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Abstract

This paper investigates models of semiparametric conditional moment restric-

tions where the restrictions contain a nonparametric function of a single-index

as a nuisance parameter. It is assumed that this nonparametric function and the

single-index are identi�ed and estimated as a �rst step prior to the estimation

of the parameter of interest under conditional moment restrictions. This paper

�nds that the estimated parameter of interest is robust to the quality of the esti-

mated single-index component. More speci�cally, based on symmetrized nearest

neighborhood estimation of this nonparametric function, this paper shows that

the in�uence of the estimated single-index is asymptotically negligible even when

the estimated single-index follows cube-root asymptotics. Using this �nding, this

paper proposes a method to construct bootstrap con�dence sets that have three

characteristics. First, the con�dence sets are asymptotically valid in the presence

of n1=3-converging single-index components. Second, the con�dence sets accom-

modate conditional heteroskedasticity. Third, the method is computationally

easy as it does not require re-estimation of the single-index for each bootstrap

sample. Some results from Monte Carlo simulations are presented and discussed.
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1 Introduction

In empirical researches of labor economics or development economics, a number of variables

of demographic characteristics are used to alleviate various endogeneity problems. However,

using too many covariates in nonparametric estimation tends to worsen the quality of the

empirical results signi�cantly. A promising approach to deal with this situation would be to

introduce a single-index restriction. With a single-index restriction, one can retain �exibility

in the speci�cation of the regression function while avoiding the curse of dimensionality. Not

surprisingly, the single-index restriction has long been actively investigated in the literature

of statistics and econometrics for this reason. For example, Klein and Spady (1993) and

Ichimura (1993) proposedM -estimation approaches to estimate the single-index coe¢ cients.

An alternative approach is the approach of average derivatives pioneered by Stoker (1986)

and Powell, Stock and Stoker (1989). See also Härdle and Tsybakov (1993), Horowitz and

Härdle (1996), and Hristache, Juditsky and Spokoiny (2001). A single-index restriction can

be tested using various methods. To name but a few, see Fan and Li (1996), Stute and Zhu

(2005) and Escanciano and Song (2008) and references therein.

Most literatures deal with a single-index model as an isolated object, whereas empirical

researchers often face the necessity to use the single-index speci�cation in the context of

estimating a larger model. A prototypical example is a structural model in labor economics

that requires a prior estimation of components such as wage equations. When single-index

components are plugged in a larger context of extremum estimation, the introduction of

single-index restrictions do not improve the rate of convergence of an extremum estimator

which already achieves the parametric rate of
p
n: However, the use of single-index restric-

tions in such a situation have several own merits. The use of a single-index restriction requires

weaker assumptions on the nonparametric function and on the kernel function. When the

nonparametric function is de�ned on a space of a large dimension, stronger conditions on

the nonparametric function and higher-order kernels are usually required. (See Hristache,

Juditsky and Spokoiny (2001) for more details.)

This paper focuses on semiparametric conditional moment restrictions where the restric-

tions contain nonparametric functions of single-indices that are identi�ed and estimated prior

to the estimation of the parameter of interest. Surprisingly, this paper �nds that the in�u-

ence of the estimated single-indices is asymptotically negligible, and that this is true even

when the estimated single-indices follow cube-root asymptotics. In other words, the quality

of the estimated parameter of interest is robust to the quality of the �rst step single-index

estimators. To investigate this phenomenon closely in the light of Newey (1994), this paper

considers functionals that involve conditional expectations where the conditioning variable

2



involves an unknown parameter. In this situation, we show that the �rst order Fréchet

derivative of the functional with respect to the unknown parameter is zero. This means

that the in�uence of the parameter is negligible as long as the estimator has a convergence

rate o(n�1=4): Therefore, the phenomenon has a generic nature, although this paper uses a

speci�c nonparametric estimation method for concreteness.

Utilizing this �nding, this paper proposes a bootstrap procedure that has three char-

acteristics. First, the bootstrap procedure is valid even when the single-index component

follows cube-root asymptotics. This is interesting in the light of the fact that bootstrap

con�dence sets of semiparametric estimators that follow cube-root asymptotics are invalid.

(Abrevaya and Huang (2005)). Nevertheless, this paper�s proposal a¢ rms that this is no

longer a problem when the n1=3-converging single-index estimator enters as a plug-in �rst

step estimator. Second, the bootstrap method accommodates conditional heteroskedastic-

ity. Note that conditional heteroskedascity is natural for models under conditional moment

restrictions. Third, the bootstrap method does not require re-estimation of the single-index

component or the nonparametric function for each bootstrap sample. Hence it is computa-

tionally attractive when the dimension of the single-index coe¢ cient vector is large and its

estimation involves numerical optimization. This is indeed the case when the single-index is

estimated through maximum score estimation and the number of covariates is large.

While the asymptotic negligibility of the n1=3-converging, estimated single-index has a

generic nature, for the sake of concreteness, this paper�s result is built on a uniform Bahadur

representation of symmetrized nearest neighborhood estimators over function spaces that is

established in the appendix. A Bahadur representation of such type was originally found

by Stute and Zhu (2005) who established a non-uniform result in a restrictive context.

This paper puts their �nding in a broader perspective and shows that the phenomenon

arises even when the single-index component has a convergence rate slower than n�1=2. The

representation is also useful for many other purposes, for example, for analyzing various

semiparametric speci�cation tests.

The paper is organized as follows. In the next section, we introduce models of conditional

moment restrictions that have nonparametric functions of single-index components. Section

3 introduces an estimation method and establishes the asymptotic distribution of the esti-

mator. Section 4 is devoted to the bootstrap method that this paper proposes. Section 5

presents and discusses Monte Carlo simulation results. Section 6 concludes. Technical proofs

are relegated to the Appendix. In the Appendix, a general uniform Bahadur representation

of symmetrized nearest neighborhood estimators is presented.
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2 Semiparametric Conditional Moment Restrictions

In this section, we de�ne the scope of this paper by introducing models under semiparametric

conditional moment restrictions. Let fSigni=1 be an observable random sample from a distri-
bution P of a random vector S = (S1;W1) taking values in RdS1+dW1 : Let S1 be constituted

by (possibly overlapping) subvectors Y; X; and V; which take values in RdY ; RdX ; and RdV

respectively. De�ne a semiparametric RdY -valued function:

�(X; �0) � E [Y j�(X; �0)] ; for some �0 2 Rd� (1)

where �(�; �0) is a real function known up to �0 2 Rd� : A prototypical example is a linear

index, �(X; �0) = X>�0: In this paper, we assume that the distribution of �(X; �0) is ab-

solutely continuous. Then, this paper focuses on the following type of conditional moment

restrictions:

E [�(V; �(X; �0); �0)jW ] = 0;

whereW = (W1; �(X; �0)); W1 being some observable random vector inRdW1 ; and �(�; �; �0) :
RdV +dY ! R is known up to an unknown �nite-dimensional parameter � 2 A � Rd� : The

function �� is often called a generalized residual function, reminiscent of a residual in the

regression.

In some situations, the parameter �0 in the single-index component is estimated jointly

with � in the GMM estimation. (See e.g. Ichimura (1993).) Such a situation is not of our

interest, because the main interest of this paper, i.e., the e¤ect of the estimation error in

�̂ upon the asymptotic covariance matrix of �̂; becomes irrelevant in this situation. Hence

this paper maintains the framework in which the object of interest is �0 and the single-index

component �(�; �) is a nuisance parameter that is identi�ed and estimated prior to the GMM
estimation step.

This paper�s framework is di¤erent from the literatures of conditional moment restrictions

with endogeneity on the nonparametric components. (See Ai and Chen (2003), and Newey

and Powell (2003) and references therein.) This paper assumes that the semiparametric

regression function � and the single-index coe¢ cient �0 are identi�ed and estimated as a �rst

step. Hence the framework does not encounter an ill-posed inverse problem while allowing

for endogeneity of �(X; �0). As we illustrate by examples below, this set-up is empirically

relevant in many situations.

One further extension that this paper�s set-up contains as compared to the existing

literature is that the instrumental variable W is only partially observed as it is allowed to

depend on �(X; �0): In some cases, it is more relevant to assume what we call single-index
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exogeneity, where exogeneity is required of some unknown combination of the components

in X, rather than all the components. In many practical situations of empirical researches,

con�rming exogeneity can be a delicate matter both in terms of theoretical reasoning and in

terms of empirical testing. In this situation, single-index exogeneity can be a more reasonable

assumption than exogeneity on the whole vector X: This paper�s framework accommodates

such a situation. In this paper, we assume that the single-index �(X; �0) inW is precisely the

same single-index that constitutes the conditioning variable in �: This speci�city is motivated

by some examples that we consider below and by the consideration that concreteness of the

set-up is preferable to an abstract generality given the space constraint of this paper. The

paper�s framework can be applied to a situation where W = (W1; ~�(W2; 0)); as long as ~� is

a known function up to an unknown �nite dimensional parameter 0 and this parameter 0
is identi�ed and estimated as a �rst step.

