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ABSTRACT. What do we notice and how does this affect what we learn and come to believe? I

present a model of an agent who learns to make forecasts on the basis of freely available informa-

tion, but is selective as to which information he attends because of limited cognitive resources. I

model the agent’s choice of whether to attend to and encode information along a dimension as a

function of his current beliefs about whether such information is predictive, taking as given that he

attends to information along other dimensions. If the agent does not attend to and encode some

piece of information, it cannot be recalled at a later date. He uses Bayes’ rule to update his beliefs

given encoded information, but does not attempt to fill in missing information. I show that, as a

consequence of selective attention, the agent may persistently fail to recognize important empirical

regularities, make biased forecasts, and hold incorrect beliefs about the statistical relationship be-

tween variables. In addition, I identify factors that make such errors more likely or persistent. The

model sheds light on a set of systematic biases in inference, including the difficulty people have in

recognizing relationships that prior theories do not make plausible, and the overattribution of cause

to salient event features. The model is applied to help understand the formation and stability of

erroneous stereotypes, as well as discrimination based on such stereotypes.
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1. INTRODUCTION

We learn to make forecasts through repeated observation. Consider an employer learning to pre-

dict worker productivity, a loan officer figuring out how to form expectations about trustworthiness

and default, or a student learning which study techniques work best. Learning in this manner often

relies on what we remember: characteristics of past workers, details of interactions with small

business owners, study practices used for particular tests. Standard economic models of learning

ignore memory by assuming that we remember everything. However, there is growing recognition

of an obvious fact: memory is imperfect.1 Memory imperfections do not just stem from limited

recall of information stored in memory; not all information will be attended to or encoded in the

first place.2 It is hard or impossible to take note of all the characteristics of a worker, every detail

of a face-to-face meeting, each aspect of how we study. Understanding what we attend to has

important implications for what we come to believe and how we make forecasts. So what do we

notice?

In this paper, I present a formal model which highlights a key feature of what we notice in tasks

of judgment and prediction: attention is selective. A person engages in selective attention when he

narrows his attention to event features currently believed to be informative relative to a prediction

task. I draw out the consequences of selective attention in a model of an agent who learns to

make forecasts on the basis of freely available information. By analyzing how selective attention

affects this learning process, the analysis complements existing studies of “rational inattention”

(following Sims 2003), which consider how a flow constraint on the amount of information an

agent can process affects his response to signals that have a known relationship to a decision-

relevant variable (Peng and Xiong 2006, Sims 2006, Mackowiak and Wiederholt 2009).3

1Schacter (2001) provides an excellent overview of the evidence on memory limitations. Early economic models
incorporating memory limitations explored optimal storage of information given limited capacity (e.g., Dow 1991)
or analyzed decision problems with exogeneous imperfect recall (e.g., Piccione and Rubinstein 1997). Some of the
more recent models, beginning with Mullainathan (2002), have incorporated evidence from psychology, neuroscience,
and elsewhere to motivate assumptions regarding what people remember (e.g., Shapiro 2006, Gennaioli and Shleifer
2009).
2Schacter (2001, Chapter 2) explores research on the interface between attention and memory. See also Kahneman
(1973) for a classic treatment on limited attention and DellaVigna (2007) for a recent survey of field evidence from
economics on limited attention.
3To take an example, Sims (2006) studies how inattention affects the degree to which someone’s consumption will
respond to information about her net worth (e.g., the status of her retirement account). Note that there is also a
conceptual distinction between the constraint on attention proposed by Sims (2003), which limits how many bits of
information an agent can process in a given period, and the constraint implicit in my formulation, which limits the
number of different variables an agent can encode (Miller 1956).
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Due to selective attention, current beliefs affect which variables are attended to and encoded and,

consequently, what is learned. A basic insight of the analysis is that, because of this dependence,

the agent may persistently fail to pay attention to an important causal (or predictive) factor and,

as a result, will not learn how it is related to the outcome of interest.4 When we go to a doctor

to complain about a persistent headache, we may not be able to answer whether it is particularly

strong after eating certain foods, not having suspected a food allergy before.5 A further insight is

that this failure feeds back to create a problem akin to omitted variable bias: by not learning to

pay attention to a factor, an individual may persistently misreact to an associated factor. Under the

model, whether or not he does misreact, and the extent of his misreaction, depends completely on

observable features of the environment: these biases are systematic.

For example, suppose a student repeatedly faces the task of predicting whether an individual

will act friendly in conversation, y ∈ {0, 1}, given information about whether or not the in-

dividual is a professor, x ∈ {Prof, Not Prof}, and whether the conversation will take place at

a work or recreational situation, z ∈ {Work, Play}. His encounters with professors are rela-

tively confined to work situations: letting g(x, z) denote the probability mass function over (x, z),

g(Work|Prof) > g(Work|Not Prof). Independent of occupation, every individual is always friendly

during recreation but never at work:

E[y|Prof, Play] = E[y|Not Prof, Play] = 1

E[y|Prof, Work] = E[y|Not Prof, Work] = 0.

Suppose, however, that, as a result of selective attention, the student persistently fails to attend

to and encode situational factors. Under the additional assumption that he always notices and

is later able to recall someone’s occupation and whether she acted friendly, he will mistakenly

come to believe that professors are less friendly than non-professors because he tends to encounter
4Note the relationship to the literature on bandit problems (e.g., Gittins 1979) and self-confirming equilibrium (e.g.,
Fudenberg and Levine 1993), which emphasizes that it is possible for individuals to maintain incorrect beliefs about
the payoff consequences of actions that have rarely been tried and for these beliefs, in turn, to support suboptimal
actions. Aragones et al. (2005) offer a different explanation for why people may not learn empirical relationships that
is based on the idea that discovering regularities in existing knowledge is computationally complex.
5My model of selective attention is related to Rabin and Schrag’s (1999) model of confirmatory bias in that both
share the feature that an agent’s current beliefs influence how he encodes evidence, with the common implication that
first impressions can be important. However, confirmatory bias and selective attention are conceptually quite distinct.
An agent who suffers from confirmatory bias has a tendency to distort evidence to fit his current beliefs, while an
agent who engages in selective attention uses current beliefs to guide encoding. I discuss the relationship between
confirmatory bias and selective attention in more detail in Section 3.
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them in situations that discourage friendliness. More precisely, if a student persistently fails to

attend to and encode the situation, his expectation given (Occupation, Situation) approaches the

empirical frequency of friendliness given just (Occupation) which converges to E[y|Occupation]

by the strong law of large numbers. To illustrate, when the likelihood of encountering different

(x, z), g(x, z), is given as in Table 1, the student comes to misforecast

Ê[y|Not Prof, Situation] =
.4

.4 + .25
= .62

Ê[y|Prof, Situation] =
.1

.1 + .25
= .29

across situations. He will thus overreact to whether someone is a professor and mistakenly come

to believe that professors are less friendly.

Not Prof Prof
Work .25 .25
Play .4 .1

Table 1: The likelihood that the student interacts with an individual of occupation x ∈ {Not Prof, Prof} in
situation z ∈ {Work, Play}

These results and others match many experimentally found biases in inference, such as the

difficulty people have in recognizing relationships that prior theories do not make plausible and the

overattribution of cause to salient event features. By endogeneizing these biases as a consequence

of selective attention, the model illuminates conditions under which we should expect them to

persist. In particular, under a version of the model where the agent probabilistically attends to

information along a dimension, I relate the speed with which he learns to attend to a predictor

variable to features of the joint distribution over observables. Importantly, the same features that

contribute to greater bias often make the bias more persistent.

Throughout, the model is illustrated with examples concerning the formation of group stereo-

types. Like in standard rational statistical discrimination models (Phelps 1972, Arrow 1973),

stereotypes are built from experience. However, unlike in rational statistical discrimination mod-

els, they may be based on a coarse representation of reality. This implies, for example, that people

may persistently misperceive mean differences across groups. There is content to the model be-

cause observable features of the environment restrict which misperceptions of mean differences

can persist. In other words, while a persistent belief that one group is better than another along
3



some dimension need not reflect an actual difference (conditional on freely available information),

it must reflect something. In the context of the earlier example, the student’s mistaken belief that

professors are relatively unfriendly stems from the fact that his average interaction with a professor

is less pleasant than that with a non-professor.6

After presenting the model and results, I illustrate the findings with a variety of other examples.

To briefly take one, the model can help make sense of a striking and otherwise puzzling claim made

by journalist Michael Lewis in his 2003 book Moneyball (Lewis 2003): for decades, people who

ran professional baseball teams persistently ignored important components of batter skill (e.g., a

batter’s ability to get on base by receiving walks) in assessing a player’s value to winning games.

Section 2 sets up the formal learning model. An agent learns to predict y ∈ {0, 1} given x and

z, where x and z are finite random variables. The agent has a prior belief over mental models

specifying whether x (e.g., group identity) and/or z (e.g., situational factors) should be ceteris

paribus predictive of y (e.g., whether he will act friendly). Additionally, given a particular mental

model, he has prior beliefs over how these variables predict y. A standard Bayesian who attends to

all details of events eventually learns the true model and makes asymptotically accurate forecasts

(Observation 1).

Section 3 introduces selective attention. The likelihood that the agent attends to and encodes z

is assumed to be increasing in the current probability he attaches to those mental models which

specify z as ceteris paribus predictive of y.7 In the baseline specification, the agent attends to z

if and only if he places sufficient weight on such mental models relative to the fixed degree to

which he is cognitively busy.8 The agent updates his beliefs using Bayes’ rule, but, in the spirit of

assumptions found in recent work modeling biases in information processing (e.g., Mullainathan

2002, Rabin and Schrag 1999), he is naive in the sense that he ignores that a selective failure to

attend to z results in a missing data problem that can lead to biased inference. Instead, he uses an

update rule which treats a missing value of z as a fixed but distinct non-missing value.
6This view of how erroneous group stereotypes may form is consistent with experimental evidence, as detailed in
Section 6.
7Note the asymmetry between x and z: the agent is assumed to encode x regardless of his beliefs. The interpretation
is that some event features, like someone’s race, gender, or age, require less top-down attentional effort in order to
encode or are particularly salient (Fiske 1993). The formal model does not address what makes some features more
salient than others.
8I do not model optimal cognition, but specify a tractable alternative guided by evidence from psychology. In this man-
ner, my model shares similarities to recent models of costly information acquisition (Gabaix et al. 2006, Gabaix and
Laibson 2005), which recognize cognitive limitations, but do not assume that agents optimize given those limitations.
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I first establish some basic properties of the learning process. The agent eventually settles on

how he mentally represents outcomes: from some period on, he either always encodes z or never

encodes z (Proposition 1). The agent is more likely to settle on coarsely representing each period’s

outcome as (y, x, ∅) when he has less of an initial reason to suspect that z is ceteris paribus

predictive, or does not devote as much attention to learning to predict y, e.g., he is less motivated

or more preoccupied (Proposition 2).

Next, I study limiting forecasts and beliefs given a (settled upon) mental representation. Lim-

iting forecasts must be consistent with the true probability distribution over outcomes as mentally

represented (Proposition 3). This implies that there is structure to any limiting biased forecasts:

such forecasts can persist only if they are consistent with the true probability distribution over

(y, x).9 The long-run behavior of beliefs over mental models can be described as naively con-

sistent (Proposition 4). When the agent settles on finely representing each period’s outcome as

(y, x, z), he learns the true model in the sense that he eventually places negligible weight on all

mental models other than the true one. However, when the agent settles on coarsely representing

each period’s outcome as (y, x, ∅), then his limiting belief about whether z is ceteris paribus pre-

dictive is influenced by his prior since he does not notice variation in z, and, as a consequence of

the naivete assumption, his limiting belief about whether x is ceteris paribus predictive is restricted

by whether x predicts y unconditional of z: if it does, then the agent comes to place full weight on

those mental models which specify x as ceteris paribus predictive of y.

Section 4 examines persistent biases that can result from selective attention. First, I show how

selective attention can result in the agent effectively suffering from omitted variable bias and per-

sistently over- or underreacting to x depending on features of the joint distribution over (y, x, z)

(Proposition 5). Next, interpreting a belief that a variable is ceteris paribus predictive as a belief

that it is causally related to the outcome, I show how selective attention can result in misattribution

of cause (Corollary 1). In the context of the earlier example, the student becomes convinced that

whether someone is a professor influences whether he is friendly and does not just proxy for the

situation.
9When the agent settles on not encoding z, e.g., situational factors, in my model, then his limiting forecasts will be
equivalent to those of a coarse thinker who groups all situational factors together into the same category and applies
the same model of inference across members of that category (Mullainathan 2000; Mullainathan, Schwartzstein and
Shleifer 2008). Rather than take coarse thinking as given as in much of the previous literature (Eyster and Rabin 2005,
Jehiel 2005, Fryer and Jackson 2008, Esponda 2008), I endogeneize it as a potential limiting outcome (or approximate
outcome over a reasonable time horizon) of a learning process. As a result, my model has implications regarding
which categorizations can persist.
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Section 5 develops a result that can be used to study which features of the joint distribution

over (y, x, z) make a selective failure to attend to z (and resulting bias) more or less persistent.

To do so, Section 5 extends the earlier analysis by assuming there are random fluctuations in

the degree to which the agent is cognitively busy in a given period. To make matters as simple

as possible, I assume that these fluctuations are such that the likelihood that the agent attends

to z varies monotonically and continuously in the intensity of his belief that such processing is

decision-relevant. With the continuous attention assumptions, the agent will eventually learn to

devote more and more attention to z. The main result of this section (Proposition 7) concerns the

speed of convergence: The speed increases in the degree to which the agent finds it difficult to

explain what he observes without taking z into account. This is not the same as the extent to which

the agent misreacts to x by failing to take z into account; the agent may react in a very biased

fashion to x but learn very slowly that he should be paying attention to z.

Section 6 presents some illustrative examples. Section 7 considers some basic extensions of the

model. Section 8 concludes.

2. SETUP AND BAYESIAN BENCHMARK

2.1. Setup. Suppose that an agent is interested in accurately forecasting y given (x, z), where

y ∈ {0, 1} is a binary random variable and x ∈ X and z ∈ Z are finite random variables, which,

unless otherwise noted, can each take on at least two values.

• In the earlier example, y represents whether or not an individual will act friendly in con-

versation, x ∈ {Not Prof, Prof} for the individual’s occupation, and z ∈ {Work, Play} for

where the conversation takes place (at work or during recreation).

Each period t, the agent

(1) Observes some draw of (x, z), (xt, zt), from fixed distribution g(x, z)

(2) Gives his prediction of y, ŷt, to maximize −(ŷt − yt)2

(3) Learns the true yt

The agent knows that, given covariates (x, z), y is independently drawn from a Bernoulli dis-

tribution with fixed but unknown success probability θ0(x, z) each period (i.e., pθ0(y = 1|x, z) =

θ0(x, z)). Additionally, he knows the joint distribution g(x, z), which is positive for all (x, z).10

10The assumption that the agent knows g(x, z) is stronger than necessary. What is important is that he places positive
probability on every (x, z) combination and that any learning about g(x, z) is independent of learning about θ0.

6



I begin by making an assumption on the (unknown) vector of success probabilities, which makes

use of the following definition.

Definition 1. z is important to predicting y if and only if there exists x, z, z′ such that θ0(x, z) #=

θ0(x, z′). x is important to predicting y if and only if there exists x, x′, z such that θ0(x, z) #=

θ0(x′, z).

Assumption 1. z is important to predicting y.

I sometimes make the additional assumption that x is not important to predicting y, as in the

above example where only situational factors are important to predicting friendliness. Either way,

to limit the number of cases considered, I assume that the unconditional (of z) success probability

depends on x, as in the example where occupation is predictive of friendliness not controlling for

situational factors. Formally, defining pθ0(y = 1|x) ≡
∑

z′ θ0(x, z′)g(z′|x), I make the following

assumption.

Assumption 2. pθ0(y = 1|x) #= pθ0(y = 1|x′) for some x, x′ ∈ X.

Since the agent does not know θ0 = (θ0(x′, z′))x′∈X,z′∈Z, he estimates it from the data using a

hierarchical prior µ(θ), which is now described.11 He entertains and places positive probability on

each of four different models of the world, M ∈ {MX,Z , M¬X,Z , MX,¬Z , M¬X,¬Z} ≡M. These

models correspond to whether x and/or z are important to predicting y and each is associated with

a prior distribution µi,j(θ) (i ∈ {X,¬X}, j ∈ {Z,¬Z}) over vectors of success probabilities. The

vector of success probabilities θ = (θ(x′, z′))x′∈X,z′∈Ẑ has dimension |X|× |Ẑ|, where Ẑ ⊃ Z. The

importance of defining Ẑ will be clear later on when describing selectively attentive forecasts, but,

briefly, it will denote the set of ways in which a selectively attentive agent can encode z.

