require the sequences (Wi)
∞
i=1 and (ξi)

∞
i=1 to live on a probability space (Ω,AΩ,PP ) for all

P ∈ P; note that other variables arising in the proofs do not need to live on the same space. It is

important to keep track of the dependence on P in the analysis since we want the results to hold

uniformly in P in some set Pn, which may be dependent on n, namely it will typically increase

with n, i.e. Pn ⊆ Pn+1.

Throughout the paper we signify the dependence on P by mostly using P as a subscript in PP ,

but in the proofs we sometimes use it as a subscript for variables as in WP . The operator E denotes

26Of course, the estimates are still not valid causal estimates if one does not believe that 401(k) eligibility can be

taken as exogenous after controlling for income and the other included variables.
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a generic expectation operator with respect to a generic probability measure P, while EP denotes

the expectation with respect to PP . Note also that we use capital letters such as W to denote

random elements and use the corresponding lower case letters such as w to denote fixed values that

these random elements can take.

We denote by Pn the (random) empirical probability measure that assigns probability n−1 to

each Wi ∈ (Wi)
n
i=1. En denotes the expectation with respect to the empirical measure, and Gn,P

denotes the empirical process
√
n(En − P ), i.e.

Gn,P (f) = Gn,P (f(W )) = n−1/2
n∑
i=1

{f(Wi)− P [f(W )]}, P [f(W )] :=

∫
f(w)dP (w),

indexed by a measurable class of functions F : W 7→ R; see van der Vaart and Wellner (1996,

chap. 2.3). We shall often omit the index P from Gn,P and simply write Gn. In what follows,

we use ‖ · ‖P,q to denote the Lq(P) norm; for example, we use ‖f(W )‖P,q = (
∫
|f(w)|qdP (w))1/q

and ‖f(W )‖Pn,q = (n−1
∑n

i=1 |f(Wi)|q)1/q. For a vector v = (v1, . . . , vp)
′ ∈ Rp, ‖v‖0 denotes the

`0-“norm” of v, that is, the number of non-zero components of v, ‖v‖1 denotes the `1-norm of v,

that is, ‖v‖1 = |v1|+ · · ·+ |vp|, and ‖v‖ denotes the Euclidean norm of v, that is, ‖v‖ =
√
v′v.

We say that a collection of random variables F = {f(W, t), t ∈ T}, where f : W × T → R,

indexed by a set T and viewed as functions of W ∈ W, is suitably measurable with respect to W if

it is image admissible Suslin class, as defined in Dudley (1999), p 186. In particular, F is suitably

measurable if f :W × T → R is measurable and T is a Polish space equipped with its Borel sigma

algebra, see Dudley (1999), p 186. This condition is a mild assumption satisfied in practical cases.

For a positive integer k, [k] denotes the set {1, . . . , k}.

A.2. Notation for Stochastic Convergence Uniformly in P . All parameters, such as the law

of the data, are indexed by P . This dependency is sometimes kept implicit. We shall allow for the

possibility that the probability measure P = Pn can depend on n. We shall conduct our stochastic

convergence analysis uniformly in P , where P can vary within some set Pn, which itself may vary

with n.

The convergence analysis, namely the stochastic order relations and convergence in distribution,

uniformly in P ∈ Pn and the analysis under all sequences Pn ∈ Pn are equivalent. Specifically,

consider a sequence of stochastic processes Xn,P and a random element YP , taking values in the

normed space D, defined on the probability space (Ω,AΩ,PP ). Through most of the Appendix

D = `∞(U), the space of uniformly bounded functions mapping an arbitrary index set U to the real

line. Consider also a sequence of deterministic positive constants an. We shall say that

(i) Xn,P = OP (an) uniformly in P ∈ Pn, if limK→∞ limn→∞ supP∈Pn P∗P (|Xn,P | > Kan) = 0,

(ii) Xn,P = oP (an) uniformly in P ∈ Pn, if supK>0 limn→∞ supP∈Pn P∗P (|Xn,P | > Kan) = 0,

(iii) Xn,P  YP uniformly in P ∈ Pn, if supP∈Pn suph∈BL1(D) |E∗Ph(Xn,P )− EPh(YP )| → 0.
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Here the symbol  denotes weak convergence, i.e. convergence in distribution or law, BL1(D)

denotes the space of functions mapping D to [0, 1] with Lipschitz norm at most 1, and the outer

probability and expectation, P∗P and E∗P, are invoked whenever (non)-measurability arises.

Lemma A.1. The above notions (i), (ii) and (iii) are equivalent to the following notions (a), (b),

and (c), each holding for every sequence Pn ∈ Pn:

(a) Xn,Pn = OPn(an), i.e. limK→∞ limn→∞ P∗Pn(|Xn,Pn | > Kan) = 0;

(b) Xn,Pn = oPn(an), i.e. supK>0 limn→∞ P∗Pn(|Xn,Pn | > Kan) = 0;

(c) Xn,Pn  YPn, i.e. suph∈BL1(D) |E∗Pnh(Xn,Pn)− EPnh(YPn)| → 0.

The claims follow straightforwardly from the definitions, so the proof is omitted. We shall use

this equivalence extensively in the proofs of the main results without explicit reference.

Appendix B. Key Tools I: Uniform in P Donsker Theorem, Multiplier Bootstrap,

and Functional Delta Method

B.1. Uniform in P Donsker Property. Let (Wi)
∞
i=1 be a sequence of i.i.d. copies of the random

element W taking values in the measure space (W,AW) according to the probability law P on that

space. Let FP = {ft,P : t ∈ T} be a set of suitably measurable functions w 7→ ft,P (w) mapping

W to R, equipped with a measurable envelope FP : W 7→ R. The class is indexed by P ∈ P and

t ∈ T , where T is a fixed, totally bounded semi-metric space equipped with a semi-metric dT . Let

N(ε,FP , ‖ · ‖Q,2) denote the ε-covering number of the class of functions FP with respect to the

L2(Q) seminorm ‖ · ‖Q,2 for Q a finitely-discrete measure on (W,AW). We shall use the following

result.

Theorem B.1 (Uniform in P Donsker Property). Work with the set-up above. Suppose that

for q > 2

sup
P∈P
‖FP ‖P,q 6 C and lim

δ↘0
sup
P∈P

sup
dT (t,t̄)6δ

‖ft,P − ft̄,P ‖P,2 = 0. (B.1)

Furthermore, suppose that

lim
δ↘0

sup
P∈P

∫ δ

0
sup
Q

√
logN(ε‖FP ‖Q,2,FP , ‖ · ‖Q,2)dε = 0. (B.2)

Let GP denote the P-Brownian Bridge, and consider

Zn,P := (Zn,P (t))t∈T := (Gn(ft,P ))t∈T , ZP := (ZP (t))t∈T := (GP (ft,P ))t∈T .

(a) Then, Zn,P  ZP in `∞(T ) uniformly in P ∈ P, namely

sup
P∈P

sup
h∈BL1(`∞(T ))

|E∗Ph(Zn,P )− EPh(ZP )| → 0.



40

(b) The process Zn,P is stochastically equicontinuous uniformly in P ∈ P, i.e., for every ε > 0,

lim
δ↘0

lim sup
n→∞

sup
P∈P

P∗P

(
sup

dT (t,t̄)6δ
|Zn,P (t)− Zn,P (t̄)| > ε

)
= 0.

(c) The limit process ZP has the following continuity properties:

sup
P∈P

EP sup
t∈T
|ZP (t)| <∞, lim

δ↘0
sup
P∈P

EP sup
dT (t,t̄)6δ

|ZP (t)− ZP (t̄)| = 0.

(d) The paths t 7→ ZP (t) are a.s. uniformly continuous on (T, dT ) under each P ∈ P.

Comment B.1. [Important Feature of the Theorem] This is an extension of the uniform

Donsker theorem stated in Theorem 2.8.2 in van der Vaart and Wellner (1996), which allows for

the function classes F to be dependent on P themselves. This generalization is crucial and is

required in all of our problems.

B.2. Uniform in P Validity of Multiplier Bootstrap. Consider the setting of the preceding

subsection. Let (ξ)ni=1 be i.i.d multipliers whose distribution does not depend on P , such that

Eξ = 0, Eξ2 = 1, and E|ξ|q 6 C for q > 2. Consider the multiplier empirical process:

Z∗n,P := (Z∗n,P (t))t∈T := (Gn(ξft,P ))t∈T :=

(
1√
n

n∑
i=1

ξift,P (Wi)

)
t∈T

.

Here Gn is taken to be an extended empirical processes defined by the empirical measure that

assigns mass 1/n to each point (Wi, ξi) for i = 1, ..., n. Let ZP = (ZP (t))t∈T = (GP (ft,P ))t∈T as

defined in Theorem B.1.

Theorem B.2 (Uniform in P Validity of Multiplier Bootstrap). Assume the conditions of

Theorem B.1 hold. Then (a) the following unconditional convergence takes place, Z∗n,P  ZP in

`∞(T ) uniformly in P ∈ P, namely

sup
P∈P

sup
h∈BL1(`∞(T ))

|E∗Ph(Z∗n,P )− EPh(ZP )| → 0,

and (b) the following conditional convergence takes place, Z∗n,P  B ZP in `∞(T ) uniformly in

P ∈ P, namely uniformly in P ∈ P

sup
h∈BL1(`∞(T ))

|EBnh(Z∗n,P )− EPh(ZP )| = o∗P (1),

where EBn denotes the expectation over the multiplier weights (ξi)
n
i=1 holding the data (Wi)

n
i=1 fixed.

B.3. Uniform in P Functional Delta Method and Bootstrap. We shall use the functional

delta method, as formulated in van der Vaart and Wellner (1996, Chap. 3.9). Let D0, D, and E be

normed spaces, with D0 ⊂ D. A map φ : Dφ ⊂ D 7→ E is called Hadamard-differentiable at ρ ∈ Dφ
tangentially to D0 if there is a continuous linear map φ′ρ : D0 7→ E such that

φ(ρ+ tnhn)− φ(ρ)

tn
→ φ′ρ(h), n→∞,
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for all sequences tn → 0 in R and hn → h ∈ D0 in D such that ρ+ tnhn ∈ Dφ for every n.

We now define the following notion of the uniform Hadamard differentiability:

Definition B.1 (Uniform Hadamard Tangential Differentiability). Consider a map φ :

Dφ 7→ E, where the domain of the map Dφ is a subset of a normed space D and the range is a

subset of the normed space E. Let D0 be a normed space, with D0 ⊂ D, and Dρ be a compact metric

space, a subset of Dφ. The map φ : Dφ 7→ E is called Hadamard-differentiable uniformly in ρ ∈ Dρ
tangentially to D0 with derivative map h 7→ φ′ρ(h), if∣∣∣φ(ρn + tnhn)− φ(ρn)

tn
− φ′ρ(h)

∣∣∣→ 0,
∣∣∣φ′ρn(hn)− φ′ρ(h)

∣∣∣→ 0, n→∞,

for all convergent sequences ρn → ρ in Dρ, tn → 0 in R, and hn → h ∈ D0 in D such that

ρn + tnhn ∈ Dφ for every n. As a part of the definition, we require that the derivative map

h 7→ φ′ρ(h) from D0 to E is linear for each ρ ∈ Dρ. �

Comment B.2. Note that the definition requires that that the derivative map (ρ, h) 7→ φ′ρ(h),

mapping Dρ × D0 to E, is continuous at each (ρ, h) ∈ Dρ × D0. �

Comment B.3 (Important Details of the Definition). Definition B.1 is different from the

definition of uniform differentiability given in van der Vaart and Wellner (1996, p. 379, eq. (3.9.12)),

since our definition allows Dρ to be much smaller than Dφ and allows Dρ to be endowed with a

much stronger metric than the metric induced by the norm of D. These differences are essential for

infinite-dimensional applications. For example, the quantile/inverse map is uniformly Hadamard

differentiable in the sense of Definition B.1 for a suitable choice of Dρ: Let T = [ε, 1−ε], D = `∞(T ),

Dφ= set of cadlag functions on T , D0 = UC(T ), and Dρ be a compact subset of C1(T ) such that

each ρ ∈ Dρ obeys ∂ρ(t)/∂t > c > 0 on t ∈ T , where c is a positive constant. However, the

quantile/inverse map is not Hadamard differentiable uniformly on Dρ if we set Dρ = Dφ and hence

is not uniformly differentiable in the sense of the definition given in van der Vaart and Wellner

(1996) which requires Dρ = Dφ. It is important and practical to keep the distinction between Dρ
and Dφ since the estimated values ρ̂ may well be outside Dρ unless explicitly imposed in estimation

even though the population values of ρ are in Dρ by assumption. For example, the empirical cdf is

in Dφ, but is outside Dρ. �

Theorem B.3 (Functional delta-method uniformly in P ∈ P). Let φ : Dφ ⊂ D 7→ E
be Hadamard-differentiable uniformly in ρ ∈ Dρ ⊂ Dφ tangentially to D0 with derivative map

φ′ρ. Let ρ̂n,P be a sequence of stochastic processes taking values in Dφ, where each ρ̂n,P is an

estimator of the parameter ρP ∈ Dρ. Suppose there exists a sequence of constants rn → ∞ such

that Zn,P = rn(ρ̂n,P − ρP )  ZP in D uniformly in P ∈ Pn. The limit process ZP is separable

and takes its values in D0 for all P ∈ P = ∪n>n0Pn, where n0 is fixed. Moreover, the set of

stochastic processes {ZP : P ∈ P} is relatively compact in the topology of weak convergence in

D0, that is, every sequence in this set can be split into weakly convergent subsequences. Then,

rn (φ(ρ̂n,P )− φ(ρP ))  φ′ρP (ZP ) in E uniformly in P ∈ Pn. If (ρ, h) 7→ φ
′
ρ(h) is defined and
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continuous on the whole of Dρ × D, then the sequence rn (φ(ρ̂n,P )− φ(ρP )) − φ′ρP (rn(ρ̂n,P − ρP ))

converges to zero in outer probability uniformly in P ∈ Pn. Moreover, the set of stochastic processes

{φ′ρP (ZP ) : P ∈ P} is relatively compact in the topology of weak convergence in E.

The following result on the functional delta method applies to any bootstrap or other simulation

method obeying certain conditions. This includes the multiplier bootstrap as a special case. Let

Dn,P = (Wi,P )ni=1 denote the data vector and Bn = (ξi)
n
i=1 be a vector of random variables, used

to generate bootstrap or simulation draws (this may depend on the particular method). Consider

sequences of stochastic processes ρ̂n,P = ρ̂n,P (Dn,P ) , where Zn,P = rn(ρ̂n,P − ρP )  ZP in the

normed space D uniformly in P ∈ Pn. Also consider the bootstrap stochastic process Z∗n,P =

Zn,P (Dn,P , Bn) in D, where Zn,P is a measurable function of Bn for each value of Dn. Suppose

that Z∗n,P converges conditionally given Dn in distribution to ZP uniformly in P ∈ Pn, namely that

sup
h∈BL1(D)

|EBn [h(Z∗n,P )]− EPh(ZP )| = o∗P (1),

uniformly in P ∈ Pn, where EBn denotes the expectation computed with respect to the law of Bn

holding the data Dn,P fixed. This is denoted as “Z∗n,P  B ZP uniformly in P ∈ Pn.” Finally, let

ρ̂∗n,P = ρ̂n,P + Z∗n,P /rn

denote the bootstrap or simulation draw of ρ̂n,P .

Theorem B.4 (Uniform in P functional delta-method for bootstrap and other simu-

lation methods). Assume the conditions of Theorem B.3 hold. Let ρ̂n,P and ρ̂∗n,P be maps as

indicated previously taking values in Dφ such that rn(ρ̂n,P − ρP ) ZP and rn(ρ̂∗n,P − ρ̂n,P ) B ZP

in D uniformly in P ∈ Pn. Then, X∗n,P = rn(φ(ρ̂∗n,P ) − φ(ρ̂n,P ))  B XP = φ′ρP (ZP ) uniformly in

P ∈ Pn.

B.4. Proof of Theorem B.1. Part (a) and (b) are a direct consequence of Lemma B.2. In

particular, Lemma B.2(a) implies stochastic equicontinuity under arbitrary subsequences Pn ∈ P,

which implies part (b). Part (a) follows from Lemma B.2(b) by splitting an arbitrary sequence

n ∈ N into subsequences n ∈ N′ along each of which the covariance function

(t, s) 7→ cPn(t, s) := Pnfs,Pnft,Pn − Pnfs,PnPnft,Pn

converges uniformly and therefore also pointwise to a uniformly continuous function on (T, dT ).

This is possible because {(t, s) 7→ cP (t, s) : P ∈ P} is a relatively compact set in `∞(T ×T ) in view

of the Arzela-Ascoli Theorem, the assumptions in equation (B.1), and total boundedness of (T, dT ).

By Lemma B.2(b) pointwise convergence of the covariance function implies weak convergence to

a tight Gaussian process which may depend on the identity N′ of the subsequence. Since this

argument applies to each such subsequence that split the overall sequence, part (b) follows.

Part (c) is immediate from the imposed uniform covering entropy condition and Dudley’s metric

entropy inequality for expectations of suprema of Gaussian processes (Corollary 2.2.8 in van der
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Vaart and Wellner (1996)). Claim (d) follows from claim (c) and a standard argument, based on

the application of the Borel-Cantelli lemma. Indeed, let m ∈ N be a sequence and

δm := 2−m ∧ sup

{
δ > 0 : sup

P∈P
EP sup

dT (t,t̄)6δ
|ZP (t)− ZP (t̄)| < 2−2m

}
,

then by the Markov inequality

PP

(
sup

dT (t,t̄)6δm

|ZP (t)− ZP (t̄)| > 2−m

)
6 2−2m+m = 2−m.

This sums to a finite number over m ∈ N. Hence, by the Borel-Cantelli lemma, for almost all states

ω ∈ Ω, |ZP (t)(ω)−ZP (t̄)(ω)| 6 2−m for all dT (t, t̄) 6 δm 6 2−m and all m sufficiently large. Hence

claim (d) follows. �

B.5. Proof of Theorem B.2. Claim (a) is verified by invoking Theorem B.1. We begin by

showing that Z∗P = (GP ξft,P )t∈T is equal in distribution to ZP = (GP ft,P )t∈T , in particular, Z∗P
and ZP share identical mean and covariance function, and thus they share the continuity properties

established in Theorem B.1. This claim is immediate from the fact that multiplication by ξ of each

f ∈ FP = {ft,P : t ∈ T} yields a set ξFP of measurable functions ξf : (w, ξ) 7→ ξf(w), mapping

W × R to R. Each such function has mean zero under P × Pξ, i.e.
∫
sf(w)dPξ(s)dP (w) = 0, and

the covariance function (ξf, ξf̃) 7→ Pff̃ − PfP f̃ . Hence the Gaussian process (GP (ξf))ξf∈ξFP
shares the zero mean and the covariance function of (GP (f))f∈FP .

We are claiming that Z∗n,P  Z∗P in `∞(T ) uniformly in P ∈ P, where Z∗n,P := (Gnξft,P )t∈T .

We note that the function class FP and the corresponding envelope FP satisfy the conditions of

Theorem B.1. The same is also true for the function class ξFP defined by (w, ξ) 7→ ξfP (w), which

maps W×R to R and its envelope |ξ|FP , since ξ is independent of W . Let Q now denote a finitely

discrete measure overW×R. By Lemma C.2 multiplication by ξ does not change qualitatively the

uniform covering entropy bound:

log sup
Q
N(ε‖|ξ|FP ‖Q,2, ξFP , ‖ · ‖Q,2) 6 log sup

Q
N(2−1ε‖FP ‖Q,2,FP , ‖ · ‖Q,2).

Moreover, multiplication by ξ does not affect the norms, ‖ξfP (W )‖P×Pξ,2 = ‖fP (W )‖P,2, since ξ

is independent of W by construction and Eξ2 = 1. The claim then follows.

Claim (b). For each δ > 0 and t ∈ T , let πδt denote a closest element in a given, finite δ-net over

T . We begin by noting that

∆P := sup
h∈BL1

|EBnh(Z∗n,P )− EPh(ZP )|

6 IP + IIP + IIIP := sup
h∈BL1

|EPh(ZP ◦ πδ)− EPh(ZP )|

+ sup
h∈BL1

|EBnh(Z∗n,P ◦ πδ)− EPh(ZP ◦ πδ)|+ sup
h∈BL1

|EBnh(Z∗n,P ◦ πδ)− EBnh(Z∗n,P )|,

where here and below BL1 abbreviates BL1(`∞(T )).
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First, we note that

IP 6 EP

(
sup

dT (t,t̄)6δ
|ZP (t)− ZP (t̄)| ∧ 2

)
=: µP (δ), lim

δ↘0
sup
P∈P

µP (δ) = 0.

The first assertion follows from

IP 6 sup
h∈BL1

EP |h(Z∗n,P ◦ πδ)− h(Z∗n,P )| 6 EP

(
sup
t∈T
|ZP ◦ πδ(t)− ZP (t)| ∧ 2

)
6 µP (δ),

and the second assertion holds by Theorem B.1 (c).

Second, we note that

E∗P IIIP 6 E∗P

(
sup

dT (t,t̄)6δ
|Z∗n,P (t)− Z∗n,P (t̄)| ∧ 2

)
=: µ∗P (δ), lim

n→∞
sup
P∈P
|µ∗P (δ)− µP (δ)| = 0.

The first assertion follows because E∗P IIIP is bounded by

E∗P sup
h∈BL1

EBn |h(Z∗n,P ◦ πδ)− h(Z∗n,P )| 6 E∗PEBn

(
sup
t∈T
|Z∗n,P ◦ πδ(t)− Z∗n,P (t)| ∧ 2

)
6 µ∗P (δ).

The second assertion holds by part (a) of the present theorem. Define ε(δ) := δ ∨ supP∈P µP (δ).

Then, by Markov’s inequality, followed by n→∞,

lim sup
n→∞

sup
P∈P

P∗P

(
IIIP >

√
ε(δ)

)
6 lim sup

n→∞

supP∈P µ
∗
P (δ)√

ε(δ)
6

supP∈P µP (δ)√
ε(δ)

6
√
ε(δ).

Finally, by Lemma B.1, for each ε > 0

lim sup
n→∞

sup
P∈P

P∗P (IIP > ε) = 0.

We can now conclude. Note that ε(δ)↘ 0 if δ ↘ 0, which holds by the definition of ε(δ) and the

property supP∈P µP (δ) ↘ 0 if δ ↘ 0 noted above. Hence for each ε > 0 and all 0 < δ < δε such

that 3
√
ε(δ) < ε,

lim sup
n→∞

sup
P∈P

P∗P (∆P > ε) 6 lim sup
n→∞

sup
P∈P

P∗P

(
IP + IIP + IIIP > 3

√
ε(δ)

)
6
√
ε(δ).

Sending δ ↘ 0 gives the result. �

B.6. Auxiliary Result: Conditional Multiplier Central Limit Theorem in Rd uniformly

in P ∈ P. We rely on the following lemma, which is apparently new. (An analogous result can

be derived for almost sure convergence from the well-known non-uniform multiplier central limit

theorems, but this strategy requires us to put all the variables indexed by P on the single underlying

probability space, which is much less convenient in applications.)

