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Abstract

This paper studies an asymptotic framework for conducting inference on param-

eters of the form φ(θ0), where φ is a known directionally differentiable function and

θ0 is estimated by θ̂n. In these settings, the asymptotic distribution of the plug-in

estimator φ(θ̂n) can be readily derived employing existing extensions to the Delta

method. We show, however, that the “standard” bootstrap is only consistent under

overly stringent conditions – in particular we establish that differentiability of φ is

a necessary and sufficient condition for bootstrap consistency whenever the limiting

distribution of θ̂n is Gaussian. An alternative resampling scheme is proposed which

remains consistent when the bootstrap fails, and is shown to provide local size con-

trol under restrictions on the directional derivative of φ. We illustrate the utility of

our results by developing a test of whether a Hilbert space valued parameter belongs

to a convex set – a setting that includes moment inequality problems and certain

tests of shape restrictions as special cases.

Keywords: Delta method, Bootstrap consistency, Directional differentiability.
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1 Introduction

The Delta method is a cornerstone of asymptotic analysis, allowing researchers to eas-

ily derive asymptotic distributions, compute standard errors, and establish bootstrap

consistency.1 However, an important class of estimation and inference problems in eco-

nomics fall outside its scope. These problems study parameters of the form φ(θ0), where

θ0 is unknown but estimable and φ is a known but potentially non-differentiable function.

Such a setting arises frequently in economics, with applications including the construc-

tion of parameter confidence regions in moment inequality models (Pakes et al., 2006;

Ciliberto and Tamer, 2009), the study of convex partially identified sets (Beresteanu

and Molinari, 2008; Bontemps et al., 2012), and the development of tests of superior

predictive ability (White, 2000; Hansen, 2005), of stochastic dominance (Linton et al.,

2010), and of likelihood ratio ordering (Beare and Moon, 2013).

The aforementioned examples share the common feature of φ being directionally

differentiable despite full differentiability failing to hold. In this paper, we show that

φ being directionally differentiable provides enough structure for the development of a

unifying asymptotic framework for conducting inference in these problems – much in the

same manner the Delta method and its bootstrap counterpart yield a common scheme

for analyzing applications in which φ is differentiable. Specifically, we let θ0 be a Banach

space valued parameter and require the existence of an estimator θ̂n whose asymptotic

distribution we denote by G0 – i.e., for some sequence rn ↑ ∞, we have that

rn{θ̂n − θ0}
L→ G0 . (1)

Within this framework, we then study the problem of conducting inference on φ(θ0) by

employing the estimator φ(θ̂n) – a practice common in, for example, moment inequality

(Andrews and Soares, 2010), conditional moment inequality (Andrews and Shi, 2013),

and incomplete linear models (Beresteanu and Molinari, 2008).

As has been previously noted in the literature, the traditional Delta method readily

generalizes to the case where φ is directionally differentiable (Shapiro, 1991; Dümbgen,

1993). In particular, if φ is Hadamard directionally differentiable, then

rn{φ(θ̂n)− φ(θ0)} L→ φ′θ0(G0) , (2)

where φ′θ0 denotes the directional derivative of φ at θ0. The utility of the asymptotic

distribution of φ(θ̂n), however, hinges on our ability to consistently estimate it. While it

is tempting in these problems to resort to resampling schemes such as the bootstrap of

Efron (1979), we know by way of example that they may be inconsistent even if they are

1Interestingly, despite its importance, the origins of the Delta method remain obscure. Hoef (2012)
recently attributed its invention to the economist Robert Dorfman in his article Dorfman (1938), which
was curiously published by the Worcester State Hospital (a public asylum for the insane).
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valid for the original estimator θ̂n (Bickel et al., 1997; Andrews, 2000). We generalize

these examples by providing simple to verify necessary and sufficient conditions for the

validity of the bootstrap for θ̂n to be inherited by φ(θ̂n). In the ubiquitous case where G0

is Gaussian, our results imply that full differentiability of φ at θ0 is in fact a necessary

and sufficient condition for bootstrap consistency. Thus, we conclude that the failure of

“standard” bootstrap approaches is an inherent property of irregular models. Indeed, an

immediate corollary of our analysis is that, in this setting, the bootstrap is inconsistent

whenever the asymptotic distribution of φ(θ̂n) is not Gaussian.

Intuitively, consistently estimating the asymptotic distribution of φ(θ̂n) requires us

to adequately approximate both the law of G0 and the directional derivative φ′θ0 (see

(2)). While a consistent bootstrap procedure for θ̂n enables us to do the former, the

bootstrap fails for φ(θ̂n) due to its inability to properly estimate φ′θ0 . These heuristics,

however, readily suggests a remedy to the problem – namely to compose a suitable

estimator φ̂′n for φ′θ0 with the bootstrap approximation to the asymptotic distribution of

θ̂n. We formalize this intuition, and provide conditions on φ̂′n that ensure the proposed

approach yields consistent estimators of the asymptotic distribution of φ(θ̂n) and its

quantiles. Moreover, we further show that existing inferential procedures developed in

the context of specific applications in fact follow precisely this approach – these include

Andrews and Soares (2010) for moment inequalities, Linton et al. (2010) for tests of

stochastic dominance, and Kaido (2013) for convex partially identified models.

As argued by Imbens and Manski (2004), pointwise asymptotic approximations may

be unreliable, in particular when φ(θ̂n) is not regular. Heuristically, if the asymptotic

distribution of φ(θ̂n) is sensitive to local perturbations of the data generating process,

then employing (2) as the basis for inference may yield poor size in finite samples. We

thus examine the ability of our proposed procedure to provide local size control in the

context of employing φ(θ̂n) as a test statistic for the hypothesis

H0 : φ(θ0) ≤ 0 H1 : φ(θ0) > 0 . (3)

Special cases of (3) include inference in moment inequality models and tests of stochastic

dominance – instances in which our framework encompasses procedures that provide

local, in fact uniform, size control (Andrews and Soares, 2010; Linton et al., 2010;

Andrews and Shi, 2013). We show that the common structure linking these applications

is that φ′θ0 and θ̂n are respectively subadditive and regular. Indeed, we more generally

establish that these two properties suffice for guaranteeing the ability of our procedure

to locally control size along parametric submodels. As part of this local analysis, we

further characterize local power and show that, under mild regularity conditions, the

bootstrap is valid for φ(θ̂n) if and only if φ(θ̂n) is regular.

We illustrate the utility of our analysis by developing a test of whether a Hilbert
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space valued parameter θ0 belongs to a known convex set Λ – a setting that includes tests

of moment inequalities, stochastic dominance, and shape restrictions as special cases.

Specifically, we set φ(θ) to be the distance between θ and the set Λ, and employ φ(θ̂n)

as a test statistic of whether θ0 belongs to Λ. Exploiting the directional differentiability

of projections onto convex sets (Zaranotello, 1971), we show the asymptotic distribution

of φ(θ̂n) is given by the distance between G0 and the tangent cone of Λ at θ0. While our

results imply the bootstrap is inconsistent, we are nonetheless able to obtain valid critical

values by constructing a suitable estimator φ̂′n which we compose with a bootstrap

approximation to the law of G0. In addition, we establish the directional derivative φ′θ0
is always subadditive, and thus conclude that the proposed test is able to locally control

size provided θ̂n is regular. A brief simulation study confirms our theoretical findings

by showing the proposed test possesses good finite sample size control.

In related work, an extensive literature has established the consistency of the boot-

strap and its ability to provide a refinement when θ0 is a vector of means and φ is a

differentiable function (Hall, 1992; Horowitz, 2001). The setting where φ is directionally

differentiable was originally examined by Dümbgen (1993), who studied the uncondi-

tional distribution of the bootstrap and in this way obtained sufficient, but not necessary,

conditions for the bootstrap to fail for φ(θ̂n). In more recent work, applications where φ

is not fully differentiable have garnered increasing attention due to their preponderance

in the analysis of partially identified models (Manski, 2003). Hirano and Porter (2012)

and Song (2012), for example, explicitly exploit the directional differentiability of φ as

well, though their focus is on estimation rather than inference. Other work studying

these irregular models, though not explicitly relying on the directional differentiability

of φ, include Chernozhukov et al. (2007, 2013), Romano and Shaikh (2008, 2010), Bugni

(2010), and Canay (2010) among many others.

The remainder of the paper is organized as follows. Section 2 formally introduces the

model we study and contains a minor extension of the Delta method for directionally

differentiable functions. In Section 3 we characterize necessary and sufficient conditions

for bootstrap consistency, develop an alternative method for estimating the asymptotic

distribution of φ(θ̂n), and study the local properties of this approach. Section 4 applies

these results to develop a test of whether a Hilbert space valued parameter belongs to

a closed convex set. All proofs are contained in the Appendix.

2 Setup and Background

In this section, we introduce our notation and review the concepts of Hadamard and

directional Hadamard differentiability as well as their implications for the Delta method.
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2.1 General Setup

In order to accommodate applications such as conditional moment inequalities and tests

of shape restrictions, we must allow for both the parameter θ0 and the map φ to take

values in possibly infinite dimensional spaces; see Examples 2.3-2.6 below. We therefore

impose the general requirement that θ0 ∈ Dφ and φ : Dφ ⊆ D→ E for D and E Banach

spaces with norms ‖ · ‖D and ‖ · ‖E respectively, and Dφ the domain of φ.

The estimator θ̂n is assumed to be a function of a sequence of random variables

{Xi}ni=1 into the domain of φ. The distributional convergence

rn{θ̂n − θ0}
L→ G0 , (4)

is then understood to be in D and with respect to the joint law of {Xi}ni=1. For instance,

if {Xi}ni=1 is an i.i.d. sample and each Xi ∈ Rd is distributed according to P , then

probability statements for θ̂n : {Xi}ni=1 → Dφ are understood to be with respect to the

product measure
⊗n

i=1 P . We emphasize, however, that with the exception of the local

analysis where we assume {Xi}ni=1 is i.i.d. for simplicity, our results are applicable to

dependent settings as well. In addition, we also note the convergence in distribution

in (4) is meant in the Hoffman-Jørgensen sense (van der Vaart and Wellner, 1996).

Expectations throughout the text should therefore be interpreted as outer expectations,

though we obviate the distinction in the notation. The notation is made explicit in the

Appendix whenever differentiating between inner and outer expectations is necessary.

Finally, we introduce notation that is recurrent in the context of our examples. For

a set A, we denote the space of bounded functions on A by

`∞(A) ≡ {f : A→ R such that ‖f‖∞ <∞} ‖f‖∞ ≡ sup
a∈A
|f(a)| , (5)

and note `∞(A) is a Banach space under ‖ ·‖∞. If in addition A is a compact Hausdorff

topological space, then we let C(A) denote the set of continuous functions on A,

C(A) ≡ {f : A→ R such that f is continuous } , (6)

which satisfies C(A) ⊂ `∞(A) and is also a Banach space when endowed with ‖ · ‖∞.

2.1.1 Examples

In order to fix ideas, we next introduce a series of examples that illustrate the broad

applicability of our setting. We return to these examples throughout the paper, and

develop a formal treatment of each of them in the Appendix. For ease of exposition, we

base our discussion on simplifications of well known models, though we note that our
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results apply to the more general problems that motivated them.

Our first example is due to Bickel et al. (1997), and provides an early illustration of

the potential failure of the nonparametric bootstrap.

Example 2.1 (Absolute Value of Mean). Let X ∈ R be a scalar valued random variable,

and suppose we wish to estimate the parameter

φ(θ0) = |E[X]| . (7)

Here, θ0 = E[X], D = E = R, and φ : R→ R satisfies φ(θ) = |θ| for all θ ∈ R.

Our next example is a special case of the intersection bounds model studied in Hirano

and Porter (2012), and Chernozhukov et al. (2013) among many others.

Example 2.2 (Intersection Bounds). Let X = (X(1), X(2))′ ∈ R2 be a bivariate random

variable, and consider the problem of estimating the parameter

φ(θ0) = max{E[X(1)], E[X(2)]} . (8)

In this context, θ0 = (E[X(1)], E[X(2)])′, D = R2, E = R, and φ : R2 → R is given

by φ(θ) = max{θ(1), θ(2)} for any (θ(1), θ(2))′ = θ ∈ R2. Functionals such as (8) are

also often employed for inference in moment inequality models; see Chernozhukov et al.

(2007), Romano and Shaikh (2008), and Andrews and Soares (2010).

A related example arises in conditional moment inequality models, as studied in

Andrews and Shi (2013), Armstrong and Chan (2012), and Chetverikov (2012).

Example 2.3 (Conditional Moment Inequalities). Let X = (Y, Z ′)′ with Y ∈ R and

Z ∈ Rdz . For a suitable set of functions F ⊂ `∞(Rdz), Andrews and Shi (2013) propose

testing whether E[Y |Z] ≤ 0 almost surely, by estimating the parameter

φ(θ0) = sup
f∈F

E[Y f(Z)] . (9)

Here, θ0 ∈ `∞(F) satisfies θ0(f) = E[Y f(Z)] for all f ∈ F , D = `∞(F), E = R, and the

map φ : D→ E is given by φ(θ) = supf∈F θ(f).

The following example is an abstract version of an approach pursued in Beresteanu

and Molinari (2008) and Bontemps et al. (2012) for studying partially identified models.

Example 2.4 (Convex Identified Sets). Let Λ ⊆ Rd denote a convex and compact set,

Sd be the unit sphere on Rd and C(Sd) denote the space of continuous functions on Sd.
For each p ∈ Sd, the support function ν(·,Λ) ∈ C(Sd) of the set Λ is then

ν(p,Λ) ≡ sup
λ∈Λ
〈p, λ〉 p ∈ Sd . (10)
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As noted by Beresteanu and Molinari (2008) and Bontemps et al. (2012), the functional

φ(θ0) = sup
p∈Sd
{〈p, λ〉 − ν(p,Λ)} , (11)

can form the basis for a test of whether λ is an element of Λ, since λ ∈ Λ if and only

if φ(θ0) ≤ 0. In the context of this example, θ0 = ν(·,Λ), D = C(Sd), E = R, and

φ(θ) = supp∈Sd{〈p, λ〉 − θ(p)} for any θ ∈ C(Sd).

Our next example is based on the Linton et al. (2010) test for stochastic dominance.

Example 2.5 (Stochastic Dominance). Let X = (X(1), X(2))′ ∈ R2 be continuously

distributed, and define the marginal cdfs F (j)(u) ≡ P (X(j) ≤ u) for j ∈ {1, 2}. For a

positive integrable weighting function w : R→ R+, Linton et al. (2010) estimate

φ(θ0) =

∫
R

max{F (1)(u)− F (2)(u), 0}w(u)du , (12)

to construct a test of whether X(1) first order stochastically dominates X(2). In this

example, we set θ0 = (F (1), F (2)), D = `∞(R) × `∞(R), E = R and φ((θ(1), θ(2))) =∫
max{θ(1)(u)− θ(2)(u), 0}w(u)du for any (θ(1), θ(2)) ∈ `∞(R)× `∞(R).

In addition to tests of stochastic dominance, a more recent literature has aimed to

examine whether likelihood ratios are monotonic. Our final example is a simplification

of a test proposed in Carolan and Tebbs (2005) and Beare and Moon (2013).

Example 2.6 (Likelihood Ratio Ordering). Let X = (X(1), X(2))′ ∈ R2 have strictly

increasing marginal cdfs Fj(u) ≡ P (X(j) ≤ u), and define G ≡ F1 ◦ F−1
2 . Further let

M : `∞([0, 1])→ `∞([0, 1]) be the least concave majorant operator, given by

Mf(u) = inf{g(u) : g ∈ `∞([0, 1]) is concave and f(u) ≤ g(u) for all u ∈ [0, 1]} (13)

for every f ∈ `∞([0, 1]). Since the likelihood ratio dF1/dF2 is nonincreasing if and only

if G is concave on [0, 1] (Carolan and Tebbs, 2005), Beare and Moon (2013) note

φ(θ0) =
{∫ 1

0
(MG(u)−G(u))2du

} 1
2

(14)

characterizes whether dF1/dF2 is nonincreasing, since φ(θ0) = 0 if and only if G is

concave. In this example, θ0 = G, D = `∞([0, 1]), E = R and φ : D → E satisfies

φ(θ) = {
∫ 1

0 (Mθ(u)− θ(u))2du}
1
2 for any θ ∈ `∞([0, 1]).

2.2 Differentiability Concepts

In all the previous examples, there exist points θ ∈ D at which the map φ : D → E is

not differentiable. Nonetheless, at all such θ at which differentiability is lost, φ actually
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remains directionally differentiable. This is most easily seen in Examples 2.1 and 2.2, in

which the domain of φ is a finite dimensional space. In order to address Examples 2.3-

2.6, however, a notion of directional differentiability that is suitable for more abstract

spaces D is necessary. Towards this end, we follow Shapiro (1990) and define

Definition 2.1. Let D and E be Banach spaces, and φ : Dφ ⊆ D→ E.

(i) The map φ is said to be Hadamard differentiable at θ ∈ Dφ tangentially to a set

D0 ⊆ D, if there is a continuous linear map φ′θ : D0 → E such that:

lim
n→∞

‖φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)‖E = 0 , (15)

for all sequences {hn} ⊂ D and {tn} ⊂ R such that tn → 0, hn → h ∈ D0 as

n→∞ and θ + tnhn ∈ Dφ for all n.

(ii) The map φ is said to be Hadamard directionally differentiable at θ ∈ Dφ tangen-

tially to a set D0 ⊆ D, if there is a continuous map φ′θ : D0 → E such that:

lim
n→∞

‖φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)‖E = 0 , (16)

for all sequences {hn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, hn → h ∈ D0 as

n→∞ and θ + tnhn ∈ Dφ for all n.

As has been extensively noted in the literature, Hadamard differentiability is par-

ticularly suited for generalizing the Delta method to metric spaces (van der Vaart and

Wellner, 1996). It is therefore natural to employ an analogous approximation require-

ment when considering an appropriate definition of a directional derivative (compare (15)

and (16)). However, despite this similarity, two key differences distinguish Hadamard

differentiability from Hadamard directional differentiability. First, in (16) the sequence

of scalars {tn} must approach 0 “from the right”, heuristically giving the derivative a

direction. Second, the map φ′θ : D0 → E is no longer required to be linear, though it is

possible to show (16) implies φ′θ must be homogenous of degree one. It is in fact this

latter property that distinguishes the two differentiability concepts.

Proposition 2.1. Let D, E be Banach spaces, D0 ⊆ D be a subspace, and φ : Dφ ⊆ D→
E. Then, φ is Hadamard directionally differentiable at θ ∈ Dφ tangentially to D0 with

linear derivative φ′θ : D0 → E iff φ is Hadamard differentiable at θ tangentially to D0.

Thus, while Hadamard differentiability implies Hadamard directional differentiabil-

ity, Proposition 2.1 shows the converse is true if the directional derivative φ′θ is linear.

In what follows, we will show that linearity is in fact not important for the validity of

the Delta method, but rather the key requirement is that (16) holds. Linearity, however,

will play an instrumental role in determining whether the bootstrap is consistent or not.
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Remark 2.1. A more general definition of Hadamard directional differentiability only

requires the domain D to be a Hausdorff topological vector space; see Shapiro (1990).

For our purposes, however, it is natural to restrict attention to Banach spaces, and we

therefore employ the more specialized Definition 2.1.

Remark 2.2. The condition that the map φ′θ be continuous is automatically satisfied

when the topology on D is metrizable; see Proposition 3.1 in Shapiro (1990). Conse-

quently, when D is a Banach space, showing (16) holds for some map φ′θ : D0 → E
suffices for establishing the Hadamard directional differentiability of φ at θ.

2.2.1 Examples Revisited

We next revisit the examples to illustrate the computation of the directional derivative.

The first two examples are straightforward, since the domain of φ is finite dimensional.

Example 2.1 (cont.) In this example, simple calculations reveal φ′θ : R→ R is

φ′θ(h) =


h if θ > 0

|h| if θ = 0

−h if θ < 0

. (17)

Note that φ is Hadamard differentiable everywhere except at θ = 0, but that it is still

Hadamard directionally differentiable at that point.

Example 2.2 (cont.) For θ = (θ(1), θ(2))′ ∈ R2, let j∗ = arg maxj∈{1,2} θ
(j). For any

h = (h(1), h(2))′ ∈ R2, it is then straightforward to verify φ′θ : R2 → R is given by

φ′θ(h) =

h(j∗) if θ(1) 6= θ(2)

max{h(1), h(2)} if θ(1) = θ(2)
. (18)

As in (17), φ′θ is nonlinear precisely when Hadamard differentiability is not satisfied.

In the next examples the domain of φ is infinite dimensional, and we sometimes need

to employ Hadamard directional tangential differentiability – i.e. D0 6= D.

Example 2.3 (cont.) Suppose E[Y 2] <∞ and that F is compact when endowed with

the metric ‖f‖L2(Z) ≡ {E[f(Z)2]}
1
2 . Then, θ0 ∈ C(F), and Lemma B.1 in the Appendix

implies φ is Hadamard directionally differentiable tangentially to C(F) at any θ ∈ C(F).

