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1. Introduction

Two-step semiparametric m-estimators are an important and versatile class of estimators

whose conventional large-sample properties are by now well understood. These procedures

are constructed by first choosing a preliminary nonparametric estimator, which is then

“plugged in”in a second step to form the semiparametric estimator of the finite-dimensional

parameter of interest. Although the precise nature of the high-level assumptions used in

conventional approximations varies slightly, it is possible to formulate suffi cient conditions

so that the semiparametric estimator is
√
n-consistent (where n denotes the sample size)

and asymptotically linear (i.e., asymptotically equivalent to a sample average based on the

influence function). These results lead to a Gaussian distributional approximation for the

semiparametric estimator that, together with valid standard-error estimators, theoretically

justify classical inference procedures, at least in large samples. Newey and McFadden (1994,

Section 8), Ichimura and Todd (2007, Section 7) and Chen (2007, Section 4), among oth-

ers, give detailed surveys on semiparametric inference in econometric theory, and further

references in statistics and econometrics.

A widespread concern with these conventional asymptotic results is that the (finite sam-

ple) distributional properties of semiparametric estimators are widely believed to be much

more sensitive to the implementational details of its nonparametric ingredient (e.g., band-

width choice when the nonparametric estimator is kernel-based) than predicted by conven-

tional asymptotic theory, according to which semiparametric estimators are asymptotically

linear with influence functions that are invariant with respect to the choice of nonpara-

metric estimator (e.g., Newey (1994a, Proposition 1)). Conventional approximations rely

on suffi cient conditions carefully tailored to achieve asymptotic linearity, thereby assuming

away additional approximation errors that may be important in samples of moderate size.

In particular, whenever the preliminary nonparametric estimator enters nonlinearly in the

construction of the semiparametric procedure, a common approach is to linearly approx-
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imate the underlying estimating equation in order to characterize the contribution of the

nonparametric ingredient to the distributional approximation. This approach leads to the

familiar suffi cient condition that requires the nonparametric ingredient to converge at a rate

faster than n1/4, effectively allowing one to proceed “as if” the semiparametric estimator

depends linearly on its nonparametric ingredient, which in turn guarantees an asymptotic

linear representation of the semiparametric estimator under appropriate suffi cient conditions.

In this paper we study the large-sample properties of a kernel-based estimator of weighted

average derivatives (Stoker (1986), Newey and Stoker (1993)), and propose a new first-order

asymptotic approximation for the semiparametric estimator based on a quadratic expansion

of the underlying estimating equation. The key idea is to relax the requirement that the

convergence rate of the nonparametric estimator be faster than n1/4, and to rely instead on a

quadratic expansion to tease out further information about the dependence of the semipara-

metric estimator on its nonparametric ingredient, thereby improving upon the conventional

(first-order) distributional approximation available in the literature. Although our idea leads

to an improved understanding of the differences between linear and nonlinear functionals of

nonparametric estimators in some generality, we focus attention on weighted average deriv-

atives to keep the results as interpretable as possible, and because this estimand is popular

in theoretical and empirical work. (We discuss below its importance and role in the litera-

ture.) Indeed, it should be conceptually straightforward to apply the methodology employed

herein to other kernel-based semiparametric m-estimators at the expense of considerable

more notation and technicalities.

We obtain four types of results for the kernel-based weighted average derivatives es-

timator. First, under standard kernel and bandwidth conditions we establish asymptotic

linearity of the estimator and consistency of its associated “plug-in”variance estimator un-

der a weaker-than-usual moment condition on the dependent variable. Indeed, the moment

condition imposed would appear to be (close to) minimal, suggesting that these results may
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be of independent theoretical interest in the specific context of weighted average derivatives.

More broadly, the results (and their derivation) may be of interest as they are achieved by ju-

dicial choice of estimator, and by employing a new uniform law of large numbers specifically

designed with consistency proofs in mind.

Second, we also establish asymptotic linearity of the weighted average derivative estimator

under weaker-than-usual bandwidth conditions. This relaxation of bandwidth conditions is

of practical usefulness because it permits the employment of kernels of lower-than-usual order

(and, relatedly, enables us to accommodate unknown functions of lower-than-usual degree

of smoothness). More generally, the derivation of these results may be of interest because of

its “generic”nature and because of its ability to deliver an improved understanding of the

distributional properties of other semiparametric estimators that depend nonlinearly on a

nonparametric component.

These results are based on a stochastic expansion retaining a “quadratic” term that is

treated as a “remainder” term in conventional derivations. Retaining this term not only

permits the relaxation of suffi cient (bandwidth) conditions for asymptotic linearity, but also

enables us to establish necessity of these suffi cient conditions in some cases and, most impor-

tantly, characterize the consequences of further relaxing the bandwidth conditions. Indeed,

the third (and possibly most important) type of result we obtain shows that in general the

nonlinear dependence on a nonparametric estimator gives rise to a nontrivial “bias” term

in the stochastic expansion of the semiparametric estimator. Being a manifestation of the

well known curse of dimensionality of nonparametric estimators, this “nonlinearity bias”is

a generic feature of nonlinear functionals of nonparametric estimators whose presence can

have an important impact on distributional properties of such functionals.

Because the “nonlinearity bias”is due to the (large) variance of nonparametric estimators,

attempting to remove it by means of conventional bias reduction methods aimed at reducing

“smoothing”bias, such as increasing the order of the kernel, does not work. Nevertheless, it
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turns out that this “nonlinearity bias”admits a polynomial expansion (in the bandwidth),

suggesting that it should be amenable to elimination by means of the method of generalized

jackknifing (Schucany and Sommers (1977)). Making this intuition precise is the purpose

of the final type of result presented herein. Although some details of this result are specific

to our weighted average derivative estimator, the main message is of much more general

validity. Indeed, an inspection of the derivation of the result suggests that the fact that

removal of “nonlinearity bias”can be accomplished by means of generalized jackknifing is a

property shared by most (if not all) kernel-based semiparametric two-step estimators.