Lemma B.1 (Conditional Multiplier Central Limit Theorem in Rd uniformly in P ∈ P). Let

(Zi,P )∞i=1 be i.i.d. random vectors on Rd, indexed by a parameter P ∈ P. The parameter P

represents probability laws on Rd. For each P ∈ P, these vectors are assumed to be independent

of the i.i.d. sequence (ξi)
∞
i=1 with Eξ1 = 0 and Eξ2

1 = 1. There exist constants 2 < q < ∞ and
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0 < M < ∞, such that EPZ1,P = 0 and (EP ‖Z1,P ‖q)1/q 6 M uniformly for all P ∈ P. Then, for

every ε > 0

lim
n→∞

sup
P∈P

P∗P

(
sup

h∈BL1(Rd)

∣∣∣EBnh(n−1/2
n∑
i=1

ξiZi,P

)
− EPh

(
N(0,EPZ1,PZ

′
1,P )

)∣∣∣ > ε

)
= 0,

where EBn denotes the expectation over (ξi)
n
i=1 holding (Zi,P )ni=1 fixed.

Proof of Lemma B.1. Let X and Y be random variables in Rd, then define dBL(X,Y ) :=

suph∈BL1(Rd) |Eh(X) − Eh(Y )|. It suffices to show that for any sequence Pn ∈ P and N∗ ∼
n−1/2

∑n
i=1 ξiZi,Pn | (Zi,Pn)ni=1, dBL

(
N∗, N(0,EPnZ1,PnZ

′
1,Pn

)
)
→ 0 in probability (under PPn).

Following Bickel and Freedman (1981), we shall rely on the Mallow’s metric, written mr, which is

a metric on the space of distribution functions on Rd. For our purposes it suffices to recall that given

a sequence of distribution functions {Fk} and a distribution function F , mr(Fk, F )→ 0 if and only

if
∫
gdFk →

∫
gdF for each continuous and bounded g : Rd → R, and

∫
‖z‖rdFk(z)→

∫
‖z‖rdF (z).

See Bickel and Freedman (1981) for the definition of mr.

Under the assumptions of the lemma, we can split the sequence n ∈ N into subsequences

n ∈ N′, along each of which the distribution function of Z1,Pn converges to some distribution

function F ′ with respect to the Mallow’s metric mr, for some 2 < r < q. This also implies that

N(0,EPnZ1,PnZ
′
1,Pn

) converges weakly to a normal limit N(0, Q′) with Q′ =
∫
zz′dF ′(z) such that

‖Q′‖ 6M . Both Q′ and F ′ can depend on the subsequence N′.

Let Fk be the empirical distribution function of a sequence (zi)
k
i=1 of constant vectors in Rd,

where k ∈ N. The law of N∗Fk = k−1/2
∑k

i=1 ξizi is completely determined by Fk and the law of ξ

(the latter is fixed, so it does not enter as the subscript in the definition of N∗Fk). If mr(Fk, F
′)→ 0

as k →∞, then dBL(N∗Fk , N(0, Q′))→ 0 by Lindeberg’s central limit theorem.

Let Fn denote the empirical distribution function of (Zi,Pn)ni=1. Note that N∗ = N∗Fn ∼
n−1/2

∑n
i=1 ξiZi,Pn | (Zi,Pn)ni=1. By the law of large numbers for arrays,

∫
gdFn →

∫
gdF ′ and∫

‖z‖rdFn(z)→
∫
‖z‖rdF ′(z) in probability along the subsequence n ∈ N′. Hence mr(Fn, F ′)→ 0

in probability along the same subsequence. We can conclude that dBL(N∗Fn , N(0, Q′))→ 0 in prob-

ability along the same subsequence by the extended continuous mapping theorem (van der Vaart

and Wellner, 1996, Theorem 1.11.1).

The argument applies to every subsequence N′ of the stated form. The claim in the first paragraph

of the proof thus follows. �

B.7. Donsker Theorems for Function Classes that depend on n. Let (Wi)
∞
i=1 be a sequence

of i.i.d. copies of the random element W taking values in the measure space (W,AW), whose

law is determined by the probability measure P , and let w 7→ fn,t(w) be measurable functions

fn,t : W → R indexed by n ∈ N and a fixed, totally bounded semi-metric space (T, dT ). Consider
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the stochastic process

(Gnfn,t)t∈T :=

{
n−1/2

n∑
i=1

(fn,t(Wi)− Pfn,t)

}
t∈T

.

This empirical process is indexed by a class of functions Fn = {fn,t : t ∈ T} with a measurable

envelope function Fn. It is important to note here that the dependency on n allows us to have the

class itself be possibly dependent on the law Pn.

Lemma B.2 (Donsker Theorem for Classes Changing with n). Work with the set-up above.

Suppose that for some fixed constant q > 2 and every sequence δn ↘ 0:

‖Fn‖Pn,q = O(1), sup
dT (s,t)6δn

‖fn,s − fn,t‖Pn,2 → 0,

∫ δn

0
sup
Q

√
logN(ε‖Fn‖Q,2,Fn, ‖ · ‖Q,2)dε→ 0.

(a) Then the empirical process (Gnfn,t)t∈T is asymptotically tight in `∞(T ). (b) For any subse-

quence such that the covariance function Pnfn,sfn,t − Pnfn,sPnfn,t converges pointwise on T × T ,

(Gnfn,t)t∈T converges in `∞(T ) to a Gaussian process with covariance function given by the limit

of the covariance function along that subsequence.

Proof. This is merely a restatement for subsequences of Theorem 2.11.22 in van der Vaart and

Wellner (1996, p. 220-221), stated for sequences. �

B.8. Proof of Theorems B.3 and B.4. The proof consists of two parts, each proving the corre-

sponding theorem.

Part 1. We can split N into subsequences {N′} along each of which

Zn,Pn  Z ′ ∈ D0 in D, ρPn → ρ′ in Dρ (n ∈ N′),

where Z ′ and ρ′ can possibly depend on N′. It suffices to verify that for each N′:

rn(φ(ρ̂n,Pn)− φ(ρPn)) φ′ρ′(Z
′) (n ∈ N′) (B.3)

rn(φ(ρ̂n,Pn)− φ(ρPn))− φ′ρPn (rn(ρ̂n,Pn − ρPn)) 0 (n ∈ N′), (B.4)

rn(φ(ρ̂n,Pn)− φ(ρPn))− φ′ρ′(rn(ρ̂n,Pn − ρPn)) 0 (n ∈ N′), (B.5)

where the last two claims hold provided that (ρ, h) 7→ φ
′
ρ(h) is defined and continuous on the whole

of Dρ × D. The claim (B.5) is not needed in Part 1, but we need it for the Part 2.

The map gn(h) = rn(φ(ρPn + r−1
n h) − φ(ρPn)), from Dn = {h ∈ D : ρPn + r−1

n h ∈ Dφ} to E,

satisfies gn(hn) → φ′ρ′(h) for every subsequence hn → h ∈ D0 (with n ∈ N′). Application of the

extended continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1) yields

(B.3).

Similarly, the map mn(h) = rn(φ(ρPn + r−1
n h) − φ(ρPn)) − φ′ρPn (h), from Dn = {h ∈ D : ρPn +

r−1
n h ∈ Dφ} to E, satisfies mn(hn) → φ′ρ′(h) − φ′ρ′(h) = 0 for every subsequence hn → h ∈ D0
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(with n ∈ N′). Application of the extended continuous mapping theorem (van der Vaart and

Wellner, 1996, Theorem 1.11.1) yields (B.4). The proof of (B.5) is completely analogous and is

omitted.

To establish relative compactness, work with each N′. Then φ′ρPn (h) mapping D0 to E satis-

fies φ′ρPn (hn) → φ′ρ′(h) for every subsequence hn → h ∈ D0 (with n ∈ N′). Application of the

extended continuous mapping theorem (van der Vaart and Wellner, 1996, Theorem 1.11.1) yields

that φ′ρPn (ZP ) φ′ρ′(Z
′).

Part 2. We can split N into subsequences {N′} as above. Along each N′,

rn(ρ̂∗n,Pn − ρPn) Z ′′ ∈ D0 in D, rn(ρ̂n,Pn − ρPn) Z ′ ∈ D0 in D, ρPn → ρ′ in Dρ (n ∈ N′),

where Z ′′ is a separable process in D0 (which is given by Z ′ plus its independent copy Z̄ ′). Indeed,

note that rn(ρ̂∗ρn,Pn − ρPn) = Z∗n,Pn + Zn,Pn , and (Z∗n,Pn , Zn,Pn) converge weakly unconditionally to

(Z̄ ′, Z ′) by a standard argument.

Given each N′ the proof is similar to the proof of Theorem 3.9.15 of van der Vaart and Wellner

(1996). We can assume without loss of generality that the derivative φ′ρ′ : D → E is defined and

continuous on the whole of D. Otherwise, if φ′ρ′ is defined and continuous only on D0, we can extend

it to D by a Hahn-Banach extension such that C = ‖φ′ρ′‖D0→E = ‖φ′ρ′‖D→E <∞; see van der Vaart

and Wellner (1996, p. 380) for details. For each N′, by claim (B.5), applied to ρ̂n,Pn and to ρ̂∗n,Pn
replacing ρ̂n,Pn ,

rn(φ(ρ̂n,Pn)− φ(ρPn)) = φ′ρ′(rn(ρ̂n,Pn − ρPn)) + o∗Pn(1),

rn(φ(ρ̂∗n,Pn)− φ(ρPn)) = φ′ρ′(rn(ρ̂∗n,Pn − ρPn)) + o∗Pn(1).

Subtracting these equations conclude that for each ε > 0

EPn1
(∥∥∥rn(φ(ρ̂∗n,Pn)− φ(ρ̂n,Pn))− φ′ρ′(rn(ρ̂∗n,Pn − ρ̂n,Pn))

∥∥∥∗
E
> ε
)
→ 0 (n ∈ N′). (B.6)

For every h ∈ BL1(E), the function h◦φ′ρ′ is contained in BLC(D). Moreover, rn(ρ̂∗n,P−ρ̂n,P ) B ZP

in D uniformly in P ∈ Pn implies rn(ρ̂∗n,P − ρ̂n,P ) B Z ′ along the subsequence n ∈ N′. These two

facts imply that

sup
h∈BL1(E)

∣∣∣EBnh(φ′ρ′(rn(ρ̂∗n,Pn − ρ̂n,Pn))
)
− Eh(φρ′(Z

′))
∣∣∣ = o∗Pn(1) (n ∈ N′).

Next for each ε > 0 and along n ∈ N′

sup
h∈BL1(E)

∣∣∣EBnh(rn(φ(ρ̂∗n,Pn)− φ(ρ̂n,Pn))
)
− EBnh

(
φ′ρ′(rn(ρ̂∗n,Pn − ρ̂n,Pn))

)∣∣∣
6 ε+ 2EBn1

(∥∥∥rn(φ(ρ̂∗n,Pn)− φ(ρ̂n,Pn))− φ′ρ′(rn(ρ̂∗n,Pn − ρ̂n,Pn))
∥∥∥∗
E
> ε
)

= oPn(1),

where the oPn(1) conclusion follows by the Markov inequality and by (B.6). Conclude that

sup
h∈BL1(E)

∣∣∣EBnh(rn(φ(ρ̂∗n,Pn)− φ(ρ̂n,Pn))
)
− Eh(φρ′(Z

′))
∣∣∣ = o∗Pn(1) (n ∈ N′).

�
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Appendix C. Key Tools II: Probabilistic Inequalities

Let (Wi)
n
i=1 be a sequence of i.i.d. copies of random element W taking values in the measure

space (W,AW) according to probability law P . Let F be a set of suitably measurable functions

f :W 7→ R, equipped with a measurable envelope F :W 7→ R.

The following maximal inequality is due to Chernozhukov, Chetverikov, and Kato (2012).

Lemma C.1 (A Maximal Inequality). Work with the setup above. Suppose that F > supf∈F |f |
is a measurable envelope with ‖F‖P,q <∞ for some q > 2. Let M = maxi6n F (Wi) and σ2 > 0 be

any positive constant such that supf∈F ‖f‖2P,2 6 σ2 6 ‖F‖2P,2. Suppose that there exist constants

a > e and v > 1 such that

log sup
Q
N(ε‖F‖Q,2,F , ‖ · ‖Q,2) 6 v(log a+ log(1/ε)), 0 < ε 6 1.

Then

EP [‖Gn‖F ] 6 K

(√
vσ2 log

(
a‖F‖P,2

σ

)
+
v‖M‖PP ,2√

n
log

(
a‖F‖P,2

σ

))
,

where K is an absolute constant. Moreover, for every t > 1, with probability > 1− t−q/2,

‖Gn‖F 6 (1 + α)EP [‖Gn‖F ] + K(q)
[
(σ + n−1/2‖M‖PP ,q)

√
t + α−1n−1/2‖M‖PP ,2t

]
, ∀α > 0,

where K(q) > 0 is a constant depending only on q. In particular, setting a > n and t = log n, with

probability > 1− c(log n)−1,

‖Gn‖F 6 K(q, c)

(
σ

√
v log

(
a‖F‖P,2

σ

)
+
v‖M‖PP ,q√

n
log

(
a‖F‖P,2

σ

))
, (C.1)

where ‖M‖PP ,q 6 n1/q‖F‖P,q and K(q, c) > 0 is a constant depending only on q and c.

Lemma C.2 (Algebra for Covering Entropies). Work with the setup above.

(1) Let F be a VC subgraph class with a finite VC index k or any other class whose entropy is

bounded above by that of such a VC subgraph class, then the covering entropy of F obeys:

sup
Q

logN(ε‖F‖Q,2,F , ‖ · ‖Q,2) . 1 + k log(1/ε) ∨ 0

(2) For any measurable classes of functions F and F ′ mapping W to R

logN(ε‖F + F ′‖Q,2,F + F ′, ‖ · ‖Q,2) 6 logN
(
ε
2‖F‖Q,2,F , ‖ · ‖Q,2

)
+ logN

(
ε
2‖F

′‖Q,2,F ′, ‖ · ‖Q,2
)
,

logN(ε‖F · F ′‖Q,2,F · F ′, ‖ · ‖Q,2) 6 logN
(
ε
2‖F‖Q,2,F , ‖ · ‖Q,2

)
+ logN

(
ε
2‖F

′‖Q,2,F ′, ‖ · ‖Q,2
)
,

N(ε‖F ∨ F ′‖Q,2,F ∪ F ′, ‖ · ‖Q,2) 6 N (ε‖F‖Q,2,F , ‖ · ‖Q,2) +N (ε‖F ′‖Q,2,F ′, ‖ · ‖Q,2) .

(3) Given a measurable class F mapping W to R and a random variable ξ taking values in R,

log sup
Q
N(ε‖|ξ|F‖Q,2, ξF , ‖ · ‖Q,2) 6 log sup

Q
N (ε/2‖F‖Q,2,F , ‖ · ‖Q,2)

(4) Given measurable classes Fj and envelopes Fj, j = 1, . . . , k, mapping W to R, a function

φ : Rk → R such that for fj , gj ∈ Fj, |φ(f1, . . . , fk) − φ(g1, . . . , gk)| 6
∑k

j=1 Lj(x)|fj(x) − gj(x)|,
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Lj(x) > 0, and fixed functions f̄j ∈ Fj, the class of functions L = {φ(f1, . . . , fk) − φ(f̄1, . . . , f̄k) :

fj ∈ Fj , j = 1, . . . , k} satisfies

log sup
Q
N(ε‖

k∑
j=1

LjFj‖Q,2,L, ‖ · ‖Q,2) 6
k∑
j=1

log sup
Q
N
(
ε
k‖Fj‖Q,2,Fj , ‖ · ‖Q,2

)
.

Proof. For the proof (1)-(2) see, e.g., Andrews (1994a) and (3) follows from (2). To show (4)

let f = (f1, . . . , fk) and g = (g1, . . . , gk) where fj , gj ∈ Fj , j = 1, . . . , k. Then, by the condition on

φ, we have

‖φ(f)− φ(g)‖Q,2 6 ‖
∑k

j=1 Lj |fj − gj | ‖Q,2
6
∑k

j=1 ‖Lj |fj − gj | ‖Q,2
(C.2)

Let N̂j be a (ε/k)-net for Fj with the measure Q̃j , where dQ̃j(x) = L2
j (x)dQ(x). Then the set

{φ(f1, . . . , fk)− φ(f̄1, . . . , f̄k) : fj ∈ N̂j} is an ε-net for L with respect to the measure Q by (C.2).

Thus, for any ε > 0 we have that

logN(ε,L, ‖ · ‖Q,2) 6
k∑
j=1

logN(ε/k,Fj , ‖ · ‖Q̃j ,2)

Therefore,

logN(ε‖
∑k

j=1 LjFj‖Q,2,L, ‖ · ‖Q,2) 6
∑k

j=1 logN( εk‖
∑k

j=1 LjFj‖Q,2,Fj , ‖ · ‖Q̃j ,2)

6
∑k

j=1 logN( εk‖LjFj‖Q,2,Fj , ‖ · ‖Q̃j ,2)

=
∑k

j=1 logN( εk‖Fj‖Q̃j ,2,Fj , ‖ · ‖Q̃j ,2)

6
∑k

j=1 log supQ̄N( εk‖Fj‖Q̄,2,Fj , ‖ · ‖Q̄,2)

and the result follows since the right hand side no longer depends on Q. �

Lemma C.3 (Covering Entropy for Classes obtained as Conditional Expectations). Let

F denote a class of measurable functions f : W × Y 7→ R with a measurable envelope F . For

a given f ∈ F , let f̄ : W 7→ R be the function f̄(w) :=
∫
f(w, y)dµw(y) where µw is a regular

conditional probability distribution over y ∈ Y conditional on w ∈ W. Set F̄ = {f̄ : f ∈ F} and let

F̄ (w) :=
∫
F (w, y)dµw(y) be an envelope for F̄ . Then, for r, s > 1,

log sup
Q
N(ε‖F̄‖Q,r, F̄ , ‖ · ‖Q,r) 6 log sup

Q̃

N((ε/4)r‖F‖
Q̃,s
,F , ‖ · ‖

Q̃,s
),

where Q belongs to the set of finitely-discrete probability measures over W such that 0 < ‖F̄‖Q,r <
∞, and Q̃ belongs to the set of finitely-discrete probability measures over W × Y such that 0 <

‖F‖
Q̃,s

<∞. In particular, for every ε > 0 and any k > 1

log sup
Q
N(ε, F̄ , ‖ · ‖Q,k) 6 log sup

Q̃

N(ε/2,F , ‖ · ‖
Q̃,k

).
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Proof. The proof generalizes the proof of Lemma A.2 in Ghosal, Sen, and van der Vaart (2000).

For f, g ∈ F and the corresponding f̄ , ḡ ∈ F̄ , and any probability measure Q on W, by Jensen’s

inequality, for any k > 1,

EQ[|f̄ − ḡ|k] = EQ[|
∫

(f − g)dµw(y)|k] 6 EQ[
∫
|f − g|kdµw(y)] = EQ̄[|f − g|k]

where dQ̄(w, y) = dQ(w)dµw(y). Therefore, for any ε > 0

sup
Q
N(ε, F̄ , ‖ · ‖Q,k) 6 sup

Q̄

N(ε,F , ‖ · ‖Q̄,k) 6 sup
Q̃

N(ε/2,F , ‖ · ‖
Q̃,k

),

where we use Problems 2.5.1-2 of van der Vaart and Wellner (1996) to replace the supremum over

Q̄ with the supremum over finitely-discrete probability measures Q̃.

Moreover, ‖F̄‖Q,1 = EQ[F̄ (w)] = EQ[
∫
F (w, y)dµw(y)] = EQ̄[F (w, y)] = ‖F‖Q̄,1. Therefore

taking k = 1,

supQN(ε‖F̄‖Q,1, F̄ , ‖ · ‖Q,1) 6 supQ̄N(ε‖F‖Q̄,1,F , ‖ · ‖Q̄,1)

6 sup
Q̃
N((ε/2)‖F‖

Q̃,1
,F , ‖ · ‖

Q̃,1
) 6 sup

Q̃
N((ε/2)‖F‖

Q̃,s
,F , ‖ · ‖

Q̃,s
)

where we use Problems 2.5.1-2 of van der Vaart and Wellner (1996) to replace the supremum over

Q̄ with the supremum over finitely-discrete probability measures Q̃, and then Problem 2.10.4 of

van der Vaart and Wellner (1996) to argue that the last bound in weakly increasing in s > 1.

Also, by the second part of the proof of Theorem 2.6.7 of van der Vaart and Wellner (1996)

sup
Q
N(ε‖F‖Q,r,F , ‖ · ‖Q,r) 6 sup

Q
N((ε/2)r‖F‖Q,1,F , ‖ · ‖Q,1).

�

Comment C.1. Lemma C.3 extends the result in Lemma A.2 in Ghosal, Sen, and van der Vaart

(2000) and Lemma 5 in Sherman (1994) which considered integral classes with respect to a fixed

measure µ on Y. In our applications we need to allow the integration measure to vary with w,

namely we allow for µw to be a conditional distribution. �

Appendix D. Proofs for Section 4

D.1. Proof of Theorem 4.1. The results for the two strategies have similar structure, so we only

give the proof for Strategy 1.

Step 0. (Preparation). In the proof a . b means that a 6 Ab, where the constant A depends on

the constants in Assumptions 4.1 and 4.2 only, but not on n once n > n0 = min{j : δj 6 1/2}, and

not on P ∈ Pn. We consider a sequence Pn in Pn, but for simplicity, we write P = Pn throughout

the proof, suppressing the index n. Since the argument is asymptotic, we can assume that n > n0

in what follows.

To proceed with the presentation of the proofs, it might be convenient for the reader to have the

notation collected in one place. The influence function and low-bias moment functions for αV (z)



51

for z ∈ Z = {0, 1} are given respectively by

ψαV,z(W ) = ψαV,z,gV ,mZ (W,αV (z)), ψαV,z,g,m(W,α) =
1(Z = z)(V − g(z,X))

m(z,X)
+ g(z,X)− α.

The influence function and the moment function for γV are ψγV (W ) = ψγV (W,γV ) and ψγV (W,γ) =

V − γ. Recall that the estimator of the reduced-form parameters αV (z) and γV are solutions

α = α̂V (z) and γ = γ̂V to the equations

En[ψαV,z,ĝV ,m̂Z (W,α)] = 0, En[ψγV (W,γ)] = 0,

where ĝV (z, x) = ΛV (f(z, x)′β̄V ), m̂Z(1, x) = ΛZ(f(x)′β̄Z), m̂Z(0, x) = 1 − m̂Z(1, x), and β̄V and

β̄Z are estimators as in Assumption 4.2. For each variable V ∈ Vu,

Vu = (Vuj)
5
j=1 = (Yu,10(D)Yu,10(D),11(D)Yu,11(D)),

we obtain the estimator ρ̂u =
(
{α̂V (0), α̂V (1), γ̂V }

)
V ∈Vu of ρu :=

(
{αV (0), αV (1), γV }

)
V ∈Vu . The

estimator and the estimand are vectors in Rdρ with a fixed finite dimension. We stack these vectors

into the processes ρ̂ = (ρ̂u)u∈U and ρ = (ρu)u∈U .