In particular, for ΨF (θ) ≡ arg maxf∈F θ(f), the directional derivative is

φ′θ(h) = sup
f∈ΨF (θ)

h(f) . (19)

Interestingly φ′θ is linear at any θ ∈ C(F) for which ΨF (θ) is a singleton, and hence φ is

actually Hadamard differentiable at such θ. We note in this example, D0 = C(F).
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Example 2.4 (cont.) For any θ ∈ C(Sd) let ΨSd(θ) ≡ arg maxp∈Sd{〈p, λ〉 − θ(p)}.
Lemma B.8 in Kaido (2013) then shows that φ′θ : C(Sd)→ R is given by

φ′θ(h) = sup
p∈ΨSd (θ)

−h(p) . (20)

As in Example 2.3, φ : C(Sd)→ R is Hadamard differentiable at any θ ∈ C(Sd) at which

ΨSd(θ) is a singleton, but is only Hadamard directionally differentiable otherwise.

Example 2.5 (cont.) For any θ = (θ(1), θ(2)) ∈ `∞(R)×`∞(R) define the sets B0(θ) ≡
{u ∈ R : θ(1)(u) = θ(2)(u)} and B+(θ) ≡ {u ∈ R : θ(1)(u) > θ(2)(u)}. It then follows

that φ is Hadamard directionally differentiable at any θ ∈ `∞(R)× `∞(R), and that

φ′θ(h) =

∫
B+(θ)

(h(1)(u)−h(2)(u))w(u)du+

∫
B0(θ)

max{h(1)(u)−h(2)(u), 0}w(u)du (21)

for h = (h(1), h(2)) ∈ `∞(R)× `∞(R) – see Lemma B.2 in the Appendix. In particular,

if B0(θ) has zero Lebesgue measure, then φ is Hadamard differentiable at θ.

Example 2.6 (cont.) Lemma 3.2 in Beare and Moon (2013) establishes the Hadamard

directional differentiability ofM : `∞([0, 1])→ `∞([0, 1]) tangentially to C([0, 1]) at any

concave θ ∈ `∞([0, 1]). Since norms are directionally differentiable at zero, we have

φ′θ(h) =
{∫ 1

0
(M′θ(h)(u)− h(u))2du

} 1
2

(22)

where M′θ : C([0, 1])→ `∞([0, 1]) is the Hadamard directional derivative of M at θ.

2.3 The Delta Method

While the Delta method for Hadamard differentiable functions has become a standard

tool in econometrics (van der Vaart, 1998), the availability of an analogous result for

Hadamard directional differentiable maps does not appear to be as well known. To the

best of our knowledge, this powerful generalization was independently established in

Shapiro (1991) and Dümbgen (1993), but only recently employed in econometrics; see

Beare and Moon (2013), Kaido (2013), and Kaido and Santos (2013) for examples.

We next aim to establish a mild extension of the result in Dümbgen (1993) by showing

the Delta method also holds in probability – a result we require for our subsequent

derivations. Towards this end, we formalize our setup by imposing the following:

Assumption 2.1. (i) D and E are Banach spaces with norms ‖·‖D and ‖·‖E respectively;

(ii) φ : Dφ ⊆ D→ E is Hadamard directionally differentiable at θ0 tangentially to D0.

Assumption 2.2. (i) θ0 ∈ Dφ and there are θ̂n : {Xi}ni=1 → Dφ such that, for some

rn ↑ ∞, rn{θ̂n − θ0}
L→ G0 in D; (ii) G0 is tight and its support is included in D0.

10



Assumption 2.3. (i) φ′θ0 can be continuously extended to D (rather than D0 ⊆ D); (ii)

D0 is closed under addition – i.e. h1 + h2 ∈ D0 for all h1, h2 ∈ D0.

Assumption 2.1 simply formalizes our previous discussion by requiring that the map

φ : Dφ → E be Hadamard directionally differentiable at θ0. In Assumption 2.2(i),

we additionally impose the existence of an estimator θ̂n for θ0 that is asymptotically

distributed according to G0 in the Hoffman-Jørgensen sense. The scaling rn equals
√
n

in Examples 2.1-2.6, but may differ in nonparametric problems. In turn, Assumption

2.2(ii) imposes that the support of the limiting process G0 be included on the tangential

set D0, and requires the regularity condition that the random variable G0 be tight.

Assumption 2.3(i) allows us to view the map φ′θ0 as well defined and continuous on all of

D (rather than just D0), and is automatically satisfied when D0 is closed; see Remark 2.3.

We emphasize, however, that Assumption 2.3(i) does not demand differentiability of φ :

Dφ → E tangentially to D – i.e. the extension of φ′θ0 need not satisfy (16) for h ∈ D\D0.

For instance, in Example 2.3 φ is differentiable tangentially to D0 = C(F), but the map

φ′θ in (19) is naturally well defined and continuous on D = `∞(F). Finally, Assumption

2.3(ii) imposes that D0 be closed under addition which, since D0 is necessarily a cone,

is equivalent to demanding that D0 be convex. This mild requirement is only employed

in some of our results and helps ensure that, when multiple extensions of φ′θ0 exist, the

choice of extension has no impact in our arguments.

Remark 2.3. If D0 is closed, then the continuity of φ′θ0 : D0 → E and Theorem 4.1 in

Dugundji (1951) imply that φ′θ0 admits a continuous extension to D – i.e. there exists

a continuous map φ̄′θ0 : D → E such that φ̄′θ0(h) = φ′θ0(h) for all h ∈ D0. Thus, if D0 is

closed, then Assumption 2.3(i) is automatically satisfied.

Assumptions 2.1 and 2.2 suffice for establishing the validity of the Delta method. The

probabilistic version of the Delta method, however, additionally requires Assumption 2.3.

Theorem 2.1. If Assumptions 2.1 and 2.2 hold, then rn{φ(θ̂n)− φ(θ0)} L→ φ′θ0(G0). If

in addition Assumption 2.3(i) is also satisfied, then it follows that

rn{φ(θ̂n)− φ(θ0)} = φ′θ0(rn{θ̂n − θ0}) + op(1) . (23)

The intuition behind Theorem 2.1 is the same that motivates the traditional Delta

method. Heuristically, the theorem can be obtained from the approximation

rn{φ(θ̂n)− φ(θ0)} ≈ φ′θ0(rn{θ̂n − θ0}) , (24)

Assumption 2.2(i), and the continuous mapping theorem applied to φ′θ0 . Thus, the key

requirement is not that φ′θ0 be linear, or equivalently that φ be Hadamard differentiable,

but rather that (24) holds in an appropriate sense – a condition ensured by Hadamard
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directional differentiability. Following this insight, Theorem 2.1 can be established using

the same arguments as in the proof of the traditional Delta method (van der Vaart and

Wellner, 1996). It is worth noting that directional differentiability of φ is only assumed

at θ0. In particular, continuity of φ′θ0 in θ0 is not required since such condition is

often violated; see Examples 2.1 and 2.2. Strengthening the Delta method to hold in

probability further requires Assumption 2.3(i) to ensure φ′θ0(rn{θ̂n−θ0}) is well defined.2

We conclude this section with a simple Corollary of wide applicability.

Corollary 2.1. Let {Xi}ni=1 be a stationary sequence of random variables with Xi ∈ Rd

and marginal distribution P . Suppose F is a collection of measurable functions f : Rd →
R, and let θ̂n : F → R and θ0 : F → R be maps pointwise defined by

θ̂n(f) ≡ 1

n

n∑
i=1

f(Xi) θ0(f) ≡
∫
f(x)dP (x) . (25)

Suppose
√
n{θ̂n − θ0}

L→ G0 in `∞(F) for some tight process G0 ∈ `∞(F), and define

C(F) ≡ {g : F → R : g is continuous under ‖f‖2G0
≡ E[G0(f)2]} .

If for some Banach space E, φ : `∞(F)→ E is Hadamard directionally differentiable at

θ0 tangentially to C(F), then
√
n{φ(θ̂n)− φ(θ0)} L→ φ′θ0(G0) in E.

Corollary 2.1 specializes Theorem 2.1 to the case where the parameter of interest

φ(θ0) can be expressed as a transformation of a (possibly uncountable) collection of

moments. Primitive conditions for the functional central limit theorem to hold can be

found, for example, in Dehling and Philipp (2002). As a special case, Corollary 2.1

immediately delivers the relevant asymptotic distributions in Examples 2.1, 2.2, 2.3 and

2.5, but not in Examples 2.4 or 2.6. In the latter two examples θ̂n and θ0 do not take the

form in (25), and we therefore need to employ Theorem 2.1 together with the asymptotic

distribution of
√
n{θ̂n − θ0} as available, for example, in Kaido and Santos (2013) for

support functions and Beare and Moon (2013) for Example 2.6.

3 The Bootstrap

While Theorem 2.1 enables us to obtain an asymptotic distribution, a suitable method

for estimating this limiting law is still required. In this section we will assume that

the bootstrap “works” for θ̂n and examine how to leverage this result to estimate the

asymptotic distribution of rn{φ(θ̂n)− φ(θ0)}. We will show that bootstrap consistency

2Without Assumption 2.3(i), the domain of φ′θ0 must include D0, but possibly not D \ D0. Thus,

since rn{θ̂n − θ0} may not belong to D0, φ′θ0(rn{θ̂n − θ0}) may otherwise not be well defined.
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is often lost under Hadamard directional differentiable transformations, and propose an

alternative resampling scheme which generalizes existing approaches in the literature.

3.1 Bootstrap Setup

We begin by introducing the general setup under which we examine bootstrap consis-

tency. Throughout, we let θ̂∗n denote a “bootstrapped version” of θ̂n, and assume the

limiting distribution of rn{θ̂n − θ0} can be consistently estimated by the law of

rn{θ̂∗n − θ̂n} (26)

conditional on the data. In order to formally define θ̂∗n, while allowing for diverse resam-

pling schemes, we simply impose that θ̂∗n be a function mapping the data {Xi}ni=1 and

random weights {Wi}ni=1 that are independent of {Xi}ni=1 into Dφ. This abstract defini-

tion suffices for encompassing the nonparametric, Bayesian, block, score, and weighted

bootstrap as special cases; see Remark 3.2.

Formalizing the notion of bootstrap consistency further requires us to employ a

measure of distance between the limiting distribution G0 and its bootstrap estimator.

Towards this end, we follow van der Vaart and Wellner (1996) and utilize the bounded

Lipschitz metric. Specifically, for a metric space A with norm ‖ · ‖A, denote the set of

Lipschitz functionals whose level and Lipschitz constant are bounded by one by

BL1(A) ≡ {f : A→ R : sup
a∈A
|f(a)| ≤ 1 and |f(a1)− f(a2)| ≤ ‖a1 − a2‖A} . (27)

The bounded Lipschitz distance between two measures L1 and L2 on A then equals the

largest discrepancy in the expectation they assign to functions in BL1(A), denoted

dBL(L1, L2) ≡ sup
f∈BL1(A)

|
∫
f(a)dL1(a)−

∫
f(a)dL2(a)| . (28)

Given the introduced notation, we can measure the distance between the law of

rn{θ̂∗n − θ̂n} conditional on {Xi}ni=1, and the limiting distribution of rn{θ̂n − θ0} by3

sup
f∈BL1(D)

|E[f(rn{θ̂∗n − θ̂n})|{Xi}ni=1]− E[f(G0)]| . (29)

Employing the distribution of rn{θ̂∗n − θ̂n} conditional on the data to approximate the

distribution of G0 is then asymptotically justified if their distance, equivalently (29),

converges in probability to zero. This type of consistency can in turn be exploited to

3More precisely, E[f(rn{θ̂∗n − θ̂n})|{Xi}ni=1] denotes the outer expectation with respect to the joint
law of {Wi}ni=1, treating the observed data {Xi}ni=1 as constant.
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validate the use of critical values obtained from the distribution of rn{θ̂∗n−θ̂n} conditional

on {Xi}ni=1 to conduct inference or construct confidence regions; see Remark 3.1.

We formalize the above discussion by imposing the following assumptions on θ̂∗n:

Assumption 3.1. (i) θ̂∗n : {Xi,Wi}ni=1 → Dφ with {Wi}ni=1 independent of {Xi}ni=1; (ii)

θ̂∗n satisfies supf∈BL1(D) |E[f(rn{θ̂∗n − θ̂n})|{Xi}ni=1]− E[f(G0)]| = op(1).

Assumption 3.2. (i) The sequence rn{θ̂∗n − θ̂n} is asymptotically measurable (jointly

in {Xi,Wi}ni=1); (ii) f(rn{θ̂∗n − θ̂n}) is a measurable function of {Wi}ni=1 outer almost

surely in {Xi}ni=1 for any continuous and bounded f : D→ R .

Assumption 3.1(i) defines θ̂∗n in accord with our discussion, while Assumption 3.1(ii)

imposes the consistency of the law of rn{θ̂∗n − θ̂n} conditional on the data for the dis-

tribution of G0 – i.e. the bootstrap “works” for the estimator θ̂n. In addition, in

Assumption 3.2 we further demand mild measurability requirements on rn{θ̂∗n − θ̂n}.
These requirements are automatically satisfied in the context of Corollary 2.1, where θ̂n

and θ̂∗n correspond to the empirical and bootstrapped empirical processes respectively.

Remark 3.1. In the special case where D = Rd, Assumption 3.1(ii) implies that:

sup
t∈A
|P (rn{θ̂∗n − θ̂n} ≤ t|{Xi}ni=1)− P (G0 ≤ t)| = op(1) (30)

for any closed subset A of the continuity points of the cdf of G0; see Kosorok (2008).

Thus, consistency in the bounded Lipschitz metric implies consistency of the correspond-

ing cdfs. Result (30) then readily yields consistency of the corresponding quantiles at

points at which the cdf of G0 is continuous and strictly increasing.

Remark 3.2. Suppose {Xi}ni=1 is an i.i.d. sample, and let the parameter of interest be

θ0 = E[X] which we estimate by the sample mean θ̂n = X̄ ≡ 1
n

∑
iXi. In this context,

the limiting distribution of
√
n{θ̂n − θ0} can be approximated by law of

√
n{ 1

n

n∑
i=1

X∗i − X̄} , (31)

where the {X∗i }ni=1 are drawn with replacement from the realized sample {Xi}ni=1. Equiv-

alently, if {Wi}ni=1 is independent of {Xi}ni=1 and jointly distributed according to a multi-

nomial distribution over n categories, each with probability 1/n, then (31) becomes

√
n{ 1

n

n∑
i=1

WiXi − X̄} . (32)

Thus, by defining θ̂∗n = 1
n

∑
iWiXi, we may express (31) in the form

√
n{θ̂∗n − θ̂n}.
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3.2 A Necessary and Sufficient Condition

When the transformation φ : Dφ → E is Hadamard differentiable at θ0, the consistency

of the bootstrap is inherited by the transformation itself. In other words, if Assumption

3.1(ii) is satisfied, and φ is Hadamard differentiable, then the asymptotic distribution

of rn{φ(θ̂n)− φ(θ0)} can be consistently estimated by the law of

rn{φ(θ̂∗n)− φ(θ̂n)} (33)

conditional on the data (van der Vaart and Wellner, 1996). For conciseness, we refer to

the law of (33) conditional on the data as the “standard” bootstrap.

Unfortunately, while the Delta method generalizes to Hadamard directionally differ-

entiable functionals, we know by way of example that the consistency of the standard

bootstrap may not (Andrews, 2000). In what follows, we aim to fully characterize the

conditions under which the standard bootstrap is consistent when φ is Hadamard direc-

tionally differentiable. In this regard, a crucial role is played by the following concept:

Definition 3.1. Let G1 ∈ D0 be independent of G0 and have the same distribution as

G0. We then say φ′θ0 : D0 → E is G0-translation invariant if and only if it satisfies

φ′θ0(G0 +G1)− φ′θ0(G0) is independent of G0 . (34)

Intuitively, φ′θ0 being G0-translation invariant is equivalent to the distribution of

φ′θ0(G0 + h)− φ′θ0(h) (35)

being constant (invariant) for all h in the support of G0. For example, if φ is Hadamard

differentiable at θ0, then φ′θ0 is linear and hence immediately G0-translation invariant.

On the other hand, it is also straightforward to verify that φ′θ0 fails to be G0-translation

invariant in Examples 2.1 and 2.2, both instances in which the standard bootstrap is

known to fail; see Bickel et al. (1997) and Andrews (2000) respectively. As the following

theorem shows, this relationship is not coincidental. The standard bootstrap is in fact

consistent if and only if φ′θ0 is G0-translation invariant.

Theorem 3.1. Let Assumptions 2.1, 2.2, 2.3, 3.1, and 3.2 hold, and suppose that 0 ∈ D
is in the support of G0. Then, φ′θ0 is G0-translation invariant if and only if

sup
f∈BL1(E)

|E[f(rn{φ(θ̂∗n)− φ(θ̂n)})|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1) . (36)

A powerful implication of Theorem 3.1 is that in verifying whether the standard boot-

strap is valid at a conjectured θ0, we need only examine whether φ′θ0 is G0-translation

invariant – an often straightforward exercise; see Remark 3.3. The theorem requires
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that 0 ∈ D be in the support of G0, which is satisfied, for example, whenever G0 is

a centered Gaussian process. This requirement is imposed to establish that φ′θ0 being

G0-translation invariant implies the bootstrap is consistent. In particular, without this

assumption, it is only possible to show that the bootstrap is consistent for the law in

(35), which recall does not depend on h. If in addition 0 ∈ D is in the support of G0,

then from (35) we can conclude the bootstrap limit is the desired one, since then

φ′θ0(G0 + h)− φ′θ0(h)
d
= φ′θ0(G0) , (37)

where “
d
=” denotes equality in distribution.4 Relationship (37) is also useful in examining

whether φ′θ0 is G0-transaltion invariant. For instance, in the examples we study it is

possible to show condition (37) is violated whenever φ is not Hadamard differentiable,

and hence that the standard bootstrap is inconsistent.

Remark 3.3. In Examples 2.1, 2.2, 2.3, 2.4, 2.5, and 2.6 the map φ′θ0 : D0 → R satisfies

φ′θ0(h1 + h2) ≤ φ′θ0(h1) + φ′θ0(h2) (38)

for all h1, h2 ∈ D0. Moreover, since G0 is Gaussian in these examples, it is possible to

verify that whenever φ is not Hadamard differentiable there is a h? ∈ D0 such that

P
(
φ′θ0(G0 + h?) < φ′θ0(G0) + φ′θ0(h?)

)
> 0 . (39)

Results (38) and (39) together imply the distribution of φ′θ0(G0 + h?) − φ′θ0(h?) is first

order stochastically dominated by that of φ′θ0(G0). Therefore, by (37), φ′θ0 is not G0-

translation invariant, and from Theorem 3.1 we conclude the bootstrap fails.

3.2.1 Leading Case: Gaussian G0

As Theorem 3.1 shows, the consistency of the standard bootstrap is equivalent to the

map φ′θ0 : D0 → E being G0-translation invariant – a condition concerning both φ′θ0
and G0. In most applications, however, G0 is a centered Gaussian measure, and this

additional structure has important implications for φ′θ0 being G0-translation invariant.

The following theorem establishes that, under Gaussianity of G0, φ′θ0 is in fact G0-

translation invariant if and only if it is linear on the support of G0.

Theorem 3.2. If Assumptions 2.1, 2.2(ii) hold, and G0 is a centered Gaussian measure,

then φ′θ0 is G0-translation invariant if and only if it is linear on the support of G0.

One direction of the theorem is trivial, since linearity of φ′θ0 immediately implies φ′θ0
must be G0-translation invariant (see (34)). The converse, however, is a far subtler result

4The result is exploiting that φ′θ0(0) = 0 implies φ′θ0(G0 + 0) − φ′θ0(0) = φ′θ0(G0) almost surely; see
Lemma A.3 in the Appendix for a formal derivation of (37).
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which we establish by relying on insights in van der Vaart (1991) and Hirano and Porter

(2012); see Remark 3.4. While perhaps not of independent interest, Theorem 3.2 has

important implications when combined with our previous results. First, in conjunction

with Theorem 3.1, Theorem 3.2 implies that establishing bootstrap consistency reduces

to simply verifying the linearity of φ′θ0 . Second, together with Proposition 2.1, these

results show that under the maintained assumptions, Hadamard differentiability of φ at

θ0 is a necessary and sufficient condition for bootstrap consistency. In particular, we

conclude that the bootstrap is inconsistent in all instances for which φ is not Hadamard

differentiable at θ0. The failure of the standard bootstrap is therefore an inherent

property of these “irregular” models.

