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Abstract

We study parameter estimation from the sample X , when the objective is to maximize the

expected value of a criterion function, Q, for a distinct sample, Y. This is the situation that

arises in forecasting problems and whenever an estimated model is to be applied to a draw from

the general population. A natural candidate for solving maxT∈σ(X ) EQ(Y, T ), is the innate es-

timator, θ̂ = arg maxθ Q(X , θ). While the innate estimator has certain advantages, we show,

under suitable regularity conditions, that the asymptotically efficient estimator takes the form

θ̃ = arg maxθ Q̃(X , θ), where Q̃ is defined from a likelihood function in conjunction with Q. The

likelihood-based estimator is, however, fragile, as misspecification is harmful in two ways. First, the

likelihood-based estimator may be inefficient under misspecification. Second, and more importantly,

the likelihood approach requires a parameter transformation that depends on the truth, causing an

improper mapping to be used under misspecification. The theoretical results are illustrated with

two applications, one involving a Gaussian likelihood and an asymmetric loss function; and another

is the problem of making multi-period ahead forecasts.
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1 Introduction

Efficient parameter estimation is a well explored topic. For instance, an estimator T (X ) is said to be

efficient for θ, if it minimizes the expected loss, E[L(T (X ), θ)], where L is a loss function and X is the

random sample that is available for estimation. In this paper, we consider parameter estimation with

a different objective. Our objective is characterized by the intended use of the estimated “model” that

involves a second random sample, Y, which is distinct from that sample used for estimation, X . This is

the structure that emerges in forecasting problems where Y represents future data and X is the sample

available for estimation. In the context of forecasting it is standard convention to refer to X and Y

as in-sample and out-of-sample, respectively. Our framework is, however, not specific to forecasting

problems. The sample, Y, can also represent a random draw from the general population, for which

an estimated model is to be used. For instance, based on a pilot study (based on X ), one may seek to

optimize tuning parameters in a policy program (e.g. a job training program), before the program is

implemented more widely (to Y).

To fix ideas: Let the objective be maxT∈σ(X ) EQ(Y, T ), where Q is a criterion function. A natural

candidate is the extremum estimator, θ̂ = arg maxθQ(X , θ), which we label the innate estimator,

because it is deduced directly from Q. While the innate estimator seeks to maximize the objective, Q,

it need not be efficient and a better estimator may be available. To study this problem we consider a

class of extremum estimators, where a typical element is given by, θ̃ = arg maxθ Q̃(X , θ), where Q̃ is

another criterion.

While it may seem unnatural to estimate parameters using a criterion, Q̃, that differs from that

of the actual objective, Q, this approach is quite common in practice. This is sometimes done out

of convenience,1 but, as we will show, a carefully crafted Q̃ will produce the asymptotically efficient

estimator. The use of a different criterion, Q̃, for estimation has many pitfalls, and the asymptotic

efficiency hinges on additional assumption.

We shall establish results in an asymptotic framework, that are based on conventional assumptions

made in the context ofM -estimation. While our framework and objective differs for that usually used to

study efficient parameter estimation, the classical structure emerges after manipulating the asymptotic

expressions. The enables us to make use of the Cramer-Rao lower bound to establish a likelihood-

based estimator as the asymptotically efficient estimator, albeit new and important issues arises in the

case where the likelihood is misspecified. Under correct specification, the likelihood-based estimator

dominates the innate estimator, sometimes by a wide margin. When the likelihood is misspecified,
1For instance, estimation by simple regression analysis although the the objective may be predictions of Value-at-Risk.
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the asymptotic efficiency argument perish but, more importantly, the likelihood approach requires a

mapping of likelihood parameters to criterion parameters that hinges on the likelihood being correctly

specified. Under misspecification, this mapping becomes improper and causes θ̃ to be inconsistent for

the value of θ that maximizes Q.

In the context of forecasting, many have argued for the estimation criterion to be synchronized with

the actual objection, starting with Granger (1969), see also Weiss (1996). For empirically support of

a synchronized approach, see Weiss and Andersen (1984) and Christoffersen et al. (2001), where the

objective in the latter is option pricing. In the autoregressive setting with quadratic prediction loss

Bhansali (1999) and Ing (2003) have established the relative merits of the estimation methods, direct

and plug-in, depends on the degree of misspecification. This led Schorfheide (2005) to propose a model

selection criterion that targets trade-off between variance and bias, that the choice of estimation method

entails.

The existing literature has primarily focused on the case with a mean square error loss function and

and likelihood functions based on a Gaussian specifications. In this paper, we establish results for the

case where, both Q and Q̃, belong to a general class of criteria that are suitable forM -estimation, see e.g.

Huber (1981) and Amemiya (1985). This generality comes at the expense of results being asymptotic in

nature. Specifically, we will compare the relative merits of estimators in terms of the limit distributions

that arise in this context. The theoretical result will be complemented by two applications that also

considers finite sample properties and, interestingly, cases with local misspecification of various forms.

First we make the simple observation that a discrepancy between Q and Q̃ can seriously degrade

the performance.

Second, we show that the asymptotically optimal estimator is an estimator that is deduced from

the maximum likelihood estimator. This theoretical result is analogous to the well known Cramer-Rao

bound for in-sample estimation. We address the case where the likelihood function involves a parameter

of higher dimension than θ, and discuss the losses incurred by the misspecification of the likelihood.

We illustrate the theoretical result in a context with an asymmetric (LinEx) loss function. The innate

estimator performs on par with the likelihood-based estimator (LBE) when the loss is near-symmetric,

whereas the LBE clearly dominates the innate estimator under asymmetric loss. In contrast, when the

likelihood is misspecified the LBE suffers and its performance drops considerably with the degree of

misspecification.

A second application pertains to long-horizon forecasting, where two competing forecasting methods

are known as the direct and the iterated forecasts. The latter is also known as the plug-in forecasts. The
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direct and iterated forecasts can be related to the innate and likelihood-based estimators, respectively.

Well known results for direct and iterated forecasts in the context with an autoregressive model and

MSE loss, are emerges as special cases in our framework. We contribute to this literature by, considering

a case with asymmetric loss and derive results for the case with correct specification and the case with

local misspecification. The asymmetry exacerbates the advantages of iterated forecasts (the likelihood

approach), so that it take a relatively higher degree of misspecification for the direct forecast to be

competitive. This casts light on the two approaches to multi-period forecasting.

The rest of the paper is structured as follows. Section 2 presents the theoretical framework an

asymptotic results. Sections 3 and 4 present the two applications to asymmetric loss function and

multi-period forecasting. Section 4 concludes and the appendix collects the mathematical proofs.

2 Theoretical Framework

We will compare the merits of the innate estimator θ̂ to a generic alternative estimator θ̃. This is

done within the theoretical framework of M -estimators, see Huber (1981), Amemiya (1985), and White

(1994). Our exposition and notation will largely follow that in Hansen (2010).

The criterion functions take the form

Q(X , θ) =

n∑
t=1

q(xt, θ) and Q̃(X , θ) =

n∑
t=1

q̃(xt, θ),

with xt = (Xt, . . . , Xt−k) for some k. This framework includes criteria deduced from Markovian models.

For instance, least squares estimation of an AR(1) model, Xt = ϕXt−1 + εt, would translate into

xt = (Xt, Xt−1) and q̃(xt, θ) = −(Xt − ϕXt−1)2.

Assumption 1. Suppose that {Xt} is stationary and ergodic, and that E|q(xt, θ)| <∞ and E|q̃(xt, θ)| <

∞.

The assumed stationarity carries over to q(xt, θ) and q̃(xt, θ), and their derivatives that we introduce

below. Next we make some regularity assumptions about the criteria functions.

Assumption 2. (i) The criteria functions q(xt; θ) and q̃(xt; θ) are continuous in θ for all xt and

measurable for all θ ∈ Θ, where Θ is compact. (ii) θ∗ and θ0 are the unique maximizers of E[q(xt, θ)]

and E[q̃(xt, θ)], respectively, where θ∗ and θ0 are interior to Θ; (iii) E[supθ∈Θ |q(xt, θ)|] < ∞ and

E[supθ∈Θ |q̃(xt, θ)|] <∞;
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The assumed stationarity and Assumption 2 ensure that the θ that maximizes E[Q(X , θ)] is unique,

invariant to the sample, and identical to θ∗ = arg maxθ E[q(xt, θ)]. Similarly for Q̃ and θ0.

The following consistency follows from the literature on M -estimators.

Lemma 1. The extremum estimators θ̂ = arg maxθ∈Θ
∑n

t=1 q(xt, θ) and θ̃ = arg maxθ∈Θ
∑n

t=1 q̃(xt, θ)

converge in probability to θ∗ and θ0, respectively, as n→∞.

Because the innate estimator (as its label suggests) is intrinsic to the criterion Q, it will be consistent

for θ∗ under standard regularity conditions, in the sense that θ̂ p→ θ∗ as the in-sample size increases.

This consistency need not be satisfied by alternative estimators, including θ̃.

Next we assume the following regularity conditions that enable us to derive the limit results that will

be the basis for our main results. These conditions are also standard in the literature on M -estimation.

Assumption 3. The criteria, q and q̃, are twice continuously differentiable in θ, where (i) the first

derivatives, s(xt, θ) and s̃(xt, θ), satisfy a central limit theorem, n1/2
∑n

t=1 (s(xt, θ∗)
′, s̃(xt, θ0)′)′

d→

N(0,ΣS); (ii) the second derivatives, h(xt, θ) and h̃(xt, θ), are uniformly integrable in a neighborhood

of θ∗ and θ0, respectively, where the matrices A = −Eh(xt, θ∗) and Ã = −Eh̃(xt, θ0) are invertible.