Step 1.(Linearization) In this step we establish the first claim, namely that

√
n(ρ̂− ρ) = Zn,P + oP (1) in D = `∞(U)dρ , (D.1)

where Zn,P = (Gnψ
ρ
u)u∈U and ψρu = ({ψαV,0, ψαV,1, ψ

γ
V })V ∈Vu . The components (

√
n(γ̂Vuj − γVuj ))u∈U

of
√
n(ρ̂− ρ) trivially have the linear representation (with no error) for each j ∈ J . We only need

to establish the claim for the empirical process (
√
n(α̂Vuj (z)−αVuj (z)))u∈U for z ∈ {0, 1} and each

j ∈ J , which we do in the steps below.

(a) We make some preliminary observations. For t = (t1, t2, t3, t4) ∈ R2 × (0, 1)2, v ∈ R, and

(z, z̄) ∈ {0, 1}2, we define the function (v, z, z̄, t) 7→ ϕ(v, z, z̄, t) via:

ϕ(v, z, 1, t) =
1(z = 1)(v − t2)

t4
+ t2, ϕ(v, z, 0, t) =

1(z = 0)(v − t1)

t3
+ t1.

The derivatives of this function with respect to t obey for all k = (kj)
4
j=1 ∈ N4 : 0 6 |k| 6 3,

|∂kt ϕ(v, z, z̄, t)| 6 L, ∀(v, z̄, z, t) : |v| 6 C, |t1|, |t2| 6 C, c′/2 6 |t3|, |t4| 6 1− c′/2, (D.2)

where L depends only on c′ and C, |k| =
∑4

j=1 kj , and ∂kt := ∂k1t1 ∂
k2
t2
∂k3t3 ∂

k4
t4
.

(b) Let

ĥV (X) := (ĝV (0, X), ĝV (1, X), 1− m̂Z(1, X), m̂Z(1, X))′,

hV (X) := (gV (0, X), gV (1, X), 1−mZ(1, X),mZ(1, X))′,

f
ĥV ,V,z

(W ) := ϕ(V,Z, z, ĥV (X)),

fhV ,V,z(W ) := ϕ(V,Z, z, hV (X)).

We observe that with probability no less than 1−∆n,

ĝV (0, ·) ∈ GV (0), ĝV (1, ·) ∈ GV (1), m̂Z(1, ·) ∈M(1), m̂Z(0, ·) ∈M(0) = 1−M(1),
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where

GV (z) :=


x 7→ ΛV (f(z, x)′β) : ‖β‖0 6 sC
‖ΛV (f(z,X)′β)− gV (z,X)‖P,2 . δnn−1/4

‖ΛV (f(z,X)′β)− gV (z,X)‖P,∞ . εn

 ,

M(1) :=


x 7→ ΛZ(f(x)′β) : ‖β‖0 6 sC
‖ΛZ(f(X)′β)−mZ(1, X)‖P,2 . δnn−1/4

‖ΛZ(f(X)′β)−mZ(1, X)‖P,∞ . εn

 .

To see this, note that under Assumption 4.2 for all n > min{j : δj 6 1/2},

‖ΛZ(f(X)′β)−mZ(1, X)‖P,2 6 ‖ΛZ(f(X)′β)− ΛZ(f(X)′βZ)‖P,2 + ‖rZ(X)‖P,2
. ‖∂ΛZ‖∞‖f(X)′(β − βZ)‖P,2 + ‖rZ(X)‖P,2
. ‖∂ΛZ‖∞‖f(X)′(β − βZ)‖Pn,2 + ‖rZ(X)‖P,2 . δnn−1/4

‖ΛZ(f(X)′β)−mZ(1, X)‖P,∞ 6 ‖ΛZ(f(X)′β)− ΛZ(f(X)′βZ)‖P,∞ + ‖rZ(X)‖P,∞
6 ‖∂ΛZ‖∞‖f(X)′(β − βZ)‖P,∞ + ‖rZ(X)‖P,∞
. Kn‖β − βZ‖1 + εn 6 2εn,

for β = β̄Z , with evaluation after computing the norms, and for ‖∂Λ‖∞ denoting supl∈R |∂Λ(l)|
here and below. Similarly, under Assumption 4.2,

‖ΛV (f(Z,X)′β)− gV (Z,X)‖P,2 . ‖∂ΛV ‖∞‖f(Z,X)′(β − βV )‖Pn,2 + ‖rV (Z,X)‖P,2 . δnn−1/4

‖ΛV (f(Z,X)′β)− gV (Z,X)‖P,∞ . Kn‖β − βV ‖1 + εn 6 2εn,

for β = β̄V , with evaluation after computing the norms, and noting that for any β

‖ΛV (f(0, X)′β)− gV (0, X)‖P,2 ∨ ‖ΛV (f(1, X)′β)− gV (1, X)‖P,2 . ‖ΛV (f(Z,X)′β)− gV (Z,X)‖P,2

under condition (iii) of Assumption 4.1, and

‖ΛV (f(0, X)′β)− gV (0, X)‖P,∞ ∨ ‖ΛV (f(1, X)′β)− gV (1, X)‖P,∞ 6 ‖ΛV (f(Z,X)′β)− gV (Z,X)‖P,∞

under condition (iii) of Assumption 4.1.

Hence with probability at least 1−∆n,

ĥV ∈ HV,n := {h = (ḡ(0, ·), ḡ(1, ·), m̄Z(0, ·), m̄Z(1, ·)) ∈ GV (0)× GV (1)×M(0)×M(1)}.

(c) We have that

αV (z) = EP [fhV ,V,z] and α̂(z) = En[f
ĥV ,V,z

],

so that

√
n(α̂V (z)− αV (z)) = Gn[fhV ,V,z]︸ ︷︷ ︸

IV (z)

+Gn[fh,V,z − fhV ,V,z]︸ ︷︷ ︸
IIV (z)

+
√
n P [fh,V,z − fhV ,V,z]︸ ︷︷ ︸

IIIV (z)

,

with h evaluated at h = ĥV .



53

(d) Note that for

∆V,i := (∆1V,i,∆2V,i,∆3V,i,∆4V,i) = h(Xi)− hV (Xi), ∆k
V,i := ∆k1

1V,i∆
k2
2V,i∆

k3
3V,i∆

k4
4V,i,

IIIV (z) =
√
n
∑
|k|=1

P [∂kt ϕ(Vi, Zi, z, hV (Xi))∆
k
V,i]

+
√
n
∑
|k|=2

2−1P [∂kt ϕ(Vi, Zi, z, hV (Xi))∆
k
V,i]

+
√
n
∑
|k|=3

6−1

∫ 1

0
P [∂kt ϕ(Vi, Zi, z, hV (Xi) + λ∆V,i)∆

k
V,i]dλ,

=: IIIaV (z) + IIIbV (z) + IIIcV (z),

with h evaluated at h = ĥ after computing the expectations under P .

By the law of iterated expectations and the orthogonality property of the moment condition for

αV ,

EP [∂kt ϕ(Vi, Zi, z, hV (Xi))|Xi] = 0 ∀k ∈ N4 : |k| = 1, =⇒ IIIaV (z) = 0.

Moreover, uniformly for any h ∈ HV,n, in view of properties noted in Steps (a) and (b),

|IIIbV (z)| .
√
n‖h− hV ‖2P,2 .

√
n(δnn

−1/4)2 6 δ2
n,

|IIIcV (z)| .
√
n‖h− hV ‖2P,2‖h− hV ‖P,∞ .

√
n(δnn

−1/4)2εn 6 δ
2
nεn.

Since ĥV ∈ HV,n for all V ∈ V = {Vuj : u ∈ U , j ∈ J } with probability 1−∆n, for n > n0,

PP

(
|IIIV (z)| . δ2

n,∀z ∈ {0, 1},∀V ∈ V
)
> 1−∆n.

(e) Furthermore, with probability 1−∆n

sup
V ∈V

max
z∈{0,1}

|IIV (z)| 6 sup
h∈HV,n,z∈{0,1},V ∈V

|Gn[fh,V,z]−Gn[fhV ,V,z]|.

The classes of functions,

V := {Vuj : u ∈ U , j ∈ J } and V∗ := {gVuj (Z,X) : u ∈ U , j ∈ J }, (D.3)

viewed as maps from the sample space W to the real line, are bounded by a constant enve-

lope and obey log supQN(ε,V, ‖ · ‖Q,2) . log(e/ε) ∨ 0, which holds by Assumption 4.1(ii), and

log supQN(ε,V∗, ‖ · ‖Q,2) . log(e/ε) ∨ 0 which holds by Assumption 4.1(ii) and Lemma C.3. The

uniform covering entropy of the function sets

B = {1(Z = z) : z ∈ {0, 1}} and M∗ = {mZ(z,X) : z ∈ {0, 1}}

are trivially bounded by log(e/ε) ∨ 0.

The class of functions

G := {GV (z) : V ∈ V, z ∈ {0, 1}}
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has a constant envelope and is a subset of

{(x, z) 7→ Λ(f(z, x)′β) : ‖β‖0 6 sC,Λ ∈ L = {Id,Φ, 1− Φ,Λ0, 1− Λ0}},

which is a union of 5 sets of the form

{(x, z) 7→ Λ(f(z, x)′β) : ‖β‖0 6 sC}

with Λ ∈ L a fixed monotone function for each of the 5 sets; each of these sets are the unions of

at most
(

2p
Cs

)
VC-subgraph classes of functions with VC indices bounded by C ′s. Note that a fixed

monotone transformations Λ preserves the VC-subgraph property (van der Vaart and Wellner, 1996,

Lemma 2.6.18). Therefore

log sup
Q
N(ε,G, ‖ · ‖Q,2) . (s log p+ s log(e/ε)) ∨ 0.

Similarly, the class of functionsM = (M(1)∪(1−M(1))) has a constant envelope, is a union of at

most 5 sets, which are themselves the unions of at most
(
p
Cs

)
VC-subgraph classes of functions with

VC indices bounded by C ′s since a fixed monotone transformations Λ preserves the VC-subgraph

property. Therefore, log supQN(ε,M, ‖ · ‖Q,2) . (s log p+ s log(e/ε)) ∨ 0.

Finally, the set of functions

Jn = {fh,V,z − fhV ,V,z : z ∈ {0, 1}, V ∈ V, h ∈ HV,n},

is a Lipschitz transform of function sets V, V∗, B, M∗, G, and M, with bounded Lipschitz coeffi-

cients and with a constant envelope. Therefore,

log sup
Q
N(ε,Jn, ‖ · ‖Q,2) . (s log p+ s log(e/ε)) ∨ 0.

Applying Lemma C.1 with σn = C ′δnn
−1/4 and the envelope Jn = C ′, with probability 1 −∆n

for some constant K > e

sup
V ∈V

max
z∈{0,1}

|IIV (z)| 6 sup
f∈Jn

|Gn(f)|

.

(√
sσ2

n log(p ∨K ∨ σ−1
n ) +

s√
n

log(p ∨K ∨ σ−1
n )

)
.

(√
sδ2
nn
−1/2 log(p ∨ n) +

√
s2n−1 log2(p ∨ n)

)
.
(
δnδ

1/4
n + δ1/2

n

)
. δ1/2

n .

Here we have used some simple calculations, exploiting the boundedness condition in Assumptions

4.1 and 4.2, to deduce that

sup
f∈Jn

‖f‖P,2 . sup
h∈HV,n,V ∈V

‖h− hV ‖P,2 . δnn−1/4 . σn 6 ‖Jn‖P,2,

by definition of the set HV,n, so that we can use Lemma C.1. We also note that log(1/δn) . log(n)

by the assumption on δn and that s2 log2(p ∨ n) log2(n)/n 6 δn by Assumption 4.2(i).
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(f) The claim of Step 1 follows by collecting Steps (a)-(e).

Step 2 (Uniform Donskerness). Here we claim that Assumption 4.1 implies that the set of

vectors of functions (ψρu)u∈U is P -Donsker uniformly in P, namely that

Zn,P  ZP in D = `∞(U)dρ , uniformly in P ∈ P,

where Zn,P = (Gnψ
ρ
u)u∈U and ZP = (GPψ

ρ
u)u∈U . Moreover, ZP has bounded, uniformly continuous

paths uniformly in P ∈ P:

sup
P∈P

EP sup
u∈U
‖ZP (u)‖ <∞, lim

ε↘0
sup
P∈P

EP sup
dU (u,ũ)6ε

‖ZP (u)− ZP (ũ)‖ = 0.

To verify these claims we shall invoke Theorem B.1.

To demonstrate the claim, it will suffice to consider the set of R-valued functions Ψ = (ψuk : u ∈
U , k ∈ [dρ]). Further, we notice that Gnψ

α
V,z = Gnf , for f ∈ Fz,

Fz =

{
1{Z = z}(V − gV (z,X))

mZ(z,X)
+ gV (z,X), V ∈ V

}
, z = 0, 1,

and that Gnψ
γ
V = Gnf , for f = V ∈ V. Hence Gn(ψuk) = Gn(f) for f ∈ FP = F0 ∪ F1 ∪ V. We

thus need to check that the conditions of Theorem B.1 apply to FP uniformly in P ∈ P.

Observe that Fz is formed as a uniform Lipschitz transform of the function sets B, V, V∗ andM∗

defined in Step 1(e), where the validity of the Lipschitz property relies on Assumption 4.1(iii) (to

keep the denominator away from zero) and on the boundedness conditions in Assumption 4.1(iii)

and Assumption 4.2(iii). The function sets B, V, V∗ and M∗ are uniformly bounded classes that

have uniform covering entropy bounded by log(e/ε) ∨ 0 up to a multiplicative constant, and so

Fz, which is uniformly bounded under Assumption 4.1, the uniform covering entropy bounded by

log(e/ε) ∨ 0 up to a multiplicative constant (e.g. van der Vaart and Wellner (1996)). Since FP is

uniformly bounded and is a finite union of function sets with the uniform entropies obeying the

said properties, it also follows that FP has this property; namely,

sup
P∈P

sup
Q

logN(ε,FP , ‖ · ‖Q,2) . log(e/ε) ∨ 0.

Since
∫∞

0

√
log(e/ε) ∨ 0dε = e

√
π/2 <∞ and FP is uniformly bounded, the first condition in (B.1)

and the entropy condition (B.2) in Theorem B.1 hold.

We demonstrate the second condition in (B.1). Consider a sequence of positive constants ε

approaching zero, and note that

sup
dU (u,ũ)6ε

max
k6dρ
‖ψuk − ψũk‖P,2 . sup

dU (u,ũ)6ε
‖fu − fũ‖P,2

where fu and fũ must be of the form:

1{Z = z}(Uu − gUu(z,X))

mZ(z,X)
+ gUu(z,X),

1{Z = z}(Uũ − gUũ(z,X))

mZ(z,X)
+ gUũ(z,X),
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with (Uu, Uũ) equal to either (Yu, Yũ) or (1d(D)Yu, 1d(D)Yũ), for d = 0 or 1, and z = 0 or 1. Then

sup
P∈P
‖fu − fũ‖P,2 . sup

P∈P
‖Yu − Yũ‖P,2 → 0,

as dU (u, ũ)→ 0 by Assumption 4.1(ii). Indeed, supP∈P ‖fu− fũ‖P,2 . supP∈P ‖Yu−Yũ‖P,2 follows

from a sequence of inequalities holding uniformly in P ∈ P: (1)

‖fu − fũ‖P,2 . ‖Uu − Uũ‖P,2 + ‖gUu(z,X)− gUũ(z,X)‖P,2,

which we deduce using the triangle inequality and the fact that mZ(z,X) is bounded away from

zero, (2) ‖Uu − Uũ‖P,2 6 ‖Yu − Yũ‖P,2, which we deduced using the Holder inequality, and (3)

‖gUu(z,X)− gUũ(z,X)‖P,2 6 ‖Uu − Uũ‖P,2,

which we deduce by the definition of gUu(z,X) = EP [Uu|X,Z = z] and the contraction property of

the conditional expectation. �

D.2. Proof of Theorem 4.2. The proof will be similar to the proof of Theorem 4.1; and as in

that proof, we only present the argument for the first strategy.

Step 0. (Preparation). In the proof a . b means that a 6 Ab, where the constant A depends on

the constants in Assumptions 4.1 and 4.2 only, but not on n once n > n0 = min{j : δj 6 1/2}, and

not on P ∈ Pn. We consider a sequence Pn in Pn, but for simplicity, we write P = Pn throughout

the proof, suppressing the index n. Since the argument is asymptotic, we can assume that n > n0

in what follows. Let Pn denote the measure that puts mass n−1 on points (ξi,Wi) for i = 1, ..., n.

Let En denote the expectation with respect to this measure, so that Enf = n−1
∑n

i=1 f(ξi,Wi), and

Gn denote the corresponding empirical process
√
n(En − P ), i.e.

Gnf =
√
n(Enf − Pf) = n−1/2

n∑
i=1

(
f(ξi,Wi)−

∫
f(s, w)dPξ(s)dP (w)

)
.

Recall that we define the bootstrap draw as:

Z∗n,P =
√
n(ρ̂∗ − ρ̂) =

(
1√
n

n∑
i=1

ξiψ̂
ρ
u(Wi)

)
u∈U

=
(
Gnξψ̂

ρ
u

)
u∈U

,

since P [ξψ̂ρu] = 0 because ξ is independent of W and has zero mean. Here ψ̂ρu = (ψ̂ρV )V ∈Vu , where

ψ̂ρV (W ) = {ψαV,0,ĝV ,m̂Z (W, α̂V (0)), ψαV,1,ĝV ,m̂Z (W, α̂V (1)), ψγV (W, γ̂V )}, is a plug-in estimator of the

influence function ψρu.

Step 1.(Linearization) In this step we establish that

ζ∗n,P := Z∗n,P −G∗n,P = oP (1), for G∗n,P := (Gnξψ
ρ
u)u∈U , in D = `∞(U)dρ , (D.4)

where ζ∗n,P = ζn,P (Dn, Bn) is a linearization error, arising completely due to estimation of the

influence function; if the influence function were known, this term would be zero.
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For the components (
√
n(γ̂∗V − γ̂V ))V ∈V of

√
n(ρ̂∗ − ρ̂) the linearization follows by the represen-

tation,
√
n(γ̂∗V − γ̂V ) = Gnξψ

γ
V − (γ̂V − γV )Gnξ︸ ︷︷ ︸

I∗V

,

for all V ∈ V, and noting that supV ∈V |I∗V | = supV ∈V |(γ̂V − γV )||Gnξ| = OP (n−1/2), for V defined

in (D.3) by Theorem 4.1 and by |Gnξ| = OP (1).

It remains to establish the claim for the empirical process (
√
n(α̂∗Vuj (z) − α̂Vuj (z)))u∈U for z ∈

{0, 1} and j ∈ J . As in the proof of Theorem 4.1, we have that with probability at least 1−∆n,

ĥV ∈ HV,n := {h = (ḡV (0, ·), ḡV (1, ·), m̄Z(0, ·), m̄Z(1, ·)) ∈ GV (0)× GV (1)×M(0)×M(1)}.

We have the representation:

√
n(α̂∗V (z)− α̂V (z)) = Gnξψ

α
V,z + Gn[ξf

ĥV ,V,z
− ξfhV ,V,z]− (α̂V (z)− αV (z))Gnξ︸ ︷︷ ︸

II∗V (z)

,

where supV ∈V,z∈{0,1}(α̂V (z)− αV (z)) = OP (n−1/2) by Theorem 4.1.

Hence to establish supV ∈V |II∗V (z)| = oP (1), it remains to show that with probability 1−∆n

sup
z∈{0,1},V ∈V

|Gn[ξf
ĥV ,V,z

− ξfhV ,V,z]| 6 sup
f∈ξJn

|Gn(f)| = oP (1),

where

Jn = {fh,V,z − fhV ,V,z : z ∈ {0, 1}, V ∈ V, h ∈ HV,n}.

By the calculations in Step 1(e) of the proof of Theorem 4.1, Jn obeys log supQN(ε,Jn, ‖ · ‖Q,2) .

(s log p+s log(e/ε))∨0. By Lemma C.2, multiplication of this class by ξ does not change the entropy

bound modulo an absolute constant, namely

log sup
Q
N(ε‖Jn‖Q,2, ξJn, ‖ · ‖Q,2) . (s log p+ s log(e/ε)) ∨ 0,

where the envelope Jn for ξJn is |ξ| times a constant. Also, E[exp(|ξ|)] < ∞ implies that

(E[maxi6n |ξi|2])1/2 . log n. Thus, applying Lemma C.1 with σ = σn = C ′δnn
−1/4 and the en-

velope Jn = C ′|ξ|, for some constant K > e

sup
f∈ξJn

|Gn(f)| .

(√
sσ2

n log(p ∨K ∨ σ−1
n ) +

s log n√
n

log(p ∨K ∨ σ−1
n )

)
.

(√
sδ2
nn
−1/2 log(p ∨ n) +

√
s2n−1 log2(p ∨ n) log2(n)

)
.
(
δnδ

1/4
n + δ1/2

n

)
. (δ1/2

n ) = oP (1),

for supf∈ξJn ‖f‖P,2 = supf∈Jn ‖f‖P,2 . σn; where the details of calculations are the same as in

Step 1(e) of the proof of Theorem 4.1.
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Finally, we conclude that

‖ζ∗n,P ‖D . sup
V ∈V
|I∗V |+ sup

V ∈V,z∈{0,1}
|II∗V | = oP (1).

Step 2. Here we are claiming that Z∗n,P  B ZP in D, under any sequence P = Pn ∈ Pn, where

ZP = (GPψ
ρ
u)u∈U . We have that

sup
h∈BL1(D)

∣∣∣EBnh(Z∗n,P )− EPh(ZP )
∣∣∣ 6 sup

h∈BL1(D)

∣∣∣EBnh(G∗n,P )− EPh(ZP )
∣∣∣+ EBn(‖ζ∗n,P ‖D ∧ 2),

where the first term is o∗P (1), since G∗n,P  B ZP by Theorem B.2, and the second term is oP (1)

because ‖ζ∗n,P ‖D = oP (1) implies that EP (‖ζ∗n,P ‖D ∧ 2) = EPEBn(‖ζ∗n,P ‖D ∧ 2) → 0, which in turn

implies that EBn(‖ζ∗n,P ‖D ∧ 2) = oP (1) by the Markov inequality. �

D.3. Proof of Corollary 4.1. This is an immediate consequence of Theorems 4.1, 4.2, B.3, and

B.4. �

Appendix E. Proofs for Section 5

E.1. Proof of Theorem 5.1. In the proof a . b means that a 6 Ab, where the constant A

depends on the constants in Assumptions 5.1–5.3, but not on n once n > n0, and not on P ∈ Pn.