A final implication of Theorems 3.1 and 3.2 that merits discussion follows from ex-

ploiting that Gaussianity of G0 and bootstrap consistency together imply linearity of

φ′θ0 . In particular, whenever φ′θ0 is linear and G0 is Gaussian φ′θ0(G0) must also be Gaus-

sian (in E), and thus bootstrap consistency implies Gaussianity of φ′θ0(G0). Conversely,

we conclude that the standard bootstrap fails whenever the asymptotic distribution is not

Gaussian. We formalize this conclusion in the following Corollary:

Corollary 3.1. Let Assumptions 2.1, 2.2, 2.3, 3.1, 3.2 hold, and G0 be a centered

Gaussian measure. If the limiting distribution of rn{φ(θ̂n) − φ(θ0)} is not Gaussian,

then it follows that the standard bootstrap is inconsistent.

Remark 3.4. If φ′θ0 is G0-translation invariant, then the characteristic functions of

{φ′θ0(G0 + h) − φ′θ0(h)} and φ′θ0(G0) must be equal for any h in the support of G0

(see (37)). The proof of Theorem 3.2 relates these characteristic functions through

the Cameron-Martin theorem to show their equality implies φ′θ0 must be linear. A

similar insight was used in van der Vaart (1991) and Hirano and Porter (2012) who

compare characteristic functions in a limit experiment to conclude regular estimability

of a functional implies its differentiability.

3.3 An Alternative Approach

Theorems 3.1 and 3.2 together establish that standard bootstrap procedures are incon-

sistent whenever φ is not fully differentiable at θ0 and G0 is Gaussian. Thus, given

the pervasive failure of the bootstrap in these models, we now proceed to develop a

consistent estimator for the limiting distribution in Theorem 2.1 (φ′θ0(G0)).

Heuristically, the inconsistency of the standard bootstrap arises from its inability

to properly estimate the directional derivative φ′θ0 whenever it is not G0-translation

invariant. However, the underlying bootstrap process rn{θ̂∗n − θ̂n} still provides a con-

sistent estimator for the law of G0. Intuitively, a consistent estimator for the limiting

17



distribution in Theorem 2.1 can therefore be constructed employing the law of

φ̂′n(rn{θ̂∗n − θ̂n}) (40)

conditional on the data for φ̂′n : D→ E a suitable estimator of the directional derivative

φ′θ0 : D0 → E. This approach is in fact closely related to the procedure developed in

Andrews and Soares (2010) for moment inequality models, and other inferential methods

designed for specific examples of φ : D→ E; see Section 3.3.1 below.

In order for this approach to be valid, we require φ̂′n to satisfy the following condition:

Assumption 3.3. φ̂′n : D → E is a function of {Xi}ni=1, satisfying for every compact

set K ⊆ D0, Kδ ≡ {a ∈ D : infb∈K ‖a− b‖D < δ}, and every ε > 0, the property:

lim
δ↓0

lim sup
n→∞

P
(

sup
h∈Kδ

‖φ̂′n(h)− φ′θ0(h)‖E > ε
)

= 0 . (41)

Unfortunately, the requirement in (41) is complicated by the presence of the δ-

enlargement of K. Without such enlargement, requirement (41) could just be inter-

preted as demanding that φ̂′n be uniformly consistent for φ′θ0 on compact sets K ⊆ D0.

Heuristically, the need to consider Kδ arises from rn{θ̂∗n− θ̂n} only being guaranteed to

lie in D and not necessarily D0. However, because G0 lies in compact subsets of D0 with

arbitrarily high probability, it is possible to conclude that rn{θ̂∗n − θ̂n} will eventually

be “close” to such subsets of D0. Thus, φ̂′n need only be well behaved in arbitrary small

neighborhoods of compact sets in D0, which is the requirement imposed in Assump-

tion 3.3. It is worth noting, however, that in many applications stronger, but simpler,

conditions than (41) can be easily verified. For instance, under appropriate additional

requirements, the δ factor in (41) may be ignored, and it may even suffice to just verify

φ̂′n(h) is consistent for φ′θ0(h) for every h ∈ D0; see Remarks 3.5 and 3.6.

Remark 3.5. In certain applications, it is sufficient to require φ̂′n : D→ E to satisfy

sup
h∈K
‖φ̂′n(h)− φ′θ0(h)‖E = op(1) , (42)

for any compact set K ⊆ D. For instance, if D = Rd, then the closure of Kδ is compact

in D for any compact K ⊆ D0, and hence (42) implies (41). Alternatively, if D is

separable, rn{θ̂∗n − θ̂n} is Borel measurable as a function of {Xi,Wi}ni=1 and tight for

each n, then rn{θ̂∗n − θ̂n} is uniformly tight and (42) may be used in place of (41).5

Remark 3.6. Assumption 3.3 greatly simplifies whenever the modulus of continuity of

φ̂′n : D→ E can be controlled outer almost surely. For instance, if ‖φ̂′n(h1)− φ̂′n(h2)‖E ≤
5Under uniform tightness, for every ε > 0 there is a compact set K such that lim supn→∞ P (rn{θ̂∗n−

θ̂n} /∈ K) < ε. In general, however, we only know rn{θ̂∗n − θ̂n} to be asymptotically tight, in which case
we are only guaranteed lim supn→∞ P (rn{θ̂∗n − θ̂n} /∈ Kδ) < ε for every δ > 0.
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C‖h1 − h2‖D for some C <∞ and all h1, h2 ∈ D, then showing that for any h ∈ D0

‖φ̂′n(h)− φ′θ0(h)‖E = op(1) (43)

suffices for establishing (41) holds; see Lemma A.6 in the Appendix. This observation

is particularly helpful in the analysis of Examples 2.3 and 2.4; see Section 3.3.1.

Given Assumption 3.3 we can establish the validity of the proposed procedure.

Theorem 3.3. Under Assumptions 2.1, 2.2, 2.3(i), 3.1, 3.2 and 3.3, it follows that

sup
f∈BL1(E)

|E[f(φ̂′n(rn{θ̂∗n − θ̂n}))|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1) . (44)

Theorem 3.3 shows that the law of φ̂′n(rn{θ̂∗n− θ̂n}) conditional on the data is indeed

consistent for the limiting distribution of rn{φ(θ̂n)− φ(θ0)} derived in Theorem 2.1. In

particular, when φ(θ̂n) is a test statistic, and hence scalar valued, Theorem 3.3 enables

us to compute critical values for inference by simulating the finite sample distribution

of φ̂′n(rn{θ̂∗n− θ̂n}) conditional on {Xi}ni=1 (but not {Wi}ni=1). The following immediate

corollary formally establishes this claim.

Corollary 3.2. Let Assumptions 2.1, 2.2, 2.3(i), 3.1, 3.2 and 3.3 hold, E = R, and

ĉ1−α ≡ inf{c : P (φ̂′n(rn{θ̂∗n − θ̂n}) ≤ c|{Xi}ni=1) ≥ 1− α} . (45)

If the cdf of φ′θ0(G0) is strictly increasing at its 1− α quantile c1−α, then ĉ1−α
p→ c1−α.

It is worth noting that φ′θ0 being the directional derivative of φ at θ0 is actually never

exploited in the proofs of Theorem 3.3 or Corollary 3.2. Therefore, these results can

more generally be interpreted as providing a method for approximating distributions of

random variables that are of the form τ(G0), where G0 ∈ D is a tight random variable

and τ : D → E is an unknown continuous map. Finally, it is important to emphasize

that due to an appropriate lack of continuity of φ′θ0 in θ0, the “naive” estimator φ̂′n = φ′
θ̂n

often fails to satisfy Assumption 3.3. Nonetheless, alternative estimators are still easily

obtained as we next discuss in the context of Examples 2.1-2.6.

3.3.1 Examples Revisited

In order to illustrate the applicability of Theorem 3.3, we now return to Examples 2.1-2.6

and show existing inferential methods may be reinterpreted to fit (40). For conciseness,

we group the analysis of examples that share a similar structure.

Examples 2.1 and 2.2 (cont.) In the context of Example 2.2, let {Xi}ni=1 be an

i.i.d. sample with Xi = (X
(1)
i , X

(2)
i )′ ∈ R2, and define X̄(j) ≡ 1

n

∑
iX

(j)
i for j ∈ {1, 2}.
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Denoting ĵ∗ = arg maxj∈{1,2} X̄
(j) and letting κn ↑ ∞ satisfy κn/

√
n ↓ 0, we then define

φ̂′n(h) =

h(ĵ∗) if |X̄(1) − X̄(2)| > κn

max{h(1), h(2)} if |X̄(1) − X̄(2)| ≤ κn
, (46)

(compare to (18)). Under appropriate moment restrictions, it is then straightforward to

verify Assumption 3.3 holds, since φ̂′n : R2 → R in fact satisfies

lim sup
n→∞

P
(
φ̂′n(h) = φ′θ0(h) for all h ∈ R2

)
= 1 . (47)

If {X∗i }ni=1 is a sample drawn with replacement from {Xi}ni=1, and X̄∗ = 1
n

∑
iX
∗
i ,

then (40) reduces to φ̂′n(
√
n{X̄∗ − X̄}), which was originally studied in Andrews and

Soares (2010) and Bugni (2010) for conducting inference in moment inequalities models.

Example 2.1 can be studied in a similar manner and we therefore omit its analysis.

Examples 2.3 and 2.4 (cont.) In Example 2.3, recall ΨF (θ) ≡ arg maxf∈F θ(f) and

suppose Ψ̂F (θ0) is a Hausdorff consistent estimate of ΨF (θ0) – i.e. it satisfies6

dH(ΨF (θ0), Ψ̂F (θ0), ‖ · ‖L2(Z)) = op(1) . (48)

A natural estimator for φ′θ0 is then given by φ̂′n : `∞(F)→ R equal to (compare to (19))

φ̂′n(h) = sup
f∈Ψ̂F (θ0)

h(f) , (49)

which can easily be shown to satisfy Assumption 3.3; see Lemma B.3 in the Appendix.

If the data is i.i.d., {(Y ∗i , Z∗i )}ni=1 is a sample drawn with replacement from {(Yi, Zi)}ni=1,

and
√
n{θ̂∗n − θ̂n} is the bootstrapped empirical process, then (40) becomes

φ̂′n(
√
n{θ̂∗n − θ̂n}) = sup

f∈Ψ̂F (θ0)

1√
n

n∑
i=1

{Y ∗i f(Z∗i )− 1

n

n∑
i=1

Yif(Zi)} , (50)

which was originally proposed in Andrews and Shi (2013) for conducting inference in

conditional moment inequalities models. A similar approach is pursued in Kaido (2013)

and Kaido and Santos (2013) in the context of Example 2.4.

Examples 2.5 and 2.6 (cont.) Recall that in Example 2.5, θ0 = (θ
(1)
0 , θ

(2)
0 ) with

θ
(j)
0 ∈ `∞(R) for j ∈ {1, 2}, and that B0(θ0) = {u ∈ R : θ

(1)
0 (u) = θ

(2)
0 (u)} and

B+(θ0) = {u ∈ R : θ
(1)
0 (u) > θ

(2)
0 (u)}. For B̂0(θ0) and B̂+(θ0) estimators of B0(θ0) and

6For subsets A,B of a metric space with norm ‖ · ‖, the directed Hausdorff distance is ~dH(A,B) ≡
supa∈A infb∈B ‖a−b‖, and the Hausdorff distance is dH(A,B, ‖·‖) ≡ max{~dH(A,B, ‖·‖), ~dH(B,A, ‖·‖)}.
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B+(θ) respectively, it is then natural for any h ∈ (h(1), h(2)) ∈ `∞(R)× `∞(R) to define

φ̂′n(h) =

∫
B̂+(θ0)

(h(1)(u)−h(2)(u))w(u)du+

∫
B̂0(θ0)

max{h(1)(u)−h(2)(u), 0}w(u)du (51)

(compare to (21)). For A4B the symmetric set difference between sets A and B,

it is then straightforward to verify Assumption 3.3 is satisfied provided the Lebesgue

measure of B0(θ0)4B̂0(θ0) and B+(θ0)4B̂+(θ0) converges in probability to zero. When
√
n{θ̂∗n− θ̂} is given by the bootstrap empirical process, φ̂′n(

√
n{θ̂∗n− θ̂n}) reduces to the

procedure studied in Linton et al. (2010) for testing stochastic dominance. For a related

analysis of Example 2.6 we refer the reader to Beare et al. (2013).

3.4 Local Analysis

As evidenced in Examples 2.1-2.6, φ(θ̂n) is not a regular estimator for φ(θ0) whenever

φ is not Hadamard differentiable at θ0. In order to evaluate the usefulness of Theorems

2.1 and 3.3 for conducting inference, it is therefore crucial to complement these results

by studying the asymptotic behavior of rn{φ(θ̂n)− φ(θ0)} under local perturbations to

the underlying distribution of the data. In this section, we first develop such a local

analysis and then proceed to examine its implications for inference.

For simplicity, we specialize to the i.i.d. setting where each Xi is distributed ac-

cording to P ∈ P. Here, P denotes the set of possible distributions for Xi and may be

parametric or nonparametric in particular applications. To explicitly allow θ0 to depend

on P , we let θ0 be the value a known map θ : P→ Dφ takes at the unknown value P –

e.g. θ0 ≡ θ(P ).7 The following Assumption formally imposes these requirements.

Assumption 3.4. (i) {Xi}ni=1 is an i.i.d. sequence with each Xi ∈ Rd distributed

according to P ∈ P; (ii) θ0 ≡ θ(P ) for some known map θ : P→ Dφ.

We examine the effect of locally perturbing the distribution P through the framework

of local asymptotic normality. Heuristically, we aim to conduct an asymptotic analysis

in which the distribution of Xi depends on the sample size n and converges smoothly to

a distribution P ∈ P. In order to formalize this approach, we define a “curve in P” by:

Definition 3.2. A function t 7→ ℘t mapping a neighborhood N ⊆ R of zero into P is

a “curve in P” if ℘0 = P and for some ℘′0 : Rd → R and dominating measure µ

lim
t→0

∫
1

t2

(d℘ 1
2
t

dµ
(x)− dP

1
2

dµ
(x)− t℘′0(x)

)2
dµ(x) = 0 . (52)

7For instance, in Examples 2.1 and 2.2 the known map P 7→ θ(P ) is given by θ(P ) ≡
∫
xdP (x).
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Thus, a curve in P is simply a parametric submodel that is smooth in the sense of

being differentiable in quadratic mean. Following the literature on limiting experiments

(LeCam, 1986), we consider a local analysis in which at sample size n, Xi is distributed

according to ℘η/
√
n where ℘ is an arbitrary curve in P and η is an arbitrary scalar.

Intuitively, as in the literature on semiparametric efficiency, such analysis enables us to

characterize the local asymptotic behavior along arbitrarily rich parametric submodels

of the possibly nonparametric set P. To proceed, however, we must first specify how the

original estimator θ̂n is affected by these local perturbations, and to this end we impose:

Assumption 3.5. (i) θ̂n is a regular estimator for θ(P );8 (ii) For every curve ℘ in P

there is a θ′(℘) ∈ D0 such that ‖θ(℘t)− θ(P )− tθ′(℘)‖D = o(t) (as t→ 0).

Assumption 3.5(i) demands that the distributional convergence of θ̂n be robust to

local perturbations of P , while Assumption 3.5(ii) imposes that the parameter P 7→ θ(P )

be smooth in P . As shown in van der Vaart (1991), these requirements are closely

related, whereby Assumption 3.5(i) and mild regularity conditions on θ̂n and the tangent

space actually imply Assumption 3.5(ii). Assumption 3.5 is immediately satisfied, for

instance, when θ(P ) is a (possible uncountable) collection of moments, as in Examples

2.1, 2.2, 2.3 and 2.5. We also note that our results can still be applied in instances

where θ(P ) does not admit for a regular estimator, but can be expressed as a Hadamard

directionally transformation of a regular parameter; see Remark 3.7.

Remark 3.7. Suppose θ(P ) is not a regular parameter, but that θ(P ) = ψ(ϑ(P )) for

some parameter ϑ(P ) admitting a regular estimator ϑ̂n, and a Hadamard directionally

differentiable map ψ. By the chain rule for Hadamard directionally differentiable maps

(Shapiro, 1990), our results may then be applied with φ̃ ≡ φ ◦ ψ, θ̃(P ) ≡ ϑ(P ), and ϑ̂n

in place of φ, θ(P ) and θ̂n respectively.

Given the stated assumptions, we can now establish the following Lemma.

Lemma 3.1. For an arbitrary curve ℘ in P and η ∈ R let Pn = ℘η/
√
n and Ln denote

the law under
⊗n

i=1 Pn. If Assumptions 2.1, 2.2, 2.3, 3.4, and 3.5 hold, then

√
n{φ(θ̂n)− φ(θ(Pn))} Ln→ φ′θ0(G0 + ηθ′(℘))− φ′θ0(ηθ′(℘)) . (53)

Lemma 3.1 characterizes the asymptotic distribution of φ(θ̂n) under a sequence of

local perturbations to P . As expected, the asymptotic limit in (53) need not equal the

pointwise asymptotic distribution derived in Theorem 2.1. Intuitively, the asymptotic

approximation in (53) reflects the importance of local parameters and for this reason can

be expected to provide a better approximation to finite sample distributions – a point

8Formally, θ̂n is a regular estimator if for every curve ℘ in P and every η ∈ R we have
√
n{θ̂n −

θ(Pn)} Ln→ G0, where Pn ≡ ℘η/√n and Ln denotes the law under
⊗n

i=1 Pn.
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forcefully argued in the study of moment inequality models by Andrews and Soares

(2010) and Andrews and Shi (2013); see Remark 3.8 below.

Remark 3.8. In the context of Example 2.2, let {Xi}ni=1 be an i.i.d. sample with

Xi ∼ P , θ̂n = 1
n

∑
Xi and θ(P ) ≡

∫
xdP (x). By Theorem 2.1 we then obtain

√
n{φ(θ̂n)− φ(θ(P ))} L→

{
G(j∗)

0 if θ(1)(P ) 6= θ(2)(P )

max{G(1)
0 ,G(2)

0 } if θ(1)(P ) = θ(2)(P )
, (54)

where G0 = (G(1)
0 ,G(2)

0 )′ is a normal vector, and j∗ = arg maxj∈{1,2} θ
(j)(P ) (see (18)).

As argued in Andrews and Soares (2010), the discontinuity of the pointwise asymptotic

distribution in (54) can be a poor approximation for the finite sample distribution which

depends continuously on θ(1)(P )−θ(2)(P ). An asymptotic analysis local to a P such that

θ(1)(P ) = θ(2)(P ), however, lets us address this problem. Specifically, for a submodel ℘

with θ(℘t) = θ(P ) + th for t ∈ R and h = (h(1), h(2))′ ∈ R2, Lemma 3.1 yields

√
n{φ(θ̂n)− φ(θ(Pn))} Ln→ max{G(1)

0 + h(1),G(2)
0 + h(2)} −max{h(1), h(2)} . (55)

Thus, by reflecting the importance of the “slackness” parameter h, (55) provides a better

framework with which to evaluate the performance of our proposed procedure.

It is interesting to note that by setting η = 0 in (53) we can conclude from Lemma

3.1 that φ(θ̂n) is a regular estimator for φ(θ(P )) if and only if

φ′θ0(G0 + ηθ′(℘))− φ′θ0(ηθ′(℘))
d
= φ′θ0(G0) (56)

for all curves ℘ in P and all scalars η ∈ R. Therefore, we immediately obtain from

Lemma 3.1 that φ(θ̂n) is a regular estimator for φ(θ(P )) whenever φ′θ0 is linear, or

equivalently, whenever φ is Hadamard differentiable at θ0 = θ(P ). More generally,

however, Lemma 3.1 implies φ(θ̂n) will often not be regular when φ is directionally,

but not fully, Hadamard differentiable at θ0. Condition (56) in fact closely resembles

the requirement that φ′θ0 be G0-translation invariant (compare to (37)). In order to

formalize this connection, we let
⋃
℘ θ
′(℘) denote the closure under ‖·‖D of the collection

of θ′(℘) generated by all curves ℘ ∈ P. The following Corollary shows that, under the

requirement that the support of G0 be equal to
⋃
℘ θ
′(℘) (see Remark 3.9), φ(θ̂n) is

indeed a regular estimator if and only if φ′θ0 is G0-translation invariant.

Corollary 3.3. If Assumptions 2.1, 2.2, 2.3, 3.4, 3.5 hold, and the support of G0 equals⋃
℘ θ
′(℘), then φ(θ̂n) is a regular estimator if and only if φ′θ0 is G0-translation invariant.

Perhaps the most interesting implication of Corollary 3.3 arises from combining

it with Theorem 3.1. Together, these results imply that the standard bootstrap is

consistent if and only if φ(θ̂n) is a regular estimator for φ(θ(P )). Thus, we can conclude
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from Corollary 3.3 that the failure of the bootstrap is an innate characteristic of irregular

models. A similar relationship between regularity and bootstrap consistency had been

found by Beran (1997), who showed that in finite dimensional likelihood models the

parametric bootstrap is consistent if and only if the estimator is regular.

