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Abstract

Idiosyncratic volatility is the volatility of asset returns once the impact of common factors

has been removed. The empirical evidence suggests the idiosyncratic volatilities are cross-

sectionally correlated. This paper introduces an econometric framework for analysis of cross-

sectional dependence in the idiosyncratic volatilities of assets using high frequency data. We first

consider the estimation of standard measures of dependence in the idiosyncratic volatilities such

as covariances and correlations. Next, we study an idiosyncratic volatility factor model, in which

we decompose the variation in idiosyncratic volatilities into two parts: the variation related to

the common factors such as the market volatility, and the residual variation. When using high

frequency data, naive estimators of all of the above measures are biased due to the use of error-

laden estimates of idiosyncratic volatilities. We provide bias-corrected estimators and establish

their asymptotic properties. We apply our methodology to the 30 Dow Jones Industrial Average

components, and document strong cross-sectional dependence in their idiosyncratic volatilities.

We consider two different sets of idiosyncratic volatility factors, and find that neither can fully

account for the cross-sectional dependence in idiosyncratic volatilities. We map out the network

of dependencies in residual idiosyncratic volatilities across the stocks.

Keywords: network of risk; systematic risk; idiosyncratic risk; risk management; high fre-

quency data.

JEL Codes: C58, C22, C14, G11.

∗We benefited from discussions with Marine Carrasco, Yoosoon Chang, Valentina Corradi, Russell Davidson,
Jean-Marie Dufour, Prosper Dovonon, Kirill Evdokimov, Śılvia Gonçalves, Jean Jacod, Dennis Kristensen, Joon
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1 Introduction

In a panel of assets, returns are generally cross-sectionally dependent. This dependence is usually

modelled using the exposure of assets to some common return factors. For example, the Capital

Asset Pricing Model of Lintner (1965) and Sharpe (1964) has one return factor (the market port-

folio), while the model of Fama and French (1993) has three return factors. The total volatility of

an asset return can be decomposed into two parts: a component due to the exposure to the return

factors, and a residual component termed the Idiosyncratic Volatility (IV). These two components

of the volatility of returns are the most popular measures of the systematic risk and idiosyncratic

risk of an asset.

Idiosyncratic volatility is important in economics and finance for several reasons. For example,

when arbitrageurs exploit the mispricing of an individual asset, they are exposed to the idiosyn-

cratic risk of the asset and not the systematic risk (see, e.g., Campbell, Lettau, Malkiel, and Xu

(2001)). Also, idiosyncratic volatility measures the exposure to the idiosyncratic risk in imperfectly

diversified portfolios. A recent observation is that the IVs seem to be strongly correlated in the

cross-section of stocks.1 Herskovic, Kelly, Lustig, and Nieuwerburgh (2016) argue this is due to a

common IV factor, which they relate to household risk. Moreover, cross-sectional dependence in

IVs is important for option pricing, see Gourier (2016).

This paper provides an econometric framework for studying the cross-sectional dependence

in IVs using high frequency data. We show that the naive estimators, such as covariances and

correlations of estimated IVs used by several empirical studies, are substantially biased. The bias

arises due to the use of error-laden estimates of IVs. We provide the bias-corrected estimators.

We then study an Idiosyncratic Volatility Factor Model (IV-FM). (Throughout the paper, in

accordance with the finance literature, we use the term “factor model” to denote a regression

model as in Fama and French (1993).) Just like the Return Factor Model (R-FM), such as the

Fama-French model, decomposes returns into systematic and idiosyncratic returns, the IV-FM

decomposes the IVs into systematic (common) and residual components. The IV factors can include

the volatility of the return factors, or, more generally, (possibly non-linear) transformations of the

spot covariance matrices of any observable variables, such as the average variance and average

correlation factors of Chen and Petkova (2012). The naive estimators of this decomposition also

need to be bias-corrected, and we provide valid estimators. We also provide the asymptotic theory

that allows us to test whether the residual (non-systematic) components of the IVs exhibit cross-

sectional dependence. This allows us to identify the network of unexplained dependencies in the

IVs across all stocks.

To provide the bias-corrected estimators and inference results, we develop a new asymptotic

theory for general estimators of quadratic covariation of vector-valued and possibly nonlinear trans-

1See Duarte, Kamara, Siegel, and Sun (2014), Christoffersen, Fournier, and Jacobs (2015), and Herskovic, Kelly,
Lustig, and Nieuwerburgh (2016))
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formations of spot covariance matrices. This theoretical contribution is of its own interest. Two

factors make the development of this asymptotic theory difficult. First, the preliminary estima-

tion of volatility results in the first-order biases even for the univariate linear functional, as in

Vetter (2012). Considering general nonlinear functionals in the multivariate setting substantially

complicates the analysis.

We apply our methodology to high-frequency data on the 30 Dow Jones Industrial Average

components. We study the IVs with respect to two models for asset returns: the CAPM and the

three-factor Fama-French model. In both cases, the average pairwise correlation between the IVs

is high (0.55). We verify that this dependence cannot be explained by the missing return factors.

This confirms the recent findings of Herskovic, Kelly, Lustig, and Nieuwerburgh (2016) who use

low frequency (daily and monthly) return data. We then consider the IV-FM. We use two sets of

IV factors: the market volatility alone and the market volatility together with volatilities of nine

industry ETFs. With the market volatility as the only IV factor, the average pairwise correlation

between residual (non-systematic) IVs is substantially lower (0.25) than between the total IVs.

With the additional nine industry ETF volatilities as IV factors, average correlation between the

residual IVs decreases further (to 0.18). However, neither of the two sets of the IV factors can

fully explain the cross-sectional dependence in the IVs. We map out the network of dependencies

in residual IVs across all stocks.

The goal of this paper is to study cross-sectional dependence in idiosyncratic volatilities. This

should not be confused with the analysis of cross-sectional dependence in total and idiosyncratic

returns. A growing number of papers study the latter question using high frequency data. These

date back to the analysis of realized covariances and their transformations, see, e.g., Barndorff-

Nielsen and Shephard (2004) and Andersen, Bollerslev, Diebold, and Wu (2004). A continuous-

time factor model for asset returns with observable return factors was first studied in Mykland

and Zhang (2006). It was extended to multiple factors and jumps in Aı̈t-Sahalia, Kalnina, and

Xiu (2014). Related specifications with observable return factors are considered in Li, Todorov,

and Tauchen (2014) and Bollerslev and Todorov (2010); see also Ait-Sahalia and Xiu (2015, 2016),

and Pelger (2015). Importantly, the above papers do not consider the cross-sectional dependence

structure in the IVs. The Beta GARCH model of Hansen, Lunde, and Voev (2014) implies that

the IVs exhibit nonlinear cross-sectional dependencies driven by the market volatility and certain

realized measures. Their model allows for some return factors to be omitted and hence tested

for, but the IV factors are fixed. Our framework allows a general specification of both the return

factors and the IV factors.

Our empirical analysis requires the availability of return factors at high frequency. The Fama-

French factors are available on the website of Kenneth French only at the daily frequency. The

high frequency Fama-French factors are provided by Aı̈t-Sahalia, Kalnina, and Xiu (2014).

Our inference theory is related to several results in the existing literature. First, as mentioned
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above, it generalizes the result of Vetter (2012). Jacod and Rosenbaum (2012, 2013) estimate inte-

grated functionals of volatilities, so they also use transformations of covariance matrices. However,

the latter setting is simpler in the sense that
√
n-consistent estimation is possible, and no first-

order bias terms due to preliminary estimation of volatilities arise. The need for a first-order bias

correction due to preliminary estimation of volatility has also been observed in the literature on

the estimation of the leverage effect, see Aı̈t-Sahalia, Fan, and Li (2013), Aı̈t-Sahalia, Fan, Laeven,

Wang, and Yang (2013), Kalnina and Xiu (2015) and Wang and Mykland (2014). The biases due

to preliminary estimation of volatility can be made theoretically negligible when an additional,

long-span, asymptotic approximation is used. This requires the assumption that the frequency

of observations is high enough compared to the time span, see, e.g., Corradi and Distaso (2006),

Bandi and Renò (2012), Li and Patton (2015), and Kanaya and Kristensen (2015).

Cross-sectional dependence structure in the IVs is important for option pricing. For example,

Gourier (2016) studies risk premia embedded in options using a parametric model with a factor

structure in the IVs. She uses one IV factor, the market volatility. She finds that a factor structure

in the IVs is a crucial feature of the model. By relying on high frequency data, our methods offer

a nonparametric and computationally straightforward way of testing whether a given set of IV

factors is sufficient to explain all the cross-sectional dependence in the IVs for a given data set.

Empirically, we reject the hypothesis that the market volatility as the sole IV factor is sufficient for

the data set of 30 DJIA stocks. Another related paper is Christoffersen, Fournier, and Jacobs (2015)

who apply principal component analysis to stock option data. While their model is agnostic about

the cross-sectional dependence in IVs, they report empirically high cross-sectional correlations in

IVs that motivate our study.

The remainder of the paper is organized as follows. Section 2 introduces the model and the

quantities of interest. Section 3 describes the identification and estimation. Section 4 presents

the asymptotic properties of our estimators. Section 5 contains a Monte Carlo study. Section 6

uses high-frequency stock return data to study the cross-sectional dependence in IVs using our

framework. All proofs are in the Appendix A.

2 Model and Quantities of Interest

We first describe a general factor model for the returns (R-FM), which allows us to define the

idiosyncratic volatility. We then introduce the idiosyncratic volatility factor model (IV-FM). In

this framework, we proceed to define the cross-sectional measures of dependence between the total

IVs, as well as the residual IVs, which take into account the dependence induced by the IV factors.

We start by introducing some notation. Suppose we have (log) prices on dS assets such

as stocks and on dF observable factors. We stack them into the d-dimensional process Yt =

(S1,t, . . . , SdS ,t, F1,t, . . . , FdF ,t)
> where d = dS + dF . The observable factors F1, . . . FdF are used in

the R-FM model below. We assume that all observable variables jointly follow an Itô semimartin-
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gale, i.e., Yt follows

Yt = Y0 +

∫ t

0
bsds+

∫ t

0
σsdWs + Jt,

where W is a dW -dimensional Brownian motion (dW ≥ d), σs is a d × dW stochastic volatility

process, and Jt denotes a finite variation jump process. The reader can find the full list of assump-

tions in Section 4.1. We also assume that the spot covariance matrix process Ct = σtσ
>
t of Yt is a

continuous Itô semimartingale,2

Ct = C0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs. (1)

We denote Ct = (Cab,t)1≤a,b≤d. For convenience, we also use the alternative notation CUV,t to refer

to the spot covariance between two elements U and V of Y .

We assume a standard continuous-time factor model for the asset returns.

Definition (Factor Model for Returns, R-FM). For for all 0 ≤ t ≤ T and j = 1, . . . , dS,3

dSj,t = β>j,tdF
c
t + β̃>j,tdF

d
t + dZj,t with

[Zj , F ]t = 0.
(2)

In the above, dZj,t is the idiosyncratic return of stock j. The superscripts c and d indicate the

continuous and jump part of the processes, so that βj,t and β̃j,t are the continuous and jump factor

loadings. For example, the k-th component of βj,t corresponds to the time-varying loading of the

continuous part of the return on stock j to the continuous part of the return on the k-th factor.

We set βt = (β1,t, . . . , βdS ,t)
> and Zt = (Z1,t, . . . , ZdS ,t)

>.

We do not need the return factors Ft to be the same across assets to identify the model, but

without loss of generality, we keep this structure as it is standard in empirical finance. These

return factors are assumed to be observable, which is also standard. For example, in the empirical

application, we use two sets of return factors: the market portfolio and the three Fama-French

factors, which are constructed in Aı̈t-Sahalia, Kalnina, and Xiu (2014).

A continuous-time factor model for returns with observable factors was originally studied in

Mykland and Zhang (2006) in the case of one factor and in the absence of jumps. A burgeoning

literature uses related models to study the cross-sectional dependence of total and/or idiosyncratic

2Note that assuming that Y and C are driven by the same dW -dimensional Brownian motion W is without loss
of generality provided that d′ is large enough, see, e.g., equation (8.12) of Aı̈t-Sahalia and Jacod (2014).

3The quadratic covariation of two vector-valued Itô semimartingales X and Y , over the time span [0, T ], is
defined as

[X,Y ]T = p -lim
M→∞

M−1∑
j=0

(Xtj+1 −Xtj )(Ytj+1 − Ytj )
>,

for any sequence t0 < t1 < . . . < tM = T with sup
j
{tj+1−tj} → 0 as M →∞, where p-lim stands for the probability

limit.
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returns, see Section 1 for details. This literature does not consider the cross-sectional dependence

in the IVs. Below, we use the R-FM to define the IV, and proceed to study the cross-sectional

dependence of IVs using the IV Factor Model.

We define the idiosyncratic Volatility (IV) as the spot volatility of the Zj,t process and denote

it by CZjZj . Notice that the R-FM in (2) implies that the factor loadings βt as well as IV are

functions of the total spot covariance matrix Ct. In particular, the vector of factor loadings satisfies

βjt = (CFF,t)
−1CFSj ,t, (3)

for j = 1, . . . , dS , where CFF,t denotes the spot covariance matrix of the factors F , which is the

lower dF ×dF sub-matrix of Ct; and CFSj,t denotes the covariance of the factors and the jth stock,

which is a vector consisting of the last dF elements of the jth column of Ct. The IV of stock j is

also a function of the total spot covariance matrix Ct,

CZjZj,t︸ ︷︷ ︸
IV of stock j

= CY jY j,t︸ ︷︷ ︸
total volatility of stock j

− (CFSj,t)
>(CFF,t)

−1CFSj,t. (4)

By the Itô lemma, (3) and (4) imply that factor loadings and IVs are also Itô semimartingales with

their characteristics related to those of Ct.

We now introduce the Idiosyncratic Volatility Factor model (IV-FM). In the IV-FM, the cross-

sectional dependence in the IV shocks can be potentially explained by certain IV factors. We

assume the IV factors are known functions of the matrix Ct. In the empirical application, we

use the market volatility as the IV factor, which has been used in Herskovic, Kelly, Lustig, and

Nieuwerburgh (2016) and Gourier (2016); we discuss other possibilities below. We allow the IV

factors to be any known functions of Ct as long as they satisfy a certain polynomial growth condition

in the sense of being in the class G(p) below,

G(p) = {H : H is three-times continuously differentiable and for some K > 0,

‖∂jH(x)‖ ≤ K(1 + ‖x‖)p−j , j = 0, 1, 2, 3}, for some p ≥ 3.
(5)

Definition (Idiosyncratic Volatility Factor Model, IV-FM). For all 0 ≤ t ≤ T and j =

1, . . . , dS, the idiosyncratic volatility CZjZj follows,

dCZjZj,t = γ>ZjdΠt + dCresidZjZj,t with (6)

[CresidZjZj ,Π]t = 0,

where Πt = (Π1t, . . . ,ΠdΠt) is a RdΠ-valued vector of IV factors, which satisfy Πkt = Πk(Ct) with

the function Πk(·) belonging to G(p) for k = 1, . . . , dΠ.

We call the residual term CresidZjZj,t the residual IV of asset j. Our assumptions imply that the

components of the IV-FM, CZjZj,t,Πt and CresidZjZj,t, are continuous Itô semimartingales. We remark

that both the dependent variable and the regressors in our IV-FM are not directly observable and
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have to be estimated. As will see in Section 3, this preliminary estimation implies that the naive

estimators of all the dependence measures defined below are biased. One of the contributions of

this paper is to quantify this bias and provide the bias-corrected estimators for all the quantities

of interest.

The class of IV factors permitted by our theory is rather wide as it includes general non-linear

transforms of the spot covolatility process Ct. For example, IV factors can be linear combinations

of the total volatilities of stocks, see, e.g., the average variance factor of Chen and Petkova (2012).

Other examples of IV factors are linear combinations of the IVs, such as the equally-weighted

average of the IVs, which Herskovic, Kelly, Lustig, and Nieuwerburgh (2016) denote by the “CIV”.

The IV factors can also be the volatilities of any other observable processes.

Having specified our econometric framework, we now provide the definitions of some natural

measures of dependence for (residual) IVs. Their estimation is discussed in Section 3.

Before considering the effect of IV factors by using the IV-FM decomposition, one may be

interested in quantifying the dependence between the IVs of two stocks i and j. A natural measure

of dependence is the quadratic-covariation based correlation between the two IV processes,

ρZi,Zj =
[CZiZi, CZjZj ]T√

[CZiZi, CZiZi]T
√

[CZjZj , CZjZj ]T
. (7)

Alternatively, one may consider the quadratic covariation [CZiZi, CZjZj ]T without any normal-

ization. In Section 4.4, we use the estimator of the latter quantity to test for the presence of

cross-sectional dependence in IVs.

To measure the residual cross-sectional dependence between the IVs of two stocks after ac-

counting for the effect of the IV factors, we use again the quadratic-covariation based correlation,

ρresidZi,Zj =
[CresidZiZi , C

resid
ZjZj ]T√

[CresidZiZi , C
resid
ZiZi ]T

√
[CresidZjZj , C

resid
ZjZj ]T

. (8)

In Section 4.4, we use the quadratic covariation between the two residual IV processes [CresidZiZi , C
resid
ZjZj ]T

without normalization for testing purposes.

We want to capture how well the IV factors explain the time variation of IV of the jth asset.

For this purpose, we use the quadratic-covariation based analog of the coefficient of determination.

For j = 1, . . . , dS ,

R2,IV -FM
Zj =

γ>Zj [Π,Π]TγZj

[CZjZj , CZjZj ]T
. (9)

It is interesting to compare the correlation measure between IVs in equation (7) with the

correlation between the residual parts of IVs in (8). We consider their difference,

ρZi,Zj − ρresidZi,Zj , (10)

to see how much of the dependence between IVs can be attributed to the IV factors. In practice,
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if we compare assets that are known to have positive covolatilities (typically, stocks have that

property), another useful measure of the common part in the overall covariation between IVs is

the following quantity,

QIV -FM
Zi,Zj =

γ>Zi[Π,Π]TγZj
[CZiZi, CZjZj ]T

. (11)

This measure is bounded by 1 if the covariations between residual IVs are nonnegative and smaller

than the covariations between IVs, which is what we find for every pair in our empirical application

with high-frequency observations on stock returns.

We remark that our framework can be compared with the following null hypothesis studied

in Li, Todorov, and Tauchen (2013), H0 : CZjZj,t = aZj + γ>ZjΠt, 0 ≤ t ≤ T. This H0 implies

that the IV is a deterministic function of the factors, which does not allow for an error term. In

particular, this null hypothesis implies R2,IV -FM
Zj = 1.

3 Estimation

We now discuss the identification and estimation of the quantities of interest introduced in Section

2. The identification arguments are relatively simple. However, the estimation has to address the

biases due to preliminary estimation of (idiosyncratic) volatility. The current section proposes two

classes of bias-corrected estimators. Section 4 establishes their asymptotic properties.

We would like to estimate the following quantities defined in Section 2,

[CZiZi, CZjZj ]T , ρZi,Zj , [CresidZjZj , C
resid
ZjZj ]T , ρ

resid
Zi,Zj , Q

IV -FM
Zi,Zj , and R2,IV -FM

Zi , (12)

for i, j = 1, . . . , dS . The first two quantities in the above are defined even if only the R-FM holds;

the last four need both the R-FM and IV-FM to hold to be well defined.

We first show that each of the quantities in (12) can be written as

ϕ ([H1(C), G1(C)]T , . . . , [Hκ(C), Gκ(C)]T ) ,

where ϕ as well as Hr and Gr, for r = 1, . . . , κ, are known real-valued functions. Each element in

this expression is of the form [H(C), G(C)]T , i.e., it is a quadratic covariation between functions

of Ct. Afterwards, we present two methods to estimate [H(C), G(C)]T .