Let B and B̃ denote the long-run variances of s(xt, θ∗) and s̃(xt, θ0), respectively. Then, ΣS , will

have a block diagonal structure, with B and B̃ as diagonal blocks. There is no need to introduce a

notation for the off-diagonal blocks in ΣS , as they are immaterial to subsequent results.

The following result establishes an asymptotic independence between the in-sample scores and out-

of-sample scores, which is useful for the computation of conditional expectations in the limit distribution.

Lemma 2. We have

n1/2

(
n∑
t=1

s(xt, θ∗)
′,

n∑
t=1

s̃(xt, θ0)′,

2n∑
t=n+1

s(xt, θ∗)
′

)′
d→ N(0,

 ΣS 0

0 B

).

Proof. For simplicity write st = s(xt, θ∗) and similarly for s̃t. By Assumption 3, the asymptotic variance

of (2n)1/2
(∑2n

t=1 s
′
t,
∑2n

t=1 s̃
′
t

)′
is ΣS . Now use the simple identity for the variance of a sum to deduce

that the asymptotic covariance of n1/2
∑n

t=1 st and n
1/2
∑2n

t=n+1 st is zero. The same argument can be

applied to establish the (zero) asymptotic covariance between n1/2
∑n

t=1 s̃t and n
1/2
∑2n

t=n+1 st.

In this literature is is often assumed that X and Y are independent, see e.g. Schorfheide (2005,

assumption 4), which implies independence of the score that relate to X and the score that relate to Y.

The Lemma shows that the asymptotic independence of the scores is a simple consequence of the central
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limit theorem being applicable, and no further assumption is needed. The asymptotic independence

holds whether the scores are martingale difference sequences or, more generally, serially dependent as

is the case in some cases. To simplify the exposition we focus on the case where the sample size of

Y = (xn+1, . . . ,x2n), coincides with that of X = (x1, . . . ,xn).2

Definition 1. Two criteria, Q and Q̃, are said to be coherent if θ∗ = θ0, otherwise the criteria are said

to be incoherent. Similarly, we refer to an estimator as being coherent for Q if its probability limit is

θ∗.

Next, we state the fairly obvious result that an incoherent criterion will lead to inferior performance.

Lemma 3. Consider an alternative estimator, θ̃, deduced from an incoherent criterion, so that θ̃ p→

θ0 6= θ∗. Then

Q(Y, θ0)−Q(Y, θ̃)→∞,

in probability. The divergence is at rate n.

Proof. Since θ̃ p→ θ0 it follows by Assumptions 1 and 2 that n−1
∑n

t=1 q(xt, θ̃)
p→ E[q(xt, θ0)], which is

strictly smaller than E[q(xt, θ∗)], as a consequence of Assumption 2.ii.

The results shows that any incoherent estimator will be inferior to the innate estimator. This shows

that consistency for θ∗ is a critical requirement, which limits the choice of criteria, Q̃, to be used for

estimation. It is, however, possible to craft a coherent criterion, Q̃, from a likelihood function, as we

shall show below.

Theorem 1. Let Assumptions 1-3 be satisfied and suppose that Q̃ is a coherent criterion. Then

Q(Y, θ̃)−Q(Y, θ0)
d→ Z ′yB

1/2Ã−1B̃1/2Zx −
1

2
Z ′xB̃

1/2Ã−1AÃ−1B̃1/2Zx,

where Zx, Zy ∼ iidN(0, I), and the expected value of the limit distribution is:

−1

2
tr{Ã−1AÃ−1B̃}.

Interestingly, for the case with the innate estimator, the expected value of the limit distribution

−1
2tr{A−1B},

2This setup is quite common in this literature, and was, for instance, used in Akaike (1974) to derive the Akaike’s
Information Criterion.
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can be related to a result by Takeuchi (1976), who generalized the result by Akaike (1974) to the case

with misspecified models.

Proof. To simplify notation, we write Qx(θ) in place of Q(X , θ), and similarly Sx(θ) = S(X , θ), Hx(θ) =

H(X , θ), Qy(θ) = Q(Y, θ), Q̃x(θ) = Q̃(X , θ), etc. Since Q̃ is coherent, we have θ̃ p→ θ0 = θ∗, and by a

Taylor expansion we have

Q(Y, θ̃)−Q(Y, θ0) = Sy(θ0)′(θ̃ − θ0) +
1

2
(θ̃ − θ0)′Hy(θ0)(θ̃ − θ0) + op(1).

By Assumption 3 and Lemma 2 we have that n−1H(Y, θ∗)
p→ −A, n−1H̃(X , θ∗)

p→ −Ã, and {S̃(X , θ), S(Y, θ)} d→

{B̃1/2Zx, B
1/2Zy} where Zx and Zy are independent and both distributed N(0, I). The result Q(Y, θ̃)−

Q(Y, θ) d→ Z ′yB
1/2ÃB̃1/2Zx + 1

2Z
′
xB̃

1/2Ã−1[−A]Ã−1B̃1/2Zx now follows. The expectation of the first

term is zero, and the final result follows by

tr{EZ ′xB̃1/2Ã−1AÃ−1B̃1/2Zx} = tr{Ã−1AÃ−1B̃1/2EZxZ
′
xB̃

1/2},

and using that EZxZ
′
x = I.

This result motivates the following definition of criterion risk

Definition 2. The asymptotic criterion risk, induced by estimation error of θ̃, is defined by

R∞(θ̃) = 1
2tr{AÃ−1B̃Ã−1}.

The finite sample equivalent is defined by

Rn(θ̃) = E[Q(Y, θ0)−Q(Y, θ̃)].

For the innate estimator we haveR∞(θ̂) = 1
2tr{A−1B} and its magnitude relative to 1

2tr{AÃ−1B̃Ã−1}

defines which of the two coherent estimators is most efficient. We formulate this by defining the relative

criterion efficiency

RQE(θ̂, θ̃) =
E[Q(Y, θ0)−Q(Y, θ̃(X ))]

E[Q(Y, θ0)−Q(Y, θ̂(X ))]
=
Rn(θ̃)

Rn(θ̂)
. (1)

Note that an RQE < 1 defines the case where θ̃ outperforms the innate estimator, θ̂. The asymptotic

expression for the RQE is

R∞(θ̃)

R∞(θ̂)
=

tr
{
AÃ−1B̃Ã−1

}
tr {A−1B}

,
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provided that θ̃ is a coherent estimator. For an incoherent estimator it follows by Lemma 3 that

RQE→∞. as n→∞.

2.1 Likelihood-Based Estimator

In this section we will consider estimators that are deduced from a likelihood criterion. In some cases,

one can obtain θ̃ directly as a maximum likelihood estimator. However, more generally, there will be a

need to map the likelihood parameters, ϑ say, into those of the criterion function, θ. This is for instance

needed if the dimensions of the two do no coincide.

So consider a statistical model, {Pϑ}ϑ∈Ξ, and suppose that Pϑ0 is the true probability measure, with

ϑ0 ∈ Ξ. The implication is that the expected value is defined by Eϑ0(·) =
´

(·)dPϑ0 . In particular we

have

θ0 = arg max
θ

Eϑ0 [Q(Y, θ)],

which defines θ0 as a function of ϑ0, i.e. θ0 = θ(ϑ0).

Assumption 4. There exists τ(ϑ) so that ϑ 7→ (θ, τ) is continuously differentiable, with ∂
∂ϑ(θ(ϑ)′, τ(ϑ)′)′

having non-zero determinant at ϑ0.

The assumption ensures that the reparameterization (that isolates θ) is invertible in a way that does

not degenerate the limit distribution. While the assumption is relatively innocuous, we will present a

special case in our first application where the assumption is violated.3

Lemma 4. Given Assumption 1 to 4, let ϑ̃ be the MLE. Then θ̃ = θ(ϑ̃) is a coherent estimator.

Proof. Let P denote the true distribution. Consider the parameterized model, {Pϑ : ϑ ∈ Ξ}, which is

correctly specified so that P = Pϑ0 for some ϑ0 ∈ Ξ. Since θ∗ is defined to be the maximizer of

E[Q(Y, θ)] = Eϑ0 [Q(Y, θ)] =

ˆ
Q(Y, θ)dPϑ0 ,

it follows that θ0 is just a function of ϑ0, i.e., θ0 = θ(ϑ0).

One potential challenge to using the likelihood-based estimator is that the mapping from ϑ to θ may

be difficult to obtain.

When θ̃ is estimated from a correctly specified likelihood function, one has Ã = B̃. In terms

of asymptotic criterion risk the comparison of the innate estimator to the likelihood-based estimator,
3The assumption also allows us to interpret θ̃ = θ(ϑ̃) as an extremum estimator, that maximizes the reparameterized

and concentrated log-likelihood function `c(θ) = `(θ, τ̃(θ)), where τ̃(θ) = argmaxτ `(θ, τ).
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becomes a comparison of the quantities 1
2tr{A−1B} and 1

2tr{AB̃−1}. The following Theorem shows

that the latter is smaller.

Theorem 2 (Optimality of likelihood-based estimator). Let ϑ̃ be the maximum likelihood estimator so

that θ̃ = θ(ϑ̃) is the LBE of the criterion parameters. If the likelihood function is correctly specified,

then, as n→∞

Q(Y, θ̂)−Q(Y, θ̃) d→ ξ,

where E[ξ] = R∞(θ̂) − R∞(θ̃) ≤ 0. The same result holds with θ̌ in place of θ̂, provided that θ̌ satisfies

Assumptions 2 and 3.

Theorem 2 shows that the likelihood-based approach is superior to the criterion-based approach (and

any other M -estimator for that matter). An inspection of the proof reveals that the inequality is strict,

unless the estimator is asymptotically equivalent to the MLE. So the likelihood-based estimator can be

said to be asymptotically efficient. The proof also reveals that manipulation of the asymptotic expression

simplifies the comparison to one that is well known from the asymptotic analysis of estimation.