Since the argument is asymptotic, we can assume that n > n0 in what follows. In order to establish

the result uniformly in P ∈ Pn, it suffices to establish the result under the probability measure

induced by any sequence P = Pn ∈ Pn. In the proof we shall use P , suppressing the dependency

of Pn on the sample size n.

Throughout the proof we use the notation

B(W ) := max
j∈[dθ],k∈[dθ+dt]

sup
ν∈Θu×Tu(Zu),u∈U

∣∣∣∂νkEP [ψuj(Wu, ν) | Zu]
∣∣∣, (E.1)

τn := n−1/2
(√

sn log(an) + n−1/2snn
1
q log(an)

)
. (E.2)

Step 1. (A Preliminary Rate Result). In this step we claim that with probability 1− o(1),

sup
u∈U
‖θ̂u − θu‖ . τn.

By definition

‖Enψu(Wu, θ̂u, ĥu(Zu))‖ 6 inf
θ∈Θu

‖Enψu(Wu, θ, ĥu(Zu))‖+ εn for each u ∈ U ,

which implies via triangle inequality that uniformly in u ∈ U with probability 1− o(1)∥∥∥P [ψu(Wu, θ̂u, hu(Zu))]
∥∥∥ 6 εn + 2I1 + 2I2 . τn, (E.3)

for I1 and I2 defined in Step 2 below. The . bound in (E.3) follows from Step 2 and from the

assumption εn = o(n−1/2). Since by Assumption 5.1(iv), 2−1(‖Ju(θ̂u−θu)‖∧c0) does not exceed the

left side of (E.3) and infu∈U mineig(J ′uJu) is bounded away from zero uniformly in n, we conclude

that supu∈U ‖θ̂u − θu‖ . (infu∈U mineig(J ′uJu))−1/2τn . τn.
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Step 2. (Define and bound I1 and I2) We claim that with probability 1− o(1):

I1 := sup
θ∈Θu,u∈U

∥∥∥Enψu(Wu, θ, ĥu(Zu))− Enψu(Wu, θ, hu(Zu))
∥∥∥ . τn,

I2 := sup
θ∈Θu,u∈U

∥∥∥Enψu(Wu, θ, hu(Zu))− Pψu(Wu, θ, hu(Zu))
∥∥∥ . τn.

To establish this, we can bound I1 6 I1a + I1b and I2 6 I1a, where with probability 1− o(1),

I1a := sup
θ∈Θu,u∈U ,h∈Hun∪{hu}

∥∥∥Enψu(Wu, θ, h(Zu))− Pψu(Wu, θ, h(Zu))
∥∥∥ . τn,

I1b := sup
θ∈Θu,u∈U ,h∈Hun∪{hu}

∥∥∥Pψu(Wu, θ, h(Zu))− Pψu(Wu, θ, hu(Zu))
∥∥∥ . τn.

These bounds in turn hold by the following arguments. In order to bound I1b we employ Taylor’s

expansion and the triangle inequality. For h̄(Z, u, j, θ) denoting a point on a line connecting vectors

h(Zu) and hu(Zu), and tm denoting the mth element of the vector t,

I1b 6
dθ∑
j=1

dt∑
m=1

sup
θ∈Θu,u∈U ,h∈Hun

∣∣∣P [∂tmP [ψuj(Wu, θ, h̄(Z, u, j, θ))|Zu
]

(hm(Zu)− hum(Zu))
] ∣∣∣

6 dθdt‖B‖P,2 max
u∈U ,h∈Hun,m∈[dt]

‖hm − hum‖P,2,

where the last inequality holds by the definition of B(W ) given earlier and Hölder’s inequality. By

Assumption 5.2(ii)(c), ‖B‖P,2 6 C, and by Assumption 5.3, supu∈U ,h∈Hun,m∈[dt] ‖hm−hum‖P,2 . τn,

hence we conclude that I1b . τn since dθ and dt are fixed.

In order to bound I1a we employ the maximal inequality of Lemma C.1 to the class

F1 = {ψuj(Wu, θ, h(Zu)) : j ∈ [dθ], u ∈ U , θ ∈ Θu, h ∈ Hun ∪ {hu}},

defined in Assumption 5.3 and equipped with an envelope F1 6 F0, to conclude that with probability

1− o(1),

I1a . n−1/2
(√

sn log(an) + n−1/2snn
1
q log(an)

)
. τn.

Here we use that log supQN(ε‖F1‖Q,2,F1, ‖·‖Q,2) 6 sn log(an/ε)∨0 by Assumption 5.3; ‖F0‖P,q 6 C
and supf∈F1

‖f‖2P,2 6 σ2 6 ‖F0‖2P,2 for c 6 σ 6 C by Assumption 5.2(i); an > n and sn > 1 by

Assumption 5.3; and (E.2).

Step 3. (Linearization) By definition

√
n‖Enψu(Wu, θ̂u, ĥu(Zu))‖ 6 inf

θ∈Θu

√
n‖Enψu(Wu, θ, ĥu(Zu))‖+ εnn

1/2.

Application of Taylor’s theorem and the triangle inequality gives that for all u ∈ U∥∥∥√nEnψu(Wu, θu, hu(Zu)) + Ju
√
n(θ̂u − θu) + Du,0(ĥu − hu)

∥∥∥
6 εn
√
n+ sup

u∈U

(
inf
θ∈Θu

√
n‖Enψu(Wu, θ, ĥu(Zu))‖+ ‖II1(u)‖+ ‖II2(u)‖

)
= oP (1),
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where the terms II1 and II2 are defined in Step 4; the oP (1) bound follows from Step 4, εn
√
n = o(1)

by assumption, and Step 5; and

Du,0(ĥu − hu) :=

(
dt∑
m=1

√
nP
[
∂tmP [ψuj(Wu, θu, hu(Zu))|Zu](ĥm(Zu)− hum(Zu))

])dθ
j=1

= 0

by the orthogonality condition. Conclude using Assumption 5.1(iv) that

sup
u∈U

∥∥∥J−1
u

√
nEnψu(Wu, θu, hu(Zu)) +

√
n(θ̂u − θu)

∥∥∥ 6 oP (1) sup
u∈U

(mineg(J ′uJu)−1/2) = oP (1),

Furthermore, the empirical process (−
√
nEnJ−1

u ψu(Wu, θu, hu(Zu)))u∈U is equivalent to an em-

pirical process Gn indexed by

FP :=
{
ψ̄uj : j ∈ [dθ], u ∈ U

}
,

where ψ̄uj is the j-th element of −J−1
u ψu(Wu, θu, hu(Zu)) and we make explicit the dependence of

FP on P . LetM = {Mujk : j, k ∈ [dθ], u ∈ U}, where Mujk is the (j, k) element of the matrix J−1
u .

M is a class of uniformly Hölder continuous functions on (U , dU ) with a uniform covering entropy

bounded by log(e/ε) ∨ 0 and equipped with a constant envelope C, given the stated assumptions.

This result follows from the fact that by Assumption 5.2(ii)(b)

max
j,k∈[dθ]

|Mujk −Mūjk| 6 ‖J−1
u − J−1

ū ‖ = ‖J−1
u (Ju − Jū)J−1

ū ‖

6 ‖Ju − Jū‖ sup
ũ∈U
‖J−1

ũ ‖
2 . ‖u− ū‖α2 , (E.4)

and the constant envelope follows by Assumption 5.1(iv). Since FP is generated as a finite sum

of products of the elements of M and the class F0 defined in Assumption 5.2, the properties of

M and the conditions on F0 in Assumption 5.2(ii) imply that FP has a uniformly well-behaved

uniform covering entropy by Lemma C.2, namely

sup
P∈P=∪n>n0Pn

log sup
Q
N(ε‖CF0‖Q,2,FP , ‖ · ‖Q,2) . log(e/ε) ∨ 0,

where FP = CF0 is an envelope for FP since supf∈FP |f | . supu∈U ‖J−1
u ‖ supf∈F0

|f | 6 CF0 by

Assumption 5.2(i). The class FP is therefore Donsker uniformly in P because supP∈P ‖FP ‖P,q 6
C supP∈P ‖F0‖P,q is bounded by Assumption 5.2(ii), and supP∈P ‖ψ̄u− ψ̄ū‖P,2 → 0 as dU (u, ū)→ 0

by Assumption 5.2(b) and (E.4). Application of Theorem B.1 gives the results of the theorem.

Step 4. (Define and Bound II1 and II2). Let II1(u) := (II1j(u))dθj=1 and II2(u) = (II2j(u))dθj=1,

where

II1j(u) :=

dν∑
r,k=1

√
nP [∂νk∂νrP [ψuj(Wu, ν̄u(Zu, j))|Zu]{ν̂ur(Zu)− νur(Zu)}{ν̂uk(Zu)− νuk(Zu)}] ,

II2j(u) := Gn(ψuj(Wu, θ̂u, ĥu(Zu))− ψuj(Wu, θu, hu(Zu))),

where νu(Zu) := (νuk(Zu))dνk=1 := (θ′u, hu(Zu)′)′, ν̂u(Zu) := (ν̂uk(Zu))dνk=1 := (θ̂′u, ĥu(Zu)′)′, dν =

dθ + dt, and ν̄u(Zu, j) is a vector on the line connecting νu(Zu) and ν̂u(Zu).
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First, by Assumptions 5.2(ii)(d) and 5.3, the claim of Step 1, and the Hölder inequality,

max
j∈[dθ]

sup
u∈U
|II1j(u)| 6

dν∑
r,k=1

√
nP [C|ν̂r(Zu)− νur(Zu)||ν̂k(Zu)− νuk(Zu)|]

6 C
√
nd2

ν max
k∈[dν ]

‖ν̂k − νuk‖2P,2 .P
√
nτ2

n = o(1).

Second, we have that with probability 1− o(1),

max
j∈[dθ]

sup
u∈U
|II2j(u)| . sup

f∈F2

|Gn(f)|

where, for Θun := {θ ∈ Θu : ‖θ − θu‖ 6 Cτn},

F2 =
{
ψuj(Wu, θ, h(Zu))− ψuj(Wu, θu, hu(Zu)) : j ∈ [dθ], u ∈ U , h ∈ Hun, θ ∈ Θun

}
.

Application of Lemma C.1 with an envelope F2 . F0 gives that with probability 1− o(1)

sup
f∈F2

|Gn(f)| . τα/2n

√
sn log(an) + n−1/2snn

1
q log(an), (E.5)

since supf∈F2
|f | 6 2 supf∈F1

|f | 6 2F0 by Assumption 5.3; ‖F0‖P,q 6 C by Assumption 5.2(i);

log supQN(ε‖F2‖Q,2,F2, ‖ · ‖Q,2) . (sn log an + sn log(an/ε)) ∨ 0 by Lemma C.2 because F2 =

F1 − F0 for the F0 and F1 defined in Assumptions 5.2(i) and 5.3; and σ can be chosen so that

supf∈F2
‖f‖P,2 6 σ . τα/2n . Indeed,

sup
f∈F2

‖f‖2P,2 6 sup
j∈[dθ],u∈U ,ν∈Θun×Hun

P
(
P [(ψuj(Wu, ν(Zu))− ψuj(Wu, νu(Zu)))2|Zu]

)
6 sup

u∈U ,ν∈Θun×Hun
P (C‖ν(Zu)− νu(Zu)‖α)

= sup
u∈U ,ν∈Θun×Hun

C‖ν − νu‖αP,α 6 sup
u∈U ,ν∈Θun×Hun

C‖ν − νu‖αP,2 . ταn ,

where the first inequality follows by the law of iterated expectations; the second inequality follows

by Assumption 5.2(ii)(a); and the last inequality follows from α ∈ [1, 2] by Assumption 5.2, the

monotonicity of the norm ‖ · ‖P,α in α ∈ [1,∞], and Assumption 5.3.

Conclude using the growth conditions of Assumption 5.3 that with probability 1− o(1)

max
j∈[dθ]

sup
u∈U
|II2j(u)| . τα/2n

√
sn log(an) + n−1/2snn

1
q log(an) = o(1). (E.6)

Step 5. In this step we show that

sup
u∈U

inf
θ∈Θu

√
n‖Enψu(Wu, θ, ĥu(Zu))‖ = oP (1).

We have that with probability 1− o(1)

inf
θ∈Θu

√
n‖Enψu(Wu, θ, ĥu(Zu))‖ 6

√
n‖Enψu(Wu, θ̄u, ĥu(Zu))‖,

where θ̄u = θu − J−1
u Enψu(Wu, θu, hu(Zu)), since θ̄u ∈ Θu for all u ∈ U with probability 1 − o(1),

and, in fact, supu∈U ‖θ̄u − θu‖ = OP (1/
√
n) by the last paragraph of Step 3.
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Then, arguing similarly to Step 3 and 4, we can conclude that uniformly in u ∈ U :

√
n‖Enψu(Wu, θ̄u, ĥu(Zu))‖ 6

√
n‖Enψu(Wu, θu, hu(Zu)) + Ju(θ̄u − θu) + Du,0(ĥu − hu)‖+ oP (1)

where the first term on the right side is zero by definition of θ̄u and Du,0(ĥu − hu) = 0. �

E.2. Proof of Theorem 5.2. Step 0. In the proof a . b means that a 6 Ab, where the constant

A depends on the constants in Assumptions 5.1– 5.3, but not on n once n > n0, and not on P ∈ Pn.

In Step 1, we consider a sequence Pn in Pn, but for simplicity, we write P = Pn throughout the

proof, suppressing the index n. Since the argument is asymptotic, we can assume that n > n0 in

what follows.

Let Pn denote the measure that puts mass n−1 at the points (ξi,Wi) for i = 1, ..., n. Let En
denote the expectation with respect to this measure, so that Enf = n−1

∑n
i=1 f(ξi,Wi), and Gn

denote the corresponding empirical process
√
n(En − P ), i.e.

Gnf =
√
n(Enf − Pf) = n−1/2

n∑
i=1

(
f(ξi,Wi)−

∫
f(s, w)dPξ(s)dP (w)

)
.

Recall that we define the bootstrap draw as:

Z∗n,P :=
√
n(θ̂∗ − θ̂) =

(
1√
n

n∑
i=1

ξiψ̂u(Wi)

)
u∈U

=
(
Gnξψ̂u

)
u∈U

,

where ψ̂u(W ) = −Ĵ−1
u ψu(Wu, θ̂u, ĥu(Zu)).

Step 1.(Linearization) In this step we establish that

ζ∗n,P := Z∗n,P −G∗n,P = oP (1) in D = `∞(U)dθ , (E.7)

where G∗n,P := (Gnξψ̄u)u∈U , and ψ̄u(W ) = −J−1
u ψu(Wu, θu, hu(Zu)).

With probability 1− δn, ĥu ∈ Hun, θ̂u ∈ Θun = {θ ∈ Θu : ‖θ− θu‖ 6 Cτn}, and Ju ∈ Jn, so that

‖ζ∗n,P ‖D . supf∈F3
|Gn[ξf ]|, where

F3 =
{
ψ̃uj(θ̄u, h̄u, J̄u)− ψ̄uj : j ∈ [dθ], u ∈ U , θ̄u ∈ Θun, h̄u ∈ Hun, J̄u ∈ Jn

}
,

where ψ̃uj(θ̄u, h̄u, J̄u) is the j-th element of −J̄−1
u ψu(Wu, θ̄u, h̄u(Zu)), and ψ̄uj is the j-th element of

−J−1
u ψu(Wu, θu, hu(Zu)). By the arguments similar to those employed in the proof of the previous

theorem, under Assumption 5.3 and the additional conditions stated in the theorem, F3 obeys

log sup
Q
N(ε‖F3‖Q,2,F3, ‖ · ‖Q,2) . (sn log an + sn log(an/ε)) ∨ 0,

for an envelope F3 . F0. By Lemma C.2, multiplication of this class by ξ does not change the

entropy bound modulo an absolute constant, namely

log sup
Q
N(ε‖|ξ|F3‖Q,2, ξF3, ‖ · ‖Q,2) . (sn log an + sn log(an/ε)) ∨ 0.
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Also E[exp(|ξ|)] < ∞ implies (E[maxi6n |ξi|2])1/2 . log n, so that, using independence of (ξi)
n
i=1

from (Wi)
n
i=1 and Assumption 5.2(i),

‖max
i6n

ξiF0(Wi)‖PP ,2 6 ‖max
i6n

ξi‖PP ,2‖max
i6n

F0(Wi)‖PP ,2 . n
1/q log n.

Applying Lemma C.1,

sup
f∈ξF3

|Gn(f)| = OP

(
τα/2n

√
sn log(an) +

snn
1/q log n√
n

log(an)

)
= oP (1),

for supf∈ξF3
‖f‖P,2 = supf∈F3

‖f‖P,2 . σn . τ
α/2
n , where the details of calculations are similar to

those in the proof of Theorem 5.1. Indeed, with probability 1− o(δn),

sup
f∈F3

‖f‖2P,2 . sup
u∈U
‖J−1

u ‖2 sup
j∈[dθ],u∈U ,ν∈Θun×Hun

P
(
P [(ψuj(Wu, ν(Zu))− ψuj(Wu, νu(Zu)))2|Zu]

)
+ sup

u∈U
‖J̄−1

u − J−1
u ‖2 sup

j∈[dθ],u∈U ,ν∈Θun×Hun
P
(
P [ψuj(Wu, ν(Zu))2|Zu]

)
. sup

u∈U ,ν∈Θun×Hun
‖ν − νu‖αP,α + ταn

. sup
u∈U ,ν∈Θun×Hun

‖ν − νu‖αP,2 + ταn . τ
α
n ,

where the first inequality follows from the triangle inequality and the law of iterated expectations;

the second inequality follows by Assumption 5.2(ii)(a), Assumption 5.2(i), and supu∈U ‖J̄−1
u −

J−1
u ‖2 . ταn by the assumptions of the theorem and the continuous mapping theorem; the third

inequality follows from α ∈ [1, 2] by Assumption 5.2, the monotonicity of the norm ‖ · ‖P,α in

α ∈ [1,∞], and Assumption 5.3; and the last inequality follows from ‖ν − νu‖P,2 . τn by the

definition of Θun and Hun. The claim of Step 1 follows.

Step 2. Here we are claiming that Z∗n,P  B ZP in D = `∞(U)dθ , under any sequence P = Pn ∈
Pn, were ZP = (GP ψ̄u)u∈U . By the triangle inequality and Step 1,

sup
h∈BL1(D)

∣∣∣EBnh(Z∗n,P )− EPh(ZP )
∣∣∣ 6 sup

h∈BL1(D)

∣∣∣EBnh(G∗n,P )− EPh(ZP )
∣∣∣+ EBn(‖ζ∗n,P ‖D ∧ 2),

where the first term is o∗P (1), since G∗n,P  B ZP by Theorem B.2, and the second term is oP (1)

because ‖ζ∗n,P ‖D = oP (1) implies that EP (‖ζ∗n,P ‖D ∧ 2) = EPEBn(‖ζ∗n,P ‖D ∧ 2) → 0, which in turn

implies that EBn(‖ζ∗n,P ‖D ∧ 2) = oP (1) by the Markov inequality. �

E.3. Proof of Theorem 5.3. This is an immediate consequence of Theorems 5.1, 5.2, B.3, and

B.4. �

Appendix F. Proofs for Section 6

Proof of Theorem 6.1. In order to establish the result uniformly in P ∈ Pn, it suffices to establish

the result under the probability measure induced by any sequence P = Pn ∈ Pn. In the proof

we shall use P , suppressing the dependency of Pn on the sample size n. To prove this result we

invoke Lemmas G.3-G.5 in Appendix G. These lemmas rely on specific events (described below)
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and Condition WL which is also stated in Appendix G. We will show that Assumption 6.1 implies

that the required events occur with probability 1− o(1) and also implies Condition WL.

Let Ψ̂u0,jj = {En[|fj(X)ζu|2]}1/2 denote the ideal penalty loadings. The three events required to

occur with probability 1 − o(1) are the following: E1 := {cr > supu∈U ‖ru‖Pn,2}, and where cr :=

C
√
s log(p ∨ n)/n; E2 := {λ/n >

√
c supu∈U ‖Ψ̂−1

u0 En[ζuf(X)]‖∞}, E3 := {`Ψ̂u0 6 Ψ̂u 6 LΨ̂u0},
for some 1/

√
c < 1/ 4

√
c < ` and L uniformly bounded for the penalty loading Ψ̂u in all iterations

k 6 K for n sufficiently large.

By Assumption 6.1(iv)(b) E1 holds with probability 1− o(1).

Next we verify that Condition WL holds. Condition WL(i) is implied by the approximate sparsity

condition in Assumption 6.1(i) and the covering condition in Assumption 6.1(ii). By Assumption

6.1 we have that du is fixed and the Algorithm sets γ ∈ [1/n,min{log−1 n, pndu−1}] so that γ = o(1)

and Φ−1(1− γ/{2pndu}) 6 C log1/2(np) 6 Cδnn1/6 by Assumption 6.1(i). Since it is assumed that

EP [|fj(X)ζu|2] > c and EP [|fj(X)ζu|3] 6 C uniformly in j 6 p and u ∈ U , Condition WL(ii) holds.

Condition WL(iii) follows from Assumption 6.1(iv).

Since Condition WL holds, by Lemma G.1, the event E2 occurs with probability 1− o(1).

Next we proceed to verify occurrence of E3. In the first iteration, the penalty loadings are defined

as Ψ̂ujj = {En[|fj(X)Yu|2]}1/2 for j = 1, . . . , p, u ∈ U . By Assumption 6.1, c 6 EP [|fj(X)ζu|2] 6

EP [|fj(X)Yu|2] 6 C uniformly over u ∈ U and j = 1, . . . , p. Moreover, Assumption 6.1(iv)(b) yields

sup
u∈U

max
j6p
|(En − EP )[|fj(X)Yu|2]| 6 δn and sup

u∈U
max
j6p
|(En − EP )[|fj(X)ζu|2]| 6 δn

with probability 1−∆n. In turn this shows that for n large so that δn 6 c/4 we have27

(1− 2δn/c)En[|fj(X)ζu|2] 6 En[|fj(X)Yu|2] 6 ({C + δn}/{c− δn})En[|fj(X)ζu|2]

with probability 1−∆n so that `Ψ̂u0 6 Ψ̂u 6 LΨ̂u0 for some uniformly bounded L and ` > 1/ 4
√
c.

Moreover, c̃ = {(L
√
c + 1)/(

√
c` − 1)} supu∈U ‖Ψ̂−1

u0 ‖∞‖Ψ̂u0‖∞ is uniformly bounded for n large

enough which implies that κ2c̃ as defined in (G.1) in Appendix G.2 is bounded away from zero

with probability 1−∆n by the condition on sparse eigenvalues of order s`n (see Bickel, Ritov, and

Tsybakov (2009) Lemma 4.1(ii)).