First, consider the quadratic covariation between ith and jth IV, [CZiZi, CZjZj ]T . It can be

written as [H(C), G(C)]T if we choose H(Ct) = CZiZi,t and G(Ct) = CZjZj,t. By (4), both CZiZi,t

and CZjZj,t are functions of Ct. Next, consider the correlation ρZi,Zj defined in (7). By the same

argument, its numerator and each of the two components in the denominator can be written as

[H(C), G(C)]T for different functions H and G. Therefore, ρZi,Zj is itself a known function of

three objects of the form [H(C), G(C)]T .

To show that the remaining quantities in (12) can also be expressed in terms of objects of the
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form [H(C), G(C)]T , note that the IV-FM implies

γZj = ([Π,Π]T )−1 [Π, CZjZj ]T and [CresidZiZi , C
resid
ZjZj ]T = [CZiZi, CZjZj ]T − γ>Zi[Π,Π]TγZj ,

for i, j = 1, . . . , dS . Since CZiZi,t, CZjZj,t and every element in Πt are real-valued functions of

Ct, the above equalities imply that all quantities of interest in (12) can be written as real-valued,

known functions of a finite number of quantities of the form [H(C), G(C)]T .

We now discuss the estimation of [H(C), G(C)]T . Suppose we have discrete observations on

Yt over an interval [0, T ]. Denote by ∆n the distance between observations. It is well known that

we can estimate the spot covariance matrix Ct at time (i − 1)∆n with a local truncated realized

volatility estimator (Mancini (2001)),

Ĉi∆n =
1

kn∆n

kn−1∑
j=0

(∆n
i+jY )(∆n

i+jY )>1{‖∆n
i+jY ‖≤χ∆$

n }, (13)

where ∆n
i Y = Yi∆n − Y(i−1)∆n

and where kn is the number of observations in a local window.4

Throughout the paper we set Ĉi∆n = (Ĉab,i∆n)1≤a,b≤d.

We propose two estimators for the general quantity [H(C), G(C)]T .5 The first is based on the

analog of the definition of quadratic covariation between two Itô processes,

̂[H(C), G(C)]
AN

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

((
H(Ĉ(i+kn)∆n

)−H(Ĉi∆n)
)(
G(Ĉ(i+kn)∆n

)−G(Ĉi∆n)
)

− 2

kn

d∑
g,h,a,b=1

(∂ghH∂abG)(Ĉi∆n)
(
Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n

))
, (14)

where the factor 3/2 and last term correct for the biases arising due to the estimation of volatility

Ct. The increments used in the above expression are computed over overlapping blocks, which

results in a smaller asymptotic variance compared to the version using non-overlapping blocks.

Our second estimator is based on the following equality, which follows by the Itô lemma,

[H(C), G(C)]T =
d∑

g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)C

gh,ab
t dt, (15)

where C
gh,ab
t denotes the covariation between the volatility processes Cgh,t and Cab,t. The quantity

is thus a non-linear functional of the spot covariance and spot volatility of volatility matrices. Our

4It is also possible to define more flexible kernel-based estimators as in Kristensen (2010).
5As evident from their formulas, the computation time required for the calculation of the two estimators is

increasing with the number of stocks and factors d. To ease the implementation of the procedure, we compute all
the quantities of interest for pairs of stocks which means practically one needs only to set dS = 2 so that d = dF + 2.
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second estimator is based on this “linearized” expression,

̂[H(C), G(C)]
LIN

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(∂ghH∂abG)(Ĉi∆n)×

(
(Ĉgh,(i+kn)∆n

− Ĉgh,i∆n)(Ĉab,(i+kn)∆n
− Ĉab,i∆n)− 2

kn
(Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n)

)
.

(16)

Consistency for a similar estimator has been established by Jacod and Rosenbaum (2012).6 We go

beyond their result by deriving the asymptotic distribution and proposing a consistent estimator

of its asymptotic variance.

Note that the same additive bias-correcting term,

− 3

k2
n

[T/∆n]−2kn+1∑
i=1

(
d∑

g,h,a,b=1

(∂ghH∂abG)(Ĉi∆n)
(
Ĉga,i∆nĈgb,i∆n + Ĉgb,i∆nĈha,i∆n

))
, (17)

is used for the two estimators. This term is (up to a scale factor) an estimator of the asymptotic

covariance between the sampling errors embedded in estimators of
∫ T

0 H(Ct)dt and
∫ T

0 G(Ct)dt

defined in Jacod and Rosenbaum (2013).

The two estimators are identical when H and G are linear, for example, when estimating the

covariation between two volatility processes. In the univariate case d = 1, whenH(C) = G(C) = C,

our estimator coincides with the volatility of volatility estimator of Vetter (2012), which was

extended to allow for jumps in Jacod and Rosenbaum (2012). Our contribution is the extension of

this theory to the multivariate d > 1 case with nonlinear functionals.

4 Asymptotic Properties

In this section, we first present the full list of assumptions for our asymptotic results. We then

state the asymptotic distribution for the general functionals introduced in the previous section,

and develop estimators for the asymptotic variance. Finally, to illustrate the application of the

general theory, we describe three statistical tests about the IVs, which we later implement in the

empirical and Monte Carlo analysis.

4.1 Assumptions

Recall that the d-dimensional process Yt represents the (log) prices of stocks, St, and factors Ft.

6Jacod and Rosenbaum (2012) derive the probability limit of the following estimator:

3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(∂2
gh,abH)(Ĉi∆n)

(
(Ĉ(i+kn)∆n−Ĉi∆n)(Ĉ(i+kn)∆n−Ĉi∆n)− 2

kn
(Ĉga,i∆n Ĉgb,i∆n+Ĉgb,i∆n Ĉha,i∆n)

)
.
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Assumption 1. Suppose Y is an Itô semimartingale on a filtered space (Ω,F , (Ft)t≥0,P),

Yt = Y0 +

∫ t

0
bsds+

∫ t

0
σsdWs+

∫ t

0

∫
E
δ(s, z)µ(ds, dz),

where W is a dW -dimensional Brownian motion (dW ≥ d) and µ is a Poisson random measure

on R+ × E, with E an auxiliary Polish space with intensity measure ν(dt, dz) = dt ⊗ λ(dz) for

some σ-finite measure λ on E. The process bt is Rd-valued optional, σt is Rd × RdW -valued, and

δ = δ(w, t, z) is a predictable Rd -valued function on Ω×R+×E. Moreover, ‖δ(w, t∧τm(w), z)‖∧1 ≤
Γm(z), for all (w,t,z), where (τm) is a localizing sequence of stopping times and, for some r ∈ [0, 1],

the function Γm on E satisfies
∫
E Γm(z)rλ(dz) <∞. The spot volatility matrix of Y is then defined

as Ct = σtσ
>
t . We assume that Ct is a continuous Itô semimartingale,7

Ct = C0 +

∫ t

0
b̃sds+

∫ t

0
σ̃sdWs. (18)

where b̃ is Rd × Rd-valued optional.

With the above notation, the elements of the spot volatility of volatility matrix and spot

covariation of the continuous martingale parts of X and c are defined as follows,

C
gh,ab
t =

dW∑
m=1

σ̃gh,mt σ̃ab,mt , C
′g,ab
t =

dW∑
m=1

σgmt σ̃ab,mt . (19)

We assume the following for the process σ̃t:

Assumption 2. σ̃t is a continuous Itô semimartingale with its characteristics satisfying the same

requirements as that of Ct.

Assumption 1 is very general and nests most of the multivariate continuous-time models used in

economics and finance. It allows for potential stochastic volatility and jumps in returns. Assump-

tion 2 is required to obtain the asymptotic distribution of estimators of the quadratic covariation

between functionals of the spot covariance matrix Ct. It is not needed to prove consistency. This

assumption also appears in Vetter (2012), Kalnina and Xiu (2015) and Wang and Mykland (2014).

4.2 Asymptotic Distribution

We have seen in Section 3 that all quantities of interest in (12) are functions of multiple objects of

the form [H(C), G(C)]T . Therefore, if we can obtain a multivariate asymptotic distribution for a

vector with elements of the form [H(C), G(C)]T , the asymptotic distributions for all our estimators

follow by the delta method. Presenting this asymptotic distribution is the purpose of the current

section.

7Note that σ̃s = (σ̃gh,m
s ) is (d × d × dW )-dimensional and σ̃sdWs is (d × d)-dimensional with (σ̃sdWs)gh =∑dW

m=1 σ̃
gh,m
s dWm

s .

11



Let H1, G1, . . . ,Hκ, Gκ be some arbitrary elements of G(p) defined in equation (5). We are

interested in the asymptotic behavior of vectors(
̂[H1(C), G1(C)]

AN

T , . . . , ̂[Hκ(C), Gκ(C)]
AN

T

)>
and

(
̂[H1(C), G1(C)]

LIN

T , . . . , ̂[Hκ(C), Gκ(C)]
LIN

T

)>
.

The smoothness requirement on the different functions Hj and Gj is useful for obtaining the asymp-

totic distribution of the bias correcting terms (see for example Jacod and Rosenbaum (2012) and

Jacod and Rosenbaum (2013)). The following theorem summarizes the joint asymptotic behavior

of the estimators.

Theorem 1. Let ̂[Hr(C), Gr(C)]T be either ̂[Hr(C), Gr(C)]
AN

T or ̂[Hr(C), Gr(C)]
LIN

T defined in

(14) and (16), respectively. Suppose Assumption 1 and Assumption 2 hold. Fix kn = θ∆
−1/2
n for

some θ ∈ (0,∞) and set (8p− 1)/4(4p− r) ≤ $ < 1
2 . Then, as ∆n → 0,

∆−1/4
n


̂[H1(C), G1(C)]T − [H1(C), G1(C)]T

...

̂[Hκ(C), Gκ(C)]T − [Hκ(C), Gκ(C)]T

 L-s−→MN(0,ΣT ), (20)

where ΣT =
(

Σr,s
T

)
1≤r,s≤κ

denotes the asymptotic covariance between the estimators ̂[Hr(C), Gr(C)]T

and ̂[Hs(C), Gs(C)]T . The elements of the matrix ΣT are

Σr,s
T = Σ

r,s,(1)
T + Σ

r,s,(2)
T + Σ

r,s,(3)
T ,

Σ
r,s,(1)
T =

6

θ3

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Cs)

)[
Ct(gh, jk)Ct(ab, lm)

+ Ct(ab, jk)Ct(gh, lm)
]
dt,

Σ
r,s,(2)
T =

151θ

140

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
C
gh,jk
t C

ab,lm
t + C

ab,jk
t C

gh,lm
t

]
dt,

Σ
r,s,(3)
T =

3

2θ

d∑
g,h,a,b=1

d∑
j,k,l,m=1

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
Ct(gh, jk)C

ab,lm
t + Ct(ab, lm)C

gh,jk
t

+ Ct(gh, lm)C
ab,jk
t + Ct(ab, jk)C

gh,lm
t

]
dt,

with

Ct(gh, jk) = Cgj,tChk,t + Cgk,tChj,t.

The convergence in Theorem 1 is stable in law (denoted L-s, see for example Aldous and

Eagleson (1978) and Jacod and Protter (2012)). The limit is mixed gaussian and the precision of the

estimators depends on the paths of the spot covariance and the volatility of volatility process. The

rate of convergence ∆
−1/4
n has been shown to be the optimal for volatility of volatility estimation

12



(under the assumption of no volatility jumps).

The asymptotic variance of the estimators depends on the tuning parameter θ whose choice

may be crucial for the reliability of the inference. We document the sensitivity of the inference

theory to the choice of the parameter θ in a Monte Carlo experiment (see Section 5).

4.3 Estimation of the Asymptotic Covariance Matrix

To provide a consistent estimator for the element Σr,s
T of the asymptotic covariance matrix in

Theorem 1, we introduce the following quantities:

Ω̂
r,s,(1)
T = ∆n

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉi∆n)

)[
C̃i∆n(gh, jk)C̃i∆n(ab, lm)

+ C̃i∆n(ab, jk)C̃i∆n(gh, lm)
]
,

Ω̂
r,s,(2)
T =

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉi∆n)

)[1

2
λ̂n,ghi λ̂n,jki λ̂n,abi+2kn

λ̂n,lmi+2kn
+

1

2
λ̂n,abi λ̂n,lmi λ̂n,ghi+2kn

λ̂n,jki+2kn
+

1

2
λ̂n,abi λ̂n,jki λ̂n,ghi+2kn

λ̂n,lmi+2kn
+

1

2
λ̂n,ghi λ̂n,lmi λ̂n,abi+2kn

λ̂n,jki+2kn

]
,

Ω̂
r,s,(3)
T =

3

2kn

d∑
g,h,a,b=1

d∑
j,k,l,m=1

[T/∆n]−4kn+1∑
i=1

(
∂ghHr∂abGr∂jkHs∂lmGs(Ĉi∆n)

)
×

[
C̃i∆n(gh, jk)λ̂n,abi λ̂n,lmi + C̃i∆n(ab, lm)λ̂n,ghi λ̂n,jki + C̃i∆n(gh, lm)λ̂n,abi λ̂n,jki + (C̃i∆n(ab, jk)λ̂n,ghi λ̂n,lmi

]
,

with λ̂n,jki = Ĉn,jki+kn
− Ĉn,jki and C̃i∆n(gh, jk) = (Ĉgj,i∆nĈhk,i∆n + Ĉgk,i∆nĈhj,i∆n).

The following result holds,

Theorem 2. Suppose the assumptions of Theorem 1 hold, then, as ∆n −→ 0

6

θ3
Ω̂
r,s,(1)
T

P−→ Σ
r,s,(1)
T (21)

3

2θ
[Ω̂
r,s,(3)
T − 6

θ
Ω̂
r,s,(1)
T ]

P−→ Σ
r,s,(3)
T (22)

151θ

140

9

4θ2
[Ω̂
r,s,(2)
T +

4

θ2
Ω̂
r,s,(1)
T − 4

3
Ω̂
r,s,(3)
T ]

P−→ Σ
r,s,(2)
T . (23)

The estimated matrix Σ̂T is symmetric but is not guaranteed to be positive semi-definite. By

Theorem 1, Σ̂T is positive semi-definite in large samples. An interesting question is the estimation

of the asymptotic variance using subsampling or bootstrap methods, and we leave it for future

research.

Remark 1: Results of Jacod and Rosenbaum (2012) and a straightforward extension of The-

orem 1 can be used to show that the rate of convergence in equation (21) is ∆
−1/2
n , and the rate

of convergence in (23) is ∆
−1/4
n . The rate of convergence in (22) can be shown to be ∆

−1/4
n .

Remark 2: In the one-dimensional case (d = 1), much simpler estimators of Σ
r,s,(2)
T can be

constructed using the quantities λ̂n,jki λ̂n,lmi λ̂n,ghi+kn
λ̂n,xyi+kn

or λ̂n,jki λ̂n,lmi λ̂n,ghi λ̂n,xyi as in Vetter (2012).

13



However, in the multidimensional case, the latter quantities do not identify separately the quantity

Ct
jk,lm

Ct
gh,xy

since the combination Ct
jk,lm

Ct
gh,xy

+Ct
jk,gh

Ct
lm,xy

+Ct
jk,xy

Ct
gh,lm

shows up in a

non-trivial way in the limit of the estimator.

Corollary 3. For 1 ≤ r ≤ κ, let ̂[Hr(C), Gr(C)]T be either ̂[Hr(C), Gr(C)]
AN

T or ̂[Hr(C), Gr(C)]
LIN

T

defined in (16) and (14), respectively. Suppose the assumptions of theorem 1 hold. Then,

∆−1/4
n Σ̂

−1/2
T


̂[H1(C), G1(C)]T − [H1(C), G1(C)]T

...

̂[Hκ(C), Gκ(C)]T − [Hκ(C), Gκ(C)]T

 L−→ N(0, Iκ). (24)

In the above, we use the notation L to denote the convergence in distribution and Iκ the

identity matrix of order κ. Corollary 3 states the standardized asymptotic distribution, which

follows directly from the properties of stable-in-law convergence. Similarly, by the delta method,

standardized asymptotic distribution can also be derived for the estimators of the quantities in

(12). These standardized distributions allow the construction of confidence intervals for all the

latent quantities of the form [Hr(C), Gr(C)]T and, more generally, functions of these quantities.

4.4 Tests

As an illustration of application of the general theory, we provide three tests about the depen-

dence of idiosyncratic volatility. Our framework allows to test general hypotheses about the joint

dynamics of any subset of the available stocks. The three examples below are stated for one pair

of stocks, and correspond to the tests we implement in the empirical and Monte Carlo studies.

First, one can test for the absence of dependence between the IVs of the returns on assets i

and j,

H1
0 : [CZiZi, CZjZj ]T = 0 vs H1

1 : [CZiZi, CZjZj ]T 6= 0.

The null hypothesis H1
0 is rejected whenever the t-test exceeds the α/2-quantile of the standard

normal distribution, Zα,

∆−1/4
n

∣∣∣ ̂[CZiZi, CZjZj ]T

∣∣∣√
ÂVAR

(
CZiZi, CZjZj

) > Zα/2.

Second, we can test for all the IV factors Π being irrelevant to explain the dynamics of IV shocks

of stock j,

H2
0 : [CZjZj ,Π]T = 0 vs H2

1 : [CZjZj ,Π]T 6= 0.

Under this null hypothesis, the vector of IV factor loadings equals zero, γZj = 0. The null hypoth-
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esis H2
0 is rejected when

∆−1/4
n

(
̂[CZjZj ,Π]T

)> (
ÂVAR

(
CZjZj ,Π

))−1 ̂[CZjZj ,Π]T > X
2
dΠ,1−α, (25)

where dΠ denotes the number of IV factors, and where X 2
dq ,1−α is the (1 − α) quantile of the X 2

dq

distribution. One can of course also construct a t-test for irrelevance of any one particular IV

factor. The final example is a test for absence of dependence between the residual IVs,

H3
0 : [CresidZiZi , C

resid
ZjZj ]T = 0 vs H3

1 : [CresidZiZi , C
resid
ZjZj ]T 6= 0.

The null can be rejected when the following t-test exceeds the critical value,

∆−1/4
n

∣∣∣ ̂[CresidZiZi , C
resid
ZjZj ]T

∣∣∣√
ÂVAR

(
CresidZiZi , C

resid
ZjZj

) > Zα/2. (26)

Each of the above estimators

̂[CZiZi, CZjZj ]T ,
̂[CZjZj ,Π]T , and ̂[CresidZiZi , C

resid
ZjZj ]T

can be obtained by choosing appropriate pair(s) of transformations H and G in the general esti-

mator ̂[H(C), G(C)]T , see Section 3 for details. Any of the two types of the latter estimator can

be used,

̂[H(C), G(C)]
AN

T or ̂[H(C), G(C)]
LIN

T .

For the first two tests, the expression for the true asymptotic variance, AVAR, is obtained using

Theorem 1 and its estimation follows from Theorem 2. The asymptotic variance in the third

test is obtained by applying the delta method to the joint convergence result in Theorem 1. The

expression for the estimator of the asymptotic variance, ÂVAR, follows from Theorem 2. Under

R-FM and the assumptions of Theorem 1, Corollary 3 implies that the asymptotic size of the two

types of tests for the null hypotheses H1
0 and H2

0 is α, and their power approaches 1. The same

properties apply for the tests of the null hypotheses H3
0 with our R-FM and IV-FM representations.

Theoretically, it is possible to test for absence of dependence in the IVs at each point in time.