Proof. Consider first the case where ϑ = θ. From Theorem 1 and a slight variation of its proof it follows

that

Q(Y, θ̂)−Q(Y, θ̃) d→ +Z ′yB
1/2A−1B1/2Zx −

1

2
Z ′xB

1/2A−1B1/2Zx

−Z ′yB1/2Ã−1B̃1/2Z̃x +
1

2
Z̃ ′xB̃

1/2Ã−1AÃ−1B̃1/2Z̃x,

where Zy, Zx, and Z̃x are all distributed as N(0, I), with Zy independent of (Zx, Z̃x). Two of the terms

vanish after taking the expected value, which yields

−1

2
tr{A−1B}+

1

2
tr{Ã−1AÃ−1B̃} =

1

2
tr{AÃ−1 −A−1B},

where we have used the information matrix equality, Ã = B̃. Manipulating this expression, leads to

1

2
tr
{
A1/2(Ã−1 −A−1BA−1)A1/2

}
≤ 0,

where the inequality follows from the fact that Ã−1 = B̃−1 is the asymptotic covariance matrix of the

MLE whereas A−1BA−1 is the asymptotic covariance of the innate estimator, so that A−1BA−1− B̃−1

is positive semi-definite by the Cramer-Rao bound. These arguments are valid whether θ has the
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same dimension as ϑ or not, because we can reparametrize the model in ϑ 7→ (θ, γ), which results in

block-diagonal information matrices. This is achieved with

γ(ϑ) = τ(ϑ)− ΣτθΣ
−1
θθ θ(ϑ),

where  Σθθ Σθτ

Στθ Σττ

 ,

denotes the asymptotic covariance of the MLE for the parametrization (θ, τ).

2.2 The Case with a Misspecified Likelihood

Misspecification is harmful to the likelihood-based estimator for two reasons. First, the resulting es-

timator is no longer efficient, which eliminates the argument in favor of adopting the likelihood-based

estimator. Second, and more importantly, the mapping from ϑ to θ depends on the true probabil-

ity measure, so that a misspecified likelihood will result in an improper mapping from ϑ to θ. The

likelihood-based estimator θ̃ may therefore be inconsistent under misspecification, i.e. incoherent.

An incoherent likelihood-based estimator, as the result of a fixed degree of misspecification, will be

greatly inferior to the innate estimator in the sense that RQE → ∞ as n → ∞. Such an asymptotic

design will in many cases by misleading for the relative performance of competing estimators in finite

samples. For this reason we turn our attention to the case with a slightly misspecified model. This

can be achieved with an asymptotic design where the likelihood is misspecified, albeit local to correct,

in the sense that the likelihood gets closer and closer to being correctly specified as n → ∞, where

the rate of convergence is such that θ0 − θ∗ ∝ n−1/2. This form of misspecification may be labelled as

local-to-correct.

2.2.1 Local-to-Correct Specification

We consider a case where the true probability measure does not coincide with Pϑ0 . To make matter

interesting, we consider a case with a locally misspecified model, where the degree of misspecification is

balanced with the sample size. Thus, let the true probability measure be Pn, and let the corresponding

(best approximating) likelihood parameter be denoted by ϑ(n)
0 , and let θ(n)

0 = θ(ϑ
(n)
0 ). As n increases,

Pn approaches an element, Pϑ0 for some ϑ0 ∈ Ξ, and this occurs at a rate so that θ(n)
0 − θ∗ = n−1/2b, for

some b ∈ Rk that defines the degree of local misspecification – correct specification being the case where
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b = 0. In this scenario, the limit distribution of Q(Y, θ∗)−Q(Y, θ̃) is given by the following Theorem.

Theorem 3. Suppose that Pn → Pϑ0 as n→∞, so that θ(ϑ(n)
0 )− θ(ϑ0) = n−1/2b, then

R∞(θ̃) = 1
2tr{A(B̃−1 + bb′)},

where B̃ = E[−h̃(xi, θ∗)].

Proof. With Pn → Pϑ0 we have θ(ϑ0) = θ∗. Thus with θ
(n)
0 = θ(ϑ

(n)
0 ) and consider the Taylor expansion

[] Since θ(ϑ(n)
0 ) − θ(ϑ0) = n−1/2b, and θ̃

p→ θ(ϑ
(n)
0 ) = θ0, the Taylor expansion in the proof of

Theorem 1 becomes

Q(Y, θ̃)−Q(Y, θ∗) = Sy(θ∗)
′(θ̃ − θ(n)

0 + θ
(n)
0 − θ∗) +

1

2
(θ̃ − θ(n)

0 + θ
(n)
0 − θ∗)′Hy(θ̄)(θ̃ − θ(n)

0 + θ
(n)
0 − θ∗).

By Assumption 3 and Lemma 2 we have that n−1H(Y, θ̄) p→ −A, n−1H̃(X , θ(n)
0 )

p→ −Ã, and {S̃(X , θ), S(Y, θ)} d→

{B̃1/2Zx, B
1/2Zy} where Zx and Zy are independent and both distributed N(0, I). The result Q(Y, θ̃)−

Q(Y, θ∗)
d→ Z ′yB

1/2ÃB̃1/2Zx+1
2Z
′
xB̃

1/2Ã−1[−A]Ã−1B̃1/2Zx+1
2b
′[−A]b follows since θ̃−θ0 = S̃(X , θ0)H̃(X , θ0).

The expectation of the first term is zero, and the final result follows from

1

2
tr{EZ ′xB̃1/2Ã−1AÃ−1B̃1/2Zx}+

1

2
tr{b′Ab} =

1

2
{tr{AB̃−1}+ tr{Abb′}},

by using that EZxZ
′
x = I and the information matrix equality.

So the likelihood-based estimator retains it efficiency variance under local misspecification, but

involves an asymptotic bias term. The implication is that under local misspecification the asymptotic

RQE becomes a question of the relative magnitude of the bias, bb′ and the relative advantages that the

likelihood-based estimator has under correct specification, as measured by A−1BA−1 − B̃−1.

One can measure the degree of local misspecification, in terms of the measure on non-centrality. In

the univariate case (θ ∈ R) this can be expressed as d = b
√
B̃, which can be interpreted as the expected

value of the t-statistic, (θ̃− θ∗)/
√

avar(θ̃). In the multivariate case the non-centrality may be measured

as
√
b′B̃b. While the degree of non-centrality is, in some sense, a measure of the (average) statistical

evidence of misspecification, it does not (unless k = 1) directly map into a particular value of criterion

risk, because different vectors of b can translate into the same non-centrality, d =
√
b′B̃b, but different

values of tr{Abb′} = b′Ab. The following Theorem puts upper and lower bounds on the criterion risk

that results from a given level of misspecification.

Theorem 4. Let the local misspecification be such that d =
√
b′B̃b. Then the asymptotic criterion risk
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resulting from this misspecification, b′Ab is bounded by λmind
2 ≤ b′Ab ≤ λmaxd

2 where λmin and λmax

are the smallest and largest solutions (eigenvalues) to |A− λB̃| = 0.

Proof. With y = B̃1/2b we have b′Ab/b′B̃b = y′B̃−1/2AB̃−1/2y/y′y which is bounded by the smallest

and largest eigenvalues of B̃−1/2AB̃−1/2. If λ is a solution to |B̃−1/2AB̃−1/2−λI| = 0 then λ also solves

|A− λB̃| = 0, and the result follows.

A more general way of measuring the misspecification is in terms of the KLIC, EPn [log
f
ϑ
(n)
0

(X )

gn(X ) ],

or one can measure the discrepancy in terms on the non-centrality of a suitable test statistic. For

instance, the misspecification of a Gaussian distribution may intuitively be expressed in terms of the

non-centrality parameter in a Jarque–Bera test.

We shall study designs with local misspecification in the following two sections. The first section

is an application to a criterion function defined by the asymmetric LinEx loss function and the second

section is an application of our framework to the problem of making multistep-ahead forecasting.

3 The Case with Asymmetric Loss and a Gaussian Likelihood

In this section we apply the theoretical results to the case where the criterion function is given by the

LinEx loss function. In forecasting problems, there are many applications where asymmetry is thought

to be appropriate, see e.g. Granger (1986), Christoffersen and Diebold (1997), and Hwang et al. (2001).

The LinEx loss function is a highly tractable asymmetric loss function that was introduced by Varian

(1974), and has found many applications in economics, see e.g. Weiss and Andersen (1984), Zellner

(1986), Diebold and Mariano (1995), and Christoffersen and Diebold (1997).

Here we shall adopt the following parameterization of the LinEx loss function

Lc(x) =


c−2[exp(cx)− cx− 1] for c ∈ R\{0},

1
2x

2 for c = 0

(2)

which has minimum at x = 0. The absolute value of the parameter c determines the degree of asymmetry

and its sign defines whether the asymmetry is left-skewed or right-skewed, see Figure 1. The quadratic

loss arises as the limited case, limc→0 Lc(x) = 1
2x

2, which motivates the definition of L0(x).
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Figure 1: The LinEx loss function for three values of c.

We adopt the LinEx loss function because it produces simple estimators in closed-form that ease

the computational burden.

The objective in this application is to estimate θ for the purpose of minimizing the expected loss,

ELc(Yi−θ). This problem maps in to our theoretical framework by setting q(Xi, θ) = −Lc(Xi−θ), and

it is easy to show that θ∗ = arg min ELc(Xi − θ) = c−1 log[E exp(cXi)], provided that E exp(cXi) <∞.