By Lemma G.3, since λ ∈ [cn1/2 log1/2(p∨n), Cn1/2 log1/2(p∨n)] by the choice of γ and du fixed,

cr 6 C
√
s log(p ∨ n)/n, supu∈U ‖Ψ̂u0‖∞ 6 C, we have

sup
u∈U
‖f(X)′(θ̂u − θu)‖Pn,2 6 C ′

√
s log(p ∨ n)

n
and sup

u∈U
‖θ̂u − θu‖1 6 C ′

√
s2 log(p ∨ n)

n
.

In the application of Lemma G.4, by Assumption 6.1(iv)(c), we have that minm∈M φmax(m) is

uniformly bounded for n large enough with probability 1 − o(1). Thus, with probability 1 − o(1),

27Indeed, using that c 6 EP [|fj(X)ζu|2] 6 EP [|fj(X)Yu|2] 6 C, we have (1 − 2δn/c)En[|fj(X)ζu|2] 6

(1 − 2δn/c){δn + EP [|fj(X)ζu|2]} 6 EP [|fj(X)ζu|2] − δn 6 EP [|fj(X)Yu|2] − δn 6 En[|fj(X)Yu|2]. Similarly,

En[|fj(X)Yu|2] 6 δn + EP [|fj(X)Yu|2] 6 δn + C 6 ({δn + C}/{c− δn})En[|fj(X)ζu|2].
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by Lemma G.4 we have

sup
u∈U

ŝu 6 C
[ncr
λ

+
√
s
]2
6 C ′s.

Therefore by Lemma G.5 the Post-Lasso estimators (θ̃u)u∈U satisfy with probability 1− o(1)

sup
u∈U
‖f(X)′(θ̃u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
and sup

u∈U
‖θ̃u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n

for some C̄ independent of n, since uniformly in u ∈ U we have a sparsity bound ‖(θ̃u−θu)‖0 6 C ′′s
and that ensures that a bound on the prediction rate yields a bound on the `1-norm rate through

the relations ‖v‖1 6
√
‖v‖0‖v‖ 6

√
‖v‖0‖f(X)′v‖Pn,2/

√
φmin(‖v‖0).

In the kth iteration, the penalty loadings are constructed based on (θ̃
(k)
u )u∈U , defined as Ψ̂ujj =

{En[|fj(X){Yu − f(X)′θ̃
(k)
u }|2]}1/2 for j = 1, . . . , p, u ∈ U . We assume (θ̃

(k)
u )u∈U satisfy the rates

above uniformly in u ∈ U . Then with probability 1 − o(1) we have uniformly in u ∈ U and

j = 1, . . . , p

|Ψ̂ujj − Ψ̂u0jj | 6 {En[|fj(X){f(X)′(θ̃u − θu)}|2]}1/2 + {En[|fj(X)ru|2]}1/2

6 Kn‖f(X)′(θ̃u − θu)‖Pn,2 +Kn‖ru‖Pn,2 6 C̄Kn

√
s log(p∨n)

n

6 C̄δ1/2
n 6 Ψ̂u0jj(2C̄δ

1/2
n /c)

where we used that maxi6n,j6p |fj(Xi)| 6 Kn a.s., and K2
ns log(p ∨ n) 6 δnn by Assumption

6.1(iv)(a), and that infu∈U ,j6p Ψ̂u0jj > c/2 with probability 1 − o(1) for n large so that δn 6 c/2.

Further, for n large so that (2C̄δ
1/2
n /c) < 1 − 1/ 4

√
c, this establishes that the event of the penalty

loadings for the (k + 1)th iteration also satisfy `Ψ̂−1
u0 6 Ψ̂−1

u 6 LΨ̂−1
u0 for a uniformly bounded L

and some ` > 1/ 4
√
c with probability 1− o(1) uniformly in u ∈ U .

This leads to the stated rates of convergence and sparsity bound. �

Proof of Theorem 6.2. In order to establish the result uniformly in P ∈ Pn, it suffices to establish

the result under the probability measure induced by any sequence P = Pn ∈ Pn. In the proof we

shall use P , suppressing the dependency of Pn on the sample size n. The proof is similar to the

proof of Theorem 6.1. We invoke Lemmas G.6, G.7 and G.8 which require Condition WL and some

events to occur. We show that Assumption 6.2 implies Condition WL and that the required events

occur with probability at least 1− o(1).

Let Ψ̂u0,jj = {En[|fj(X)ζu|2]}1/2 denote the ideal penalty loadings, wui = EP [Yui | Xi](1 −
EP [Yui | Xi]) the conditional variance of Yui given Xi and r̃ui = r̃u(Xi) the rescaled approximation

error as defined in (G.5). The three events required to occur with probability 1 − o(1) are as

follows: E1 := {cr > supu∈U ‖r̃u/
√
wu‖Pn,2} for cr := C ′

√
s log(p ∨ n)/n where C ′ is large enough;

E2 := {λ/n >
√
c supu∈U ‖Ψ̂−1

u0 En[ζuf(X)]‖∞}; and E3 := {`Ψ̂u0 6 Ψ̂u 6 LΨ̂u0}, for ` > 1/ 4
√
c and

L uniformly bounded, for the penalty loading Ψ̂u in all iterations k 6 K for n sufficiently large.

Regarding E1, by Assumption 6.2(iii), we have c(1 − c) 6 wui 6 1/4. Since |ru(Xi)| 6 δn a.s.

uniformly on u ∈ U for i = 1, . . . , n, we have that the rescaled approximation error defined in (G.5)
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satisfies |r̃u(Xi)| 6 |ru(Xi)|/{c(1 − c) − 2δn}+ 6 C̃|ru(Xi)| for n large enough so that δn 6 c(1 −
c)/4. Thus ‖r̃u/

√
wu‖Pn,2 6 C̃‖ru/

√
wu‖Pn,2. Assumption 6.2(iv)(b) yields supu∈U ‖ru/

√
wu‖Pn,2 6

C
√
s log(p ∨ n)/n with probability 1− o(1), so E3 occurs with probability 1− o(1).

To apply Lemma G.1 to show that E2 occurs with probability 1−o(1) we need to verify Condition

WL. Condition WL(i) is implied by the sparsity in Assumption 6.2(i) and the covering condition

in Assumption 6.2(ii). By Assumption 6.2 we have that du is fixed and the Algorithm sets γ ∈
[1/n,min{log−1 n, pndu−1}] so that γ = o(1) and Φ−1(1−γ/{2pndu}) 6 C log1/2(np) 6 Cδnn1/6 by

Assumption 6.2(i). Since it is assumed that EP [|fj(X)ζu|2] > c and EP [|fj(X)ζu|3] 6 C uniformly

in j 6 p and u ∈ U , Condition WL(ii) holds. Condition WL(iii) follows from Assumption 6.1(iv).

Then, by Lemma G.1, the event E2 occurs with probability 1− o(1).

Next we verify the occurrence of E3. In the initial iteration, the penalty loadings are defined as

Ψ̂ujj = 1
2{En[|fj(X)|2]}1/2 for j = 1, . . . , p, u ∈ U . Assumption 6.2(iv)(c) for the sparse eigenvalues

implies that for n large enough, c′ 6 En[|fj(X)|2] 6 C ′ for all j = 1, . . . , p, with probability 1−o(1).

Moreover, Assumption 6.2(iv)(b) yields

sup
u∈U

max
j6p
|(En − EP )[|fj(X)ζu|2]| 6 δn (F.1)

with probability 1 − ∆n, so that Ψ̂u0jj is bounded away from zero and from above uniformly

over j = 1, . . . , p, u ∈ U , with the same probability because EP [|fj(X)ζu|2] is bounded away

from zero and above. By (F.1) and EP [|fj(X)ζu|2] 6 1
4EP [|fj(X)|2], for n large enough, we have

`Ψ̂u0 6 Ψ̂u 6 LΨ̂u0 for some uniformly bounded L and ` > 1/ 4
√
c with probability 1−∆n.

Thus, c̃ = {(L
√
c + 1)/(`

√
c− 1)} supu∈U ‖Ψ̂−1

u0 ‖∞‖Ψ̂u0‖∞ is uniformly bounded. In turn, since

infu∈U mini6nwui > c(1 − c) is bounded away from zero, we have κ̄2c̃ >
√
c(1− c)κ2c̃ by their

definitions in (G.1) and (G.2). It follows that κ2c̃ is bounded away from zero by the condition

on s`n sparse eigenvalues stated in Assumption 6.2(iv)(c), see Bickel, Ritov, and Tsybakov (2009)

Lemma 4.1(ii).

By the choice of γ and du fixed, λ ∈ [cn1/2 log1/2(p∨n), Cn1/2 log1/2(p∨n)]. By relation (G.4) and

Assumption 6.2(iv)(a), infu∈U q̄Au > c′κ̄2c̃/{
√
sKn}. Under the condition K2

ns
2 log2(p ∨ n) 6 δnn,

the side condition in Lemma G.6 holds with probability 1− o(1), and the lemma yields

sup
u∈U
‖f(X)′(θ̂u − θu)‖Pn,2 6 C ′

√
s log(p ∨ n)

n
and sup

u∈U
‖θ̂u − θu‖1 6 C ′

√
s2 log(p ∨ n)

n

In turn, under Assumption 6.2(iv)(c) and K2
ns

2 log2(p∨n) 6 δnn, with probability 1−o(1) Lemma

G.7 implies

sup
u∈U

ŝu 6 C
′′
[ncr
λ

+
√
s
]2
6 C ′′′s
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since minm∈M φmax(m) is uniformly bounded. The rate of convergence for θ̃u is given by Lemma

G.8, namely with probability 1− o(1)

sup
u∈U
‖f(X)′(θ̃u − θu)‖Pn,2 6 C̄

√
s log(p ∨ n)

n
and sup

u∈U
‖θ̃u − θu‖1 6 C̄

√
s2 log(p ∨ n)

n

for some C̄ independent of n, since by (G.20) we have uniformly in u ∈ U

Mu(θ̃u)−Mu(θu) 6Mu(θ̂u)−Mu(θu) 6 λ
n‖Ψ̂uθu‖1 − λ

n‖Ψ̂uθ̂u‖1 6 λ
n‖Ψ̂u(θ̂uTu − θu)‖1

6 C̄ ′s log(p ∨ n)/n,

supu∈U ‖En[f(X)ζu]‖∞ 6 C
√

log(p ∨ n)/n by Lemma G.1, φmin(ŝu + su) is bounded away from

zero (by Assumption 6.2(iv)(c) and ŝu 6 C ′′′s), infu∈U ψu({δ ∈ Rp : ‖δ‖0 6 ŝu + su}) is bounded

away from zero (because infu∈U mini6nwui > c(1 − c)), and supu∈U ‖Ψ̂u0‖∞ 6 C with probability

1− o(1).

In the kth iteration, the penalty loadings are constructed based on (θ̃
(k)
u )u∈U , defined as Ψ̂ujj =

En[|fj(X){Yu −Λ(f(X)′θ̃
(k)
u )}|2]}1/2 for j = 1, . . . , p, u ∈ U . We assume (θ̃

(k)
u )u∈U satisfy the rates

above uniformly in u ∈ U . Then

|Ψ̂ujj − Ψ̂u0jj | 6 {En[|fj(X){Λ(f(X)′θ̃
(k)
u )− Λ(f(X)′θu)}|2]}1/2 + {En[|fj(X)ru|2]}1/2

6 {En[|fj(X){f(X)′(θ̃
(k)
u − θu)}|2]}1/2 + {En[|fj(X)ru|2]}1/2

6 Kn‖f(X)′(θ̃
(k)
u − θu)‖Pn,2 +Kn‖ru‖Pn,2 .P Kn

√
s log(p∨n)

n

6 Cδn 6 (2Cδn/c)Ψ̂u0jj

and therefore, provided that (2Cδn/c) < 1 − 1/ 4
√
c, uniformly in u ∈ U , `Ψ̂u0 6 Ψ̂u 6 LΨ̂u0 for

` > 1/ 4
√
c and L uniformly bounded with probability 1− o(1). Then the same proof for the initial

penalty loading choice applies to the iterate (k + 1). �

Appendix G. Finite Sample Results of a Continuum of Lasso and Post-Lasso

Estimators for Functional Responses

G.1. Assumptions. We consider the following high level conditions which are implied by the

primitive Assumptions 6.1 and 6.2. For each n > 1, there is a sequence of independent random

variables (Wi)
n
i=1, defined on the probability space (Ω,AΩ,PP ) such that model (6.1) holds with

U ⊂ [0, 1]du . Let dU be a metric on U (and note that the results cover the case where du is a

function of n). Throughout this section we assume that the variables (Xi, (Yui, ζui := Yui−EP [Yui |
Xi])u∈U ) are generated as suitably measurable transformations of Wi and u ∈ U . Furthermore, this

section uses the notation ĒP [·] = 1
n

∑n
i=1 EP [·], because we allow for independent non-identically

distributed (i.n.i.d.) data.

Consider fixed sequences of positive numbers δn ↘ 0, εn ↘ 0, ∆n ↘ 0, `n →∞, and 1 6 Kn <

∞, and positive constants c and C which will not vary with P .

Condition WL. Let Tu := supp(θu), u ∈ U , and suppose that: (i) for s > 1 we have

supu∈U ‖θu‖0 6 s, logN(ε,U , dU ) 6 du log(1/ε) ∨ 0; (ii) uniformly over u ∈ U , we have that
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max
j6p

{ĒP [|fj(X)ζu|3]}1/3
{ĒP [|fj(X)ζu|2]}1/2 Φ−1(1 − γ/{2pndu}) 6 δnn

1/6 and 0 < c 6 ĒP [|fj(X)ζu|2] 6 C, j = 1, . . . , p;

(iii) with probability 1−∆n, we have max
i6n
‖f(Xi)‖∞ 6 Kn, sup

u∈U
max
j6p
|(En − ĒP )[fj(X)2ζ2

u]| 6 δn,

log(p ∨ ndu+1) sup
dU (u,u′)61/n

max
j6p

En[fj(X)2(ζu−ζu′)2] 6 δn, sup
dU (u,u′)61/n

‖En[f(X)(ζu−ζu′)]‖∞ 6 δnn−
1
2 .

The following technical lemma justifies the choice of penalty level λ. It is based on self-normalized

moderate deviation theory. In what follows, for u ∈ U we let Ψ̂u0 denote a diagonal p × p matrix

of “ideal loadings” with diagonal elements given by Ψ̂u0jj = {En[f2
j (X)ζ2

u]}1/2 for j = 1, . . . , p.

Lemma G.1 (Choice of λ). Suppose Condition WL holds, let c′ > c > 1 be constants, γ ∈
[1/n, 1/ log n], and λ = c′

√
nΦ−1(1− γ/{2pndu}). Then for n > n0 large enough depending only on

Condition WL,

PP

(
λ/n > c sup

u∈U
‖Ψ̂−1

u0 En[f(X)ζu]‖∞
)
> 1− γ − o(1).

We note that Condition WL(iii) contains high level conditions on the process (Yu, ζu)u∈U . The

following lemma provides easy to verify sufficient conditions that imply Condition WL(iii).

Lemma G.2. Suppose the i.i.d. sequence ((Yui, ζui)u∈U , Xi), i = 1, . . . , n, satisfies the following

conditions: (i) c 6 maxj6p EP [fj(X)2] 6 C, maxj6p |fj(X)| 6 Kn, supu∈U maxi6n |Yui| 6 Bn, and

c 6 supu∈U EP [ζ2
u | X] 6 C, P -a.s.; (ii) for some random variable Y we have Yu = G(Y, u) where

{G(·, u) : u ∈ U} is a VC-class of functions with VC-index equal to C ′du, (iii) For some fixed ν > 0,

we have EP [|Yu − Yu′ |2 | X] 6 Ln|u − u′|ν for any u, u′ ∈ U , P -a.s. For Ã := pnKnBnn
ν/Ln, we

have with probability 1−∆n

sup
dU (u,u′)61/n

‖En[f(X)(ζu − ζu′)]‖∞ . 1√
n

{√
(1+du)Ln log(Ã)

nν + (1+du)KnBn log(Ã)√
n

}
sup

dU (u,u′)61/n

max
j6p

En[fj(X)2(ζu − ζu′)2] . Lnn−ν
{

1 +

√
K2
n log(pnK2

n)
n +

K2
n

n log(pnK2
n)

}
sup
u∈U

max
j6p
|(En − EP )[f2

j (X)ζ2
u]| .

√
(1+du) log(npKnBn)

n KnBn +
(1+du)K2

nB
2
n

n log(npBnKn)

where ∆n is a fixed sequence going to zero.

Lemma G.2 allows for several different cases including cases where Yu is generated by a non-

smooth transformation of a random variable Y . For example, if Yu = 1{Y 6 u} where Y

has bounded conditional probability density function, we have du = 1, Bn = 1, ν = 1, Ln =

supy fY |X(y | x). A similar result holds for independent non-identically distributed data.

In what follows for a vector δ ∈ Rp, and a set of indices T ⊆ {1, . . . , p}, we denote by δT ∈ Rp

the vector such that (δT )j = δj if j ∈ T and (δT )j = 0 if j /∈ T . For a set T , |T | denotes the

cardinality of T . Moreover, let

∆c,u := {δ ∈ Rp : ‖δT cu‖1 6 c‖δTu‖1}.
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G.2. Finite Sample Results: Linear Case. For the model described in (6.1) with Λ(t) = t

and M(y, t) = 1
2(y − t)2 we will study the finite sample properties of the associated Lasso and

Post-Lasso estimators of (θu)u∈U defined in relations (6.2) and (6.3).

The analysis relies on the restricted eigenvalues

κc = inf
u∈U

min
δ∈∆c,u

‖f(X)′δ‖Pn,2
‖δTu‖

, (G.1)

and maximum and minimum sparse eigenvalues

φmin(m) = min
16‖δ‖06m

‖f(X)′δ‖2Pn,2
‖δ‖2

and φmax(m) = max
16‖δ‖06m

‖f(X)′δ‖2Pn,2
‖δ‖2

.

Next we present technical results on the performance of the estimators generated by Lasso that

are used in the proof of Theorem 6.1.

Lemma G.3 (Rates of Convergence for Lasso). The events cr > supu∈U ‖ru‖Pn,2, `Ψ̂u0 6 Ψ̂u 6

LΨ̂u0, u ∈ U , and λ/n > c supu∈U ‖Ψ̂−1
u0 En[f(X)ζu]‖∞, for c > 1/`, imply that uniformly in u ∈ U

‖f(X)′(θ̂u − θu)‖Pn,2 6 2cr +
2λ
√
s
(
L+ 1

c

)
nκc̃

‖Ψ̂u0‖∞

‖θ̂u − θu‖1 6 2(1 + 2c̃)

{√
scr
κ2c̃

+
λs
(
L+ 1

c

)
nκc̃κ2c̃

‖Ψ̂u0‖∞

}
+

(
1 +

1

2c̃

)
c‖Ψ̂−1

u0 ‖∞
`c− 1

n

λ
c2
r

where c̃ = supu∈U ‖Ψ̂−1
u0 ‖∞‖Ψ̂u0‖∞(Lc+ 1)/(`c− 1)

The following lemma summarizes sparsity properties of (θ̂u)u∈U .

Lemma G.4 (Sparsity bound for Lasso). Consider the Lasso estimator θ̂u, its support T̂u =

supp(θ̂u), and let ŝu = ‖θ̂u‖0. Assume that cr > supu∈U ‖ru‖Pn,2, λ/n > c supu∈U ‖Ψ̂−1
u0 En[f(X)ζu]‖∞

and `Ψ̂u0 6 Ψ̂u 6 LΨ̂u0 for all u ∈ U , with L > 1 > ` > 1/c. Then, for c0 = (Lc+ 1)/(`c− 1) and

c̃ = c0 supu∈U ‖Ψ̂u0‖∞‖Ψ̂−1
u0 ‖∞ we have uniformly over u ∈ U

ŝu 6 16c2
0

(
min
m∈M

φmax(m)

)[
ncr
λ

+

√
s

κc̃
‖Ψ̂u0‖∞

]2

‖Ψ̂−1
u0 ‖

2
∞

where M =

{
m ∈ N : m > 32c2

0φmax(m) supu∈U

[
ncr
λ +

√
s

κc̃
‖Ψ̂u0‖∞

]2
‖Ψ̂−1

u0 ‖2∞
}
.

Lemma G.5 (Rate of Convergence of Post-Lasso). Under Conditions WL, let θ̃u be the Post-Lasso

estimator based on the support T̃u. Then, with probability 1− o(1), uniformly over u ∈ U , we have

for s̃u = |T̃u|

‖EP [Yu | X]− f(X)′θ̃u‖Pn,2 6 C
√
s̃u log(p ∨ ndu+1)√

n φmin(s̃u)
‖Ψ̂u0‖∞+ min

supp(θ)⊆T̃u
‖EP [Yu | X]− f(X)′θ‖Pn,2
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Moreover, if supp(θ̂u) ⊆ T̃u for every u ∈ U , the following events cr > supu∈U ‖ru‖Pn,2, `Ψ̂u0 6

Ψ̂u 6 LΨ̂u0, u ∈ U , and λ/n > c supu∈U ‖Ψ̂−1
u0 En[f(X)ζu]‖∞, for c > 1/`, imply that

sup
u∈U

min
supp(θ)⊆T̃u

‖EP [Yu | X]− f(X)′θ‖Pn,2 6 3cr +

(
L+

1

c

)
2λ
√
s

nκc̃
sup
u∈U
‖Ψ̂u0‖∞.

G.3. Finite Sample Results: Logistic Case. For the model described in (6.1) with Λ(t) =

exp(t)/{1 + exp(t)} and M(y, t) = −{1{y = 1} log(Λ(t)) + 1{y = 0} log(1 − Λ(t))} we will study

finite the sample properties of the associated Lasso and Post-Lasso estimators of (θu)u∈U defined

in relations (6.2) and (6.3). In what follows we use the notation

Mu(θ) = En[M(Yu, f(X)′θ)].

In the finite sample analysis we will consider not only the design matrix En[f(X)f(X)′] but also

a weighted counterpart En[wuf(X)f(X)′] where wui = EP [Yui | Xi](1−EP [Yui | Xi]), i = 1, . . . , n,

u ∈ U , is the conditional variance of the outcome variable Yui.

For Tu = supp(θu), su = ‖θu‖0 > 1, the (logistic) restricted eigenvalue is defined as

κ̄c := inf
u∈U

min
δ∈∆c,u

‖√wuf(X)′δ‖Pn,2
‖δTu‖

. (G.2)

For a subset Au ⊂ Rp, u ∈ U , let the non-linear impact coefficient (Belloni and Chernozhukov,

2011; Belloni, Chernozhukov, and Wei, 2013) be defined as

q̄Au := inf
δ∈Au

En
[
wu|f(X)′δ|2

]3/2
En [wu|f(X)′δ|3]

. (G.3)

Note that q̄Au can be bounded as

q̄Au = inf
δ∈Au

En
[
wu|f(X)′δ|2

]3/2
En [wu|f(X)′δ|3]

> inf
δ∈Au

En
[
wu|f(X)′δ|2

]1/2
maxi6n ‖f(Xi)‖∞‖δ‖1

which can lead to interesting bounds provided Au is appropriate (like the restrictive set ∆c,u

in the definition of restricted eigenvalues). In Lemma G.6 we have Au = ∆2c̃,u ∪ {δ ∈ Rp :

‖δ‖1 6
6c‖Ψ̂−1

u0 ‖∞
`c−1

n
λ‖

ru√
wu
‖Pn,2‖

√
wuf(X)′δ‖Pn,2}, for u ∈ U . For this choice of sets, and provided

that with probability 1 − o(1) we have `c > c′ > 1, supu∈U ‖ru/
√
wu‖Pn,2 .