Our results are closely related and contribute to the important literature on semipara-

metric averaged derivatives (Stoker (1986); see also, e.g., Härdle and Stoker (1989), Härdle,

Hart, Marron, and Tsybakov (1992) and Horowitz and Härdle (1996)), in particular shedding

new light on the problem of semiparametric weighted average derivative estimation (Newey

and Stoker (1993)). This problem has wide applicability in statistics and econometrics, as

we further discuss in the following section. This problem is conceptually and analytically

different from the problem of semiparametric density-weighted average derivatives because

a kernel-based density-weighted average derivative estimator depends on the nonparamet-

ric ingredient in a linear way (Powell, Stock, and Stoker (1989)), while the kernel-based

weighted average derivative estimator has a nonlinear dependence on a nonparametric esti-

mator. As a consequence, the alternative first-order distributional approximation obtained

in Cattaneo, Crump and Jansson (2010, 2011) for a kernel-based density-weighted average

derivatives estimator is not applicable to the estimator studied herein and our main find-

ings are qualitatively different from those obtained in our earlier work. Indeed, a crucial

finding in this paper is that considering “small bandwidth asymptotics”for the kernel-based

weighted average derivative estimator leads to a first-order bias contribution to the distri-

butional approximation (rather than a first-order variance contribution, as in the case of

the kernel-based density-weighted average derivative estimator), which in turn requires bias-
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correction of the estimator (rather than adjustment of the standard-error estimates, as in

the case of the kernel-based density-weighted average derivative estimator).

From a more general perspective, our findings are also connected to other results in the

semiparametric literature. Mammen (1989) studies the large sample properties of a nonlin-

ear least-squares estimator when the (effective) dimension of the parameter space is allowed

to increase rapidly, and finds a first-order bias effect qualitatively similar to the one char-

acterized herein. The “nonlinearity bias”we encounter is also analogous in source to the

so-called “degrees of freedom bias” discussed by Ichimura and Linton (2005) for the case

of a univariate semiparametric estimation problem, but due to the different nature of our

asymptotic experiment its presence has first-order consequences herein. Non-negligible bi-

ases in models with covariates of large dimension (i.e., “curse of dimensionality”effects of

first order) were also found by Abadie and Imbens (2006), but in the case of their matching

estimator the bias in question does not seem to be attributable to nonlinearities. Finally,

the recent work of Robins, Li, Tchetgen, and van der Vaart (2008) on higher-order influence

functions is also related to our results insofar as it relaxes the underlying convergence rate

requirement for the nonparametric estimator. Whereas Robins, Li, Tchetgen, and van der

Vaart (2008) are motivated by a concern about the plausibility of the smoothness condi-

tions needed to guarantee existence of n1/4-consistent nonparametric estimators in models

with large-dimensional covariates, our work seeks to relax this underlying convergence rate

requirement for the nonparametric estimator in order to improve the accuracy of the distrib-

utional approximation even in cases where lots of smoothness is assumed. Indeed, our results

highlight the presence of a leading, first-order bias term that is unrelated to the amount of

smoothness assumed (but clearly related to the dimensionality of the covariates).

The paper proceeds as follows. Section 2 introduces the model and estimator(s) under

study. Our main theoretical results are presented in Section 3, while some Monte Carlo

results are given in Section 4. Section 5 offers concluding remarks. Appendix A contains
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proofs of the theoretical results, while Appendix B contains some auxiliary results (of possibly

independent interest) about uniform convergence of kernel estimators.

2. Preliminaries

2.1. Model and Estimand. We assume that zi = (yi, x
′
i)
′, i = 1, . . . , n, are i.i.d. ob-

served copies of a vector z = (y, x′)′, where y ∈ R is a dependent variable and x ∈ Rd is

a continuous explanatory variable with density f(·). A weighted average derivative of the

regression function g (x) = E[y|x] is defined as

θ = E
[
w(x)

∂

∂x
g(x)

]
, (1)

where w (x) is a known scalar weight function. (Further restrictions on w(·) will be imposed

below.) This is an important estimand which has been widely considered in both theoretical

and empirical work, as we discuss in the following well-known examples.

Example 1: Semi-linear Single-Index Models. Let x = (x′1, x
′
2)
′ and g(x) = G(x′1β, x2)

with G(·) unknown and partition θ conformably with x as θ = (θ′1, θ
′
2)
′. Under appro-

priate assumptions, the parameter of interest β is proportional to θ1 because

θ1 = E
[
w(x)Ġ1(x

′
1β, x2)

]
β, Ġ1(u, x2) =

∂

∂u
G(u, x2).

This setup covers several problems of interest. For example, single-index limited de-

pendent variable models (e.g., discrete choice, censored and truncated models) are

included with G(x′1β, x2) = φ(x′1β), possibly x1 = x, and φ(·) the so-called link func-

tion. Another class of problems fitting in this example are partially linear models where

G(x′1β, x2) = φ1(x
′
1β + φ2(x2)) with φ1(·) a link function and φ2(·) another unknown

function. For further discussion on these and related examples see, e.g., Stoker (1986),

Härdle and Stoker (1989), Newey and Stoker (1993) and Powell (1994). �
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Example 2: Non-Separable Models. Let x = (x′1, x
′
2)
′ and y = m(x1, ε) with m(·) un-

known and ε an unobserved random variable. Under appropriate assumptions, includ-

ing x1 ⊥⊥ ε | x2, a population parameter of interest is given by

θ1 = E
[
w(x)

∂

∂x1
m(x1, ε)

]
= E

[
w(x)

∂

∂x1
g(x1, x2)

]
,

which captures the (averaged) marginal effect of x1 onm(·) over the population (x′1, ε)
′.