Similarly, it can be shown that the innate estimator, which is given as the solution to min
θ

∑n
i=1 Lc(Xi−

θ), can be written in closed-form as

θ̂ =
1

c
log[

1

n

n∑
i=1

exp(cXi)], (3)

and by the ergodicity of Xi, hence exp(cXi), it follows that θ̂ as→ θ∗. Next, we introduce a likelihood-

based estimator that is deduced from the assumption that Xi ∼ iidN(µ0, σ
2
0), for which it can be shown

that

θ0 = µ0 +
cσ2

0

2
, (4)
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see Christoffersen and Diebold (1997). The likelihood-based estimator is therefore given by

θ̃ = µ̃+
cσ̃2

2
, (5)

where µ̃ = n−1
∑n

t=1Xi and σ̃2 = n−1
∑n

t=1(Xi− µ̃)2 are the maximum likelihood estimators of µ0 and

σ2
0, respectively.

Equation (4) illustrates the need to map likelihood parameters, ϑ = (µ, σ2)′, into criterion parameter,

θ. The likelihood-based estimator will be consistent for θ0, which coincides with θ∗ if the Gaussian

assumption is correct. Under misspecification the two need not coincide.

We shall compare the two estimators in terms of the LinEx criterion

Q(Y; θ) = −
n∑
i=1

c−2[exp{c(Yi − θ)} − c(Yi − θ)− 1],

where Yi are iid and independent of (X1, . . . , Xn). First we consider the case with correct specification,

i.e. the case where (X1, . . . , Xn, Y1, . . . , Yn) are iid with marginal distribution N(µ0, σ
2
0). Subsequently

we turn to the case where the marginal distribution is a normal inverse Gaussian (NIG) distribution,

which causes the Gaussian likelihood to be misspecified.

3.1 Results for the Case with Correct Specification

With qi(Xi, θ) = −Lc(Yi− θ) we have si(Xi, θ) = c−1[exp{c(Yi− θ)}− 1] and hi(Xi, θ) = −[exp{c(Xi−

θ)}. With Xi ∼ iidN(µ, σ2) it can be verified that

A = E[−hi(Xi, θ0)] = 1

B = var[si(Xi, θ0)] =
exp(c2σ2)− 1

c2
, (= σ2 if c = 0),

Ã = B̃ = 1/avar(θ̃) = 1/(σ2 + c2σ4/2),

see Appendix A. Consequently, in this application we have

RQE =
tr{AB̃−1}
tr{A−1B}

=
1

BB̃
=

(cσ)2 + (cσ)4/2

exp(cσ)2 − 1
,

which is (unsurprisingly) less than or equal to one for all combinations of c and σ, and RQE = 1 if and

only if cσ = 0.

The relative efficiency of θ̂ and θ̃ is compared in Table 1 for the case with a correctly specified

14



likelihood function.

Table 1: Relative Efficiency under LinEx Loss

Panel A: Asymptotic Results

c θ∗ RQE R∞(θ̂) R∞(θ̃) bias(θ̂) bias(θ̃)

0 0 1 0.5 0.5 0.000 0.000
0.25 0.125 0.999 0.516 0.516 0.000 0.000
0.5 0.250 0.990 0.568 0.563 0.000 0.000
1 0.500 0.873 0.859 0.750 0.000 0.000
1.5 0.750 0.563 1.886 1.063 0.000 0.000
2 1.000 0.224 6.700 1.500 0.000 0.000
2.5 1.250 0.050 41.36 2.063 0.000 0.000

Panel B: Finite Sample Results: n = 1, 000

c θ∗ RQE Rn(θ̂) Rn(θ̃) bias(θ̂) bias(θ̃)

0 0 1 0.499 0.499 0.000 0.000
0.25 0.125 0.999 0.518 0.518 0.000 0.000
0.5 0.250 0.991 0.569 0.563 0.000 0.000
1 0.500 0.88 0.853 0.748 -0.001 0.000
1.5 0.750 0.60 1.777 1.068 -0.003 -0.001
2 1.000 0.35 4.341 1.513 -0.010 -0.001
2.5 1.250 0.217 9.670 2.100 -0.030 -0.001

Panel C: Finite Sample Results: n = 100

c θ∗ RQE Rn(θ̂) Rn(θ̃) bias(θ̂) bias(θ̃)

0 0 1 0.498 0.498 0.000 0.000
0.25 0.125 0.999 0.515 0.514 -0.001 -0.001
0.5 0.750 0.991 0.567 0.562 -0.003 -0.003
1 0.500 0.90 0.839 0.753 -0.009 -0.005
1.5 0.750 0.72 1.493 1.075 -0.023 -0.008
2 1.000 0.56 2.745 1.526 -0.058 -0.010
2.5 1.250 0.418 5.273 2.203 -0.122 -0.012

Note: The likelihood-based estimator θ̃ is compared to the innate estimator, θ̂, in terms of the relative criterion efficiency

in the case with LinEx loss and iid Gaussian observations with zero mean and unit variance. The LBE based predictor

dominates the innate criterion based predictor, and does so increasingly as the asymmetry increases. The upper panel is

intended to match the asymptotic results, whereas the next two panels present the corresponding results in finite samples,

n = 100 and n = 1, 000. The results are based on 500,000 simulations.

Panel A of Table 1, displays the asymptotic results base on our analytical expressions, whereas Panels

B and C present finite sample results based on simulations with n = 1, 000 and n = 100, respectively.
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500,000 replications were used to compute all statistics.4 The simulation design is detailed in Appendix

B.1. The asymmetry parameter is given in the first column followed by the population value of θ∗, the

RQE, the criterion losses resulting from estimation error, and the bias of the two estimators.

Table 1 shows that (for c 6= 0) the likelihood-based estimator dominates the innate estimation, and

increasingly so, as c increases. In the asymptotic design this simply reflects the effect that c has on the

A and B matrices. The superiority of the LBE is (as dictated by our analytical results) found in our

asymptotic design, however the LBE also dominates the innate estimator in finite samples, albeit to a

less extent. The main reason why the innate estimator appears to be relatively better in finite samples,

is because its criterion loss tends to be relatively smaller in finite samples. However this does not

imply that the innate estimator performs better with a smaller sample size, because the per observation

criterion loss, Rn(θ̂)/n, is decreasing in n. Moreover, the innate estimator has a larger finite sample

bias relative to that of the likelihood-based estimator.

3.1.1 Likelihoods with One-Dimensional Parameter

With a likelihood deduced from Xt ∼ N(µ, σ2), we have in some sense stacked the results against

the likelihood-based estimators. The likelihood approach involves a two-dimensional estimator, (µ̃, σ̃2),

whereas the innate estimator only estimates a one-dimensional object, and this might be viewed as

being favorable to the innate estimator. While this may be true in finite samples, the dimension of ϑ is

immaterial to the asymptotic comparison, in the sense that the asymptotic RQE for the likelihood-based

estimator is always bounded by one, regardless of the dimension of ϑ. However, the asymptotic variance

of θ̃ could be influenced by the complexity of the underlying likelihood function, so that a simpler

likelihood (one with fewer degrees of freedom) may be even better in terms of RQE. To illustrate this,

we considered a restricted model, in which σ2
0 is known, so that only µ is to be estimated. We also

consider the case where µ0 is known so that σ2
0 is the only parameter to be estimated. This design is of

separate interest because it constitutes a case where Assumption 4 is violated when c = 0.

When σ2
0 is known, the asymptotic variance of θ̃ is smaller than in our first design. This results in

a more efficient estimator. The design corresponds to a case where the “stakes” in using the likelihood

approach are raised, because misspecification can now result from an incorrect assumed value for σ2
0 (in

addition to the previous forms of misspecification).
4These quantities are estimated by simulations with a high accuracy. Standard deviations are smaller than 10−5 in all

cases, and smaller that 10−7 in the case of the estimated biases.
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avar(θ̃) =


σ2

0 + c2

2 σ
4
0

σ2
0 if σ2

0 is known

c2

2 σ
4
0 if µ0 is known

When µ0 is known, the mapping from ϑ to θ is simply one from σ2 to θ, which does not depend on σ2

when c = 0. This constitutes a case where Assumption 4 is violated, because ∂θ(σ2)/∂σ2 = 0 when

c = 0. Consequently the asymptotic results need not apply in this case. This particular violation of

Assumption 4, as it turns out, is to the advantage of the likelihood-based estimator, because with µ0

known and c = 0, the optimal estimator is known without any need for estimation. For c close to zero,

the LBE benefits from having a very small asymptotic variance (which is proportional to c2).

Table 2: Relative Criterion Efficiency: 1-dimensional likelihood parameters

Panel A: σ2
0 known Panel B: µ0 known

θ̃ = µ̃+ cσ2
0/2 θ̃ = µ0 + cσ̃2/2

c θ∗ RQE R∞(θ̂) R∞(θ̃) RQE R∞(θ̂) R∞(θ̃)

0 0 1 0.5 0.5 0 0.5 0
0.25 0.125 0.969 0.516 0.5 0.030 0.516 0.016
0.5 0.25 0.880 0.568 0.5 0.110 0.568 0.063
1.0 0.50 0.582 0.859 0.5 0.291 0.859 0.250
1.5 0.75 0.265 1.886 0.5 0.298 1.886 0.563
2.0 1.00 0.075 6.700 0.5 0.149 6.700 1.000
2.5 1.25 0.012 41.36 0.5 0.038 41.36 1.563

Note: ....