Under M¬X,¬Z , the success probability θ(x, z) (e.g., the probability that an individual is friendly)

depends on neither x nor z (neither occupation nor the situation):

µ¬X,¬Z({θ : θ(x, z) = θ(x′, z′) ≡ θ for all x, x′, z, z′}) = 1,

11This prior is similar to the one used by Diaconis and Freedman (1993) in studying the consistency properties of
non-parametric binary regression. The prior is called hierarchical because it captures several levels of uncertainty:
uncertainty about the correct model of the world and uncertainty about the underlying vector of success probabilities
given a model of the world.
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Models Parameters Interpretation
M¬X,¬Z θ Neither x nor z predicts y
MX,¬Z (θ(x′))x′∈X Only x predicts y
M¬X,Z (θ(z′))z′∈Ẑ Only z predicts y
MX,Z (θ(x′, z′))(x′,z′)∈X×Ẑ Both x and z predict y

Table 2: Set of Mental Models

so M¬X,¬Z is a one parameter model. Under MX,¬Z , θ(x, z) depends only on x (occupation):

µX,¬Z({θ : θ(x, z) = θ(x, z′) ≡ θ(x) for all x, z, z′}) = 1,

so MX,¬Z is a |X| parameter model. Under M¬X,Z , θ(x, z) depends only on z (the situation)

µ¬X,Z({θ : θ(x, z) = θ(x′, z) ≡ θ(z) for all x, x′, z}) = 1,

so M¬X,Z is a |Ẑ| parameter model. Finally, under MX,Z , θ(x, z) depends on both x and z (on both

occupation and the situation) so it is a |X| × |Ẑ| parameter model; i.e., µX,Z(θ) places weight on

those vectors for which θ(x, z) #= θ(x, z′) and θ(x′, z′′) #= θ(x′′, z′′) for some x, x′, x′′, z, z′, z′′.

Table 2 summarizes the four different models. All effective parameters under Mi,j are taken as

independent with respect to µi,j and distributed according to common density, ψ(·).12 I make a

technical assumption on the density ψ which guarantees that a standard Bayesian will have correct

beliefs in the limit (Diaconis and Freedman 1990, Fudenberg and Levine 2006).

Assumption 3. The density ψ is non-doctrinaire: It is continuous and strictly positive at all interior

points.

Denote the prior probability placed on model Mi,j by πi,j and assume the following

πX,Z = πXπZ

πX,¬Z = πX(1− πZ)

π¬X,Z = (1− πX)πZ

π¬X,¬Z = (1− πX)(1− πZ)

12I provide an alternative, more explicit, description of the agent’s prior in Appendix A.1.
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for some πX , πZ ∈ (0, 1]. πX is interpreted as the subjective prior probability that x is important

to predicting y (e.g., that occupation is important to predicting friendliness); πZ is interpreted as

the subjective prior probability that z is important to predicting y (e.g., that situational factors are

important to predicting friendliness).

2.2. Standard Bayesian. Denote the history through period t by

ht = ((yt−1, xt−1, zt−1), (yt−2, xt−2, zt−2), . . . , (y1, x1, z1)).

The probability of such a history, given the underlying data generating process, is derived from the

probability distribution over infinite horizon histories h∞ ∈ H∞ as generated by θ0 together with

g. I denote this distribution by Pθ0 .13

The agent’s prior, together with g, generates a joint distribution over Θ,M, and H , where Θ is

the set of all possible values of θ0, M is the set of possible models, and H is the set of all possible

histories. Denote this distribution by Pr(·).14 The (standard) Bayesian’s beliefs are derived from

Pr(·). His period-t forecast of y given x and z equals

E[y|x, z, ht] = E[θ(x, z)|ht] =
∑

i,j

πt
i,jE[θ(x, z)|ht, Mi,j](1)

a.s.→ πt
X,Z ȳt(x, z) + πt

X,¬Z ȳt(x) + πt
¬X,Z ȳt(z) + πt

¬X,¬Z ȳt,(2)

where

- ȳt(x, z) equals the empirical frequency of y = 1 given (x, z), ȳt(x) equals the empirical

frequency of y = 1 collapsed across z, ȳt(z) equals the empirical frequency of y = 1

collapsed across x, and ȳt denotes the empirical frequency of y = 1 collapsed across both

x and z.
13Pθ0 is defined by setting

Pθ0(E(ht)) =
t−1∏

τ=1

θ(xτ , zτ )yτ (1− θ(xτ , zτ ))1−yτ g(xτ , zτ )

at each event E(ht) = {h̃∞ : h̃t = ht}.
14For any Θ̃ ⊂ Θ, M ∈M, ht ∈ H

Pr(ht, Θ̃, M) = πM

∫

eΘ
ρ(ht|θ)µM (dθ)

where

ρ(ht|θ) =
t−1∏

τ=1

θ(xτ , zτ )yτ (1− θ(xτ , zτ ))1−yτ g(xτ , zτ )
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- πt
i,j ≡ Pr(Mi,j|ht) equals the posterior probability placed on model Mi,j .

- Convergence is uniform across histories where (x, z) is encountered infinitely often as a

result of the non-doctrinaire assumption (Diaconis and Freedman 1990).15

Equation (1) says that the period-t likelihood the Bayesian attaches to y = 1 given x and z is

asymptotically a weighted average of (i) the empirical frequency of y = 1 given (x, z) (e.g., the

empirical frequency of the individual being friendly given both occupation and situational factors),

(ii) the empirical frequency of y = 1 given (x) (e.g., the empirical frequency of the individual being

friendly only given occupation), the empirical frequency of y = 1 given (z) (e.g., the empirical

frequency of the individual being friendly only given situational factors), and the unconditional

empirical frequency of y = 1 (e.g., the unconditional empirical frequency of the individual being

friendly).

Definition 2. The agent learns the true model if

(1) Whenever x (in addition to z) is important to predicting y, πt
X,Z → 1

(2) Whenever x (unlike z) is unimportant to predicting y, πt
¬X,Z → 1

Observation 1. Suppose the agent is a standard Bayesian. Then

(1) E[y|x, z, ht]→ Eθ0 [y|x, z] for all (x, z), almost surely with respect to Pθ0 .

(2) The agent learns the true model, almost surely with respect to Pθ0 .

Proof. Unless otherwise noted, proofs can be found in Appendix B. !

According to Observation 1 the Bayesian with access to the full history ht at each date makes

asymptotically accurate forecasts. In addition, he learns the true model. In particular, whenever

x is unimportant to predicting y his posterior eventually places negligible weight on all models

other than M¬X,Z . This latter result may be seen as a consequence of the fact that Bayesian model

selection procedures tend not to overfit (see, e.g., Kass and Raftery 1995). In the context of the

earlier example, the standard Bayesian will learn that knowledge of situational factors but not

whether someone is a professor helps predict friendliness and, over time, will come arbitrarily

close to correctly predicting that an individual is always friendly during recreation but never at

work.
15When ψ(θ) ∼ U[0, 1], then, for any t, ht, (2) is an accurate approximation of the agent’s period-t forecast to order

1
N(x,z) , where N(x, z) equals the number of times (x, z) has appeared along history ht.
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3. SELECTIVE ATTENTION

An implicit assumption underlying the standard Bayesian approach is that the agent perfectly

encodes (yk, xk, zk) for all k < t. But, if the individual is “cognitively busy” (Gilbert et al. 1988)

in a given period k, he may not attend to and encode all components of (yk, xk, zk) because of

selective attention (Fiske and Taylor 2008). Specifically, there is much experimental evidence that,

under stress, individuals narrow their attention to stimuli perceived to be important in performing

a given task (e.g., Mack and Rock 1998, von Hippel et al. 1993).16 Consequently, at later date t,

the agent may only have access to a coarse mental representation of history ht, denoted by ĥt.

To place structure on ĥt, I make several assumptions. First, I take as given that both y and x

are always encoded: selective attention operates only on z. To model selective attention, I assume

that the likelihood that the agent attends to and encodes z is increasing in the current probability

he attaches to such processing being decision-relevant. Formally, his mental representation of the

history is

ĥt = ((yt−1, xt−1, ẑt−1), (yt−2, xt−2, ẑt−2), . . . , (y1, x1, ẑ1))(3)

where

ẑk =






zk if ek = 1 (the agent encodes zk)

∅ if ek = 0 (the agent does not encode zk)
(4)

and

ek =






1 if π̂k
Z > bk

0 if π̂k
Z ≤ bk

(5)

ek ∈ {0, 1} stands for whether or not the agent encodes z in period k, 0 ≤ bk ≤ 1 captures the

degree to which the agent is cognitively busy in period k, and π̂k
Z denotes the probability that the

agent attaches to z being important to predicting y in period k. I assume that bk is a random variable

which is independent of (xk, zk) and independently drawn from a fixed and known distribution
16To take one example, Mack and Rock (1998) describe results from a research paradigm developed by Mack, Rock,
and colleagues. In a typical task, participants are asked to judge the relative lengths of two briefly displayed lines
that bisect to form a cross. On the fourth trial, an unexpected small object is displayed at the same time as the cross.
After that trial, participants are asked whether they observed anything other than the cross. Around 25 percent of
participants show ‘inattentional blindness’. In the fifth and the sixth trial again only the cross appears. In the seventh,
an unexpected object again appears. This time, however, almost all participants notice the object.
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across periods. If bk is distributed according to a degenerate distribution with full weight on some

b ∈ [0, 1], I write bk ≡ b (with some abuse of notation).

When bk ≡ 1 (the agent is always extremely busy), (5) tells us that he never encodes zk; when

bk ≡ 0 (the agent is never busy at all), he always encodes zk. For most of the paper, I assume that

bk ≡ b for some b ∈ (0, 1) so the agent is always somewhat busy, and, as a result, encodes z if and

only if he believes sufficiently strongly that it aids in predicting y. In Section 5 I consider the case

where there are random, momentary, fluctuations in the degree to which the agent is cognitively

busy in a given period; i.e., bk is drawn according to a non-degenerate distribution. In this case, the

likelihood that the agent attends to z varies more continuously in the intensity of his belief that z

is important to predicting y.

For later reference, (4) and (5) (together with the agent’s prior as well as an assumption about

how bk is distributed) implicitly define an encoding rule ξ : Z× Ĥ → ∆ (Z ∪ {∅}) for the agent,

where Ĥ denotes the set of all possible recalled histories and ξ(z, ĥk)[ẑ′] equals the probability

(prior to bk being drawn) that ẑk = ẑ′ ∈ Z∪ {∅} given z and ĥk. In other words, the encoding rule

specifies how the agent encodes z given any history.17

To derive forecasts and beliefs given coarse history, ĥt, I need to specify how the agent treats

missing values of z. I assume that he is naive and ignores any memory imperfections that result

from selective attention when drawing inferences. I model this by assuming that the agent’s prior

treats missing and non-missing information the exact same: it treats ∅ as if it were a fixed but

distinct non-missing value. Before stating the formal assumption, recall that the agent’s prior µ is

on [0, 1]|X|×|Ẑ| (Ẑ ⊃ Z) and that all effective parameters under Mi,j are taken as independent with

respect to µi,j . For example, subjective uncertainty regarding θ(z′) and θ(z′′) is independent with

respect to µ¬X,Z for any z′ #= z′′ with both z′ and z′′ in Ẑ.

Assumption 4. The agent is naive in performing statistical inference: Ẑ = Z ∪ {∅}.

It is easiest to understand this assumption by comparing the naive agent with the more familiar

sophisticated agent. In constrast to the naive agent, a sophisticated agent’s prior only needs to be
17ξ, θ0, and g generate a measure Pθ0,ξ over Ĥ∞, where Ĥ∞ denotes the set of all infinite-horizon recalled histories.
In particular, Pθ0,ξ is defined by setting

Pθ0,ξ(E(ĥt)) =
t−1∏

τ=1

∑

z′

θ0(xτ , z′)yτ (1− θ0(xτ , z′))1−yτ g(xτ , z′)ξ(z′, ĥτ )[ẑτ ]

at each event E(ĥt) = {ĥ′∞ : ĥ′t = ĥt}. All remaining statements regarding almost sure convergence are with
respect to this measure.
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over [0, 1]|X|×|Z| since he takes advantage of the structural relationship relating the success prob-

ability following missing versus non-missing values of z. Thus, whereas the naive agent treats

missing and non-missing values of z the exact same for purposes of inference, the sophisticated

agent treats missing information differently than non-missing information: He attempts the diffi-

cult task of inferring what missing data could have been when updating his beliefs.18

I maintain the naivete assumption in what follows because it seems to be more realistic than

the assumption that people are sophisticated.19 It also is in the spirit of assumptions found in

recent work modeling biases in information processing (e.g., Mullainathan 2002, Rabin and Schrag

1999). I will highlight which arguments and results rely on this assumption as they arise.

While an individual treats ∅ as a fixed but distinct non-missing value when drawing inferences,

I assume that he is otherwise sophisticated in the sense that he “knows” the conditional likelihood

of not encoding z given his encoding rule: His beliefs are derived from Prξ(·), which is the joint

distribution over Θ,M, and Ĥ as generated by his prior together with g and ξ.20 The important

feature of an individual being assumed to have such “knowledge” is that, whenever his encoding

rule dictates not encoding zt with positive probability, he places positive probability on the event

that he will not encode zt: He never conditions on (subjectively) zero probability events. While
18It may also be helpful to compare the “likelihood functions” applied by naive and sophisticated agents, as implicit
in the specification of their priors. For every Θ̃ ⊂ Θ, M ∈M, ĥt ∈ Ĥ , the naive agent applies “likelihood function”

Pr(ĥt|Θ̃, M) ∝
∫

eΘ
∏t−1

τ=1 pθ(yτ |xτ , ẑτ )µM (dθ)∫
eΘ µM (dθ)

,(6)

where pθ(y = 1|x, ẑ) = θ(x, ẑ) for all (x, ẑ) ∈ X × Ẑ. On the other hand, for every Θ̃ ⊂ Θ, M ∈M, and ĥt ∈ Ĥ ,
the sophisticated agent applies “likelihood function”

PrS(ĥt|Θ̃, M) ∝
∫ ∏

τ∈E(t) pθ(yτ |xτ , zτ )
∏

τ /∈E(t) pθ(yτ |xτ )µM (dθ)
∫

eΘ µM (dθ)
,(6S)

where E(t) = {k < t : ẑk #= ∅} equals the set of periods k < t in which the agent encodes z and pθ(y = 1|x) =∑
z′∈Z θ(x, z′)g(z′|x) equals the unconditional (of z) success probability under θ as a consequence of Bayes’ rule.

19See Mullainathan (2002) for evidence that people do not seem to correct for memory limitations when making
inferences.
20In detail, for any Θ̃ ⊂ Θ, M ∈M, ĥt ∈ Ĥ

Prξ(ĥt, Θ̃, M) = πM

∫

eΘ
ρξ(ĥt|θ)µM (dθ)

where

ρξ(ĥt|θ) =
t−1∏

τ=1

θ(xτ , ẑτ )yτ (1− θ(xτ , ẑτ ))1−yτ gξ(xτ , ẑτ |ĥτ )

gξ(x, ẑ|ĥt) =
∑

z′

g(x, z′)ξ(z′, ĥt)[ẑ].
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there are many other ways to specify the agent’s beliefs such that they fulfill this (technical) con-

dition, I make this assumption in order to highlight which departures from the standard Bayesian

model drive my results.21

Discussion of assumptions. It is worth discussing the assumptions underlying (3)-(5) in a bit more

detail. First, note the asymmetry between x and z: the agent is assumed to encode x regardless of

his beliefs. This assumption can be thought of as capturing in a simple (albeit extreme) way the idea

that information along certain dimensions is more readily encoded than information along others,

across many prediction tasks. For example, there is much evidence that people instantly attend

to and categorize others on the basis of age, gender, and race (Fiske 1993).22 While what makes

some event features more automatically encoded than others lies outside the scope of the formal

analysis, it is reasonable to expect that event features which are useful to making predictions and

arriving at utility maximizing decisions in many contexts are likely to attract attention, even when

they may not be useful in the context under consideration. For example, gender may be salient

in economic interactions because considering gender is useful in social interactions. Consistent

with this idea of a spillover effect, the amount of effort required to process and encode information

along a stimulus dimension decreases with practice (Bargh and Thein 1985).