Remark 3.9. Since θ̂n is a regular estimator, the Convolution Theorem implies that

G0
d
= ∆0 + ∆1 ,

where: (i) ∆0 is centered Gaussian, (ii) ∆0 and ∆1 are independent, and (iii) the

support of ∆0 equals
⋃
℘ θ
′(℘); see, for example, Theorem 3.11.2 in van der Vaart and

Wellner (1996). Hence, since the support of ∆0 is a vector space, we conclude that

the requirement that the support of G0 be equal to
⋃
℘ θ
′(℘) is satisfied whenever the

support of ∆1 is included in that of ∆0 – for example, whenever θ̂n is efficient.

3.4.1 Implications for Testing

As has been emphasized in the moment inequalities literature, the lack of regularity of

φ(θ̂n) can render pointwise (in P ) asymptotic approximations unreliable (Imbens and

Manski, 2004). However, since in Examples 2.2, 2.3, and 2.5 our results encompass pro-

cedures that are valid uniformly in P , we also know that irregularity of φ(θ̂n) does not

preclude our approach from remaining valid (Andrews and Soares, 2010; Linton et al.,

2010; Andrews and Shi, 2013). In what follows, we note that the aforementioned exam-

ples are linked by the common structure of φ′θ0 being subadditive. More generally, we

exploit Lemma 3.1 to show that whenever such property holds, the bootstrap procedure

of Theorem 3.3 can control size locally to P along arbitrary submodels.

We consider hypothesis testing problems in which φ is scalar valued (E = R), and

we are concerned with evaluating whether P ∈ P satisfies

H0 : φ(θ(P )) ≤ 0 H1 : φ(θ(P )) > 0 . (57)

A natural test statistic for this problem is then
√
nφ(θ̂n), while Theorem 2.1 suggests

c1−α ≡ inf{c : P (φ′θ0(G0) ≤ c) ≥ 1− α}

is an appropriate unfeasible critical value for a 1−α level test.9 For ĉ1−α the developed

boootstrap estimator for c1−α (see (45)), Theorem 2.1 and Corollary 3.2 then establish

the (pointwise in P ) validity of rejecting H0 whenever
√
nφ(θ̂n) > ĉ1−α.

In order to evaluate both the local size control and local power of the proposed test,

9Note that c1−α is the 1− α quantile of the asymptotic distribution of
√
nφ(θ̂n) when φ(θ(P )) = 0.
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we assume φ(θ(P )) = 0 and consider curves ℘ in P that also belong to the set

H ≡ {℘ : (i) φ(θ(℘t)) ≤ 0 if t ≤ 0, and (ii) φ(θ(℘t)) > 0 if t > 0} .

Thus, a curve ℘ ∈ H is such that ℘t satisfies the null hypothesis whenever t ≤ 0, but

switches to satisfying the alternative hypothesis at all t > 0. As in Lemma 3.1, for a

curve ℘ ∈ H and scalar η we let Pnn ≡
⊗n

i=1 ℘η/
√
n, and we denote the power at sample

size n for the test that rejects whenever
√
nφ(θ̂n) > ĉ1−α by

πn(℘η/
√
n) ≡ Pnn (

√
nφ(θ̂n) > ĉ1−α) .

To conduct the local analysis, we further require the following Assumption.

Assumption 3.6. (i) E = R; (ii) The cdf of φ′θ0(G0) is continuous and strictly increas-

ing at c1−α; (iii) φ′θ0(h1 + h2) ≤ φ′θ0(h1) + φ′θ0(h2) for all h1, h2 ∈ D0.

Assumption 3.6(i) formalizes the requirement that φ be scalar valued. In turn, in

Assumption 3.6(ii) we impose that the cdf of φ′θ0(G0) be strictly increasing and continu-

ous. Strict monotonicity is required to establish the consistency of ĉ1−α, while continuity

ensures the test controls size at least pointwise in P . Assumption 3.6(iii) demands that

φ′θ0 be subadditive, which represents the key condition that ensures local size control.

Since φ′θ0 is also positively homogenous of degree one, Assumption 3.6(iii) is in fact

equivalent to demanding that φ′θ0 be convex, which greatly simplifies verifying Assump-

tion 3.6(ii) when G0 is Gaussian; see Remark 3.11. We further note that Assumption

3.6 is trivially satisfied when φ′θ0 is linear, which by Lemma 3.1 also implies φ(θ̂n) is

regular. However, we emphasize that Assumption 3.6 can also hold at points θ(P ) at

which φ is not Hadamard differentiable, as is easily verified in Examples 2.1-2.6.

The following Theorem derives the asymptotic limit of the power πn(℘η/
√
n).

Theorem 3.4. Let Assumptions 2.1, 2.2, 2.3, 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6(i)-(ii)

hold. It then follows that for any curve ℘ in H, and every η ∈ R we have

lim inf
n→∞

πn(℘η/
√
n) ≥ P (φ′θ0(G0 + ηθ′(℘)) > c1−α) . (58)

If in addition Assumption 3.6(iii) also holds, then we can conclude that for any η ≤ 0

lim sup
n→∞

πn(℘η/
√
n) ≤ α . (59)

The first claim of the Theorem derives a lower bound on the power against local

alternatives, with (58) holding with equality whenever c1−α is a continuity point of the

cdf of φ′θ0(G0+ηθ′(℘)). In turn, provided φ′θ0 is subadditive, the second claim of Theorem
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3.4 establishes the ability of the test to locally control size along parametric submodels.

Heuristically, the role of subadditivity can be seen from (58) and the inequalities

P (φ′θ0(G0 + ηθ′(℘)) > c1−α) ≤ P (φ′θ0(G0) + φ′θ0(ηθ′(℘)) > c1−α) ≤ α ,

where the final inequality results from φ′θ0(ηθ′(℘)) ≤ 0 due to φ(θ(Pn))−φ(θ(P )) ≤ 0.10

Thus, φ′θ0 being subadditive implies η = 0 is the “least favorable” point in the null, which

in turn delivers local size control as in (59). We note a similar logic can be employed to

evaluate confidence regions built using Theorems 2.1 and 3.3; see Remark 3.10.

Since the results of Theorem 3.4 are local to P in nature, their relevance is contingent

to them applying to all P ∈ P that are deemed possible distributions of the data.

We emphasize that the three key requirements in this regard are Assumptions 3.5(i),

3.6(ii), and 3.6(iii) – i.e. that θ̂n be regular, the cdf of φ′θ0(G0) be continuous and

strictly increasing at c1−α, and that φ′θ0 be subadditive. We view Assumption 3.6(ii) as

mainly a technical requirement that can be dispensed with following insights in Andrews

and Shi (2013); see Remark 3.12. Regularity of θ̂n and subadditivity of φ′θ0 , however,

are instrumental in establishing the validity of our proposed procedure. In certain

applications, such as in Examples 2.1, 2.2, 2.3, and 2.5, both these requirements are

seen to be easily satisfied for a large class of possible P . However, in other instances,

such as in Example 2.4 applied to estimator in Kaido and Santos (2013), φ′θ0 is always

subadditive, but the regularity of θ̂n can fail to hold for an important class of P .

Remark 3.10. As usual, we can obtain confidence regions for φ(θ(P )) by test inverting

H0 : φ(θ(P )) = c0 H1 : φ(θ(P )) 6= c0 , (60)

for different c0 ∈ E. Defining φ̄ : Dφ ⊆ D → R pointwise by φ̄(θ) ≡ ‖φ(θ) − c0‖E, it

is then straightforward to see (60) can be expressed as in (57) with φ̄ in place of φ.

In particular, the chain rule implies φ̄′θ0(·) = ‖φ′θ0(·)‖E, and hence the subadditivity of

‖φ′θ0(·)‖E suffices for establishing local size control.

Remark 3.11. Under Assumptions 2.1 and 3.6(iii), it follows that φ′θ0 : D0 → R is a

continuous convex functional. Therefore, if G0 is in addition Gaussian, then Theorem

11.1 in Davydov et al. (1998) implies that the cdf of φ′θ0(G0) is continuous and strictly

increasing at all points in the interior of its support (relative to R).

Remark 3.12. In certain applications, such as in Examples 2.3 and 2.5, Assumption

3.6(ii) may be violated at distributions P of interest. To address this problem, Andrews

and Shi (2013) propose employing the critical value ĉ1−α + δ for an arbitrarily small

δ > 0. It is then possible to show that, even if Assumption 3.6(ii) fails, we still have

lim inf
n→∞

P (ĉ1−α + δ ≥ c1−α) = 1 . (61)

10More precisely, we are exploiting that φ′θ0(ηθ′(℘)) = limn→∞
√
n{φ(θ(Pn))− φ(θ(P ))} ≤ 0.

26



Therefore, by contiguity it follows that the local size control established in (59) holds

without Assumption 3.6(ii) if we employ ĉ1−α + δ instead of ĉ1−α.

4 Convex Set Projections

In this section, we demonstrate the usefulness of the developed asymptotic framework

by constructing a test of whether a Hilbert space valued parameter belongs to a known

closed convex set. Despite the generality of the problem, we show that its geometry and

our previous results make its analysis transparent and straightforward.

4.1 Projection Setup

In what follows, we let H be a Hilbert space with inner product 〈·, ·〉H and norm ‖ · ‖H.

For a known closed convex set Λ ⊆ H, we then consider the hypothesis testing problem

H0 : θ0 ∈ Λ H1 : θ0 /∈ Λ , (62)

where the parameter θ0 ∈ H is unknown, but for which we possess an estimator θ̂n.

Special cases of this problem have been widely studied in the setting where H = Rd,

and to a lesser extent when H is infinite dimensional; see Examples 4.1-4.3 below.

We formalize the introduced structure through the following assumption.

Assumption 4.1. (i) D = H where H is Hilbert Space with inner product 〈·, ·〉H and

corresponding norm ‖ · ‖H; (ii) Λ ⊆ H is a known closed and convex set.

Since projections onto closed convex sets in Hilbert spaces are attained and unique,

we may define the projection operator ΠΛ : H→ Λ, which for each θ ∈ H satisfies

‖θ −ΠΛθ‖H = inf
h∈Λ
‖θ − h‖H . (63)

Thus, the hypothesis testing problem in (62) can be rewritten in terms of the distance

between θ0 and Λ, or equivalently between θ0 and its projection ΠΛθ0 – i.e.

H0 : ‖θ0 −ΠΛθ0‖H = 0 H1 : ‖θ0 −ΠΛθ0‖H > 0 . (64)

Interpreted in this manner, it is clear that (64) is a special case of (57), with D = H,

E = R, and φ : H→ R given by φ(θ) ≡ ‖θ − ΠΛθ‖H for any θ ∈ H. The corresponding

test statistic rnφ(θ̂n) is then simply the scaled distance between the estimator θ̂n and

the known convex set Λ – i.e. rnφ(θ̂n) = rn‖θ̂n −ΠΛθ̂n‖H.
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Figure 1: Illustrations of Tangent Cones.
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As a final piece of notation, we need to introduce the tangent cone of Λ at a θ ∈ H,

which plays a fundamental role in our analysis. To this end, for any set A ⊆ H let A

denote its closure under ‖ · ‖H, and define the tangent cone of Λ at θ ∈ H by

Tθ ≡
⋃
α≥0

α{Λ−ΠΛθ} , (65)

which is convex by convexity of Λ. Heuristically, Tθ represents the directions from which

the projection ΠΛθ ∈ Λ can be approached from within the set Λ. As such, Tθ can be seen

as a local approximation to the set Λ at ΠΛθ and employed to study the differentiability

properties of the projection operator ΠΛ. Figure 4.1 illustrates the tangent cone in two

separate cases: one in which θ ∈ Λ, and a second in which θ /∈ Λ.

4.1.1 Examples

In order to aid exposition and illustrate the generality of (62), we next provide examples

of both well studied and new problems that fit our framework.

Example 4.1. Suppose X ∈ Rd and that we aim to test the moment inequalities

H0 : E[X] ≤ 0 H1 : E[X] � 0 , (66)

where the null is meant to hold at all coordinates, and the alternative indicates at least

one coordinate of E[X] is strictly positive. In this instance, H = Rd, Λ is the negative
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orthant in Rd (Λ ≡ {h ∈ Rd : h ≤ 0}), and the distance of θ to Λ is equal to

φ(θ) = ‖ΠΛθ − θ‖H =
{ d∑
i=1

(E[X(i)])2
+

} 1
2
, (67)

where (a)+ = max{a, 0} and X(i) denotes the ith coordinate of X. More generally, this

example applies to any regular parameter in Rd such as testing for moment inequalities

on regression coefficients (Wolak, 1988). Analogously, conditional moment inequalities

as in Example 2.3 can be encompassed by employing a weight function on F – this

approach leads to the Cramer-von-Mises statistic studied in Andrews and Shi (2013).

The next example concerns quantile models, as employed by Buchinsky (1994) to

characterize the U.S. wage structure conditional on levels of education, or by Abadie

et al. (2002) to estimate the effect of subsidized training on earnings.

Example 4.2. Let (Y,D,X) ∈ R×R×Rdz and consider the quantile regression

(θ0(τ), β(τ)) ≡ arg min
θ∈R,β∈Rdz

E[ρτ (Y −Dθ − Z ′β)] (68)

where ρτ (u) = (τ − 1{u ≤ 0})u and τ ∈ (0, 1). Under appropriate restrictions, the

estimator θ̂n for θ0 converges in distribution in `∞([ε, 1 − ε]) for any ε > 0 (Angrist

et al., 2006).11 Hence, we may test shape restrictions on θ0 by letting

H ≡ {θ : [ε, 1− ε]→ R : 〈θ, θ〉H <∞} 〈θ1, θ2〉H ≡
∫ 1−ε

ε
θ1(τ)θ2(τ)dτ , (69)

and considering appropriate convex sets Λ ⊆ H. For instance, in randomized experi-

ments where D is a dummy for treatment, θ0(τ) is the quantile treatment effect and we

may test for its constancy or monotonicity; see Muralidharan and Sundararaman (2011)

for an examination of these features in the evaluation of teacher performance pay. A

similar approach may also be employed to test whether the pricing kernel satisfies the-

oretically predicted restrictions such as a monotonicity (Jackwerth, 2000).

Our final example may be interpreted as a generalization of Example 4.2.

Example 4.3. Let Z ∈ Rdz , Θ ⊆ Rdθ , and T ⊆ Rdτ . Suppose there exists a function

ρ : Rdz ×Θ× T → Rdρ such that for each τ ∈ T there is a unique θ0(τ) ∈ Θ satisfying

E[ρ(Z, θ0(τ), τ)] = 0 . (70)

Such a setting arises, for instance, in sensitivity analysis (Chen et al., 2011), and in

partially identified models where the identified set is a curve (Arellano et al., 2012)

11This result also holds for the instrumental variables estimator of Chernozhukov and Hansen (2005).
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or can be described by a functional lower and upper bound (Kline and Santos, 2013;

Chandrasekarh et al., 2013). Escanciano and Zhu (2013) derives an estimator θ̂n which

converges in distribution in
⊗dθ

i=1 `
∞(T ), and hence for an integrable function w also in

H ≡ {θ : T → Rdθ : 〈θ, θ〉H <∞} 〈θ1, θ2〉H ≡
∫
T
θ1(τ)′θ2(τ)w(τ)dτ . (71)

Appropriate choices of Λ then enable us to test, for example, whether the model is

identified in Arellano et al. (2012), or whether the identified set in Kline and Santos

(2013) is consistent with increasing returns to education across quantiles.

4.2 Theoretical Results

4.2.1 Asymptotic Distribution

Our analysis crucially relies on the seminal work of Zaranotello (1971), who estab-

lished the Hadamard directional differentiability of metric projections onto convex sets

in Hilbert spaces. Specifically, Zaranotello (1971) showed ΠΛ : H → Λ is Hadamard

directionally differentiable at any θ ∈ Λ, and its directional derivative is equal to the

projection operator onto the tangent cone of Λ at θ, which we denote by ΠTθ : H→ Tθ.

Figure 2 illustrates a simple example in which the derivative approximation

ΠΛθ1 −ΠΛθ0 ≈ ΠTθ0
(θ1 − θ0) (72)

actually holds with equality.12 We note that it is also immediate from Figure 2 that the

directional derivative ΠTθ0
is not linear, and hence ΠΛ is not fully differentiable.

Given the result in Zaranotello (1971), the asymptotic distribution of rnφ(θ̂n) can

then be obtained as an immediate consequence of Theorem 2.1.

Proposition 4.1. Let Assumption 2.2 and 4.1 hold. If θ0 ∈ Λ, then it follows that

rn‖θ̂n −ΠΛθ̂n‖H
L→ ‖G0 −ΠTθ0

G0‖H . (73)

In particular, Proposition 4.1 follows from norms being directionally differentiable

at zero, and hence by the chain rule the directional derivative φ′θ0 : H→ R satisfies

φ′θ0(h) = ‖h−ΠTθ0
h‖H . (74)

It is interesting to note that Λ ⊆ Tθ0 whenever Λ is a cone, and hence ‖h− ΠTθ0
h‖H ≤

‖h − ΠΛh‖H for all h ∈ H. Therefore, the distribution of ‖G0 − ΠΛG0‖H first order

12Note that in Figure 2 we are exploiting that ΠΛθ0 = θ0 if θ0 ∈ Λ.
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Figure 2: Directional Differentiability
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stochastically dominates that of ‖G0 − ΠTθ0
G0‖H, and by Proposition 4.1 its quantiles

may be employed for potentially conservative inference – an approach that may be

viewed as a generalization of assuming all moments are binding in moment inequalities

models. It is also worth noting that Proposition 4.1 can be readily extended to study

the projection itself rather than its norm, allow for nonconvex sets Λ, and incorporate

weight functions into the test statistic; see Remarks 4.1 and 4.2.

Remark 4.1. Zaranotello (1971) and Theorem 2.1 can be employed to derive the asymp-

totic distribution of the projection rn{ΠΛθ̂n−ΠΛθ0} itself. However, when studying the

projection, it is perhaps natural to aim to relax the requirement that θ0 ∈ Λ. Such an

extension, as well as considering non-convex Λ, is possible under appropriate regularity

conditions – see Shapiro (1994) for the relevant directional differentiability results.

Remark 4.2. While we do not consider it for simplicity, it is straightforward to incor-

porate weight functions into the test statistic.13 Formally, a weight function may be seen

as a linear operator A : H→ H, and for any estimator Ân such that ‖Ân −A‖o = op(1)

for ‖ · ‖o the operator norm, we obtain by asymptotic tightness of rn{θ̂n −ΠΛθ̂n} that

rn‖Ân{θ̂n −ΠΛθ̂n}‖H
L→ ‖A{G0 −ΠTθ0

G0}‖H . (75)

Thus, estimating weights has no first order effect on the asymptotic distribution.

13For instance in (67) we may wish to consider {
∑d
i=1(E[X(i)])2

+/V ar(X
(i))}

1
2 instead.
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4.2.2 Critical Values

In order to construct critical values to conduct inference, we next aim to employ Theorem

3.3, which requires the availability of a suitable estimator φ̂′n for the directional derivative

φ′θ0 . To this end, we develop an estimator φ̂′n which, despite being computationally

intensive, is guaranteed to satisfy Assumption 3.3 under no additional requirements.

Specifically, for an appropriate εn ↓ 0, we define φ̂′n : H→ R pointwise in h ∈ H by

φ̂′n(h) ≡ sup
θ∈Λ:‖θ−ΠΛθ̂n‖H≤εn

‖h−ΠTθh‖H . (76)

Heuristically, we estimate φ′θ0(h) = ‖h − ΠTθ0
h‖H by the distance between h and the

“least favorable” tangent cone Tθ that can be generated by the θ ∈ Λ that are in a

neighborhood of ΠΛθ̂n. It is evident from this construction that provided εn ↓ 0 at an

appropriate rate, the shrinking neighborhood of ΠΛθ̂n will include θ0 with probability

tending to one and as a result φ̂′n(h) will provide a potentially conservative estimate of

φ′θ0(h). As the following Proposition shows, however, φ̂′n(h) is in fact not conservative,

and φ̂′n provides a suitable estimator for φ′θ0 in the sense required by Theorem 3.3.

Proposition 4.2. Let Assumptions 2.2, 4.1 hold, and φ′θ0(h) ≡ ‖h−ΠTθ0
h‖H. Then,

(i) If εn ↓ 0 and εnrn ↑ ∞, then φ̂′n as defined in (76) satisfies Assumption 3.3.

(ii) φ′θ0 : H→ R satisfies φ′θ0(h1 + h2) ≤ φ′θ0(h1) + φ′θ0(h2) for all h1, h2 ∈ H.

The first claim of the Proposition shows that φ̂′n satisfies Assumption 3.3. Therefore,

provided the bootstrap is consistent for the asymptotic distribution of rn{θ̂n − θ0},
Theorem 3.3 implies φ̂′n can be employed to construct critical values. We note that

Proposition 4.2(i) holds irrespective of whether the null hypothesis is satisfied, which

readily implies the consistency of the corresponding test.14 In turn, Proposition 4.2(ii)

exploits the properties of closed convex cones to show the directional derivative φ′θ0 is

always subadditive. Thus, one of the key requirement of Theorem 3.4 is satisfied, and

we can conclude the proposed test is able to locally control size whenever θ̂n is regular.