Example 1: Semiparametric Sample Selection Model with a Median Restriction:
Consider the following model:

Y � = �>0 Z + v and

D = 1fX>�0 � "g;

where the �rst equation is an outcome equation with Y � denoting the latent outcome variable

and Z a vector of covariates that a¤ect the outcome. The binary variable D represents the

selection of the variable into the observed data set, (Y; Z) is observed only when D = 1:

The incidence of selection is governed by a single index X>�0 of another set of covariates.

The variables v and " represent unobserved heterogeneity in the individual observation. We

assume that " can be correlated with X but maintains that

Med("jX) = 0:

In this model, we also assume that Z is independent of (v; ") conditional on the observable

component X>�0 in the selection mechanism. Therefore, an individual component of X can

be correlated with v: Note that in this case,

E
�
vjD = 1; Z;X>�0

�
=
E
�
v1fX>�0 � "gjX>�0

�
PfX>�0 � "jX>�0g

= �(X>�0); say.

Hence conditional on the event that the sample is selected, we write the following model for

observed data set (Di = 1),

Y = �>0 Z + �(X>�0) + u;
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where u satis�es that E[ujD = 1; Z;X>�0] = 0 and � is an unknown nonparametric function.

This model can be estimated by using the method of Robinson (1988). First observe that

Yi � �Y (X
>
i �0) = �>0 fZi � �Z(X

>
i �0)g+ �i (2)

where E[�jD = 1; Z;X>�0] = 0; �Y (�) = E[Y jD = 1; X>�0 = �]; and �Z(�) = E[ZjD =

1; X>�0 = �]: Note that we do not impose a single-index restriction on nonparametric func-
tions E[Y jD = 1; X = �] and E[ZjD = 1; X = �]: The single-index restictions in this situation
naturally stem from the selection mechanism D and the assumption that Z is independent

of (v; ") conditional on X>�0: Then, the identifying restriction of �0 can be written as the

following conditional moment restriction:

E
�
fYi � �Y (X

>
i �0)g � �>0 fZi � �Z(X

>
i �0)gjDi = 1; Zi; X

>
i �0

�
= 0:

This model falls into the framework of this paper with Wi = (X
>
i �0; Zi).

In this situation, one may consider estimating �0 �rst using the maximum score estimation

and �Y and �Z and then plugging these in the moment restrictions to estimate �0: The

nuisance parameter estimator �̂ in the �rst step follows the cube-root asymptotics and it is

this paper�s main concern how the estimator a¤ects the estimator of �0: �

Example 2: Endogenous Binary Regressors with a Median Restriction: Consider
the following model:

Y = Z>�0 +D + "; and

D = 1fX>�0 � �g;

where " satis�es that E["jX>�0] = 0 and Med(�jX) = 0: Therefore, the index X>�0 plays

the role of the instrumental variable (IV). However, the IV exogeneity condition is weaker

than the assumptions used in the literature. First, the exogeneity is required only of the

single-index X>�0 not the whole vector X: In other words, some of the elements of the

vector X are allowed to be correlated with ": The researcher does not have to know which

combination of components in X will be exogenous. It is not assumed either that � and X

are independent. It only assumes a weaker condition that Med(�jX) = 0: The model allows
that the distribution of � depends on X in a certain way. The model also allows conditional

heteroskedasticity for ": In other words, we assume that E["2jX] is a function of X that is

an unknown form. In this case, we can write

E
�
Y � Z>�0 � PfD = 1jX>�0gjX>�0

�
= 0:
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Again, this conditional moment restriction is a special case of this paper�s framework with

W = X>�0: �

The main thesis of this paper can also be applied to a situation where the estimator is

explicitly de�ned as an estimated functional of data that involves a nonparametric function.

Examples include average derivative estimators (Stoke (1986)) and treatment e¤ect estima-

tors (Hirano, Imbens, and Ridder (2003)). Since the analysis in this case is simpler than the

case of this paper, we omit the development in this direction for brevity.

3 Estimation and Construction of Con�dence Sets

3.1 Estimation

In this section, we consider estimation of �(X; �0): First we estimate the single index �(X; �0)

to obtain �(X; �̂): The estimation of the coe¢ cient in the single-index has long been investi-

gated in many researches. There are researches that employed theM -estimation approach in

estimating �0. For example, see Klein and Spady (1993) and Ichimura (1993). An alternative

approach is the approach of average derivatives pioneered by Stoker (1986) and Powell, Stock

and Stoker (1989). See also Härdle and Tsybakov (1993), Horowitz and Härdle (1996), and

Hristache, Juditsky and Spokoiny (2001).

In this paper, following Stute and Zhu (2005), we reparametrize the nonparametric

function � by using the probability integral transform of the single-index. More specif-

ically, let F� be the distribution function of �(X; �) and de�ne U� = F�(�(X; �)) and

U = F�0(�(X; �0)): Based on this reparametrization, we consider a symmetrized nearest

neighborhood estimator of �: More speci�cally, de�ne

Ûn;j =
1

n

nX
i=1

1f�(Xi; �̂) � �(Xj; �̂)g:

Then, we consider using the following estimator:

�̂(Xj; �̂) =

Pn
i=1 YiKh

�
Ûn;i � Ûn;j

�
Pn

i=1Kh

�
Ûn;i � Ûn;j

� ; (3)

where Kh(u) = K(u=h)=h and K : [0; 1] ! R is a kernel function. This is a symmetrized

nearest neighborhood estimator proposed by Yang (1981). Since the probability integral

transform of �(X; �0) turns its density into a uniform density on [0; 1]; we could use constant
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1 in the denominator of the estimator �̂(Xj; �̂) in (3). However, this paper proposes using

the kernel density estimator in place of the true density in (3). This approach ensures

the uniform convergence of nonparametric regression estimator of E[Y jU = �] including the
boundary points of [0; 1]. (See Song (2008b)).

The use of probability integral transform has several merits. First, it simpli�es the

problem of choosing an appropriate kernel function. Note that the choice of a kernel function

eventually requires certain prior information about the density function of �(X; �0) which

depends on the unknown parameter �0: Second, the probability integral transform obviates

the need to introduce a trimming sequence. The trimming sequence is often required for

theoretical reasons (e.g. Ichimura (1993) and Klein and Spady (1993)), but there is not much

practical guidance for its choice. The use of the probability integral transform elliminates

such a nuisance altogether.

Suppose that we have a prior estimator �̂(X; �̂) of �(X; �) using the data set fYi; Xigni=1.
Then, following Domínguez and Lobato (2004), we can estimate � as follows:

�̂ = argmin
�2B

nX
j=1

(
nX
i=1

�(Vi; �̂(Xi; �̂); �)1fŴi � Ŵjg
)2

;

where Ŵj = (W1j; Ûn;j): In the following, we present the results of asymptotic properties of

the estimator �̂: We introduce the following assumptions:

Assumption 1: (i) The sample fSigni=1 is a random sample.

(ii) E[�(V; �(X; �0); �)jW ] = 0 a.s. if and only if � = �0 where �0 2int(B), B a compact set

in Rd� :

(iii) �(v; �; �) as a function of (�; �) 2 RdY�Rd� is second order continuously di¤erentiable in

(�; �) with derivatives ��(v; �; �); ��(v; �; �); ���(v; �; �); ���(v; �; �) and ���(v; �; �); such

that for some � > 0; E[sup�2Bjj~�(V; �(X; �0); �)jjp] <1; p > 4; for all ~� 2 f��; ��; ���; ���; ���g:

Assumption 2: The estimator �̂ satis�es that jj�̂ � �0jj = OP (n
�r) with r = 1

2
or 1

3
:

Assumption 3: (A) There exist � > 0 and C > 0 such that the following three conditions

hold.

(i) For each � 2 �(�) � f� 2 Rd� : jj� � �0jj < �g; �(X; �) is a continuous random variable,

and

sup�2�(�)jF�(�1)� F�(�2)j � Cj�1 � �2j; for all �1; �2 2 R.