In this case the null hypothesis is H1′
0 : [CZiZi, CZjZj ]t = 0 for all 0 ≤ t ≤ T , which is, in theory,

stronger than our H1′
0 . In particular, Theorem 1 can be used to set up Kolmogorov-Smirnov type

of tests for H ′10 in the same spirit as Vetter (2012). However, we do not pursue this direction in

the current paper for two reasons. First, the testing procedure would be more involved. Second,

empirical evidence suggests nonnegative dependence between IVs, which means that in practice,

it is not too restrictive to assume [CZiZi, CZjZj ]t ≥ 0 ∀t, under which H1
0 and H1′

0 are equivalent.
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5 Monte Carlo

This section investigates the finite sample properties of our estimators and tests. The data gen-

erating process (DGP) is similar to that of Li, Todorov, and Tauchen (2013) and is constructed

as follows. Denote by Y1 and Y2 log-prices of two individual stocks, and by X the log-price of

the market portfolio. Recall that the superscript c indicates the continuous part of a process. We

assume

dXt = dXc
t + dJ3,t, dXc

t =
√
cX,tdWt,

and, for j = 1, 2,

dYj,t = βtdX
c
t + dỸ c

j,t + dJj,t, dỸ c
j,t =

√
cZj,tdW̃j,t.

In the above, cX is the spot volatility of the market portfolio, W̃1, and W̃2 are Brownian motions

with Corr(dW̃1,t, dW̃2,t) = 0.4, and W is an independent Brownian motion; J1, J2, and J3 are

independent compound Poisson processes with intensity equal to 2 jumps per year and jump size

distribution N(0,0.022). The beta process is time-varying and is specified as βt = 0.5+0.1 sin(100t).

We next specify the volatility processes. As our building blocks, we first generate four processes

f1, . . . , f4 as mutually independent Cox-Ingersoll-Ross processes,

df1,t = 5(0.09− f1,t)dt+ 0.35
√
f1,t

(
− 0.8dWt +

√
1− 0.82dB1,t

)
,

dfj,t = 5(0.09− fj,t)dt+ 0.35
√
f1,tdBj,t , for j = 2, 3, 4,

where B1, . . . , B4 and independent standard Brownian Motions, which are also independent from

the Brownian Motions of the return Factor Model.8 We use the first process f1 as the market

volatility, i.e., cX,t = f1,t. We use the other three processes f2, f3, and f4 to construct three

different specifications for the IV processes cZ1,t and cZ2,t, see Table 1 for details. The common

Brownian Motion Wt in the market portfolio price process Xt and its volatility process cX,t = f1,t

generates a leverage effect for the market portfolio. The value of the leverage effect is -0.8, which

is standard in the literature, see Kalnina and Xiu (2015), Aı̈t-Sahalia, Fan, and Li (2013) and

Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang (2013).

cZ1Z1,t cZ2Z2,t

Model 1 0.1 + 1.5f2,t 0.1 + 1.5f3,t

Model 2 0.1 + 0.6cXX,t + 0.4f2,t 0.1 + 0.5cXX,t + 0.5f3,t

Model 3 0.1 + 0.45cXX,t + f2,t + 0.4f4,t 0.1 + 0.35cXX,t + 0.3f3,t + 0.6f4,t

Table 1: Different specifications for the Idiosyncratic Volatility processes cZ1,tand cZ2,t.

We set the time span T equal 1260 or 2520 days, which correspond approximately to 5 and 10

8The Feller property is satisfied implying the positiveness of the processes (fj,t)1≤j≤4.
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business years. These values are close to those typically used in the nonparametric leverage effect

estimation literature (see Aı̈t-Sahalia, Fan, and Li (2013) and Kalnina and Xiu (2015)), which

is related to the problem of volatility of volatility estimation. Each day consists of 6.5 trading

hours. We consider two different values for the sampling frequency, ∆n = 1 minute and ∆n = 5

minutes. We follow Li, Todorov, and Tauchen (2013) and set the truncation threshold un in day t

at 3σ̂t∆
0.49
n , where σ̂t is the squared root of the annualized bipower variation of Barndorff-Nielsen

and Shephard (2004). We use 10 000 Monte Carlo replications in all the experiments.

We first investigate the finite sample properties of the estimators under Model 3. The considered

estimators include:

• the IV factor loading of the first stock
(
γZ1

)
,

• the contribution of the market volatility to the variation of the IV of the first stock
(
R2,IV -FM
Z1

)
,

• the correlation between the idiosyncratic volatilities of stocks 1 and 2
(
ρZ1,Z2

)
,

• the correlation between residual idiosyncratic volatilities
(
ρresidZ1,Z2

)
,

The interpretation of simulation results is much simpler when the quantities of interest do not

change across simulations. To achieve that, we generate once and keep fixed the paths of the

processes CXX,t and (fj,t)0≤j≤27 and replicate several times the other parts of the DGP. In Table

2, we report the bias and the interquartile range (IQR) of the two type of estimators for each

quantity using 5 minutes data sampled over 10 years. We choose four different values for the width

of the subsamples, which corresponds to θ = 1.5, 2, 2.5 and 3 (recall that the number of observations

in a window is kn = θ/
√

∆n). It seems that larger values of the parameters produce better results.

Next, we investigate how these results change when we increase the sampling frequency. In Table

3, we report the results with ∆n = 1 minute in the same setting. We note a reduction of the bias

and IQR at all levels of significance. However, the magnitude of the decrease of the IQR is very

small. Finally, we conduct the same experiment using data sampled at one minute over 5 years.

Despite using more than twice as many observations than in the first experiment, the precision

is not as good. In other words, increasing the time span is more effective for precision gain than

increasing the sampling frequency. This result is typical for ∆
1/4
n -convergent estimators, see, e.g.,

Kalnina and Xiu (2015).

Next, we study the size and power of the three statistical tests as outlined in Section 4.4. We

use Model 1 to study the size properties of the first two tests: the test of the absence of dependence

between the IVs (H1
0 : [CZ1Z1, CZ2Z2]T = 0), and the absence of dependence between the IV of the

first stock and the market volatility (H2
0 : [CZ1Z1, CXX ]T = 0). We use Model 2 to study the size

properties of the third test (H3
0 : [CresidZ1Z1, C

resid
Z2Z2]T = 0). Finally, we use Model 3 to study power

properties of all three tests.

The upper panel Tables 5, 6, and 7 reports the size results while the lower panels shows the

results for the power. We present the results for the two sampling frequencies (∆n = 1 minute and
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AN LIN
θ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias
γ̂Z1 -0.047 -0.025 -0.011 -0.003 -0.006 0.001 0.009 0.015

R̂2,IV -FM
Z1 0.176 0.130 0.103 0.085 0.181 0.140 0.112 0.092

ρ̂Z1,Z2 -0.288 -0.212 -0.163 -0.133 -0.249 -0.190 -0.146 -0.120
ρ̂residZ1,Z2 -0.189 -0.113 -0.064 -0.034 -0.150 -0.091 -0.047 -0.021

IQR
γ̂Z1 0.222 0.166 0.138 0.121 0.226 0.168 0.139 0.122

R̂2,IV -FM
Z1 0.210 0.188 0.172 0.152 0.181 0.166 0.152 0.140

ρ̂Z1,Z2 0.404 0.325 0.263 0.223 0.338 0.283 0.237 0.205
ρ̂residZ1,Z2 0.456 0.384 0.315 0.272 0.388 0.337 0.285 0.250

Table 2: Finite sample properties of our estimators using 10 years of data sampled at 5 minutes. The true
values are γZ1 = 0.450, RIV -FM

Z1 = 0.342, ρZ1,Z2 = 0.523, ρresidZ1,Z2 = 0.424.

AN LIN
θ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias
γ̂Z1 -0.022 -0.012 -0.003 0.004 -0.003 -0.000 0.006 0.012

R̂IV -FM
Z1 0.107 0.091 0.073 0.056 0.113 0.095 0.075 0.058

ρ̂Z1,Z2 -0.147 -0.104 -0.073 -0.048 -0.133 -0.097 -0.067 -0.042
ρ̂residZ1,Z2 -0.135 -0.086 -0.058 -0.039 -0.119 -0.078 -0.052 -0.032

IQR
γ̂Z1 0.156 0.112 0.088 0.075 0.157 0.112 0.088 0.075

R̂IV -FM
Z1 0.201 0.146 0.118 0.100 0.184 0.138 0.113 0.096

ρ̂Z1,Z2 0.340 0.238 0.184 0.150 0.309 0.226 0.177 0.145
ρ̂residZ1,Z2 0.417 0.291 0.228 0.184 0.378 0.274 0.217 0.177

Table 3: Finite sample properties of our estimators using 10 years of data sampled at 1 minute. The true
values are γZ1 = 0.450, R2,IV -FM

Z1 = 0.336, ρZ1,Z2 = 0.514, ρresidZ1,Z2 = 0.408.
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AN LIN
θ 1.5 2 2.5 3 1.5 2 2.5 3

Median Bias
γ̂Z1 -0.019 -0.011 -0.007 0.000 -0.001 -0.001 0.002 0.008

R̂2,IV -FM
Z1 0.115 0.096 0.081 0.069 0.119 0.100 0.084 0.071

ρ̂Z1,Z2 -0.168 -0.101 -0.064 -0.038 -0.149 -0.092 -0.057 -0.033
ρ̂residZ1,Z2 -0.141 -0.079 -0.035 -0.007 -0.127 -0.067 -0.029 -0.001

IQR
γ̂Z1 0.215 0.159 0.128 0.110 0.216 0.158 0.129 0.110

R̂2,IV -FM
Z1 0.282 0.204 0.168 0.144 0.260 0.194 0.161 0.139

ρ̂Z1,Z2 0.472 0.337 0.263 0.213 0.436 0.319 0.252 0.206
ρ̂residZ1,Z2 0.541 0.412 0.324 0.266 0.510 0.391 0.311 0.256

Table 4: Finite sample properties of our estimators using 5 years of data sampled at 1 minute. The true
values are γZ1 = 0.450, R2,IV -FM

Z1 = 0.35, ρZ1,Z2 = 0.517, ρresidZ1,Z2 = 0.417.

∆n = 5 minutes) and the two type of tests (AN and LIN). We observe that the size of three tests

are reasonably close to their nominal levels. The rejection probabilities under the alternatives are

rather high, except when the data is sampled at 5 minutes frequency and the nominal level at 1%.

We note that the tests based on LIN estimators have better testing power compared to those that

build on AN estimators. Increasing the window length induces some size distortions but is very

effective for power gain. Consistent with the asymptotic theory, the size of the three tests are closer

to the nominal levels and the power is higher at the one minute sampling frequency. Clearly, the

test of absence of dependence between IV and the market volatility has the best power, followed by

the test of absence of dependence between the two IVs. This ranking is compatible with the notion

that the finite sample properties of the tests deteriorate with the degree of latency embedded in

each null hypothesis.
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∆n = 5 minutes ∆n = 1 minute
θ = 1.5 θ = 2.0 θ = 2.5 θ = 1.5 θ = 2.0 θ = 2.5

Type of the test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 1
α = 10% 9.7 10.6 10.6 12.6 9.7 10.3 10.2 9.7 10.0 10.2 9.8 10.2
α = 5% 4.7 5.1 4.5 5.3 4.8 5.6 5.3 5.3 5.2 5.3 4.9 5.1
α = 1% 0.9 1.1 0.9 1.2 0.9 1.1 1.1 1.1 1.2 1.1 1.0 1.0

Panel B : Power Analysis-Model 3
α = 10% 20.5 31.5 35.7 48.3 53.3 65.8 33.9 41.0 65.6 71.6 88.0 91.2
α = 5% 11.9 21.0 23.9 35.76 40.6 53.4 22.3 29.5 52.8 59.8 79.6 84.4
α = 1% 3.3 6.9 8.7 15.6 18.4 28.6 8.9 12.4 28.6 34.5 57.4 64.1

Table 5: Size and Power of the test of absence of dependence between idiosyncratic volatilities for T =
10 years.

∆n = 5 minutes ∆n = 1 minute
θ = 1.5 θ = 2.0 θ = 2.5 θ = 1.5 θ = 2.0 θ = 2.5

Type of test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 1
α = 10% 12.1 10.2 10.0 10.6 9.8 11.0 11.0 10.4 10.3 10.4 10.4 10.4
α = 5% 6.2 5.0 4.5 5.2 4.6 5.4 5.5 5.4 5.2 5.1 5.2 5.3
α = 1% 1.5 1.0 0.8 1.0 0.9 1.2 1.1 1.1 1.0 0.9 0.8 1.0

Panel B : Power Analysis-Model 3
α = 10% 60.0 69.0 84.0 88.3 94.6 96.1 91.1 93.3 99.2 99.4 100 100
α = 5% 47.7 57.2 75.0 81.0 89.6 92.6 84.9 88.2 98.2 98.6 100 100
α = 1% 24.1 32.3 52.2 60.1 73.7 78.9 67.7 72.0 93.0 94.5 99.2 99.4

Table 6: Size and Power of the test of absence of dependence between the idiosyncratic volatility and the
market volatility for T = 10 years.
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∆n = 5 minutes ∆n = 1 minute
θ = 1.5 θ = 2.0 θ = 2.5 θ = 1.5 θ = 2.0 θ = 2.5

Type of test AN LIN AN LIN AN LIN AN LIN AN LIN AN LIN

Panel A : Size Analysis-Model 2
α = 10% 10.0 10.1 12.1 10.8 9.9 12.6 10.1 10.3 10.6 11.3 10.1 11.4
α = 5% 5.0 6.3 5.1 6.3 5.1 6.7 5.5 5.5 5.3 5.9 5.2 6.0
α = 1% 1.1 1.5 0.8 1.6 1.1 1.4 1.1 1.2 1.3 1.3 1.3 1.5

Panel B : Power Analysis-Model 3
α = 10% 13.7 19.2 16.8 23.0 28.1 36.9 19.0 22.2 35.0 39.4 53.4 58.3
α = 5% 7.4 11.3 9.3 14.2 18.3 25.2 11.0 13.7 23.9 28.0 40.0 44.9
α = 1% 1.6 3.1 2.3 3.9 6.0 9.5 2.9 4.0 9.3 11.6 18.8 22.2

Table 7: Size and Power of the test of absence of dependence between residual IVs for T = 10 years.
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6 Empirical Analysis

We apply our methods to study the cross-sectional dependence in IV using high frequency data.

One of our main findings is that stocks’ idiosyncratic volatilities co-move strongly with the market

volatility. This is a quite surprising finding. It is of course well known that the total volatility of

stocks moves with the market volatility. However, we stress that we find that the strong effect is

still present when considering the idiosyncratic volatilities.

We use full record transaction prices from NYSE TAQ database for 30 constituents of the

DJIA index over the time period 2003-2012, see Table 8. After removing the non-trading days,

our sample contains 2517 days. The selected stocks were the constituents of the DJIA index

in 2007. We also use the high-frequency data on nine industry Exchange-Traded Funds, ETFs

(Consumer Discretionary, Consumer Staples, Energy, Financial, Health Care, Industrial, Materials,

Technology, and Utilities), and the high-frequency size and value Fama-French factors, see Aı̈t-

Sahalia, Kalnina, and Xiu (2014). For each day, we consider data from the regular exchange

opening hours from time stamped between 9:30 a.m. until 4 p.m. We clean the data following

the procedure suggested by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008), remove the

overnight returns and then sample at 5 minutes. This sparse sampling has been widely used in the

literature because the effect of the microstructure noise and potential asynchronicity of the data

is less important at this frequency, see also Liu, Patton, and Sheppard (2014).

The parameter choices for the estimators are as follows. Guided by our Monte Carlo results,

we set the length of window to be approximately one week for the estimators in Section 3 (this

corresponds to θ = 2.5 where kn = θ∆
−1/2
n is the number of observations in a window). The

truncation threshold for all estimators is set as in the Monte Carlo study (3σ̂t∆
0.49
n where σ̂2

t is the

bipower variation).

Figures 1 and 2 contain plots of the time series of the estimated R2
Y j of the return factor

model (R-FM) for each stock.9 Each plot contains monthly R2
Y j from two return factor models,

CAPM and the Fama-French regression with market, size, and value factors. Figures 1 and 2

show that these time series of all stocks follow approximately the same trend with a considerable

increase in the contribution around the crisis year 2008. Higher R2
Y j indicates that the systematic

risk is relatively more important, which is typical during crises. R2
Y j is consistently higher in the

Fama-French regression model compared to the CAPM regression model, albeit not by much. We

proceed to investigate the dynamic properties of the panel of idiosyncratic volatilities.

We first investigate the dependence in the (total) idiosyncratic volatilities. Our panel has 435

pairs of stocks. For each pair of stocks, we compute the correlation between the IVs, ρZi,Zj . All

9 For the jth stock, our analog of the coefficient of determination in the R-FM is R2
Y j = 1 −

∫ T
0 CZjZj,tdt∫ T
0 CY jY j,tdt

. We

estimate R2
Y j using the general method of Jacod and Rosenbaum (2013). The resulting estimator of R2

Y j requires a
choice of a block size for the spot volatility estimation; we choose two hours in practice (the number of observations
in a block, say ln, has to satisfy l2n∆n → 0 and l3n∆n →∞, so it is of smaller order than the number of observations
kn in our estimators of Section 3).
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pairwise correlations are positive in our sample, and their average is 0.55. Figure 3 maps the

network of dependency in the IV. We simultaneously test 435 hypotheses of no correlation, and

Figure 3 connects only the assets, for which the null is rejected. Overall, Figure 3 shows that the

cross-sectional dependence between the IVs is very strong.

Could missing factors in the R-FM provide an explanation? Omitted return factors in the

R-FM are captured by the idiosyncratic returns, and can therefore induce correlation between

the estimated IVs, provided these missing return factors have non-negligible volatility of volatil-

ity. To investigate this possibility, we consider the correlations between idiosyncratic returns,

Corr(Zi, Zj).
10 Table 9 presents a summary of how estimates Corr(Zi, Zj) are related to the esti-

mates of correlation in IVs, ρZi,Zj . In particular, different rows in Table 9 display average values

of ρ̂Zi,Zj among those pairs, for which Ĉorr(Zi, Zj) is below some threshold. For example, the

last-but-one row in Table 9 indicates that there are 56 pairs of stocks with Ĉorr(Zi, Zj) < 0.01,

and among those stocks, the average correlation between IVs, ρZi,Zj , is estimated to be 0.579.

We observe that ρ̂Zi,Zj is virtually the same compared to pairs of stocks with high Corr(Zi, Zj).

These results suggest that missing return factors cannot explain dependence in IVs for all con-

sidered stocks. This finding is in line with the empirical analysis of Herskovic, Kelly, Lustig, and

Nieuwerburgh (2016) with daily and monthly returns.

To understand the source of the strong cross-sectional dependence in the IVs, we consider the

Idiosyncratic Volatility Factor Model (IV-FM) of Section 2. We first use the market volatility as

the only IV factor.11 Table 10 reports the estimates of the IV loading (γ̂Zi) and the R2 of the

IV-FM (R2,IV -FM
Zi , see equation (9)). Table 10 uses two different definitions of IV, one defined with

respect to CAPM, and a second IV defined with respect to Fama-French three factor model. For

every stock, the estimated IV factor loading is positive, suggesting that the idiosyncratic volatility

co-moves with the market volatility. Next, Figure 4 shows the implications for the cross-section

of the one-factor IV-FM when the IV is defined with respect to CAPM. The average pairwise

correlations between the residual IVs, ρ̂Zi,Zj , decrease to 0.25. However, the market volatility

cannot explain all cross-sectional dependence in residual IVs, as evidenced by the remaining links

in Figure 4.