√
s log(p ∨ n)/n,

supu∈U ‖Ψ̂−1
u0 ‖∞ . 1 and

√
n log(p ∨ n) . λ, we have that uniformly over u ∈ U , with probability

1− o(1)

q̄Au >
1

max
i6n
‖f(X)‖∞

(
κ̄2c̃√

su(1 + 2c̃)
∧ (λ/n)(`c− 1)

6c‖Ψ̂−1
u0 ‖∞‖ru/

√
wu‖Pn,2

)
&

κ̄2c̃√
smax
i6n
‖f(Xi)‖∞

. (G.4)

The definitions above differ from their counterpart in the analysis of `1-penalized least squares

estimators by the weighting 0 6 wui 6 1. Thus it is relevant to understand their relations through

the quantities

ψu(A) := min
δ∈A

‖√wuf(X)′δ‖Pn,2
‖f(X)′δ‖Pn,2

.
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Many primitive conditions on the data generating process will imply ψu(A) to be bounded away

from zero for the relevant choices of A. We refer to Belloni, Chernozhukov, and Wei (2013) for

bounds on ψu. For notational convenience we will also work with a rescaling of the approximation

errors r̃u(X) defined as

r̃ui = r̃u(Xi) = Λ−1( Λ(f(Xi)
′θu) + rui )− f(Xi)

′θu, (G.5)

which is the unique solution to Λ(f(Xi)
′θu + r̃u(Xi)) = Λ(f(Xi)

′θu) + ru(Xi). It follows that

|rui| 6 |r̃ui| and that28 |r̃ui| 6 |rui|/ inf06t6r̃ui Λ′(f(X ′iθu) + t) 6 |rui|/{wui − 2|rui|}+.

Next we derive finite sample bounds provided some crucial events occur.

Lemma G.6 (Rates of Convergence for `1-Logistic Estimator). Assume that

λ/n > c sup
u∈U
‖Ψ̂−1

u0 En[f(X)ζu]‖∞

for c > 1. Further, let `Ψ̂u0 6 Ψ̂u 6 LΨ̂u0 for L > 1 > ` > 1/c, uniformly over u ∈ U ,

c̃ = (Lc+ 1)/(`c− 1) supu∈U ‖Ψ̂u0‖∞‖Ψ̂−1
u0 ‖∞ and

Au = ∆2c̃,u ∪ {δ : ‖δ‖1 6
6c‖Ψ̂−1

u0 ‖∞
`c− 1

n

λ
‖ru/
√
wu‖Pn,2‖

√
wuf(X)′δ‖Pn,2}.

Provided that the nonlinear impact coefficient q̄Au > 3
{

(L+ 1
c )‖Ψ̂u0‖∞ λ

√
s

nκ̄2c̃
+ 9c̃‖r̃u/

√
wu‖Pn,2

}
for every u ∈ U , we have uniformly over u ∈ U

‖
√
wuf(X)′(θ̂u − θu)‖Pn,2 6 3

{
(L+

1

c
)‖Ψ̂u0‖∞

λ
√
s

nκ̄2c̃
+ 9c̃‖r̃u/

√
wu‖Pn,2

}
and

‖θ̂u − θu‖1 6 3

{
(1 + 2c̃)

√
s

κ̄2c̃
+

6c‖Ψ̂−1
u0 ‖∞

`c− 1

n

λ

∥∥∥∥ ru√
wu

∥∥∥∥
Pn,2

}{
(L+

1

c
)‖Ψ̂u0‖∞

λ
√
s

nκ̄2c̃
+ 9c̃

∥∥∥∥ r̃u√
wu

∥∥∥∥
Pn,2

}

The following result provides bounds on the number of non-zero coefficients in the `1-penalized

estimator θ̂u, uniformly over u ∈ U .

Lemma G.7 (Sparsity of `1-Logistic Estimator). Assume λ/n > c supu∈U ‖Ψ̂−1
u0 En[f(X)ζu]‖∞

for c > 1. Further, let `Ψ̂u0 6 Ψ̂u 6 LΨ̂u0 for L > 1 > ` > 1/c, uniformly over u ∈
U , c0 = (Lc + 1)/(`c − 1), c̃ = c0 supu∈U ‖Ψ̂u0‖∞‖Ψ̂−1

u0 ‖∞ and Au = ∆2c̃,u ∪ {δ : ‖δ‖1 6
6c‖Ψ̂−1

u0 ‖∞
`c−1

n
λ‖ru/

√
wu‖Pn,2‖

√
wuf(X)′δ‖Pn,2}, and q̄Au > 3

{
(L+ 1

c )‖Ψ̂u0‖∞ λ
√
s

nκ̄2c̃
+ 9c̃‖r̃u/

√
wu‖Pn,2

}
for every u ∈ U . Then for ŝu = ‖θ̂u‖0, uniformly over u ∈ U ,

ŝu 6

(
min
m∈M

φmax(m)

)[
c0

ψ(Au)

{
3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃

n‖r̃u/
√
wu‖Pn,2
λ

}]2

where M =

{
m ∈ N : m > 2

[
c0

ψ(Au) supu∈U

{
3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃

n‖r̃u/
√
wu‖Pn,2
λ

}]2
}
.

28The last relation follows from noting that for the logistic function we have inf06t6r̃ui Λ′(f(X ′iθu) + t) =

min{Λ′(f(X ′iθu) + r̃ui),Λ
′(f(X ′iθu))} since Λ′ is unimodal. Moreover, Λ′(f(X ′iθu) + r̃ui) = wui and Λ′(f(X ′iθu)) =

Λ(f(X ′iθu))[1− Λ(f(X ′iθu))] = [Λ(f(X ′iθu)) + rui − rui][1− Λ(f(X ′iθu))− rui + rui] > wui − 2|rui| since |rui| 6 1.
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Moreover, if supu∈U maxi6n |f(Xi)
′(θ̂u − θu)− r̃ui| 6 1 we have

ŝu 6

(
min
m∈M

φmax(m)

)
4c2

0

{
3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃

n‖r̃u/
√
wu‖Pn,2
λ

}2

where M =

{
m ∈ N : m > 8c2

0 supu∈U

[
3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃

n‖r̃u/
√
wu‖Pn,2
λ

]2
}
.

Next we turn to finite sample bounds for the logistic regression estimator where the support

was selected based on `1-penalized logistic regression. The results will hold uniformly over u ∈ U
provided the side conditions also hold uniformly over U .

Lemma G.8 (Rate of Convergence for Post-`1-Logistic Estimator). Consider θ̃u defined as the post

model selection logistic regression with the support T̃u and let s̃u := |T̃u|. Uniformly over u ∈ U we

have

‖
√
wuf(X)′(θ̃u − θu)‖Pn,2 6

√
3

√
0 ∨ {Mu(θ̃u)−Mu(θu)}+ 3

{√
s̃u + su‖En[f(X)ζu]‖∞
ψu(Au)

√
φmin(s̃u + su)

+ 3

∥∥∥∥ r̃u√
wu

∥∥∥∥
Pn,2

}
provided that, for every u ∈ U and Au = {δ ∈ Rp : ‖δ‖0 6 s̃u + su},

q̄Au > 6

{√
s̃u + su‖En[f(X)ζu]‖∞
ψu(Au)

√
φmin(s̃u + su)

+ 3

∥∥∥∥ r̃u√
wu

∥∥∥∥
Pn,2

}
and q̄Au > 6

√
0 ∨ {Mu(θ̃u)−Mu(θu)}.

Comment G.1. Since for a sparse vector δ such that ‖δ‖0 = k we have ‖δ‖1 6
√
k‖δ‖ 6√

k‖f(X)′δ‖Pn,2/
√
φmin(k), the results above can directly establish bounds on the rate of con-

vergence in the `1-norm.

G.4. Proofs for Lasso with Functional Response: Penalty Level.

Proof of Lemma G.1. By the triangle inequality

supu∈U ‖Ψ̂−1
u0 En[f(X)ζu]‖∞ 6 maxu∈Uε ‖Ψ̂−1

u0 En[f(X)ζu]‖∞
+ supu∈Uε,u′∈U ,dU (u,u′)6ε ‖Ψ̂−1

u0 En[f(X)ζu]− Ψ̂−1
u′0En[f(X)ζu′ ]‖∞

where U ε is a minimal ε-net of U . We will set ε = 1/n so that |U ε| 6 ndu .

The proofs in this section rely on the following result due to Jing, Shao, and Wang (2003).

Lemma G.9 (Moderate deviations for self-normalized sums). Let Z1,. . ., Zn be independent,

zero-mean random variables and µ ∈ (0, 1]. Let Sn,n =
∑n

i=1 Zi, V 2
n,n =

∑n
i=1 Z

2
i ,

Mn =

{
1

n

n∑
i=1

E[Z2
i ]

}1/2/{ 1

n

n∑
i=1

E[|Zi|2+µ]

}1/{2+µ}

> 0

and 0 < `n 6 n
µ

2(2+µ)Mn. Then for some absolute constant A,∣∣∣∣P(|Sn,n/Vn,n| > x)

2(1− Φ(x))
− 1

∣∣∣∣ 6 A

`2+µ
n

, 0 6 x 6 n
µ

2(2+µ)
Mn

`n
− 1.
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For each j = 1, . . . , p, and each u ∈ U ε, we will apply Lemma G.9 with Zi := fj(Xi)ζui, and

µ = 1. Then, by Lemma G.9, the union bound, and |U ε| 6 ndu , we have

PP

(
sup
u∈Uε

max
j6p

∣∣∣∣∣
√
nEn[fj(X)ζu]√
En[fj(X)2ζ2

u]

∣∣∣∣∣ > Φ−1(1− γ
2pndu

)

)
6 2pndu(γ/2pndu){1 + o(1)}

6 γ{1 + o(1)}
(G.6)

provided that maxu,j{ĒP [|fj(X)ζu|3]1/3/ĒP [|fj(X)ζu|2]1/2}Φ−1(1−γ/2pndu) 6 δnn1/6, which holds

by Condition WL (under this condition there is `n →∞ obeying conditions of Lemma G.9.)

Moreover, by triangle inequality we have

sup
u∈Uε,u′∈U ,dU (u,u′)6ε

‖Ψ̂−1
u0 En[f(X)ζu]− Ψ̂−1

u′0En[f(X)ζu′ ]‖∞

6 sup
u∈Uε,u′∈U ,dU (u,u′)6ε

‖(Ψ̂−1
u0 − Ψ̂−1

u′0)Ψ̂u0‖∞‖Ψ̂−1
u0 En[f(X)ζu]‖∞

+ sup
u,u′∈U ,dU (u,u′)6ε

‖En[f(X)(ζu − ζu′)]‖∞‖Ψ̂−1
u′0‖∞.

(G.7)

To control the first term in (G.7) we note that by Condition WL, Ψ̂u0jj is bounded away from

zero with probability 1− o(1) uniformly over u ∈ U and j = 1, . . . , p. Thus we have uniformly over

u ∈ U and j = 1, . . . , p

|(Ψ̂−1
u0jj − Ψ̂−1

u′0jj)Ψ̂u0jj | = |Ψ̂u0jj − Ψ̂u′0jj |/Ψ̂u′0jj 6 C|Ψ̂u0jj − Ψ̂u′0jj | (G.8)

with the same probability. Moreover, we have

sup
u,u′∈U ,dU (u,u′)6ε

maxj6p |{En[fj(X)2ζ2
u]}1/2 − {En[fj(X)2ζ2

u′ ]}1/2|

6 sup
u,u′∈U ,dU (u,u′)6ε

maxj6p{En[fj(X)2(ζu − ζu′)2]}1/2.
(G.9)

Thus, with ε = 1/n, relations (G.8) and (G.9) imply that with probability 1− o(1)

sup
u,u′∈U ,dU (u,u′)6ε

‖(Ψ̂−1
u0 − Ψ̂−1

u′0)Ψ̂u0‖∞ . sup
u,u′∈U ,dU (u,u′)61/n

max
j6p
{En[fj(X)2(ζu − ζu′)2]}1/2.

By (G.6)

sup
u∈Uε

‖Ψ̂−1
u0 En[f(X)ζu]‖∞ 6 C ′

√
log(p ∨ ndu+1)/n

with probability 1− o(1), so that with the same probability

sup
u∈Uε,u′∈U ,dU (u,u′)6ε

‖(Ψ̂−1
u0 − Ψ̂−1

u′0)Ψ̂u0‖∞‖Ψ̂−1
u0 En[f(X)ζu]‖∞

6 sup
u,u′∈U ,dU (u,u′)61/n

maxj6p{En[fj(X)2(ζu − ζu′)2]}1/2C ′
√

log(p∨ndu+1)
n 6 o(1)√

n

where the last inequality follows by Condition WL.

Since ε = 1/n, the last term in (G.7) is of the order o(n−1/2) with probability 1− o(1) since by

Condition WL,

sup
u,u′∈U ,dU (u,u′)61/n

‖En[f(X)(ζu − ζu′)]‖∞ 6 δnn−1/2
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with probability 1−∆n, and noting that by Condition WL supu∈U ‖Ψ̂−1
u0 ‖∞ is uniformly bounded

with probability at least 1− o(1)−∆n.

The results above imply that (G.7) is bounded by o(1)/
√
n with probability 1 − o(1). Since

1
2

√
log(2pndu/γ) 6 Φ−1(1− γ/{2pndu}) by γ/{2pndu} 6 1/4 and standard (lower) tail bounds, we

have that with probability 1− o(1)

(c′ − c)√
n

Φ−1(1− γ/{2pndu}) > sup
u∈Uε,u′∈U,dU (u,u′)6ε

‖Ψ̂−1
u0 En[f(X)ζu]− Ψ̂−1

u′0En[f(X)ζu′ ]‖∞

and the result follows. �

Proof of Lemma G.2. We start with the last statement of the lemma since it is more difficult (others

will use similar calculations). Consider the class of functions F = {Yu : u ∈ U}, F ′ = {EP [Yu | X] :

u ∈ U}, and G = {ζ2
u = (Yu − EP [Yu | X])2 : u ∈ U}. Let F be a measurable envelope for F which

satisfies F 6 Bn.

Because F is a VC-class of functions with VC index C ′du, by Lemma C.2(1) we have

logN(ε‖F‖Q,2,F , ‖ · ‖Q,2) . 1 + [du log(e/ε) ∨ 0]. (G.10)

To bound the covering number for F ′ we apply Lemma C.3, and since E[F | X] 6 F , we have

log sup
Q
N(ε‖F‖Q,2,F ′, ‖ · ‖Q,2) 6 log sup

Q
N( ε2‖F‖Q,2,F , ‖ · ‖Q,2). (G.11)

Since G ⊂ (F − F ′)2, G = 4F 2 is an envelope for G and the covering number for G satisfies

logN(ε‖4F 2‖Q,2,G, ‖ · ‖Q,2)
(i)

6 2 logN( ε2‖2F‖Q,2,F − F
′, ‖ · ‖Q,2)

(ii)

6 2 logN( ε4‖F‖Q,2,F , ‖ · ‖Q,2) + 2 logN( ε4‖F‖Q,2,F
′, ‖ · ‖Q,2)

(iii)

6 4 log supQN( ε8‖F‖Q,2,F , ‖ · ‖Q,2),

(G.12)

where (i) and (ii) follow by Lemma C.2(2), and (iii) follows from (G.11).

Hence, the entropy bound for the class M = ∪j∈[p]Mj , where Mj = {f2
j (X)G}, j ∈ [p] and

envelope M = 4K2
nF

2, satisfies

logN(ε‖M‖Q,2,M, ‖ · ‖Q,2)
(a)

6 log p+ maxj∈[p] logN(ε‖4K2
nF

2‖Q,2,Mj , ‖ · ‖Q,2)
(b)

6 log p+ logN(ε‖4F 2‖Q,2,G, ‖ · ‖Q,2)
(c)

6 log p+ 4 log supQN( ε8‖F‖Q,2,F , ‖ · ‖Q,2)
(d)

. log p+ [(1 + du) log(e/ε) ∨ 0],

where (a) follows by Lemma C.2(2) for union of classes, (b) holds by Lemma C.2(2) when one class

has only a single function, (c) by (G.12) and (d) follows from (G.10) and ε 6 1. Therefore, since
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supu∈U maxj6p EP [f2
j (X)ζ2

u] is bounded away from zero and from above, by Lemma C.1 we have

with probability 1−O(1/ log n) that

supu∈U maxj6p |(En − EP )[f2
j (X)ζ2

u]| .
√

(1+du) log(npK2
nB

2
n)

n + (1+du)K2
nB

2
n

n log(npB2
nK

2
n).

using the envelope M = 4K2
nB

2
n, v = C ′, a = pn and a constant σ.

Consider the first term. By Lemma C.1 we have with probability 1−O(1/ log n) that

sup
dU (u,u′)61/n

‖En[f(X)(ζu − ζu′)]‖∞ = sup
dU (u,u′)61/n

1√
n

max
j6p
|Gn(fj(X)(ζu − ζu′))|

. 1√
n

√
(1+du)Ln log(pnKnBn

nν

Ln
)

nν +
(1+du)KnBn log(pnKnBn

nν

Ln
)

n

using the envelope F = 2KnBn, v = C ′, a = pn, the entropy bound in Lemma C.3, and σ2 ∝
Lnn

−ν 6 F 2 for all n sufficiently large, because Lnn
−ν ↘ 0 and

sup
dU (u,u′)61/n

max
j6p

EP [fj(X)2(ζu − ζu′)2] 6 sup
dU (u,u′)61/n

max
j6p

EP [fj(X)2(Yu − Yu′)2]

6 sup
dU (u,u′)61/n

Ln|u− u′|ν max
j6p

EP [fj(X)2] 6 CLnn
−ν .

To bound the second term in the statement of the lemma, it follows that

sup
dU (u,u′)61/n

max
j6p

En[fj(X)2(ζu − ζu′)2] = sup
dU (u,u′)61/n

max
j6p

En[fj(X)2(EP [Yu − Yu′ | X])2]

6 sup
dU (u,u′)61/n

max
j6p

En[fj(X)2EP [|Yu − Yu′ |2 | X]]

6 max
j6p

En[fj(X)2] sup
dU (u,u′)61/n

Ln|u− u′|ν

(G.13)

where the first inequality holds by Jensen’s inequality, and the second inequality holds by assump-

tion. Since c 6 maxj6p{EP [fj(X)2]}1/2 6 C, the result follows by Lemma C.1 which yields with

probability 1−O(1/ log n)

maxj6p |(En − EP )[fj(X)2]| .
√

log(pnK2
n)

n
+
K2
n

n
log(pnK2

n), (G.14)

where we used the choice C 6 σ = C ′ 6 F = K2
n, v = C, a = pn. �

G.5. Proofs for Lasso with Functional Response: Linear Case.

Proof of Lemma G.3. Let δ̂u = θ̂u − θu. Throughout the proof we assume that the events c2
r >

supu∈U En[r2
u], λ/n > c supu∈U ‖Ψ̂−1

u0 En[ζuf(X)]‖∞ and `Ψ̂u0 6 Ψ̂u 6 LΨ̂u0 occur.

By definition of θ̂u,

θ̂u ∈ arg min
θ∈Rp

En[(Yu − f(X)′θ)2] +
2λ

n
‖Ψ̂uθ‖1,
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and `Ψ̂u0 6 Ψ̂u 6 LΨ̂u0, we have

En[(f(X)′δ̂u)2]− 2En[(Yu − f(X)′θu)f(X)]′δ̂u

= En[(Yu − f(X)′θ̂u)2]− En[(Yu − f(X)′θu)2]

6 2λ
n ‖Ψ̂uθu‖1 − 2λ

n ‖Ψ̂uθ̂u‖1
6 2λ

n ‖Ψ̂uδ̂uTu‖1 − 2λ
n ‖Ψ̂uδ̂uT cu‖1

6 2λ
n L‖Ψ̂u0δ̂uTu‖1 − 2λ

n `‖Ψ̂u0δ̂uT cu‖1.

(G.15)

Therefore, by c2
r > supu∈U En[r2

u] and λ/n > c supu∈U ‖Ψ̂−1
u0 En[ζuf(X)]‖∞, we have

En[(f(X)′δ̂u)2]

6 2En[ruf(X)]′δ̂u + 2(Ψ̂−1
u0 En[ζuf(X)])′(Ψ̂u0δ̂u) + 2λ

n L‖Ψ̂u0δ̂uTu‖1 − 2λ
n `‖Ψ̂u0δ̂uT cu‖1

6 2cr{En[(f(X)′δ̂u)2]}1/2 + 2‖Ψ̂−1
u0 En[ζuf(X)]‖∞‖Ψ̂u0δ̂u‖1 + 2λ

n L‖Ψ̂u0δ̂uTu‖1 − 2λ
n `‖Ψ̂u0δ̂uT cu‖1

6 2cr{En[(f(X)′δ̂u)2]}1/2 + 2λ
cn‖Ψ̂u0δ̂u‖1 + 2λ

n L‖Ψ̂u0δ̂uTu‖1 − 2λ
n `‖Ψ̂u0δ̂uT cu‖1

6 2cr{En[(f(X)′δ̂u)2]}1/2 + 2λ
n

(
L+ 1

c

)
‖Ψ̂u0δ̂uTu‖1 − 2λ

n

(
`− 1

c

)
‖Ψ̂u0δ̂uT cu‖1.

(G.16)

Let

c̃ :=
cL+ 1

c`− 1
sup
u∈U
‖Ψ̂u0‖∞‖Ψ̂−1

u0 ‖∞.

Therefore if δ̂u 6∈ ∆c̃,u = {δ ∈ Rp : ‖δT cu‖1 6 c̃‖δTu‖1}, we have that
(
L+ 1

c

)
‖Ψ̂u0δ̂uTu‖1 6(

`− 1
c

)
‖Ψ̂u0δ̂uT cu‖1 so that

{En[(f(X)′δ̂u)2]}1/2 6 2cr.