(ii)(a) The conditional density f(sju) of S given U = u with respect to a �-�nite measure

is L times continuously di¤erentiable in u; L > 8; with derivatives f (j)(sju) such that
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sup(s;u)2S�[0;1]jf (j)(sju)=f(s)j < C where f(s) is the density of S with respect to a �-�nite

measure and S is the support of S:
(b) For each � 2 �(�); the conditional density f�(sju1; u2) of S given (U�; U) = (u1; u2) with
respect to a �-�nite measure satis�es that for all � > 0

sup(s;u2)2S�[0;1]jf�(sju1 � �; u2)� f�(sju1 + �; u2)j � C��(s);

where �� : R
dS ! R+ is such that sup(s;�)2S��(�)j��(s)=f(s)j < C:

(B) EjY jp < 1, p > 4; and E[Y jU = �] is bounded and twice continuously di¤erentiable
with bounded derivatives.

(C) For some strictly bounded map G : R! [0; 1] and a constant C > 0;

j(G � �)(x; �1)� (G � �)(x; �2)j � Cjj�1 � �2jj

for all �1; �2 2 �(�):

Assumption 1 is standard in models of conditional moment restrictions. Assumption 2

requires that the estimator �̂ has the convergence rate of either n�1=2 or n�1=3: The moment

conditions Assumption 3A(ii) requires more explanation as it does not appear in the litera-

ture often. This assumption is introduced to control the behavior of conditional expectations

given ��(X) when � is perturbed around �0: This assumtion does not require that the dis-

tribution of (V;W; Y ) be absolutely continuous. When the vector is discrete, we may view

f�(w1; y; yju) as a conditional probability mass function. Assumption 3(C) is a regularity

condition for the single-index function �(�; �): When �(X; �) = X>�; we can choose G to be

a normal cdf function to ful�ll (C). Introduction of the map G is made to emphasize the

�exibility of the speci�cations of �(�; �): The map G is not used for actual inference.

Assumption 4: (i) K(�) is bounded, symmetric, compact supported, in�nite times contin-
uously di¤erentiable with bounded derivatives and

R
K(t)dt = 1.

(ii) n1=2h4 + n�1=2h�2 ! 0:

The condition for the kernel in Assumption 4(i) is satis�ed, for example, by a quartic

kernel: K(u) = (15=16)(1 � u2)21fjuj � 1g: The bandwidth condition in Assumption 4(ii)
does not require undersmoothing. The bandwidth condition is satis�ed for any h = n�s with

1=8 < s < 1=4.

Theorem 1: Suppose that Assumptions 1-4 hold. Then,

p
n(�̂ � �0)!d

�Z
_H _H>dPW

��1 Z
_HBdPW
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where _H(w) = E[��(Vi;�(Xi; �0); �0)1fWi � wg] and B is a centered Gaussian process on

RdW that has a covariance kernel given by

C(w1; w2) = E [�i(w1)�i(w2)]

and

�i(w) = �(Vi;�(Xi; �0); �0)1fWi � wg (4)

�E
�
��(Vi;�(Xi; �0); �0)

>1fWi � wgjUi
�
(Yi � �(Xi; �0)):

Compared with the asymptotic covariance matrix of Domínguez and Lobato (2004), the

asymptotic covariance matrix contains an additional term involving Yi � �(Xi; �0) in the

covariance kernel (4). This is due to the nonparametric estimation error in �̂: It is important

to note at this point that the asymptotic covariance matrix remains the same regardless of

whether we use the estimated single index �(Xi; �̂) or the true single-index �(Xi; �0): This

is true even if �̂ converges at the rate of n�1=3:

3.2 A Heuristic Analysis

The result of Theorem 1 shows that the in�uence of the estimator �̂ can be ignored in this

situation even if �̂ converges at the rate of n�1=3: This phenonomenon appears unexpected

because the estimator �̂ does not even have a usual asymptotic linear representation in

this situation. In this section, we attempt to put this phenomenon in perspective in the

light of Newey (1994) who systematically exposited how the �rst-step estimators a¤ects the

asymptotic covariance matrix of the second step estimators. In analyzing the e¤ect, it is

crucial to investigate the behavior of the parameter in response to the perturbation of the

nuisance parameter. To put the result of Theorem 1 in perspective, we introduce a generic

set-up. Let l1(RdX ) be a Banach space of bounded functions equipped with the sup norm

jj � jj1 : jjf jj1 =supx2RdX jf(x)j: Then, let � � l1(R
dX ) be a class of real functions on RdX

and de�ne �(X;�) = E[Y j�(X)] for � 2 �: Given a random vector �, suppose that the

parameter of focus takes the form of

�(�) = E
�
�(X;�)>�

�
:

Then, we show that under certain generic conditions, the parameter �(�) has the �rst order

Fréchet derivative (in �) equal to zero.

Theorem 2: Let �0 be a �xed function such that �0(X) is continuous and let �0 be the
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collection of paths �t; t 2 [0; 1] passing through �0 that satisfy the following property:

(RC) There exists C > 0 such that

supy;��2RdY �Rd

��ft(y; ��j��1 + �; ��2)� ft(y; ��j��1 � �; ��2)
�� < C�;

where ft(y; ��j��1; ��2) denotes the conditional pdf of (Y; �) given (�t(X); �0(X)) = (��1; ��2)

with respect to a �-�nite measure and C is a constant independent of �t; ��1 and ��2:

Then, the �rst order Fréchet derivative of �(�) in � in �0 is zero.

The regularity condition (RC) does not require that (Y; �) be a continuous random vector.

Neither does the condition concerns the behavior of the conditional density function ft at

the perturbation of t at 0: The condition is merely an equicontinuity condition: for each t;

the function should be Lipschitz continuous in the conditioning variable in a manner uniform

over t: The result of Theorem 2 shows that the parameter of this form has Fréchet derivative

equal to zero. This fact is solely due to the property of conditional expectations (except for

the condition RC that is used in the proof.)

The implication of Theorem 2 is that in the case of i.i.d. series where we consider

t = c=
p
n ! 0; the in�uence of � upon the estimator of �(�0) is negligible as long as

jj�� �0jj1 = o(n�1=4): To see this clearly in the context of conditional moment restriction,

observe that the in�uence of the nonparametric estimation �̂ and �̂ is summarized in the

following di¤erence: for � such that jj�� �0jj1 = oP (n
�1=4);

1p
n

nX
i=1

� f(Vi; �̂(X;�); �0)� �(Vi; �(X;�0); �0)g (5)

� 1p
n

nX
i=1

��(Vi; �(Xi;�0); �0) f�̂(Xi;�)� �(Xi;�0)g

=
1p
n

nX
i=1

��(Vi; �(Xi;�0); �0) f�̂(Xi;�)� �(Xi;�)g

+
1p
n

nX
i=1

��(Vi; �(Xi;�0); �0) f�(Xi;�)� �(Xi;�0)g

By using the Hoe¤ding�s decomposition and the usual arguments of U -process theory, the
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second to the last sum is asymptotically equivalent to

1p
n

nX
i=1

E
�
��(Vi; �(Xi;�0); �0)j�(X)

�
fYi � �(Xi;�)g

� 1p
n

nX
i=1

E
�
��(Vi; �(Xi;�0); �0)j�0(X)

�
fYi � �(Xi;�0)g ;

using arguments of stochastic equicontinuity. The last sum above which was originated

from the estimation error of �̂ contributes to the asymptotic covariance matrix of �̂: After

subtracting its mean, the last sum in (5) becomes asymptotically negligible, so that we are

left with
p
nE
�
��(Vi; �(Xi;�0); �0) f�(Xi;�)� �(Xi;�0)g

�
:

The Fréchet derivative of the expectation with respect to � is zero under regularity conditions

by Theorem 2. In fact, under these conditions, one can show that the expectation above is

O(jj� � �0jj21): Therefore, whenever jj� � �0jj1 = o(n�1=4): The last sum in (5) becomes

asymptotically negligible. The rate condition for � includes the cube-root rate n�1=3:

3.3 Bootstrap Con�dence Sets

The asymptotic distribution of �̂ is complicated, and naturally, one might consider using

a bootstrap method to construct con�dence sets. The �nding of Theorem 1 suggests that

there may be a bootstrap method that is valid even when the single-index estimator �̂ follows

cube-root asymptotics. However, as far as the author is concerned, it is not clear how one

can analyze the asymptotic re�nements of a bootstrap method in this situation. Leaving

this to a future research, this paper rather chooses to develop a bootstrap method that is

easy to use and robust to conditional heteroskedasticity. The proposal is based on the wild

bootstrap of Wu (1986).