Finally, we consider an IV-FM with ten IV factors, market volatility and the volatilities of nine

industry ETFs. Figure 5 shows the implications for the cross-section of this ten-factor IV-FM when

the IV is defined with respect to CAPM. The average pairwise correlations between the residual

10Our measure of correlation between the idiosyncratic returns dZi and dZj is

Corr(Zi, Zj) =

∫ T

0
CZiZj,tdt√∫ T

0
CZiZi,tdt

√∫ T

0
CZjZj,tdt

, i, j = 1, . . . , dS , (27)

where CZiZj,t is the spot covariation between Zi and Zj . Similarly to R2
Y j , we estimate Corr(Zi, Zj) using the

method of Jacod and Rosenbaum (2013).
11We also considered the volatility of size and value Fama-French factors. However, both these factors turned out

to have very low volatility of volatility and therefore did not significantly change the results.
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IVs, ρ̂Zi,Zj , decrease further to 0.18. However, significant dependence between the residual IVs

remains, as evidenced by the remaining links in Figure 4. Our results suggest that there is room

for considering the construction of additional IV factors based on economic theory, for example,

along the lines of the heterogeneous agents model of Herskovic, Kelly, Lustig, and Nieuwerburgh

(2016).

Sector Stock Ticker

Financial American International Group, Inc. AIG
American Express Company AXP
Citigroup Inc. C
JPMorgan Chase & Co. JPM

Energy Chevron Corp. CVX
Exxon Mobil Corp. XOM

Consumer Staples Coca Cola Company KO
Altria MO
The Procter & Gamble Company PG
Wal-Mart Stores WMT

Industrials Boeing Company BA
Caterpillar Inc. CAT
General Electric Company GE
Honeywell International Inc HON
3M Company MMM
United Technologies UTX

Technology Hewlett-Packard Company HPQ
International Bus. Machines IBM
Intel Corp. INTC
Microsoft Corporation MSFT

Health Care Johnson & Johnson JNJ
Merck & Co. MRK
Pfizer Inc. PFE

Consumer Discretionary The Walt Disney Company DIS
Home Depot Inc HD
McDonald’s Corporation MCD

Materials Alcoa Inc. AA
E.I. du Pont de Nemours & Company DD

Telecommunications Services AT&T Inc. T
Verizon Communications Inc. VZ

Table 8: The table lists the stocks used in the empirical application. They are the 30 constituents of DJIA
in 2007. The first column provides the Global Industry Classification Standard (GICS) sectors, the second
the names of the companies and the third their tickers.
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CAPM FF3 Model

|Ĉorr(Zi, Zj)| Pairs Avg |Ĉorr(Zi, Zj)| Avg ρ̂Zi,Zj Pairs Avg |Ĉorr(Zi, Zj)| Avg ρ̂Zi,Zj
< 0.6 435 0.038 0.510 435 0.038 0.512
< 0.5 434 0.036 0.509 434 0.037 0.512
< 0.4 434 0.036 0.509 434 0.037 0.512
< 0.3 434 0.036 0.509 434 0.037 0.512
< 0.2 431 0.035 0.508 430 0.035 0.511
< 0.1 403 0.028 0.503 404 0.029 0.506
< 0.075 383 0.025 0.500 382 0.026 0.502
< 0.050 315 0.018 0.487 316 0.019 0.489
< 0.025 177 0.006 0.447 178 0.007 0.452
< 0.010 80 0.001 0.415 81 0.002 0.414
< 0.005 43 0.000 0.385 41 0.001 0.409

Table 9: Each row in this table describes the subset of pairs of stocks with | ̂Corr(Zi, Zj)| below a threshold
in column one. The table considers two R-FMs: the left panel defines the IV with respect to CAPM, and
the right panel defines the IV with respect to the three-factor Fama-French model. In both cases, the
market volatility is the only IV factor. Each panel reports three quantities for the given subset of pairs:
the number of pairs, average absolute pairwise correlation in idiosyncratic returns, and average pairwise
correlation between IVs.
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CAPM FF3 Model

Stock γ̂z R̂2,IV -FM
Z p-val γ̂z R̂2,IV -FM

Z p-val

AIG 1.49 0.02 0.093 1.53 0.02 0.085
AXP 3.02 0.27 0.146 2.98 0.27 0.149

C 3.46 0.108 0.007 3.48 0.11 0.007
JPM 2.44 0.20 0.007 2.46 0.21 0.006
CVX 1.08 0.51 0.030 1.07 0.51 0.030
XOM 0.60 0.48 0.044 0.61 0.49 0.043
KO 0.33 0.58 0.012 0.33 0.58 0.011
MO 0.44 0.35 0.001 0.44 0.35 0.001
PG 0.43 0.63 0.001 0.43 0.63 0.002

WMT 0.45 0.58 0.006 0.45 0.56 0.008
BA 0.47 0.42 0.003 0.48 0.44 0.003

CAT 0.69 0.49 0.009 0.69 0.48 0.009
GE 1.14 0.26 0.003 1.15 0.26 0.002

HON 0.53 0.44 0.014 0.53 0.43 0.014
MMM 0.39 0.55 0.000 0.38 0.54 0.000
UTX 0.50 0.52 0.003 0.50 0.53 0.004
HPQ 0.65 0.33 0.004 0.66 0.34 0.004
IBM 0.35 0.48 0.011 0.35 0.47 0.012

INTC 0.46 0.46 0.003 0.46 0.46 0.003
MSFT 0.68 0.52 0.008 0.67 0.51 0.010
JNJ 0.41 0.68 0.007 0.40 0.67 0.007

MRK 0.54 0.32 0.001 0.54 0.32 0.001
PFE 0.43 0.34 0.002 0.43 0.34 0.001
DIS 0.57 0.48 0.001 0.58 0.49 0.001
HD 0.66 0.45 0.010 0.66 0.45 0.010

MCD 0.29 0.29 0.003 0.29 0.29 0.003
AA 3.03 0.41 0.019 3.04 0.42 0.018
DD 0.61 0.59 0.001 0.61 0.59 0.001
T 0.76 0.45 0.003 0.76 0.44 0.003

VZ 0.54 0.55 0.000 0.54 0.54 0.001

Table 10: Estimates of the IV factor loading (γ̂Z , see equation (6)), and the contribution of the market

volatility to the variation in the IVs (R̂2,IV -FM
Z , see equation (9)). The table considers two R-FMs: the left

panel defines the IV with respect to CAPM, and the right panel defines the IV with respect to the three-
factor Fama-French model. In both cases, the market volatility is the only IV factor. P-val is the p-value of
the test of the absence of dependence between the IV and the market volatility for a given individual stock,
see equation (25).
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Appendix

Appendix A contains the proofs, and Appendix B contains Tables and Figures.

A Proofs

Throughout, we denote by K a generic constant, which may change from line to line. When it depends on

a parameter p we use the notation Kp instead. We let by convention
∑a′

i=a = 0 when a > a′.

A.1 Proof of Theorem 1

We prove this theorem in three steps. For simplicity, in the first two steps we focus on the estimation of

[H(C), G(C)]T with H,G ∈ G(p). The joint estimation is discussed in Step 3.

By a localization argument (See Lemma 4.4.9 of Jacod and Protter (2012)), there exists a π-integrable

function J on E and a constant such that the stochastic processes in (18) and (19) satisfy

‖b‖, ‖b̃‖, ‖c‖, ‖c̃‖, J ≤ A, ‖δ(w, t, z)‖r ≤ J(z). (28)

Setting b′t = bt −
∫
δ(t, z)1{‖δ(t,z)‖≤1}π(dz) and Y ′t =

∫ t
0
b
′

sds+
∫ t

0
σsdWs, we have

Yt = Y0 + Y ′t +
∑
s≤t

∆Ys.

The local estimator of the spot variance of the unobservable process Y ′ is given by,

Ĉ ′ni =
1

kn∆n

kn−1∑
u=0

(∆n
i+uY

′)(∆n
i+uY )′> = (Ĉ ′n,ghi )1≤g,h≤d. (29)

Note that no jump truncation in needed in the definition of Ĉ ′ni since the process Y ′ is continuous. There-

fore, it is more convenient to work with Ĉ ′ni rather than Ĉni (defined in (13)). Let ̂[H(C), G(C)]
LIN ′

T

and ̂[H(C), G(C)]
AN ′

T be the infeasible estimators obtained by replacing Ĉni by Ĉ
′n
i in the definition of

̂[H(C), G(C)]
LIN

T and ̂[H(C), G(C)]
AN

T .

Step1: Dealing with price jumps

We prove that, as long as (8p− 1)/4(4p− r) ≤ $ < 1
2 , we have

∆−1/4
n

(
̂[H(C), G(C)]

LIN

T − ̂[H(C), G(C)]
LIN ′

T

)
P−→ 0 and ∆−1/4

n

(
̂[H(C), G(C)]

AN

T − ̂[H(C), G(C)]
AN ′

T

)
P−→ 0.

(30)

To show this result, let us define the functions

R(x, y) =

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(x)
(
ygh − xgh

)(
yab − xab

)
, S(x, y) =

(
H(y)−H(x)

)(
G(y)−G(x)

)
U(x) =

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(x)
(
xgaxhb + xgbxha

)
,
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for any Rd × Rd matrices x and y. The following decompositions hold,

̂[H(C), G(C)]
AN

T − ̂[H(C), G(C)]
AN ′

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

[(
S(Ĉni , Ĉ

n
i+kn)− S(Ĉ

′n
i , Ĉ

′n
i+kn)

)
− 2

kn

(
U(Ĉni )− U(Ĉ

′n
i )
)]
,

̂[H(C), G(C)]
LIN

T − ̂[H(C), G(C)]
LIN ′

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

[(
R(Ĉni , Ĉ

n
i+kn)−R(Ĉ

′n
i , Ĉ

′n
i+kn)

)
− 2

kn

(
U(Ĉni )− U(Ĉ

′n
i )
)]
.

By (3.11) in Jacod and Rosenbaum (2012), there exists a sequence of real numbers an converging to zero

such that

E(‖Ĉni − Ĉ
′n
i ‖q) ≤ Kqan∆(2q−r)$+1−q

n , for any q > 0. (31)

Since H and G ∈ G(p), it is easy to see that the functions R and S are continuously differentiable and satisfy

‖∂J(x, y)‖ ≤ K(1 + ‖x‖+ ‖y‖)2p−1 for 1 ≤ g, h, a, b ≤ d and J ∈ {S,R}, (32)

‖∂U(x)‖ ≤ K(1 + ‖x‖)2p−1, (33)

where ∂J (respectively, ∂U ) is a vector that collects the first order partial derivatives of the function J

(respectively, U) with respect to all the elements of (x, y) (resp x). By Taylor expansion, Jensen inequality,

(32) and (33), it can be shown that, for J ∈ {S,R},

|J(Ĉni , Ĉ
n
i+kn)− J(Ĉ

′n
i , Ĉ

′n
i+kn)| ≤ K(1 + ‖Ĉ

′n
i ‖2p−1 + ‖Ĉ

′n
i+kn‖

2p−1)(‖Ĉni − Ĉ
′n
i ‖+ ‖Ĉni+kn − Ĉ

′n
i+kn‖)

+K‖Ĉni − Ĉ
′n
i ‖2p +K‖Ĉni+kn − Ĉ

′n
i+kn‖

2p and

|U(Ĉni )− U(Ĉ
′n
i )| ≤ K(1 + ‖Ĉ

′n
i ‖2p−1)(‖Ĉni − Ĉ

′n
i ‖) +K‖Ĉni − Ĉ

′n
i ‖2p.

By (3.20) in Jacod and Rosenbaum (2012), we have E(‖Ĉ ′ni ‖v) ≤ Kv, for any v ≥ 0. Hence by Hölder

inequality, for ε > 0 fixed,

E(‖Ĉ ′ni ‖2p−2‖Ĉni − Ĉ
′n
i ‖) ≤

(
E(‖Ĉni − Ĉ

′n
i ‖(1+ε))

)1/1+ε(
E(‖Ĉ

′n
i ‖(2p−2)(1+ε)/ε)

)ε/1+ε

≤ Kp

(
E(‖Ĉni − Ĉ

′n
i ‖(1+ε))

)1/1+ε

≤ Kpan∆
(2− 1

1+ε )$+ 1
1+ε−1

n

Using the above result and (31), it easy to see that for (30) to hold, the following conditions are sufficient:

(2− r

1 + ε
)$ +

1

1 + ε
− 1− 3

4
≥ 0, (4p− r)$ + 1− 2p− 3

4
≥ 0, and (2− r)$ +−3

4
≥ 0.

Using the fact that 0 < $ < 1
2 , and taking ε sufficiently close to zero, we can see that (30) holds if

(8p− 1)/4(4p− r) ≤ $ < 1
2 , which completes the proof.

Step 2 : First approximation for the estimators

Taking advantage of Step 1, it is enough to derive the asymptotic distributions of ̂[H(C), G(C)]
LIN ′
T and

̂[H(C), G(C)]
AN ′
T . We show that the two estimators ̂[H(C), G(C)]

LIN ′

T and ̂[H(C), G(C)]
AN ′

T can be approx-

imated by a certain quantity with an error of approximation of order smaller than ∆
−1/4
n . To see this, we
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set

̂[H(C), G(C)]
A

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

((
∂ghH∂abG

)
(Cni )

[
(Ĉ

′n,gh
i+kn

− Ĉ
′n,gh
i )(Ĉ

′n,ab
i+kn

− Ĉ
′n,ab
i )

− 2

kn
(Ĉ

′n,ga
i Ĉ

′n,hb
i + Ĉ

′n,gb
i Ĉ

′n,ha
i )

])
,

with Cni = C(i−1)∆n
and the superscript A being a short for the word ”approximate”. For notational

simplicity, we do not index the above quantity by a prime although it depends on Ĉ
′n
i instead Ĉni . We aim

to prove that

∆−1/4
n

(
̂[H(C), G(C)]

LIN ′

T − ̂[H(C), G(C)]
A

T

)
P−→ 0 and ∆−1/4

n

(
̂[H(C), G(C)]

AN ′

T − ̂[H(C), G(C)]
A

T

)
P−→ 0.

(34)

To prove (34), we introduce some new notation. Following Jacod and Rosenbaum (2012), we define

αni = (∆n
i Y
′)(∆n

i Y
′)> − Cni ∆n, νni = Ĉ

′n
i − Cni , and λni = Ĉ

′n
i+kn − Ĉ

′n
i , (35)

which satisfy

νni =
1

kn∆n

kn−1∑
j=0

(αni+j + (Cni+j − Cni )∆n) and λni = νi+kn − νni + ∆n(Cni+kn − C
n
i ). (36)

We have

̂[H(C), G(C)]
LIN ′

T − ̂[H(C), G(C)]
A

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

ψni (g, h, a, b),

̂[H(C), G(C)]
AN ′

T − ̂[H(C), G(C)]
A

T =
3

2kn

[T/∆n]−2kn+1∑
i=1

(
χni −

d∑
g,h,a,b=1

(
∂ghH∂abG

)
(Cni )λn,ghi λn,abi

)
,

with

ψni (g, h, a, b) =
((
∂ghH∂abG

)
(Ĉ

′n
i )−

(
∂ghH∂abG

)
(Cni )

)
λn,ghi λn,abi ,

χni =
(
H(Ĉ

′n
i+kn)−H(Ĉ

′n
i )
)(
G(Ĉ

′n
i+kn)−G(Ĉ

′n
i )
)
.

By Taylor expansion, we have

(
∂ghS∂abG

)
(Ĉ

′n
i )−

(
∂ghS∂abG

)
(Cni ) =

d∑
x,y=1

(
∂2
xy,ghS∂abG+ ∂2

xy,abG∂ghS
)

(Cni )νn,xyi

+
1

2

d∑
j,k,x,y=1

(
∂3
jk,xy,ghS∂abG+ ∂2

xy,ghS∂
2
jk,abG+ ∂3

jk,xy,abG∂ghS + ∂2
xy,abG∂

2
jk,ghS

)
(c̃ni )νn,xyi νn,jki

and

S(Ĉ
′n
i+kn)− S(Ĉ

′n
i ) =

∑
gh

∂ghS(Cni )λn,ghi +
∑
j,k,g,h

∂2
jk,ghS(Cni )λn,ghi νn,jki +

1

2

∑
x,y,g,h

∂2
xy,ghS(Cni )λn,ghi λn,xyi

+
1

2

∑
x,y,j,k,g,h

∂3
xy,jk,ghS(CCn,Si )λn,ghi νn,xyi νn,jki +

1

6

∑
j,k,x,y,g,h

∂3
jk,xy,ghS(Cn,Si )λn,jki λn,ghi λn,xyi ,
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for S ∈ {H,G}, c̃ni = πCni + (1 − π)Ĉ
′n
i , Cn,Si = πSĈ

′n
i + (1 − πS)Ĉ

′n
i+kn

, CCn,Si = µSC
n
i + (1 − µS)Ĉ

′n
i

for π, πH , µH , πG, µG ∈ [0, 1]. Although c̃ni and π depend on g, h, a, and b, we do not emphasize this in our

notation to simplify the exposition.

We remind the reader some well-known results. For any continuous Itô process Zt, we have

E
(

sup
w∈[0,s]

∥∥∥Zt+w − Zt∥∥∥q∣∣∣Ft) ≤ Kqs
q/2, and

∥∥∥E(Zt+s − Zt)∣∣∣Ft∥∥∥ ≤ Ks. (37)

Set Fni = F(i−1)∆n
. By (4.10) in Jacod and Rosenbaum (2013) we have,

E
(∥∥∥αni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q
n for all q ≥ 0 and E

(∣∣∣ kn−1∑
j=0

αni+j

∣∣∣q∣∣Fni ) ≤ Kq∆
q
nk

q/2
n whenever q ≥ 2. (38)

Combining (46), (44), (45) with Z = c and the Hölder inequality yields for q ≥ 2,

E
(∥∥∥νni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4, and E
(∥∥∥λni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4. (39)

The bound in the first equation of (47) is tighter than that in (4.11) of Jacod and Rosenbaum (2012)

due to the absence of volatility jumps. This tighter bound will be useful later for deriving the asymptotic

distribution for the approximate estimator (Step 3). By the boundedness of Ct and the polynomial growth

assumption, we have∣∣∣(∂3
jk,xy,abG∂ghH + ∂2

xy,ghH∂
2
jk,abG

)
(c̃ni )νn,xyi νn,jki λn,ghi λn,abi

∣∣∣ ≤ K(1 + ‖c̃ni ‖)2(p−2)‖νni ‖2‖λni ‖2.

Recalling c̃ni = πCni + (1 − π)Ĉ
′n
i and using the convexity of the function x2(p−2), we can refine the last

inequality as follows:∣∣∣(∂3
jk,xy,abG∂ghH + ∂2

xy,ghH∂
2
jk,abG

)
(c̃ni )νn,xyi νn,jki λn,ghi λn,abi

∣∣∣ ≤ K(1 + ‖νni ‖2(p−2)
)
‖νni ‖2‖λni ‖2. (40)

By Taylor expansion, the polynomial growth assumption and using similar idea as for (40), we have

χni −
∑
g,h,a,b

(∂ghH∂abG)(Cni )λn,ghi λn,abi =
∑

g,h,a,b,j,k

(∂ghH∂
2
jk,xyG+ ∂ghG∂

2
jk,xyH)(Cni )(λn,ghi +

1

2
νn,ghi )λn,abi λn,jki + ϕni

∑
g,h,a,b

(
∂ghH∂abG

)
(Ĉ

′n
i )−

(
∂ghH∂abG

)
(Cni ) =

∑
g,h,a,b,x,y

(∂ghH∂
2
ab,xyG+ ∂abG∂

2
gh,xyG)(Cni )(νn,xyi )λn,ghi λn,abi + δni

with E(|ϕni |
∣∣Fni ) ≤ K∆n and E(|δni |

∣∣Fni ) ≤ K∆n which follow by the Cauchy-Schwartz inequality together

with (47). Given that kn = θ(∆n)−1/2, a direct implication of the previous inequalities is

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

ϕni
P−→ 0 and

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

δni
P−→ 0.