This latter conclusion of course continues to hold if an alternative estimator to (76) is

employed to construct critical values. Hence, we emphasize that while φ̂′n as defined

in (76) is appealing due to its general applicability, its use may not be advisable in

instances where simpler estimators of φ′θ0 are available; see Remark 4.3.

Remark 4.3. In certain applications, the tangent cone Tθ0 can be easily estimated and

as a result so can φ′θ0 . For instance, in the moment inequalities model of Example 4.1,

Tθ0 = {h ∈ Rd : h(i) ≤ 0 for all i such that E[X(i)] = 0} . (77)

14Formally, the law of φ̂′n(rn{θ̂∗n − θ̂n}) conditional on the data converges in probability to the law of
‖G0 −ΠTθ0

G0‖H regardless of whether θ0 ∈ Λ.
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For X̄ the mean of an i.i.d. sample {Xi}ni=1, a natural estimator for Tθ0 is then given by

T̂n = {h ∈ Rd : h(i) ≤ 0 for all i such that X̄(i) ≥ −εn} (78)

for some sequence εn ↓ 0 and satisfying εn
√
n ↑ ∞. It is then straightforward to verify

that φ̂′n(h) = ‖h−ΠT̂n
h‖H satisfies Assumption 3.3 (compare to (74)) and, more inter-

estingly, that the bootstrap procedure of Theorem 3.3 then reduces to the generalized

moment selection approach of Andrews and Soares (2010).

4.3 Simulation Evidence

In order to examine the finite sample performance of the proposed test and illustrate

its implementation, we next conduct a limited Monte Carlo study based on Example

4.2. Specifically, we consider a quantile treatment effect model in which the treatment

dummy D ∈ {0, 1} satisfies P (D = 1) = 1/2, the covariates Z = (1, Z(1), Z(2))′ ∈ R3

satisfy (Z(1), Z(2))′ ∼ N(0, I) for I the identity matrix, and Y is related by

Y =
∆√
n
D × U + Z ′β + U , (79)

where β = (0, 1/
√

2, 1/
√

2)′ and U is unobserved, uniformly distributed on [0, 1], and

independent of (D,Z). It is then straightforward to verify that (Y,D,Z) satisfy

P (Y ≤ Dθ0(τ) + Z ′β(τ)|D,Z) = τ , (80)

for θ0(τ) ≡ τ∆/
√
n and β(τ) ≡ (τ, 1/

√
2, 1/
√

2)′. Hence, in this context the quantile

treatment effect has been set local to zero at all τ , which enables us to evaluate the local

power and local size control of the proposed test.

We employ the developed framework to study whether the quantile treatment effect

θ0(τ) is monotonically increasing in τ , which corresponds to the special case of (62) in

which Λ equals the set of monotonically increasing functions. For ease of computation,

we obtain quantile regression estimates θ̂n(τ) on a grid {0.2, 0.225, . . . , 0.775, 0.8} and

compute the distance of θ̂n to the set of monotone functions on this grid as our test statis-

tic. In turn, critical values for this test statistic are obtained by computing two hundred

bootstrapped quantile regression coefficients θ̂∗n(τ) at all τ ∈ {0.2, 0.225, . . . , 0.775, 0.8},
and using the 1−α quantile across bootstrap replications of the statistic φ̂′n(

√
n{θ̂∗n−θ̂n}),

where φ̂′n is computed according to (76) with εn = Cnκ for different choices of C and κ.

All reported results are based on five thousand Monte Carlo replications.

Table 1 reports the empirical rejection rates for different values of the local parameter

∆ ∈ {0, 1, 2} – recall that since θ0(τ) = τ∆/
√
n, the null hypothesis that θ0 is mono-
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Table 1: Empirical Size

n = 200
Bandwidth α = 0.1 α = 0.05 α = 0.01
C κ ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2

1 1/4 0.042 0.017 0.006 0.020 0.008 0.002 0.005 0.001 0.000
1 1/3 0.042 0.017 0.006 0.020 0.008 0.002 0.005 0.001 0.000

0.01 1/4 0.082 0.053 0.035 0.035 0.023 0.013 0.007 0.002 0.001
0.01 1/3 0.087 0.059 0.042 0.038 0.025 0.015 0.007 0.002 0.001
Theoretical 0.100 0.042 0.015 0.050 0.018 0.006 0.010 0.003 0.001

n = 500
Bandwidth α = 0.1 α = 0.05 α = 0.01
C κ ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2 ∆ = 0 ∆ = 1 ∆ = 2

1 1/4 0.051 0.020 0.007 0.026 0.011 0.002 0.005 0.001 0.000
1 1/3 0.051 0.020 0.007 0.026 0.011 0.002 0.005 0.001 0.000

0.01 1/4 0.096 0.058 0.038 0.047 0.025 0.015 0.009 0.005 0.001
0.01 1/3 0.103 0.065 0.045 0.049 0.030 0.017 0.009 0.005 0.001
Theoretical 0.100 0.042 0.015 0.050 0.018 0.006 0.010 0.003 0.001

tonically increasing is satisfied for all such ∆. The bandwidth parameter εn employed

in the construction of the estimator φ̂′n is set according εn = Cnκ for C ∈ {0.01, 1} and

κ ∈ {1/4, 1/3}. For the explored sample sizes of two and five hundred observations,

we observe little sensitivity to the value of κ but a more significant effect of the choice

of C. In addition, the row labeled “Theoretical” reports the rejection rates we should

expect according to the local asymptotic approximation of Theorem 3.4. Throughout

the specifications, we see that the test effectively controls size, and Theorem 3.4 provides

an adequate approximation often in between the rejection probabilities obtained from

employing C = 1 and those corresponding to the more aggressive selection of C = 0.01.

In Table 2, we examine the local power of a 5% level test by considering values

of ∆ ∈ {−1, . . . ,−8}. For such choices of the local parameter, the null hypothesis is

violated since θ0(τ) = τ∆/
√
n is in fact monotonically decreasing in τ (rather than

increasing). In this context, we see that the theoretical local power is slightly above

the empirical rejection rates, in particular for small values of ∆. These distortions are

most severe for n equal to two hundred, though we note a quick improvement in the

approximation error when n is set to equal five hundred. Overall, we find the results of

the Monte Carlo study encouraging, though certainly limited in their scope.

5 Conclusion

In this paper, we have developed a general asymptotic framework for conducting in-

ference in an important class of irregular models. In analogy with the Delta method,

we have shown crucial features of these problems can be understood simply in terms of
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Table 2: Local Power of 0.05 Level Test

Bandwidth n = 200
C κ ∆ = −1 ∆ = −2 ∆ = −3 ∆ = −4 ∆ = −5 ∆ = −6 ∆ = −7 ∆ = −8

1 1/4 0.061 0.155 0.321 0.555 0.782 0.934 0.989 1.000
1 1/3 0.061 0.155 0.321 0.555 0.782 0.934 0.989 1.000

0.01 1/4 0.078 0.172 0.330 0.558 0.783 0.934 0.989 1.000
0.01 1/3 0.081 0.174 0.331 0.559 0.783 0.934 0.989 1.000
Theoretical 0.120 0.245 0.423 0.623 0.796 0.911 0.970 0.992

Bandwidth n = 500
C κ ∆ = −1 ∆ = −2 ∆ = −3 ∆ = −4 ∆ = −5 ∆ = −6 ∆ = −7 ∆ = −8

1 1/4 0.071 0.181 0.355 0.576 0.789 0.925 0.981 0.997
1 1/3 0.071 0.181 0.355 0.576 0.789 0.925 0.981 0.997

0.01 1/4 0.094 0.201 0.370 0.583 0.791 0.925 0.981 0.997
0.01 1/3 0.098 0.204 0.371 0.585 0.791 0.925 0.981 0.997
Theoretical 0.120 0.245 0.423 0.623 0.796 0.911 0.970 0.992

the asymptotic distribution G0 and the directional derivative φ′θ0 . The utility of these

insights were demonstrated by both unifying diverse existing results, and easily studying

the otherwise challenging problem of testing for convex set membership. We hope these

are just the first applications of this framework, which should be of use to theorists

and empirical researchers alike in determining statistical properties such as asymptotic

distributions, bootstrap validity, and ability of tests to locally control size.
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Appendix A - Proof of Main Results

The following list includes notation and definitions that will be used in the appendix.

a . b a ≤Mb for some constant M that is universal in the proof.

‖ · ‖Lq(W ) For a random variable W and function f , ‖f‖Lq(W ) ≡ {E[|f(W )|q]}
1
q .

C(A) For a set A, C(A) ≡ {f : A→ R : supa∈A |f(a)| <∞ and f is continuous}.
~dH(·, ·, ‖ · ‖) For sets A,B, ~dH(A,B, ‖ · ‖) ≡ supa∈A infb∈B ‖a− b‖.
dH(·, ·, ‖ · ‖) For sets A,B, dH(A,B, ‖ · ‖) ≡ max{~dH(A,B, ‖ · ‖), ~dH(B,A, ‖ · ‖)}.
`∞(A) For a set A, `∞(A) ≡ {f : A→ R : supa∈A |f(a)| <∞}.

Proof of Proposition 2.1: One direction is clear since, by definition, φ being

Hadamard differentiable implies that its Hadamard directional derivative exists, equals

the Hadamard derivative of φ, and hence must be linear.

Conversely suppose the Hadamard directional derivative φ′θ : D0 → E exists and is

linear. Let {hn} and {tn} be sequences such that hn → h ∈ D0, tn → 0 and θ + tnhn ∈
Dφ for all n. Then note that from any subsequence {tnk} we can extract a further

subsequence {tnkj }, such that either: (i) tnkj > 0 for all j or (ii) tnkj < 0 for all j. When

(i) holds, φ being Hadamard directional differentiable, then immediately yields that:

lim
j→∞

φ(θ + tnkjhnkj )− φ(θ)

tnkj
= φ′θ(h) . (A.1)

On the other hand, if (ii) holds, then h ∈ D0 and D0 being a subspace implies −h ∈ D0.

Therefore, by Hadamard directional differentiability of φ and −tnkj > 0 for all j:

lim
j→∞

φ(θ + tnkjhnkj )− φ(θ)

tnkj

= − lim
j→∞

φ(θ + (−tnkj )(−hnkj ))− φ(θ)

−tnkj
= −φ′θ(−h) = φ′θ(h) , (A.2)

where the final equality holds by the assumed linearity of φ′θ. Thus, results (A.1) and

(A.2) imply that every subsequence {tnk , hnk} has a further subsequence along which

lim
j→∞

φ(θ + tnkjhnkj )− φ(θ)

tnkj
= φ′θ(h) . (A.3)

Since the subsequence {tnk , hnk} is arbitrary, it follows that (A.3) must hold along the

original sequence {tn, hn} and hence φ is Hadamard differentiable tangentially to D0.

Proof of Theorem 2.1: The proof closely follows the proof of Theorem 3.9.4 in

van der Vaart and Wellner (1996), and we include it here only for completeness. First,
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let Dn ≡ {h ∈ D : θ0 + h/rn ∈ Dφ} and define gn : Dn → E to be given by

gn(hn) ≡ rn{φ(θ0 +
hn
rn

)− φ(θ0)} (A.4)

for any hn ∈ Dn. Then note that for every sequence {hn} with hn ∈ Dn satisfying

‖hn − h‖D = o(1) with h ∈ D0, it follows from Assumption 2.1(ii) that ‖gn(hn) −
φ′θ0(h)‖E = o(1). Therefore, the first claim follows by Theorem 1.11.1 in van der Vaart

and Wellner (1996) and G0 being tight implying that it is also separable by Lemma 1.3.2

in van der Vaart and Wellner (1996).

For the second claim of the Theorem, we define fn : Dn × D→ E× E by:

fn(hn, h) = (gn(hn), φ′θ0(h)) , (A.5)

for any (hn, h) ∈ Dn × D. It then follows by applying Theorem 1.11.1 in van der Vaart

and Wellner (1996) again, that as processes in E× E we have:[
rn{φ(θ̂n)− φ(θ0)}
φ′θ0(rn{θ̂n − θ0})

]
L→

[
φ′θ0(G0)

φ′θ0(G0)

]
. (A.6)

In particular, result (A.6) and the continuous mapping theorem allow us to conclude:

rn{φ(θ̂n)− φ(θ0)} − φ′θ0(rn(θ̂n − θ0))
L→ 0 . (A.7)

The second claim then follows from (A.7) and Lemma 1.10.2(iii) in van der Vaart and

Wellner (1996).

Proof of Corollary 2.1: Follows immediately from Theorem 2.1 applied with rn =
√
n, D = `∞(F) and D0 = C(F), and by noting that P (G0 ∈ C(F)) = 1 by Example

1.5.10 in van der Vaart and Wellner (1996).

Proof of Theorem 3.1: In these arguments we need to distinguish between outer

and inner expectations, and we therefore employ the notation E∗ and E∗ respectively.

In addition, for notational convenience we let Gn ≡ rn{θ̂n − θ0} and G∗n ≡ rn{θ̂∗n − θ̂n}.
To begin, note that Lemma A.2 and the continuous mapping theorem imply that:

(rn{θ̂∗n − θ0}, rn{θ̂n − θ0})

= (rn{θ̂∗n − θ̂n}+ rn{θ̂n − θ0}, rn{θ̂n − θ0})
L→ (G1 +G2,G2) (A.8)

on D × D, where G1 and G2 are independent copies of G0. Further let Φ : Dφ × Dφ →
E be given by Φ(θ1, θ2) = φ(θ1) − φ(θ2) for any θ1, θ2 ∈ Dφ × Dφ. Then observe

that Assumption 2.1(ii) implies Φ is Hadamard directionally differentiable at (θ0, θ0)
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tangentially to D0 × D0 with derivative Φ′θ0 : D0 × D0 → E given by

Φ′θ0(h1, h2) = φ′θ0(h1)− φ′θ0(h2) (A.9)

for any (h1, h2) ∈ D0×D0. Thus, by Assumptions 2.2(ii) and 2.3(ii), Theorem 2.1, result

(A.8), and rn{θ̂∗n − θ0} = G∗n +Gn we can conclude that

rn{φ(θ̂∗n)− φ(θ̂n)} = rn{Φ(θ̂∗n, θ̂n)− Φ(θ0, θ0)}

= Φ′θ0(G∗n +Gn,Gn) + op(1) = φ′θ0(G∗n +Gn)− φ′θ0(Gn) + op(1) . (A.10)

Further observe that for any ε > 0, it follows from the definition of BL1(E) that:

sup
h∈BL1(E)

|E∗[h(rn{φ(θ̂∗n)− φ(θ̂n)})− h(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]|

≤ ε+ 2P ∗(‖rn{φ(θ̂∗n)− φ(θ̂n)} − {φ′θ0(G∗n +Gn)− φ′θ0(Gn)}‖E > ε|{Xi}ni=1) (A.11)

Moreover, Lemma 1.2.6 in van der Vaart and Wellner (1996) and result (A.10) also yield:

E∗[P ∗(‖rn{φ(θ̂∗n)− φ(θ̂n)} − {φ′θ0(G∗n +Gn)− φ′θ0(Gn)}‖E > ε|{Xi}ni=1)]

≤ P ∗(‖rn{φ(θ̂∗n)− φ(θ̂n)} − {φ′θ0(G∗n +Gn)− φ′θ0(Gn)}‖E > ε) = o(1) . (A.12)

Therefore, since ε > 0 was arbitrary, we obtain from results (A.11) and (A.12) that:

sup
h∈BL1(E)

|E∗[h(rn{φ(θ̂∗n)− φ(θ̂n)})|{Xi}ni=1]− E[h(φ′θ0(G0))]|

= sup
h∈BL1(E)

|E∗[h(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[h(φ′θ0(G0))]|+ op(1) (A.13)

Thus, in establishing the Theorem, it suffices to study the right hand side of (A.13).

First Claim: We aim to establish that if the bootstrap is consistent, then φ′θ0 : D0 → E
must be G0-translation invariant. Towards this end, note that Lemma A.2 implies

(φ′θ0(G∗n +Gn)− φ′θ0(Gn),Gn)
L→ (φ′θ0(G1 +G2)− φ′θ0(G2),G2) (A.14)

on E× D by the continuous mapping theorem. Let f ∈ BL1(E) and g ∈ BL1(D) satisfy

f(h1) ≥ 0 and g(h2) ≥ 0 for any h1 ∈ E and h2 ∈ D. By (A.14) we then have:

lim
n→∞

E∗[f(φ′θ0(G∗n+Gn)−φ′θ0(Gn))g(Gn)] = E[f(φ′θ0(G1+G2)−φ′θ0(G2))g(G2)] (A.15)

On the other hand, also note that if the bootstrap is consistent, then result (A.13) yields

sup
h∈BL1(E)

|E∗[h(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[h(φ′θ0(G0))]| = op(1) . (A.16)
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Moreover, since ‖g‖∞ ≤ 1 and ‖f‖∞ ≤ 1, it also follows that for any ε > 0 we have:

lim
n→∞

E∗[|E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[f(φ′θ0(G0))]|g(Gn)]

≤ lim
n→∞

E∗[|E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[f(φ′θ0(G0))]|]

≤ lim
n→∞

2P ∗(|E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]− E[f(φ′θ0(G0))]| > ε) + ε .

(A.17)

Thus, result (A.16), ε being arbitrary in (A.17), Lemma A.5(v), g(h) ≥ 0 for all h ∈ D,

and Gn
L→ G2 by result (A.14) allow us to conclude that:

lim
n→∞

E∗[E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]g(Gn)]

= lim
n→∞

E∗[E[f(φ′θ0(G0))]g(Gn)] = E[f(φ′θ0(G0))]E[g(G2)] . (A.18)

In addition, we also note that by Lemma 1.2.6 in van der Vaart and Wellner (1996):

lim
n→∞

E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))g(Gn)]

≤ lim
n→∞

E∗[E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))|{Xi}ni=1]g(Gn)]

≤ lim
n→∞

E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))g(Gn)] (A.19)

since Gn is a function of {Xi}ni=1 only and g(Gn) ≥ 0. However, by (A.14) and Lemma

1.3.8 in van der Vaart and Wellner (1996), (φ′θ0(G∗n+Gn)−φ′θ0(Gn),Gn) is asymptotically

measurable, and thus combining results (A.18) and (A.19) we can conclude:

lim
n→∞

E∗[f(φ′θ0(G∗n +Gn)− φ′θ0(Gn))g(Gn)] = E[f(φ′θ0(G0))]E[g(G2)] . (A.20)

Hence, comparing (A.15) and (A.20) with g ∈ BL1(D) given by g(a) = 1 for all a ∈ D,

E[f(φ′θ0(G0))]E[g(G2)] = E[f(φ′θ0(G1 +G2)− φ′θ0(G2))]E[g(G2)]

= E[f(φ′θ0(G1 +G2)− φ′θ0(G2))g(G2)] , (A.21)

where the second equality follows again by (A.15) and (A.20). Since (A.21) must hold

for any f ∈ BL1(E) and g ∈ BL1(D) with f(h1) ≥ 0 and g(h2) ≥ 0 for any h1 ∈ E and

h2 ∈ D, Lemma 1.4.2 in van der Vaart and Wellner (1996) implies φ′θ0(G1+G2)−φ′θ0(G2)

must be independent of G2, or equivalently, that φ′θ0 is G0-translation invariant.

Second Claim: To conclude, we show that if φ′θ0 : D0 → E is G0-translation invariant,

then the bootstrap is consistent. Fix ε > 0, and note that by Assumption 2.2, Lemma

A.1, and Lemma 1.3.8 in van der Vaart and Wellner (1996), Gn and G∗n are asymptoti-
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cally tight. Therefore, there exists a compact set K ⊂ D such that for any δ > 0:

lim inf
n→∞

P∗(G∗n ∈ Kδ) ≥ 1− ε lim inf
n→∞

P∗(Gn ∈ Kδ) ≥ 1− ε , (A.22)

where Kδ ≡ {a ∈ D : infb∈K ‖a− b‖D < δ}. Furthermore, by the Portmanteau Theorem

we may assume without loss of generality that K is a subset of the support of G0 and

that 0 ∈ K. Next, let K +K ≡ {a ∈ D : a = b+ c for some b, c ∈ K} and note that the

compactness of K implies K +K is also compact. Thus, by Lemma A.4 and continuity

of φ′θ0 : D→ E, there exist scalars δ0 > 0 and η0 > 0 such that:

sup
a,b∈(K+K)δ0 :‖a−b‖D<η0

‖φ′θ0(a)− φ′θ0(b)‖E < ε . (A.23)

Next, for each a ∈ K, let Bη0/2(a) ≡ {b ∈ D : ‖a − b‖D < η0/2}. Since {Bη0/2(a)}a∈K
is an open cover of K, there exists a finite collection {Bη0/2(aj)}Jj=1 also covering K.