Suppose that �̂(Xi; �̂) is a �rst step estimator de�ned before and introduce the following

quantities:

�̂jk(�) = 1fWj � Wkg � �(Vj; �̂(Xj; �̂); �) and

�̂�;ik = 1fWi � Wkg � ��(Vi; �̂(Xj; �̂); �̂):

Then, we construct the following symmetrized nearest neighborhood estimator:

r̂jk =

Pn
i=1 �̂�;ik �Kh(Ûn;i � Ûn;j)Pn

i=1Kh(Ûn;i � Ûn;j)
:

12



The bootstrap procedure that this paper suggests is a wild bootstrap in the following form:

Step 1: For each b = 1; � � �; B; draw i.i.d. random variables f!i;bgni=1 from a two-point

distribution assigning masses (
p
5+1)=(2

p
5) and (

p
5�1)=(2

p
5) to the points �(

p
5�1)=2

and (
p
5 + 1)=2:

Step 2: Compute f�̂�b : b = 1; � � �; Bg by

�̂
�
b = argmin

�2B

nX
k=1

(
nX
j=1

h
�̂jk(�̂)� �̂jk(�) + !j;b

n
�̂jk(�̂) + r̂>jk � (Yj � �̂(Xj; �̂))

oi)2

and use its empirical distribution of to construct the con�dence set for �0:

The bootstrap procedure is very simple. In particular, one does not need to estimate

the nonparametric function � nor the single-index coe¢ cient �0 using the bootstrap sample.

The estimator �̂(Xi; �̂) is stored once and repeatedly used for each bootstrap sample. This

computational merit is prominent in particular when the dimension of the parameter �0 is

large and one has to resort to a numerical optimization algorithm for its estimation. The

bootstrap procedure has an additional term r̂jk
> � (Yj � �̂(Xj; �̂)) as compared to typical

wild bootstrap. This term is introduced to account for the �rst order e¤ect of the estimation

error in �̂ upon the asymptotic distribution of the estimator. In the following, we establish

the asymptotic validity of the bootstrap con�dence sets.

Theorem 3: Suppose that Assumptions 1-4 hold. Then, conditional on almost every se-
quence fSjgnj=1;

p
n(�̂

�
b � �̂)!d

�Z
_H _H>dPW

��1 Z
_HBdPW

where _H(w) and B are as in Theorem 1.

4 A Monte Carlo Simulation Study

4.1 The Performance of the Estimator

In this section, we present and discuss some Monte Carlo simulation results. Based on the

sample selection model in Example 1, we consider the following data generating process. Let

Zi � U1i � �1i=2 and

Xi � U2i � �i=2

13



where U1i is an i.i.d. U [0; 1] random variable, U2i and �i are random vectors in Rk with

entries equal to i.i.d random variables of U [0; 1]: The dimension k is chosen from f3; 6g: The
random variable �1i is the �rst component of �i: Then, the selection mechanism is de�ned as

Di = 1fX>
i �0 + "i � 0g

where "i follows the distribution of 2Ti�
PdX

k=1� (X
2
ik + jXikj)+� i; � i � N(0; 1); � denoting

the standard normal distribution function, and Ti is chosen as follows:

DGP A1: Ti � t distribution with degree of freedom 1:

DGP A2: Ti � log-normal distribution with median zero.

Hence the selection mechanism has errors that are conditionally heteroskedastic and heavy

tailed. Then, we de�ne the latent outcome Y �
i as follows:

Y �
i = Zi�0 + vi;

where vi � � i + ei, with ei � N(0; 1): We set �0 to be the vector of 2�s and �0 = 2:

We �rst estimate �0 by using the maximum score estimation to obtain �̂. Using this �̂; we

construct Ûn;i and

�̂Y;j =

Pn
i=1;i6=j Yi �Kh

�
Ûn;i � Ûn;j

�
Pn

i=1;i6=jKh

�
Ûn;i � Ûn;j

� and

�̂Z;j =

Pn
i=1;i6=j Zi �Kh

�
Ûn;i � Ûn;j

�
Pn

i=1;i6=jKh

�
Ûn;i � Ûn;j

� :

Then, we estimate � from the following optimization:

�̂ = argmin
�2B

1

n

nX
j=1

(
1

n

nX
i=1

ŵij
�
Yi � �̂Y;i � fZi � �̂Z;ig�

�)2
;

where ŵij = 1fZi � Zjg1fÛn;i � Ûn;jg: Note that we do not resort to numerical optimization,
as �̂ has an explicit formula due to the least squares problem.

Table 1 shows the performance of the estimators. There are four combinations, according

to whether it is assumed that �0 is known (TR) or unknown and estimated through maxi-

mum score estimation (ES) and according to whether a symmetrized nearest neighborhood

estimation was used (NN) or usual kernel estimation was used (KN). For the latter case, we
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used standard normal pdf as a kernel. The bandwidth choice was made using a least-squares

cross-validation method. The current version used a crude method, selecting among ten

equal-spaced points between 0 and 1.

Table 1: The Performance of the Estimators in Terms of MAE and RMSE

k NN-TR KN-TR NN-ES KN-ES

3 MAE 0.3534 0.3535 0.3413 0.3673

DGP A1 RMSE 0.2010 0.2005 0.1969 0.2266

6 MAE 0.3709 0.3815 0.3654 0.3970

n = 200 RMSE 0.2050 0.2234 0.2108 0.2513

3 MAE 0.3147 0.3134 0.3104 0.3424

DGP A2 RMSE 0.1510 0.1520 0.1518 0.2000

6 MAE 0.3018 0.3015 0.3030 0.3275

RMSE 0.1433 0.1430 0.1462 0.1725

3 MAE 0.2268 0.2249 0.2282 0.2545

DGP A1 RMSE 0.0801 0.0791 0.0817 0.1056

6 MAE 0.2143 0.2164 0.2200 0.2455

n = 500 RMSE 0.0728 0.0740 0.0765 0.0959

3 MAE 0.1947 0.1913 0.1941 0.2354

DGP A2 RMSE 0.0586 0.0580 0.0592 0.0863

6 MAE 0.1816 0.1807 0.1827 0.2112

RMSE 0.0516 0.0512 0.0521 0.0690

The results show that the performance of the estimators does not change signi�cantly

as we increase the number of covariates from 3 to 6. Some simulations unreported here

showed a similar result when we increase the number of covariates to 9. This indirectly

indicates that the quality of the second step estimator �̂ is robust to the quality of the

�rst step estimator �̂: This fact is shown more clearly when we compare the performance of

the estimator that uses �0 and the estimator that uses �̂: The performance does not show

much di¤erence between these two estimators. The performance of the estimator that does

not use probability integral transform appears to perform slightly better than that does use

probability integral transform. When the sample size was increased from 200 to 500, the

estimator�s performance improved as expected. In particular the improvement in terms of

RMSE appears conspicuous.
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4.2 The Performance of the Bootstrap Procedure

In this subsection, we investigate the bootstrap procedure that this paper proposes. In the

case of the bootstrap performance we consider the following drawing of Ti that constitutes

the error term in the selection equation:

DGP B1: Ti � N(0; 1)

DGP B2: Ti � t distribution with degree of freedom 1:

Hence the selection mechanism has errors that are conditionally heteroskedastic and, in the

case of DGP B2, are heavy tailed. Then, we de�ne the latent outcome Y �
i as follows:

Y �
i = Zi�0 + vi;

where vi � (� i + ei) � � (Z2i + jZij) with ei � N(0; 1): Hence the errors in the outcome

equation are conditionally heteroskedastic. We set �0 to be the vector of 2�s and �0 = 2 as

before.

To illustrate this paper�s proposal, we explain the procedure of estimation and the boot-

strap procedure in detail. First, de�ne

rjk = ŵjk �

Pn
i=1 ŵik �Kh

�
Ûn;i � Ûn;j

�
Pn

i=1Kh

�
Ûn;i � Ûn;j

� :

Then, for each draw of f!j;bgnj=1; we estimate

�̂
�
b = argmin

�2B

1

n

nX
j=1

(
1

n

nX
i=1

�
(� � �̂)ŵijfZi � �̂Z;ig � !i;br̂ij

�
fYi � �̂Y;ig � �̂

>fZi � �̂Z;ig
��)2

:

Again, the bootstrap estimator is also a solution to the least squares problem, adding to the

computational expediency. We construct a con�dence interval using the empirical distribu-

tion of f�̂�bgBb=1:
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Table 2: The Performance of the Proposed Bootstrap Methods

k Nom. Cov. Prob. NN-TR KN-TR NN-ES KN-ES

99% 0.9320 0.9460 0.9420 0.9500

3 95% 0.8840 0.9100 0.8740 0.8960

DGP B1 90% 0.8380 0.8520 0.8120 0.8520

99% 0.9220 0.9520 0.9180 0.9680

6 95% 0.8680 0.9180 0.8700 0.9140

n = 100 90% 0.8000 0.8600 0.8060 0.8680

99% 0.9180 0.9400 0.9280 0.9660

3 95% 0.8780 0.9000 0.8720 0.9220

DGP B2 90% 0.8280 0.8620 0.8200 0.8780

99% 0.9280 0.9420 0.9520 0.9780

6 95% 0.8880 0.9120 0.8960 0.9500

90% 0.8300 0.8720 0.8360 0.9020

99% 0.9740 0.9780 0.9600 0.9780

3 95% 0.9240 0.9260 0.9140 0.9320

DGP B1 90% 0.8780 0.8600 0.8640 0.8780

99% 0.9880 0.9880 0.9760 0.9840

6 95% 0.9340 0.9340 0.9340 0.9480

n = 300 90% 0.8840 0.8880 0.8840 0.9000

99% 0.9680 0.9760 0.9620 0.9780

3 95% 0.9360 0.9300 0.9220 0.9280

DGP B2 90% 0.8740 0.8820 0.8520 0.8840

99% 0.9760 0.9800 0.9820 0.9820

6 95% 0.9340 0.9360 0.9320 0.9360

90% 0.8900 0.8940 0.8880 0.8920

Table 2 contains �nite sample coverage probabilities for a variety of estimators. When

the sample size was 100, the bootstrap coverage probability is smaller than the nominal

ones. When the sample size was 300, the bootstrap methods perform reasonably well. It

is worth noting that the performance di¤erence between the case with true parameter �0
(TR) and the case with the estimated parameter �0 (ES) is almost negligible. This again

a¢ rms the robustness of the bootstrap procedure to the quality of the �rst step estimator �̂.

In the similar way, the performance is also similar across di¤erent numbers of covariates 3

and 6. However, overall performance of the con�dence set using the kernel estimator (KN)
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appears to perform slightly better than the nearest neighborhood estimator (NN). Finally,

the bootstrap performance does not make much di¤erence with regard to the heavy tailedness

of the error distribution in the selection equation.

5 Conclusion

This paper �nds that the �rst step estimator of a single-index component of a nonparametric

estimator does not a¤ect the quality of the second step estimator in models of semiparametric

conditional moment restrictions. In particular, the in�uence of the �rst step estimator

converging even at the rate of n�1=3 is shown to be asymptotically negligible. An heuristic

analysis was performed in terms of Fréchet derivative of a relevant class of functionals. Hence

this phenomenon appears to have a generic nature. Then this paper proposes a bootstrap

procedure that is asymptotically valid and computationally attractive. Therefore, while

the usual bootstrap procedure is known to fail for n1=3-converging estimators, we can still

use bootstrap when such an estimator is a �rst step plug-in estimator in a larger model of

conditional moment restrictions. The simulation studies reported in this paper are small

scales. An extended simulation study is in progress now.

6 Appendix: Mathematical Proofs

6.1 The Proofs of the Main Results

Proof of Theorem 1: Write �(x) = �(x; �), �0(x) = �(x; �0) and �̂(x) = �̂(x; �̂): Then

de�ne

Qn(�; �) =
1

n

nX
j=1

(
1

n

nX
i=1

�(Vi; �(Xi); �)1fŴi � Ŵjg
)2

and

Q(�; �) =

Z
fE [�(Vi; �(Xi); �)1fWi � wg]g2 dPW (w):

and de�ne qn(t;�) = Qn(�0 + t; �) � Qn(�0; �) and q(t) = Q(�0 + t; �) � Q(�0; �): Lastly,

we also let

�n(�) =
2

n

nX
j=1

(
1

n

nX
i=1

�(Vi; �(Xi); �0)1fŴi � Ŵjg
)
� 1

n

nX
i=1

��(Vi; �(Xi); �0)1fŴi � Ŵjg

�
Z
2E [�(Vi; �(Xi); �0)1fWi � wg]E

�
��(Vi; �(Xi); �0)1fWi � wg

�
dPW (w):
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We will show the following three claims later.

Claim 1 : qn(tn; �̂)� q(tn)� �n(�̂)
>tn = oP (jjtnjj2) for all tn ! 0:

Claim 2 : q(tn) = t>n
R
_H(w) _H(w)>dPW (w)tn + o(jjtnjj2); for all tn ! 0:

Claim 3 :
p
n�n(�̂) =

p
n~�n + oP (1); where ~�n =

R
_H(w) 1

n

Pn
i=1;j 6=i �i(w)dPW (w):

Then, as in the proof of Theorem 3.2.16 of van dar Vaart and Wellner (1996), we can

write
p
n(�̂��0) = 
�1

p
n~�n+oP (1): (This theorem is originated from Pollard (1985, 1991).)

Observe that
1p
n

nX
i=1

�i(�) =) B:

This can be shown using the fact that indicator functions are VC classes. Hence the contin-

uous mapping theorem gives the wanted result.

As for Claim 1, we �rst show that

qn(tn; �̂)� �n(�̂)
>tn = qn(tn; �)� �n(�)

>tn + oP (jjtnjj2) (6)

By the Taylor expansion, qn(tn; �) = �n(�)
>tn+ t

>
n �

�
n (�)tn+oP (jjtnjj2); where ��n (�) denotes

the second order derivative of qn(t; �) in t at t 2 [0; tn]: Therefore,

fqn(tn; �̂)� qn(tn; �0)g � (�n(�̂)� �n(�0))
>tn

= t>n f��n (�̂)� ��n (�0)gtn=2 + oP (jjtnjj2) = oP (jjtnjj2):

The last equality follows by using the fact that jj��n (�̂) � ��n (�0)jj = OP (jj�̂ � �0jj1): This
term is oP (1) because jj�̂ � �0jj1 = oP (1) by Lemma A4 of Song (2008b). Hence we have

established (6). Therefore, for Claim 1, it su¢ ces to show that

qn(tn; �̂)� q(tn)� �n(�̂)
>tn = oP (jjtnjj2): (7)

We expand qn(tn; �̂) � q(tn) up to the second order term which then becomes t>n �
��
n tn=2

where ���n is the second order derivative of qn(t; �̂)� q(t) in t at t = 0; We can easily check

that ���n = OP (n
�1=2). Since the �rst order derivative of qn(t; �̂)� q(t) in t at t = 0 is equal

to �n(�̂); the remainder term in the expansion in (7) is equal to OP (jjtnjj2=
p
n)+ o(jjtnjj2) =

o(jjtnjj2): Hence Claim 1 follows.

As for Claim 2, the expansion of q(t) in t up to the second order delivers the wanted
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result. It remains to show Claim 3. For this, �rst we write

�n(�̂) = �n(�0) + �n(�̂)� �n(�0)

= �n(�0) +
2

n

nX
j=1

(
1

n

nX
i=1;j 6=i

1fŴi � Ŵjg�>�;i(�̂(Xi)� �0(Xi))

)

�
(
1

n

nX
k=1;k 6=i;k 6=j

1fŴk � Ŵjg��;k

)
+ oP (1);

where ��;i = ��(Vi; �0(Xi); �0) and ��;i = ��(Vi; �0(Xi); �0): By applying the uniform Ba-

hadur representation in Lemma A1 below,

1

n

nX
i=1;j 6=i

1fŴi � Ŵjg�>�;i(�̂(Xi)� �0(Xi))

=
1

n

nX
i=1;j 6=i

E
�
1fWi � Wjg�>�;ijUi

�
(Yi � �0(Xi)) + oP (n

�1=2):

(Note that the bracketing entropy condition for the space of functions of the form  w(u) =

1fFn;�;i(�(x; �)) � ug can be established using Lemma A1 of Song (2008b).) Using the fact
that the last sum is OP (n

�1=2); we obtain that

�n(�̂) = �n(�0) +

Z
E
�
��;k1fWi � wg

�
�

nX
i=1;j 6=i

E
�
1fWi � wg�>�;ijUi

�
(Yi � �0(Xi))dPW (w) + oP (n

�1=2):

Now we turn to �n(�0); which we write as

�n(�0) =
2

n

nX
j=1

(
1

n

nX
i=1

�(Vi; �0(Xi); �0)1fŴi � Ŵjg
)
� 1

n

nX
i=1

��;i1fŴi � Ŵjg;

because E [�(Vi; �0(Xi); �0)1fWi � wg] = 0: Since 1
n

Pn
i=1 �(Vi; �0(Xi); �0)1fWi � Wjg is

the sample mean of mean-zero random variables,

�n(�0) =
2

n

nX
j=1

(
1

n

nX
i=1

�(Vi; �0(Xi); �0)1fWi � Wjg
)
� _H(Wj) + oP (n

�1=2)