Therefore, in order to prove the two claims in (34), it suffices to show

3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

∑
g,h,a,b,j,k

(∂ghH∂
2
jk,abG+ ∂ghH∂

2
jk,abG)(Cni )λn,ghi λn,abi λn,jki

P−→ 0, (41)
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3∆
−1/4
n

2kn

[T/∆n]−2kn+1∑
i=1

∑
g,h,a,b,j,k

(∂ghH∂
2
jk,abG+ ∂ghH∂

2
jk,abG)(Cni )νn,ghi λn,abi λn,jki

P−→ 0. (42)

For any càdlàg bounded process Z, we set

ηt,s(Z) =

√
E
(

sup
0<u≤s

‖Zt+u − Zt‖2|Fni
)
,

ηni,j(Z) =

√
E
(

sup
0≤u≤j∆n

‖Z(i−1)∆n+u − Z(i−1)∆n
‖2|Fni

)
.

In order to prove (41) and (42), we introduce the following lemmas.

Lemma 1. For any càdlàg bounded process Z, for all t, s > 0, j, k ≥ 0, set ηt,s = ηt,s(Z). Then,

∆nE
( [t/∆n]∑

i=1

ηi,kn

)
−→ 0, ∆nE

( [t/∆n]∑
i=1

ηi,2kn

)
−→ 0,

E
(
ηi+j,k|Fni

)
≤ ηi,j+k and ∆nE

( [t/∆n]∑
i=1

ηi,4kn

)
−→ 0.

The first three claims of Lemma 6 are proved in Jacod and Rosenbaum (2012). The last result can be proved

similarly to the first two.

Lemma 2. Let Z be a continuous Itô process with drift bZt and spot variance process CZt , and set ηt,s =

ηt,s(b
Z , cZ). Then, the following bounds hold:

|E(Zt|F0)− tbZ0 | ≤ Ktη0,t

|E(ZjtZ
k
t − tC

Z,jk
0 |F0)| ≤ Kt3/2(

√
∆n + η0,t)

|E
(
(ZjtZ

k
t − tC

Z,jk
0 )(CZ,lmt − CZ,lm0 )|F0

)
| ≤ Kt2

|E(ZjtZ
k
t Z

l
tZ

m
t |F0)−∆2

n(CZ,jk0 CZ,lm0 + CZ,jl0 CZ,km0 + CZ,jm0 CZ,kl0 )| ≤ Kt5/2

|E(ZjtZ
k
t Z

l
t|F0)| ≤ Kt2

|E(

6∏
l=1

Zjlt |F0)− ∆3
n

6

∑
l<l′

∑
k<k′

∑
m<m′

C
Z,jljl′
0 C

Z,jkjk′
0 C

Z,jmjm′
0 | ≤ Kt7/2

The first four claims of Lemma 7 are parts of Lemma 4.1 in Jacod and Rosenbaum (2012). The two remaining

statements can be shown similarly.

Lemma 3. Let ζni be a r-dimensional Fni measurable process satisfying ‖E(ζni |Fni−1)‖ ≤ L′ and E
(
‖ζni ‖q

∣∣∣Fni−1

)
≤

Lq. Also, let ϕni be a real-valued Fni -measurable process with E
(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq for q ≥ 2 and

1 ≤ j ≤ 2kn − 1. Then, we have

E

(∥∥∥ 2kn−1∑
j=1

ϕni+j−1ζ
n
i+j

∥∥∥q∣∣∣∣∣Fni−1

)
≤ KqL

q(Lqk
q/2
n + L′qkqn).

Proof of Lemma 5

Set

ξni = ϕni−1ζ
n
i , ξ

′n
i = E(ξi|Fni−1) = E(ϕni−1ζ

n
i |Fni−1) = ϕni−1E(ζni |Fni−1), and ξ

′′n
i = ξni − ξ

′n
i .
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Given that ‖E(ζni |Fni−1)‖ ≤ L′, we have ‖ξ′n
i ‖ ≤ L′|ϕni−1|. By the convexity of the function xq, which holds

for q ≥ 2, we have

‖
2kn−1∑
j=1

ξni+j‖q ≤ K
(
‖

2kn−1∑
j=1

ξ
′n
i+j‖q + ‖

2kn−1∑
j=1

ξ
′′n
i+j‖q

)
.

Therefore, on the one hand we have

‖
2kn−1∑
j=1

ξ
′n
i+j‖q ≤ Kkq−1

n

2kn−1∑
j=1

‖ξ
′n
i+j‖q ≤ Kkq−1

n L′q
2kn−1∑
j=1

|ϕni+j−1|q,

which by E
(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq, satisfies

E(‖
2kn−1∑
j=1

ξ
′n
i+j‖q|Fni−1) ≤ KL′qkq−1

n

2kn−1∑
j=1

E(|ϕni+j−1|q|Fni−1) ≤ KL′qkqnLq.

On the other hand, we have E(‖ξ′′n
i+j‖q|Fni−1) ≤ E(‖ξni+j‖q|Fni−1) ≤ LqL

q and E(ξ
′′n
i+j |Fni−1) = 0, where the

first inequality is a consequence of E(‖ξ′n
i+j‖q|Fni−1) ≤ E(‖ξni+j‖q|Fni−1) ≤ LqLq, which follows by the Jensen

inequality and the law of iterated expectation. Hence, by Lemma B.2 of Aı̈t-Sahalia and Jacod (2014) we

have

E(‖
2kn−1∑
j=1

ξ
′′n
i+j‖q|Fni−1) ≤ KqL

qLqk
q/2
n .

To see the latter, we first prove that the required condition E(‖ξni ‖q|Fni−1) ≤ LqL
q) in the Lemma B.2 of

Aı̈t-Sahalia and Jacod (2014) can be replaced by E(‖ξni+j‖q|Fni−1) ≤ LqL
q) for 1 ≤ j ≤ 2kn − 1 without

altering the result.

Lemma 4. We have:∣∣∣E(λn,jki λn,lmi λn,ghi+2kn
λn,abi+2kn

|Fni )− 4

k2
n

(Cn,gai Cn,hbi + Cn,gbi Cn,hai )(Cn,jli Cn,kmi + Cn,jmi Cn,kli )

− 4∆n

3
(Cn,jli Cn,kmi + Cn,jmi Cn,kli )C

n,gh,ab

i − 4∆n

3
(Cn,gai Cn,hbi − Cn,gbi Cn,hai )C

n,jk,lm

i

− 4(kn∆n)2

9
C
n,gh,ab

i C
n,jk,lm

i

∣∣∣ ≤ K∆n(∆1/8
n + ηni,4kn).

Throughout, we use the expression “successive conditioning” to refer to the following equalities,

x1y1 − x0y0 = x0(y1 − y0) + y0(x1 − x0) + (x1 − x0)(y1 − y0),

x1y1z1 − x0y0z0 = x0y0(z1 − z0) + x0z0(y1 − y0) + y0z0(x1 − x0) + x0(y0 − y1)(z0 − z1)

+ y0(x0 − x1)(z0 − z1) + z0(x0 − x1)(y0 − y1) + (x1 − x0)(y1 − y0)(z1 − z0),

which hold for any real numbers x0, y0, z0, x1, y1, and z1.
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Proof of Lemma 4

To prove Lemma 4, we first note that λn,jki λn,lmi is Fni+2kn
-measurable. Then, by the law of iterated

expectations, we have

E
(
λn,jki λn,lmi λn,ghi+2kn

λn,abi+2kn
|Fni

)
= E

(
λn,jki λn,lmi E

(
λn,ghi+2kn

λn,abi+2kn
|Fni+2kn

)
|Fni

)
.

By equation (3.27) in Jacod and Rosenbaum (2012), we have

|E(λn,ghi+2kn
λn,abi+2kn

|Fni+2kn)− 2

kn
(Cn,gai+2kn

Cn,hbi+2kn
+ Cn,gbi+2kn

Cn,hai+2kn
)− 2kn∆n

3
C
n,gh,ab

i+2kn | ≤ K
√

∆n(∆1/8
n + ηni+2kn,2kn),

|E(λn,jki λn,lmi |Fni )− 2

kn
(Cn,jli Cn,kmi + Cn,jmi Cn,kli )− 2kn∆n

3
C
n,jk,lm

i | ≤ K
√

∆n(∆1/8
n + ηni,2kn).

Also,

|E
(
λn,jki λn,lmi

[
E(λn,ghi+2kn

λn,abi+2kn

∣∣∣Fni+2kn)− 2

kn
(Cn,gai+2kn

Cn,hbi+2kn
+ Cn,gbi+2kn

Cn,hai+2kn
)− 2kn∆n

3
C
n,gh,ab

i+2kn

]∣∣∣∣∣Fni )|
≤
√

∆nE(|λn,jki ||λn,lmi |(∆1/8
n + ηni+2kn,2kn)|

∣∣∣Fni ) ≤ K
√

∆n∆1/8
n E(|λn,jki ||λn,lmi |

∣∣∣Fni )

+K
√

∆nE(|λn,jki ||λn,lmi |ηni+2kn,2kn |
∣∣∣Fni ) ≤ K∆n(∆1/8

n + ηni,4kn),

where the last inequality follows from Lemma 6. Using (45) successively with Z = c and Z = C (recall that

the latter holds under Assumption 2), together with the successive conditioning, we have

|E
(
λn,jki λn,lmi

[ 2

kn
(Cn,gai+2kn

Cn,hbi+2kn
+ Cn,gbi+2kn

Cn,hai+2kn
) +

2kn∆n

3
C
n,gh,ab

i+2kn −
2

kn
(Cn,gai Cn,hbi + Cn,gbi Cn,hai )

− 2kn∆n

3
C
n,gh,ab

i

]∣∣∣Fni )| ≤ K∆n∆1/4
n ,

|E
(
λn,jki λn,lmi

[ 2

kn
(Cn,gai Cn,hbi + Cn,gbi Cn,hai ) +

2kn∆n

3
C
n,gh,ab

i

]
−
[ 2

kn
(Cn,jli Cn,kmi + Cn,jmi Cn,kli ) +

2kn∆n

3
C
n,jk,lm

i

]
×
[ 2

kn
(Cn,gai Cn,hbi + Cn,gbi Cn,hai ) +

2kn∆n

3
C
n,gh,ab

i

]∣∣∣Fni )| ≤ K∆n(∆1/8
n + ηni,2kn).

The last inequality yields the result.

Lemma 5. Let ζni be a r-dimensional Fni -measurable process satisfying ‖E(ζni |Fni−1)‖ ≤ L′ and E
(
‖ζni ‖q

∣∣∣Fni−1

)
≤

Lq. Also, let ϕni be a real-valued Fni -measurable process with E
(
‖ϕni+j−1‖q

∣∣∣Fni−1

)
≤ Lq for q ≥ 2 and

1 ≤ j ≤ 2kn − 1. Then,

E

(∥∥∥ 2kn−1∑
j=1

ϕni+j−1ζ
n
i+j

∥∥∥q∣∣∣∣∣Fni−1

)
≤ KqL

q(Lqk
q/2
n + L′qkqn).

We introduce some new notation. Following Jacod and Rosenbaum (2012), we define

αni = (∆n
i Y
′)(∆n

i Y
′)> − Cni ∆n, νni = Ĉ

′n
i − Cni , and λni = Ĉ

′n
i+kn − Ĉ

′n
i , (43)

which satisfy

νni =
1

kn∆n

kn−1∑
j=0

(αni+j + (Cni+j − Cni )∆n) and λni = νi+kn − νni + ∆n(Cni+kn − C
n
i ). (44)
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We remind some well-known results. For any continuous Itô process Zt, we have

E
(

sup
w∈[0,s]

∥∥∥Zt+w − Zt∥∥∥q∣∣∣Ft) ≤ Kqs
q/2, and

∥∥∥E(Zt+s − Zt)∣∣∣Ft∥∥∥ ≤ Ks. (45)

Set Fni = F(i−1)∆n
. By (4.10) in Jacod and Rosenbaum (2013), we have

E
(∥∥∥αni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q
n for all q ≥ 0 and E

(∣∣∣ kn−1∑
j=0

αni+j

∥∥∥q∣∣Fni ) ≤ Kq∆
q
nk

q/2
n whenever q ≥ 2. (46)

Combining (46), (44), (45) with Z = c and the Hölder inequality yields, for q ≥ 2,

E
(∥∥∥νni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4, and E
(∥∥∥λni ∥∥∥q∣∣∣Fni ) ≤ Kq∆

q/4. (47)

For any càdlàg bounded process Z, we set

ηt,s(Z) =

√
E
(

sup
0<u≤s

‖Zt+u − Zt‖2|Fni
)
,

ηni,j(Z) =

√
E
(

sup
0≤u≤j∆n

‖Z(i−1)∆n+u − Z(i−1)∆n
‖2|Fni

)
.

Lemma 6. For any càdlàg bounded process Z, for all t, s > 0, j, k ≥ 0, and set ηt,s = ηt,s(Z). Then,

∆nE
( [t/∆n]∑

i=1

ηi,kn

)
−→ 0, ∆nE

( [t/∆n]∑
i=1

ηi,2kn

)
−→ 0,

E
(
ηi+j,k|Fni

)
≤ ηi,j+k and ∆nE

( [t/∆n]∑
i=1

ηi,4kn

)
−→ 0.

The first three claims of Lemma 6 are proved in Jacod and Rosenbaum (2012). The last result can be proved

similarly to the first two.

Lemma 7. Let Z be a continuous Itô process with drift term bZt and spot variance process CZt , and set

ηt,s = ηt,s(b
Z , cZ). Then, the following bounds hold:

|E(Zt|F0)− tbZ0 | ≤ Ktη0,t

|E(ZjtZ
k
t − tC

Z,jk
0 |F0)| ≤ Kt3/2(

√
∆n + η0,t)

|E
(
(ZjtZ

k
t − tC

Z,jk
0 )(CZ,lmt − CZ,lm0 )|F0

)
| ≤ Kt2

|E(ZjtZ
k
t Z

l
tZ

m
t |F0)−∆2

n(CZ,jk0 CZ,lm0 + CZ,jl0 CZ,km0 + CZ,jm0 CZ,kl0 )| ≤ Kt5/2

|E(ZjtZ
k
t Z

l
t|F0)| ≤ Kt2

|E(

6∏
l=1

Zjlt |F0)− ∆3
n

6

∑
l<l′

∑
k<k′

∑
m<m′

C
Z,jljl′
0 C

Z,jkjk′
0 C

Z,jmjm′
0 | ≤ Kt7/2

The first four claims of Lemma 7 are parts of Lemma 4.1 in Jacod and Rosenbaum (2012). The two remaining

statements can be shown similarly.

Lemma 8. The following results hold:

|E(νn,jki νn,lmi νn,ghi |Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,kn), (48)
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|E(νn,jki νn,lmi (cn,ghi+kn
− cn,ghi )|Fni )| ≤ K∆3/4

n (∆1/4
n + ηni,kn), (49)

|E(νn,jki (cn,lmi+kn
− cn,lmi )(cn,ghi+kn

− cn,ghi )|Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,kn), (50)

|E(νn,jki λn,lmi λn,ghi |Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,2kn), (51)

|E(λn,jki λn,lmi λn,ghi |Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,2kn). (52)

Proof of (48) in Lemma 8

We start by obtaining some useful bounds for some quantities of interest. First, using the second statement

in Lemma 7 applied to Z = Y ′, we have

|E(αn,jki |Fni )| ≤ K∆3/2
n (

√
∆n + ηni,1). (53)

Second, by repeated application of the Cauchy-Schwartz inequality and making use of the third and last

statements in Lemma 7 as well as (45) with Z = c, it can be shown that∣∣∣E(αn,jki αn,lmi |Fni )−∆2
n

(
Cn,jli Cn,kmi + Cn,jmi Cn,kli

)∣∣∣ ≤ K∆5/2
n . (54)

Next, by successive conditioning and using the bound in (45) for Z = c as well as (53) and (54) , we have

for 0 ≤ u ≤ kn − 1, ∣∣∣E(αn,jki+u

∣∣Fni )
∣∣∣ ≤ K∆3/2

n (
√

∆n + ηni,u), (55)

∣∣∣E(αn,jki+u α
n,lm
i+u |F

n
i )−∆2

n

(
Cn,jli Cn,kmi + Cn,jmi Cn,kli

)∣∣∣ ≤ K∆5/2
n , (56)

To show (48), we first observe that νn,jki νn,lmi νn,ghi can be decomposed as

νn,jki νn,lmi νn,ghi =
1

k3
n∆3

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u ζn,ghi,u +
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

[
ζn,jki,u ζn,lmi,v ζn,ghi,v + ζn,ghi,u ζn,jki,v ζn,lmi,v

+ ζn,lmi,u ζn,ghi,v ζn,jki,v

]
+

1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

[ζn,jki,u ζn,lmi,u ζn,ghi,v + ζn,ghi,u ζn,jki,u ζn,lmi,v + ζn,lmi,u ζn,ghi,u ζn,jki,v

]

+
1

k3
n∆3

n

kn−3∑
u=0

kn−2∑
v=u+1

kn−1∑
w=v+1

[
ζn,jki,u ζn,lmi,v ζn,ghi,w + ζn,jki,u ζn,ghi,v ζn,lmi,w + ζn,lmi,u ζn,jki,v ζn,ghi,w + ζn,lmi,u ζn,ghi,v ζn,jki,w

+ ζn,ghi,u ζn,lmi,v ζn,jki,w + ζn,ghi,u ζn,jki,v ζn,lmi,w

]
,

with ζni,u = αni+u + (Cni+u − Cni )∆n, which satisfies E(‖ζni,u‖q|Fni ) ≤ K∆q
n for q ≥ 2.

Set

ξni (1) =
1

k3
n∆3

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u ζn,ghi,u , ξni (2) =
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

ζn,jki,u ζn,lmi,v ζn,ghi,v

ξni (3) =
1

k3
n∆3

n

kn−2∑
u=0

kn−1∑
v=u+1

ζn,jki,u ζn,lmi,u ζn,ghi,v and ξni (4) =
1

k3
n∆3

n

kn−3∑
u=0

kn−2∑
v=u+1

kn−1∑
w=v+1

ζn,jki,u ζn,lmi,v ζn,ghi,w .

The following bounds can be established,

|E(ξni (1)|Fni )| ≤ K∆n, |E(ξni (2)|Fni )| ≤ K∆n, |E(ξni (3)|Fni )| ≤ K∆n and
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|E(ξni (4)|Fni )| ≤ K∆3/4
n (∆1/4

n + ηi,kn).

Proof of |E(ξni (1)|Fni )| ≤ K∆n

The result readily follows from an application of the Cauchy Schwartz inequality together with the bound

E(‖ζni+u‖q|Fni ) ≤ Kq∆
q
n for q ≥ 2.

Proof of |E(ξni (2)|Fni )| ≤ K∆n

Using the law of iterated expectation, we have, for u < v,

E(ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+v |F

n
i ) = E(ζn,jki+u E(ζn,lmi+v ζ

n,gh
i+v |F

n
i+u+1)

∣∣Fni ). (57)

By successive conditioning, (54), and the Cauchy-Schwartz inequality, we also have

|E(ζn,lmi,v ζn,ghi,v |F
n
i+u+1)−∆2

n(Cn,lgi+u+1C
n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1)−∆2

n(Cn,ghi+u+1 − C
n,gh
i )(Cn,lmi+u+1 − C

n,lm
i )| ≤ K∆5/2

n .