As in the previous example, θ1 is the first component of the weighted average derivative

θ partitioned conformably with x. The parameter θ1 is of interest in policy analysis

and treatment effect models. A canonical example is given by the linear random

coeffi cients model y = β0(ε) + x′1β1(ε), where the parameter of interest reduces to

θ1 = E [w(x)β1(ε)] under appropriate assumptions. (When w(x) = 1, θ1 is the so-called

average partial effect.) For further discussion on averaged derivatives in non-separable

models see, e.g., Matzkin (2007) and Imbens and Newey (2009). �

Example 3: Applications in Economics. In addition to the examples discussed above,

which are statistical in nature, weighted average derivatives have also been employed

in several specific economic applications that do not necessarily fit the previous se-

tups. Some examples are: (i) Stoker (1989) proposed several tests statistics based on

averaged derivatives obtained from economic-theory restrictions such as homogeneity

or symmetry of cost functions, (ii) Härdle, Hildenbrand, and Jerison (1991) developed

a test for the law of demand using weighted average derivatives, (iii) Deaton and Ng

(1998) employed averaged derivatives to estimate the effect of a tax and subsidy policy

change on individuals’behavior, and (iv) Coppejans and Sieg (2005) developed a test

for non-linear pricing in labor markets based on averaged derivatives obtained from

utility maximization. �
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The previous examples highlight the applicability of weighted average derivatives in sta-

tistics and econometrics. The next section introduces the kernel-based estimator studied in

this paper, and reviews some known results in the literature.

2.2. Estimator and Known Results. Newey and Stoker (1993) studied estimands of

the form (1) and gave conditions under which the semiparametric variance bound for θ is

Σ = E[ψ(z)ψ(z)′], (2)

where ψ (·), the pathwise derivative of θ, is given by

ψ(z) = w(x)
∂

∂x
g(x)− θ + [y − g(x)] s(x),

s(x) = − ∂

∂x
w(x) + w(x)`(x), `(x) = −∂f(x)/∂x

f(x)
.

The following assumption, which we make throughout the paper, guarantees existence of

the parameter θ and semiparametrically effi cient estimators thereof.

Assumption 1. (a) For some S ≥ 2, E[|y|S] <∞ and E[|y|S|x]f(x) is bounded.

(b) E[ψ(z)ψ(z)′] is positive definite.

(c) w is continuously differentiable, and w and its first derivative are bounded.

(d) infx∈W f(x) > 0, where W =
{
x ∈ Rd : w(x) > 0

}
.

(e) For some Pf ≥ 2, f is (Pf + 1) times differentiable, and f and its first (Pf + 1)

derivatives are bounded.

(f) g is continuously differentiable, and e and its first derivative are bounded, where

e(x) = f(x)g(x).

(g) lim‖x‖→∞ [f(x) + |e(x)|] = 0, where ‖·‖ is the Euclidean norm.

The restrictions imposed by Assumption 1 are fairly standard and relatively mild, with
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the possible exception of the “fixed trimming”condition in part (d). This condition simplifies

the exposition in our paper, allowing us to avoid tedious technical arguments. It may be

relaxed to allow for non-random asymptotic trimming, but we decided not to pursue this

extension to avoid cumbersome notation and other associated technical distractions.

Under Assumption 1 it follows from integration by parts that θ = E [ys (x)]. A kernel-

based analog estimator of θ is therefore given by

θ̂n(hn) =
1

n

n∑
i=1

yiŝn(xi;hn), ŝn(xi;hn) = − ∂

∂x
w(x)− w(x)

∂f̂n(x;hn)/∂x

f̂n(x;hn)
,

where

f̂n(x;hn) =
1

nhdn

n∑
j=1

K

(
x− xj
hn

)

for some kernel K : Rd → R and some positive (bandwidth) sequence hn. As defined, θ̂n de-

pends on the user-chosen objectsK and hn, but because our main interest is in the sensitivity

of the properties of θ̂n with respect to the bandwidth hn, we suppress the dependence of θ̂n

on K in the notation (and make the dependence on hn explicit). The following assumption

about the kernel K will be assumed to hold.

Assumption 2. (a) K is even.

(b) K is twice differentiable, and K and its first two derivatives are bounded.

(c)
∫
Rd ‖K̇ (u) ‖(1 + ‖u‖2)du <∞, where K̇(u) = ∂K(u)/∂u.

(d) For some PK ≥ 2,
∫
Rd |K (u) |(1 + ‖u‖PK+1)du <∞ and

∫
Rd
ul11 · · ·u

ld
d K(u)du =

 1, if l1 = · · · = ld = 0,

0, if (l1, . . . , ld)
′ ∈ ∪PK−1k=1 Zd+(k),

where Zd+(k) =
{

(l1, . . . , ld)
′ ∈ Zd+ : l1 + . . .+ ld = k

}
.
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(e)
∫
Rd K̄(u)du <∞, where K̄(u) = sup‖r‖≥u ‖∂(K(r), K̇(r)′)/∂r‖.

With the possible exception of Assumption 2 (e), the restrictions imposed on the kernel

are fairly standard. Assumption 2 (e) is inspired by Hansen (2008) and holds if K has

bounded support or if K is a normal density-based higher-order kernel obtained as in, e.g.,

Robinson (1988).

If Assumptions 1 and 2 hold (with Pf and PK large enough) it is easy to give conditions

on the bandwidth hn under which θ̂n is asymptotically linear with influence function ψ (·) .

For instance, proceeding as in Newey (1994a, 1994b) it can be shown that if Assumptions 1

and 2 hold and if

nh2Pn → 0, P = min (Pf , PK) (3)

and
nh2d+4n

(log n)2
→∞, (4)

then

θ̂n(hn) = θ + n−1
n∑
i=1

ψ(zi) + op
(
n−1/2

)
. (5)

Moreover, under the same conditions the variance Σ in (2) is consistently estimable, as we

discussed in more detail in Section 3.3. The lower bound on hn implied by the condition (4)

helps ensure that the estimation error of the nonparametric estimator f̂n is op
(
n−1/4

)
in an

appropriate (Sobolev) norm, which in turn is a high-level assumption featuring prominently

in Newey’s (1994a) work on asymptotic normality of semiparametric m-estimators (and in

more recent refinements thereof, such as Chen, Linton, and van Keilegom (2003)).