Table 2 reports the results for the two cases where ϑ is one-dimensional. Panel A has the case

ϑ = µ (and σ2 known) and Panel B has the case where ϑ = σ2 (and µ known). As expected, the

likelihood-based estimator performs even better, in these cases where the dimension of ϑ is smaller. In

Panel A, where σ2
0 is known, the asymptotic criterion risk, R∞(θ̃), for the likelihood estimator does

not depend on c, while the corresponding criterion loss for the innate estimator is increasing in c. In

Panel B, R∞(θ̃) is increasing in c starting from zero at c = 0. The theoretical explanations for this

follows from the underlying information matrices. Because the innate estimator is unaffected by the

choice of specification for the likelihood, we continue to have A = 1 and B = [exp(c2σ2)− 1]/c2 in both

cases. Consequently, we have the same expression for R∞(θ̂) = 1
2tr{A−1B} = 1

2 [exp(c2) − 1]/c2. For
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the likelihood-based estimators the expressions are different. For the specification in Panel A we have

B̃ = 1/σ2
0 = 1, so that 1

2tr{AB̃−1} = 1
2 . Similarly, for the specification in Panel B we have B̃−1 = c2/2,

so that 1
2tr{AB̃−1} = c2/4.

3.2 Local Misspecification

As previously discussed, likelihood misspecification entails problems in two directions: the efficiency

argument for the likelihood-based estimator perishes and the transformation of likelihood parameters

into criterion parameters is likely to be wrong. To study the impact of misspecification we now consider

the case where the truth is defined by a normal inverse Gaussian (NIG) distribution, so that the Gaussian

likelihood is misspecified.

A NIG distribution is characterized by four parameters, λ, δ, α, and β, that represent location, scale,

tail heaviness, and asymmetry, respectively, see Figure 2. The NIG-distribution is flexible and well

suited for the present problem, because the Gaussian distribution, N(µ, σ2), can be obtained as the

limited case where λ = µ, δ = σ2α, β = 0, and α → ∞, and because the distribution yields tractable

analytical expression for the quantities that are relevant for our analysis of the LinEx loss function.

Figure 2: The density of the NIG distribution for a particular parameterization (with mean zero and
unit variance) and the standard Gaussian density.

The mean and variance of NIG(λ, δ, α, β) are given by µ = λ+ δβ
γ and σ2 = δα

2

γ3
, respectively, where

γ =
√
α2 − β2. So it follows that the likelihood-based estimator converges in probability to,

θ0 = (λ+ δβ
γ ) + c

2δ
α2

γ3
.
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The ideal value for θ is, however, equal to

θ∗ = λ+
δ

c

[√
α2 − β2 −

√
α2 − (β + c)2

]
, (6)

see Appendix A, and the two values do not coincide except for some special cases that can be obtained

as various limits. So the (misspecified) likelihood-based estimator is incoherent, unless c = 0. The

latter follows because both θ∗ and θ0 converge to λ + δβ
γ in probability as c → 0, see (9) in Appendix

A. Moreover, if we set δ = σ2α and β = 0 then θ∗ − θ0 → 0 as α→∞, for any value of c.

To make our misspecified design comparable to our previous design (where Xi ∼ iidN(0, 1)) we

consider the standard NIG distribution. The zero mean and unit variance is achieved by setting λ = − δβ
γ

and δα
2

γ3
= 1. This family of standard NIG distributions can, conveniently, be characterized by the two

parameters

ξ =
1√

1 + δγ
and χ = ξ

β

α
,

that will be such that 0 ≤ |χ| < ξ < 1. The original parameter values can be backed out using

α = ξ

√
1− ξ2

ξ2 − χ2
and β = χ

√
1− ξ2

ξ2 − χ2
,

that implies γ =
√

1− ξ2. The limited case where ξ = 0 (and hence χ = 0) corresponds to the standard

Gaussian distribution.

We now construct a local-to-correct specified model by making the truth on in which

ξn = −χ2/3
n = b/

√
n
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Table 3: Local Misspecification

d θ∗ RQE R∞(θ̂) R∞(θ̃) bias(θ̃) Rbias
∞ (θ̃)

c
=

0.
0

0 0.000 1.00 0.497 0.497 0.000 0.000
0.3 0.000 1.00 0.499 0.499 0.000 0.000
0.5 0.000 1.00 0.500 0.500 0.000 0.000
1 0.000 1.00 0.489 0.489 0.000 0.000
4 0.000 1.00 0.500 0.500 0.000 0.000
7 0.000 1.00 0.491 0.491 0.000 0.000
10 0.000 1.00 0.503 0.503 0.000 0.000

d θ∗ RQE R∞(θ̂) R∞(θ̃) bias(θ̃) Rbias
∞ (θ̃)

c
=

0.
25

0 0.125 1.00 0.513 0.51 0.000 0.000
0.3 0.125 1.00 0.512 0.51 0.000 0.000
0.5 0.125 1.00 0.518 0.52 0.000 0.001
1 0.125 1.00 0.513 0.51 0.000 0.001
4 0.125 1.06 0.515 0.54 0.000 0.030
7 0.125 1.18 0.516 0.61 0.000 0.094
10 0.125 1.39 0.510 0.71 0.001 0.200

d θ∗ RQE R∞(θ̂) R∞(θ̃) bias(θ̃) Rbias
∞ (θ̃)

c
=

0.
5

0 0.250 0.99 0.574 0.57 0.000 0.000
0.3 0.250 1.00 0.567 0.56 0.000 0.003
0.5 0.250 1.00 0.569 0.57 0.000 0.007
1 0.250 1.04 0.560 0.59 0.000 0.030
4 0.249 1.85 0.556 1.03 0.001 0.474
7 0.248 3.62 0.560 2.03 0.002 1.471
10 0.248 6.62 0.546 3.62 0.002 3.061

d θ∗ RQE R∞(θ̂)] R∞(θ̃) bias(θ̃) Rbias
∞ (θ̃)

c
=

1

0 0.500 0.87 0.859 0.75 0.000 0.000
0.3 0.500 0.92 0.861 0.79 0.000 0.039
0.5 0.500 1.00 0.860 0.86 0.000 0.110
1 0.499 1.42 0.834 1.18 0.001 0.445
4 0.496 9.49 0.828 7.86 0.004 7.109
7 0.493 27.5 0.815 22.5 0.007 21.73
10 0.491 57.0 0.790 45.1 0.009 44.32

d θ∗ RQE R∞(θ̂)] R∞(θ̃) bias(θ̃) Rbias
∞ (θ̃)

c
=

2

0 1.000 0.22 6.592 1.48 0.000 0.000
0.3 0.999 0.32 6.612 2.11 0.001 0.582
0.5 0.998 0.49 6.564 3.22 0.002 1.697
1 0.996 1.24 6.461 8.02 0.004 6.576
4 0.986 17.6 5.739 101 0.014 99.44
7 0.976 55.7 5.264 293 0.024 291.7
10 0.966 119 4.829 575 0.034 573.2

Note: The likelihood-based estimator θ̃ is compared with the innate estimator, θ̂, in the case where the Gaussian likelihood
is local-to-correctly specified, for different levels of asymmetry. Rbias

∞ (θ̃) captures the bias component of the risk, b′Ab/2
The data generating process is a standard NIG distribution where the degree of local misspecification is determined by d.
The “asymptotic” results are based on 100,000 replication with n = 106.
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Table 3 displays the behavior of the two forecasts in the case when we depart from the normality

assumption.

The first panel, where c = 0, corresponds to the case of the MSE loss function. Here, the likelihood-

based and innate estimators are equivalent and equal to the sample average, a consistent estimator of

the conditional mean, such that RQE is constant at 1. The estimation loss increases with the degree of

misspecification...

The RQE in column 3 shows how the performance of the (quasi) likelihood-based estimator is linked

to the degree of misspecification and asymmetry level. For low levels of misspecification, the LBE

dominates the innate estimator, and its performance improves as c increases. By contrast, for large

departures from normality its performance worsens and it becomes much inferior to the innate one.

This can be explained by the fact that the mapping from the MLE ϑ to the criterion parameters θ

becomes improper as the misspecification level d increases. Figure 3 provides a clearer insight into the

impact of local misspecification on the RQE under LinEx loss. For values of d up to about 1 RQE is

always lower than or equal to 1, suggesting that the QMLE is robust to small levels of misspecification. In

this case, the larger the asymmetry c the better LBE is. In contrast, once the bias parameter exceeds the

threshold at 1 the relative performance results are completely reversed. The innate predictor becomes

preferable, with an exponential drop in the LBE’s performance as the level of asymmetry in the LinEx

loss increases. These results are supported by the fact that the LBE risk surges with d because the

asymptotic bias of the estimator increases. Meanwhile, the risk of the innate estimator is due to the

variance of the estimator (the innate estimator is consistent even in the case of misspecified models).

The design of the simulations is detailed in appendix B.2.

4 Multi-Period Forecasting

Our theoretical framework can be applied to the problem of making multi-period forecasts, where

forecasts based on the innate and likelihood-based estimators are known as the direct forecast and

iterated forecast, respectively, see e.g. Marcellino et al. (2006). The iterated forecasts are also known

as the plug-in forecasts. There is a vast literature on this issue, see e.g. Cox (1961), Tiao and Tsay

(1994), Clements and Hendry (1996), Bhansali (1997), Ing (2003), Chevillon (2007), and references

therein. This literature has mainly focused on the case with MSE loss with or without misspecification.

We make ancillary contributions to this literature by showing that the merits of direct versus iterated

forecasts can be analyze in the theoretical setting of Section 2. We also contribute to the literature by
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establishing results beyond the quadratic loss function. We shall see that the asymmetric LinEx loss

function exacerbates the inefficiency of the direct estimator.

Consider an autoregressive process of order p. In this context, the direct forecast of YT+h at time

T is obtained by regressing Yt on (Yt−h, . . . , Yt−p−h+1) and a constant for t = 1, . . . , T , whereas the

iterated forecast are obtained by estimating the an AR(p) model, that yields a forecast of YT+1, which

is subsequently used to construct a forecast of YT+2, and so forth until the forecast of YT+h is obtained,

by repeated use of the estimated autoregressive model.