Second, note that, since ∅ /∈ Z, individuals do not fill in missing details of events and remember

distorted versions but instead represent missing information differently than they would a specific

value of z (similar to in Mullainathan 2002). For example, if an individual does not encode situa-

tional factors he knows that he cannot remember whether a given conversation took place during

work or recreation. It may be helpful to think of the individual as representing events at coarser or

finer levels, depending on what he encodes. If he encodes the situation, he represents the event as

(Friendliness, Occupation, Work) or (Friendliness, Occupation, Play). If he does not, he represents

the event as (Friendliness, Occupation, Real-World Interaction).

Finally, the formalization of selective attention (Equation (5)) has the simplifying feature that

whether the agent encodes z depends on his period-k belief about whether it is predictive but not
21For example, I could instead assume that the agent believes that he fails to encode z with independent probability f
each period. In other words, he believes that the joint distribution over (xt, ẑt) equals

ĝt(x, ẑ) =

{
(1− f)g(x, ẑ) for all x, ẑ #= ∅
fg(x) for all x, ẑ = ∅

for each t.
22Researchers have identified “preconcious” or “preattentive” processes that result in some event features being more
automatically processed and encoded than others (see, e.g., Bargh 1992 for a review).
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his assessment of by how much. I conjecture that my qualitative results for the discrete attention

case would continue to hold if I was to relax this assumption. Intuitively, the only real change

would be that the agent could not persistently encode z if z is not sufficiently predictive, expanding

the circumstances under which the agent’s limiting forecasts and beliefs would be biased.

3.1. Beliefs and forecasts. The probability that the selectively attentive agent assigns to model

Mi,j in period t is given by

π̂t
i,j = Prξ(Mi,j|ĥt).

As a result, the probability he assigns to z being important to predicting y is

π̂t
Z = Prξ(M¬X,Z |ĥt) + Prξ(MX,Z |ĥt)

and the probability he assigns to x being important to predicting y is

π̂t
X = Prξ(MX,¬Z |ĥt) + Prξ(MX,Z |ĥt).

His period-t forecast of y given x and z is23

Ê[y|x, z, ĥt] = Eξ[θ(x, ẑ)|ĥt],(7)

which converges to

π̂t
X,Z ȳt(x, ẑ) + π̂t

X,¬Z ȳt(x) + π̂t
¬X,Z ȳt(ẑ) + π̂t

¬X,¬Z ȳt(8)

uniformly across those mentally represented histories where (x, ẑ) appears infinitely often.24

Equation (8) says that the period-t likelihood the selectively attentive agent attaches to y =

1 given x and z approaches a weighted average of (i) the empirical frequency of y = 1 given

(x, ẑ) (e.g., the empirical frequency of the individual being friendly given both occupation and

the mental representation of situational factors), (ii) the empirical frequency of y = 1 given (x)

(e.g., the empirical frequency of the individual being friendly only given occupation), the empirical

frequency of y = 1 given (ẑ) (e.g., the empirical frequency of the individual being friendly only
23I discuss the agent’s period-t forecast in greater detail in Appendix A.
24When ψ(θ) ∼ U[0, 1], then, for all t, ĥt, (8) is an accurate approximation of the agent’s period-t forecast to order

1
N(x,ẑ) , where N(x, ẑ) equals the number of times (x, ẑ) has appeared along history ĥt.
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given situational factors as mentally represented), and the unconditional empirical frequency of

y = 1 (e.g., the unconditional empirical frequency of the individual being friendly).

Observation 2. Suppose the selectively attentive agent is never at all cognitively busy (bk ≡ 0).

Then, each period, his forecasts coincide with the Bayesian’s: Ê[y|x, z, ĥt] = E[y|x, z, ht] for all

x, z, ht, t.

Proof. Follows directly from definitions. !

Observation 2 shows that the selective attention model nests the Bayesian one as a special case.

3.2. Stable mental representations. I now establish some basic properties of the selective atten-

tion learning process for the discrete attention case. First, I show that the agent eventually settles

on how he mentally represents events, or, equivalently, on whether he encodes or does not encode

z.

Definition 3. The agent settles on encoding z if there exists some t̃ such that ek = 1 for all k ≥ t̃.

The agent settles on not encoding z if there exists some t̃ such that ek = 0 for all k ≥ t̃.

Proposition 1. Assuming bk ≡ b for a constant b ∈ [0, 1], the agent settles on encoding or not

encoding z almost surely.

The intuition behind Proposition 1 is the following. Suppose that, with positive probability, the

agent does not settle on encoding or not encoding z and condition on the event that he does not

settle on encoding or not encoding z. Then the agent must encode z infinitely often (otherwise he

settles on not encoding z). As a result, he learns that z is important to predicting y almost surely

and will eventually always encode z, a contradiction.

Proposition 1 implies that the selective attention learning process is well behaved in the sense

that, with probability one, it does not generate unrealistic cycling, where the agent goes from

believing that he should encode z, to believing that he should not encode z, back to believing

that he should encode z, etc. This implies that to characterize potential long-run outcomes of the

learning process, it is enough to study the potential long-run outcomes when the agent does or does

not settle on encoding z. Before doing so, I identify factors that influence whether or not the agent

settles on encoding z.

Proposition 2. Suppose bk ≡ b for a constant b ∈ (0, 1). Then
16



(1) As πZ → 1 the probability that the agent settles on encoding z tends towards 1. As πZ → 0

the probability that the agent settles on not encoding z tends towards 1.

(2) As b → 0 the probability that the agent settles on encoding z tends towards 1. As b → 1

the probability that the agent settles on not encoding z tends towards 1.

The intuition behind Proposition 2 is the following. As πZ → 1 or b→ 0, the “likelihood ratio”

Λ(ĥt) =
Prξ(ĥt|z important)

Prξ(ĥt|z unimportant)
=

Prξ(ĥt|MX,Z)πX + Prξ(ĥt|M¬X,Z)(1− πX)

Prξ(ĥt|MX,¬Z)πX + Prξ(ĥt|M¬X,¬Z)(1− πX)
(9)

would have to get smaller and smaller to bring π̂t
Z below b. But the probability that Λ(ĥt) never

drops below some cutoff λ tends towards one as λ approaches zero. In the other direction, as

πZ → 0 or b → 1, πZ < b and the agent starts off not encoding z. In this case, the agent never

updates his belief about whether z is important to predicting y and settles on not encoding z since,

by treating ∅ as he would a distinct non-missing value of z (the naivete assumption), he forms

beliefs as if there has been no underlying variation in z and, consequently, believes that he does

not have access to any data relevant to the determination of whether z is important to predicting

y. Note that this argument relies on the naivete assumption: If the agent is sophisticated then a

greater degree of variation in y conditional on x may provide a subjective signal that there is an

underlying unobserved variable (z) that influences the success probability.

Proposition 2 highlights that, unlike with a standard Bayesian, whether the selectively attentive

agent ever detects the relationship between z and y and learns to properly incorporate information

about z in making predictions depends on the degree to which he initially favors models that

include z as a causal or predictive factor. This is consistent with evidence presented by Nisbett and

Ross (1980, Chapter 5). As they note, the likelihood that a relationship is detected is increasing

in the extent to which prior “theories” put such a relationship on the radar screen. One example

they provide is that “few insomniacs are aware of how much more difficult their sleep is made by

an overheated room, by the presence of an odd smell, by having smoked a cigarette, or by having

engaged in physical exercise or intense mental concentration just before retiring” (Nisbett and Ross

1980, page 110).25

25Interestingly, the tendency to more readily detect relationships in the data which prior “theories” make plausible
may not be confined to humans:

If a rat is allowed to eat a new-tasting food and then many hours later is made ill ... it will avoid the
new food thereafter ... If the animal is made ill several hours after eating a food of familiar taste
but unfamiliar shape, it does not show subsequent avoidance of the new-shaped food. Conversely,
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Proposition 2 also illustrates how the degree to which an agent is cognitively busy (the level of

b) when learning to predict an output influences the relationships he detects and, as demonstrated

later, the conclusions he draws. This relates to experimental findings that the degree of cognitive

load or time pressure influences learning, as does the agent’s level of motivation (Fiske and Taylor

2008, Nisbett and Ross 1980). To take one example, Gilbert et al. (1988) had experimental partici-

pants watch seven clips of a visibly anxious woman discussing various topics without the audio on.

Half of the participants were told that some of the topics were “anxiety-provoking” (e.g., sexual

fantasies). The other half were told that all of the topics were rather mundane (e.g., world travel).

Additionally, half of the participants were placed under cognitive load while watching the clips.

After watching the clips, participants were asked to predict how anxious the woman would feel in

various hypothetical situations (e.g., when asked to give an impromptu presentation in a seminar).

Participants who were not under cognitive load were sensitive to the topics manipulation - those

in the anxious topics condition predicted less future anxiety than did those in the mundane topics

condition. In contrast, participants under cognitive load at the time of encoding did not use the

situational-constraint information.

3.3. Long-run forecasts given a mental representation. Recall that Proposition 1 implies that to

characterize potential long-run outcomes of the learning process, it is enough to study the potential

long-run outcomes when the agent does or does not settle on encoding z. In this subsection, I

characterize the potential long-run forecasts. In the next, I characterize the potential long-run

beliefs over mental models.

Proposition 3. Suppose that bk ≡ b for a constant b ∈ [0, 1].

(1) If the agent settles on encoding z, then, for each (x, z), Ê[y|x, z, ĥt] converges to Eθ0 [y|x, z]

almost surely.

(2) If the agent settles on not encoding z, then, for each (x, z), Ê[y|x, z, ĥt] converges to

Eθ0 [y|x] almost surely.

if the animal eats food of a new shape and then is shocked immediately afterward, it will learn to
avoid eating food of that shape even though it will not learn to avoid eating food having a new taste
that is followed immediately by electric shock. The rat thus may be desecribed as possessing two
“theories” useful in its ecology: (1) Distinctive gustatory cues, when followed by delayed gastric
distress, should be considered suspect. (2) Distinctive spacial cues, when followed by immediate
somatic pain, should be considered suspect. (Nisbett and Ross 1980, page 105)
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The intuition behind Proposition 3 is the following. If the agent settles on encoding z, then,

from some period on, he finely represents each period’s outcome as (y, x, z). On the other hand,

if he settles on not encoding z, then, from some period on, he coarsely represents each period’s

outcome as (y, x, ∅) (this is coarser because ∅ is fixed). Either way, his asymptotic forecasts

will be consistent with the true probability distribution over outcomes as mentally represented (his

effective observations).

Together with Proposition 1, Proposition 3 implies that forecasts converge and there is structure

to any limiting biased forecasts: Such forecasts can persist only if they are consistent with the

true probability distribution over (y, x). Returning to the earlier example, incorrectly predicting

professors to almost never be friendly cannot persist since such a forecast is inconsistent with any

coarse representation of outcomes. On the other hand, incorrectly forecasting professors to only

be friendly around 30 percent of the time during recreation can persist because such a prediction

is consistent with actual outcomes as averaged across work and recreation.

Note how the predictions of my model are sharper than those of general theories of hypoth-

esis maintenence, like confirmatory bias. The logic of confirmatory bias - i.e., the tendency of

individuals to misinterpret new information as supporting previously held hypotheses (Rabin and

Schrag 1999) - does not by itself pin down which incorrect beliefs we can expect to persist. For

example, if an individual begins with a belief that professors are almost never friendly, then, be-

cause of confirmatory bias, he may selectively scrutinize and discount evidence to the contrary

(e.g., examples of kind acts on the part of professors) and become more and more convinced in

this incorrect hypothesis. However, under my model of selective attention, such an incorrect belief

cannot persist because evidence is filtered at the level of mental models of which factors influence

an outcome and not at the level of hypotheses about how those factors influence an outcome. As

a result, the selectively attentive agent can only become more and more convinced of hypotheses

that are consistent with some coarse representation over outcomes, no matter his initial beliefs.26

3.4. Long-run beliefs given a mental representation. In this subsection, I consider the agent’s

long-run beliefs over mental models.

26Another way to think of the distinction between Rabin and Schrag’s (1999) model of confirmatory bias and my model
of selective attention is the following. Their model highlights a general mechanism that helps understand why all sorts
of erroneous first impressions can persist or become more strongly held in the face of contradictory or ambiguous data;
mine helps explain the persistence of a specific erroneous first impression (i.e., that a causal factor is unimportant to
prediction) and how this may be responsible for the persistence of a set of systematic biases.
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Proposition 4. Suppose that bk ≡ b for a constant b ∈ [0, 1].

(1) If the agent settles on encoding z, then he learns the true model almost surely.

(2) If the agent settles on not encoding z, then π̂t
X

a.s.→ 1 and, for large t, π̂t
Z ≤ b.

The first part of Proposition 4 says that when the agent settles on encoding z, then, like the

standard Bayesian, he learns the true model.27 The second part says that when the agent settles

on not encoding z, then, almost surely, he eventually places negligible weight on models where x

is unimportant to predicting y because the unconditional success probability depends on x (recall

Assumption 2). On the other hand, the limiting behavior of π̂t
Z is largely unrestricted because he

effectively does not observe any variation in z. Interestingly, although the agent “knows” that he

sometimes cannot recall z and does not have access to all data, he still becomes convinced that x is

important to predicting y. This is because, by treating ∅ as a non-missing value of z (the naivete

assumption), he believes he has access to all relevant data necessary to determine whether x is

important to prediction. Put differently, the agent can identify θ0(x, ∅) − θ0(x′, ∅) for all x, x′,

which he considers the same as being able to identify θ0(x, z′) − θ0(x′, z′) for all x, x′ and any

z′ #= ∅.28

4. PERSISTENT BIASES

The results from Section 3 establish that the selectively attentive agent may fail to learn to

pay attention to an important causal (or predictive) factor and contrast such an agent’s long-run

forecasts and beliefs with the standard Bayesian’s. In this Section, I explore how a failure to learn

to pay attention to a variable creates a problem akin to omitted variable bias, where the agent will

persistently and systematically misreact to an associated factor and may mistakenly attribute cause

to it as well.

4.1. Misreaction. In the long run, how will the selectively attentive agent misreact to x when he

fails to learn to attend to z? To study this question, it is useful to specialize to the case where x is
27A bit more precisely, Proposition 4.1 should be read as saying the following: Suppose that the agent settles on
encoding z with positive probability under Pθ0,ξ. Then, conditional on the event that the agent settles on encoding z,
he learns the true model almost surely. Proposition 4.2 can similarly be made more precise.
28This result can be interpreted as saying that the agent sometimes acts as if he believes that correlation implies cause.
This belief has been ranked as “probably among the two or three most serious and common errors of human reasoning”
(Gould 1996, page 272).
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a binary random variable and X = {0, 1}. Define

Rx(z
′) = Eθ0 [y|x = 1, z′]− Eθ0 [y|x = 0, z′]

Rx = Ez[Rx(z)|x = 1]

φ = Covz(Eθ0 [y|x = 0, z], g(x = 1|z)),

where

- Rx(z′) is the standard Bayesian’s limiting reaction to x conditional on z = z′: It equals

the gap between the true conditional expectation of y given (x, z) = (1, z′) and that given

(x, z) = (0, z′).

- Rx is the standard Bayesian’s average limiting reaction to x : It equals the expected gap

between the true conditional expectation of y given (x, z) = (1, z′) and that given (x, z) =

(0, z′), where the expectation is taken over z′ conditional on x = 1.29

- φ is the covariance between the likelihood that y = 1 given (x, z) = (0, z′) and the like-

lihood that x = 1 given z′. φ > 0 means that z which are associated with x = 1 are also

associated with y = 1; φ < 0 means that z which are associated with x = 1 are also asso-

ciated with y = 0. The magnitude |φ| measures the degree to which variation in z induces

a relationship between the expected value of y and the likelihood that x = 1.

Additionally, let Ê[y|x, z] ≡ limt→∞ Ê[y|x, z, ĥt] denote the selectively attentive agent’s limit-

ing forecast given (x, z), which almost surely exists by Propositions 1 and 3.

Proposition 5. Suppose bk ≡ b, the agent settles on not encoding z, and X = {0, 1}. Then

R̂x(z
′) ≡ Ê[y|x = 1, z′]− Ê[y|x = 0, z′] = Rx +

φ

Var(x)
(10)

almost surely for all z′.