This paper explores the consequences of employing bandwidths that are “small” in the

sense that (4) is violated. Four types of results will be derived. The first result, given in

Theorem 1 below, gives suffi cient conditions for (5) that involve a weaker lower bound on

hn than (4) . For d ≥ 3, the weaker lower bound takes the form nh2dn → ∞. The second
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result, given in Theorem 2 below, shows that nh2dn →∞ is also necessary for (5) to hold (if

d ≥ 3). More specifically, Theorem 2 finds that if d ≥ 3, then θ̂n has a non-negligible bias

when nh2dn 9∞. The third result, given in Theorem 3 below, shows that while nh2dn →∞ is

necessary for asymptotic linearity of θ̂n (when d ≥ 3), a bias-corrected version of θ̂n enjoys

the property of asymptotic linearity under the weaker condition

nh
3
2
d+1

n

(log n)3/2
→∞. (6)

Finally, Theorem 4 shows that a modest strengthening of Assumption 1 (a) is suffi cient to

obtain consistency of the conventional plug-in standard-error estimator even when the lower

bound on the bandwidth is given by (6).

Remark. Newey and McFadden (1994, pp. 2212-2214) establish asymptotic linearity of the

alternative kernel-based estimator

θ̌n(hn) =
1

n

n∑
i=1

w(xi)
∂

∂x
ĝn(xi;hn), ĝn(x;hn) =

1

nhdn

n∑
j=1

yjK

(
x− xj
hn

)
/f̂n(x;hn),

under (3)−(4) and assumptions similar to Assumptions 1 and 2. Their analysis requires

S ≥ 4 in order to handle the presence of ĝn. The fact that θ̂n does not involve ĝn enables

us to develop distribution theory for it under the seemingly minimal condition S = 2.

3. Results

Validity of the stochastic expansion (5) can be established by exhibiting an approximation

θ̂
A

n (say) to θ̂n satisfying the following trio of conditions:

θ̂n(hn)− θ̂An = op
(
n−1/2

)
, (7)

θ̂
A

n − E[θ̂
A

n ] = n−1
n∑
i=1

ψ(zi) + op
(
n−1/2

)
, (8)
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E[θ̂
A

n ]− θ = o
(
n−1/2

)
. (9)

Variations of this approach have been used in numerous papers, the typical choice being

to obtain θ̂
A

n by “linearizing” θ̂n with respect to the nonparametric estimator f̂n and then

establishing (7) by showing in particular that the estimation error of f̂n is op
(
n−1/4

)
in a

suitable norm. This general approach is now well-established in semiparametrics; see, e.g.,

Newey and McFadden (1994, Section 8), Ichimura and Todd (2007, Section 7), Chen (2007,

Section 4), and references therein.

3.1. Asymptotic Linearity: Linear vs. Quadratic Approximations. In the con-

text of averaged derivatives, conventional “linearization”amounts to setting θ̂
A

n equal to

θ̂
∗
n(hn) = n−1

n∑
i=1

yiŝ
∗
n(xi;hn),

where

ŝ∗n(xi;hn) = s(x)− w(x)

f(x)

[
∂

∂x
f̂n(x;hn) + `(x)f̂n(x;hn)

]
is obtained by linearizing ŝn with respect to f̂n. With this choice of θ̂

A

n , conditions (7)− (9)

will hold if Assumptions 1 and 2 are satisfied and if (3)− (4) hold. In particular, (4) serves

as part of what would appear to be the best known suffi cient condition for the estimation

error of f̂n (and its derivative) to be op
(
n−1/4

)
, a property which in turn is used to establish

(7) when θ̂
A

n = θ̂
∗
n(hn).

In an attempt to establish (7) under a bandwidth condition weaker than (4), we set θ̂
A

n

equal to a “quadratic”approximation to θ̂n (hn) given by

θ̂
∗∗
n (hn) = n−1

n∑
i=1

yiŝ
∗∗
n (xi;hn),
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where

ŝ∗∗n (xi;hn) = ŝ∗n(xi;hn) +
w(x)

f(x)2

[
f̂n(x;hn)− f(x)

] [ ∂
∂x
f̂n(x;hn) + `(x)f̂n(x;hn)

]
.

The use of a quadratic approximation to θ̂n gives rise to a “cubic” remainder in (7),

suggesting that it suffi ces to require that the estimation error of f̂n (and its derivative)

be op
(
n−1/6

)
. In fact, the proof of the following result shows that the somewhat special

structure of the estimator (i.e., the fact that ŝn is linear in the derivative of f̂n) can be

exploited to establish suffi ciency of a slightly weaker condition.

Theorem 1. Suppose Assumptions 1 and 2 are satisfied and suppose (3) holds. Then (5)

is true if either (i) d = 1 and nh3n → ∞, (ii) d = 2 and nh4n/ (log n)3/2 → ∞, or (iii) d ≥ 3

and nh2dn →∞.

The proof of Theorem 1 verifies (7)− (9) for θ̂
A

n = θ̂
∗∗
n (hn). Because the lower bounds on

hn imposed in cases (i) through (iii) are weaker than (4) in all cases, working with θ̂
∗∗
n when

analyzing θ̂n has the advantage that it enables us to weaken the suffi cient conditions for

asymptotic linearity to hold on the part of θ̂n. Notably, existence of a bandwidth sequence

satisfying the assumptions of Theorem 1 holds whenever P > d, a weaker requirement than

the restriction P > d + 2 implied by the conventional conditions (3) − (4). In other words,

Theorem 1 justifies the use of kernels of lower order, and thus requires less smoothness on

the part of the density f , than do analogous results obtained using θ̂
A

n = θ̂
∗
n (hn). Moreover,

working with θ̂
∗∗
n enables us to derive necessary conditions for (5) in some cases.