For ease of exposition, we restrict our attention to the case of a simple first-order autoregressive

model

Yt = µ+ ϕYt−1 + εt, t = 1, 2, . . .

where εt ∼ iidN(0, σ2). It follows that the conditional distribution of Yt+h given Yt is N(ϕhYt +

1−ϕh
1−ϕ µ,

1−ϕ2h

1−ϕ2 σ
2), so that the optimal predictor under LinEx loss is given by

Y 0
t+h,t = ϕhYt + 1−ϕh

1−ϕ µ+
c

2
1−ϕ2h

1−ϕ2 σ
2. (7)

The iterated (likelihood-based) predictor, Ỹt+h,t, is given by plugging the maximum likelihood estima-

tors, µ̃, ϕ̃, and σ̃2
ε into this expression. In the notation of Section 2, we have ϑ = (µ, ϕ, σ2)′ and

θ(ϑ) =
(

1−ϕh
1−ϕ µ+

c

2
1−ϕ2h

1−ϕ2 σ
2, ϕh

)′
,

and for simplicity we use the notation θ = (α, β)′ for the two elements of θ, so that the iterated

forecast can be expressed in terms of the likelihood-based estimators, Ỹt+h,t = α̃ + β̃Yt, with α̃ =

1−ϕ̃h
1−ϕ̃ µ̃+ c

2
1−ϕ̃2h

1−ϕ̃2 σ̃
2 and β̃ = ϕ̃h.

The direct forecast is based on the innate estimators, α̂ and β̂, that are obtained by solving

min
α,β

∑T
t=1 Lc(Yt − α− βYt−h). The resulting forecast is simply Ŷt+h,t = α̂+ β̂Yt.

Panel A. in Table 4 displays the asymptotic forecast evaluation results (n = 100, 000) for several

levels of asymmetry of the LinEx loss c ∈ {0.1; 0.5; 1; 2} and for different levels of persistence of the

autoregressive process ϕ ∈ {0.3; 0.8; 0.99}. The forecast horizon is fixed to h = 2. First, note that the

results for c = 0.1 (see Part i) of the table) roughly mimic the behavior of the two estimators in the

MSE case. The forecasting superiority in this setup of the iterated method with respect to the direct

one has been emphasized theoretically in the literature (Bhansali, 1999; Ing, 2003). Nevertheless, the

role of the autoregressive parameter ϕ in the evaluation has not been explicitly tackled, even though it
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deserves attention. Observe that the larger ϕ, i.e. the higher the persistence of the process, the more

the relative efficiency of the likelihood-based predictor with respect to the innate one diminishes such

that when the autoregressive parameter approaches near unit-root, i.e. ϕ = 0.99, the RQE advantages

from using the iterated approach fade almost entirely. One intuition behind this is that when ϕ is

near-integrated the likelihood-based estimator losses in efficiency since its variance is approaching at a

fast rate the variance of the innate estimator. Moreover, an increase in the forecast loss (shrinkage in

the evaluation criterion) adds to the reduction in relative efficiency as ϕ rises.

Second, parts ii) to iv) display the relative behavior of the two estimators when the asymmetry in

the evaluation criterion increases. The larger the asymmetry, the smaller RQE and the better the LBE,

iterated predictor with respect to the innate, direct one. The improvement is notable especially for

highly persistent processes (ϕ ∈ {0.8; 0.99}). At the same time, as expected since the model is correctly

specified, in all cases the likelihood-based and the innate predictors are asymptotically unbiased (see

columns 6 and 7). We also note the high precision of the simulation results, with standard deviations

less than 10−4 for the evaluation criteria, and less than 10−6 for the bias of the estimators.

4.1 Finite-Sample Results

As aforementioned, the large-sample properties of the two predictors under MSE loss have been the

object of numerous studies. By contrast, to our knowledge only Bhansali (1997) presents small-sample

results (in the particular case of AR(2) and ARMA(2,2) models) by relying on only 500 simulations. In

panel B. of Table 4 we hence report the results under the LinEx loss for n = 1, 000 and a more realistic

n = 200 sample size, by performing 500, 000 simulations. One of our main findings is that the small

sample results are consistent with the asymptotic findings, which means that matching estimation and

evaluation criteria does not improve forecasting abilities in a setting where the alternative estimator is

the likelihood-based one.

[] RQE registers very similar values to Panel A. regardless of the level of asymmetry c, even though

the per-observation forecast loss rises. For this, recall that to compare results across the different

sample-sizes the values must be rescaled by dividing by the number of observations (as in the LinEx

application) so as to obtain the per-observation loss in the evaluation criterion due to estimation. At

the same time, the LBE and innate estimator exhibit small-sample bias. We stress the fact that the

larger ϕ, i.e. the more persistent the process, the larger the bias.

All in all, the likelihood-based, iterated, predictor is proven to be relatively more efficient than

the innate, direct, predictor even in small samples. Most importantly, by acknowledging the fact that
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for persistent processes the relative gain of LBE decreases while the bias increases, we recommend to

pay more attention to the estimated autoregressive parameters and the choice of evaluation criterion in

empirical applications that look at multi-step-ahead forecasting. Furthermore, gain in relative predictive

ability in small-samples could result from using bias-corrected estimators, e.g. Roy-Fuller estimator

(Roy and Fuller, 2001), bootstrap mean bias-corrected estimator (Kim, 2003), grid-bootstrap (Hansen,

1999), Andrews’ estimator (Andrews, 1993; Andrews and Chen, 1994 for AR(p) processes). Indeed,

more accurate forecasts could be obtained when comparing such estimators with the traditional ones.

Further investigation into this issue under the LinEx loss would be interesting.

4.2 Local Misspecification

To study the effect of local misspecification on the relative efficiency of the likelihood-based predictor

with respect to the innate one, we adopt an asymptotic design from Schorfheide (2005). Specifically,

we keep the complexity of our prediction models fixed, and introduce local misspecification in the

conditional mean. Unlike our previous application, where we deviated from the Gaussian distribution,

we maintain the Gaussian distribution for the innovations, εt, but define the true data generating process

to be an AR(2) model, Yt = µ + ϕ1Yt−1 + ϕ2Yt−2 + εt. The local-to-correct specification is achieved

by letting ϕ2 = O(n−1/2). Specifically, we set ϕ2 = n−1/2 d
σϕ2

where σ2
ϕ2

= is the asymptotic variance

of ϕ̃2 when estimated by maximum likelihood when ϕ2 = 0. The constant, d, defines the degree of

misspecification and can be interpreted as the non-centrality of the t-statistics associated with testing

ϕ2 = 0. In this local-to-correct design we hold the the first order autocorrelation, ρ1 = corr(Yt,Yt−1),

constant, which is achieved by setting ϕ1 = ρ1(1 − ϕ2). We focus on the two cases ρ1 = 0.8 and

ρ1 = 0.99.

[new specification] The degree of misspecification is defined in terms of the expected value of the t-

statistic for the second autoregressive parameter, ϕ2 = d√
Avar(ϕ2)

, where ˆAvar(ϕ̂2) = (1+ϕ̂2)(1−ϕ̂1−ϕ̂2)(1+ϕ̂1−ϕ̂2)
(1−ϕ̂1)×n

since V ar(YT ) = (1−ϕ̂2)σ
(1+ϕ̂2)(1−ϕ̂1−ϕ̂2)(1+ϕ̂1−ϕ̂2) , with ϕ̂1 and ϕ̂2 estimated from a correctly specified AR(1)

model.

The optimal predictor is given by

Y ∗T+2 = (ϕ2
1 + ϕ2)YT + ϕ1ϕ2YT−1 +

c

2
(1 + ϕ2

1), (8)

but neither the direct nor the iterated estimator make use of two lags of Yt. Using the probability limit
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for the iterated estimator we have

YT+2(θ̃0) = ϕ2
1YT +

c

2
(1 + ϕ2

1),

whereas the direct estimator takes the same form as in the AR(1) case... based on the minimization

of the two-periods-ahead LinEx loss. The direct method will correctly estimate β as the second order

autocorrelation ρ2, which, however, is no longer equal to ρ2
1 as in the AR(1) case. It follows that the

larger the local misspecification parameter d, the larger the bias in the quasi-MLE which approximates

ρ2 by ρ2
1. The simulations design is similar to the one described in Appendix B.3 except that we generate

an AR(2) process with the particularities described above instead of an AR(1).

The results obtained for ρ1 = 0.8 and different levels of asymmetry c ∈ {0.1; 0.5; 1; 2} are presented

in Table 5. First, we notice that the larger the asymmetry c, the more efficient the quasi-likelihood-based

estimator is relatively to the innate one and the more resilient it is, i.e. the larger the level of local-

misspecification up to which the quasi-LBE is preferable to the innate estimator. Then, as expected,

the asymptotic bias of the QLBE (column 6) increases with d, i.e. it becomes inconsistent. The loss

associated with the quasi-likelihood-based predictor hence increases faster than the one of the innate

one (see columns 3 and 4), leading to a progressive increase in RQE. The loss for the plim (quasi-LBE),

θ0, (column 8) exhibits a similar behavior.

The top panel in figure 4 provides a clearer insight into the impact of local misspecification on

the RQE criterion under LinEx loss. For values of d up to 4, or equivalently, a ϕ2 of up to 0.01,

the quasi-LBE performs better than the innate estimator. It proves to be robust to even larger levels

of misspecification, d=15 (ϕ2 = 0.05) if the asymmetry in the LinEx evaluation criterion is set to 2.