Proposition 5 says that when the agent settles on not encoding z, his limiting reaction to x

conditional on z = z′, R̂x(z′), differs from the standard Bayesian’s, Rx(z′), in two key ways

corresponding to the two terms on the right hand side of (10). When φ = 0, the agent’s limiting

reaction reduces to the first term, Rx: By persistently failing to encode z, the agent’s limiting
29Rx is formally equivalent to what is referred to as the population average treatment effect for the treated in the
statistical literature on treatment effects, where x = 1 corresponds to a treatment and x = 0 to a control.
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conditional reaction equals the standard Bayesian’s limiting average reaction. Thinking of z as

a situation, this is one of the distortions exploited in Mullainathan, Schwartzstein, and Shleifer

(2008): By grouping distinct situations together in forming beliefs, an agent transfers the informa-

tional content of data across situations. For example, the agent may react to a piece of information

which is uninformative in a given situation, z, because it is informative in another situation, z′.

When φ #= 0, the agent’s limiting conditional reaction differs from the standard Bayesian’s

limiting average reaction in an amount and direction determined by φ, which can be thought of as

the magnitude and direction of omitted variable bias. A non-zero φ creates the possibility that, by

settling on not encoding z, an agent will conclude a relationship between y and x that (weakly)

reverses the true relationship conditional on any z′ (e.g., that non-professors are always more likely

to be friendly than professors when, in reality, they are equally likely conditional on the situation).

Definition 4. Suppose R̂x(z′) and Rx(z′) have the same sign. Then the agent overreacts to x at z′

if |R̂x(z′)| > |Rx(z′)| and underreacts to x at z′ if |R̂x(z′)| < |Rx(z′)|. He overreacts to x if he

overreacts to x at all z′ ∈ Z and underreacts to x if he underreacts to x at all z′ ∈ Z.

It is easy to see from Proposition 5 that a selectively attentive agent who fails to learn to pay

attention to z can either over- or underreact to x at z′, depending on features of the joint distribution

over (y, x, z). It is useful to consider factors that influence whether the selectively attentive agent

will persistently over- or underreact to x at z′ for two special cases: when φ = 0 and when

Rx(z′) = Rx for all z′ ∈ Z.30

Special case 1: φ = 0. Consider first the case where φ = 0. From Equation (10), the agent’s

limiting reaction to x then equals R̂x(z′) = Rx. To apply the definition of over- or underreaction,

suppose Rx(z′) and Rx have the same sign, say positive. Making this additional assumption, the

agent will persistently overreact to x at z′ if

Rx > Rx(z
′)(11)

30Note that my definition of over- or underreaction only applies when R̂x(z′) and Rx(z′) have the same sign. This is
because it is difficult to label the phenomenon where the agent mistakenly reacts positively (negatively) to x when the
true conditional relationship is negative (positive) as either over- or underreaction. Such a phenomenon is sometimes
referred to as Simpson’s paradox or association reversal in the statistics literature (Samuels 1993).
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and will underreact to x at z′ if

Rx < Rx(z
′).(12)

To interpret conditions (11) and (12), suppose that Rx(z) ≥ 0 for all z ∈ Z, so we can view

Rx(z) as a measure of the degree to which x is informative given z. Then (11) says that whenever

x is less than average informative at z′, the agent will overreact to x at z′. Similarly, (12) says that

whenever x is more than average informative at z′, the agent will underreact to x at z′. This is the

sort of over- and underreaction emphasized in the literature on coarse thinking (e.g., Mullainathan

2000, Mullainathan et al. 2008). For example, someone might overreact to past performance

information in forecasting the quality of mutual fund managers, z′, because such information tends

to be more informative in assessing the quality of other professionals (e.g., doctors or lawyers);

i.e., other z (Mullainathan et al. 2008).

Special case 2: Rx(z′) ≡ Rx. Now consider the case where Rx(z′) = Rx for all z′ ∈ Z. From

Equation (10), the agent’s limiting reaction to x then equals R̂x(z′) = Rx(z′) + φ/ Var(x). To

apply the definition of over- or underreaction, suppose that R̂x(z′) and Rx have the same sign, say

positive. Making this additional assumption, it immediately follows that the agent overreacts to x

at all z′ when φ > 0, and underreacts to x at all z′ when φ < 0. The agent will overreact to x at z′

when z which are associated with x = 1 are also associated with y = 1, but will underreact to x at

z′ when z which are associated with x = 1 are negatively associated with y = 1. The intuition for

this sort of over- and underreaction is familiar from the econometric literature on omitted variable

bias.

To take an example, someone who persistently fails to take situational factors, z, into account

may overreact to the identity of an organization’s leader, x, in predicting whether or not an orga-

nizational activity (e.g., coordination among workers) will be successful if higher quality leaders

also tend to be “lucky” and placed in more favorable situations (e.g., tend to manage smaller sized

groups) than others. Alternatively, he could underreact to the identity of a leader if higher quality

leaders tend to be “unfortunate” and placed in less favorable situations than others. In the ex-

treme case where there is no actual variation in quality among leaders, there must be overreaction,

creating “the illusion of leadership” (Weber et al. 2001).
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4.2. Misattribution of cause. The results on misreaction concern long-run forecasts. A related

question is to ask what the selectively attentive agent comes to believe about the causal relationship

between variables, interpreting π̂t
X (resp. π̂t

Z) as the intensity of the agent’s belief that x (resp. z)

is causally related to y. Proposition 4 established that, in the limit, the agent will attribute cause

to a factor whenever he reacts to it. Corollary 1 emphasizes an implication of this result, namely

that the selectively attentive agent will attribute cause to a factor even when it only proxies for

selectively unattended to predictors.

Corollary 1. Suppose the conditions of Proposition 5 hold and, additionally, x is unimportant to

predicting y. Then, so long as φ #= 0,

(1) |R̂x(z′)| = |φ|
Var(x) #= 0 almost surely for all z′: The agent overreacts to x and the extent of

overreaction is increasing in |φ|
Var(x) .

(2) π̂t
X

a.s.→ 1: The agent becomes certain that x is important to predicting y even though it is

not.

Proof. By the assumption that x is unimportant to predicting y, Rx(z′) = 0 for all z′ so Rx = 0.

Then, by Proposition 5,

R̂x(z
′) = Eθ0 [y|x = 1]− Eθ0 [y|x = 0](13)

=
φ

Var(x)
,(14)

which establishes the first part of the Proposition. Additionally, Eθ0 [y|x = 1]− Eθ0 [y|x = 0] #= 0

whenever φ #= 0 (by (14)) and the second part of the Proposition then follows from Proposition

4. !

Corollary 1 considers the situation where x is completely unimportant to prediction and the

selectively attentive agent settles on not encoding z. The first part says that, as a result of the possi-

bility that the selectively attentive agent will settle on not encoding z, he may come to overreact to

x; i.e., to salient event features.31 The degree to which the agent overreacts depends on the extent

to which there is a tendency for z’s that are associated with x = 1 to have relatively high (or low)

corresponding success probabilities. Weakening this tendency will mitigate overreaction.
31Whenever X = {0, 1} and x is unimportant to predicting y, Proposition 5 establishes that Assumption 2 holds if and
only if φ #= 0, so it is technically redundant to include this condition in the statement of Proposition 1; it is included
for clarity.
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The second part of Corollary 1 says that, as a result of the possibility that the selectively attentive

agent will settle on not encoding z, he may eventually become certain that x is ceteris paribus

predictive of y even when it is not. This is true whenever z is associated with both x and y and

the agent effectively suffers from omitted variable bias. Again, in this case, the agent mistakenly

comes to view x as more than a proxy for selectively unattended to predictors.

These results relate to experimental findings that individuals attribute more of a causal role to

information that is the focus of attention and to salient information more generally (Fiske and Tay-

lor 2008, Chapter 3; also see Nisbett and Ross 1980, Chapter 6). To take an example, Taylor and

Fiske (1975, Experiment 2) had participants watch a videotape of two people interacting in con-

versation. In the most relevant experimental condition, a third of the participants were instructed

to pay particular attention to one of the conversationalists, a third were instructed to pay particular

attention to the other, and the final third were told only to observe the conversation (i.e., they were

not instructed to attend to anything in particular). Later, participants rated the extent to which

each conversationalist determined the kind of information exchanged, set the tone of the conver-

sation, and caused the partner to behave as he did. An aggregate score served as the dependent

measure. The interaction between instructions and conversationalist was highly significant: Partic-

ipants were more likely to see the conversationalist they attended to as causal in the interaction.32

Friendliness and occupation example continued. Return to the earlier example, but generalize it

a bit and assume that, independent of whether an individual is a professor, he is friendly with

probability pH during recreation and with probability pL < pH at work. In addition, assume that

g(Occupation, Situation) is uniformly positive but otherwise place no initial restrictions on this

joint distribution.

If the student settles on attending to situational factors then Proposition 3 says that he will

eventually stop reacting to whether an individual is a professor (ROccup(Work) = ROccup(Play) =

0), and, by Proposition 4, will learn to place full weight on mental models which do not include

whether an individual is a professor among factors influencing friendliness. On the other hand,

if the student settles on not attending to situational factors then Corollary 1 says that his limiting

reaction to whether the individual is a professor equals

R̂Occup(Situation) = Ê[y|Prof, Situation]− Ê[y|Not Prof, Situation] =
φ

g(Prof)(1− g(Prof))
.

32Participants also retained more information about the conversationalist they attended to.
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A simple calculation gives us that φ = (pH − pL)(g(Prof)g(Work) − g(Prof, Work)), so the

student’s limiting reaction is

R̂Occup(Situation) =
(pH − pL)(g(Work)− g(Work|Prof))

(1− g(Prof))
.(15)

From (15), the student will react to whether an individual is a professor in the limit whenever oc-

cupation and situational factors are associated in the sense that g(Work|Prof) #= g(Work|Not Prof)

and, in particular, will predict professors to be less friendly than others when g(Work|Prof) >

g(Work|Not Prof).

In addition, whenever g(Work|Prof) #= g(Work|Not Prof), Corollary 1 tells us that the stu-

dent will become certain that whether an individual is a professor is a ceteris paribus predictor

of friendliness even though he “knows” that he sometimes does not attend to situational fac-

tors. Again, the reason is that, by the naivete assumption, he treats the mentally represented

history as if it were complete. In particular, he mistakenly treats observed variation in (Friend-

liness, Occupation|Real-World Interaction) as being equally informative as observed variation in

(Friendliness, Occupation|Work) or (Friendliness, Occupation|Play) in identifying a causal effect

of whether an individual is a professor on friendliness.

5. CONTINUOUS ATTENTION

So far, I have made the stark but instructive assumption that the agent never attends to z when

he places little weight on mental models which specify z as being important to prediction. It is

perhaps more realistic to assume that the agent will attend to z with a probability that varies more

continuously in the likelihood he attaches to such processing being decision-relevant (Kahneman

1973). I model this by assuming that there are random fluctuations in the degree to which the

agent is cognitively busy in a given period.33 Then, the likelihood that the agent attends to z will

naturally vary in the intensity of his belief that z is important to prediction.

Formally, let η(π̂k
Z) ≡ Prob[ek = 1|π̂k

Z ] = Prob[bk < π̂k
Z ] denote the likelihood that an agent

pays attention to z in period k as a function of the probability he attaches in that period to z

being important to predicting y. Before, I considered the case where bk ≡ b for some b ∈ (0, 1).

Now suppose that each bk is independently drawn according to some fixed cumulative distribution
33One interpretation is that there are fluctuations in the “shadow cost” of devoting attention, where this cost may
depend on the number and difficulty of other tasks faced by the agent, for example.
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function F that makes η(·) continuously differentiable with η′(·) > 0 and η(1) = 1. We say that

the continuous attention assumptions hold whenever the bk are drawn in this manner.

To take an example, the continuous attention assumptions hold if bk
i.i.d∼ U[0, 1]. In this case, the

likelihood that the agent attends to z as a function of π̂k
Z is given by:

η(π̂k
Z) = π̂k

Z

for all 0 ≤ π̂k
Z ≤ 1.

Proposition 6. Suppose the continuous attention assumptions hold. Then

(1) η(π̂t
Z)→ 1 almost surely.

(2) For each x, z, Ê[y|x, z, ĥt] converges to Eθ0 [y|x, z] in probability.

The intuition for Proposition 6 is the following. Under the continuous attention assumptions, the

agent always attends to z with positive probability and almost surely encodes z an infinite number

of times. As a result, no matter his initial beliefs or the degree to which he initially attends to

z, he will receive enough disconfirming evidence that he will learn that z is in fact important to

predicting y, which will lead him to devote an arbitrarily large amount of attention to z and to

make accurate forecasts with arbitrarily large probability in the limit.

Even though the agent eventually learns to attend to z and to make accurate forecasts with

arbitarily large probability in the limit, he may continue not to attend to z and to make biased

forecasts for a long time. In particular, note that, for large t, Ê[y|x, z, ĥt] ≈ Eθ0 [y|x] in any period

where the agent does not attend to z. To assess whether and when we should expect the agent to

begin attending to z over some reasonable time horizon, I consider the rate at which the likelihood

that he attends to z approaches 1. For the rest of this section, I assume that the agent eventually

only considers the two models MX,Z and MX,¬Z , either because his prior places full weight on

x being important to predicting y (i.e., πX = 1) or because x is in fact important to predicting

y. Making this assumption allows for the cleanest possible results. I get very similar but messier

results for the general case.

Before going further, I should define what I mean by rate of convergence.
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Definition 5. The asymptotic rate of convergence of a random variable Xt to X0 is V (t) if there

exists a strictly positive constant C <∞ such that

|Xt − X0|
V (t)

a.s→ C

Remark 1. If Xt converges to X0 with asymptotic rate V (t) then |Xt − X0| = O(V (t)) for large

t almost surely. Also, O(V (t)) is the “best possible” (Ellison 1993) in the sense that there exist

strictly positive constants c1 and c2 such that, almost surely, c1V (t) ≤ |Xt−X0| ≤ c2V (t) for large

t.

It is reasonable to expect that the rate at which the agent learns to attend to z depends on the

degree to which he has difficulty explaining observations without taking z into account. Put the

other way around, the agent may continue not attending to z for a long time if he can accurately

approximate the true distribution when he only takes x into account.

Formally, let pθ0(y|x, z) denote the distribution of y conditional on both x and z given the true

vector of success probabilities and pθ0(y|x) denote the distribution of y conditional only on x given

that vector. Define the relative entropy distance, d, between these two distributions as the average

of the relative entropies between pθ0(y|x′, z′) and pθ0(y|x′), where this average is taken over the

probability mass function g(x, z)34:

d =
∑

y,x,z

pθ0(y|x, z)g(x, z) log

(
pθ0(y|x, z)

pθ0(y|x)

)
.(16)

d essentially measures the distance between pθ0(y|x, z) and pθ0(y|x), which can be thought of as

a measure of how difficult it is for the agent to explain what he observes in the context of a model

under which only x is important to prediction. d can also be thought of as a measure of the degree

to which an agent, starting from a belief that z is unlikely to predict y, is “surprised” by what he

observes when he encodes z.

Proposition 7. Suppose the continuous attention assumptions hold and either (i) πX = 1 or (ii) x

is important to predicting y. Then η(π̂t
Z)→ 1 almost surely with an asymptotic rate of convergence

e−d(t−1).
34“Distance” d is called the conditional relative entropy in Cover and Thomas (2006).
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For a brief sketch of the arguments involved in proving Proposition 7, the rate at which η(π̂k
Z)→

1 is determined by the rate at which

Prξ(ĥt|MX,¬Z)

Prξ(ĥt|MX,Z)
→ 0.(17)

Consider the simpler problem of determining the rate at which35

Pr(ht|θ(x, z) = pθ0(y = 1|x) for all x, z)

Pr(ht|θ0)
→ 0.(18)

By the strong law of large numbers, 1/(t − 1) times the log of (18) goes to −d. The proof ap-

plies similar logic to analyzing (17), which is more complicated because effective observations

are not i.i.d. when the agent sometimes fails to encode z and because Prξ(ĥt|M) integrates over

parameters.

5.1. Example continued. Return to the earlier example and again suppose that an individual is

always friendly during recreation but never at work (pH = 1, pL = 0). It is easy to calculate that,

in this case,

d = −
∑

x

∑

z

g(x, z) log(g(z|x))

= H(z|x),

where H(z|x) is the conditional entropy of z given x. It is well known that

H(z|x) = H(z)− I(z; x),

where

• H(z) = −
∑

z g(z) log(z) is the entropy of z = Situation, or a measure of the degree to

which the student splits his time between work and recreation.