Theorem 2. Suppose Assumptions 1 and 2 are satisfied and suppose (3) and (6) hold. Then

E[θ̂
∗∗
n (hn)]− θ = n−1h−dn B0 + o

(
n−1/2 + n−1h−dn

)
, (10)
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where

B0 =

(
−K(0)Id +

∫
Rd

[
K(u)2Id +K(u)K̇(u)u′

]
du

)∫
Rd
g(r)w(r)`(r)dr.

Moreover,

θ̂n(hn)− E[θ̂
∗∗
n (hn)] = n−1

n∑
i=1

ψ(zi) + op
(
n−1/2

)
if either (i) d = 1 and nh3n →∞ or (ii) d ≥ 2.

The first part of Theorem 2 is based on an asymptotic expansion of the approximate bias

E[θ̂
∗∗
n (hn)] − θ and shows that, in general, the condition nh2dn → ∞ is necessary for (9) to

hold when θ̂
A

n = θ̂
∗∗
n (hn). (We know of no “popular”kernels and/or “plausible”examples of

g (·), w (·), and ` (·) for which B0 = 0.) The second part of Theorem 2 verifies (7) − (8) for

θ̂
A

n = θ̂
∗∗
n (hn) and can be combined with the first part to yield the result that the suffi cient

condition nh2dn →∞ obtained in Theorem 1 (iii) is also necessary (in general) when d ≥ 3.

To interpret the matrix B0 in the (approximate) bias expression (10), it is instructive to

decompose it as B0 = B∗0 + B∗∗0 , where

B∗0 = −K(0)

∫
Rd
g(r)w(r)`(r)dr

and

B∗∗0 =

(∫
Rd

[
K(u)2Id +K(u)K̇(u)u′

]
du

)∫
Rd
g(r)w(r)`(r)dr.

The term B∗0 is a “leave in”bias term arising because each ŝn(xi;hn) employs a nonparametric

estimator ŝn which uses the own observation xi. The other bias term, B∗∗0 , is a “nonlinearity”

bias term reflecting the fact that ŝ∗∗n involves a nonlinear function of f̂n. The magnitude of

this nonlinearity bias is n−1h−dn . This magnitude is exactly the magnitude of the pointwise

variance of f̂n, which is no coincidence because ŝ∗∗n involves a term which is “quadratic”in
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f̂n. (The approximation ŝ∗∗n also involves a cross-product term in f̂n and its derivative which,

as shown in the proof of Lemma A-3, gives rise to a bias term of magnitude n−1h−dn when K

is even.)

The second part of Theorem 2 suggests that if d ≥ 3, then a bias-corrected version of θ̂n

might be asymptotically linear even if the condition nh2dn →∞ is violated.

Remarks. (i) The leave-in-bias can be avoided simply by employing a “leave-one-out”es-

timator of f when forming ŝn. (B∗0 = 0 when K(0) = 0.)

(ii) Merely removing leave-in-bias does not automatically render θ̂n asymptotically lin-

ear unless nh2dn →∞, however, as the nonlinearity bias of the leave-one-out version of

θ̂n is identical to that of θ̂n itself. (B0 = B∗∗0 6= 0 when K(0) = 0.)

(iii) Manipulating the order of the kernel (PK) does not eliminate the nonlinearity bias,

as its magnitude is invariant with respect to the order of the kernel. (B∗∗0 6= 0 for all

PK ≥ 2.)

3.2. Asymptotic Linearity under Non-standard Conditions. The method of gen-

eralized jackknifing can be used to arrive at an estimator θ̃n (say) whose (approximate)

bias is suffi ciently small also when nh2dn 9 ∞. It can be shown that if the assumptions of

Theorem 2 hold, then the (approximate) bias E[θ̂
∗∗
n (hn)] − θ admits a polynomial (in hn)

expansion of the form

E[θ̂
∗∗
n (hn)]− θ = n−1h−dn B0 +

b(P−1)/2c∑
j=1

n−1h2j−dn B∗∗j + o
(
n−1/2

)
, (11)

where
{
B∗∗j : 1 ≤ j ≤ b(P − 1) /2c

}
are constants capturing (higher order) nonlinearity bias.

Accordingly, let J be a positive integer with J < 1 + d/2, let c = (c0, . . . , cJ)′ be a vector of
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distinct constants with c0 = 1, and define



λ0 (c)

λ1 (c)

...

λJ (c)


=



1 1 · · · 1

1 c−d1 · · · c−dJ
...

...
. . .

...

1 c
2(J−1)−d
1 · · · c

2(J−1)−d
J



−1

1

0

...

0


.

It follows from (11) that if the assumptions of Theorem 2 hold and if J ≥ (d− 2) /8, then

J∑
j=0

λj (c)E[θ̂
∗∗
n (cjhn)]− θ = o

(
n−1/2

)
.

As a consequence, we have the following result about the (generalized jackknife) estimator

θ̃n(hn, c) =
J∑
j=0

λj(c)θ̂n(cjhn).

Theorem 3. Suppose Assumptions 1 and 2 are satisfied and suppose (3) and (6) hold. If

(d− 2) /8 ≤ J < 1 + d/2, then

θ̃n (hn, c) = θ + n−1
n∑
i=1

ψ (zi) + op
(
n−1/2

)
if either (i) d = 1 and nh3n →∞ or (ii) d ≥ 2.

Theorem 3 gives a simple recipe for constructing an estimator of θ which is semipara-

metrically effi cient under relatively mild restrictions on the rate at which the bandwidth hn

vanishes.