Similar results have been obtained for a first order autocorrelation coefficient ρ1 equal to 0.995. The

bottom panel in Figure 4 shows that the local misspecification impacts the relative efficiency of the two

estimators in a similar way. Note that in this case the symmetric quadratic loss leads to a constant RQE,

equal to 1 regardless of the level of misspecification. In contrast, the RQE for a largely asymmetric

LinEx loss (c = 2) exhibits a more non-linear trend than for a ρ1 = 0.8.

The larger the asymmetry c the better the quasi-LBE is. In contrast, once the bias parameter exceeds

the threshold at 1 the relative performance results are completely reversed. The innate predictor becomes

preferable, with an exponential drop in the performance of the quasi-likelihood-based predictor as the

level of asymmetry in the LinEx loss increases. Note also that for a larger forecast horizon (h = 4)

similar results have been obtained, which are available upon request.
5The table of results is available upon request.
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5 Conclusion

In this paper we have studied parameter estimation in the situation where the objective is to obtain a

good description of future data (or data different from those used for estimation), in terms of a given

criterion function. We have studied a broad family of m-estimators, and compared these in terms of

the limit distributions that arise. A natural estimator is the innate estimator that used the same crite-

rion for estimation as defines the objective. Estimators based on other criteria can be considered, but

the notation of coherency between the criteria is essential. One alternative estimator is the likelihood-

based estimator that is deduced from the maximum likelihood parameter of a statistical model. We

have established that the likelihood-based estimator is asymptotically efficient, and our applications

have shown that this estimator can be vastly better than the innate estimator is some circumstances.

These advantages, however, require the likelihood function to be correctly specified. When the likeli-

hood function is misspecified, the asymptotic efficiency that is inherited from the underlying maximum

likelihood estimators, perish. However, the most damaging consequence of misspecification is that a

required mapping of likelihood parameters to criterion parameters hinges on the specification, causing

a likelihood-based estimator, deduced from at misspecified likelihood function to be incoherent.

Our results cast some light on how one ought to estimate parameters in the present context. Two

competing approaches map into what we have labelled the innate estimator and the likelihood-based

estimator. The latter corresponds to the case where a statistical model is formulated and estimated,

without attention to the ultimate use of the estimated model. One the model is estimated it can,

in principle, be tailored to suit any purpose, including one defined by a criterion such as Q. The

innate estimator is directly tied to to objective, so if the objective is modified, so must the estimator

be. Our limit results do not univocally point to one approach being preferred to the other. If the

likelihood is correctly specified, the limit theory clearly favors the likelihood-based estimator, while the

innate estimator is preferred under a fixed degree of misspecification. However, our results based on

slightly misspecified likelihood functions (local-to-correct specification) showed that the likelihood-based

estimator continues to dominate the innate estimator when the misspecification is “small”. The degree

of misspecification at which the innate estimator begins to be superior depends on the context, such as

the criterion. For instance, in our applications based on the LinEx loss function we saw the superiority

of likelihood-based estimator increases with the degree of asymmetry of the objective. For this reason,

it takes a relatively high degree of (local) misspecification before the innate estimator outperforms the

likelihood-based estimator when the asymmetry is large, but relatively little misspecification when the

loss function is symmetric.
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Our results may be viewed as an argument in favor of conducting a thorough model diagnostic in

the present context, diagnostics that arguably should be targeted toward the form of misspecification

that distorts the mapping of likelihood-parameters to criterion parameters.
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A Appendix: Proof of Auxiliary Results

The expression for A follows by

A = E[−hi(Xi, θ0)] = E exp{c(Xi − θ0)}

= E exp{c(Xi − µ)− c2σ2

2
}

= exp{−c
2σ2

2
+

1

2
c2σ2} = 1,

where the second last equality follows by using that the moment generating function for V ∼ N(λ, τ2)

is mgf(t) = E(exp{tV }) = exp{λt+ 1
2τ

2t2}, and setting λ = − c2σ2

2 , τ2 = c2σ2, and t = 1.

For B we note that

E[si(Xi, θ0)]2 = c−2E[exp{2c(Xi − θ0)} − 2 exp{c(Xi − θ0)}+ 1]

= c−2E[exp{2c(Xi − µ)− c2σ2)} − 2 exp{c(Xi − µ)− c2σ2

2
}+ 1]

= c−2[exp{−c2σ2 + 2c2σ2} − 2 exp{− c2σ2

2 + c2σ2

2 }+ 1]

= c−2[exp{c2σ2} − 1].

Here we have used the expression for the moment generating function for a Gaussian random variable

twice.

Proof of (6). We seek the solution to

min
θ

ELc(X − θ) = min
θ

E[exp{c(X − θ)} − c(X − θ)− 1],

when X ∼ NIG(λ, δ, α, β). Using the moment generating function for the NIG-distribution the problem

becomes to minimize

exp{−cθ} exp{cλ+ δ(γ −
√
α2 − (β + c)2)} − c(λ+ δβ

γ − θ),

with respect to θ. The first order conditions are therefore

−c exp{−cθ} exp{cλ+ δ(γ −
√
α2 − (β + c)2)}+ c = 0,
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hence by rearranging and taking the logarithm, we have

−cθ + cλ+ δ(γ −
√
α2 − (β + c)2) = 0,

and rearranging yields the expression (6).

As c → 0 we can use l’Hospital rule to establish that limc→0 λ + δ
c

[√
α2 − β2 −

√
α2 − (β + c)2

]
equals

λ+ lim
c→0

δ
2(β + c)1

2 [α2 − (β + c)2]−1/2

1
= λ+ δβ/γ. (9)

If we set λ = µ, δ = σ2α, and β = 0, we have θ∗ = µ+ σ2α
c

[√
α2 −

√
α2 − c2

]
= µ+ σ2

c

[
1−
√

1−xc2
x

]
, if

we set x = α−2. To obtain the limit as x→ 0 (α→∞) we apply l’Hospital rule again

lim
α→∞

θ0 = µ+ lim
x→0

σ2

c

1
2c

2(1− xc2)−1/2

1
= µ+ c

σ2

2
.

Theorem 5. Consider the NIG(λ, δ, α, β), where λ = µ − δβ/γ, δ = σ2γ3/α2 and β = bα1−a for

a ∈ (1
3 , 1] and b ∈ R. Then

NIG(λ, δ, α, β)→ N(µ, σ2), as α→∞

Proof. Define x = α−2 so that α = x−1/2 and β = bx−(1−a)/2 and note that β/α = bα−a = bxa/2 so

that
γ

α
=
√

1− (β/α)2 =
√

1− b2xa.

Now consider the characteristic function for the NIG(λ, δ, α, β) which is given by

exp{iλt+ δ(γ −
√
α2 − (β + it)2}.

With δ = σ2γ3/α2 and λ = µ − δβ/γ = µ − σ2(γ/α)2β, the first part of the characteristic function is

given by

λ = µ− σ2(1− b2xa)bx−
1−a
2 = µ− σ2bx−

1−a
2 + σ2b3x

3a−1
2 .

We observe that the last term vanish as x→ 0 provided that a > 1
3 , while the second term, itσ2bx−

1−a
2 =

itσ2bx
1+a
2 /x, will be accounted for below.
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The second part of the characteristic function equals

δ(γ −
√
α2 − (β + it)2 = σ2 ( γα)4 − ( γα)3

√
1− (β/α+ it/α)2

α−2
,

which, in terms of x, is expressed as

σ2 (1− b2xa)2 − (1− b2xa)3/2
√

1− (bxa/2 + itx1/2)2

x
.

Including the second term from the first part of the CF, we arrive at,

σ2−itbx
1+a
2 + (1− b2xa)2 − (1− b2xa)3/2

√
1− (bxa/2 + itx1/2)2

x
,

and applying l’Hospital’s rule as x→ 0, we find (apart for the scale σ2)

−itb1+a
2 x

a−1
2 − 2ab2xa−1 + 3

2ab
2xa−1 − 1

2(−b2xa−1 − 2itb1+a
2 x

a−1
2 + t2) = −1

2 t
2.

So the CF for the NIG converges to exp{iµt− σ2

2 t
2} as x→ 0, which is the CF for N(µ, σ2).

Corollary 1. NIG(µ, σ2α, α, 0)→ N(µ, σ2), as α→∞.

Proof. The results follows from Theorem , or directly by observing that the CF for NIG(µ, σ2α, α, 0) is

exp{iµt+ σ2α2(1−
√

1 + α−2t2}.

Now by l’Hospital’s rule ote that ∂
√

1 + xt2/∂x = 1
2 t

2(1 +xt2)−1/2, so by setting x = α−2 and applying

L’Hospital rule we find

lim
x→0

σ2(1−
√

1 + xt2)

x
=

limx→0[−1
2 t

2(1 + xt2)−1/2]

1
= −1

2
σ2t2.

B Details Concerning the Simulations Designs

B.1 LinEx Loss

Our simulate design is based on random variables with mean zero and unit variance. This is without loss

of generality because a simulation design based on random variables Xi with mean µ, variance σ2 and
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asymmetry parameter c, is equivalent to a design based on Zi = (Xi−µ)/σ with asymmetry parameter

d = σc. To establish this result, suppose that an estimator, θ̌, under LinEx loss, Lc, (X ), is such that

θ̌c(X ) = µ+ σθ̌d(Z). (10)

Then

c{Yi − θ̌c(X )} = c{σ Yi−µσ + µ− µ− σθ̌d(Z)} = d{Yi−µσ − θ̌d(Z)}.

Thus,

Lc(Yi − θ̌c(X )) = σ2Ld(
Yi−µ
σ − θ̌d(Z)).

Because the scale, σ2, is shared by all estimators that satisfy (10) the relative performance of such

estimators are unaffected.