• I(z; x) =
∑

x,z g(x, z) log g(x,z)
g(x)g(z) is the mutual information between z = Situation and

x = Occupation, which is a measure of the degree to which knowledge of whether an

individual is a professor provides the agent with information regarding whether he is likely

to encounter the individual during work or recreation; if occupation and situational factors
35Simpler problems along these lines have been studied by other economists in the past (e.g., Easley and O’Hara
1992).
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are independent then I(z; x) = 0. Put differently, I(z; x) is another measure of the degree

of association between x and z.

Thus, fixing the degree to which the student splits his time between work and play (i.e., fixing

H(z)), the rate at which the agent will learn to attend to situational factors is decreasing in the

degree of association between occupation and situational factors (decreasing in I(z; x)). Combin-

ing this fact with the earlier analysis suggests that a student who has an even greater tendency to

encounter professors more often during work than recreation (e.g., he is an undergraduate rather

than graduate student) both has the potential to overreact to whether an individual is a professor to

a greater extent and is less likely to begin attending to situational factors within a reasonable time

horizon.

This example highlights what seems to be an important fact, namely that the extent to which the

agent’s reaction may be biased by failing to attend to z, which depends on the degree of “omitted

variable bias”, may be negatively related to the speed at which the agent learns to attend to z, which

depends on the quality of feedback available to the agent when he encodes z. To see this simply,

consider the limiting (albeit slightly unrealistic) case where the student encounters professors only

at work and non-professors only during recreation. In this case, his reaction to whether an individ-

ual is a professor is maximally biased but his ability to learn that situational factors are important

to predicting friendliness is minimized.

5.2. Coarse stereotyping of out-group members. Proposition 7 can be used to help understand

why people often attend to less information in forming judgments concerning members of out-

groups (i.e., groups to which they do not belong) and believe “they” are all alike (Fiske and Taylor

2008, page 261; Hilton and von Hippel 1996; Fryer and Jackson 2008).36

To illustrate, continue to consider the professor/friendliness example. In the context of this

example, the interest is in characterizing conditions under which the student will be less likely to

attend to situational factors when making predictions concerning professors. We must extend the
36Experimental participants can generate more subgroups when describing an in-group than an out-group (Park, Ryan,
and Judd 1992), are more likely to generalize from the behavior of a specific group member to the group as a whole
for out-groups (Quattrone and Jones 1980), and are less likely to recall individuating attributes (e.g., occupation) of
an out-group member (Park and Rothbart 1982). On this last point, Park and Rothbart (1982) asked experimental
participants to read a newspapertype story where the sex of the character was randomly assigned (“William Larsen,
27, risked his life to save a neighbor’s child ...” versus “Barbara Martin, 27, risked her life ...”). Two days later
participants were asked to recall the sex and occupation of the character. While there was no difference in recall of the
sex of the in-group versus out-group protagonist, participants were more likely to recall the occupation of the in-group
versus out-group protagonist.
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example to allow for the possibility that the student attends to z with a probability that depends

on whether he is forecasting the friendliness of a professor or non-professor. To do so in a simple

manner, suppose the student separately learns to predict friendliness for non-professors (the “in-

group”) and professors (the “out-group”), yin and yout. Otherwise, the example is the same: Each

period the student either encounters a non-professor, with probability g(in), or a professor, with

probability 1 − g(in). In a period where the student encounters an individual from group j ∈

{in, out}, he observes z ∈ Z, drawn from g(·|j) (formally, X is a singleton), makes prediction ŷj
t ,

and finally learns the true value yj
t .

For j = in, out, let

d(j) =
∑

y,z

pθ0(y|j, z)g(z|j) log

(
pθ0(y|j, z)∑

z′ pθ0(y|j, z′)g(z′|j)

)
(19)

measure the difficulty the student has explaining observations without taking z into account for

members of group j ∈ {in, out} and let ηk(j) denote the probability that the student attends to z

in period k if, in that period, he encounters an individual of group membership j.

An obvious modification of Proposition 7 gives us that, under the continuous attention assump-

tions, the asymptotic rate of convergence of ηt(j) to 1 is

e−d(j)g(j)(t−1)(20)

for j = in, out.

From (20), the speed with which the student learns to allocate attention to situational factors in

making predictions concerning a member of group j is increasing in the frequency of interaction

with members of group j, g(j), and the degree to which it is difficult to explain observations

without taking situational factors into account when interacting with members of group j, d(j).

The fact that this speed is increasing in g(j) is intuitive: The speed with which an individual learns

that a variable is important to prediction should be increasing in the frequency with which he

obtains new observations. That it is increasing in d(j) is also intuitive and follows from Proposition

7: It is not just the amount but the quality of contact which governs how quickly an agent will learn

to attend to situational constraint information when predicting the behavior of members of group

j.

To interpret this result further, consider the specific assumptions of the example: group mem-

bership does not predict y, z is binary, and pθ0(y = 0|Work) = 1 = pθ0(y = 1|Play). Given these
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assumptions, d(j) equals

Hj(z) = −
∑

z′

g(z′|j) log(g(z′|j)),

or the entropy of z for group j. Thus, if situational factors do not vary much across encounters

with members of group j (encounters are relatively homogeneous) then the agent will persistently

ignore situational-constraint information even if such encounters are frequent.

A key implication of (20) is that the student will more quickly learn to attend to situational

factors when making predictions regarding non-professors if and only if

g(in)d(in) > g(out)d(out).(21)

Inequality (21) suggests that two factors are responsible for the tendency of individuals to attend

to less information in assessing out-group members over some period of time: (i) interactions

with members of an out-group tend to be less frequent and (ii) encounters with members of an

out-group tend to be relatively homogeneous. The role of the first factor, relatively infrequent

interactions, has been recognized by other economists as contributing to people holding relatively

inaccurate beliefs about and/or persistently discriminating against members of an out-group (Fryer

and Jackson 2008, Glaeser 2005).

To the best of my knowledge, economists have ignored the second, the relative homogeneity of

interactions, but the quality of interaction is an important determinant of the degree and persistence

of intergroup bias (Allport 1954, Pettigrew 1998, Pettigrew and Tropp 2006). Proposition 7 as

applied to this example suggests that individuals who encounter members of an out-group across

more varied situations (e.g., both at work and in the neighborhood) are more likely to consider

how members of the group act in particular situations, rather than on average, when forecasting

behavior.

6. ILLUSTRATIVE EXAMPLES

Economic models traditionally assume that people take all freely available information into

account when forecasting the quality of an object to inform a decision. To take one example,

a basic premise of existing rational statistical discrimination models is that employers optimally

consider all easily observable information about a potential worker (from résumés, interviews, and

recommendations) when making hiring decisions (e.g., Phelps 1972, Arrow 1973, Aigner and Cain
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1977, Altonji and Pierret 2001). There are many real world examples that are hard to reconcile

with this assumption, but are consistent with the selective attention model.

Consider the large mispricing of skills in the market for baseball players, popularly documented

in Michael Lewis’s Moneyball (Lewis 2003). Lewis (2003) argues that, historically, people who

ran baseball teams had an incomplete picture of what makes a good baseball player, in particular a

successful batter. Through following conventional advice, like “There is but one true criterion of

skill at the bat, and that is the number of times bases are made on clean hits” (Lewis 2003, page

70), they ignored important components of batter skill, notably a batter’s ability to get on base by

receiving walks. Baseball statisticians like Bill James noted this deficiency (James 1982), but were

largely dismissed by managers and others making hiring decisions. The managers appear to have

been in error. Starting in the late 1990s, the Oakland Athletics began to focus on hiring players

who excelled at getting on base.37 Evidence suggests that, in doing so, they were able to build a

very successful team at a relatively cheap price (Hakes and Sauer 2006). In 2002, the Athletics

ranked twelfth in payroll in the American League (out of fourteen teams) but first in wins (Thaler

and Sunstein 2004). However, this competitive advantage appears to have largely disappeared in

recent years, in particular since the publication of Moneyball. Regression analysis indicates that,

in 2004, wages reflected a player’s ability to get on base (controlling for other factors), but did not

before (Hakes and Sauer 2006).

Assuming Lewis (2003) is correct, selective attention provides an explanation for what hap-

pened. Though managers had access to freely available information proxying for the ability to

take walks and get on base (e.g., on-base percentage, which takes walks into account), they did not

carefully attend to such information.38 In turn, they did not learn how important having disciplined

batters could be to winning games. It was only later, after the importance of this skill was explicitly

demonstrated by the Oakland Athletics and detailed in a popular book, that the market learned to

pay attention and wages came to more closely reflect fundamental batter value.

Consider also the study by Malmendier and Shanthikumar (2007) on the tendency of small

investors to take security analysts’ stock recommendations literally. Affiliated analysts (i.e., those

belonging to banks that have an underwriting relationship to firms they are reporting on) tend
37The Oakland Athletics topped the American League in walks in 1999 and 2001, ranked second or third in 2000,
2002 and 2004, and ranked fifth in 2003 (Hakes and Sauer 2006).
38On-base percentage is the fraction of plate appearances where the player reached base either through a walk or a hit.
Walks do not figure into the classic batter statistic, a player’s batting average.
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to issue more favorable recommendations. For example, the modal recommendation is “buy”

for affiliated analysts but “hold” for unaffiliated analysts. Malmendier and Shanthikumar (2007)

find that large investors (e.g., pension funds) discount the recommendations of affiliated versus

unaffiliated analysts. Small investors (e.g., individual investors), on the other hand, do not. This

pattern of results is difficult to explain in a standard cost of information gathering framework, as

small investors do not react differently to independent analysts’ recommendations (i.e., those never

involved in underwriting) even though members of this group often advertise their independence.

It follows naturally, however, from the model of selective attention. By virtue of being relatively

busy thinking about other things and having less precise knowledge about analysts’ incentives, it

is relatively unlikely that small investors will learn to attend to analyst affiliation or that affiliated

analysts’ recommendations should be relatively discounted.39

Also related are experimental findings on stereotype formation. Schaller and O’Brien (1992)

asked experimental participants to judge the relative intelligence of two groups, A and B, on the

basis of their performance on anagram tasks. Participants were presented with 50 observations,

where each observation consisted of information on the group membership of a person (25 ob-

servations of each group), whether he solved or failed to solve the anagram, the actual anagram

(some were five letters long and others were seven letters long), and the correct solution. The ob-

servations were constructed such that, conditioned on the length of the anagram, group A members

solved more anagrams but, unconditionally, group B members solved more. After being presented

with the observations, participants judged group B members to be more intelligent than group A

members and predicted they would perform better if given the same anagram to solve in the future,

presumably failing to take into account the correlation between group membership and anagram

length. Consistent with this failure stemming from selective attention, manipulations designed to

give participants more time to process each observation or to direct their attention towards anagram

length through explicit instructions (prior to presenting the observations) facilitated more accurate

judgments. In particular, when participants were both given more time as well as the instructions,

they viewed A members as more intelligent and predicted that they would perform better if given

the same anagram to solve.
39For related experimental evidence, see Cain, Loewenstein, and Moore (2005).
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As a final example, Bertrand and Mullainathan (2004) find that, all else equal, résumé callbacks

are more responsive to variables predictive of quality (e.g., years of experience, skills listed, ex-

istence of gaps in employment) for white sounding than for African-American sounding names.

In a related pilot study, Bertrand et al. (2005) find that laboratory participants who report feeling

more rushed are more likely to discriminate against African-American résumés. While there are

several interpretations for these findings, one possibility is that screeners have coarser stereotypes

for African Americans (Fiske and Taylor 2008, page 261; Hilton and von Hippel 1996; Fryer and

Jackson 2008), which leads them to selectively attend to less information when screening their

résumés.

7. BASIC EXTENSIONS

In this Section, two basic extensions of the analysis are considered. In the first basic extension, I

examine what happens if, after some amount of time, the agent begins attending to z because there

is a shock to his belief that z is important to prediction. The main point is that, following such

“debiasing”, it will still take the agent time to learn to incorporate information about z in making

predictions, since he did not notice z before. This is easiest to see in the context of the example of

a doctor who brings up the possibility that food allergies could be causing an agent’s headaches.

Even if they are, the agent may need to keep a food diary for some time before learning which

foods he should stay away from. This feature of the model helps clarify how its predictions will

often differ from one in which an agent cannot attend to all available information when making

a prediction, but can nonetheless recall such information if necessary later on (e.g., Hong, Stein

and Yu 2007).40 In the second, I show how selective attention can lead to asymptotic disagreement

across agents who share a common prior and observe the same data when some agents can devote

more attention than others to a prediction task.

7.1. Debiasing. Suppose bk ≡ b, the agent starts off not encoding z (πZ < b), and X = {0, 1}.

What happens if, at some large t, the agent begins attending to z because there is an unmodeled

shock to his belief that z is important to predicting y (πZ shifts to π′Z > πZ) or to the degree to

which he is cognitively busy (b shifts to b′ < b)?41

40Models like Hong, Stein and Yu’s (2007) may be a better description of situations where past information (e.g.,
about firm earnings) is freely available in public records and tends to be revisited; mine may be a better description of
situations where such information is not.
41Can think of shocks to πZ as resulting from a media report or something learned in a class and shocks to b as
resulting from some (not modeled) reason why the agent would begin caring more about predicting y (e.g., he begins
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The main thing to note is that, even if this shock leads the agent to settle on encoding z and to

make unbiased forecasts in the limit, he continues to make systematically biased forecasts for a

long time. The reason is that it takes some time for the agent to learn how to use both x and z to

make predictions since he has not attended to z in the past (there is “learning by encoding”). To

see this, consider how the agent reacts to x given z at the time of the shock t. Since t is assumed to

be large, Eξ[θ(x, z)|MX,¬Z , ĥt] ≈ Eθ0 [y|x] and π̂t
X ≈ 1 by the results of Section 3, so the agent’s

reaction to x given z in that period equals

Eξ[θ(1, z)|ĥt]− Eξ[θ(0, z)|ĥt] ≈ π′Z [τ − τ ] + (1− π′Z)(Eθ0 [y|x = 1]− Eθ0 [y|x = 0])(22)

= (1− π′Z)(Eθ0 [y|x = 1]− Eθ0 [y|x = 0]),(23)

where τ = Eψ[θ] equals the prior success probability under density ψ. From (23), the agent’s

reaction to x in period t is approximately proportional to his reaction the period before when he

did not attend to z. This is intuitive: By not having attended to z in the past he has not learned

that z is important to predicting y or how z is important to predicting y. As a result, even when he

attends to z, his forecast places substantial weight on the empirical frequency of y = 1 given only

(x).

7.2. Disagreement. Disagreement across agents arises naturally out of the model, even when

agents share a common prior and observe the same information. Suppose that there are two agents,

i = 1, 2, who can devote differing amounts of attention to the task of predicting y. Formally,

let bi
k ≡ bi denote the degree to which agent i is cognitively busy and suppose b1 #= b2. Then,

asymptotically, the two agents may react differently to pieces of information that are potentially

informative about outcome variable y.

To see this clearly, suppose that the first agent can devote so much attention to the task at hand

that she always encodes z (b1 = 0), but the second is so consumed with other activities that she

never encodes z (b2 = 1). Further, suppose that X = {0, 1} and x is positively related to y

conditional on each z′: Rx(z′) ≥ 0 for all z′. A straightforward application of Propositions 3

and 5 gives us that, starting from the same prior, the two agents may nevertheless asymptotically

disagree about the sign of the relationship between x and y at all z′ even after observing the same

data; that is, we may have a situation where, in the limit, the first agent correctly reacts positively to

caring more about what leads to weight gain if he recently had a heart attack) or it becomes easier for the agent to
attend to z (perhaps an attribute of a product is suddenly unshrouded).
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x = 1 while the other incorrectly reacts negatively to x = 1. In particular, from Equation (10) it is

easy to see that this will almost surely be the case whenever the omitted variable bias is sufficiently

severe: −φ > Rx Var(x).

8. CONCLUSION

This paper has supplied a model of belief formation in which an agent is selective as to which

information he attends. The central assumption of the model is that the likelihood that the agent

encodes information along a dimension is increasing in the intensity of his belief that such infor-

mation is predictive. I show that, as a consequence of selective attention, the agent may persistently

fail to attend to an important predictor and hold incorrect beliefs about the statistical relationship

between variables. In addition, I derive conditions under which such errors are more likely or per-

sistent. Results match and shed light on several experimentally found biases in inference, including

the difficulty people have in recognizing relationships that prior theories do not make plausible and

the overattribution of cause to salient event features. Examples indicate that the model can be fruit-

fully applied to study a range of problems in stereotyping, persuasion, statistical discrimination,

and other areas.
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APPENDIX A. PRIOR, FORECASTS, AND USEFUL LEMMAS

A.1. Prior. I now give an alternative description of the agent’s prior, which will be useful in pre-

senting the proofs. The prior can compactly be expressed as µ(θ) =
∑

i∈{X,¬X}
∑

j∈{Z,¬Z} πi,jµi,j(θ).