Therefore, since for any b ∈ K
η0
2 there is a Πb ∈ K such that ‖b − Πb‖D < η0/2, it

follows that for every b ∈ K
η0
2 there is a 1 ≤ j ≤ J such that ‖b − aj‖D < η0. Setting

δ1 ≡ min{δ0, η0}/2, we obtain that if a ∈ Kδ1 and b ∈ Kδ1 , then: (i) a+ b ∈ (K +K)δ0

since K
δ0
2 +K

δ0
2 ⊆ (K +K)δ0 , (ii) there is a 1 ≤ j ≤ J such that ‖b− aj‖D < η0, and

(iii) (a + aj) ∈ (K + K)δ0 since aj ∈ K and a ∈ K
δ0
2 . Therefore, since 0 ∈ K, we can

conclude from (A.23) that for every b ∈ Kδ1 there exists a 1 ≤ j(b) ≤ J such that

sup
a∈Kδ1

‖{φ′θ0(a+ b)− φ′θ0(b)} − {φ′θ0(a+ aj(b))− φ′θ0(aj(b))}‖E

≤ sup
a,b∈(K+K)δ0 :‖a−b‖D<η0

2‖φ′θ0(a)− φ′θ0(b)‖E < 2ε . (A.24)

In particular, if we define the set ∆n ≡ {G∗n ∈ Kδ1 ,Gn ∈ Kδ1}, then (A.24) implies that

for every realization of Gn there is an aj independent of G∗n such that:

sup
f∈BL1(E)

|(f(φ′θ0(G∗n + Gn) − φ′θ0(Gn)) − f(φ′θ0(G∗n + aj) − φ′θ0(aj)))1{∆n}| < 2ε .

(A.25)

Letting ∆c
n denote the complement of ∆n, result (A.25) then allows us to conclude

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n+Gn)−φ′θ0(Gn))|{Xi}ni=1]−E[f(φ′θ0(G0))]| ≤ 2P ∗(∆c
n|{Xi}ni=1)

+ max
1≤j≤J

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n + aj)− φ′θ0(aj))|{Xi}ni=1]− E[f(φ′θ0(G0))]|+ 2ε (A.26)
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since ‖f‖∞ ≤ 1 for all f ∈ BL1(E). However, by Assumptions 3.1(i)-(ii) and 3.2(ii), and

Theorem 10.8 in Kosorok (2008) it follows that for any 1 ≤ j ≤ J :

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n+aj)−φ′θ0(aj))|{Xi}ni=1]−E[f(φ′θ0(G0 +aj)−φ′θ0(aj))]| = op(1) .

(A.27)

Thus, since K is a subset of the support of G0, Lemma A.3, result (A.27), the continuous

mapping theorem, and J <∞ allow us to conclude that:

max
1≤j≤J

sup
f∈BL1(E)

|E∗[f(φ′θ0(G∗n+aj)−φ′θ0(aj))|{Xi}ni=1]−E[f(φ′θ0(G0))]| = op(1) . (A.28)

Moreover, for any ε ∈ (0, 1) we also have by Markov’s inequality, Lemma 1.2.6 in van der

Vaart and Wellner (1996), 1{∆c
n} ≤ 1{G∗n /∈ Kδ1}+ 1{Gn /∈ Kδ1}, and (A.22) that:

lim sup
n→∞

P ∗(2P ∗(∆c
n|{Xi}ni=1) + 2ε > 6

√
ε) ≤ lim sup

n→∞
P ∗(P ∗(∆c

n|{Xi}ni=1) > 2
√
ε)

≤ 1

2
√
ε
× lim sup

n→∞
{P ∗(Gn /∈ Kδ1) + P ∗(G∗n /∈ Kδ1)} ≤

√
ε . (A.29)

Since ε > 0 was arbitrary, combining (A.13), (A.26), (A.28), and (A.29) imply (36) holds,

or equivalently, that φ′θ0 being G0-translation invariant implies bootstrap consistency.

Proof of Theorem 3.2: Let P denote the distribution of G0 on D0, and note that

by Assumption 2.2(ii) and Lemma A.7 we may assume without loss of generality that

the support of G0 equals D and that D is separable. Further note that if G1 is an

independent copy of G0 and φ′θ0 : D→ E is linear, then we immediately obtain that:

φ′θ0(G1 +G0)− φ′θ0(G0) = φ′θ0(G1) , (A.30)

which is independent of G0, and hence φ′θ0 is trivially G0-translation invariant.

The opposite direction is more challenging and requires us to introduce additional

notation which closely follows Chapter 7 in Davydov et al. (1998). First, let D∗ denote

the dual space of D, and 〈d, d∗〉D = d∗(d) for any d ∈ D and d∗ ∈ D∗. Similarly denote

the dual space of E by E∗ and corresponding bilinear form by 〈·, ·〉E. Further let

D′P ≡
{
d′ : D→ R : d′ is linear, Borel-measurable, and

∫
D

(d′(d))2dP (d) <∞
}
,

(A.31)

and with some abuse of notation also write d′(d) = 〈d′, d〉D for any d′ ∈ D′P and d ∈ D.

Finally, for each h ∈ D we let P h denote the law of G0 + h, write P h � P whenever P h

is absolutely continuous with respect to P , and define the set:

HP ≡ {h ∈ D : P rh � P for all r ∈ R} . (A.32)
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To proceed, note that since D is separable, the Borel σ-algebra, the σ-algebra generated

by the weak topology, and the cylindrical σ-algebra all coincide (Ledoux and Talagrand,

1991, p. 38). Furthermore, by Theorem 7.1.7 in Bogachev (2007), P is Radon with

respect to the Borel σ-algebra, and hence also with respect to the cylindrical σ-algebra.

Hence, by Theorem 7.1 in Davydov et al. (1998), it follows that there exists a linear

map I : HP → D′P satisfying for every h ∈ HP :

dP h

dP
(d) = exp

{
〈d, Ih〉D −

1

2
σ2(h)

}
σ2(h) ≡

∫
D
〈d, Ih〉2DdP (d) . (A.33)

Next, fix an arbitrary e∗ ∈ E∗ and h ∈ HP . Then note that Lemma A.3 and

Lemma 1.3.12 in van der Vaart and Wellner (1996) imply 〈e∗, φ′θ0(G0 + rh)− φ′θ0(rh)〉E
and 〈e∗, φ′θ0(G0)〉E must be equal in distribution for all r ∈ R. In particular, their

characteristic functions must equal each other, and hence for all r ≥ 0 and t ∈ R:

E[exp{it〈e∗, φ′θ0(G0)〉E}] = E[exp{it{〈e∗, φ′θ0(G0 + rh)− φ′θ0(rh)〉E}}]

= exp{−itr〈e∗, φ′θ0(h)〉E}E[exp{it〈e∗, φ′θ0(G0 + rh)〉E}] , (A.34)

where in the second equality we have exploited that φ′θ0(rh) = rφ′θ0(h) due to φ′θ0
being positively homogenous of degree one. Setting C(t) ≡ E[exp{it〈e∗, φ′θ0(G0)〉E}]
and exploiting result (A.34) we can then obtain by direct calculation that for all t ∈ R

itC(t)× 〈e∗, φ′θ0(h)〉E = lim
r↓0

1

r
{E[exp{it〈e∗, φ′θ0(G0 + rh)〉E}]− C(t)}

= lim
r↓0

1

r

∫
D

{
exp

{
it〈e∗, φ′θ0(d)〉E + r〈d, Ih〉D −

r2

2
σ2(h)

}
− C(t)

}
dP (d) , (A.35)

where in the second equality we exploited result (A.33), linearity of I : HP → D′P and

that h ∈ HP implies rh ∈ HP for all r ∈ R. Furthermore, by the mean value theorem

sup
r∈(0,1]

1

r

∣∣∣ exp
{
it〈e∗, φ′θ0(d)〉E + r〈d, Ih〉D −

r2

2
σ2(h)

}
− exp{it〈e∗, φ′θ0(d)〉E}

∣∣∣
≤ sup

r∈(0,1]

∣∣∣ exp
{
it〈e∗, φ′θ0(d)〉E + r〈d, Ih〉D −

r2

2
σ2(h)

}
× {〈d, Ih〉D − rσ2(h)}

∣∣∣
≤ exp{|〈d, Ih〉D|} × {|〈d, Ih〉D|+ σ2(h)} , (A.36)

where the final inequality follows from σ2(h) > 0 and | exp{it{e∗, φ′θ0(d)〉E}}| ≤ 1.

Moreover, by Proposition 2.10.3 in Bogachev (1998) and Ih ∈ D′P , it follows that
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〈G0, Ih〉D ∼ N(0, σ2(h)). Thus, we can obtain by direct calculation:∫
D

exp{|〈d, Ih〉D|} × {|〈d, Ih〉D|+ σ2(h)}dP (d)

=

∫
R

{|u|+ σ2(h)}
σ(h)
√

2π
× exp

{
|u| − u2

2σ2(h)

}
du <∞ . (A.37)

Hence, results (A.36) and (A.37) justify the use of the dominated convergence theorem

in (A.35). Also note that t 7→ C(t) is the characteristic function of 〈e∗, φ′θ0(G0)〉E and

hence it is continuous. Thus, since C(0) = 1 there exists a t0 > 0 such that C(t0)t0 6= 0.

For such t0 we then finally conclude from the above results that

〈e∗, φ′θ0(h)〉E = −
iE[exp{it〈e∗, φ′θ0(G0)〉E}〈G0, Ih〉D]

t0C(t0)
. (A.38)

To conclude note that HP being a vector space (Davydov et al., 1998, p. 38) and

I : D → D′P being linear imply together with result (A.38) that h 7→ 〈e∗, φ′θ0(h)〉E is

linear on HP . Moreover, note that h 7→ 〈e∗, φ′θ0(h)〉E is also continuous on D due to

continuity of φ′θ0 and having e∗ ∈ E∗. Hence, since HP is dense in D by Proposition

7.4(ii) in Davydov et al. (1998) we can conclude that 〈e∗, φ′θ0(·)〉E : D→ R is linear and

continuous. Since this result holds for all e∗ ∈ E∗, Lemma A.2 in van der Vaart (1991)

implies φ′θ0 : D→ E must be linear and continuous, which establishes the Theorem.

Proof of Corollary 3.1: By Theorems 3.1 and 3.2 the bootstrap is consistent if

and only if φ′θ0 is linear. However, since G0 is Gaussian and φ′θ0 : D0 → E is continuous,

Lemma 2.2.2 in Bogachev (1998) implies φ′θ0(G0) must be Gaussian (on E) whenever

φ′θ0 is linear, and hence the claim of the Corollary follows.

Proof of Theorem 3.3: Fix arbitrary ε > 0, η > 0 and for notational convenience

let G∗n ≡ rn{θ̂∗n − θ̂n}. By Assumption 2.2(ii) there is a compact set K0 ⊆ D0 such that

P (G0 /∈ K0) <
εη

2
. (A.39)

Thus, by Lemma A.1 and the Portmanteau Theorem, we conclude that for any δ > 0

lim sup
n→∞

P (G∗n /∈ Kδ
0) ≤ P (G0 /∈ Kδ

0) ≤ P (G0 /∈ K0) <
εη

2
. (A.40)

On the other hand, since K0 is compact, Assumption 3.3 yields that for some δ0 > 0:

lim sup
n→∞

P ( sup
h∈Kδ0

0

‖φ̂′n(h)− φ′θ0(h)‖E > ε) < η . (A.41)
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Next, note that Lemma 1.2.2(iii) in van der Vaart and Wellner (1996), h ∈ BL1(E) being

bounded by one and satisfying |h(e1)− h(e2)| ≤ ‖e1 − e2‖E for all e1, e2 ∈ E, imply:

sup
f∈BL1(E)

|E[f(φ̂′n(G∗n))|{Xi}]− E[f(φ′θ0(G∗n))|{Xi}]|

≤ sup
f∈BL1(E)

E[|f(φ̂′n(G∗n))− f(φ′θ0(G∗n))||{Xi}]

≤ E[2× 1{G∗n /∈ K
δ0
0 }+ sup

f∈Kδ0
0

‖φ̂′n(f)− φ′θ0(f)‖E|{Xi}]

≤ 2P (G∗n /∈ K
δ0
0 |{Xi}ni=1) + sup

f∈Kδ0
0

‖φ̂′n(f)− φ′θ0(f)‖E , (A.42)

where in the final inequality we exploited Lemma 1.2.2(i) in van der Vaart and Wellner

(1996) and φ̂′n : D → E depending only on {Xi}ni=1. Furthermore, Markov’s inequality,

Lemma 1.2.7 in van der Vaart and Wellner (1996), and result (A.40) yield:

lim sup
n→∞

P (P (G∗n /∈ K
δ0
0 |{Xi}ni=1) > ε) ≤ lim sup

n→∞
P (G∗n /∈ K

δ0
0 ) < η . (A.43)

Next, also note that Assumption 3.1(i) and Theorem 10.8 in Kosorok (2008) imply that:

sup
f∈BL1(E)

|E[f(φ′θ0(G∗n))|{Xi}ni=1]− E[f(φ′θ0(G0))]| = op(1) . (A.44)

Thus, by combining results (A.41), (A.42), (A.43) and (A.44) we can finally conclude:

lim sup
n→∞

P ( sup
f∈BL1(E)

|E[f(φ̂′n(G∗n))|{Xi}ni=1]− E[f(φ′θ0(G0))]| > 3ε) < 3η . (A.45)

Since ε and η were arbitrary, the claim of the Theorem then follows from (A.45).

Proof of Corollary 3.2: Let F denote the cdf of φ′θ0(G0), and similarly define:

F̂n(c) ≡ P (φ̂′n(rn{θ̂∗n − θ̂n}) ≤ c|{Xi}ni=1) . (A.46)

Next, observe that Theorem 3.3 and Lemma 10.11 in Kosorok (2008) imply that:

F̂n(c) = F (c) + op(1) , (A.47)

for all c ∈ R that are continuity points of F . Fix ε > 0, and note that since F is strictly

increasing at c1−α and the set of continuity of points of F is dense in R, it follows that

there exist points c1, c2 ∈ R such that: (i) c1 < c1−α < c2, (ii) |c1 − c1−α| < ε and

|c2 − c1−α| < ε, (iii) c1 and c2 are continuity points of F , and (iv) F (c1) + δ < 1− α <
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F (c2)− δ for some δ > 0. We can then conclude that:

lim sup
n→∞

P (|ĉ1−α − c1−α| > ε)

≤ lim sup
n→∞

{P (|F̂n(c1)− F (c1)| > δ) + P (|F̂n(c2)− F (c2)| > δ)} = 0 , (A.48)

due to (A.47). Since ε > 0 was arbitrary, the Corollary then follows.

Proof of Lemma 3.1: First note that by Assumption 3.5(ii) we can conclude:

lim
n→∞

‖
√
n{θ(Pn)− θ(P )} − ηθ′(℘)‖D = 0 . (A.49)

Similarly, letting tn ≡ n−
1
2 , hn ≡

√
n{θ(Pn)− θ(P )} we note θ(P ) + tnhn = θ(Pn) ∈ Dφ,

and by (A.49) that ‖hn − h‖D = o(1) as n → ∞, for h ≡ ηθ′(℘). Further note that

ηθ′(℘) ∈ D0 by Assumption 3.5(ii) since ηθ′(℘) = θ′(℘̃) for the curve t 7→ ℘̃t ≡ t 7→ ℘ηt.

Thus, from Assumption 2.1(ii) and Definition 2.1 we can conclude that

lim
n→∞

‖
√
n{φ(θ(Pn))− φ(θ(P ))} − φ′θ0(ηθ′(℘))‖E

= lim
n→∞

‖φ(θ(P ) + tnhn)− φ(θ(P ))

tn
− φ′θ0(h)‖E = 0 . (A.50)

Next, let Pn ≡
⊗n

i=1 P and Pnn ≡
⊗n

i=1 Pn. By Theorem 2.1 we then have that:

√
n{φ(θ̂n)− φ(θ(P ))} = φ′θ0(

√
n{θ̂n − θ(P )}) + op(1) (A.51)

under Pn. However, by Theorem 12.2.3 and Corollary 12.3.1 in Lehmann and Romano

(2005), Pnn and Pn are mutually contiguous. Hence, from (A.50) and (A.51) we obtain

√
n{φ(θ̂n)− φ(θ(Pn))} =

√
n{φ(θ̂n)− φ(θ(P ))} −

√
n{φ(θ(Pn))− φ(θ(P ))}

= φ′θ0(
√
n{θ̂n − θ(P )})− φ′θ0(ηθ′(℘)) + op(1) . (A.52)

under Pnn . Furthermore, by regularity of θ̂n and result (A.49) we also have that:

√
n{θ̂n − θ(P )} =

√
n{θ̂n − θ(Pn)}+

√
n{θ(Pn)− θ(P )} Ln→ G0 + ηθ′(℘) . (A.53)

Thus, the Lemma follows from (A.52), (A.53) and the continuous mapping theorem.

Proof of Corollary 3.3: Let DL denote the support of G0, and note that if ℘̃t = P

for all t, then ℘̃ is trivially a curve in P with ℘̃′ = 0 ∈ D, and hence 0 ∈
⋃
℘ θ
′(℘) = DL.

We first show that G0-translation invariance implies φ(θ̂n) is regular. To this end, note

0 ∈ DL, Lemma A.3, and
⋃
℘ θ
′(℘) = DL implies for any η ∈ R and curve ℘ in P:

E[h(φ′θ0(G0 + ηθ′(℘))− φ′θ0(ηθ′(℘)))] = E[h(φ′θ0(G0))] (A.54)
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for all bounded and continuous h : E→ R. Letting “
d
= ” denote equality in distribution,

we then conclude from (A.54) and Lemma 1.3.12 in van der Vaart and Wellner (1996):

φ′θ0(G0 + ηθ′(℘))− φ′θ0(ηθ′(℘))
d
= φ′θ0(G0) (A.55)

for any η ∈ R and curve ℘ in P. Thus, result (A.55) and Lemma 3.1 imply φ(θ̂n) is a

regular estimator for φ(θ0(P )) establishing the first direction of the Corollary.

For the opposite direction, suppose now that φ(θ̂n) is a regular estimator of φ(θ(P )).

For notational simplicity, further let Φ : D× D→ E be given by:

Φ(h0, h1) ≡ φ′θ0(h0 + h1)− φ′θ0(h0) . (A.56)

Next, fix arbitrary continuous and bounded functions f : E→ R and g : D→ R, and let

G1 be an independent copy of G0. Then note that: (i) Continuity of φ′θ0 : D→ E implies

h0 7→ Φ(h0, h1) is continuous for any h1 ∈ D, and (ii)
⋃
℘ θ
′(℘) being dense in DL implies

that for any h0 ∈ DL there is a sequence h0,n ∈
⋃
℘ θ
′(℘) such that ‖h0 − h0,n‖D = o(1)

as n→∞. Therefore, the dominated convergence theorem yields

E[f(Φ(h0,G1))] = lim
n→∞

E[f(Φ(h0,n,G1))] = E[f(Φ(0,G1))] = E[f(φ′θ0(G1))] , (A.57)

where the second equality follows from 0 ∈
⋃
℘ θ
′(℘) together with Lemma 3.1 and φ(θ̂n)

being regular implying the distribution of Φ(h0,G1) is constant in h0 ∈
⋃
℘ θ
′(℘), while

the last equality results from (A.56) and φ′θ0(0) = 0. Hence, Fubini’s theorem, result

(A.57) and G0 and G1 being independent allow us to conclude that:

E[f(φ′θ0(G0 +G1)− φ′θ0(G0))g(G0)]

=

∫
DL
E[f(Φ(h0,G1))]g(h0)dP (h0) = E[f(φ′θ0(G1))]E[g(G0)] (A.58)

where with some abuse of notation we let P also denote the distribution of G0 on D.

Since (A.58) holds for any bounded and continuous f : E→ R and g : D→ R, Lemma

1.4.2 in van der Vaart and Wellner (1996) implies φ′θ0(G0 + G1) − φ′θ0(G0) and G1 are

independent, or equivalently, that φ′θ0 is G0-translation invariant.

Proof of Theorem 3.4: Recall that we have set Pn ≡ ℘η/
√
n, Pnn ≡

⊗n
i=1 Pn, and

similarly define Pn ≡
⊗n

i=1 P . Then note that by Theorem 12.2.3 and Corollary 12.3.1

in Lehmann and Romano (2005), Pnn and Pn are mutually contiguous. Therefore, since

by Corollary 3.2 ĉ1−α
p→ c1−α under Pn, it follows that we also have:

ĉ1−α = c1−α + op(1) under Pnn . (A.59)
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Moreover, since φ(θ(P )) = 0, we also obtain from result (A.51) that under Pnn we have:

√
nφ(θ̂n) =

√
n{φ(θ̂n)− φ(θ(P ))}

= φ′θ0(
√
n{θ̂n − θ(P )}) + op(1)

Ln→ φ′θ0(G0 + ηθ′(℘)) , (A.60)

where the final result holds for Ln denoting law under Pnn by result (A.53) and the con-

tinuous mapping theorem. Thus, (58) holds by (A.60) and the Portmanteau Theorem.