Given that E(|ζn,jki+u |q
∣∣Fni ) ≤ ∆q

n, the approximation error involved in replacing E(ζn,lmi+v ζ
n,gh
i+v |Fni+u+1) by

∆2
n(Cn,lgi+u+1C

n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1) + ∆2

n(Cn,ghi+u+1 − C
n,gh
i )(Cn,lmi+u+1 − C

n,lm
i ) in (57) is smaller than ∆

7/2
n .

From (3.9) in Jacod and Rosenbaum (2012) we have

|E(αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )|Fni )| ≤ K∆3/2

n (
√

∆n + ηni,kn). (58)

Since (Cni+u −Cni ) is Fni+u-measurable, we use the successive conditioning, the Cauchy-Schwartz inequality,

(53), (54), and the fifth statement in Lemma 7 applied to Z = c to obtain

|E(αn,ghi+u (Cn,lmi+u − C
n,lm
i )(Cn,jki+u − C

n,jk
i )|Fni )| ≤ K∆5/2

n

|E(αn,jki+u α
n,lm
i+u (Cn,ghi+u − C

n,gh
i )|Fni )| ≤ K∆5/2

n (59)

|E
(
(Cn,lmi+u − C

n,lm
i )(Cn,jki+u − C

n,jk
i )(Cn,ghi+u − C

n,gh
i )

)
|Fni )| ≤ K∆n,

which can be proved using . The following inequalities can be established easily using (53), the successive

conditioning together with (45) for Z = c,∣∣∣E(αn,jki+u (Cn,lgi+u+1C
n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1)|Fni )

∣∣∣ ≤ K∆3/2
n∣∣∣E((Cn,jki+u − C

n,jk
i )

(
Cn,lgi+u+1C

n,mh
i+u+1 + Cn,lhi+u+1C

n,mg
i+u+1

)
|Fni

)∣∣∣ ≤ K∆1/2
n∣∣∣E(αn,jki+u (Cn,ghi+u+1 − C

n,gh
i )(Cn,lmi+u+1 − C

n,lm
i )|Fni )

∣∣∣ ≤ K∆3/2
n (

√
∆n + ηni,kn).

The last three inequalities together yield |E(ξni (2)|Fni )| ≤ K∆n.

Proof of |E(ξni (3)|Fni )| ≤ K∆n

First, note that, for u < v, we have

E(ζn,jki+u ζ
n,lm
i+u ζ

n,gh
i+v |F

n
i ) = E(ζn,jki+u ζ

n,lm
i+u E(ζn,ghi+v |F

n
i+u+1)

∣∣Fni ). (60)

By successive conditioning and (53) , we have

|E(αn,ghi+w |F
n
i+v+1)| ≤ K∆3/2

n (
√

∆n + ηi+v+1,w−v). (61)
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Using the first statement of Lemma applied to Z = c, it can be shown that

|E
(
(Cn,ghi+w − C

n,gh
i+v+1))|Fni

)
−∆n(w − v − 1)̃bn,ghi+v+1| ≤ K(w − v − 1)∆nηi+v+1,w−v ≤ K∆1/2

n ηi+v+1,w−v.

The last two inequalities together imply∣∣∣E(ζn,ghi+w |F
n
i+v+1

)
− (Cn,ghi+v+1 − C

n,gh
i )∆n −∆2

n(w − v − 1)̃bn,ghi+v+1

∣∣∣ ≤ K∆3/2
n (

√
∆n + ηi+v+1,w−v). (62)

Since E(|ζn,jki,u |q|Fni ) ≤ ∆q
n, the error induced by replacing E(ζn,ghi+v |Fni+u+1) by (Cn,ghi+v+1−C

n,gh
i )∆n+∆2

n(w−
v − 1)̃bn,ghi+v+1 in (60) is smaller that ∆

7/2
n .

Using Cauchy Schwartz inequality, successive conditioning, (59), (45) for Z = c and the boundedness of b̃t

and Ct we obtain∣∣∣E(αn,jki+u α
n,lm
i+u (Cn,jki+u+1 − C

n,gh
i )|Fni+u

)∣∣∣ ≤ K∆5/2
n∣∣∣E(αn,jki+u α

n,lm
i+u b̃

n,gh
i+u+1|F

n
i+u

)∣∣∣ ≤ K∆2
n∣∣∣E(αn,jki+u (Cn,lmi+u − C

n,lm
i )(Cn,ghi+u+1 − C

n,gh
i )|Fni

)∣∣∣ ≤ K∆1/4
n ∆3/2

n (
√

∆n + ηni,kn)∣∣∣E(αn,jki+u (Cn,lmi+u − C
n,lm
i )̃bn,ghi+u+1|F

n
i

)∣∣∣ ≤ ∆5/4
n∣∣∣E((Cn,jki+u − C

n,gh
i )(Cn,lmi+u − C

n,lm
i )̃bn,ghi+u+1|F

n
i

)∣∣∣ ≤ K∆1/2
n∣∣∣E((Cn,jki+u − C

n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+u+1 − C

n,gh
i )|Fni

)∣∣∣ ≤ K∆n.

The above inequalities together yield |E(ξni (3)|Fni )| ≤ K∆n.

Proof of |E(ξni (4)
∣∣Fni )| ≤ K∆

3/4
n (∆

1/4
n + ηni,kn)

We first observe that ξni (4) can be rewritten as

ξni (4) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+w ,

where

ζn,jki+u ζ
n,lm
i+v ζ

n,gh
i+w =

[
αn,jki+u α

n,lm
i+v α

n,gh
i+w + αn,jki+u ∆nα

n,lm
i+v (Cn,ghi+w − C

n,gh
i ) + αn,jki+u ∆n(Cn,lmi+v − C

n,lm
i )αn,ghi+w

+ ∆2
nα

n,jk
i+u (Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i ) + ∆n(Cn,jki+u − C

n,jk
i )αn,lmi+v α

n,gh
i+w + ∆2

n(Cn,jki+u − C
n,jk
i )αn,lmi+v (Cn,ghi+w − C

n,gh
i )

+ ∆2
n(Cn,jki+u − C

n,jk
i )(Cn,lmi+v − C

n,lm
i )αn,ghi+w + ∆3

n(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i )

]
.

Based on the above decomposition, we set

ξni (4) =

8∑
j=1

χ(j),
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with χ(j) defined below. We aim to show that |E(χ(j)
∣∣Fni )| ≤ K∆

3/4
n (∆

1/4
n + ηni,kn), j = 1, . . . , 8.

First, set

χ(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u α
n,lm
i+v α

n,gh
i+w .

Upon changing the order of the summation, we have

χ(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v α

n,gh
i+w .

Define also

χ′(1) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v E(αn,ghi+w |F

n
i+v+1).

Note that E(χ(1)|Fni ) = E(χ′(1)|Fni ).

It is easy to see that by Lemma 5, we have for q ≥ 2,

E
(∥∥∥ v−1∑

u=0

αn,jki+u

∥∥∥q∣∣∣Fni ) ≤ Kq∆
3q/4
n .

The Cauchy-Schwartz inequality yields,

E

(∣∣∣ kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v E(αn,ghi+w |F

n
i+v+1)

∣∣∣∣∣∣∣∣Fni
)
≤ Kk2

n

[
E
(∣∣∣ v−1∑

u=0

αn,jki+u

∣∣∣4∣∣∣Fni )]1/4[E(∣∣∣αn,lmi+v

∣∣∣4∣∣∣Fni )]1/4
×
[
E
(∣∣∣E(αn,ghi+w |F

n
i+v+1)

∣∣∣2∣∣∣Fni )]1/2 ≤ K∆nk
2
n∆3/4

n ∆3/2
n (

√
∆n + ηni,kn),

where the last iteration is obtained using (61) as well as the inequality (a+ b)1/2 ≤ a1/2 + b1/2, which holds

for positive real numbers a and b, and the third statement in Lemma 6.

It follows from this result that

|E
(
χ(1)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn).

Next, we introduce

χ(2) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
αn,lmi+v α

n,gh
i+w ,

χ(3) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+v

)
∆n(Cn,lmi+u − C

n,lm
i )αn,ghi+w ,

χ(4) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
∆n(Cn,lmi+u − C

n,lm
i )αn,ghi+w .

Given that for q ≥ 2, we have

E
(∥∥∥ v−1∑

u=0

∆n(Cn,jki+u − C
n,jk
i )

∥∥∥q∣∣∣Fni ) ≤ Kq∆
3q/4
n and E(‖Cn,jki+u − C

n,jk
i ‖q

∣∣Fni ) ≤ Kq∆
q/4
n ,
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one can follow essentially the same steps as for χ(1) to show that

|E(χ(2)
∣∣Fni )| ≤ K∆3/4

n (
√

∆n + ηni,kn) and |E(χ(j)
∣∣Fni )| ≤ K∆n(

√
∆n + ηni,kn) for j = 3, 4.

Define

χ(5) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v ∆n(Cn,ghi+w − C

n,gh
i )

χ′(5) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v ∆nE

(
(Cn,ghi+w − C

n,gh
i )

∣∣Fni+v+1)

χ(6) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

∆n(Cn,jki+u − C
n,jk
i )

)
αn,lmi+v ∆n(Cn,ghi+w − C

n,gh
i )

χ(7) =
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+w − C

n,gh
i ),

where we have E(χ(5)|Fni ) = E(χ′(5)|Fni ). Recalling (62), we further decompose χ′(5) as,

χ′(5) =
5∑
j=1

χ(5)[j],

with

χ′(5)[1]=
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v

(
E
(
Cn,ghi+w −C

n,gh
i |Fni+v+1

)
−(Cn,ghi+v+1−C

n,gh
i )∆n− b̃n,ghi+v+1∆2

n(w−v−1)
)

χ′(5)[2]=
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

∆n(Cn,ghi+v −C
n,gh
i )

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v

χ′(5)[3]=
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,ghi+v+1−C

n,gh
i+v )αn,lmi+v

χ′(5)[4]=
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆2
n(w−v−1)(̃bn,ghi+v+1− b̃

n,gh
i+v )αn,lmi+v

χ′(5)[5]=
1

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

∆2
n(w−v−1)̃bn,ghi+v

( v−1∑
u=0

αn,jki+u

)
αn,lmi+v .

Using (62), (61), (58) and following the same strategy proof as for χ(1), it can be shown that

|E
(
χ′(5)[j]

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn), for j = 1, . . . , 5,

which in turn implies

|E
(
χ(5)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn), for j = 1, . . . , 5.

The term χ(6) can be handled similarly to χ(5), hence we conclude that

|E
(
χ(6)

∣∣Fni )| ≤ K∆3/4
n (

√
∆n + ηni,kn).
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Next, we set

χ(7) =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+w − C

n,gh
i )

)
.

Define

χ(7)[1] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+v+1 − C

n,gh
i+v )

)

χ(7)[2] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆n(Cn,ghi+v − C

n,gh
i )

)

χ(7)[3] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )∆2

n(w − v − 1)(̃bn,ghi+v+1 − b̃
n,gh
i+v )

)

χ(7)[4] =
1

(kn∆n)3

kn−1∑
w=2

(
w−1∑
v=0

∆2
n(w − v − 1)̃bn,ghi+v

( v−1∑
u=0

αn,jki+u

)
∆n(Cn,lmi+v − C

n,lm
i )

)
,

so that

χ(7) =

4∑
j=1

χ(7)[j].

Similar to calculations used for χ(1), it can be shown that

|E(χ(7)[j]
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn), for j = 1, . . . , 3.

To handle the remaining term χ(7)[4], we set

χ(7)[4][1] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )(Cn,ghi+u+1 − C

n,gh
i+u )

χ(7)[4][2] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )αn,jki+u (Cn,lmi+u+1 − C

n,lm
i+u )

χ′(7)[4][2] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )E(αn,jki+u (Cn,lmi+u+1 − C

n,lm
i+u )|Fni+u)

χ(7)[4][3] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u (Cn,ghi+u+1 − C

n,gh
i+u )

χ(7)[4][4] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )(Cn,ghi+u − C

n,gh
i )αn,jki+u

χ(7)[4][5] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u (Cn,ghi+v − C

n,gh
i+u+1)

χ′(7)[2][5] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,lmi+u − C
n,lm
i )αn,jki+u E((Cn,ghi+v − C

n,gh
i+u+1|F

n
i+u)

χ(7)[4][6] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+u+1 − C
n,lm
i+u )(Cn,ghi+v − C

n,gh
i+u+1)
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χ(7)[4][7] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,ghi+u − C
n,gh
i )αn,jki+u (Cn,lmi+v − C

n,lm
i+u+1)

χ(7)[4][8] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,ghi+u+1 − C
n,gh
i+u )(Cn,lmi+v − C

n,lm
i+u+1)

χ(7)[4][9] =
∆2
n

(kn∆n)3

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

αn,jki+u (Cn,lmi+v − C
n,lm
i+u+1)(Cn,ghi+v − C

n,gh
i+u+1),

which satisfy,

χ(7)[4] =

9∑
j=1

χ(7)[4][j].

By using arguments similar to those used for χ(1), it can be shown that

|E(χ(7)[4][j]
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn), for j = 1, . . . , 8,

which yields

|E(χ(7)
∣∣Fni )| ≤ K∆1/4

n (∆1/4
n + ηi,kn).

Next, define

χ(8) =
1

k3
n

kn−1∑
w=2

w−1∑
v=0

v−1∑
u=0

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i )(Cn,ghi+w − C

n,gh
i ).

This term can be further decomposed into 6 components. Successive conditioning and existing bounds give

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+w − C

n,gh
i+v )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+v − C

n,gh
i+u )

∣∣Fni )| ≤ K∆3/4
n (∆1/4

n + ηi,kn)

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+v − C

n,lm
i+u )(Cn,ghi+u − C

n,gh
i )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+w − C

n,gh
i+v )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+v − C

n,gh
i+u )

∣∣Fni )| ≤ K∆n

|E
(

(Cn,jki+u − C
n,jk
i )(Cn,lmi+u − C

n,lm
i )(Cn,ghi+u − C

n,gh
i )

∣∣Fni )| ≤ K∆n

These bounds can be used to deduce

|E(χ(8)
∣∣Fni )| ≤ K∆n.

This completes the proof.
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Proof of (49) and (50) in Lemma 8

Observe that

νn,jki (Cn,lmi+kn
− Cn,lmi )(Cn,ghi+kn

− Cn,ghi ) =
1

kn∆n

kn−1∑
u=0

ζn,jki,u (Cn,lmi+kn
− Cn,lmi )(Cn,ghi+kn

− Cn,ghi ),

νn,jki νn,lmi (Cn,ghi+kn
− Cn,ghi ) =

1

k2
n∆2

n

kn−1∑
u=0

ζn,jki,u ζn,lmi,u (Cn,ghi+kn
− Cn,ghi ) +

1

k2
n∆2

n

kn−2∑
u=0

kn−1∑
v=0

ζn,jki,u ζn,lmi,v (Cn,ghi+kn
− Cn,ghi )

+
1

k2
n∆2

n

kn−2∑
u=0

kn−1∑
v=0

ζn,lmi,u ζn,jki,v (Cn,ghi+kn
− Cn,ghi ).

Hence, (49) and (50) can be proved using the same strategy as for (48).

Proof of (51) and (52) in Lemma 8

Note that we have

λn,jki λn,lmi νn,ghi = νn,ghi νn,jki+kn
νn,lmi+kn

+ νn,ghi νn,jki νn,lmi − νn,ghi νn,lmi νn,jki+kn
− νn,ghi νn,lmi νn,jki+kn

+ νn,ghi νn,jki+kn
(Cn,lmi+kn

− Cn,lmi )− νn,ghi νn,jki (Cn,lmi+kn
− Cn,lmi ) + νn,ghi νn,lmi+kn

(Cn,jki+kn
− Cn,jki )− νn,ghi νn,lmi (Cn,jki+kn

− Cn,jki )

+ νn,ghi (Cn,jki+kn
− Cn,jki )(Cn,lmi+kn

− Cn,lmi ),

and

λn,ghi λn,jki λn,lmi = νn,ghi+kn
νn,jki+kn

νn,lmi+kn
+ νn,ghi+kn

νn,jki νn,lmi − νn,ghi+kn
νn,lmi νn,jki+kn

− νn,ghi+kn
νn,lmi νn,jki+kn

+ νn,ghi+kn
νn,jki+kn

(Cn,lmi+kn
− Cn,lmi )− νn,ghi+kn

νn,jki (Cn,lmi+kn
− Cn,lmi ) + νn,ghi+kn

νn,lmi+kn
(Cn,jki+kn

− Cn,jki )− νn,ghi+kn
νn,lmi (Cn,jki+kn

− Cn,jki )

+ νn,ghi+kn
(Cn,jki+kn

− Cn,jki )(Cn,lmi+kn
− Cn,lmi )− νn,ghi νn,jki+kn

νn,lmi+kn
− νn,ghi νn,jki νn,lmi + νn,ghi νn,lmi νn,jki+kn

+ νn,ghi νn,lmi νn,jki+kn

− νn,ghi νn,jki+kn
(Cn,lmi+kn

− Cn,lmi ) + νn,ghi νn,jki (Cn,lmi+kn
− Cn,lmi )− νn,ghi νn,lmi+kn

(Cn,jki+kn
− Cn,jki ) + νn,ghi νn,lmi (Cn,jki+kn

− Cn,jki )

− νn,ghi (Cn,jki+kn
− Cn,jki )(Cn,lmi+kn

− Cn,lmi ) + νn,jki+kn
νn,lmi+kn

(Cn,ghi+kn
− Cn,ghi ) + νn,jki νn,lmi (Cn,ghi+kn

− Cn,ghi )

− νn,lmi νn,jki+kn
(Cn,ghi+kn

− Cn,ghi )− νn,lmi νn,jki+kn
(Cn,ghi+kn

− Cn,ghi ) + νn,jki+kn
(Cn,lmi+kn

− Cn,lmi )(Cn,ghi+kn
− Cn,ghi )

− νn,jki (Cn,lmi+kn
− Cn,lmi )(Cn,ghi+kn

− Cn,ghi ) + νn,lmi+kn
(Cn,jki+kn

− Cn,jki )(Cn,ghi+kn
− Cn,ghi )

− νn,lmi (Cn,jki+kn
− Cn,jki )(Cn,ghi+kn

− Cn,ghi ) + (Cn,jki+kn
− Cn,jki )(Cn,lmi+kn

− Cn,lmi )(Cn,ghi+kn
− Cn,ghi ).

From (44), notice that νni is Fni+kn-measurable and satisfies ‖E(νni |Fni )‖ ≤ K∆
1/2
n .