Fix a model M ∈M and define cM(x, ẑ) as the set of covariates (x′, ẑ′) ∈ X× Ẑ such that, under

that model, any yt given covariates (xt, ẑt) = (x, ẑ) is exchangeable with any yt′ given covari-

ates (xt′ , ẑt′) = (x′, ẑ′); i.e., under model M , θ(x′, ẑ′) = θ(x, ẑ) with probability one if and only

if (x′, ẑ′) ∈ cM(x, ẑ). For example, under MX,¬Z (where only x is important to predicting y),

cX,¬Z(x, ẑ) = {(x′, ẑ′) ∈ X × Ẑ : x′ = x} equals the set of covariates that agree on x. With a

slight abuse of notation, label the common success probability across members of cM under model

M by θ(cM). Intuitively, cM(x, ẑ) equals the set of covariates that, under model M , can be lumped

together with (x, ẑ) without affecting the accuracy of the agent’s predictions.

Let CM denote the collection of cM , so CM is a partition of X×Ẑ, and define Θ(M) = [0, 1]#CM

as the effective parameter space under model M with generic element θ(M). µM is defined by

the joint distribution it assigns to the #CM parameters θ(cM). These parameters are taken as

independent with respect to µM and distributed according to density, ψ(·). To take an example, if

ψ(θ) = 1θ∈[0,1], then θ(cM) ∼ U[0, 1] for each M ∈M, cM ∈ CM .

A.2. Forecasts. I will now describe the forecasts of an individual with selective attention in some

detail (rational forecasts are a special case) and will present some definitions which will be useful

later.

Given the individual’s prior, his period-t forecast given recalled history ĥt is given by

Ê[y|x, z, ĥt] =
∑

M ′∈M

π̂t
M ′Eξ[θ(c

M ′
(x, ẑ))|ĥt, M ′],(24)

where

Eξ[θ(c
M)|ĥt, M ] =

∫
θ̃ψ(θ̃|ĥt, cM)dθ̃

ψ(θ̃|ĥt, cM) =
θ̃κ(cM |ĥt)(1− θ̃)N(cM |ĥt)−κ(cM |ĥt)ψ(θ̃)

∫
τκ(cM |ĥt)(1− τ)N(cM |ĥt)−κ(cM |ĥt)ψ(τ)dτ

.

N(cM |ĥt) denotes the number of times the covariates have taken on some value (x, ẑ) ∈ cM along

history ĥt and κ(cM |ĥt) denotes the number of times that both the covariates have taken on such

a value and y = 1. I will sometimes abuse notation and write N(x, ẑ|ĥt) and κ(x, ẑ|ĥt) instead of
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N({(x, ẑ)}|ĥt) and κ({(x, ẑ)}|ĥt), respectively. Likewise, when convenient I will write N(x|ĥt)

instead of N({(x′, ẑ′) : x′ = x}|ĥt), etc.

To illustrate, (24) takes a particularly simple form when ψ(θ) ∼ U[0, 1]:

Ê[y|x, z, ĥt] = π̂t
X,Z

κ(x, ẑ|ĥt) + 1

N(x, ẑ|ht) + 2
+ π̂t

X,¬Z

κ(x|ĥt) + 1

N(x|ht) + 2
+ π̂t

¬X,Z

κ(ẑ|ĥt) + 1

N(ẑ|ĥt) + 2
+ π̂t

¬X,¬Z

κ̄(ĥt) + 1

t + 1
,

(25)

where κ̄(ĥt) =
∑

x′,ẑ′ κ(x′, ẑ′|ĥt).

For future reference,

π̂t
i,j = Prξ(Mi,j|ĥt)

=
Prξ(ĥt|Mi,j)πi,j∑

i′,j′ Prξ(ĥt|Mi′,j′)πi′,j′

=
αi,jBt

i,j∑
i′,j′ αi′,j′Bt

i′,j′

where

Bt
i,j =

Prξ(ĥt|Mi,j)

Prξ(ĥt|MX,Z)

=

∫
Prξ(ĥt|θ)µi,j(dθ)

∫
Prξ(ĥt|θ)µX,Z(dθ)

is the Bayes factor comparing model Mi,j to model MX,Z (Kass and Raftery 1995 provide a review

of Bayes factors) and

αi,j =
πi,j

πX,Z
(26)

is the prior odds for Mi,j against MX,Z .

A.3. Useful lemmas concerning the asymptotic properties of Bayes’ factors. Prior to present-

ing the remaining proofs, I establish several results which will be useful in establishing asymp-

totic properties of the Bayes’ factors and will in turn aid in characterizing the agent’s asymp-

totic forecasts and beliefs. Let p0(y, x, ẑ) and p̂(y, x, ẑ) denote probability mass functions over

(y, x, ẑ) ∈ {0, 1}×X× Ẑ. Define the Kullback Leibler distance between p̂(y, x, ẑ) and p0(y, x, ẑ)
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as

dK(p̂, p0) =
∑

y,x,ẑ

p0(y, x, ẑ) log

(
p0(y, x, ẑ)

p̂(y, x, ẑ)

)
(27)

with the convention that 0 log
(

0
p̂

)
= 0 for p̂ ≥ 0 and p0 log

(
p0

0

)
=∞ for p0 > 0 (see, e.g., Cover

and Thomas 2006).

For all (y, x, ẑ), assume that p̂(y, x, ẑ) can be written as p̂(y, x, ẑ|θ) = θ(x, ẑ)y(1−θ(x, ẑ))1−yp0(x, ẑ)

(sometimes abbreviated as p̂θ(y, x, ẑ)), where p0(x, ẑ) =
∑

y′∈{0,1} p0(y′, x, ẑ). Define p̂(y, x, ẑ|θ(M)) =

pθ(M)(y, x, ẑ) in the obvious manner (θ(M) is defined as in Subsection A.1) and let θ(M) =

arg minθ(M)∈Θ(M) dK(p̂θ(M), p0) denote a minimizer of the Kullback-Leibler distance between

p̂θ(M)(·) and p0(·) among parameter values in the support of µM(·). Finally, define δM = δM(p0) =

dK(p̂θ(M), p0).

Lemma 1. For all M ∈M, p0, and cM ∈ CM , θ(cM) = p0(y = 1|cM).

Proof. Fix some p0(·), M , and cM .

−dK(p̂θ(M), p0) =
∑

y,x,ẑ

p0(y|x, ẑ)p0(x, ẑ) log

(
θ(cM(x, ẑ))y(1− θ(cM(x, ẑ)))1−y

p0(y|x, ẑ)

)
(28)

=
∑

cM∈CM

[p0(y = 1|cM)p0(c
M) log(θ(cM)) + p0(y = 0|cM)p0(c

M) log(1− θ(cM))]−K(29)

where K does not depend on θ(M). It is routine to show that each term in the sum of (29) is

maximized when θ(cM) = p0(y = 1|cM), which concludes the proof. !

Let ĥt = (yt−1, xt−1, ẑt−1, . . . , y1, x1, ẑ1) be some random sample from p0(y, x, ẑ). Define

It(M) = I(M |ĥt) =

∫ ∏t−1
k=1 p̂(yk, xk, ẑk|θ)

∏t−1
k=1 p0(yk, xk, ẑk)

µM(dθ)(30)

as well as the predictive distribution

p̂M
t (y, x, ẑ) = p̂M(y, x, ẑ|ĥt) =

∫
p̂(y, x, ẑ|θ)µM(dθ|ĥt).(31)

Note that, while not explicit in the notation, both It(M) and p̂M
t (·) depend on p0. To avoid confu-

sion, I will sometimes make this dependence explicit by writing It(M |p0) and p̂M
t (·|p0).
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It will be useful to establish some Lemmas with priors which are slightly more general than

what has been assumed.

Definition 6. µM is uniformly non-doctrinaire if it makes each θ(cM) independent with non-

doctrinaire prior ψcM .

Note that it is possible for ψcM to vary with cM when µM is uniformly non-doctrinaire.

Lemma 2. For all M ∈M, p0, and uniformly non-doctrinaire µM ,

1

t− 1
log It(M |p0)→ −δM(p0),(32)

p∞0 almost surely.

Proof. Fix some M ∈M, p0, and uniformly non-doctrinaire µM . From Walker (2004, Theorem

2), it is sufficient to show that the following conditions hold:

(1) µM({θ : dK(p̂θ, p0) < d}) > 0 only for, and for all, d > δM

(2) limt inf dK(p̂M
t , p0) ≥ δM , p∞0 almost surely

(3) supt Var(log(It+1(M)/It(M))) <∞

The “only for” part of the first condition holds trivially from the definition of δM and the “for

all” part follows from the fact that dK(p̂θ(M), p0) is continuous in a neighborhood of θ(M) (since

p̂θ(M)(·) is continuous in θ(M)) and µM(·) places positive probability on all open neighborhoods in

Θ(M). The second condition also holds trivially since dK(p̂M
t , p0) ≥ minθ(M)∈Θ(M) dK(p̂θ(M), p0) =

δM for all t, ĥt.

The third condition requires a bit more work to verify. Note that It+1(M) = p̂M
t (yt,xt,ẑt)
p0(yt,xt,ẑt)

It(M)

⇒ log(It+1(M)/It(M)) = log
(

p̂M
t (yt,xt,ẑt)
p0(yt,xt,ẑt)

)
, so condition (3) is equivalent to

sup
t

Var

[
log

(
p̂M

t (yt, xt, ẑt)

p0(yt, xt, ẑt)

)]
<∞(33)

which can easily be shown to hold so long as

sup
t

E

{
∑

y,x,ẑ

p0(y, x, ẑ) log

(
p̂M

t (y|x, ẑ)

p0(y|x, ẑ)

)2
}

<∞(34)

or

sup
t

E
[
log

(
p̂M

t (y|x, ẑ)
)2

]
<∞(35)
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for all (y, x, ẑ) which satisfy p0(y, x, ẑ) > 0.

To verify (35), fix some (y, x, ẑ) with p0(y, x, ẑ) > 0 and let N(cM(x, ẑ)|ĥt) = Nt denote the

number of times the covariates have taken on some value (x′, ẑ′) ∈ cM(x, ẑ) along history ĥt and

κ(cM(x, ẑ)|ĥt) = κt denote the number of times both that the covariates have taken on such a value

and y = 1. Then

qt =
κt + 1

Nt + 2
(36)

roughly equals the empirical frequency of y = 1 conditional on (x′, ẑ′) ∈ cM(x, ẑ) up to period t.

An implication of the Theorem in Diaconis and Freedman (1990) is that

p̂M
t (y|x, ẑ)→ qy

t (1− qt)
1−y(37)

at a uniform rate across histories since the marginal prior density over θ(cM(x, ẑ)) is non-doctrinaire.

Consequently, fixing an ε > 0 there exists an n > 0 such that, independent of the history,

| log(p̂M
t (y|x, ẑ))2 − log(qy

t (1− qt)
1−y)2| < ε

for all t ≥ n42 which implies that

E[| log(p̂M
t (y|x, ẑ))2 − log(qy

t (1− qt)
1−y)2|] < ε(38)

for all t ≥ n. Since E[log(p̂M
t (y|x, ẑ))2] < ∞ for all finite t, to verify (35) it is sufficient to show

that

sup
t

E[log(qy
t (1− qt)

1−y)2] <∞(39)

by (38).

By symmetry, it is without loss of generality to verify (39) for the case where y = 1. To this

end,

E[log(qt)
2] = E[E[log(qt)

2|Nt]]

= E

[
(1 + Nt)(1− θ̃)Nt log

(
1

2 + Nt

)2
]

42Can show that this statement follows from Diaconis and Freedman’s (1990) result using an argument similar to
Fudenberg and Levine (1993, Proof of Lemma B.1).
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where

θ̃ ≡ p0(y = 1|cM(x, ẑ)).

Now, since limN→∞(1 + N)(1− θ̃)N log
(

1
2+N

)2
= 0, there exists a constant M <∞ such that

(1 + N)(1− θ̃)N log

(
1

2 + N

)2

< M

for all N . As a result,

E

[
(1 + Nt)(1− θ̃)Nt log

(
1

2 + Nt

)2
]

< M <∞

for all t which verifies (39) and concludes the proof. !

Define the Bayes’ factor conditional on p0 as

Bi,j(ĥ
t|p0) = Bt

i,j(p0) =
It(Mi,j|p0)

It(MX,Z |p0)
(40)

Note thatBi,j(ĥt) = Bi,j(ĥt|p0) for some p0 whenever we can write Prξ(ĥt|θ) =
∏t−1

k=1 p̂(yk, xk, ẑk|θ) =
∏t−1

k=1 θ(xk, ẑk)yk(1− θ(xk, ẑk))1−ykp0(xk, ẑk) for some p0.

Lemma 3. For all Mi,j ∈M, p0, and uniformly non-doctrinaire µi,j, µX,Z ,

1

t− 1
logBt

i,j(p0)→ δX,Z(p0)− δi,j(p0),(41)

p∞0 almost surely.

Proof. Note that

1

t− 1
logBt

i,j =
1

t− 1
log (It(Mi,j))−

1

t− 1
log (It(MX,Z))(42)

so the result follows immediately from Lemma 2. !

Remark 2. An immediate implication of Lemma 3 is that δi,j(p0) > δX,Z(p0) implies Bt
i,j(p0) →

0, p∞0 almost surely.

Remark 2 applies when δi,j(p0) > δX,Z(p0); what does the Bayes’ factor Bt
i,j(p0) tend towards

asymptotically when δi,j(p0) = δX,Z(p0)? I now present a Lemma (due to Diaconis and Freedman

1992) that will aid in estimating the Bayes’ factor in this case and establishing asymptotic results.
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First some definitions. Let H(q) be the entropy function q log(q) + (1− q) log(1− q) (set at 0 for

q = 0 or 1) and define the following

φ(κ, N,ψ) =

∫ 1

0

θκ(1− θ)N−κψ(θ)dθ

φ(κ, N) =

∫ 1

0

θκ(1− θ)N−κdθ = Beta(κ + 1, N − κ + 1)

q̂ =
κ

N

φ∗(κ, N) =






eNH(q̂)
√

N

√
2π

√
q̂(1− q̂) for 0 < κ < N

1
N for κ = 0 or N

Lemma 4. For any non-doctrinaire ψ(·) there are 0 < a < A <∞ such that for all N = 1, 2, . . .

and κ = 0, 1, . . . , N , aφ∗(κ, N) < φ(κ, N,ψ) < Aφ∗(κ, N).

Proof. Note that for any non-doctrinaire ψ there exist constants b, B such that 0 < b ≤ ψ(θ) ≤

B < ∞ for all θ ∈ (0, 1). The result then follows from Lemma 3.3(a) in Diaconis and Freedman

(1992). For a brief sketch, note that bφ(κ, N) ≤ φ(κ, N,ψ) ≤ Bφ(κ, N). Now use Stirling’s

formula on φ(κ, N) for κ and N − κ large. !

APPENDIX B. PROOFS

B.1. Proofs of Observations. In proving Observation 1 and some of the later propositions, I will

make use of the following Lemma which establishes the almost sure limit of several Bayes’ factors

when the agent always encodes z (e.g., when he is a standard Bayesian).

Lemma 5. BX,¬Z(ht)→ 0 and B¬X,¬Z(ht)→ 0, Pθ0 almost surely. Additionally, if x is important

to predicting y, then B¬X,Z(ht)→ 0, Pθ0 almost surely.

Proof. When the agent always encodes z, each period’s observation is independently drawn from

p1
0(y, x, z) = θ0(x, z)y(1 − θ0(x, z))1−yg(x, z) for all (y, x, z). Then, Lemma 3 implies that it is

sufficient to show that δX,¬Z(p1
0) > δX,Z(p1

0), δ¬X,¬Z(p1
0) > δX,Z(p1

0) and, whenever x is important

to predicting y, δ¬X,Z(p1
0) > δX,Z(p1

0). Can easily establish these inequalities by applying Lemma

1 for each M ∈M. !
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Proof of Observation 1.1. Recall that the standard Bayesian’s period t forecast satisfies

E[y|x, z, ht] =
∑

M ′∈M

πt
M ′E[θ(cM ′

(x, z))|ht, M ′](43)

Fix an M ∈ M. Since the marginal prior density over θ(cM(x, z)) is non-doctrinaire under M ,

E[θ(cM(x, z))|ht, M ]→ ȳt(cM(x, z))
a.s.→ Eθ0 [y|cM(x, z)] by Theorem 2.4 of Diaconis and Freed-

man (1990) and the strong law of large numbers (ȳt(cM) denotes the empirical frequency of y = 1

conditional on (x, z) ∈ cM up to period t).