Both the innate estimator and the likelihood-based estimator takes the form stated in (10). This

follows from:

θ̂c(X ) =
1

c
log{ 1

n

∑
exp(cXi)} =

1

c
log{ 1

n

∑
exp(cσZi) exp(cµ)}

= µ+
1

c
log{ 1

n

∑
exp(dZi)} = µ+ σθ̂d(Z),

and similarly for the likelihood-based estimator:

θ̃c(X ) = X̄ +
c

2

1

n

∑
i

(Xi − X̄)2 = µ+ σZ̄ +
c

2

1

n

∑
i

σ2(Zi − Z̄)2 = µ+ σθ̃c(Z).

The experiment considered under the gaussian distribution and LinEx loss function consists in the

following 5 steps.

Step 1. A sample of size 2n is drawn from the normal distribution with mean µ = 0 and variance

σ2 = 1. The first n observations (in-sample) are used to generate the ML and CB predictors and the

other n observations constitute the out-of-sample set, that of realizations, with which the predictors are

compared in order to calculate the losses.

Step 2. The three predictors are immediately obtained from (4) and by applying (5), (3) to the

in-sample data, respectively.

Step 3. Compute the out-of-sample evaluation criterion for the three predictors.

Step 4. Repeat steps 1 to 3 a large number of times (100,000 and 500,000 simulations are considered

here).
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Step 5. We can now evaluate the out-of-sample performance of the predictors. Since θ∗ is the

optimal predictor under the LinEx loss, the expected value of the evaluation criterion associated with

θ∗ is always larger than the one corresponding to the two other predictors. It follows that both the

numerator and denominator of (1) are negative, so that a RQE < 1 indicates that the maximum likeli-

hood predictor performs better than the criterion-based one under the LinEx out-of-sample evaluation

criterion. Conversely, RQE > 1 would support the choice of the LinEx criterion-based predictor over

the ML one.

The experiment is repeated for different sample sizes n ∈ {100; 1, 000; 1, 000, 000}, so as to emphasize

both the finite-sample and the asymptotic relative efficiency of the two predictors.

In view of this result we decide to fix the standard deviation to 1 while considering several values of

the asymmetry coefficient, i.e. c ∈ {0.01; 0.1; 1; 2; 3}.

B.2 LinEx under NIG distribution

This set of simulations tackles the case of local-misspecification by considering that the data follows

the normal inverse gaussian distribution. We normalize the NIG(λ, δ, α, β) distribution to have mean

zero and unit variance by setting δ = γ3/α2 and λ = −δβ/γ where γ =
√
α2 − β2. Actually, with the

parameterization

ξ =
1√

1 + δγ
χ = ξ

β

α
,

one has 0 ≤ |χ| < ξ < 1, with ξ = 0 corresponding to the Gaussian case.

The distributional parameters can be easily computed in our zero-mean unit-variance design since

we have that ξ = (1 + γ4/α2)−1/2. Hence β
α = χ

ξ , and

√
1− ξ2

ξ
=
γ2

α
=
α2 − β2

α
= α(1− χ2

ξ2
).

Finally, we see that

α = ξ

√
1− ξ2

ξ2 − χ2
β = χ

√
1− ξ2

ξ2 − χ2
.

We choose the asymmetric negative design by fixing χ to −ξ3/2, such that the optimal predictor

under NIG is a function only of ξ. This facilitates the setup of the local-misspecification experiments

where an increase in the level of the bias will be immediately mirrored by a modification of ξ. We

hence make sure that the NIG optimal predictor is always computable, regardless of the changes in the

distributional parameters entailed by the larger level of bias.
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The experiments are organized in several steps.

Step 1. We generate the data by accounting for the local-misspecification. We hence define the

bias parameter d = bA1/2 such that the bias engendered by the local-misspecification is given by d′d.

To be more precise, d takes values from 0 (correctly specified model) to 10. Then, for each value of

d we compute the distributional parameter ξ by setting the LinEx assymmetry coefficient to 1. For

this, we rely on the fact that the asymptotic variance of the QMLE predictor can be computed as

Avar = var(µ + cσ
2

2 ) = 1 + 1 × 2
4 = 1.5. For each value of ξ we draw a sample of size 2n from the

associated standard NIG distribution.

Step 2. The three predictors are then computed from the in-sample data. Note that the optimal

predictor is now associated with the NIG distribution and it is given by (6).

Step 3. Compute the out-of-sample evaluation criterion for the three predictors.

Step 4. Repeat steps 1 to 3 a large number of times (100, 000 repetitions are considered).

Step 5. We evaluate the out-of-sample performance of the predictors by relying on the RQE criterion.

The sample size is set to 1, 000, 000 and that several levels of asymmetry are considered in the

evaluation step, i.e. c ∈ {0.1; 0.5; 1; 2}. The analysis performed is asymptotic in the sense that a lower

sample size, n = 100, 000 leads to very similar results.

B.3 Long-horizon forecasting

To compare the relative efficiency of the two predictors in the context of multi-period forecasting, the

following setup is considered for the Monte-Carlo simulations.

Step 1. We draw a vector of disturbances {ε}2Tt=1 from a normal distribution with mean 0 and

variance 1. Then we generate the AR(1) vector Yt = ϕYt−1 + εt, where the initial value Y0 has been set

to 0 and the autoregressive parameter ϕ ∈ (−1, 1) to ensure the stationarity of the process. The first

T observations constitute the in-sample data and are used to estimate the parameters of the models,

whereas the other T observations serve for the out-of-sample forecasting exercise.

Step 2. The MLE, innate estimator and optimal estimator can now be determined by relying on the

in-sample dataset and theoretical distribution respectively. Recall that we consider the fixed forecasting

scheme, so that the parameters are estimated only once, independent of the number of out-of-sample

periods to forecast. We next compute the three predictors for each out-of-sample period by relying on

(7) - (??).

Step 3. Subsequently, the out-of-sample evaluation criterion is computed for each of the predictors

(optimal, MLP and direct predictor).
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Step 4. Repeat steps 1 to 3 a large number of times (100,000 and 500,000 simulations are run in

large - resp. finite - samples).

Step 5. Evaluate the out-of-sample performance of the predictors by relying on the relative criteria

efficiency (RQE) indicator in (??). Note also that several levels of persistence in the process have been

considered so as to study the change in efficiency when the process approaches unit-root. Besides, we

set the forecast horizon h to 2.

C Appendix: Figures and Tables

Figure 3: RQE: Local Misspecification
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Figure 4: Locally Misspecified AR(1) Model
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Table 5: Long-horizon Forecasting: Locally-misspecified AR(1) Model

A) LinEx asymmetry c=0.1

d RQE R∞(θ̃) R∞(θ̂) ρ2 E(ρ̃21 − ρ2) E(ρ̂2 − ρ2) E[Q̃0 −Q∗]
0 0.94 2.92 3.11 0.640 0.000 0.000 0.000
1 1.01 3.46 3.44 0.641 -0.001 0.000 -4.042
2 1.14 4.96 4.36 0.642 -0.002 0.000 -1.998
6 1.46 20.8 14.2 0.647 -0.007 0.000 -17.65
10 1.55 51.5 33.1 0.651 -0.011 0.000 -48.18
30 1.69 407 241 0.674 -0.034 0.000 -402.9
50 1.80 1052 585 0.697 -0.057 0.000 -1046

B) LinEx asymmetry c=0.5

d RQE R∞(θ̃) R∞(θ̂) ρ2 E(ρ̃21 − ρ2) E(ρ̂2 − ρ2) E[Q̃0 −Q∗]
0 0.81 2.95 3.63 0.640 0.000 0.000 0.000
1 0.89 3.53 3.96 0.641 -0.001 0.000 -4.044
2 1.06 5.17 4.87 0.642 -0.002 0.000 -2.186
6 1.53 22.5 14.7 0.647 -0.007 0.000 -19.32
10 1.67 56.0 33.6 0.651 -0.011 0.000 -52.73
30 1.83 442 242 0.674 -0.034 0.000 -437.5
50 1.94 1133 585 0.697 -0.057 0.000 -1128

C) LinEx asymmetry c=1

d RQE R∞(θ̃) R∞(θ̂) ρ2 E(ρ̃21 − ρ2) E(ρ̂2 − ρ2) E[Q̃0 −Q∗]
0 0.48 3.03 6.35 0.640 0.000 0.000 0.000
1 0.56 3.77 6.70 0.641 -0.001 0.000 -4.047
2 0.77 5.83 7.54 0.642 -0.002 0.000 -2.779
6 1.60 27.7 17.4 0.647 -0.007 0.000 -24.52
10 1.94 70.1 36.1 0.651 -0.011 0.000 -66.84
30 2.25 548 244 0.674 -0.034 0.000 -543.9
50 2.35 1381 587 0.697 -0.057 0.000 -1376

D) LinEx asymmetry c = 2

d RQE R∞(θ̃) R∞(θ̂) ρ2 E(ρ̃21 − ρ2) E(ρ̂2 − ρ2) E[Q̃0 −Q∗]
0 0.03 3.32 104.43 0.640 0.000 0.000 0.000
1 0.05 4.77 105.41 0.641 -0.001 0.000 -4.065
2 0.08 8.46 107.07 0.642 -0.002 0.000 -5.239
6 0.43 47.6 111.92 0.647 -0.007 0.000 -44.09
10 1.00 124 124.00 0.651 -0.011 0.000 -121.1
30 3.00 944 314.88 0.674 -0.034 0.000 -940.2
50 3.53 2275 645.41 0.697 -0.057 0.000 -2272

Note: The QML (iterated) predictor is compared with the direct one in termes of RQE based on the LinEx loss with
different asymmetry levels. The locally misspecified alternative takes the form of an AR(2) model where the level of
the misspecification is given by the d parameter. The larger d the more important the second autoregressive parameter
and the further we are from the underlying AR(1) model. These asymptotic results (100,000 observations) are based on
100,000 simulations. 37
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