Using the law of iterated expectations and existing bounds, it can be shown that

|E(νn,lmi νn,jki+kn
|Fni )| ≤ K∆3/4

n .

|E(νn,lmi νn,ghi νn,jki+kn
|Fni )| ≤ K∆n

|E(νn,lmi (Cn,ghi+kn
− Cn,ghi )νn,jki+kn

|Fni )| ≤ K∆n

|E(νn,lmi+kn
(Cn,jki+kn

− Cn,jki )|Fni )| ≤ K∆3/4
n

|E((Cn,jki+kn
− Cn,jki )(Cn,lmi+kn

− Cn,lmi )(Cn,ghi+kn
− Cn,ghi )|Fni )| ≤ K∆n. (63)

By Lemma 3.3 in Jacod and Rosenbaum (2012), we have

|E(νn,ghi+kn
νn,abi+kn

|Fni+kn)− 1

kn
(Cn,gai+kn

Cn,hbi+kn
+ Cn,gbi+kn

Cn,hai+kn
)− kn∆n

3
C
n,gh,ab

i+kn | ≤ K
√

∆n(∆1/8
n + ηni+kn,kn).
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Hence, for ϕn,ghi ∈ {νn,ghi , Cn,ghi+kn
− Cn,ghi }, which satisfies E(|ϕn,ghi |q

∣∣∣Fni ) ≤ K∆
q/4
n and E(ϕn,ghi |Fni ) ≤

K∆
1/2
n , it can be proved that

|E(ϕn,ghi νn,jki+kn
νn,lmi+kn

|Fni )− E
(
ϕn,ghi

[ 1

kn
(Cn,jli+kn

Cn,kmi+kn
+ Cn,jmi+kn

Cn,kli+kn
)− kn∆n

3
C
n,jk,lm

i+kn

]
|Fni

)
| ≤ K∆3/4

n (∆1/4
n + ηni,2kn).

Next, successive conditioning and existing bounds give

|E(ϕn,ghi C
n,jk,lm

i+kn )| ≤ K∆1/4
n (∆1/4

n + ηni,kn)

|E(ϕn,ghi Cn,jli+kn
Cn,kmi+kn

)| ≤ K∆1/2
n ,

which implies

|E(ϕn,ghi νn,jki+kn
νn,lmi+kn

|Fni )| ≤ K∆3/4
n (∆1/4

n + ηni,2kn). (64)

It is easy to see that (48), (63) and (64) and the inequality ηni,kn ≤ η
n
i,2kn

together yield (51) and (52).

Step 3: Asymptotic Distribution of the approximate estimator

First, we decompose the approximate estimator as

̂[H(C), G(C)]
(A)

T = ̂[H(C), G(C)]
(A1)

T − ̂[H(C), G(C)]
(A2)

T ,

with

̂[H(C), G(C)]
(A1)

T =
3

2kn

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Cni−1)(Ĉ

′n,gh
i+kn

− Ĉ
′n,gh
i )(Ĉ

′n,ab
i+kn

− Ĉ
′n,ab
i ),

and

̂[H(C), G(C)]
(A2)

T =
3

k2
n

d∑
g,h,a,b=1

[T/∆n]−2kn+1∑
i=1

(
∂ghH∂abG

)
(Ĉ

′n
i )(Ĉ

′n,ga
i Ĉ

′n,hb
i + Ĉ

′n,gb
i Ĉ

′n,ha
i ).

In this section, we use the notation Cni−1 = C(i−1)∆n
and Fi = F(i−1)∆n

to simplify the exposition. Given

the polynomial growth assumption satisfied by H and G and the fact that kn = θ(∆n)−1/2, by Theorem 2.2

in Jacod and Rosenbaum (2012) we have

1√
∆n

(
̂[H(C), G(C)]

(A2)

T − 3

θ2

d∑
g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)(c

ga
t c

hb
t + cgbi c

ha
t )dt

)
= Op(1),

which yields

1

∆
1/4
n

(
̂[H(C), G(C)]

(A2)

T − 3

θ2

d∑
g,h,a,b=1

∫ T

0

(
∂ghH∂abG

)
(Ct)(c

ga
t c

hb
t + cgbi c

ha
t )dt

)
P−→ 0.

To study the asymptotic behavior of ̂[H(C), G(C)]
(A1)

T , we follow Aı̈t-Sahalia and Jacod (2014) and define

the following multidimensional quantities

ζ(1)ni =
1

∆n
∆n
i Y
′(∆n

i Y
′)> − Cni−1, ζ(2)ni = ∆n

i c,
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ζ ′(u)ni = E(ζ(u)ni |Fni−1), ζ ′′(u)ni = ζ(u)ni − ζ ′(u)ni ,

with

ζr(u)ni =
(
ζr(u)n,ghi

)
1≤g,h≤d

.

We also define, for m ∈ {0, . . . , 2kn − 1} and j, l ∈ Z,

ε(1)nm =

−1 if 0 ≤ m < kn

+1 if kn ≤ m < 2kn,

ε(2)nm =

2kn−1∑
q=m+1

ε(1)nq = (m+ 1) ∧ (2kn −m− 1),

znu,v =

1/∆n if u = v = 1

1 otherwise,

λ(u, v;m)nj,l =
3

2k3
n

(l−m−1)∨(2kn−m−1)∑
q=0∨(j−m)

ε(u)nq ε(u)nq+m, λ(u, v)nm = λ(u, v;m)n0,2kn ,

M(u, v;u′, v′)n = znu,vz
n
u′,v′

2kn−1∑
m=1

λ(u, v)nmλ(u′, v′)nm.

The following decompositions hold,

Ĉ
′n
i = Cni−1 +

1

kn

kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j , Ĉ
′n
i+kn − Ĉ

′n
i =

1

kn

2kn−1∑
j=0

2∑
u=1

ε(u)nj ζ(u)ni+j ,

λn,ghi λn,abi =
1

k2
n

2∑
u=1

2∑
v=1

(
2kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j +

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q

+

2kn−1∑
j=1

j−1∑
q=0

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q

)
.

A change of the order of the summation in the last term gives

λn,ghi λn,abi =
1

k2
n

2∑
u=1

2∑
v=1

(
2kn−1∑
j=0

ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j +

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q

+

2kn−2∑
j=0

2kn−1∑
q=j+1

ε(v)nj ε(u)nq ζ(v)n,abi+j ζ(u)n,ghi+q

)
.

Therefore, we can further rewrite ̂[H(C), G(C)]
(A1)

T as

̂[H(C), G(C)]
(A1)

T = ̂[H(C), G(C)]
(A11)

T + ̂[H(C), G(C)]
(A12)

T + ̂[H(C), G(C)]
(A13)

T ,with
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̂[H(C), G(C)]
(A1w)

T =

d∑
g,h,a,b=1

2∑
u,v=1

Â1w(H, gh, u;G, ab, v)nT , w = 1, 2, 3,

and,

Â11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−1∑
j=0

(∂ghH∂abG)(Cni−1)ε(u)nj ε(v)nj ζ(u)n,ghi+j ζ(v)n,abi+j ,

Â12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−2∑
j=0

2kn−1∑
q=j+1

(∂ghH∂abG)(Cni−1)ε(u)nj ε(v)nq ζ(u)n,ghi+j ζ(v)n,abi+q ,

Â13(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]−2kn+1∑
i=1

2kn−2∑
j=0

2kn−1∑
q=j+1

(∂ghH∂abG)(Cni−1)ε(v)nj ε(u)nq ζ(v)n,abi+j ζ(u)n,ghi+q ,

where we clearly have Â13(H, gh, u;G, ab, v)nT = Â12(G, ab, v;H, gh, u)nT . By a change of the order of the

summation,

Â11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=1

(2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj ζ(u)n,ghi ζ(v)n,abi ,

Â12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)×

ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni .

Set

Ã11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

2kn−1∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj ζ(u)n,ghi ζ(v)n,abi ,

Ã12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∑
j=0

(∂ghH∂abG)(Cni−j−1−m)ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni ,

and

A11(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

( 2kn−1∑
j=0

ε(u)nj ε(v)nj

)
(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi

= λ(u, v)n0

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ζ(u)n,ghi ζ(v)n,abi ,

A12(H, gh, u;G, ab, v)nT =
3

2k3
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)

(i−1)∧(2kn−1)∑
m=1

(2kn−m−1)∑
j=0

ε(u)nj ε(v)nj+mζgh(u)ni−mζab(v)ni

=

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζab(v)ni ,
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with

ρgh(u, v)ni =

2kn−1∑
m=1

λ(u, v)nmζgh(u)ni−m.

The following results hold:

1

∆
1/4
n

(
Â1w(H, gh, u;G, ab, v)nT − Ã1w(H, gh, u;G, ab, v)nT

)
P−→ 0 for all (H, gh, u,G, ab, v) and w = 1, 2.

(65)
1

∆
1/4
n

(
Ã1w(H, gh, u;G, ab, v)nT −A1w(H, gh, u;G, ab, v)nT

)
P−→ 0 for all (H, gh, u,G, ab, v) and w = 1, 2.

(66)

Proof of (65) for w = 1

The proof is similar to Step 5 on page 548 of Aı̈t-Sahalia and Jacod (2014). Our proof deviates from the

latter reference by the fact that, in all the sums, the terms ζ(u)n,ghi ζ(v)n,abi are scaled by random variables

rather that constant real numbers. First, observe that we can write

Â11− Ã11 =
˜̂
A11(1) +

˜̂
A11(2) +

˜̂
A11(3) with

˜̂
A11(1) =

(2kn−1)∧[T/∆n]∑
i=1

(
3

2k3
n

(2kn−1)∧(i−1)∑
j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi ,

˜̂
A11(2) =

[T/∆n]∑
i=[T/∆n]−2kn+2

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

−
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi ,

˜̂
A11(3) =

[T/∆n]−2kn+1∑
i=2kn

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

−
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
ζ(u)n,ghi ζ(v)n,abi .

It is easy to see that
˜̂
A12(3) = 0. Using (45) with Z = c and (46), it can be shown that

E(‖ζ(1)ni ‖q|Fni−1) ≤ Kq, E(‖ζ(2)ni ‖q|Fni−1) ≤ Kq∆
q/2
n . (67)

The polynomial growth assumption onH andG and the boundedness of Ct imply that |(∂ghH∂abG)(Cni−j−1)| ≤
K. Hence, the random quantities

(
3

2k3n

∑(2kn−1)∧(i−1)
j=0∨(i+2kn−1−[T/∆n])(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
and

3
2k3n

∑(2kn−1)
j=0 (∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj are Fni−1− measurable and are bounded by λ̃nu,v defined as

λ̃nu,v =


K if (u, v) = (2, 2)

K/kn if (u, v) = (1, 2), (2, 1)

K/k2
n if (u, v) = (1, 1).
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Similarly, the quantity,

3

2k3
n

(
(2kn−1)∧(i−1)∑

j=0∨(i+2kn−1−[T/∆n])

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj −
(2kn−1)∑
j=0

(∂ghH∂abG)(Cni−j−1)ε(u)nj ε(v)nj

)
,

is Fni−1− measurable and bounded by 2λ̃nu,v. Note also that, by (67) and the Cauchy Schwartz inequality,

we have,

E(|ζ(u)n,ghi ζ(v)n,abi |
∣∣Fni−1) ≤ E(‖ζ(u)ni ‖2|Fni−1)1/2E(‖ζ(v)ni ‖2|Fni−1)1/2 ≤


K∆n if (u, v) = (2, 2)

K∆
1/2
n if (u, v) = (1, 2), (2, 1)

K if (u, v) = (1, 1).

The above bounds, together with the fact that kn = θ∆
−1/2
n , give E(|˜̂A11(1)|) ≤ K∆

1/2
n and E(|˜̂A11(2)|) ≤

K∆
1/2
n for all (u, v). These two results together imply

˜̂
A11(1) = o(∆

−1/4
n ) and

˜̂
A11(2) = o(∆

−1/4
n ), which

yields the result.

Proof of (65) for w = 2

We proceed similarly to Step 6 on page 548 of Aı̈t-Sahalia and Jacod (2014). First, observe that we have

Â12− Ã12 =
˜̂
A12(1) +

˜̂
A12(2) with

˜̂
A12(1) =

(2kn−1)∧[T/∆n]∑
i=2

(
(i−1)∑
m=1

3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)

ζgh(u)ni−m

)
ζab(v)ni ,

˜̂
A12(2) =

[T/∆n]∑
i=[T/∆n]−2kn+2

(
(i−1)∧(2kn−1)∑

m=1

( 3

2k3
n

(2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)

−
(2kn−m−1)∑

j=0

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)
ζgh(u)ni−m

)
ζab(v)ni .

It is easy to see that the quantity

κm,ni =
3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)

is Fni−m−1 measurable and bounded by λ̃nu,v. Let

κni =

(i−1)∑
m=1

3

2k3
n

( (2kn−m−1)∧(i−m−1)∑
j=0∨(i+2kn−1−m−[T/∆n])

(∂ghH∂abG)(Cni−1−j−m)ε(u)nj ε(v)nj+m

)
ζgh(u)ni−m.

It follows that κni is Fni−1-measurable. We have

E(|κm,ni |z
∣∣F0) ≤ (λ̃nu,v)

z
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|E(ζ(u)ni−m|Fi−m−1)| ≤

K
√

∆n if u = 1

K∆n if u = 2
, E(‖ζ(u)ni−m‖z|Fi−m−1) ≤

Kz if u = 1

Kz∆
z/2
n if u = 2

Using Lemma 5, we deduce that for z ≥ 2,

E(|κni |z) ≤

Kz(λ̃
n
u,v)

zk
z/2
n if u = 1

Kz(λ̃
n
u,v)

z/k
z/2
n if u = 2

≤

Kz/k
−3z/2
n if v = 1

Kzk
−z/2
n if v = 2

Using the above result, and similarly to step 6 on page 548 of Aı̈t-Sahalia and Jacod (2014), we obtain that

1

∆
1/4
n

˜̂
A12(1)

P⇒ 0. A similar argument yields 1

∆
1/4
n

˜̂
A12(2)

P⇒ 0, which completes the proof of (65) for w = 2.

Proof of (66) for w = 1

Define

Θ(u, v)
(C),i,n
0 =

3

2k3
n

2kn−1∑
j=0

(
(∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)

)
ε(u)nj ε(v)nj .

By Taylor expansion, the polynomial growth assumption on H and G and using (45) with Z = c, we have∣∣∣E((∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)
∣∣Fni−2kn

)∣∣∣ ≤ K(kn∆n) ≤ K
√

∆n for j = 0, . . . , 2kn − 1

E(|(∂ghH∂abG)(Cni−j−1)− (∂ghH∂abG)(Cni−2kn)|q|Fni−2kn)| ≤ K(kn∆n)q/2 ≤ K∆q/4
n for q ≥ 2

Next, observe that Θ(u, v)
(C),i,n
0 is Fni−1 -measurable and satisfies |Θ(u, v)

(C),i,n
0 | ≤ λ̃nu,v, |E

(
Θ(u, v)

(C),i,n
0 |Fni−2kn

)
| ≤

K∆
1/2
n λ̃nu,v and E

(
|Θ(u, v)

(C),i,n
0 |q

∣∣Fni−2kn

)
≤ Kq∆

q/4
n (λ̃nu,v)

q where the latter follows from the Hölder in-

equality. We aim to prove that

Ê =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0 ζ(u)n,ghi ζ(v)n,abi

]

converges to zero in probability for any H, G, g, h, a, and b with u, v = 1, 2.

To show this result, we first introduce the following quantities:

Ê(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0 E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

]

Ê(2) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0

(
ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

)]
,

with Ê = Ê(1) + Ê(2). By Cauchy-Schwartz inequality, we have

E(|ζ(u)n,ghi ζ(v)n,abi |q) ≤ (λ̂nu,v)
q/2,where λ̂nu,v =


K if (u, v) = (1, 1)

K∆n if (u, v) = (1, 2), (2, 1)

K∆2
n if (u, v) = (2, 2)
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Since ζ(u)n,ghi ζ(v)n,abi is Fni -measurable, the martingale property of ζ(u)n,ghi ζ(v)n,abi −E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

implies, for all (u, v),

E(|Ê(2)|2) ≤ K∆−3/2
n (∆1/4

n λ̃nu,v)
2λ̂nu,v ≤ K∆n.

The latter inequality implies Ê(2)
P⇒ 0 for all (u, v). It remains to show that Ê(1)

P⇒ 0.

We remind some bounds under Assumption 2, see (B.83) in Aı̈t-Sahalia and Jacod (2014),

|E(ζ(1)n,ghi ζ(2)n,abi |Fni−1)| ≤ K∆n, (68)

|E(ζ(1)n,ghi ζ(1)n,abi |Fni−1)−
(
Cn,gai−1 C

n,hb
i−1 + Cn,gbi−1 C

n,ha
i−1

)
| ≤ K∆1/2

n , (69)

|E(ζ(2)n,ghi ζ(2)n,abi |Fni−1 − C
n,gh,ab

i−1 ∆n)| ≤ K∆3/2
n (

√
∆n + ηni ). (70)

Case (u, v) ∈ {(1, 2), (2, 1)}. By (68) we have

E(|Ê(1)|) ≤ K T

∆n

1

∆
1/4
n

(∆1/4
n λ̃nu,v∆n) ≤ K∆1/2

n so Ê(1)
P⇒ 0.

Case (u, v) ∈ {(1, 1), (2, 2)}. Set

Ê′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0 V ni−2kn

]

Ê′′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0

(
V ni−1 − V ni−2kn

)]

Ê′′′(1) =
1

∆
1/4
n

[
[T/∆n]∑
i=2kn

Θ(u, v)
(C),i,n
0

(
E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)− V ni−1

)]

where

V ni−1 =


Cn,gai−1 C

n,hb
i−1 + Cn,gbi−1 C

n,ha
i−1 if (u, v) = (2, 2)

C
n,gh,ab

i−1 ∆n if (u, v) = (1, 1)

0 otherwise

Note that we have Ê(1) = Ê′(1) + Ê′′(1) + Ê′′′(1). Using (69) and (70), it can be shown that

E(|Ê′′′(1)|) ≤

K
1

∆
5/4
n

(∆
1/4
n λ̃nu,v)∆

1/2
n if (u, v) = (1, 1)

K 1

∆
5/4
n

(∆
1/4
n λ̃nu,v)∆

3/2
n if (u, v) = (2, 2)

≤ K∆1/2
n in all cases.

Next, we prove Ê′(1)
P⇒ 0. To this end, write

Ê′(1) =
1

∆
1/4
n

[
[T/∆n]−2kn+1∑

i=1

Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

]
.

The fact that the summand in the last sum is Fni+2kn−2-measurable and lemma B.8 in Aı̈t-Sahalia and Jacod

(2014) imply that it is sufficient to show

1

∆
1/4
n

[
[T/∆n]−2kn+1∑

i=1

|E(Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

|Fni−1)|

]
P⇒ 0 and
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2kn − 2

∆
1/2
n

[
[T/∆n]−2kn+1∑

i=1

E
(
|Θ(u, v)

(C),i−1+2kn,n
0 V(i−1)∆n

)|2
)]
⇒ 0.

The first result readily follows from the inequality

|E(Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

|Fni−1)| ≤

K∆
1/2
n λ̃nu,v if (u, v) = (1, 1)

K∆
1/2
n λ̃nu,v∆n if (u, v) = (2, 2)

≤ K∆3/2
n in all cases

while the second is a direct consequence of

E(|Θ(u, v)
(C),i−1+2kn,n
0 V(i−1)∆n

|2) ≤

K∆
1/2
n (λ̃nu,v)

2 if (u, v) = (1, 1)

K∆
1/2
n (λ̃nu,v)

2∆2
n if (u, v) = (2, 2)

≤ K∆5/2
n in all cases.

Finally, to prove that Ê′′(1)
P

=⇒ 0, we use the fact that

E(|Θ(u, v)
(C),i,n
0

(
V(i−1)∆n

− V(i−2kn)∆n

)
|) ≤ E(|Θ(u, v)

(C),i,n
0 |2)1/2E(|V(i−1)∆n

− V(i−2kn)∆n
|2)1/2

≤

K∆
1/2
n λ̃nu,v if (u, v) = (1, 1)

K∆
1/4
n λ̃nu,v∆n∆

1/4
n if (u, v) = (2, 2)

,

which follows by the Cauchy-Schwartz inequality and earlier bounds. In particular, successive conditioning

together with Assumption 2 imply that for (u, v) = (1, 1) and (2, 2), E(|V(i−1)∆n
− V(i−2kn)∆n

|2) ≤ ∆
1/2
n .