Otherwise assume δ̂u ∈ ∆c̃,u. In this case (G.16), the definition of κc̃, and ‖δ̂uTu‖1 6
√
s‖δ̂uTu‖,

we have

En[(f(X)′δ̂u)2] 6 2cr{En[(f(X)′δ̂u)2]}1/2 + 2λ
n

(
L+ 1

c

)
‖Ψ̂u0‖∞

√
s{En[(f(X)′δ̂u)2]}1/2/κc̃

which implies

{En[(f(X)′δ̂u)2]}1/2 6 2cr +
2λ
√
s

nκc̃

(
L+

1

c

)
‖Ψ̂u0‖∞. (G.17)

To establish the `1-bound, first assume that δ̂u ∈ ∆2c̃,u. In that case

‖δ̂u‖1 6 (1 + 2c̃)‖δ̂uTu‖1 6 (1 + 2c̃)
√
s{En[(f(X)′δ̂u)2]}1/2/κ2c̃

6 (1 + 2c̃)
{

2
√
s cr
κ2c̃

+ 2λs
nκc̃κ2c̃

(
L+ 1

c

)
‖Ψ̂u0‖∞

}
where we used that ‖δ̂uTu‖1 6

√
s‖δ̂uTu‖, the definition of the restricted eigenvalue, and the pre-

diction rate derived in (G.17).

Otherwise note that δ̂u 6∈ ∆2c̃,u implies that
(
L+ 1

c

)
‖Ψ̂u0δ̂uTu‖1 6 1

2

(
`− 1

c

)
‖Ψ̂u0δ̂uT cu‖1 so that

(G.16) yields

1

2

2λ

n

(
`− 1

c

)
‖Ψ̂u0δ̂uT cu‖1 6 {En[(f(X)′δ̂u)2]}1/2

(
2cr − {En[(f(X)′δ̂u)2]}1/2

)
6 c2

r
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where we used that maxt t(2cr − t) 6 c2
r . Therefore

‖δ̂u‖1 6
(

1 +
1

2c̃

)
‖δ̂uT cu‖1 6

(
1 +

1

2c̃

)
‖Ψ̂−1

u0 ‖∞‖Ψ̂u0δ̂uT cu‖1 6
(

1 +
1

2c̃

)
c‖Ψ̂−1

u0 ‖∞
`c− 1

n

λ
c2
r .

�

Proof of Lemma G.4. Step 1. Let Lu = 4c0‖Ψ̂−1
u0 ‖∞

[
ncr
λ +

√
s

κc̃
‖Ψ̂u0‖∞

]
. By Step 2 below and the

definition of Lu we have

ŝu 6 φmax(ŝu)L2
u. (G.18)

Consider any M ∈M = {m ∈ N : m > 2φmax(m) supu∈U L
2
u}, and suppose ŝu > M .

Next recall the sublinearity of the maximum sparse eigenvalue (for a proof see Lemma 3 in

Belloni and Chernozhukov (2013)), namely, for any integer k > 0 and constant ` > 1 we have

φmax(`k) 6 d`eφmax(k), where d`e denotes the ceiling of `. Therefore

ŝu 6 φmax(Mŝu/M)L2
u 6

⌈
ŝu
M

⌉
φmax(M)L2

u.

Thus, since dke 6 2k for any k > 1 we have M 6 2φmax(M)L2
u which violates the condition that

M ∈M. Therefore, we have ŝu 6M .

In turn, applying (G.18) once more with ŝu 6M we obtain ŝu 6 φmax(M)L2
u. The result follows

by minimizing the bound over M ∈M.

Step 2. In this step we establish that uniformly over u ∈ U

√
ŝu 6 4

√
φmax(ŝu)‖Ψ̂−1

u0 ‖∞c0

[
ncr
λ

+

√
s

κc̃
‖Ψ̂u0‖∞

]
.

Let Ru = (ru1, . . . , run)′, Yu = (Yu1, . . . , Yun)′, ζ̄u = (ζu1, . . . , ζun)′, and F = [f(X1); . . . ; f(Xn)]′.

We have from the optimality conditions that the Lasso estimator θ̂u satisfies

En[Ψ̂−1
ujjfj(X)(Yu − f(X)′θ̂u)] = sign(θ̂uj)λ/n for each j ∈ T̂u.

Therefore, noting that ‖Ψ̂−1
u Ψ̂u0‖∞ 6 1/`, we have√

ŝuλ = ‖(Ψ̂−1
u F ′(Yu − F θ̂u))

T̂u
‖

6 ‖(Ψ̂−1
u F ′ζ̄u)

T̂u
‖+ ‖(Ψ̂−1

u F ′Ru)
T̂u
‖+ ‖(Ψ̂−1

u F ′F (θu − θ̂u))
T̂u
‖

6
√
ŝu ‖Ψ̂−1

u Ψ̂u0‖∞‖Ψ̂−1
u0 F

′ζ̄u‖∞ + n
√
φmax(ŝu)‖Ψ̂−1

u ‖∞cr +

n
√
φmax(ŝu)‖Ψ̂−1

u ‖∞‖F (θ̂u − θu)‖Pn,2,

6
√
ŝu (1/`) ‖Ψ̂−1

u0 F
′ζ̄u‖∞ + n

√
φmax(ŝu)

‖Ψ̂−1
u0 ‖∞
`

{cr + ‖F (θ̂u − θu)‖Pn,2},
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where we used that ‖v‖ 6 ‖v‖1/20 ‖v‖∞ and

‖(F ′F (θu − θ̂u))
T̂u
‖

6 sup
‖δ‖06ŝu,‖δ‖61

|δ′F ′F (θu − θ̂u)| 6 sup
‖δ‖06ŝu,‖δ‖61

‖δ′F ′‖‖F (θu − θ̂u)‖

6 sup
‖δ‖06ŝu,‖δ‖61

{δ′F ′Fδ}1/2‖F (θu − θ̂u)‖ 6 n
√
φmax(ŝu)‖f(X)′(θu − θ̂u)‖Pn,2.

Since λ/c > supu∈U ‖Ψ̂−1
u0 F

′ζ̄u‖∞, and by Lemma G.3, we have that the estimate θ̂u satisfies

‖f(X)′(θ̂u − θu)‖Pn,2 6 2cr + 2
(
L+ 1

c

) λ√s
nκc̃
‖Ψ̂u0‖∞ so that

√
ŝu 6

√
φmax(ŝu)

‖Ψ̂−1
u0 ‖∞
`

[
3ncr
λ + 3

(
L+ 1

c

) √s
κc̃
‖Ψ̂u0‖∞

]
(
1− 1

c`

)
6 4

(
L+ 1

c

)(
1− 1

c`

) 1

`

√
φmax(ŝu)‖Ψ̂−1

u0 ‖∞
[
ncr
λ

+

√
s

κc̃
‖Ψ̂u0‖∞

]
.

The result follows by noting that (L+ [1/c])/(1− 1/[`c]) = c0` by definition of c0.

�

Proof of Lemma G.5. Define mu := (E[Yu1 | X1], . . . ,E[Yun | Xn])′, ζ̄u := (ζu1, . . . , ζun)′, and

the n × p matrix F := [f(X1); . . . ; f(Xn)]′. For a set of indices S ⊂ {1, . . . , p} we define P̂S =

F [S](F [S]′F [S])−1F [S]′ denote the projection matrix on the columns associated with the indices

in S where we interpret P̂S as a null operator if S is empty.

Since Yui = mui + ζui we have

mu − F θ̃u = (I − P̂
T̃u

)mu − P̂T̃u ζ̄u

where I is the identity operator. Therefore

‖mu − F θ̃u‖ 6 ‖(I − P̂T̃u)mu‖+ ‖P̂
T̃u
ζ̄u‖. (G.19)

Since ‖F [T̃u]/
√
n(F [T̃u]′F [T̃u]/n)−1‖ 6

√
1/φmin(s̃u), the last term in (G.19) satisfies

‖P̂
T̃u
ζ̄u‖ 6

√
1/φmin(s̃u)‖F [T̃u]′ζ̄u/

√
n‖

6
√

1/φmin(s̃u)
√
s̃u‖F ′ζ̄u/

√
n‖∞.

By Lemma G.1 with γ = 1/n, we have that with probability 1− o(1), uniformly in u ∈ U

‖F ′ζ̄u/
√
n‖∞ 6 C

√
log(p ∨ ndu+1) max

16j6p

√
En[fj(X)2ζ2

u] = C
√

log(p ∨ ndu+1)‖Ψ̂u0‖∞.

The result follows.

The last statement follows from noting that the mean square approximation error provides an

upper bound to the best mean square approximation error based on the model T̃u provided that
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the model include the Lasso’s mode, i.e. T̂u ⊆ T̃u. Indeed, we have

sup
u∈U

min
supp(θ)⊆T̃u

‖EP [Yu | X]− f(X)′θ‖Pn,2 6 sup
u∈U

min
supp(θ)⊆T̂u

‖EP [Yu | X]− f(X)′θ‖Pn,2

6 sup
u∈U
‖EP [Yu | X]− f(X)′θ̂u‖Pn,2

6 cr + sup
u∈U
‖f(X)′θu − f(X)′θ̂u‖Pn,2

6 3cr +

(
L+

1

c

)
2λ
√
s

nκc̃
sup
u∈U
‖Ψ̂u0‖∞

where we invoked Lemma G.3 to bound ‖f(X)′(θ̂u − θu)‖Pn,2. �

G.6. Proofs for Lasso with Functional Response: Logistic Case.

Proof of Lemma G.6. Let δu = θ̂u − θu and Su = −En[f(X)ζu]. By definition of θ̂u we have

Mu(θ̂u) + λ
n‖Ψ̂uθ̂u‖1 6Mu(θu) + λ

n‖Ψ̂uθu‖1. Thus,

Mu(θ̂u)−Mu(θu) 6 λ
n‖Ψ̂uθu‖1 − λ

n‖Ψ̂uθ̂u‖1
6 λ

n‖Ψ̂uδu,Tu‖1 − λ
n‖Ψ̂uδu,T cu‖1 6

λL
n ‖Ψ̂u0δu,Tu‖1 − λ`

n ‖Ψ̂u0δu,T cu‖1.
(G.20)

Moreover, by convexity of Mu(·) and Hölder’s inequality we have

Mu(θ̂u)−Mu(θu) > ∂θMu(θu) > −λ
n

1
c‖Ψ̂u0δu‖1 − ‖ru/

√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2 (G.21)

because

|∂θMu(θu)′δu| = |S′uδu + {∂θMu(θu)− Su}′δu| 6 |S′uδu|+ |{∂θMu(θu)− Su}′δu|

6 ‖Ψ̂−1
u0 Su‖∞‖Ψ̂u0δu‖1 + ‖ru/

√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2

6
λ

n

1

c
‖Ψ̂u0δu‖1 + ‖ru/

√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2, (G.22)

where we used that λ/n > c supu∈U ‖Ψ̂−1
u0 Su‖∞ and that ∂θMu(θu) = En[{ζu + ru}f(X)] so that

|{∂θMu(θu)− Su}′δu| = |En[ruf(X)′δu]| 6 ‖ru/
√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2. (G.23)

Combining (G.20) and (G.21) we have

λ

n

c`− 1

c
‖Ψ̂u0δu,T cu‖1 6

λ

n

Lc+ 1

c
‖Ψ̂u0δu,Tu‖1 + ‖ru/

√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2 (G.24)

and for c̃ = Lc+1
`c−1 supu∈U ‖Ψ̂u0‖∞‖Ψ̂−1

u0 ‖∞ > 1 we have

‖δu,T cu‖1 6 c̃‖δu,Tu‖1 +
n

λ

c‖Ψ̂−1
u0 ‖∞

`c− 1
‖ru/
√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2.

Suppose δu 6∈ ∆2c̃,u, namely ‖δu,T cu‖1 > 2c̃‖δu,Tu‖1. Thus,

‖δu‖1 6 (1 + {2c̃}−1)‖δu,T cu‖1
6 (1 + {2c̃}−1)c̃‖δu,Tu‖1 + (1 + {2c̃}−1)nλ

c‖Ψ̂−1
u0 ‖∞
`c−1 ‖ru/

√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2

6 (1 + {2c̃}−1)1
2‖δu,T cu‖1 + (1 + {2c̃}−1)nλ

c‖Ψ̂−1
u0 ‖∞
`c−1 ‖ru/

√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2.
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The relation above implies that if δu 6∈ ∆2c̃,u

‖δu‖1 6 4c̃
2c̃−1(1 + {2c̃}−1)nλ

c‖Ψ̂−1
u0 ‖∞
`c−1 ‖ru/

√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2

6 6c‖Ψ̂−1
u0 ‖∞

`c−1
n
λ‖ru/

√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2 =: Iu,

(G.25)

where we used that 4c̃
2c̃−1(1 + {2c̃}−1) 6 6 since c̃ > 1. Combining the bound with the bound

‖δu,Tu‖1 6
√
s

κ̄2c̃
‖
√
wuf(X)′δu‖Pn,2 =: IIu, if δu ∈ ∆2c̃,u,

we have that δu satisfies

‖δu,Tu‖1 6 Iu + IIu. (G.26)

For every u ∈ U , since Au = ∆2c̃,u ∪ {δ : ‖δ‖1 6
6c‖Ψ̂−1

u0 ‖∞
`c−1

n
λ‖ru/

√
wu‖Pn,2‖

√
wuf(X)′δ‖Pn,2}, it

follows that δu ∈ Au, and we have

1
3‖
√
wuf(X)′δu‖2Pn,2 ∧

{
q̄Au

3 ‖
√
wuf(X)′δu‖Pn,2

}
6(1) Mu(θ̂u)−Mu(θu)− ∂θMu(θu)′δu + 2‖r̃u/

√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2

6(2) (L+ 1
c )
λ
n‖Ψ̂u0δu,Tu‖1 + 3‖r̃u/

√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2

6(3) (L+ 1
c )‖Ψ̂u0‖∞ λ

n {Iu + IIu}+ 3‖r̃u/
√
wu‖Pn,2‖

√
wuf(X)′δu‖Pn,2

6(4)

{
(L+ 1

c )‖Ψ̂u0‖∞ λ
√
s

nκ̄2c̃
+ 9c̃‖r̃u/

√
wu‖Pn,2

}
‖√wuf(X)′δu‖Pn,2,

where (1) follows by Lemma G.10 with Au, (2) follows from (G.22) and |rui| 6 |r̃ui|, (3) follows by

‖Ψ̂u0δu,Tu‖1 6 ‖Ψ̂u0‖∞‖δu,Tu‖1 and (G.26), (4) follows from simplifications and |rui| 6 |r̃ui|. Since

the inequality (x2 ∧ ax) 6 bx holding for x > 0 and b < a < 0 implies x 6 b, the above system of

the inequalities, provided that for every u ∈ U

q̄Au > 3

{
(L+

1

c
)‖Ψ̂u0‖∞

λ
√
s

nκ̄2c̃
+ 9c̃‖r̃u/

√
wu‖Pn,2

}
,

implies that

‖
√
wuf(X)′δu‖Pn,2 6 3

{
(L+

1

c
)‖Ψ̂u0‖∞

λ
√
s

nκ̄2c̃
+ 9c̃‖r̃u/

√
wu‖Pn,2

}
=: IIIu for every u ∈ U .

The second result follows from the definition of κ̄2c̃, (G.25) and the bound on ‖√wuf(X)′δu‖Pn,2
just derived, namely for every u ∈ U we have

‖δu‖1 6 1{δu ∈ ∆2c̃,u}‖δu‖1 + 1{δu /∈ ∆2c̃,u}‖δu‖1

6 (1 + 2c̃)IIu + Iu 6 3

{
(1+2c̃)

√
s

κ̄2c̃
+

6c‖Ψ̂−1
u0 ‖∞

`c−1
n
λ

∥∥∥ ru√
wu

∥∥∥
Pn,2

}
IIIu

�

Proof of Lemma G.7. The proof of both bounds are similar to the proof of sparsity for the linear

case (Lemma G.4) differing only on the definition of Lu which are a consequence of pre-sparsity

bounds established in Step 2 and Step 3.
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Step 1. To establish the first bound by Step 2 below, triangle inequality and the definition of

ψ(Au) we have
√
ŝu 6 c(n/λ)

(c`−1)

√
φmax(ŝu)‖f(X)′(θ̂u − θu)− ru‖Pn,2

6 c(n/λ)
(c`−1)

√
φmax(ŝu)

{
‖√wuf(X)′(θ̂u−θu)‖Pn,2

ψ(Au) + ‖ru‖Pn,2
}

uniformly in u ∈ U . By Lemma G.6, ψ(Au) 6 1 and ‖ru‖Pn,2 6 ‖r̃u/
√
wu‖Pn,2 we have

√
ŝu 6

√
φmax(ŝu) c(n/λ)

(c`−1)ψ(Au)

{
3(L+ 1

c )‖Ψ̂u0‖∞ (λ/n)
√
s

κ̄2c̃
+ 28c̃‖r̃u/

√
wu‖Pn,2

}
6
√
φmax(ŝu) c0

ψ(Au)

{
3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃

n‖r̃u/
√
wu‖Pn,2
λ

}
Let Lu = c0

ψ(Au)

{
3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃

n‖r̃u/
√
wu‖Pn,2
λ

}
. Thus we have

ŝu 6 φmax(ŝu)L2
u. (G.27)

which has the same structure as (G.18) in the Step 1 of the proof of Lemma G.4.

Consider any M ∈ M = {m ∈ N : m > 2φmax(m) supu∈U L
2
u}, and suppose ŝu > M . By the

sublinearity of the maximum sparse eigenvalue (Lemma 3 in Belloni and Chernozhukov (2013)),

for any integer k > 0 and constant ` > 1 we have φmax(`k) 6 d`eφmax(k), where d`e denotes the

ceiling of `. Therefore

ŝu 6 φmax(Mŝu/M)L2
u 6

⌈
ŝu
M

⌉
φmax(M)L2

u.

Thus, since dke 6 2k for any k > 1 we have M 6 2φmax(M)L2
u which violates the condition that

M ∈M. Therefore, we have ŝu 6M . In turn, applying (G.27) once more with ŝu 6M we obtain

ŝu 6 φmax(M)L2
u. The result follows by minimizing the bound over M ∈M.

Next we establish the second bound. By Step 3 below we have√
ŝu 6

2c(n/λ)

(c`− 1)

√
φmax(ŝu)‖

√
wu{f(X)′(θ̂u − θu)− r̃u}‖Pn,2

By Lemma G.6 and that ‖√wur̃u‖Pn,2 6 ‖r̃u/
√
wu‖Pn,2 we have

√
ŝu 6

√
φmax(ŝu)2c(n/λ)

(c`−1)

{
3(L+ 1

c )‖Ψ̂u0‖∞ (λ/n)
√
s

κ̄2c̃
+ 28c̃‖r̃u/

√
wu‖Pn,2

}
6
√
φmax(ŝu)2c0

{
3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃

n‖r̃u/
√
wu‖Pn,2
λ

}
Let Lu = 2c0

{
3‖Ψ̂u0‖∞

√
s

κ̄2c̃
+ 28c̃

n‖r̃u/
√
wu‖Pn,2
λ

}
. Thus again we obtained the relation (G.18)

and the proof follows similarly to the Step 1 in the proof of Lemma G.4.

Step 2. In this step we show that uniformly over u ∈ U ,√
ŝu 6

c(n/λ)

(c`− 1)

√
φmax(ŝu)‖f(X)′(θ̂u − θu)− ru‖Pn,2. (G.28)

Let Λui := EP [Yui | Xi] and Su = −En[f(X)ζu] = −En[(Yu − Λu)f(X)]. Let T̂u = supp(θ̂u),

ŝu = ‖θ̂u‖0, δu = θ̂u − θu, and Λ̂ui = exp(f(Xi)
′θ̂u)/{1 + exp(f(Xi)

′θ̂u)}. For any j ∈ T̂u we have

|En[(Yu − Λ̂u)fj(X)]| = Ψ̂ujjλ/n.
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Since `Ψ̂u0 6 Ψ̂u implies ‖Ψ̂−1
u Ψ̂u0‖∞ 6 1/`, the first relation follows from

λ
n

√
ŝu = ‖(Ψ̂−1

u En[(Yu − Λ̂u)f(X))T̂u ]‖
6 ‖Ψ̂−1

u Ψ̂u0‖∞‖Ψ̂−1
u0 En[(Yu − Λu)fT̂u(X)]‖+ ‖Ψ̂−1

u Ψ̂u0‖∞‖Ψ̂−1
u0 ‖∞‖En[(Λ̂u − Λu)fT̂u(X)]‖

6
√
ŝu(1/`)‖Ψ̂−1

u0 En[ζuf(X)]‖∞ + (1/`)‖Ψ̂−1
u0 ‖∞ sup‖θ‖06ŝu,‖θ‖=1 En[|Λ̂u − Λu| |f(X)′θ|]

6 λ
`cn

√
ŝu +

√
φmax(ŝu)(1/`)‖Ψ̂−1

u0 ‖∞‖f(X)′δu − ru‖Pn,2

uniformly in u ∈ U , where we used that Λ is 1-Lipschitz. This relation implies (G.28).

Step 3. In this step we show that if maxi6n |f(Xi)
′(θ̂u − θu)− r̃ui| 6 1 we have√

ŝu 6
2c(n/λ)

(c`− 1)

√
φmax(ŝu)‖

√
wu{f(X)′(θ̂u − θu)− r̃u}‖Pn,2 (G.29)

Note that uniformly in u ∈ U , Lemma G.13 establishes that |Λ̂ui − Λui| 6 wui2|f(X)′δu − r̃ui|
since maxi6n |f(Xi)

′δu − r̃ui| 6 1 is assumed. Thus, combining this bound with the calculations

performed in Step 2 we obtain

λ
n

√
ŝu 6 λ

`cn

√
ŝu + (2/`)‖Ψ̂−1

u0 ‖∞
√
φmax(ŝu)‖√wu{f(X)′δu − r̃u}‖Pn,2

which implies (G.29). �

Proof of Lemma G.8. Let δ̃u = θ̃u − θu and t̃u = ‖√wuf(X)′δ̃u‖Pn,2 and Su = −En[f(X)ζu].

By Lemma G.10 with Au = {δ ∈ Rp : ‖δ‖0 6 s̃u + su}, we have

1
3 t̃

2
u ∧

{
q̄Au

3 t̃u

}
6Mu(θ̃u)−Mu(θu)− ∂θMu(θu)′δ̃u + 2‖r̃u/

√
wu‖Pn,2t̃u

6Mu(θ̃u)−Mu(θu) + ‖Su‖∞‖δ̃u‖1 + 3‖r̃u/
√
wu‖Pn,2t̃u

6Mu(θ̃u)−Mu(θu) + t̃u

{ √
s̃u+su‖Su‖∞

ψu(Au)
√
φmin(s̃u+su)

+ 3‖r̃u/
√
wu‖Pn,2

}
.

where the second inequality holds by calculations as in (G.22) and Hölder’s inequality, and the last

inequality follows from

‖δ̃u‖1 6
√
s̃u + su‖δ̃u‖1 6

√
s̃u + su√

φmin(s̃u + su)
‖f(X)′δ̃u‖Pn,2 6

√
s̃u + su√

φmin(s̃u + su)

‖√wuf(X)′δ̃u‖Pn,2
ψu(Au)

by the definition ψu(A) := minδ∈A
‖√wuf(X)′δ‖Pn,2
‖f(X)′δ‖Pn,2

.