In addition, Eθ0 [y|cM(x, z)] = Eθ0 [y|x, z] for M = MX,Z as well as for M¬X,Z when M¬X,Z is

the true model. Consequently, it is left to show that πt
X,¬Z and πt

¬X,¬Z converge almost surely to

zero and that πt
¬X,Z converges almost surely to zero whenever M¬X,Z is not the true model. But

these statements follow immediately from Lemma 5. !

Proof of Observation 1.2. Lemma 5 shows that both Bt
X,¬Z and Bt

¬X,¬Z converge almost surely

to zero and that Bt
¬X,Z converges almost surely to zero whenever x is important to predicting y. As

a result, in order to prove that the standard Bayesian learns the true model almost surely it is left

to show that Bt
¬X,Z

a.s.→ ∞ whenever x is not important to predicting y. First, write out the Bayes’

factor:

Bt
¬X,Z =

Pr(ht|M¬X,Z)

Pr(ht|MX,Z)
(44)

=
∏

z′

∫ 1

0 θκ(z′|ht)(1− θ)N(z′|ht)−κ(z′|ht)ψ(θ)dθ
∏

x′

∫ 1

0 θκ(x′,z′|ht)(1− θ)N(x′,z′|ht)−κ(x′,z′|ht)ψ(θ)dθ
.(45)

From (45) it is sufficient to show that
∫ 1

0 θκ(z|ht)(1− θ)N(z|ht)−κ(z|ht)ψ(θ)dθ
∏

x′

∫ 1

0 θκ(x′,z|ht)(1− θ)N(x′,z|ht)−κ(x′,z|ht)ψ(θ)dθ

a.s.→ ∞(46)

for each z ∈ Z.

Fix some z. I will use Lemma 4 to estimate (46). Let κt = κ(z|ht), Nt = N(z|ht), q̂t =

κt
Nt

, κx′
t = κ(x′, z|ht), Nx′

t = N(x′, z|ht), and q̂x′
t = κx′

t

Nx′
t

.

Applying Lemma 4,
∫ 1

0 θκt(1− θ)Nt−κtψ(θ)dθ
∏

x′

∫ 1

0 θκx′
t (1− θ)Nx′

t −κx′
t ψ(θ)dθ

≥ aφ∗(κt, Nt)

A#X
∏

x′ φ
∗(κx′

t , Nx′
t )

(47)
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for some constants 0 < a < A < ∞. By the strong law of large numbers, the right hand side of

(47) tends almost surely towards

C

√∏
x′ N

x′
t√

Nt

a.s.→ ∞

where C is some positive constant independent of t. !

B.2. Proofs of results from Section 3. I now present a series of Lemmas which will aid in proving

results from Section 3. Define

p0
0(y, x, ẑ) =






∑
z′∈Z θ0(x, z′)y(1− θ0(x, z′))1−yg(x, z′) for each y, x, and ẑ = ∅

0 for ẑ #= ∅
(48)

to equal the distribution over (y, x, ẑ) conditional on the agent not encoding z. Lemma 6 establishes

the almost sure limit of several Bayes’ factors when the agent never encodes z.

Lemma 6. Suppose Eθ0 [y|x] #= Eθ0 [y] for some x ∈ X. Then, for all uniformly non-doctrinaire

µ¬X,¬Z , µ¬X,Z , and µX,Z , B¬X,¬Z(ĥt|p0
0)→ 0 and B¬X,Z(ĥt|p0

0)→ 0, (p0
0)
∞ almost surely.

Proof. Lemma 3 implies that it is sufficient to show that δ¬X,¬Z(p0
0) > δX,Z(p0

0) and δ¬X,Z(p0
0) >

δX,Z(p0
0) whenever Eθ0 [y|x] #= Eθ0 [y] for some x ∈ X. Can easily verify these inequalities by

applying Lemma 1 for each M ∈M. !

The next Lemma establishes some finite sample properties of Bayes’ factors when the agent

never encodes z. First, define

ĥt
m = (yt−1, xt−1, ∅, . . . , y1, x1, ∅)

πZ(ĥt
m|p0

0) =
1 + 1−πX

πX
B¬X,Z(ĥt

m|p0
0)

1 + 1−πX
πX

B¬X,Z(ĥt
m|p0

0) + 1−πZ
πZ

BX,¬Z(ĥt
m|p0

0) + (1−πX)(1−πZ)
πXπZ

B¬X,¬Z(ĥt
m|p0

0)

Lemma 7. For all t, ĥt
m, and ψ,

B¬X,Z(ĥt
m|p0

0) = B¬X,¬Z(ĥt
m|p0

0)(49)

BX,¬Z(ĥt
m|p0

0) = 1(50)

πZ(ĥt
m|p0

0) = πZ .(51)
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Proof.

B¬X,Z(ĥt
m|p0

0) =

∫ 1

0 θκ(m|ĥt
m)(1− θ)N(m|ĥt

m)−κ(m|ĥt
m)ψ(θ)dθ

∏
x′

∫ 1

0 θκ(x′,m|ĥt
m)(1− θ)N(x′,m|ĥt

m)−κ(x′,m|ĥt
m)ψ(θ)dθ

=

∫ 1

0 θκ̄(ĥt
m)(1− θ)t−1−κ̄(ĥt

m)ψ(θ)dθ
∏

x′

∫ 1

0 θκ(x′|ĥt
m)(1− θ)N(x′|ĥt

m)−κ(x′|ĥt
m)ψ(θ)dθ

B¬X,¬Z(ĥt
m|p0

0) =

∫ 1

0 θκ̄(ĥt
m)(1− θ)t−1−κ̄(ĥt

m)ψ(θ)dθ
∏

x′

∫ 1

0 θκ(x′|ĥt
m)(1− θ)N(x′|ĥt

m)−κ(x′|ĥt
m)ψ(θ)dθ

= B¬X,Z(ĥt
m|p0

0)

BX,¬Z(ĥt
m|p0

0) =

∏
x′

∫ 1

0 θκ(x′|ĥt
m)(1− θ)N(x′|ĥt

m)−κ(x′|ĥt
m)ψ(θ)dθ

∏
x′

∫ 1

0 θκ(x′|ĥt
m)(1− θ)N(x′|ĥt

m)−κ(x′|ĥt
m)ψ(θ)dθ

= 1.

Plugging these expressions into the definition of πZ(ĥt
m|p0

0) yields

πZ(ĥt
m|p0

0) =
πZ

[
1 + 1−πX

πX
B¬X,Z(ĥt

m|p0
0)

]

1 + 1−πX
πX

B¬X,Z(ĥt
m|p0

0)

= πZ .

!

Lemma 8. Suppose that, with positive probability under Pθ0,ξ(·), the agent encodes z infinitely

often. Conditional on the agent encoding z infinitely often, π̂t
Z → 1 almost surely.

Proof. I want to show that, conditional on the agent encoding z infinitely often, BX,¬Z(ĥt) → 0

and B¬X,¬Z(ĥt)→ 0 with probability 1. Equivalently, I will establish that

log(Bi,¬Z(ĥt))→ −∞(52)

for each i ∈ {X,¬X}.

Defining

ĥt
1 ≡ (yτ , xτ , ẑτ )τ<t:ẑτ )=∅

ĥt
0 ≡ (yτ , xτ , ẑτ )τ<t:ẑτ=∅
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we can write

Bt
i,¬Z =

Prξ(ĥt
0|Mi,¬Z) Prξ(ĥt

1|Mi,¬Z , ĥt
0)

Prξ(ĥt
0|MX,Z) Prξ(ĥt

1|MX,Z , ĥt
0)

so the LHS of (52) can be expressed as

log

(
Prξ(ĥt

0|Mi,¬Z)

Prξ(ĥt
0|MX,Z)

)
+ log

(
Prξ(ĥt

1|Mi,¬Z , ĥt
0)

Prξ(ĥt
1|MX,Z , ĥt

0)

)
.(53)

When the agent fails to encode z only a finite number of times along a history, we can ignore

the first term of (53) because it tends towards a finite value as t → ∞. Otherwise, Lemma 7 says

that the first term of (53) is identically 0 for i = X , as well as for i = ¬X when X is a singleton;

Lemma 6 (together with Assumption 2) says that the first term tends towards −∞ with probability

1 for i = ¬X when X contains at least two elements. As a result, no matter which case we are in it

is sufficient to show that the second term of (53) tends towards −∞ with probability 1 in order to

establish (52). This can be verified by showing that

lim sup
t

1

#E(t)
log

(
Prξ(ĥt

1|Mi,¬Z , ĥt
0)∏

τ∈E(t) p1
0(yτ , xτ , zτ )

)
− 1

#E(t)
log

(
Prξ(ĥt

1|MX,Z , ĥt
0)∏

τ∈E(t) p1
0(yτ , xτ , zτ )

)
< 0(54)

with probability 1 for i ∈ {X,¬X}, where

p1
0(y, x, z) = θ0(x, z)y(1− θ0(x, z))1−yg(x, z)

E(t) = {τ < t : ẑτ #= ∅}.

The second term on the LHS of (54) tends towards 0 with probability 1 by Lemma 2.43 To

complete the proof, it then remains to show that the first term on the LHS of (54) remains bounded

away from 0 as t→∞ for i ∈ {X,¬X}, or

lim sup
t

1

#E(t)
log

(
Prξ(ĥt

1|Mi,¬Z , ĥt
0)∏

τ∈E(t) p1
0(yτ , xτ , zτ )

)
< 0.(55)

43Note that

1
#E(t)

log

(
Prξ(ĥt

1|MX,Z , ĥt
0)∏

τ∈E(t) p1
0(yτ , xτ , zτ )

)
=

1
#E(t)

log

(
Prξ(ĥt

1|MX,Z)∏
τ∈E(t) p1

0(yτ , xτ , zτ )

)

since, under µX,Z , subjective uncertainty regarding θ(x, ∅) and θ(x, z′), z′ #= ∅, is independent.
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We can re-write the LHS of (55) as

1

#E(t)
log

(∏
x′

∏
z′

∫
θ(x′, z′)κ(x′,z′|ĥt

1)(1− θ(x′, z′))N(x′,z′|ĥt
1)−κ(x′,z′|ĥt

1)µi,¬Z(dθ|ĥt
0)∏

x′
∏

z′ θ0(x′, z′)κ(x′,z′|ĥt
1)(1− θ0(x′, z′))N(x′,z′|ĥt

1)−κ(x′,z′|ĥt
1)

)
.(56)

Since µi,¬Z(·|ĥt
0) places full support on vectors of success probabilities (θ) with θ(x, z) = θ(x, z′)

for all x, z, z′, we can bound (56) by noting that

∏

x′

∏

z′

∫
θ(x′, z′)κ(x′,z′|ĥt

1)(1− θ(x′, z′))N(x′,z′|ĥt
1)−κ(x′,z′|ĥt

1)µi,¬Z(dθ|ĥt
0)

≤ max
θ(0),θ(1)

∏

x′

∏

z′

θ(x′)κ(x′,z′|ĥt
1)(1− θ(x′))N(x′,z′|ĥt

1)−κ(x′,z′|ĥt
1)

=
∏

x′

∏

z′

κ(x′|ĥt
1)

N(x′|ĥt
1)

κ(x′,z′|ĥt
1) (

1− κ(x′|ĥt
1)

N(x′|ĥt
1)

)N(x′,z′|ĥt
1)−κ(x′,z′|ĥt

1)

which implies that (56) is bounded above by

1

#E(t)
log





∏
x′

∏
z′

κ(x′|ĥt
1)

N(x′|ĥt
1)

κ(x′,z′|ĥt
1) (

1− κ(x′|ĥt
1)

N(x′|ĥt
1)

)N(x′,z′|ĥt
1)−κ(x′,z′|ĥt

1)

∏
x′

∏
z′ θ0(x′, z′)κ(x′,z′|ĥt

1)(1− θ0(x′, z′))N(x′,z′|ĥt
1)−κ(x′,z′|ĥt

1)



 .(57)

for all t, ĥt. By the strong law of large numbers, expression (57) can be shown to tend towards

−dK(p̂θ(MX,¬Z), p1
0) < 0 with probability 1 conditional on the agent encoding z infinitely often;

this establishes (55) and completes the proof. !

Proof of Proposition 1. Suppose that, with positive probability under Pθ0,ξ(·), the agent does not

settle on encoding or not encoding z (b must satisfy 0 < b < 1). Label this event NS and condition

on ĥ∞ ∈ NS. Since the agent encodes z infinitely often conditional on NS, by Lemma 8 we must

have π̂t
Z → 1 with probability 1. As a result, with probability 1 there exists a t̃ such that π̂t

Z > b

for all t ≥ t̃ so et = 1 for all t ≥ t̃, a contradiction. !

A few Lemmas will be useful to establish Proposition 2. First, define

Λ(ht) ≡
1 + 1−πX

πX
B¬X,Z(ht)

BX,¬Z(ht) + 1−πX
πX

B¬X,¬Z(ht)
,(58)

which can be thought of as a likelihood ratio (or Bayes’ factor) comparing the likelihood of a

history under models where z is important to predicting y versus the likelihood of that history

under models where z is unimportant to predicting y.
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Lemma 9. πZ(ht) > b if and only if Λ(ht) > 1−πZ
πZ

b
1−b .

Proof.

πZ(ht) > b ⇐⇒

1 + α¬X,ZB¬X,Z(ht)

1 + α¬X,ZB¬X,Z(ht) + αX,¬ZBX,¬Z(ht) + α¬X,¬ZB¬X,¬Z(ht)
> b ⇐⇒

1 + α¬X,ZB¬X,Z(ht)

αX,¬ZBX,¬Z(ht) + α¬X,¬ZB¬X,¬Z(ht)
>

b

1− b
⇐⇒

1 + 1−πX
πX

B¬X,Z(ht)
1−πZ

πZ
BX,¬Z(ht) + (1−πX)(1−πZ)

πXπZ
B¬X,¬Z(ht)

>
b

1− b
(recall αi,j = πi,j

πX,Z
) ⇐⇒

Λ(ht) =
1 + 1−πX

πX
B¬X,Z(ht)

BX,¬Z(ht) + 1−πX
πX

B¬X,¬Z(ht)
>

1− πZ

πZ

b

1− b

!

Lemma 10. For all ε > 0 there exists λ > 0 such that

Pθ0

(
min
t′≥1

Λ(ht′) > λ

)
≥ 1− ε(59)

Proof. Fix ε > 0. From Lemma 5, we know that BX,¬Z(ht)
a.s.→ 0,B¬X,¬Z(ht)

a.s.→ 0. As a result,

Λ(ht) =

“
1+

1+πX
πX

B¬X,Z(ht)
”

“
BX,¬Z(ht)+

1−πX
πX

B¬X,¬Z(ht)
” a.s.→ ∞. Consequently, there exists a value T ≥ 1 such that

Pθ0(mint′≥T Λ(ht′) ≥ 1) > 1 − ε (see, for example, Lemma 7.2.10 in Grimmett and Stirzaker

2001).

Since, in addition, there exists λ (0 < λ < 1) such that

min
h

min
1≤k≤T

Λ(hk) > λ

we have

Pθ0(min
t′≥1

Λ(ht′) > λ) ≥ 1− ε.

!

Lemma 11. If π̂k
Z < b for all k < t (t > 1) then π̂t

Z = πZ .
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Proof. Suppose that πZ,ξ(ĥk) < b for all k < t (πZ,ξ(ĥk) is long-hand for π̂k
Z). Then, for all k < t,

the marginal distribution over (xk, ẑk) is identically p0
0(xk, ẑk) since ξ(z, ĥk)[∅] = 1. As a result,

πZ,ξ(ĥt) = πZ(ĥt
m|p0

0) = πZ , where the last equality follows from Lemma 7. !

Proof of Proposition 2. Part 1.

First I show that, for all ε > 0, there exists π1 ∈ (0, 1) (or b1 ∈ (0, 1)) such that the agent settles

on encoding z with probability at least 1 − ε for all πZ ≥ π1 (b ≤ b1). Fix ε. Note that, whenever

π̂k
Z > b for all k < t, ĥt = ht, π̂t

Z = πZ(ht), and Pθ0,ξ(ĥt) = Pθ0(h
t). As a result, it is sufficient to

show that there exists π1 ∈ (0, 1) (b1 ∈ (0, 1)) such that

Pθ0(min
t′≥1

πZ(ht′) > b) ≥ 1− ε

whenever πZ ≥ π1 (b ≤ b1).