In order to establish (59) holds whenever η ≤ 0, first note that (A.50) implies

0 ≥ lim
n→∞

√
n{φ(θ(Pn))− φ(θ(P ))} = φ′θ0(ηθ′(℘)) , (A.61)

where we have exploited that φ(θ(P )) = 0 and φ(θ(Pn)) ≤ 0 for all η ≤ 0. Therefore,

result (A.59) together with the second equality in (A.60) allow us to conclude

lim sup
n→∞

Pnn (
√
nφ(θ̂n) > ĉ1−α)

≤ lim sup
n→∞

Pnn (φ′θ0(
√
n{θ̂n − θ(P )}) ≥ c1−α)

≤ lim sup
n→∞

Pnn (φ′θ0(
√
n{θ̂n − θ(Pn)}) + φ′θ0(

√
n{θ(Pn)− θ(P )}) ≥ c1−α)

≤ lim sup
n→∞

Pnn (φ′θ0(
√
n{θ̂n − θ(Pn)}) ≥ c1−α)

= Pnn (φ′θ0(G0) ≥ c1−α) , (A.62)

where the second inequality follows from subadditivity of φ′θ0 , the third inequality is

implied by (A.61), and the final result follows from
√
n{θ̂n−θ(Pn)} Ln→ G0 by Assumption

3.5(i), the continuous mapping theorem, and c1−α being a continuity point of the cdf of

φ′θ0(G0). Since P (φ′θ0(G0) ≥ c1−α) = α by construction, result (59) follows.

Lemma A.1. If Assumptions 2.1(i), 2.2(ii), 3.1, 3.2(i) hold, then rn{θ̂∗n − θ̂n}
L→ G0.

Proof: In these arguments we need to distinguish between outer and inner expecta-

tions, and we therefore employ the notation E∗ and E∗ respectively. For notational

simplicity also let G∗n ≡ rn{θ̂∗n − θ̂n}. First, let f ∈ BL1(D), and then note that by

Lemma A.5(i) and Lemma 1.2.6 in van der Vaart and Wellner (1996) we have that:

E∗[f(G∗n)]− E[f(G0)] ≥ E∗[E∗[f(G∗n)|{Xi}ni=1]]− E[f(G0)]

≥ −E∗[|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|]

≥ −E∗[ sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|] . (A.63)
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Similarly, applying Lemma 1.2.6 in van der Vaart and Wellner (1996) once again together

with Lemma A.5(ii), and exploiting that f ∈ BL1(D) we can conclude that:

E∗[f(G∗n)]− E[f(G0)] ≤ E∗[E∗[f(G∗n)|{Xi}ni=1]]− E[f(G0)]

≤ E∗[|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|]

≤ E∗[ sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|] . (A.64)

However, since ‖f‖∞ ≤ 1 for all f ∈ BL1(D), it also follows that for any η > 0 we have:

E∗[ sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]|]

≤ 2P ∗( sup
f∈BL1(D)

|E∗[f(G∗n)|{Xi}ni=1]− E[f(G0)]| > η) + η . (A.65)

Moreover, by Assumption 3.2(i), E∗[f(G∗n)] = E∗[f(G∗n)] + o(1). Thus, Assumption

3.1(ii), η being arbitrary, and results (A.63) and (A.64) together imply that:

lim
n→∞

E∗[f(G∗n)] = E[f(G0)] (A.66)

for any f ∈ BL1(D). Further note that since G0 is tight by Assumption 2.2(ii) and D
is a Banach space by Assumption 2.1(i), Lemma 1.3.2 in van der Vaart and Wellner

(1996) implies G0 is separable. Therefore, the claim of the Lemma follows from (A.66),

Theorem 1.12.2 and Addendum 1.12.3 in van der Vaart and Wellner (1996).

Lemma A.2. Let Assumptions 2.1(i), 2.2 and 3.1 hold, and G1,G2 ∈ D be independent

random variables with the same law as G0. Then, it follows that on D× D:

(rn{θ̂n − θ0}, rn{θ̂∗n − θ̂n})
L→ (G1,G2) . (A.67)

Proof: In these arguments we need to distinguish between outer and inner expecta-

tions, and we therefore employ the notation E∗ and E∗ respectively. For notational

convenience we also let Gn ≡ rn{θ̂n − θ0} and G∗n ≡ rn{θ̂∗n − θ̂n}. Then, note that

Assumptions 2.2(i)-(ii), Lemma A.1, and Lemma 1.3.8 in van der Vaart and Wellner

(1996) imply that both Gn and G∗n are asymptotically measurable, and asymptotically

tight in D. Therefore, by Lemma 1.4.3 in van der Vaart and Wellner (1996) (Gn,G∗n)

is asymptotically tight in D× D and asymptotically measurable as well. Thus, by Pro-

horov’s theorem (Theorem 1.3.9 in van der Vaart and Wellner (1996)), each subsequence

{(Gnk ,G∗nk)} has an additional subsequence {(Gnkj ,G
∗
nkj

)} such that:

(Gnkj ,G
∗
nkj

)
L→ (Z1,Z2) (A.68)
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for a tight Borel random variable Z ≡ (Z1,Z2) ∈ D×D. Since the sequence {(Gnk ,G∗nk)}
was arbitrary, the Lemma follows if show the law of Z equals that of (G1,G2).

Towards this end, let f1, f2 ∈ BL1(D) satisfy f1(h) ≥ 0 and f2(h) ≥ 0 for all h ∈ D.

Then note that by result (A.68) it follows that:

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )] = E[f1(Z1)f2(Z2)] . (A.69)

However, f1, f2 ∈ BL1(D) satisfying f1(h) ≥ 0 and f2(h) ≥ 0 for all h ∈ D, Lemma 1.2.6

in van der Vaart and Wellner (1996), and Lemma A.5(iii) imply that:

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )]− E
∗[f1(Gnkj )E[f2(G0)]]

≥ lim
j→∞

E∗[f1(Gnkj )E
∗[f2(G∗nkj )|{Xi}ni=1]]− E∗[f1(Gnkj )E[f2(G0)]]

≥ − lim
j→∞

E∗[f1(Gnkj )|E
∗[f2(G∗nkj )|{Xi}ni=1]− E[f2(G0)]|]

≥ − lim
j→∞

E∗[ sup
f∈BL1(D)

|E∗[f(G∗nkj )|{Xi}ni=1]− E[f(G0)]|] , (A.70)

where in the final inequality we exploited that f1 ∈ BL1(D). Similarly, Lemma 1.2.6 in

van der Vaart and Wellner (1996), Lemma A.5(iv), and f1, f2 ∈ BL1(D) also imply that:

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )]− E∗[f1(Gnkj )E[f2(G0)]]

≤ lim
j→∞

E∗[f1(Gnkj )E
∗[f2(G∗nkj )|{Xi}ni=1]]− E∗[f1(Gnkj )E[f2(G0)]]

≤ lim
j→∞

E∗[f1(Gnkj )|E
∗[f2(G∗nkj )|{Xi}ni=1]− E[f2(G0)]|]

≤ lim
j→∞

E∗[ sup
f∈BL1(D)

|E∗[f(G∗nkj )|{Xi}ni=1]− E[f(G0)]|] . (A.71)

Thus, combining result (A.65) together with (A.70) and (A.71), and the fact that

(Gn,G∗n) and Gn are asymptotically measurable, we can conclude that:

lim
j→∞

E∗[f1(Gnkj )f2(G∗nkj )] = lim
j→∞

E∗[f1(Gnkj )E[f2(G0)]]

= E[f1(G0)]E[f2(G0)] , (A.72)

where the final result follows from Gn
L→ G0 in D. Hence, (A.69) and (A.72) imply

E[f1(Z1)f2(Z2)] = E[f1(G0)]E[f2(G0)] (A.73)

for all f1, f2 ∈ BL1(D) satisfying f1(h) ≥ 0 and f2(h) ≥ 0 for all h ∈ D. Since Z is

tight on D×D it is also separable by Lemma 1.3.2 in van der Vaart and Wellner (1996)

and Assumption 2.1(i), and hence result (A.73) and Lemma 1.4.2 in van der Vaart and

Wellner (1996) imply the law of Z equals that of (G1,G2). In view of (A.68), the claim
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of the Lemma then follows.

Lemma A.3. Let Assumptions 2.1, 2.2(ii), and 2.3 hold, DL denote the support of G0

and suppose 0 ∈ DL. If φ′θ0 : D → E is G0-translation invariant, then for any a0 ∈ DL
and bounded continuous function f : E→ R, it follows that:

E[f(φ′θ0(G0))] = E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] . (A.74)

Proof: For any a0 ∈ D and sequence {an} ∈ D with ‖a0 − an‖D = o(1), continuity of

φ′θ0 and f , f being bounded, and the dominated convergence theorem imply:

lim
n→∞

E[f(φ′θ0(G0 + an)− φ′θ0(an))] = E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] . (A.75)

Next, let Bε(a0) ≡ {a ∈ D : ‖a0 − a‖D < ε}, and observe that result (A.75) implies:

E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] = lim inf
ε↓0

inf
a∈Bε(a0)

E[f(φ′θ0(G0 + a)− φ′θ0(a))]

≤ lim sup
ε↓0

sup
a∈Bε(a0)

E[f(φ′θ0(G0 + a)− φ′θ0(a))] = E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] . (A.76)

Letting L denote the law of G0, and for G1 and G2 independent copies of G0, we have:

inf
a∈Bε(a0)

E[f(φ′θ0(G1 + a)− φ′θ0(a))]P (G2 ∈ Bε(a0))

≤
∫
Bε(a0)

∫
DL
f(φ′θ0(z1 + z2)− φ′θ0(z2))dL(z1)dL(z2)

≤ sup
a∈Bε(a0)

E[f(φ′θ0(G1 + a)− φ′θ0(a))]P (G2 ∈ Bε(a0)) . (A.77)

In particular, if a0 ∈ DL, then P (G2 ∈ Bε(a0)) > 0 for all ε > 0, and thus we conclude:

E[f(φ′θ0(G0 + a0)− φ′θ0(a0))] = lim
ε↓0

E[f(φ′θ0(G1 +G2)− φ′θ0(G2))|G2 ∈ Bε(a0)]

= lim
ε↓0

E[f(φ′θ0(G1 +G2)− φ′θ0(G2))|G2 ∈ Bε(0)] = E[f(φ′θ0(G0))] , (A.78)

where the first equality follows from (A.76) and (A.77), the second by φ′θ0 being G0-

translation invariant and 0 ∈ DL, while the final equality follows by results (A.76),

(A.77), and φ′θ0(0) = 0 due to φ′θ0 being homogenous of degree one.

Lemma A.4. Let Assumption 2.1(i) hold, ψ : D → E be continuous, and K ⊂ D be

compact. It then follows that for every ε > 0 there exist δ > 0, η > 0 such that:

sup
(a,b)∈Kδ×Kδ:‖a−b‖D<η

‖ψ(a)− ψ(b)‖E < ε . (A.79)
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Proof: Fix ε > 0 and note that since ψ : D→ E is continuous, it follows that for every

a ∈ D there exists a ζa such that ‖ψ(a)−ψ(b)‖E < ε/2 for all b ∈ D with ‖a− b‖D < ζa.

Letting Bζa/4(a) ≡ {b ∈ D : ‖a − b‖D < ζa/4}, then observe that {Bζa/4(a)}a∈K forms

an open cover of K and hence, by compactness of K, there exists a finite subcover

{Bζaj /4(aj)}Jj=1 for some J <∞. To establish the Lemma, we then let

η ≡ min
1≤j≤J

ζaj
4

δ ≡ min
1≤j≤J

ζaj
4

. (A.80)

For any a ∈ Kδ, there then exists a Πa ∈ K such that ‖a − Πa‖D < δ, and since

{Bζaj /4(aj)}Jj=1 covers K, there also is a j̄ such that Πa ∈ Bζaj̄/4(aj̄). Thus, we have

‖a− aj̄‖D ≤ ‖a−Πa‖D + ‖Πa− aj̄‖D < δ +
ζaj̄
4
≤
ζaj̄
2

, (A.81)

due to the choice of δ in (A.80). Moreover, if b ∈ D satisfies ‖a− b‖D < η, then:

‖b− aj̄‖D ≤ ‖a− b‖D + ‖a− aj̄‖D < η +
ζaj̄
2
≤ ζaj̄ , (A.82)

by the choice of η in (A.80). We conclude from (A.81), (A.82) that a, b ∈ Bζaj̄ (aj̄), and

‖ψ(a)− ψ(b)‖E ≤ ‖ψ(a)− ψ(aj̄)‖E + ‖ψ(b)− ψ(aj̄)‖E <
ε

2
+
ε

2
= ε (A.83)

by our choice of ζaj̄ . Thus, the Lemma follows from result (A.83).

Lemma A.5. Let (Ω,F , P ) be a probability space, c ∈ R+ and U : Ω → R and

V : Ω → R be arbitrary maps satisfying U(ω) ≥ 0 and V (ω) ≥ 0 for all ω ∈ Ω. If

E∗ and E∗ denote outer and inner expectations respectively, then it follows that:

(i) E∗[U ]− c ≥ −E∗[|U − c|].
(ii) E∗[U ]− c ≤ E∗[|U − c|].

(iii) E∗[UV ]− E∗[Uc] ≥ −E∗[U |V − c|] whenever min{E∗[UV ], E∗[Uc]} <∞.

(iv) E∗[UV ]− E∗[Uc] ≤ E∗[U |V − c|] whenever min{E∗[UV ], E∗[Uc]} <∞.

(v) |E∗[UV ]− E∗[Uc]| ≤ E∗[U |V − c|] whenever min{E∗[UV ], E∗[Uc]} <∞.

Proof: The arguments are simple and tedious, but unfortunately necessary to address

the possible nonlinearity of inner and outer expectations. Throughout, for a map T :

Ω → R, we let T ∗ and T∗ denote the minimal measurable majorant and the maximal

measurable minorant of T respectively. We will also exploit the fact that:

E∗[T ] = −E∗[−T ] , (A.84)

and that E∗[T ] = E[T ∗] whenever E[T ∗] exists, which in the context of this Lemma is

always satisfied since all variables are positive.
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To establish the first claim of the Lemma, note that Lemma 1.2.2(i) in van der Vaart

and Wellner (1996) implies U∗ − c = (U − c)∗. Therefore, (A.84) and E∗ ≤ E∗ yield:

E∗[U ]− c = E[U∗ − c] = E[(U − c)∗] = E∗[U − c]

≥ E∗[−|U − c|] = −E∗[|U − c|] ≥ −E∗[|U − c|] . (A.85)

Similarly, for the second claim of the Lemma, exploit that E∗ ≤ E∗, and once again

employ Lemma 1.2.2(i) in van der Vaart and Wellner (1996) to conclude that:

E∗[U ]− c ≤ E∗[U ]− c = E[U∗ − c] = E[(U − c)∗] ≤ E∗[|U − c|] . (A.86)

For the third claim, note that Lemma 1.2.2(iii) in van der Vaart and Wellner (1996)

implies |(UV )∗− (Uc)∗| ≤ |UV −Uc|∗. Thus, since |U(V − c)| = U |V − c| as a result of

U(ω) ≥ 0 for all ω ∈ Ω, we obtain from relationship (A.84) and E∗ ≤ E∗ that:

E∗[UV ]− E∗[Uc] = E[(UV )∗ − (Uc)∗] ≥ E[−|(UV )∗ − (Uc)∗|]

≥ E[−|UV − Uc|∗] = −E∗[U |V − c|] ≥ −E∗[U |V − c|] . (A.87)

Similarly, for the fourth claim of the Lemma, employ (A.84), that |(−Uc)∗− (−UV )∗| ≤
|(−Uc) − (−UV )|∗ by Lemma 1.2.2(iii) in van der Vaart and Wellner (1996), and that

|UV − Uc| = U |V − c| due to U(ω) ≥ 0 for all ω ∈ Ω to obtain that:

E∗[UV ]− E∗[Uc] = E[(−Uc)∗ − (−UV )∗] ≤ E[|(−Uc)∗ − (−UV )∗|]

≤ E[|(−Uc)− (−UV )|∗] = E∗[U |V − c|] . (A.88)

Finally, for the fifth claim of the Lemma, note the same arguments as in (A.88) yield

E∗[UV ]− E∗[Uc] = E[(Uc)∗ − (UV )∗] ≤ E[|(Uc)∗ − (UV )∗|]

≤ E[|(Uc)− (UV )|∗] = E∗[U |V − c|] . (A.89)

Thus, part (v) of the Lemma follows from part (iii) and (A.89).

Lemma A.6. Let Assumptions 2.1, 2.3(i) hold, and suppose that for some κ > 0 and

C0 < ∞ we have ‖φ̂′n(h1) − φ̂′n(h2)‖E ≤ C0‖h1 − h2‖κD for all h1, h2 ∈ D outer almost

surely. Then, Assumption 3.3 holds provided that for all h ∈ D0 we have:

‖φ̂′n(h)− φ′θ0(h)‖E = op(1) . (A.90)

Proof: Fix ε > 0, let K0 ⊆ D0 be compact, and for any h ∈ D let Π : D→ K0 satisfy

‖h − Πh‖D = infa∈K0 ‖h − a‖D – here attainment is guaranteed by compactness. Since
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φ′θ0 : D→ E is continuous, Lemma A.4 implies there exists a δ1 > 0 such that:

sup
h∈Kδ1

0

‖φ′θ0(h)− φ′θ0(Πh)‖E < ε . (A.91)

Next, set δ2 < (ε/C0)1/κ and note that by hypothesis we have outer almost surely that:

sup
h∈Kδ2

0

‖φ̂′n(h)− φ̂′n(Πh)‖E ≤ sup
h∈Kδ2

0

C0‖h−Πh‖κE ≤ C0δ
κ
2 < ε . (A.92)

Defining δ3 ≡ min{δ1, δ2}, exploiting (A.91), (A.92), and Πh ∈ K0 we then conclude:

sup
h∈Kδ3

0

‖φ̂′n(h)− φ′θ0(h)‖E

≤ sup
h∈Kδ3

0

{‖φ̂′n(h)− φ̂′n(Πh)‖E + ‖φ′θ0(h)− φ′θ0(Πh)‖E + ‖φ̂′n(Πh)− φ′θ0(Πh)‖E}

≤ sup
h∈K0

‖φ̂′n(h)− φ′θ0(h)‖E + 2ε (A.93)

outer almost surely. Thus, since Kδ
0 ⊆ K

δ3
0 for all δ ≤ δ3 we obtain from (A.93) that:

lim
δ↓0

lim sup
n→∞

P ( sup
h∈Kδ

0

‖φ̂′n(h)− φ′θ0(h)‖E > 5ε)

≤ lim sup
n→∞

P ( sup
h∈K0

‖φ̂′n(h)− φ′θ0(h)‖E > 3ε) . (A.94)

Next note that since K0 is compact, φ′θ0 is uniformly continuous on K0, and thus we

can find a finite collection {hj}Jj=1 with J <∞ such that hj ∈ K0 for all j and:

sup
h∈K0

min
1≤j≤J

max{C0‖h− hj‖κD, ‖φ′θ0(h)− φ′θ0(hj)‖E} < ε . (A.95)

In particular, since ‖φ̂′θ0(h)− φ̂′θ0(hj)‖E ≤ C0‖h− hj‖κD, we conclude from (A.95) that:

sup
h∈K0

‖φ̂′θ0(h)− φ′θ0(h)‖E ≤ max
1≤j≤J

‖φ̂′θ0(hj)− φ′θ0(hj)‖E + 2ε . (A.96)

Thus, we can conclude from (A.96) and φ̂′θ0 satisfying (A.90) for any h ∈ D0 that:

lim sup
n→∞

P ( sup
h∈K0

‖φ̂′n(h)− φ′θ0(h)‖E > 3ε)

≤ lim sup
n→∞

P ( max
1≤j≤J

‖φ̂′n(hj)− φ′θ0(hj)‖E > ε) = 0 . (A.97)

Since ε and K0 were arbitrary, the Lemma follows from (A.94) and (A.95).

Lemma A.7. Let Assumptions 2.1, 2.2(ii) hold, and G0 be a centered Gaussian mea-

sure. Then, it follows that the support of G0 is a separable Banach space under ‖ · ‖D.
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Proof: Let τ and τw denote the strong and weak topologies on D respectively, and

B(τ) and B(τw) the corresponding σ-algebras generated by them. Further let P denote

the distribution of G0 on D, and note that by Assumption 2.2(ii) and Lemma 1.3.2 in

van der Vaart and Wellner (1996), P is τ -separable. Let S(τ) denote the support of P

under τ , formally the smallest τ -closed set S(τ) ⊆ D such that P (S(τ)) = 1, and let

P ≡ span{S(τ)}τ (A.98)

denote the τ -closed linear span of S(τ). Since P is separable and S(τ) ⊆ D, it follows

that P is a separable Banach space under ‖ · ‖D.