Remarks. (i) An alternative, and perhaps more conventional, method of bias correction

would employ (nonparametric) estimators of B0 and
{
B∗∗j
}
and subtract an estimator
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of E[θ̂
∗∗
n (hn)] − θ from θ̂n (hn) . In our view, generalized jackknifing is attractive from

a practical point of view precisely because there is no need to explicitly (characterize

and) estimate complicated functionals such as B0 and
{
B∗∗j
}
.

(ii) Our results demonstrate by example that a more nuanced understanding of the

bias properties of θ̂n can be achieved by working with a “quadratic” (as opposed to

“linear”) approximation to it. It is conceptually straightforward to go further and work

with a “cubic”approximation (say) to θ̂n. Doing so would enable a further relaxation of

the bandwidth condition at the expense of a more complicated “bias”expression, but

would not alter the fact that generalized jackknifing could be used to eliminate also the

bias terms that become non-negligible under the relaxed bandwidth conditions. The

small simulation evidence presented in Section 4 suggests that eliminating the biases

characterized in (11) suffi ces for the purposes of rendering the bias of the estimator

negligible relative to its standard deviation in many cases, so for brevity we omit results

based on a “cubic”approximation to θ̂n.

3.3. Standard Errors. The results presented above describe a novel approach to obtain

a first-order asymptotic linear approximation for θ̂n(hn) even when the classical conditions

imposed in the literature are not satisfied. For inference purposes it is important to also

have a consistent standard-error estimator. If Assumptions 1 and 2 hold, and under the

conventional bandwidth restrictions (3)− (4), it is not diffi cult to show that the asymptotic

variance Σ in (2) is consistently estimable. Specifically, it follows from Theorem 4 below

that

Σ̂n =
1

n

n∑
i=1

ψ̂n(zi)ψ̂n(zi)
′ →p Σ, (12)

where

ψ̂n(z) = ψ̂n(z;hn) = w(x)
∂

∂x
ĝn(x;hn)− θ̂n(hn) + [y − ĝn(x;hn)] ŝn(x;hn),
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ĝn(x;hn) =
1

nhdn

n∑
j=1

yjK

(
x− xj
hn

)
/f̂n(x;hn).

Importantly, parts (ii) and (iii) of the following result establishes consistency of the

variance estimator Σ̂n under the same weaker conditions on the bandwidth entertained in

the previous section.

Theorem 4. Suppose Assumptions 1 and 2 are satisfied and suppose (3) and (6) hold. Then

(12) is true if either (i) S = 2 and nh2d+2n / (log n)2 → ∞, (ii) d = 1, nh3n → ∞, and S > 3,

or (iii) S ≥ 3 + 2/d.

Part (i) of the theorem gives a condition (on hn) for consistency of Σ̂n under the (seem-

ingly) minimal moment requirement that S = 2, while parts (ii) and (iii) gives conditions

(on S) for consistency of Σ̂n to hold under the assumptions of Theorem 3. The proof of

Theorem 4 utilizes a (seemingly) novel uniform consistency result kernel estimators (and

their derivatives), given in Appendix B. It does not seem possible to establish part (i) using

existing uniform consistency results for kernel estimators, as we are unaware of any such

results (for objects like ĝn) that require only S = 2. For instance, a proof of (12) based

on Newey (1994b, Lemma B.1) requires S > 4 − 4/ (d+ 2) when the lower bound on the

bandwidth is of the form nh2d+2n / (log n)2 →∞. (When the lower bound on the bandwidth is

of the form (6), Newey (1994b, Lemma B.1) can be applied if d ≥ 2 and S > 6− 8/ (d+ 2).)

4. Small Simulation Study

We conducted a small Monte Carlo experiment to investigate the finite-sample properties of

our procedure for weighted average derivatives. We report results for both the conventional

estimator θ̂n (hn) and the generalized jackknife estimator θ̃n (hn, c).

The data generating process is a Tobit model yi = ỹi1 {ỹi ≥ 0} with ỹi = x′iβ + εi, so

that θ = β E [w (x) Φ (x′β)], where Φ (·) is the standard normal cdf. We assume that εi ∼

i.i.d. N (0, 1) and are independent of the covariates. The dimension of the covariates, d, is
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set equal to three and all three components of β are set to unity. The vector of covariates

is generated as xi ∼ i.i.d. N (0, I3). For simplicity, only results for the first component of

θ = (θ1, θ2, θ3)
′ are reported. As for the choice of weight function, we use

w(x; γ, κ) =
d∏
j=1

exp

[
−

x2κj

τ(γ)2κ
(
τ(γ)2κ − x2κj

)]1{|xj| < τ(γ)}.

The parameter κ governs the degree of approximation between w (·) and the rectangular

function, the approximation becoming more precise as κ grows. (Being discontinuous, w (·)

violates Assumption 1(c), so strictly speaking our theory does not cover the chosen weight

function.) For specificity, we set κ = 2. Keeping in mind that the covariates are jointly

standard normal, the trimming parameter τ (γ) is given by τ(γ) = Φ−1
(
1− (1− d

√
1− γ)/2

)
,

where γ is the (symmetric) nominal amount of trimming (i.e., γ = 0.15 implies a nominal

trimming of 15% of the observations).

The number of simulations is set to S = 1, 000, and we consider samples of size n = 200.

We report results implemented by Gaussian density-based multiplicative kernels with P = 4.

(Note that since d = 3, choice of P = 4 not would not be available under the conventional

conditions (3) —(4).) In these simulations we choose a value of γ equal to γ = 0.15. Finally,

when implementing the generalized jackknife estimator we consider pairs of constants of the

form, (c1, c2) = (exp(−δ), exp(δ)) where δ ∈ {0.05, 0.10}; however, it should be noted that

the qualitative conclusions are little changed for other choices of jackknife constants.