By Lemma 9,

πZ(ht) > b ⇐⇒

Λ(ht) >
1− πZ

πZ

b

1− b
.

Consequently, Pθ0(mint′≥1 πZ(ht′) > b) ≥ 1− ε if and only if

Pθ0

(
min
t′≥1

Λ(ht′) >
1− πZ

πZ

b

1− b

)
≥ 1− ε.

From Lemma 10 we know that there exists λ(ε) > 0 such that

Pθ0

(
min
t′≥1

Λ(ht′) > λ(ε)

)
≥ 1− ε,

so the result follows from setting π or b to satisfy

1− π

π

b

1− b
= λ(ε)⇒

π1 =
b

b + λ(ε)(1− b)

b1 =
λ(ε)π

π(λ(ε)− 1) + 1
.

Part 2.
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It is left to show that, for all ε > 0, there exists π2 ∈ (0, 1) such that the agent settles on not

encoding z with probability at least 1 − ε for all πZ ≤ π2 (b ≥ b2). It is sufficient to show that,

when πZ < b, πZ,ξ(ĥt) = πZ for all t > 1. But this follows from Lemma 11. !

Proof of Proposition 3. Part 1. Analagous to the proof of Observation 1.1 and hence omitted.

Part 2. If the agent settles on not encoding z then, by definition, there exists n such that et = 0 for

all t ≥ n. In any period t ≥ n, the agent’s expectation satisfies

Ê[y|x, z, ĥt] = Eξ[θ(x, ∅)|ĥt]

=
∑

M ′∈M

π̂t
M ′Eξ[θ(c

M ′
(x, ∅))|ĥt, M ′].

Fix an M ∈ M. Since the marginal prior density over θ(cM(x, ∅)) is non-doctrinaire under M ,

Eξ[θ(cM(x, ∅))|ĥt, M ] → ȳt(cM(x, ∅))
a.s.→ Eθ0 [y|cM(x, ∅)] by Theorem 2.4 of Diaconis and

Freedman (1990) and the strong law of large numbers, where Eθ0 [y|cM(x, ∅)] = Eθ0 [y|x] for

M ∈ {MX,Z , MX,¬Z} and Eθ0 [y|cM(x, ∅)] = Eθ0 [y] for M ∈ {M¬X,Z , M¬X,¬Z}.

If Eθ0 [y|x] = Eθ0 [y], then we are done. Assume Eθ0 [y|x] #= Eθ0 [y] for some x. It is left to

show that both π̂t
¬X,Z and π̂t

¬X,¬Z converge almost surely to zero. Equivalently, it is left to show

that both B¬X,Z(ĥt) and B¬X,¬Z(ĥt) converge almost surely to zero.

For t ≥ n and j ∈ {¬Z, Z},

B¬X,j(ĥ
t) =

Prξ(ĥt|M¬X,j)

Prξ(ĥt|MX,Z)

=
Prξ(ĥt

n|M¬X,j, ĥn) Prξ(ĥn|M¬X,j)

Prξ(ĥt
n|MX,Z , ĥn) Prξ(ĥn|MX,Z)

=

(∫ ∏t−1
k=n θ(xk, ∅)yk(1− θ(xk, ∅))1−ykµ¬X,j(dθ|ĥn)

∫ ∏t−1
k=n θ(xk, ∅)yk(1− θ(xk, ∅))1−ykµX,Z(dθ|ĥn)

)
Prξ(ĥn|M¬X,j)

Prξ(ĥn|MX,Z)
,

where ĥt
n = (yt−1, xt−1, ∅, . . . , yn, xn, ∅). Since Prξ(ĥn|M¬X,j)

Prξ(ĥn|MX,Z)
is fixed for all t ≥ n, it is necessary

and sufficient to show that
(∫ ∏t−1

k=n θ(xk, ∅)yk(1− θ(xk, ∅))1−ykµ¬X,j(dθ|ĥn)
∫ ∏t−1

k=n θ(xk, ∅)yk(1− θ(xk, ∅))1−ykµX,Z(dθ|ĥn)

)
(60)
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converges to zero almost surely to establish such convergence of the Bayes’ factor. But, noting that

(i) (60) equalsBt
¬X,j(p

0
0) for some uniformly non-doctrinaire µ¬X,j , µX,Z , and (ii) (yt−1, xt−1, ẑt−1, . . . , yn, xn, ẑn)

is a random sample from p0
0, the result follows from Lemma 6. !

Proof of Proposition 4. Part 1. Analagous to the proof of Observation 1.2 and hence omitted.

Part 2. The fact that π̂t
X

a.s.→ 1 when the agent settles on not encoding z follows immediately from

Assumption 2 and Lemma 6. That π̂t
Z ≤ b for large t follows from the definition of settling on not

encoding z and the encoding rule. !

B.3. Proofs of results from Section 4.

Proof of Proposition 5. A version of this result appears in Samuels (1993), but, for completeness,

I’ll provide a proof.44

Let the true distribution over (y, x, z) be denoted by p0(·) (the distribution generated by θ0 and

g(·)) and let E denote the expectation operator under p0(·). With this notation,

Rx(z
′) = E[y|x = 1, z′]− E[y|x = 0, z′]

Rx = E[Rx(z)|x = 1]

φ = Cov(E[y|x = 0, z], g(x = 1|z))

From Proposition 3, Ê[y|x = 1, z]− Ê[y|x = 0, z] almost surely equals

E[y|x = 1]− E[y|x = 0]

= E[E[y|x, z]|x = 1]− E[E[y|x, z]|x = 0]

=
E[E[y|x = 1, z]g(x = 1|z)](1− g(x = 1))− E[E[y|x = 0, z]g(x = 0|z)]g(x = 1)

g(x = 1)(1− g(x = 1))

=
E[Rx(z)g(x = 1|z)](1− g(x = 1))

g(x = 1)(1− g(x = 1))
+

E[E[y|x = 0, z](g(x = 1|z)− g(x = 1))]

g(x = 1)(1− g(x = 1))

= Rx +
φ

g(x = 1)(1− g(x = 1))

= Rx +
φ

Var(x)

!
44My proof closely follows Samuels’s.
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B.4. Proofs of results from Section 5.

Lemma 12. If the continuous attention assumptions hold then the agent almost surely encodes z

an infinite number of times.

Proof. Fix some t. I will show that the probability of never encoding z after t is bounded above

by 0. Independent of the history before t, the probability of not encoding z at t + k (k > 0) given

not having encoded z between t and t + k is strictly less than

1− η

(
bπZ

a(1− πZ) + bπZ

)
< 1,(61)

where a and b are positive constants (do not depend on k).45 As a result, the probability of never

encoding z after t is less than the infinite product
(

1− η

(
bπZ

a(1− πZ) + bπZ

))∞
= 0

and the result follows. !

Proof of Proposition 6.

Part (1): From Lemma 12 we know that the agent almost surely encodes z an infinite number of

times. Combining this result with Lemma 8, we have that π̂t
Z → 1 almost surely which implies

that η(π̂t
Z)→ 1 almost surely.

Part (2): Fix (x, z) and ε > 0. Want to show that

lim
t→∞

Pθ0,ξ(|Ê[y|x, z, ĥt]− Eθ0 [y|x, z]| > ε) = 0(62)

45Straightforward computations establish that whenever the agent does not encode z between t and t + k,

π̂t+k
Z =

1 + 1−πX
πX

B¬X,Z(ĥt
1|ĥt+k

0 )B¬X,Z(ĥt+k
0 )

1 + 1−πX
πX

B¬X,Z(ĥt
1|ĥ

t+k
0 )B¬X,Z(ĥt+k

0 ) + 1−πZ
πZ

BX,¬Z(ĥt
1|ĥ

t+k
0 ) + 1−πX

πX

1−πZ
πZ

B¬X,¬Z(ĥt
1|ĥ

t+k
0 )B¬X,Z(ĥt+k

0 )
,

where Bi,j(ĥt
1|ĥt+k

0 ) ≡ Prξ(ĥt
1|Mi,j ,ĥt+k

0 )

Prξ(ĥt
1|MX,Z ,ĥt+k

0 )
(recall that ĥj

1 = (yτ , xτ , ẑτ )τ<j:ẑτ &=∅ and ĥj
0 = (yτ , xτ , ẑτ )τ<j:ẑτ=∅).

Upper bound (61) is derived by noting that, fixing t, both BX,¬Z(ĥt
1|ĥt+k

0 ) and B¬X,¬Z(ĥt
1|ĥt+k

0 ) are bounded above
by some finite positive constant a independent of k and history ĥt+k. Likewise, fixing t, B¬X,Z(ĥt

1|ĥt+k
0 ) is bounded

below by some finite positive constant b̃ independent of k and history ĥt+k. As a result,

π̂t+k
Z >

1 + 1−πX
πX

b̃B¬X,Z(ĥt+k
0 )

1 + 1−πX
πX

B¬X,Z(ĥt+k
0 )

[
b̃ + 1−πZ

πZ
a
]

+ 1−πZ
πZ

a
.

Now take the infimum of the right hand side of this expression with respect to all possible values of B¬X,Z(ĥt+k
0 ) to

get (61).
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Expanding

Pθ0,ξ(|Ê[y|x, z, ĥt]− Eθ0 [y|x, z]| > ε) = Pθ0,ξ(|Eξ[θ(x, z)|ĥt]− Eθ0 [y|x, z]| > ε)Pθ0,ξ(et = 1)

+ Pθ0,ξ(|Eξ[θ(x, ∅)|ĥt]− Eθ0 [y|x, z]| > ε)(1− Pθ0,ξ(et = 1)),

to establish (62) it is sufficient to show that

A. Eξ[θ(x, z)|ĥt]
a.s.→ Eθ0 [y|x, z]

B. Pθ0,ξ(et = 1)→ 1

A. follows from now familiar arguments applying the non-doctrinaire assumption, the strong law of

large numbers, the consistency properties of Bayes’ factors, and the fact that the agent encodes z an

infinite number of times (Lemma 12). B. follows from the fact that Pθ0,ξ(et = 1) = Eθ0,ξ[η(π̂t
Z)]

and Eθ0,ξ[η(π̂t
Z)]→ 1 because η(π̂t

Z) is bounded and tends almost surely towards 1 by Proposition

6.1. !

The next Lemma demonstrates that the fraction of time that the agent spends encoding z tends

towards 1 assuming continuous attention. Recall that E(t) = {τ < t : ẑτ #= ∅} denotes the number

of times the agent encodes z prior to period t.

Lemma 13. If the continuous attention assumptions hold then #E(t)
t−1

a.s.→ 1.

Proof. Define γt = #E(t)
t−1 . I will apply a result from the theory of stochastic approximation to

show that γt a.s.→ 1 (Benaim 1999). We have

γt − γt−1 =
et − γt−1

t− 1

=
1

t− 1
(F (γt−1) + εt + ut),

where

F (γt−1) = 1− γt−1

εt = et − η(π̂t
Z)

ut = η(π̂t
Z)− 1.

Note that

(1) F is Lipschitz continuous and is defined on a compact set [0, 1]
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(2) E[εt|ĥt] = 0 and E(|εt|2) <∞

(3) ut
a.s.→ 0

so Theorem A in Fudenberg and Takahashi (2008) tells us that, with probability 1, every ω-limit of

the process {γt} is connected and internally chain recurrent for Φ, where Φ is the continuous time

semi-flow induced by

γ̇(t) = F (γ(t)).

Since F ′(γ) = −1 < 0 and the unique steady state of the continuous time process is γ = 1, the

only connected and internally chain recurrent set for Φ is {1} by Liouville’s Theorem. !

Lemma 14. d = δX,¬Z(p1
0)

Proof. Apply Lemma 1 to get θ(cX,¬Z(x, z)) = p1
0(y|x) = pθ0(y|x) for all x. The result then

follows from the definition of δX,¬Z(p1
0). !

Lemma 15. If the continuous attention assumptions hold, then BX,¬Z(ĥt)

e−d(t−1)

a.s.→ K for some K satis-

fying 0 < K <∞.

Proof. I will show that

1

t− 1
logBX,¬Z(ĥt)→ −d(63)

almost surely. We can write

BX,¬Z(ĥt) =
Prξ(ĥt

1|MX,¬Z) Prξ(ĥt
0|MX,¬Z , ĥt

1)

Prξ(ĥt
1|MX,Z) Prξ(ĥt

0|MX,Z)
(64)

From (64), we can write the left hand side of (63) as

1

t− 1

[
log

(
Prξ(ĥt

1|MX,¬Z)∏
k∈E(t) p1

0(yk, xk, zk)

)
+ log

(
Prξ(ĥt

0|MX,¬Z , ĥt
1)∏

k/∈E(t) p0
0(yk, xk, ∅)

)]

− 1

t− 1

[
log

(
Prξ(ĥt

1|MX,Z)∏
k∈E(t) p1

0(yk, xk, zk)

)
+ log

(
Prξ(ĥt

0|MX,Z)∏
k/∈E(t) p0

0(yk, xk, ∅)

)](65)

We know that the second term of (65) tends almost surely towards 0 as t→∞ by Lemma 2.
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As a result, to establish (63) it remains to show that the first term tends almost surely towards

−d. Rewrite this term as

#E(t)

t− 1

[
1

#E(t)
log

(
Prξ(ĥt

1|MX,¬Z)∏
k∈E(t) p1

0(yk, xk, zk)

)]
+

t− 1−#E(t)

t− 1

[
1

t− 1−#E(t)
log

(
Prξ(ĥt

0|MX,¬Z , ĥt
1)∏

k/∈E(t) p0
0(yk, xk, ∅)

)]
.

(66)

By Lemmas 2, 13, and 14, (66) tends almost surely towards

1×−d + 0× 0 = −d

as t→∞, which completes the proof. !

Lemma 16. If the continuous attention assumptions hold, then B¬X,¬Z(ĥt)

e−d′(t−1)

a.s.→ K for some d′ ≥ d

and K satisfying 0 < K <∞.

Proof. Let d′ = δ¬X,¬Z(p1
0). Using analagous arguments to those in the proof of Lemma 15,

can show that B¬X,¬Z(ĥt)

e−δ¬X,¬Z (p1
0)(t−1)

a.s.→ K for some K satisfying 0 < K < ∞. Since δ¬X,¬Z(p1
0) >

δX,¬Z(p1
0) (from the fact that adding more constraints weakly increases the minimized Kullback-

Leibler divergence) and δX,¬Z(p1
0) = d (by Lemma 14), the result follows. !

Lemma 17. Suppose the continuous attention assumptions hold. If the asymptotic rate of conver-

gence of π̂t
Z to 1 is V (t) then the asymptotic rate of convergence of η(π̂t

Z) to 1 is V (t).

Proof. Suppose the asymptotic rate of convergence of π̂t
Z to 1 is V (t). Then, by definition, there

must exist a strictly positive constant C <∞ such that

1− π̂t
Z

V (t)
a.s.→ C.(67)

The goal is to show that (67) implies that there exists a strictly positive constant C ′ <∞ such that

1− η(π̂t
Z)

V (t)
a.s.→ C ′.(68)

But (68) follows from (67) so long as there exists a strictly positive constant K <∞ such that

1− η(π̂t
Z)

1− π̂t
Z

a.s.→ K,(69)

which can easily be verified using the continuous differentiability of η(·) and l’Hopital’s rule. !
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Proof of Proposition 7. From Lemma 17, it is enough to show that

1− π̂t
Z

e−d(t−1)

a.s→ C(70)

for some strictly positive constant C <∞.

Since

1− π̂t
Z =

1

1 +
1+

1−πX
πX

B¬X,Z(ĥt)
1−πZ

πZ
BX,¬Z(ĥt)+

1−πX
πX

1−πZ
πZ

B¬X,¬Z(ĥt)

,

to demonstrate (70) it suffices to show that

e−d(t−1)

1−πZ
πZ

BX,¬Z(ĥt) + 1−πX
πX

1−πZ
πZ

B¬X,¬Z(ĥt)
+

1−πX
πX

B¬X,Z(ĥt)e−d(t−1)

1−πZ
πZ

BX,¬Z(ĥt) + 1−πX
πX

1−πZ
πZ

B¬X,¬Z(ĥt)

a.s→ c′(71)

for some constant c′ satisfying 0 < c′ <∞.

The first term on the left hand side of (71) converges almost surely to a positive finite constant

by Lemmas 15 and 16. The second term on the left hand side of (71) converges almost surely to 0

whenever πX = 1 (trivially) or x is important to predicting y (by Lemmas 3, 15, and 16). !
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