=
2

n(n� 1)

nX
i=1

nX
j=1;j 6=i

�(Vi; �0(Xi); �0)1fWi � Wjg � _H(Wj) + oP (n
�1=2):
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Note that E[�(Vi; �0(Xi); �0)1fWi � Wjg � _H(Wj)jWj] = 0: Therefore, the Hoe¤ding�s

decomposition renders the leading term above asZ
2

n

nX
i=1

�(Vi; �0(Xi); �0)1fWi � wg _H(w)dPW (w)

plus a degenerate U -process. This degenerate U -process can be shown to be oP (n�1=2) using

the maximal inequality in Sherman (1994) or Turki-Moalla (1998). Hence Claim 3 is ob-

tained. �

Proof of Theorem 2: Simply write ��(x) = �(x;�) and �0(x) = �(x;�0): First write

E [� f��(Xi)� �0(Xi)g] = E [E [�j�(Xi); �0(Xi)] f��(Xi)� �0(Xi)g]
= E [(E [�j�(Xi); �0(Xi)]� E [�j�0(Xi)]) f��(Xi)� �0(Xi)g]

+E [E [�j�0(Xi)] f��(Xi)� �0(Xi)g]
= E [E [�j�0(Xi)] f��(Xi)� �0(Xi)g] +O(jj�� �0jj21)

by applying Lemma A2(ii) of Song (2008a). The last expectation is equal to

E [E [�j�0(Xi)] f��(Xi)� �0(Xi)g]
= E [E [�j�0(Xi)] fE [Yij�(Xi)]� E [Yij�(Xi); �0(Xi)]g]

+E [E [�j�0(Xi)] fE [Yij�(Xi); �0(Xi)]� E [Yij�0(Xi)]g]
= E [E [�j�0(Xi)] fE [Yij�(Xi)]� E [Yij�(Xi); �0(Xi)]g]
= E [fE [�j�0(Xi)]� E [�j�(Xi)]g fE [Yij�(Xi)]� E [Yij�(Xi); �0(Xi)]g] :

The last equality follows because E [E [�j�(Xi)] fE [Yij�(Xi)]� E [Yij�(Xi); �0(Xi)]g] = 0:

Applying Lemma A2(ii) of Song (2008a) again, the last expectation is equal to O(jj���0jj21):
Hence we conclude that

E [� f��(Xi)� �0(Xi)g] = O(jj�� �0jj21);

a¢ rming the claim that the Fréchet derivative is equal to zero.�
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Proof of Theorem 3: Let

Qn;b(�) =
1

n

nX
k=1

(
1

n

nX
j=1

h
�̂jk(�̂)� �̂jk(�) + !j;b

n
�̂jk(�̂) + r̂jk � fYj � �̂(Xj; �̂)g

oi)2
and

Qn(�) =
1

n

nX
k=1

(
1

n

nX
j=1

h
�̂jk(�̂)� �̂jk(�)

i)2

and de�ne qn;b(t) = Qn;b(�̂ + t)�Qn;b(�̂) and qn(t) = Qn(�̂ + t)�Qn(�̂): Let

�n =
2

n

nX
k=1

(
1

n

nX
j=1

!j;b

h
�̂jk(�̂) + r̂jk � fYj � �̂(Xj; �̂)g

i)
� 1

n

nX
i=1

�̂�;jk(�̂):

Similarly as in the proof of Theorem 1, we can show the following:

Claim 1 : qn(tn)� q(tn)� �n
>tn = oP (jjtnjj) for all tn ! 0:

Claim 2 : q(tn) = t>n
R
_H(w) _H(w)>dPW (w)tn + o(jjtnjj2); for all tn ! 0:

Then, as in the proof of Theorem 3.2.16 of van dar Vaart and Wellner (1996) again, we

can write
p
n(�̂

�
b � �̂) = 
�1

p
n�n + o�P (1): Therefore, it remains to analyze the sum �n:

Observe that by using the usual arguments of stochastic equicontinuity,

p
n�n =

2

n

nX
k=1

(
1p
n

nX
j=1

!j;b

h
�̂jk(�̂) + r̂jk � fYj � �̂(Xj; �̂)g

i)
� 1

n

nX
i=1

�̂�;jk(�̂)

=
2

n

nX
k=1

(
1p
n

nX
j=1

!j;b
�
�j(Wk; �0) + rj(Wk)� fYj � �(Xj; �0)g

�)
� _H(Wk) + oP (1);

where �j(w; �0) = 1fWj � wg�(Vj; �0(Xj); �0) and rj(w) = E[��;j1fWj � wgjUj]: (This is
possible because !j;b is mean zero, bounded and independent of other random components.

The nonparametric estimator �̂ can be handled by using Lemma A1 below.) Let �n(f) =R
f(w)dPn(w) and �(f) =

R
f(w)dPW (w); where Pn is the empirical measure of fWkgnk=1:

Then, choose any sequence fn: Then, for a subsequence fn0 such that jjfn0 � f jj1 ! 0; for

some f; we haveZ
fn0(w)dPn0(w)�

Z
f(w)dPW (w) =

Z
(fn0(w)� f(w)) dPn0(w) +

Z
f(w)d(Pn0(w)� PW (w))

= o(1) + oa:s:(1);
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by the strong law of large numbers. Let

Fn(w; fSj;W1jgnj=1) =
1p
n

nX
j=1

!j;b
�
�j(w; �0) + rj(w)� fYj � �(Xj; �0)g

�
� _H(w):

Now, by the conditional multiplier central limit theorem of Ledoux and Talagrand (1988),

conditional on almost every sequence fSj;W1jg1j=1;

Fn(�; fSj;W1jgnj=1) =) B:

Therefore, by the almost sure representation theorem (e.g. Theorem 6.7 of Billingsley), there

is a sequence ~Fn(�) such that ~Fn(�) is distributionally equivalent to Fn(�) and ~Fn(�)!a:s: B:

Then, by the previous arguments, condiitonal on almost every sequence fSj;W1jgnj=1; we
have

�n( ~Fn(�; fSj;W1jgnj=1)!d

Z
B(w) _H(w)PW (w);

by the continuous mapping theorem (e.g. Theorem 18.11 of van der Vaart (1998)). We

obtain the wanted result. �

6.2 UniformBahadur Representation of Symmetrized Nearest Neigh-

borhood Estimators

In this section, we present a general asymptotic representation of sums of symmetrized

nearest neighborhood estimators that is uniform over certain function spaces. Stute and Zhu

(2005) obtained a non-unifom result in a di¤erent format. Their proof uses the oscillation

results for smoothed empirical processes. Since we do not have such a result under the

generality assumed in this paper, we take a di¤erent approach in the proof. Suppose that

we are given a random sample f(Wi; Xi; Yi)gni=1 drawn from the distribution of a random

vector S = (W;X; Y ) 2 RdW+dX+1: Let �n and �0 � �n be classes of real functions on RdX

with generic elements denoted respectively by � and �0: We also let � and 	 be classes of

functions on RdY and RdWwith generic elements ' and  : The nonparametric regression

function of interest in this situation is E['(Y )j�0(X)]: When �0(X) is continuous, we focus
instead on g'(u) = E['(Y )jU = u]; where U = F�0(�0(X)) and F�0(�) is the distribution
function of �0(X): Similarly, we de�ne g (u) = E[ (W )jU = u]:

Let F� be the distribution function of �(Xi) and

Fn;�;i(�) = (n� 1)�1�nj=1;j 6=i1f�(Xj) � �g;
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For brevity, we write Un;�;i = Fn;�;i(�(Xi)): Then we de�ne

ĝ';�;i(u) =
1

(n� 1)f̂�;i(u)

nX
j=1;j 6=i

'(Yj)Kh (Un;�;j � u) ;

and f̂�;i(u) = (n� 1)�1
Pn

j=1;j 6=iKh(Un;�;j � u): We also let :

For each �0 2 �n; we de�ne �n(�0) = f� 2 � : jj� � �0jj1 � n�bg for b 2 (1=4; 1=2]:
Hence �n(�0) can be regarded as a shrinking neighborhood of a nonparametric or parametric

function �0: The semiparametric process of focus takes the following form:

~�n(�; ';  ) =
1

n

nX
i=1

 (Wi) fĝ';�;i(Un;�;i)� g'(Ui)g ;

with (�; ';  ) 2 �n(�0)� �n �	n: We introduce the following assumptions:

Assumption P1 : (i) Classes � and 	 for some C > 0; p > 4; and b	; b� 2 (0; 2);

logN[](";�; jj � jjp) < C"�b� and logN[](";	; jj � jjp) < C"�b	 ; for each " > 0;

and envelopes ~' and ~ satisfy that E[j~'(Y )jpjX] <1 and E[j~ (W )jpjX] <1; a.s.

(ii) There exist a strictly increasing, bounded map G; b� 2 (0; 1); and C > 0 such that the

class G � �n = fG � � : � 2 �ng satis�es the following:

logN[](";G � �n; jj � jj1) � C"�b� ; for each " > 0:

Assumption P2 : (i) For each � 2 �n; the variable �(X) is continuous.
(ii) There exists C > 0 such that

jF�(�1)� F�(�2)j � Cj�1 � �2j; for all �1; �2 2 R.