Figure 1 presents graphs of the standardized bias of each estimator, θ̂n (hn) and θ̃n (hn, c),

for a grid of bandwidth choices hn. The standardized bias is defined as the bias divided by

the standard deviation of the estimator across all S simulations, where the purpose of the

rescaling is to improve the interpretability of the bias results. Specifically, this rescaling

ensures that the severity (or otherwise) of bias problems can be gauged simply by looking

at the graph and utilizing well known facts about the standard normal distribution used
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for approximation purposes when constructing the confidence intervals. Consistent with

our theory, the conventional estimator is severely biased whereas there is a region of small

bandwidths for which the generalized jackknife estimator has negligible (normalized) bias.

These results highlight the potential sensitivity of the conventional estimator to perturbations

of the bandwidth choice, which in the case of the weighted average derivatives leads to a

non-trivial bias for “small”bandwidths, and therefore a clear need for bias correction.

Figure 2 illustrates the quality of the normal approximation to the distribution of the

t-statistic. Here we estimate a smoothed density of the t-statistic which has been normalized

by its (simulation) standard deviation so that the variance is one. In each figure, we consider

a choice of bandwidth that leads to the best possible empirical coverage rate for the corre-

sponding confidence interval. For example, for a sample size of n = 200 the t-statistic density

is estimated using the a choice of bandwidth of hn = 0.275 and hn = 0.85 for the generalized

jackknife estimator (δ = 0.05) and conventional estimator, respectively. For simplicity, in

this simulations we did not explore the performance of “optimal”bandwidth selectors, but

rather decided to focus on the “best case scenario”for this Monte Carlo experiment. Both

figures suggest that the densities are well-approximated by the normal distribution. More-

over, and consistent with the evidence presented in Figure 1, the estimated density for the

normalized t-statistic based on θ̃n (hn, c) is approximately centered correctly while this is not

the case for the conventional estimator θ̂n (hn).

Finally, we also explored the empirical coverage rates of the conventional and bias-

corrected t-statistics. We found that neither the conventional nor the jackknife estimator

succeeded in achieving empirical coverage rates near the nominal rate. This finding, to-

gether with the results reported above, suggests that the lack of good empirical coverage

of the associated confidence intervals for the generalized jackknife procedure is due to the

poor performance of the classical variance estimator commonly employed in the literature.

Indeed, in the case of the conventional procedure, we found that both the bias properties and
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the performance of this variance estimator seem to be at fault for the disappointing empir-

ical coverage rates found in the simulations. Further investigation into alternative variance

estimation procedures, although beyond the scope of this paper, is underway.
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5. Conclusion

This paper has revisited the large-sample properties of a kernel-based weighted average deriv-

ative estimator. In important respects this estimator can be viewed as a representative mem-

ber of the much larger class of (kernel-based) semiparametricm-estimators. In particular, the

“nonlinearity bias”highlighted by our development of asymptotics with smaller-than-usual

bandwidths (i.e., larger-than-usual undersmoothing) is a generic feature of nonlinear func-

tionals of nonparametric estimators and is likely to be quantitatively important in samples

of moderate size also for estimators other than the one studied in this paper.

To remove this “nonlinearity bias”, we have employed the method of generalized jackknif-

ing. Being “semi-automatic”in the sense that it requires knowledge only of the magnitudes

of the terms in an asymptotic expansion of the “nonlinearity bias”, that same method should

be easily applicable whenever the nonparametric ingredient is a kernel estimator, as the vari-

ance properties of kernel estimators are very well understood. Partly because certain popu-

lar nonparametric estimators (notably series estimators) have variance properties that seem

harder to analyze than those of kernel estimators, it would be useful to know if the validity

of certain “fully automatic”bias correction methods and/or distributional approximations

can be established under assumptions similar to those entertained in this paper.

6. Appendix A: Proofs

This appendix gives the proofs of Theorems 1-3. We first state four lemmas, the proofs of

which are available in the supplemental appendix. We then employ these lemmas, together

with the results for kernel-based estimators outlined in Appendix B, to prove the main

theorems.
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6.1. Useful lemmas. The first lemma gives suffi cient conditions for (7) in terms of the

magnitudes of

∆0,n(hn) = sup
x∈W

∣∣∣f̂n(x;hn)− f(x)
∣∣∣

and

∆1,n(hn) = max

{
∆0,n(hn), sup

x∈W

∥∥∥∥ ∂∂xf̂n(x;hn)− ∂

∂x
f(x)

∥∥∥∥} .
Lemma A-1. Suppose Assumption 1 is satisfied and suppose ∆0,n(hn) = op (1) . Then (7)

is true if either (i) θ̂
A

n = θ̂
∗∗
n (hn) and ∆0,n(hn)2∆1,n(hn) = op

(
n−1/2

)
or (ii) θ̂

A

n = θ̂
∗
n (hn) and

∆0,n(hn)∆1,n(hn) = op
(
n−1/2

)
.

The next result gives suffi cient conditions for (8) .

Lemma A-2. Suppose Assumptions 1 and 2 are satisfied and suppose hn → 0 and nhd+2n →

∞. Then (8) is true for θ̂
A

n = θ̂
∗∗
n (hn) and θ̂

A

n = θ̂
∗
n (hn) .

The following result can be used to evaluate E[θ̂
A

n (hn)]− θ.

Lemma A-3. Suppose Assumptions 1 and 2 are satisfied and suppose hn → 0. Then

E
[
θ̂
∗
n (hn)

]
− θ = n−1h−dB∗0 +O

(
hPn
)
,

and

E
[
θ̂
∗∗
n (hn)− θ̂∗n (hn)

]
=

b(P−1)/2c∑
j=0

n−1h2j−dn B∗∗j +O
(
n−1hP−dn + n−2h−2dn + h2Pn

)
,

where, for j ≥ 1,

B∗∗j =
1

(2j)!

∑
l∈Zd+(2j)

BK (l)Bz (l) +
1

(2j + 1)!