In what follows, we aim to show P = S(τ) in order to establish the Lemma. To this

end, first note that P being separable, and Theorem 7.1.7 in Bogachev (2007) imply

that P is Radon with respect to B(τ). Since B(τw) ⊆ B(τ) and τ -compact sets are

also τw-compact, it follows that P is also Radon on B(τw) when D is equipped with τw

instead. Letting C denote the cylindrical σ-algebra, we then conclude from C ⊆ B(τw)

that P is also Radon on C with D equipped with τw. Hence, for NP (τw) the minimal

closed affine subspace of D for which P (NP (τw)) = 1, we obtain from P being Radon

on C and Proposition 7.4(i) in Davydov et al. (1998) that

NP (τw) = S(τw) . (A.99)

Moreover, since affine spaces are convex, Theorem 5.98 in Aliprantis and Border (2006)

implies NP (τ) = NP (τw). Thus, since S(τ) is τw-closed, we have by (A.99):

S(τ) ⊆ NP (τ) = NP (τw) = S(τw) ⊆ S(τ) . (A.100)

However, by Proposition 7.4(ii) in Davydov et al. (1998), 0 ∈ NP (τ) and hence NP (τ)

must be a vector space. Combining (A.98) and (A.99) we thus conclude S(τ) = P and

the claim of the Lemma follows.

Appendix B - Results for Examples 2.1-2.6

Lemma B.1. Let A be totally bounded under a norm ‖ · ‖A, and Ā denote its clo-

sure under ‖ · ‖A. Further let φ : `∞(A) → R be given by φ(θ) = supa∈A θ(a), and

define ΨĀ(θ) ≡ arg maxa∈Ā θ(a) for any θ ∈ C(Ā). Then, φ is Hadamard directionally

differentiable tangentially to C(Ā) at any θ ∈ C(Ā), and φ′θ : C(Ā)→ R satisfies:

φ′θ(h) = sup
a∈ΨĀ(θ)

h(a) h ∈ C(Ā) .

Proof: First note Corollary 3.29 in Aliprantis and Border (2006) implies Ā is compact

under ‖ · ‖A. Next, let {tn} and {hn} be sequence with tn ∈ R, hn ∈ `∞(A) for all n
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and ‖hn − h‖∞ = o(1) for some h ∈ C(Ā). Then note that for any θ ∈ C(Ā) we have:

| sup
a∈A
{θ(a) + tnhn(a)} − sup

a∈A
{θ(a) + tnh(a)}| ≤ tn‖hn − h‖∞ = o(tn) . (B.1)

Further note that since Ā is compact, ΨĀ(θ) is well defined for any θ ∈ C(Ā). Defining

Γθ : C(Ā)→ C(Ā) to be given by Γθ(g) = θ+g, then note that Γθ is trivially continuous.

Therefore, Theorem 17.31 in Aliprantis and Border (2006) and the relation

ΨĀ(θ + g) = arg max
a∈Ā

Γθ(g)(a) (B.2)

imply that ΨĀ(θ+g) is upper hemicontinuous in g. In particular, for ΨĀ(θ)ε ≡ {a ∈ Ā :

infa0∈ΨĀ(θ) ‖a− a0‖A ≤ ε}, it follows from ‖tnh‖∞ = o(1) that ΨĀ(θ + tnh) ⊆ ΨĀ(θ)δn

for some δn ↓ 0. Thus, since ΨĀ(θ) ⊆ ΨĀ(θ)δn we can conclude that

| sup
a∈Ā
{θ(a) + tnh(a)}− sup

a∈ΨĀ(θ)
{θ(a) + tnh(a)}|

= sup
a∈ΨĀ(θ)δn

{θ(a) + tnh(a)} − sup
a∈ΨĀ(θ)

{θ(a) + tnh(a)}

≤ sup
a0,a1∈Ā:‖a0−a1‖A≤δn

tn|h(a0)− h(a1)|

= o(tn) , (B.3)

where the final result follows from h being uniformly continuous by compactness of Ā.

Therefore, exploiting (B.1), (B.3) and θ being constant on ΨĀ(θ) yields

| sup
a∈A
{θ(a) + tnhn(a)} − sup

a∈A
θ(a)− tn sup

a∈ΨĀ(θ)
h(a)|

≤ | sup
a∈ΨĀ(θ)

{θ(a) + tnh(a)} − sup
a∈ΨĀ(θ)

θ(a)− tn sup
a∈ΨĀ(θ)

h(a)|+ o(tn) = o(tn) , (B.4)

which verifies the claim of the Lemma.

Lemma B.2. Let w : R→ R+ satisfy
∫
Rw(u)du <∞ and φ : `∞(R)× `∞(R)→ R be

given by φ(θ) =
∫
R max{θ(1)(u) − θ(2)(u), 0}w(u)du for any θ = (θ(1), θ(2)) ∈ `∞(R) ×

`∞(R). Then, φ is Hadamard directionally differentiable at any θ ∈ `∞(R) × `∞(R)

with φ′θ : `∞(R)× `∞(R)→ R satisfying for any h = (h(1), h(2)) ∈ `∞(R)× `∞(R)

φ′θ(h) =

∫
B0(θ)

max{h(1)(u)− h(2)(u), 0}w(u)du+

∫
B+(θ)

(h(1)(u)− h(2)(u))w(u)du ,

where B+(θ) ≡ {u ∈ R : θ(1)(u) > θ(2)(u)} and B0(θ) ≡ {u ∈ R : θ(1)(u) = θ(2)(u)}.
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Proof: Let {hn} = {(h(1)
n , h

(2)
n )} be a sequence in `∞(R) × `∞(R) satisfying ‖h(1)

n −
h(1)‖∞ ∨ ‖h(2)

n − h(2)‖∞ = o(1) for some h = (h(1), h(2)) ∈ `∞(R)× `∞(R). Further let:

B−(θ) ≡ {u ∈ R : θ(1)(u) < θ(2)(u)} . (B.5)

Next, observe that since θ(1)(u)−θ(2)(u) < 0 for all u ∈ B−(θ), and ‖h(1)
n −h(2)

n ‖∞ = O(1)

due to ‖h(1) − h(2)‖∞ <∞, the dominated convergence theorem yields that:∫
B−(θ)

max{(θ(1)(u)− θ(2)(u)) + tn(h(1)
n (u)− h(2)

n (u)), 0}w(u)du

. tn

∫
B−(θ)

1{tn(h(1)
n (u)− h(2)

n (u)) ≥ −(θ(1)(u)− θ(2)(u))}w(u)du = o(tn) . (B.6)

Thus, (B.6), B−(θ)c = B+(θ) ∪B0(θ) and the dominated convergence theorem imply

1

tn
{φ(θ + tnhn)− φ(θ)}

=

∫
B−(θ)c

max{h(1)
n (u)− h(2)

n (u),−θ(u)(1) − θ(2)(u)

tn
}w(u)du+ o(1) = φ′θ(h) + o(1)

which establishes the claim of the Lemma.

Lemma B.3. Let Assumptions 2.1, 2.3 hold, and A be compact under ‖ · ‖A. Further

suppose φ : `∞(A)→ R is Hadamard directionally differentiable tangentially to C(A) at

θ0 ∈ C(A), and that for some A0 ⊆ A, its derivative φ′θ0 : C(A)→ R is given by:

φ′θ0(h) = sup
a∈A0

h(a) . (B.7)

If Â0 ⊆ A outer almost surely, and dH(Â0, A0, ‖ · ‖A) = op(1), then it follows that

φ̂′n : `∞(A)→ R given by φ̂′n(h) = supa∈Â0
h(a) for any h ∈ `∞(A) satisfies (41).

Proof: First note that φ̂′n is outer almost surely Lipschitz since |φ̂′n(h1) − φ̂′n(h2)| ≤
‖h1 − h2‖∞ for all h1, h2 ∈ `∞(A) due to Â0 ⊆ A outer almost surely. Therefore, by

Lemma A.6 it suffices to verify that for any h ∈ C(A), φ̂′n satisfies

|φ̂′n(h)− φ′θ0(h)| = op(1) . (B.8)

Towards this end, fix an arbitrary ε0 > 0 and note h is uniformly continuous on A due

to A being compact. Hence, we conclude there exists an η > 0 such that

sup
‖a1−a2‖A<η

|h(a1)− h(a2)| < ε0 . (B.9)
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Moreover, given the definitions of φ̂′n and φ′θ0 it also follows that for any h ∈ `∞(A):

|φ̂′n(h)− φ′θ0(h)| ≤ sup
‖a1−a2‖A≤dH(Â0,A0,‖·‖A)

|h(a1)− h(a2)| . (B.10)

Thus, by results (B.9) and (B.10), and the Hausdorff consistency of Â0, we obtain:

lim sup
n→∞

P (|φ̂′n(h)− φ′θ0(h)| > ε0) ≤ lim sup
n→∞

P (dH(Â0, A0, ‖ · ‖A) > η) = 0 . (B.11)

It follows that (B.8) indeed holds, and the claim of the Lemma follows.

Appendix C - Results for Section 4

Proof of Proposition 4.1: We proceed by verifying Assumptions 2.1, 2.2, and 2.3,

and then employing Theorem 2.1 to obtain (73). To this end, define the maps φ1 : H→ H
to be given by φ1(θ) = θ −ΠΛθ, and φ2 : H→ R by φ2(θ) ≡ ‖θ‖H. Letting φ ≡ φ2 ◦ φ1

and noting φ1(θ0) = 0 due to θ0 ∈ Λ, we then obtain the equality:

rn‖θ̂n −ΠΛθ̂n‖H = rn{φ(θ̂n)− φ(θ0)} . (C.1)

By Lemma 4.6 in Zaranotello (1971), φ1 is then Hadamard directionally differentiable at

θ0 with derivative φ′1,θ0 : H→ H given by φ′1,θ0(h) = h−ΠTθ0
h; see also (Shapiro, 1994,

p. 135). Moreover, since φ2 is Hadamard directionally differentiable at 0 ∈ H with

derivative φ′2,0(h) = ‖h‖H, Proposition 3.6 in Shapiro (1990) implies φ is Hadamard

directionally differentiable at θ0 with φ′θ0 = φ′2,0 ◦ φ′1,θ0 . In particular, we have

φ′θ0(h) = ‖h−ΠTθ0
h‖H , (C.2)

for any h ∈ H. Thus, (C.2) verifies Assumption 2.1 and, because in this case D = D0 = H,

we conclude Assumption 2.3 holds as well. Since Assumption 2.2 was directly imposed,

the Proposition then follows form Theorem 2.1.

Proof of Proposition 4.2: In order to establish the first claim of the Proposition,

we first observe that for any h1, h2 ∈ H we must have that:

φ̂′n(h1)− φ̂′n(h2) ≤ sup
θ∈Λ:‖θ−ΠΛθ̂n‖H≤εn

{‖h1 −ΠTθh1‖H − ‖h2 −ΠTθh2‖H}

≤ sup
θ∈Λ:‖θ−ΠΛθ̂n‖H≤εn

{‖h1 −ΠTθh2‖H − ‖h2 −ΠTθh2‖H} ≤ ‖h1 − h2‖H , (C.3)

where the first inequality follows from the definition of φ̂′n(h), the second inequality is

implied by ‖h1−ΠTθh1‖H ≤ ‖h1−ΠTθh2‖H for all θ ∈ Λ, and the third inequality holds

by the triangle inequality. Result (C.3) further implies φ̂′n(h2) − φ̂′n(h1) ≤ ‖h1 − h2‖H,
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and hence we can conclude φ̂′n : H→ R is Lipschitz – i.e. for any h1, h2 ∈ H:

|φ̂′n(h1)− φ̂′n(h2)| ≤ ‖h1 − h2‖H . (C.4)

Thus, by Lemma A.6, in verifying φ̂′n satisfies Assumption 3.3 it suffices to show that:

|φ̂′n(h)− φ′θ0(h)| = op(1) (C.5)

for all h ∈ H. To this end, note that convexity of Λ and Proposition 46.5(2) in Zeidler

(1984) imply ‖ΠΛθ0 − ΠΛθ‖H ≤ ‖θ0 − θ‖H for any θ ∈ H. Thus, since rn{θ̂n − θ0} is

asymptotically tight by Assumption 2.2 and rnεn ↑ ∞ by hypothesis, we conclude that:

lim inf
n→∞

P (‖ΠΛθ0 −ΠΛθ̂n‖H ≤ εn) ≥ lim inf
n→∞

P (rn‖θ0 − θ̂n‖H ≤ rnεn) = 1 . (C.6)

Moreover, the same arguments as in (C.6) and the triangle inequality further imply that:

lim inf
n→∞

P (‖θ −ΠΛθ0‖H ≤ 2εn for all θ ∈ Λ s.t. ‖θ −ΠΛθ̂n‖H ≤ εn)

≥ lim inf
n→∞

P (‖ΠΛθ0 −ΠΛθ̂n‖H ≤ εn) = 1 . (C.7)

Hence, from the definition of φ̂′n and results (C.6) and (C.7) we obtain for any h ∈ H:

lim inf
n→∞

P (‖h−ΠTθ0
h‖H ≤ φ̂′n(h) ≤ sup

θ∈Λ:‖θ−ΠΛθ0‖H≤2εn

‖h−ΠTθh‖H) = 1 . (C.8)

Next, select a sequence {θn} with θn ∈ Λ and ‖θn −ΠΛθ0‖H ≤ 2εn for all n, such that:

lim sup
n→∞

{ sup
θ∈Λ:‖θ−ΠΛθ0‖H≤2εn

‖h−ΠTθh‖H} = lim
n→∞

‖h−ΠTθn
h‖H . (C.9)

By Theorem 4.2.2 in Aubin and Frankowska (1990), the cone valued map θ 7→ Tθ is

lower semicontinuous on Λ and hence since ‖θn − ΠΛθ0‖H = o(1), it follows that there

exists a sequence {h̃n} such that h̃n ∈ ΠTθn
for all n and ‖ΠTθ0

h− h̃n‖H = o(1). Thus,

lim sup
n→∞

{ sup
θ∈Λ:‖θ−ΠΛθ0‖H≤2εn

‖h−ΠTθh‖H}

= lim
n→∞

‖h−ΠTθn
h‖H ≤ lim

n→∞
‖h− h̃n‖H = ‖h−ΠTθ0

h‖H , (C.10)

where the first equality follows from (C.9), the inequality by h̃n ∈ Tθn , and the second

equality by ‖h̃n−ΠTθ0
h‖H = o(1). Hence, combining (C.8) and (C.10) we conclude that

(C.5) holds, and by Lemma A.6 and (C.4) that φ̂′n satisfies Assumption 3.3.

For the second claim, first observe that Λ being convex implies Tθ0 is a closed convex

cone. Hence, by Proposition 46.5(4) in Zeidler (1984), it follows that ‖ΠTθ0
h‖2H =
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〈h,ΠTθ0
h〉H for any h ∈ H. In particular, for any h1, h2 ∈ H we must have:

‖h1 + h2 −ΠTθ0
(h1 + h2)‖2H = 〈h1 + h2, h1 + h2 −ΠTθ0

(h1 + h2)〉H . (C.11)

However, Proposition 46.5(4) in Zeidler (1984) further implies that 〈c, h1+h2−ΠTθ0
(h1+

h2)〉 ≤ 0 for any h1, h2 ∈ H and c ∈ Tθ0 . Therefore, since ΠTθ0
h1,ΠTθ0

h2 ∈ Tθ0 , we can

conclude from result (C.11) and the Cauchy Schwarz inequality that

‖h1 + h2 −ΠTθ0
(h1 + h2)‖2H ≤ 〈h1 −ΠTθ0

h1 + h2 −ΠTθ0
h2, h1 + h2 −ΠTθ0

(h1 + h2)〉H
≤ ‖h1 + h2 −ΠTθ0

(h1 + h2)‖H × ‖(h1 −ΠTθ0
h1) + (h2 −ΠTθ0

h2)‖H . (C.12)

Thus, the Proposition follows from (C.12) and the triangle inequality.
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Dümbgen, L. (1993). On Nondifferentiable Functions and the Bootstrap. Probability

Theory and Related Fields, 95 125–140.

Efron, B. (1979). Bootstrap methods: Another look at the jacknife. Annals of Statis-

tics, 7 1–26.

Escanciano, J. C. and Zhu, L. (2013). Working paper, Indiana University.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer-Verlag, Berlin.

Hansen, P. R. (2005). A test for superior predictive ability. Journal of Business and

Economic Statistics, 23 365–380.

Hirano, K. and Porter, J. R. (2012). Impossibility results for nondifferentiable

functionals. Econometrica, 80 1769–1790.

Hoef, J. M. V. (2012). Who invented the delta method? The American Statistician,

66 124–127.

Horowitz, J. L. (2001). The bootstrap. In Handbook of Econometrics V (J. J.

Heckman and E. Leamer, eds.). Elsevier, 3159–3228.

Imbens, G. W. and Manski, C. F. (2004). Confidence intervals for partially identified

parameters. Econometrica, 72 1845–1857.

Jackwerth, J. C. (2000). Review of Financial Studies, 13 433–451.

Kaido, H. (2013). A Dual Approach to Inference for Partially Identified Econometric

Models. Working paper, Boston University.

61



Kaido, H. and Santos, A. (2013). Asymptotically Efficient Estimation of Models

Defined by Convex Moment Inequalities. Econometrica forthcoming.

Kline, P. and Santos, A. (2013). Sensitivity to missing data assumptions: Theory

and an evaluation of the u.s. wage structure. Quantitative Economics, 4 231–267.

Kosorok, M. (2008). Introduction to Empirical Processes and Semiparametric Infer-

ence. Springer.

LeCam, L. (1986). Asymptotic Methods in Statistical Decision Theory. Springer-Verlag,

New York.

Ledoux, M. and Talagrand, M. (1991). Probability in Banach Spaces. Springer-

Verlag, Berlin.

Lehmann, E. and Romano, J. (2005). Testing Statistical Hypotheses. Springer Verlag.

Linton, O., Song, E., K. and Whang, Y.-J. (2010). An Improved Bootstrap Test

of Stochastic Dominance. Journal of Econometrics, 154 186 – 202.

Manski, C. F. (2003). Partial Identification of Probability Distributions. Springer-

Verlag, New York.

Muralidharan, K. and Sundararaman, V. (2011). Teacher performance pay: Ex-

perimental evidence from india. Journal of Political Economy, 9 39–77.

Pakes, A., Porter, J., Ho, K. and Ishii, J. (2006). Moment inequalities and their

application. Working Paper, Harvard University.

Romano, J. P. and Shaikh, A. M. (2008). Inference for identifiable parameters in

partially identified econometric models. Journal of Statistical Planning and Inference

– Special Issue in Honor of Ted Anderson, 138 2786–2807.

Romano, J. P. and Shaikh, A. M. (2010). Inference for the Identified Set in Partially

Identified Econometric Models. Econometrica, 78 169–211.

Shapiro, A. (1990). On Concepts of Directional Differentiability. Journal of Optimiza-

tion Theory and Applications, 66 477–487.

Shapiro, A. (1991). Asymptotic Analysis of Stochastic Programs. Annals of Operations

Research, 30 169–186.

Shapiro, A. (1994). Existence and differentiability of metric projections in hilbert

spaces. Siam Journal of Optimization, 4 130–141.

Song, K. (2012). Local Asymptotic Minimax Estimation of Nonregular Parameters

with Translation-Scale Equivariant Maps.

62



van der Vaart, A. (1991). On Differentiable Functionals. The Annals of Statistics,

19 pp. 178–204.

van der Vaart, A. (1998). Asymptotic Statistics. Cambridge University Press.

van der Vaart, A. and Wellner, J. (1996). Weak Convergence and Empirical

Processes. Springer Verlag.

White, H. (2000). A reality check for data snooping. Econometrica, 68 1097–1126.

Wolak, F. A. (1988). Duality in testing multivariate hypotheses. Biometrika, 75

611–615.

Zaranotello, E. H. (1971). Projections on convex sets and hilbert spaces and spectral

theory. In Contributions to Nonlinear Functional Analysis (E. H. Zaranotello, ed.).

Academic Press.

Zeidler, E. (1984). Nonlinear Functional Analysis and its Applications III. Springer-

Verlag, New York.

63


	1 Introduction
	2 Setup and Background
	2.1 General Setup
	2.1.1 Examples

	2.2 Differentiability Concepts
	2.2.1 Examples Revisited

	2.3 The Delta Method

	3 The Bootstrap
	3.1 Bootstrap Setup
	3.2 A Necessary and Sufficient Condition
	3.2.1 Leading Case: Gaussian G0

	3.3 An Alternative Approach
	3.3.1 Examples Revisited

	3.4 Local Analysis
	3.4.1 Implications for Testing


	4 Convex Set Projections
	4.1 Projection Setup
	4.1.1 Examples

	4.2 Theoretical Results
	4.2.1 Asymptotic Distribution
	4.2.2 Critical Values

	4.3 Simulation Evidence

	5 Conclusion
	References