Recall the assumed conditions q̄Au/6 >

{ √
s̃u+su‖Su‖∞

ψu(Au)
√
φmin(s̃u+su)

+ 3‖r̃u/
√
wu‖Pn,2

}
and q̄Au/6 >√

Mu(θ̃u)−Mu(θu). If 1
3 t̃

2
u >

{
q̄Au

3 t̃u

}
, then

q̄Au
3
t̃u 6

q̄Au
6

√
Mu(θ̃u)−Mu(θu) +

q̄Au
6
t̃u,

so that t̃u 6
√

0 ∨ {Mu(θ̃u)−Mu(θu)} which implies the result. Otherwise, we have

1

3
t̃2u 6 {Mu(θ̃u)−Mu(θu)}+ t̃u

{ √
s̃u + su‖Su‖∞

ψu(Au)
√
φmin(s̃u + su)

+ 3‖r̃u/
√
wu‖Pn,2

}
,
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since for positive numbers a, b, c, inequality a2 6 b+ ac implies a 6
√
b+ c, we have

t̃u 6
√

3

√
0 ∨ {Mu(θ̃u)−Mu(θu)}+ 3

{ √
s̃u + su‖Su‖∞

ψu(Au)
√
φmin(s̃u + su)

+ 3‖r̃ui/
√
wui‖Pn,2

}
.

�

G.7. Technical Lemmas: Logistic Case. The proof of the following lower bound builds upon

ideas developed in Belloni and Chernozhukov (2011) for high-dimensional quantile regressions.

Lemma G.10 (Minoration Lemma). For any u ∈ U and δ ∈ Au ⊂ Rp, we have

Mu(θu + δ)−Mu(θu)− ∂θMu(θu)′δ + 2‖r̃u/
√
wu‖Pn,2‖

√
wuf(X)′δ‖Pn,2

>
{

1
3‖
√
wuf(X)′δ‖2Pn,2

}
∧
{
q̄Au

3 ‖
√
wuf(X)′δ‖Pn,2

}
where

q̄Au = inf
δ∈Au

En
[
wu|f(X)′δ|2

]3/2
En [wu|f(X)′δ|3]

.

Proof. Step 1. (Minoration). Consider the following non-negative convex function

Fu(δ) = Mu(θu + δ)−Mu(θu)− ∂θMu(θu)′δ + 2‖r̃u/
√
wu‖Pn,2‖

√
wuf(X)′δ‖Pn,2.

Note that if q̄Au = 0 the statement is trivial since Fu(δ) > 0. Thus we can assume q̄Au > 0.

Step 2 below shows that for any δ = tδ̃ ∈ Rp where t ∈ R and δ̃ ∈ Au such that ‖√wuf(X)′δ‖Pn,2 6
q̄Au we have

Fu(δ) >
1

3
‖
√
wuf(X)′δ‖2Pn,2. (G.30)

Thus (G.30) covers the case that δ ∈ Au and ‖√wuf(X)′δ‖Pn,2 6 q̄Au .

In the case that δ ∈ Au and ‖√wuf(X)′δ‖Pn,2 > q̄Au , by convexity29 of Fu and Fu(0) = 0 we

have

Fu(δ) >
‖√wuf(X)′δ‖Pn,2

q̄Au
Fu

(
δ

q̄Au
‖√wuf(X)′δ‖Pn,2

)
>
q̄Au‖

√
wuf(X)′δ‖Pn,2

3
, (G.31)

where the last step follows by (G.30) since

‖
√
wuf(X)′δ̄‖Pn,2 = q̄Au for δ̄ = δ

q̄Au
‖√wuf(X)′δ‖Pn,2

.

Combining (G.30) and (G.31) we have

Fu(δ) >

{
1

3
‖
√
wuf(X)′δ‖2Pn,2

}
∧
{ q̄Au

3
‖
√
wuf(X)′δ‖Pn,2

}
.

29If φ is a convex function with φ(0) = 0, for α ∈ (0, 1) we have φ(t) > φ(αt)/α. Indeed, by convexity, φ(αt+ (1−
α)0) 6 (1− α)φ(0) + αφ(t) = αφ(t).
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Step 2. (Proof of (G.30)) Let r̃ui be such that Λ(f(Xi)
′θu + r̃ui) = Λ(f(Xi)

′θu) + rui = EP [Yui |
Xi]. Defining gui(t) = log{1 + exp(f(Xi)

′θu + r̃ui + tf(Xi)
′δ)}, g̃ui(t) = log{1 + exp(f(Xi)

′θu +

tf(Xi)
′δ)}, Λui := EP [Yui | Xi], Λ̃ui := exp(f(Xi)

′θu)/{1 + exp(f(Xi)
′θu)}, we have

Mu(θu + δ)−Mu(θu)− ∂θMu(θu)′δ =

= En [log{1 + exp(f(X)′{θu + δ})} − Yuf(X)′(θu + δ)]

−En [log{1 + exp(f(X)′θu)} − Yuf(X)′θu]− En
[
(Λ̃u − Yu)f(X)′δ

]
= En

[
log{1 + exp(f(X)′{θu + δ})} − log{1 + exp(f(X)′θu)} − Λ̃uf(X)′δ

]
= En[g̃u(1)− g̃u(0)− g̃′u(0)]

= En[gu(1)− gu(0)− g′u(0)] + En[{g̃u(1)− gu(1)} − {g̃u(0)− gu(0)} − {g̃′u(0)− g′u(0)}]
(G.32)

Note that the function gui is three times differentiable and satisfies,

g′ui(t) = (f(Xi)
′δ)Λui(t), g′′ui(t) = (f(Xi)

′δ)2Λui(t)[1− Λui(t)], and

g′′′ui(t) = (f(Xi)
′δ)3Λui(t)[1− Λui(t)][1− 2Λui(t)]

where Λui(t) := exp(f(Xi)
′θu + r̃ui + tf(Xi)

′δ)/{1 + exp(f(Xi)
′θu + r̃ui + tf(X)′δ)}. Thus we have

|g′′′ui(t)| 6 |f(X)′δ|g′′ui(t). Therefore, by Lemmas G.11 and G.12 given following the conclusion of

this proof, we have

gui(1)− gui(0)− g′ui(0) > (f(Xi)
′δ)2wui

(f(Xi)′δ)2
{exp(−|f(Xi)

′δ|) + |f(Xi)
′δ| − 1}

> wui
{
|f(Xi)

′δ|2
2 − |f(Xi)

′δ|3
6

} (G.33)

Moreover, letting Υui(t) = g̃ui(t)− gui(t) we have

|Υ′ui(t)| = |(f(Xi)
′δ){Λui(t)− Λ̃ui(t)}| 6 |f(Xi)

′δ| |r̃ui|

where Λ̃ui(t) := exp(f(Xi)
′θu + tf(Xi)

′δ)/{1 + exp(f(Xi)
′θu + tf(Xi)

′δ)}. Thus

|En[{g̃u(1)− gu(1)} − {g̃u(0)− gu(0)} − {g̃′u(0)− g′u(0)}]| =
= |En[Υu(1)−Υu(0)− {Λ̃u − Λu}f(X)′δ]|
6 2En[|r̃u| |f(X)′δ|].

(G.34)

Therefore, combining (G.32) with the bounds (G.33) and (G.34) we have

Mu(θu + δ)−Mu(θu)− ∂θMu(θu)′δ > 1
2En

[
wu|f(X)′δ|2

]
− 1

6En
[
wu|f(X)′δ|3

]
−2‖r̃u/

√
wu‖Pn,2‖

√
wuf(X)′δ‖Pn,2,

which holds for any δ ∈ Rp.

Take any δ = tδ̃, t ∈ R \ {0}, δ̃ ∈ Au such that ‖√wuf(X)′δ‖Pn,2 6 q̄Au . (Note that the case of

δ = 0 is trivial.) We have

En[wu|f(X)′δ|2]1/2 = ‖√wuf(X)′δ‖Pn,2 6 q̄Au 6 En
[
wu|f(X)′δ̃|2

]3/2
/En

[
wu|f(X)′δ̃|3

]
= En

[
wu|f(X)′δ|2

]3/2
/En

[
wu|f(X)′δ|3

]
,
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since the scalar t cancels out. Thus, En[wu|f(X)′δ|3] 6 En[wu|f(X)′δ|2]. Therefore we have

1
2En

[
wu|f(X)′δ|2

]
− 1

6En
[
wu|f(X)′δ|3

]
>

1

3
En
[
wu|f(X)′δ|2

]
and

Mu(θu + δ)−Mu(θu)− ∂θMu(θu)′δ > 1
3En

[
wu|f(X)′δ|2

]
− 2‖ r̃u√

wu
‖Pn,2‖

√
wuf(X)′δ‖Pn,2,

which establishes that Fu(δ) := Mu(θu + δ)−Mu(θu)− ∂θMu(θu)′δ+ 2‖ r̃u√
wu
‖Pn,2‖

√
wuf(X)′δ‖Pn,2

is larger than 1
3En

[
wu|f(X)′δ|2

]
for any δ = tδ̃, t ∈ R, δ̃ ∈ Au and ‖√wuf(X)′δ‖Pn,2 6 q̄Au . �

Lemma G.11 (Lemma 1 from Bach (2010)). Let g : R→ R be a three times differentiable convex

function such that for all t ∈ R, |g′′′(t)| 6Mg′′(t) for some M > 0. Then, for all t > 0 we have

g′′(0)

M2
{exp(−Mt) +Mt− 1} 6 g(t)− g(0)− g′(0)t 6

g′′(0)

M2
{exp(Mt) +Mt− 1} .

Lemma G.12. For t > 0 we have exp(−t) + t− 1 > 1
2 t

2 − 1
6 t

3.

Proof of Lemma G.12. For t > 0, consider the function f(t) = exp(−t) + t3/6 − t2/2 + t − 1.

The statement is equivalent to f(t) > 0 for t > 0. It follows that f(0) = 0, f ′(0) = 0, and

f ′′(t) = exp(−t) + t− 1 > 0 so that f is convex. Therefore f(t) > f(0) + tf ′(0) = 0. �

Lemma G.13. The logistic link function satisfies |Λ(t + t0) − Λ(t0)| 6 Λ′(t0){exp(|t|) − 1}. If

|t| 6 1 we have exp(|t|)− 1 6 2|t|.

Proof. Note that |Λ′′(s)| 6 Λ′(s) for all s ∈ R. So that −1 6 d
ds log(Λ′(s)) = Λ′′(s)

Λ′(s) 6 1. Suppose

s > 0. Therefore

−s 6 log(Λ′(s+ t0))− log(Λ′(t0)) 6 s.

In turn this implies Λ′(t0) exp(−s) 6 Λ′(s + t0) 6 Λ′(t0) exp(s). For t > 0, integrating one more

time from 0 to t,

Λ′(t0){1− exp(−t)} 6 Λ(t+ t0)− Λ(t0) 6 Λ′(t0){exp(t)− 1}.

Similarly, for t < 0, integrating from t to 0, we have

Λ′(t0){1− exp(t)} 6 Λ(t+ t0)− Λ(t0) 6 Λ′(t0){exp(−t)− 1}.

The first result follows by noting that 1 − exp(−|t|) 6 exp(|t|) − 1. The second follows by

verification. �

References

Abadie, A. (2002): “Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models,” Journal

of the American Statistical Association, 97, 284–292.

(2003): “Semiparametric Instrumental Variable Estimation of Treatment Response Models,” Journal of

Econometrics, 113, 231–263.

Andrews, D. W. (1994a): “Empirical process methods in econometrics,” Handbook of Econometrics, 4, 2247–2294.

Andrews, D. W. K. (1994b): “Asymptotics for semiparametric econometric models via stochastic equicontinuity,”

Econometrica, 62(1), 43–72.



86

Angrist, J. D., and J.-S. Pischke (2008): Mostly Harmless Econometrics: An Empiricist’s Companion. Princeton

University Press.

Bach, F. (2010): “Self-concordant analysis for logistic regression,” Electronic Journal of Statistics, 4, 384–414.

Belloni, A., D. Chen, V. Chernozhukov, and C. Hansen (2012): “Sparse Models and Methods for Optimal

Instruments with an Application to Eminent Domain,” Econometrica, 80, 2369–2429, Arxiv, 2010.

Belloni, A., and V. Chernozhukov (2011): “`1-Penalized Quantile Regression for High Dimensional Sparse

Models,” Annals of Statistics, 39(1), 82–130.

(2013): “Least Squares After Model Selection in High-dimensional Sparse Models,” Bernoulli, 19(2), 521–547,

ArXiv, 2009.

Belloni, A., V. Chernozhukov, and C. Hansen (2010): “LASSO Methods for Gaussian Instrumental Variables

Models,” 2010 arXiv:[math.ST], http://arxiv.org/abs/1012.1297.

(2013): “Inference for High-Dimensional Sparse Econometric Models,” Advances in Economics and Econo-

metrics. 10th World Congress of Econometric Society. August 2010, III, 245–295.

(2014): “Inference on Treatment Effects After Selection Amongst High-Dimensional Controls,” Review of

Economic Studies, 81, 608–650.

Belloni, A., V. Chernozhukov, and K. Kato (2013): “Uniform Post Selection Inference for LAD Regression

Models,” arXiv preprint arXiv:1304.0282.

Belloni, A., V. Chernozhukov, and L. Wang (2011): “Square-Root-LASSO: Pivotal Recovery of Sparse Signals

via Conic Programming,” Biometrika, 98(4), 791–806, Arxiv, 2010.

Belloni, A., V. Chernozhukov, and Y. Wei (2013): “Honest Confidence Regions for Logistic Regression with a

Large Number of Controls,” arXiv preprint arXiv:1304.3969.

Benjamin, D. J. (2003): “Does 401(k) eligibility increase saving? Evidence from propensity score subclassification,”

Journal of Public Economics, 87, 1259–1290.

Bickel, P. J., and D. A. Freedman (1981): “Some asymptotic theory for the bootstrap,” The Annals of Statistics,

pp. 1196–1217.

Bickel, P. J., Y. Ritov, and A. B. Tsybakov (2009): “Simultaneous analysis of Lasso and Dantzig selector,”

Annals of Statistics, 37(4), 1705–1732.

Candès, E., and T. Tao (2007): “The Dantzig selector: statistical estimation when p is much larger than n,” Ann.

Statist., 35(6), 2313–2351.

Cattaneo, M. D. (2010): “Efficient semiparametric estimation of multi-valued treatment effects under ignorability,”

Journal of Econometrics, 155(2), 138–154.

Chamberlain, G., and G. W. Imbens (2003): “Nonparametric applications of Bayesian inference,” Journal of

Business & Economic Statistics, 21(1), 12–18.

Chen, X. (2007): “Large Sample Sieve Estimatin of Semi-Nonparametric Models,” Handbook of Econometrics, 6,

5559–5632.

Chernozhukov, V., D. Chetverikov, and K. Kato (2012): “Gaussian approximation of suprema of empirical

processes,” ArXiv e-prints.

Chernozhukov, V., I. Fernández-Val, and B. Melly (2013): “Inference on counterfactual distributions,” Econo-

metrica, 81(6), 2205–2268.

Chernozhukov, V., and C. Hansen (2004): “The impact of 401(k) participation on the wealth distribution: An

instrumental quantile regression analysis,” Review of Economics and Statistics, 86(3), 735–751.

(2005): “An IV Model of Quantile Treatment Effects,” Econometrica, 73(1), 245–262.

(2006): “Instrumental quantile regression inference for structural and treatment effect models,” J. Econo-

metrics, 132(2), 491–525.

Chesher, A. (2003): “Identification in nonseparable models,” Econometrica, 71(5), 1405–1441.



87

Dudley, R. M. (1999): Uniform central limit theorems, vol. 63 of Cambridge Studies in Advanced Mathematics.

Cambridge University Press, Cambridge.

Engen, E. M., and W. G. Gale (2000): “The Effects of 401(k) Plans on Household Wealth: Differences Across

Earnings Groups,” Working Paper 8032, National Bureau of Economic Research.

Engen, E. M., W. G. Gale, and J. K. Scholz (1996): “The Illusory Effects of Saving Incentives on Saving,”

Journal of Economic Perspectives, 10, 113–138.

Escanciano, J. C., and L. Zhu (2013): “Set inferences and sensitivity analysis in semiparametric conditionally

identified models,” CeMMAP working papers CWP55/13, Centre for Microdata Methods and Practice, Institute

for Fiscal Studies.

Fan, J., and R. Li (2001): “Variable selection via nonconcave penalized likelihood and its oracle properties,” Journal

of American Statistical Association, 96(456), 1348–1360.

Farrell, M. (2013): “Robust Inference on Average Treatment Effects with Possibly More Covariates than Obser-

vations,” Working Paper.

Frank, I. E., and J. H. Friedman (1993): “A Statistical View of Some Chemometrics Regression Tools,” Techno-

metrics, 35(2), 109–135.

Ghosal, S., A. Sen, and A. W. van der Vaart (2000): “Testing Monotonicity of Regression,” Ann. Statist.,

28(4), 1054–1082.
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Series approximation Dimension Selection LATE LATE‐T LATE LATE‐T

Indicator 20 N 11833 16120 8972 12500

(1638) (2224) (2692) (3572)

{1598} {2199} {2598} {3360}

Indicator 20 Y 13960 16727 12211 13729

(1690) (2267) (2750) (3672)

{1693} {2272} {2813} {3868}

Indicator plus interactions 167 N 11856 16216 9996 12131

(1632) (2224) (2675) (3428)

{1614} {2189} {2767} {3385}

Indicator plus interactions 167 Y 14295 17011 13907 13476

(1705) (2331) (2749) (3759)

{1687} {2329} {2741} {3748}

Orthogonal Polynomials 22 N 9314 16089 6897 11807

(2916) (2155) (3122) (3504)

{3000} {2079} {3029} {3695}

Orthogonal Polynomials 22 Y 11578 16683 8057 11993

(1645) (2193) (2704) (3539)

{1638} {2254} {2695} {3571}

Orthogonal Polynomials plus interactions 196 N ‐324200 ‐89042 ‐132900 ‐38723

(282770) (64321) (129570) (50593)

{266300} {66211} {134380} {49132}

Orthogonal Polynomials plus interactions 196 Y 10335 13062 8989 9656

(2352) (4536) (2780) (4002)

{2485} {4307} {2840} {4167}

Orthogonal Polynomials plus many interactions 756 N ‐ ‐ ‐ ‐

‐ ‐ ‐ ‐

‐ ‐ ‐ ‐

Orthogonal Polynomials plus many interactions 756 Y 10118 12476 9382 10692

(2465) (4923) (3014) (4849)

{2381} {4881} {3237} {4781}

Table 1: Estimates and standard errors of average effects

Specification

Notes: The sample is drawn from the 1991 SIPP and consists of 9,915 observations.  All the specifications control for age, income, family size, 

education, marital status, two‐earner status, defined benefit pension status, IRA participation status, and home ownership status. Indicators 

specification uses a linear term for family size,  5 categories for age, 4 categories for education, and 7 categories for income.  Orthogonal Polynomials 

uses a fourth order polynomial in age, an eigth order polynomial in income, and quadratic polynomials in education and family size.  Polynomials in 

each variable are orthogonalized via the Gram‐Schmidt process.  Marital status, two‐earner status, defined benefit pension status, IRA participation 

status, and home ownership status are included as indicators in all the specifications. Specifications denoted with "plus interactions" include all first‐

order interactions.  The specifications denoted "plus many interactions" take all first‐order interactions between all non‐income variables and then 

fully interact these interactions as well as the main effects with all income variables.  Analytic standard errors are given in parentheses.  Bootstrap 

standard errors based on 500 repetitions with Mammen (1993) multipliers are given in braces.

Net Total Financial Assets Total Wealth
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Figure 1. LQTE and LQTE-T estimates based on low-p indicators specification.
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Figure 2. LQTE and LQTE-T estimates based on high-p indicators plus interac-

tions specification.
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Figure 3. LQTE and LQTE-T estimates based on low-p orthogonal polynomial specification.
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Figure 4. LQTE and LQTE-T estimates based on high-p orthogonal polynomial

plus interactions specification.
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Figure 5. LQTE and LQTE-T estimates based on very-high-p orthogonal polyno-

mial plus many interactions specification.


	1. Introduction
	2. The Setting and The Target Parameters
	2.1. Observables and Reduced Form Parameters
	2.2. Target Structural Parameters – Local Treatment Effects
	2.3. Target Structural Parameters – Local Treatment Effects on the Treated
	2.4. Causal Interpretations for Structural Parameters

	3. Estimation of Reduced-Form and Structural Parameters in a Data-Rich Environment
	3.1. First Step: Modeling and Estimating the Regression Functions gV, mZ, lD, and eV in a Data-Rich Environment
	3.2. Second Step: Robust Estimation of the Reduced-Form Parameters V(z) and V
	3.3. Step 3: Robust Estimation of the Structural Parameters

	4. Theory of Estimation and Inference on Local Treatment Effects Functionals
	5. A General Problem of Inference on Function-Valued Parameters with Approximately Sparse Nuisance Functions
	6. Generic Lasso and Post-Lasso Methods for Functional Response Data
	6.1. The generic setting with function-valued outcomes
	6.2. Asymptotic Properties of a Continuum of Lasso and Post-Lasso Estimators for Functional Responses: Linear Case
	6.3. Asymptotic Properties of a Continuum of Lasso and Post-Lasso Estimators for Functional Responses: Logistic Case

	7. Estimating the Effect of 401(k) Participation on Financial Asset Holdings
	Appendix A. Notation
	A.1. Overall Notation
	A.2.  Notation for Stochastic Convergence Uniformly in P

	Appendix B. Key Tools I: Uniform in P Donsker Theorem, Multiplier Bootstrap, and Functional Delta Method 
	B.1. Uniform in P Donsker Property
	B.2. Uniform in P Validity of Multiplier Bootstrap
	B.3. Uniform in P Functional Delta Method and Bootstrap
	B.4. Proof of Theorem B.1.
	B.5. Proof of Theorem B.2
	B.6. Auxiliary Result: Conditional Multiplier Central Limit Theorem in Rd uniformly in P P.
	B.7. Donsker Theorems for Function Classes that depend on n 
	B.8. Proof of Theorems B.3 and B.4.

	Appendix C. Key Tools II: Probabilistic Inequalities
	Appendix D. Proofs for Section 4
	D.1. Proof of Theorem 4.1
	D.2. Proof of Theorem 4.2
	D.3. Proof of Corollary 4.1

	Appendix E. Proofs for Section 5
	E.1. Proof of Theorem 5.1
	E.2. Proof of Theorem 5.2
	E.3. Proof of Theorem 5.3

	Appendix F. Proofs for Section 6
	Appendix G. Finite Sample Results of a Continuum of Lasso and Post-Lasso Estimators for Functional Responses
	G.1. Assumptions
	G.2. Finite Sample Results: Linear Case
	G.3. Finite Sample Results: Logistic Case
	G.4. Proofs for Lasso with Functional Response: Penalty Level 
	G.5. Proofs for Lasso with Functional Response: Linear Case
	G.6. Proofs for Lasso with Functional Response: Logistic Case
	G.7. Technical Lemmas: Logistic Case

	References