(iii) (a) The conditional density f(sju) of S given U = u with respect to a �-�nite measure

is L times continuously di¤erentiable in u; L > 8; with bounded derivatives f (j)(sju) such
that sup(s;u)2S�[0;1]jf (j)(sju)=f(s)j < C; j = 1; � � �; L; where f(s) is the density of S with
respect to a �-�nite measure and S is the support of S.
(b) For each � 2 �n; the conditional density f�(sju) of S given (U�; U) = (u1; u2) with

respect to a �-�nite measure satis�es that for all � > 0

sup(s;u2)2S�[0;1]jf�(sju1 � �; u2)� f�(sju1 + �; u2)j � C��(s);
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where �� : S ! R+ is such that sup(s;�)2S��nj��(s)=f(s)j < C:

(c) sup'2� jjg'jj1 < 1 and g'(�) is twice continuously di¤erentiable with bounded deriva-
tives.

Assumption P3 : (i) K(�) is bounded above, symmetric, compact supported, in�nite times
di¤erentiable with bounded derivatives, and

R
K(t)dt = 1.

(ii) n1=2h4 + n1=2�(L+1)bh�(L+2) ! 0:

The following theorem o¤ers the uniform Bahadur representation of ĝ';�;i:

Lemma A1 : Suppose that Assumptions P1-P3 hold. Then,

sup
(�;'; )2�n(�0)���	

���pn~�n(�; ';  )� ~�n(';  )��� = oP (1);

where ~�n(';  ) =
1p
n

Pn
i=1 g (Ui)f'(Yi)� g'(Ui)g:

It is worth noting that the representation holds regardless of whether the estimator �̂ has

a parametric rate of n�1=2 or cube-root rate n�1=3 as in the maximum score estimator, or a

nonparametric rate n�b with b 2 (1=4; 1=2]:

Proof of Lemma A1 : Without loss of generality, assume that the support of K is

contained in [�1; 1]: Also observe that the di¤erence ĝ';�;i(Un;�;i)� g'(Ui) remains the same
when we replace � 2 � by G � �. Hence we write �n for G � �n for simplicity. Throughout
the proofs, the notation EZi indicates the conditional expectation given Zi: De�ne �̂';�;i(t) =

(n� 1)�1
Pn

j=1;j 6=iKh(Un;�;j � t)'(Yj): Then we write ĝ';�;i(Un;�;i)� g';�(Un;�;i) as

R1i(�; ') =
�̂';�;i(Un;�;i)� g'(Ui)f̂�;i(Un;�;i)

f�0(Ui)

+
[�̂';�;i(Un;�;i)� g'(Ui)f̂�;i(Un;�;i)](f�0(Ui)� f̂�;i(Un;�;i))

f̂�;i(Un;�;i)f�0(Ui)

= RA
1i(�; ') +RB

1i(�; '); say,

where f�0(u) = 1fu 2 [0; 1]g: We simply put � = (�; ';  ) and �n = �n(�0) � � � 	; and
write

p
n�n(�) =

1p
n

nX
i=1

 (Wi)R
A
1i(�; ') +

1p
n

nX
i=1

 (Wi)R
B
1i(�; ')

= rA1n(�) + rB1n(�); � 2 �n; say.
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Note that as for the second term,

rB1n(�) =
1p
n

nX
i=1

 (Wi)fĝ';�(Un;�;i)� g'(Ui)g(f�0(Ui)� f̂�;i(Un;�;i)) = OP (
p
nw2n);

where wn = n�(2p+2)=(4p�3)h�1 + h2; by Lemma A4 of Song (2008b). Since p > 4;

n(1=2)�(4p+4)=(4p�3)h�2 + n1=2h4 = o(n�1h�2 + n1=2h4) = o(1)

by Assumption P3. Hence it su¢ ces to show that

sup
�2�n

jrA1n(�)� �n(';  )j = oP (1):

We write rA1n(�) as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';ijKh;ij +
1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';ij

�
K�
h;ij �Kh;ij

	
; (8)

where  i =  (Wi);�';ij = '(Yj)�g'(Ui); K�
h;ij = Kh(Un;�;j�Un;�;i) andKh;ij = Kh(Uj�Ui):

We consider the second sum �rst, which we write as

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';ijK
0
h;ij fUn;�;j � Un;�;i � (Uj � Ui)g

+
1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

LX
l=2

1

l!
 i�';ijK

(l)
h;ij fUn;�;j � Un;�;i � (Uj � Ui)gl

+
1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

1

(L+ 1)!
 i�';ijK

(L+1)
h;ij fUn;�;j � Un;�;i � (Uj � Ui)gL+1

= A1n + A2n + A3n; say,

where K(l)
h;ij = h�(l+1)@K(t)=@tjt=(Ui�Uj)=h and

K
(L+1)
h;ij = h�(L+2)@L+1K(t)=@tL+1jt=f(1�aij)(Ui�Uj)+aij(Un;�;i�Un;�;j)g=h;

for some aij 2 [0; 1]: First, note that

sup�2�nsupx2RdX jFn;�;i(�(x))� F�0(�0(x))j = OP (n
�b): (9)

26



We can show this following the proof of Lemma A3 of Song (2008b). It is easy to show that

A3n = OP (n
1=2�(L+1)bh�(L+2)) = oP (1):

In Lemma A2 below, it is shown that A2n = oP (1): We turn to A1n: Recall the notation

��i = Un;�;i � Ui and write

A1n =
1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';ijK
0
h;ij�

�
j �

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';ijK
0
h;ij�

�
i : (10)

We consider the leading term which we write as (up to O(n�1))

1

n

nX
j=1

"
1p
n

nX
i=1

�
 i�';ijK

0
h;ij � E

�
 i�';ijK

0
h;ijjWj

�	#
��j +

1p
n

nX
j=1

E
�
 i�';ijK

0
h;ijjWj

�
��j :

(11)

We can easily show that the normalized sum in the bracket is OP (1) uniformly over j =

1; ���; n and over ( ; ') 2 	��n; by using the maximal inequality and the bracketing entropy
conditions in Assumption P1. Hence the �rst term is oP (1) by the fact that max1�j�n jj��j jj =
OP (n

�b) = oP (1) from (9). We deduce a similar result for the last term in (10) so that we

write

A1n =
1p
n

nX
j=1

E
�
 i�';ijK

0
h;ijjUj

�
(Un;j � Uj) (12)

� 1p
n

nX
j=1

E
�
 i�';ijK

0
h;ijjUi

�
(Un;i � Ui)

+
1p
n

nX
j=1

E
�
 i�';ijK

0
h;ijjWj

�
(Un;�;j � Un;j)

� 1p
n

nX
j=1

E
�
 i�';ijK

0
h;ijjWi

�
(Un;�;i � Un;i):

We show that the �rst two sums cancel out asymptotically. As for the �rst term, observe

that

E
�
 i�';ijK

0
h;ijjUj = u1

�
=

1

h2

Z 1

0

K 0
�
u� u1
h

�
g (u)fg'(u1)� g'(u)gdu

=
1

h

Z ((1�u1)=h)^1

(�u1=h)_1
K 0 (u) g (u1 + uh)fg'(u1)� g'(u1 + uh)gdu
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and similarly,

E
�
 i�';ijK

0
h;ijjUi = u1

�
=

1

h2

Z 1

0

K 0
�
u1 � u

h

�
g (u1)fg'(u)� g'(u1)gdu (13)

=
1

h

Z ((1�u1)=h)^1

(�u1=h)_1
K 0 (u) g (u1)fg'(u1)� g'(u1 + uh)gdu

Therefore, by using Hoe¤ding�s decomposition and taking care of the degenerate U -process,

1p
n

nX
j=1

E
�
 i�';ijK

0
h;ijjUj

�
(Un;j � Uj)

=
1p
n

nX
k=1

Z 1

0

Z 1

0

K 0 (u) g (u1)
g'(u1)� g'(u1 + uh)

h
du (1fUk � u1g � u1) du1 +OP (h)

=
1p
n

nX
k=1

Z 1

0

g (u1)g
0
'(u1) (1fUk � u1g � u1) dudu1 +OP (h):

The second to the last equality follows because the inner integral is not zero only when

u1 > 1� h or u1 < h and the Lebesgue measure of this set is O(h): The last equality follows

because
R 1
�1K

0 (u) du = �1. Similarly, using (13), we deduce that

1p
n

nX
j=1

E
�
 i�';ijK

0
h;ijjUi

�
(Un;i � Ui)