Proof of (66) for w = 2

Our aim here is to show that

Ê(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

(
2kn−1∑
m=1

( 3

2k3
n

2kn−m−1∑
j=0

[
(∂ghH∂abG)(cni−j−m−1)− (∂ghH∂abG)(cni−2kn)

]
ε(u)nj ε(v)nj+m

)
×

ζ(u)n,ghi−m

)
ζ(v)n,abi

P
=⇒ 0.

For this purpose, we introduce some new notation. For any 0 ≤ m ≤ 2kn − 1, set

Θ(u, v)(C),i,n
m =

3

2k3
n

2kn−m−1∑
j=0

[
(∂ghH∂abG)(cni−j−m−1)− (∂ghH∂abG)(cni−2kn)

]
ε(u)nj ε(v)nj+m

ρ(u, v)(C),i,n,gh =

2kn−1∑
m=1

Θ(u, v)(C),i,n
m ζ(u)n,ghi−m.

It is easy to see that Θ(u, v)
(C),i,n
m is Fni−m−1 measurable and satisfies, by Hölder inequality,

|Θ(u, v)(C),i,n
m | ≤ λ̃nu,v and E

(
|Θ(u, v)(C),i,n

m |q
∣∣Fni−2kn

)
≤ Kq∆

q/4
n (λ̃nu,v)

q.
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Lemma 5 implies that for q ≥ 2,

E(|ρ(u, v)(C),i,n,gh|q) ≤

Kq(∆
1/4
n λ̃nu,v)

qk
q/2
n if u = 1

Kq(∆
1/4
n λ̃nu,v)

q/k
q/2
n if u = 2

≤

Kq/k
2q
n if v = 1

Kqk
q
n if v = 2

. (71)

Set

Ê′(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

ρ(u, v)(C),i,n,ghE(ζ(v)n,abi |Fni−1),

Ê′′(2) =
1

∆
1/4
n

[T/∆n]∑
i=2kn

ρ(u, v)(C),i,n,gh(ζ(v)n,abi − E(ζ(v)n,abi |Fni−1)).

The martingale increments property implies E(|Ê′′(2)|2) ≤ K∆
1/2
n in all the cases, which in turn implies

Ê′′(2)
P

=⇒ 0. Next, using the bounds on ρ(u, v)(C),i,n,gh and similarly to step 7 on page 549 of Aı̈t-Sahalia

and Jacod (2014), we obtain that Ê′(2)
P

=⇒ 0.

Return to the proof of Theorem 1

So far, we have proved that

1

∆
1/4
n

(
̂[H(C), G(C)]

(A1)

T −
d∑

g,h,a,b=1

2∑
u,v=1

A11(H, gh, u;G, ab, v)nT +A12(H, gh, u;G, ab, v)nT

+A12(G, ab, v;H, gh, u)nT

)
P−→ 0.

We next show that,

1

∆
1/4
n

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ
′

ab(v)ni
P

=⇒ 0, ∀ (u, v) (72)

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)−

∫ T

0

(∂ghH∂abG)(Ct)C
gh,ab

t dt
)

P
=⇒ 0 when (u, v) = (2, 2) (73)

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)− 3

θ2

∫ T

0

(∂ghH∂abG)(Ct)(C
ga
t Chbt + Cgbt C

ha
t )dt

)
P

=⇒ 0 when (u, v) = (1, 1)

(74)

1

∆
1/4
n

A11(H, gh, u;G, ab, v)
P

=⇒ 0 when (u, v) = (1, 2), (2, 1) (75)

which will in turn imply

1

∆
1/4
n

(
̂[H(C), G(C)]

(A)

T − [H(C), G(C)]T −
3

2k3
n

d∑
g,h,a,b

2∑
u,v=1

[T/∆n]∑
i=2kn

[
(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ

′′

ab(v)ni

(76)

+ (∂abH∂ghG)(Cni−2kn)ρab(v, u)ni ζ
′′

gh(v)ni

])
P

=⇒ 0. (77)
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(72) can be proved easily following steps similar to step 7 on page 549 of Aı̈t-Sahalia and Jacod (2014) and

using the bounds of ρ(u, v)n,ghi in (71) . To show (73),(74) and (75), we set

A11(H, gh, u;G, ab, v) = λ(u, v)n0

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)ζ(u)n,ghi ζ(v)n,abi .

Then it holds that,

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)−A11(H, gh, u;G, ab, v)

)
P⇒ 0.

This result can be proved following similar steps as for (65) in case w = 1 by replacing Θ(u, v)
(C),i,n
0

by λ(u, v)n0 ((∂ghH∂abG)(Ci−1) − (∂ghH∂abG)(Ci−2kn)), which has the same bounds as the former. Next,

decompose A11 as follows,

A11(H, gh, u;G, ab, v) = λ(u, v)n0

[
[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1

+

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)
(
E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)− V ni−1

)

+

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)
(
ζ(u)n,ghi ζ(v)n,abi − E(ζ(u)n,ghi ζ(v)n,abi |Fni−1)

)]
.

We follow the proof of (66) for w = 1, and we replace Θ(u, v)
(C),i,n
0 by λ(u, v)n0 (∂ghH∂abG)(Ci−1), which

satisfies only the condition |λ(u, v)n0 (∂ghH∂abG)(Ci−1)| ≤ λ̃nu,v. This calculation shows that the last two

terms in the above decomposition of vanish at a rate slower that ∆
1/4
n . Therefore,

1

∆
1/4
n

(
A11(H, gh, u;G, ab, v)− λ(u, v)n0

( [T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1

))
⇒ 0.

As a consequence, for (u, v) = (1, 2) and (2, 1),

1

∆
1/4
n

A11(H, gh, u;G, ab, v)⇒ 0.

The results follow from the following observation,

1

∆
1/4
n

(
λ(u, v)n0

( d∑
g,h,a,b=1

[T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1(u, v)
)
− 3

θ2

∫ T

0

(∂ghH∂abG)(Ct)(C
ga
t Chbt + Cgbt C

ha
t )dt

)
⇒ 0,

for (u, v) = (2, 2)

1

∆
1/4
n

(
d∑

g,h,a,b=1

λ(u, v)n0

( [T/∆n]∑
i=2kn

(∂ghH∂abG)(Ci−1)V ni−1(u, v)
)
− [H(C), G(C)]T

)
⇒ 0, for (u, v) = (1, 1).

Set

ξ(H, gh, u;G, ab, v)ni =
1

∆
1/4
n

(∂ghH∂abG)(Cni−2kn)ρgh(u, v)ni ζ
′′
ab(v)ni ,
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Z(H, gh, u;G, ab, v)nt = ∆1/4
n

[t/∆n]∑
i=2kn

ξ(H, gh, u;G, ab, v)ni .

Notice that (76) implies

1

∆
1/4
n

(
̂[H(C), G(C)]

(A)

T −[H(C), G(C)]T

)
L
=

d∑
g,h,a,b=1

2∑
u,v=1

1

∆
1/4
n

(
Z(H, gh, u;G, ab, v)nT+Z(H, ab, v;G, gh, u)nT

)
.

(78)

Next, observe that to derive the asymptotic distribution of
(

̂[H1(C), G1(C)]
(A)

T , . . . , ̂[Hκ(C), Gκ(C)]
(A)

T

)
, it

suffices to study the joint asymptotic behavior of the family of processes 1

∆
1/4
n

Z(H, gh, u;G, ab, v)nT .

It is easy to see that ξ(H, gh, u;G, ab, v)ni are martingale increments, relative to the discrete filtration

(Fni ). Therefore, by Theorem 2.2.15 of Jacod and Protter (2012), to obtain the joint asymptotic distri-

bution of 1

∆
1/4
n

Z(H, gh, u;G, ab, v)nT , it is enough to prove the following three properties, for all t > 0, all

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′) and all martingales N which are either bounded and orthogonal

to W , or equal to one component W j ,

A
(

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)
)n
t

:=

[t/∆n]∑
i=2kn

E(ξ(H, gh, u;G, ab, v)ni ξ(H
′, g′h′, u′;G′, a′b′, v′)ni |Fni−1)

P
=⇒ A

(
(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)

)
t

[t/∆n]∑
i=2kn

E(|ξ(H, gh, u;G, ab, v)ni |4|Fni−1)
P

=⇒ 0

B(N ;H, gh, u;G, ab, v)nt :=

[t/∆n]∑
i=2kn

E(ξ(H, gh, u;G, ab, v)ni ∆n
i N |Fni−1)

P
=⇒ 0.

Using the polynomial growth assumption on Hr and Gr, the second and the third results can be proved by

a natural extension to the multivariate case of (B.105) and (B.106) in Aı̈t-Sahalia and Jacod (2014).

Define

V a
′b′

ab (v, v′)t =


(Caa

′

t Cbb
′

t + Cab
′

t Cba
′

t ) if (v, v′) = (1, 1)

C
ab,a′b′

t if (v, v′) = (2, 2)

0 otherwise,

and

V
g′h′

gh (u, u′)t =


(Cgg

′

t Chh
′

t + Cgh
′

t Chg
′

t ) if (u, u′) = (1, 1)

C
gh,g′h′

t if (u, u′) = (2, 2)

0 otherwise.

Once again using the polynomial growth assumption on Hr and Gr and following steps similar to the proof

of (B.104) in Aı̈t-Sahalia and Jacod (2014), one can show that

A
(

(H, gh, u;G, ab, v),(H ′, g′h′, u′;G′, a′b′, v′)
)
t

=

M(u, v;u′, v′)

∫ t

0

(∂ghH∂abG∂g′h′H∂a′b′G)(Cs)V
a′b′

ab (v, v′)sV
g′h′

gh (u, u′)sds,

56



with

M(u, v;u′, v′) =


3/θ3 if (u, v;u′, v′) = (1, 1; 1, 1)

3/4θ if (u, v;u′, v′) = (1, 2; 1, 2), (2, 1; 2, 1)

151θ/280 if (u, v;u′, v′) = (2, 2; 2, 2)

0 otherwise.

Therefore, we have

A
(

(H, gh, u;G, ab, v), (H ′, g′h′, u′;G′, a′b′, v′)
)
T

=



3
ν3

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)(C

gg′

t Chh
′

t + Cgh
′

t Chg
′

t )(Caa
′

t Cbb
′

t + Cab
′

t Cba
′

t )dt if (u, v;u′, v′) = (1, 1; 1, 1)

3
4ν

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)(C

gg′

t Chh
′

t + Cgh
′

t Chg
′

t )C
ab,a′b′

t dt if (u, v;u′, v′) = (1, 2; 1, 2)

3
4ν

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)(C

aa′

t Cbb
′

t + Cab
′

t Cba
′

s )t
gh,g′h′

s dt if (u, v;u′, v′) = (2, 1; 2, 1)

151ν
280

∫ T
0

(∂ghH∂abG∂g′h′H ′∂a′b′G
′)(Ct)C

ab,a′b′

s C
gh,g′h′

t dt if (u, v;u′, v′) = (2, 2; 2, 2)

0 otherwise.

Using (78), we deduce that the asymptotic covariance between ̂[Hr(C), Gr(C)]
(A)

T and ̂[Hs(C), Gs(C)]
(A)

T is

given by

d∑
g,h,a,b=1

d∑
g′,h′,a′,b′=1

2∑
u,v,u′,v′=1

(
A
(

(Hr, gh, u;Gr, ab, v), (Hs, g
′h′, u′;Gs, a

′b′, v′)
)
T

+A
(

(Hr, gh, u;Gr, ab, v), (Hs, a
′b′, v′;Gs, g

′h′, u′)
)
T

+A
(

(Hr, ab, v;Gr, gh, u), (Hs, g
′h′, u′;Gs, a

′b′, v′)
)
T

+A
(

(Hr, ab, v;Hr, gh, u), (Hs, a
′b′, v′;Gs, g

′h′, u′)
)
T

)
.

After some simple calculations, the above expression can be rewritten as

d∑
g,h,a,b=1

d∑
j,k,l,m=1

(
6

θ3

∫ T

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
(Cgjt C

hk
t + Cgkt Chjt )(Calt C

bm
t + Camt Cblt )

+ (Cajt C
bk
t + Cakt Cbjt )(Cglt C

hm
t + Cgmt Chlt )

]
dt

+
151θ

140

∫ t

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
C
gh,jk

C
ab,lm

+ C
ab,jk

C
gh,lm

]
dt

+
3

2θ

∫ t

0

(
∂ghHr∂abGr∂jkHs∂lmGs(Ct)

)[
(Cgjt C

hk
t + Cgkt Chjt )C

ab,lm

t + (Calt C
bm
t + Camt Cblt )C

gh,jk

t

+ (Cglt C
hm
s + Cgmt Chls )C

ab,jk

t + (Cajt C
bk
t + Cakt Cbjt )C

gh,lm

t

]
dt

)
,

which completes the proof.

A.2 Proof of Theorem 2

Using the polynomial growth assumption on Hr, Gr, Hs and Gs and Theorem 2.2 in Jacod and Rosenbaum

(2012), one can show that

6

θ3
Ω̂
r,s,(1)
T

P−→ Σ
r,s,(1)
T .
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Next, by equation (3.27) in Jacod and Rosenbaum (2012), we have

3

2θ
[Ω̂
r,s,(3)
T − 6

θ
Ω̂
r,s,(1)
T ]

P−→ Σ
r,s,(3)
T .

Finally, to show that

151θ

140

9

4θ2
[Ω̂
r,s,(2)
T +

4

θ2
Ω̂
r,s,(1)
T − 4

3
Ω̂
r,s,(3)
T ]

P−→ Σ
r,s,(2)
T ,

we first observe that as in Step 1, the approximation error induced by replacing Ĉni by Ĉ
′n
i is negligible.

For 1 ≤ g, h, a, b, j, k, l,m ≤ d and 1 ≤ r, s ≤ d, we define

Ŵn
T =

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂ghHs∂lmGs)(Ĉ
n
i )λn,ghi λn,jki λn,abi+2kn

λn,lmi+2kn

ŵ(1)ni = (∂ghHr∂abGr∂jkHs∂lmGs)(C
n
i )E(λn,ghi λn,jki λn,abi+2kn

λn,lmi+2kn
|Fni )

ŵ(2)ni = (∂ghHr∂abGr∂jkHs∂lmGs)(C
n
i )(λn,ghi λn,jki λn,abi+2kn

λn,lmi+2kn
− E(λn,ghi λn,jki λn,abi+2kn

λn,lmi+2kn
|Fni ))

ŵ(3)ni =
(

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )− (∂ghHr∂abGr∂jkHs∂lmGs)(C

n
i )
)
λn,ghi λn,jki λn,abi+2kn

λn,lmi+2kn

Ŵ (u)nt =

[T/∆n]−4kn+1∑
i=1

ŵi(u), u = 1, 2, 3.

Note that we have Ŵn
t = Ŵ (1)nt + Ŵ (2)nt + Ŵ (3)nt . By Taylor expansion and using repeatedly the bound-

edness of Ct, we have

|ŵ(3)ni | ≤ (1 + ‖νni ‖4(p−1))‖νni ‖‖λni ‖2‖λni+2kn‖
2,

which implies E(|ŵ(3)ni |) ≤ K∆
5/4
n and Ŵ (3)nt

P−→ 0. Using Cauchy-Schwartz inequality and the bound

E(‖λni ‖q|Fni ) ≤ K∆
q/4
n , we have E(|ŵ(2)ni |2) ≤ K∆2

n. Observing furthermore that ŵ(2)ni is Fi+4kn−measurable,

we use Lemma B.8 in Aı̈t-Sahalia and Jacod (2014) to show that Ŵ (2)nt
P−→ 0. Also, define

wni = (∂ghHr∂abGr∂jkHs∂lmGs)(C
n
i )
[ 4

k2
n∆n

(Cn,gai Cn,hbi + Cn,gbi Cn,hai )(Cn,jli Cn,kmi + Cn,jmi Cn,kli )

+
4

3
(Cn,jli Cn,kmi + Cn,jmi Cn,kli )C

n,gh,ab

i +
4

3
(Cn,gai Cn,hbi + Cn,gbi Cn,hai )C

n,jk,lm

i +
4(k2

n∆n)

9
C
n,gh,ab

i C
n,jk,lm

i

]
,

Wn
T = ∆n

[T/∆n]−4kn+1∑
i=1

wni .

The cadlag property of c and C, kn
√

∆n −→ θ, and the Riemann integral argument imply Wn
T

P−→ WT

where

WT =

∫ T

0

(∂ghHr∂abGr∂jkHs∂lmGs)(Ct)
[ 4

θ2
(Cgat Chbt + Cgbt C

ha
t )(Cjlt C

km
t + Cjmt Cklt ) +

4

3
(Cjlt C

km
t + Cjmt Cklt )C

gh,ab

t

+
4

3
(Cgat Chbi + Cgbt C

ha
t )C

jk,lm

t +
4θ2

9
C
gh,ab

t C
jk,lm

t

]
dt.

In addition, by Lemma 4, we have

E(|Ŵ (1)nT −Wn
T |) ≤ ∆nE

(
[T/∆n]−4kn+1∑

i=1

(∆1/8
n + ηi,4kn)

)
.
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Hence, by the third result of Lemma 6 we have Ŵn
T

P−→Wt, from which it can be deduced that

9

4θ2

[
Ŵ (1)nT +

4

k2
n

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )[Cni (jk, lm)Cni (gh, ab)]

− 2

kn

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )Cni (gh, ab)λn,jki λn,lmi

− 2

kn

[T/∆n]−4kn+1∑
i=1

(∂ghHr∂abGr∂jkHs∂lmGs)(Ĉ
n
i )Cni (jk, lm)λn,ghi λn,abi

]
P−→
∫ T

0

(∂ghHr∂abGr∂jkHs∂lmGs)(Ct)C
gh,ab

t C
jk,lm

t dt.

The result follows from the above convergence, a symmetry argument, and straightforward calculations.
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B Tables and Figures
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Figure 1: Monthly R2 of two return factor models (R̂2
Y j): the CAPM (the blue dotted line) and the Fama-

French three factor model (the red solid line). Stocks are represented by tickers (see Table 8 for full stock
names).
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Figure 2: Monthly R2 of two return factor models (R̂2
Y j): the CAPM (the blue dotted line) and the Fama-

French three factor model (the red solid line). Stocks are represented by tickers (see Table 8 for full stock
names).
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Figure 3: The network of dependencies in total IVs. The color and thickness of each line is proportional
to the estimated value of ρZi,Zj, the quadratic-covariation based correlation between the IVs, defined in
equation (7) (red and thick lines indicate high correlation). We simultaneously test 435 null hypotheses of
no correlation, and the lines are only plotted when the null is rejected.

Figure 4: The network of dependencies in residual IVs when the market variance is the only IV factor. The
color and thickness of each line is proportional to the estimated value of ρresidZi,Zj the quadratic-covariation
based correlation between the IVs, defined in equation (8), of each pair of stocks (red and thick lines indicate
high correlation). We simultaneously test 435 null hypotheses of no correlation, and the lines are only plotted
when the null is rejected.
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Figure 5: The network of dependencies in residual IVs with ten IV factors: the market variance and the
variances of nine industry ETFs. The color and thickness of each line is proportional to the estimated value
of ρresidZi,Zj the quadratic-covariation based correlation between the IVs, defined in equation (8), of each pair
of stocks (red and thick lines indicate high correlation). We simultaneously test 435 null hypotheses of no
correlation, and the lines are only plotted when the null is rejected.
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