=
1p
n

nX
k=1

Z 1

0

g (u1)g
0
'(u1) (1fUk � u1g � u1) dudu1 + oP (1):

Therefore, the �rst two sums in (12) cancel out. We focus on the last two sums. We show

that the second to the last sum is oP (1). The last sum can be shown to be oP (1) in a similar

manner. Applying Lemma UA of Escanciano and Song (2008), we can write the second to

the last sum in (12) as

1p
n

nX
j=1

E
�
 i�';ijK

0
h;ijjWj

�
(Un;�;j � Un;j)

=
p
nE
��
E
�
 i�';ijK

0
h;ijjU�;j; Uj

�
� E

�
 i�';ijK

0
h;ijjUj

�	
(U�;j � Uj)

�
+OP (n

1=2�2b):

By applying Lemma A2(ii) of Song (2008a) combined with Assumption P2(iii) and by using

Assumption P2(ii), we �nd that the leading expectation above is O(n�2b): Hence we obtain

that the above terms are OP (n
1=2�2b) = oP (1):We conclude that A1n = oP (1): Therefore the

second sum in (8) is oP (1):
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We turn to the �rst sum in (8). We de�ne q�n;ij � q�n(Zi; Zj) �  i�';ijKh;ij and write the

sum as
1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

q�n;ij:

Similarly as before, let ��n;ij � ��n(Zi; Zj) � q�n;ij � EZi [q�n;ij]� EZj [q�n;ij] + E[q�n;ij] and de�ne

un(�) �
1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

��n;ij:

Now write 1
(n�1)

p
n

Pn
i=1

Pn
j=1;j 6=i q

�
n;ij �

p
nE[q�n;ij] as

1p
n

nX
i=1

�
EZi [q

�
n;ij]� EZj [q�n;ij]� 2E[q�n;ij]

	
+ u2n(�): (14)

We will later show that sup� jun(�)j = oP (1):

First we note that through some tedious computations,

E

�
sup
�2�n

��EZi [q�n;ij]��2� � Z 1

0

sup
'2�

g2~ (t1)

�Z 1

0

fg'(t2)� g'(t1)gKh(t2 � t1)dt2

�2
dt1: (15)

By change of variables, the integral inside the bracket becomesZ (1�t1)=hg^1

f�t1=hg_(�1)
fg'(t1 + ht2)� g'(t1)gK(t2)dt2:

When h � t1 � 1�h; the integrand is of O(h2) because
R 1
�1 t2K(t2)dt2 = 0:When h > t2

or t2 > 1 � h; the integrand is of the order O(h): Since the Lebesgue measure for this set

of t2�s is O(h); the integral above is equal to O(h2): Hence the expectation on the left-hand

side in (15) is O(h4). Using this result, take

~Jn = fE[q�n;ijjZi = �] : � 2 �ng

with an envelope J such that jjJ jj2 � Ch2. Using the maximal inequality and the bracketing
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entropy condition in (20) below,

E

"
sup�2�n

����� 1pn
nX
i=1

�
EZi [q

�
n;ij]� E[q�n;ij]

	�����
#

(16)

�
Z Ch2

0

q
1 + logN[]("; ~Jn; jj � jj2)d"

= O(h1�(b�^b	)=2) = o(1);

because b� ^ b	 < 2: We conclude from (14) that

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

q�n;ij =
1p
n

nX
j=1

EZj [q
�
n;ij] + oP (1):

Now, we consider the following:

E

�
sup
�2�n

�
EZj [q

�
n;ij]� g (Uj)f'(Yj)� g'(Uj)

	
]2
�

(17)

=

Z
sup
�2�n

�Z 1

0

An; (t1; t2; w)dt1

�2
dF�0(w; t2);

where
R
�dF�0 denotes the integration with respect to the joint distribution of (Yi; Ui) and

An; (t1; t2; w) = g (t1)f'(w)� g'(t1)gKh(t1 � t2)� g (t2)f'(w)� g'(t2)g:

We consider the term in (17). From similar arguments after (15), this term becomes O(h4)

and we conclude that

1p
n

nX
j=1

�
EZj [q

�
n;ij]� g (Uj)f'(Yj)� g'(Uj)g

�
= oP (1): (18)

The arguments here, as those after (15) involves the bracketing entropy bound for the class

fq�n(�; �)�g (�)('(�)�g'(�) : � 2 �ng and its vanishing sequence of envelopes. The procedures
are very similar to those used before, and hence we omit the details. Combined with (16),

the asymptotic representation in (18) yields the wanted result of Claim 1.

Now, it remains to deal with the denerate U -process un and show that sup�2�n jun(�)j =
oP (1): For this, let us de�ne

Jn = fq�n(�; �) : � 2 �ng (19)
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and write q�n(z1; z2; �) =  (s1)f'(w2)� g'(u1)g � h�2(@=@t)Kh(t)jt=(u1�u2)=h: Hence

logN[](";Jn; jj � jjp=2) � logN[]("=C;�; jj � jjp) + logN[]("=C;	; jj � jjp):

Therefore,

logN[](";Jn; jj � jjp) � C"�(b�_b	): (20)

We take arbitrary " > 0 such that (b� _ b	)(1=2 + ") < 1: Then, note thatZ 1

0

�
logN[](";Jn; jj � jjp)

	(1=2+")
d" �

Z 1

0

C"�(b�_b	)f1=2+"gd":

By Theorem 1 of Turki-Moalla (1998), p.878, for any small � > 0;

sup
�2�n

ju1n(�)j = oP (n
1=2�(1=2+")+�) = oP (1):

Hence the proof is complete.

Lemma A2: Under the assumptions of Lemma A1, A3n = oP (1) uniformly in ( ; '; �) 2
	� �� �n:

Proof of Lemma A2: De�ne

Tn =
(

1

n� 1

nX
j=2

1f�(xj) � �(�)g : (�; fxjg) 2 �n �R(n�1)dX

)
: (21)

Then, the bracketing entropy bound for Tn can be computed from Lemma A1 of Song

(2008b):

logN[]("; Tn; jj � jjp) � logN[]("p;�n; jj � jj1) + C=" � C"�pb� + C=":

Let � 0(x) = F0(�0(x)): It su¢ ces to show that the sum below is oP (1) uniformly over

( ; '; �) 2 	� �� Tn :

1

(n� 1)
p
n

nX
i=1

nX
j=1;j 6=i

 i�';ijK
(l)
h;ij�

l
� ;ij;

where ��;j = �(Xj)� � 0(Xj), ��;ij = ��;j � ��;i: We write the sum as

1

n

nX
j=1

"
1p
n

nX
i=1

n
 i�';ijK

(l)
h;ij�

l
� ;i � E

h
 i�';ijK

(l)
h;ij�

l
� ;i

io#
+
p
nE
h
 i�';ijK

(l)
h;ij�

l
� ;i

i
: (22)
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Write the last term as
p
nE
h
G ;';� (Ui; Uj)K

(l)
h;ij

i
; whereG ;';� (Ui; Uj) = E

�
 i�';ij�

l
� ;ijUi; Uj

�
: By

change of variables and integration by parts, the last term is written as

p
n

hl

Z Z
G ;';� (u2 + hu1; u2)K

(l) (u1) du1du2 =
p
n

Z Z
G
(l)
 ;';� (u2 + hu1; u2)K (u1) du1du2

= OP (
p
nn�2b) = oP (1);

because l � 2: We turn to the leading term in (22). Note that

 i�';ijK
(l)
h;ij�

l
� ;i � Cn�bl~ (Wi)f~'(Yj) + g~'(Ui)gjK(l)

h;ijj:

Furthermore, using Hoe¤ding�s inequality, we are left with the terms such as

1p
n

nX
i=1

n
E
h
 i�';ijK

(l)
h;ij�

l
� ;ijUi = u

i
� E

h
 i�';ijK

(l)
h;ij�

l
� ;i

io
:

The envelope of the class of functions that index the above sum has the L2-norm as follows:sZ 1

�1

n
E
h
~ (Wi)f~'(Yj) + g~'(Ui)gjK(l)

h;ijjjUi = u
io2

du

=
1

hl+1

sZ 1

�1

�Z 1

�1
E
h
~ (Wi)f~'(Yj) + g~'(Ui)gjUi = u1

i ����K(l)

�
u� u1
h

����� du1�2 du
=

1

hl

vuutZ 1

�1

(Z fu=hg^1

f(u�1)=hg_(�1)
E
h
~ (Wi)f~'(Yj) + g~'(Ui)gjUi = u2

i
jK(l) (u2)j du2

)2
du

= O(h�l);

Hence, by using the maximal inequality, we deduce that the leading term in (22) isOP (n
�blh�l) =

OP (n
�2bh�2) = oP (1): Therefore, we obtain the wanted result. �
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