∑
l∈Zd+(2j+1)

ḂK (l) Ḃz (l) ,
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BK (l) =

∫
Rd
ul11 · · ·u

ld
d K (u)2 du, Bz (l) =

∫
Rd
g (r)

w (r)

f (r)
` (r)

∂j

∂rl11 · · · ∂r
ld
d

f (r) dr,

ḂK (l) =

∫
Rd
ul11 · · ·u

ld
d K (u) K̇ (u) du, Ḃz (l) = −

∫
Rd
g (r)

w (r)

f (r)

∂j

∂rl11 · · · ∂r
ld
d

f (r) dr.

The last lemma collects basic results about kernels-based integrals. Let K (x;h) =

h−dK (x/h) and K̇ (x;h) = ∂K (x;h) /∂x.

Lemma A-4. Suppose Assumptions 1 and 2 are satisfied and suppose hn → 0. Then

(a) Uniformly in x ∈ W ,

b (x;hn) =

∫
Rd
K (x− r;hn) f (r) dr − f (x) = O

(
hPn
)
,

ḃ (x;hn) =

∫
Rd
K̇ (x− r;hn) f (r) dr − ∂f (x) /∂x = O

(
hPn
)
.

(b) For any function F with E[F (z)2] <∞,

E
[
F (z1)

2K (x1 − x2;hn)2
]

= O
(
h−dn
)
,

E
[
F (z1)

2
∥∥∥K̇ (x1 − x2;hn)

∥∥∥2] = O
(
h−(d+2)n

)
.

(c) For any function F with E[F (z)2] <∞,

E
[
F (z1)

2K (x1 − x2;hn)2K (x1 − x3;hn)2
]

= O
(
h−2dn

)
,

E
[
F (z1)

2K (x1 − x2;hn)2
∥∥∥K̇ (x1 − x3;hn)

∥∥∥2] = O
(
h−2(d+1)n

)
.

6.2. Proof of Theorems 1-3. Under the assumptions of the theorems, (7) − (8) hold

for θ̂
A

n = θ̂
∗∗
n (hn) . Validity of (8) follows from Lemma A-2, while (7) follows from Lemma
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A-1 because it can be shown that

sup
x∈W

∣∣∣f̂n (x;hn)− f (x)
∣∣∣ = Op

(
hPn +

√
log n

nhdn

)
(A-1)

and

sup
x∈W

∥∥∥∥ ∂∂xf̂n (x;hn)− ∂

∂x
f (x)

∥∥∥∥ = Op

(
hPn +

√
log n

nhd+2n

)
. (A-2)

Specifically, (A-1) holds because supx∈W

∣∣∣E[f̂n (x;hn)]− f (x)
∣∣∣ = O

(
hPn
)
by Lemma A-4

(a) and because

sup
x∈W

∣∣∣f̂n (x;hn)− E[f̂n (x;hn)]
∣∣∣ = Op

(√
log n

nhdn

)

by Lemma B-1 with (Y,X) = (1, x), κ = K, and Xn =W. Similarly, (A-2) can be shown by

applying Lemma A-4 (a) and Lemma B-1 (with κ (u) = hn∂K(u)/∂ul for l = 1, . . . , d).

Theorem 1 is a special case of Theorem 2. To complete the proof of Theorem 2, use

Lemma A-3 to verify (9). Similarly, the proof of Theorem 3 can be completed by using

Lemma A-3 to verify (11). �

6.3. Proof of Theorem 4. It suffi ces to show that

1

n

n∑
i=1

∥∥∥ψ̂n (zi)− ψ (zi)
∥∥∥2 = op (1) .

To do so, it suffi ces to show that

θ̂n (hn)− θ = op (1) , (A-3)

sup
x∈W
‖ŝn (x;hn)− s (x)‖ = op (1) , (A-4)

sup
x∈W
‖ĝn (x;hn)− g (x)‖ = op (1) , (A-5)
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sup
x∈W

∥∥∥∥ ∂∂xĝn (x;hn)− ∂

∂x
g (x)

∥∥∥∥ = op (1) , (A-6)

It follows from Theorem 2 and its proof that (A-3) —(A-4) hold. Also, Lemma B-1 (with

(Y,X) = (y, x) , s = S, κ = K, and Xn = W) and routine arguments can be used to

show that if Assumptions 1 and 2 are satisfied and if (3) and (6) hold, then (A-5) will be

implied by n1−1/Shdn/ log n → ∞. Similarly, (A-6) can be established under the condition

n1−1/Shd+1n / log n→∞. The latter holds if condition (i), (ii), or (iii) in the statement of the

theorem is satisfied. �

7. Appendix B: Uniform Convergence Rates for Kernel Estimators

This Appendix derives uniform convergence rates for kernel estimators. Lemma B-1 is used

in the proofs of the main results of this paper. Because this result may be of independent

interest, it is stated at a (slightly) greater level of generality than needed in the proofs of

the other results in this paper.

Suppose (Yi, X
′
i)
′, i = 1, . . . , n, are i.i.d. copies of (Y,X ′)′, where X ∈ Rd is continuous

with density fX (·) . Consider the nonparametric estimator

Ψ̂n (x) = n−1h−dn

n∑
j=1

Yjκ

(
x−Xj

hn

)
,

where hn is a bandwidth sequence and κ : Rd → R is a kernel-like function. To obtain

uniform convergence rates for Ψ̂n, we make the following assumptions.

Assumption B1. For some s ≥ 2, E[|Y |s] + supx∈Rd E[|Y |s|X = x]fX (x) <∞.

Assumption B2. (a) supu∈Rd |κ(u)|+
∫
Rd |κ(u)| du <∞.

(b) κ admits a δκ > 0 and a function κ∗ : Rd → R+ with supu∈Rd κ
∗(u)+

∫
Rd κ

∗(u)du <

∞, such that |κ(u)− κ(u∗)| ≤ ‖u− u∗‖κ∗(u∗) whenever ‖u− u∗‖ ≤ δκ.
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Remark. Assumption B2(b) is adapted from Hansen (2008). It holds if κ is differentiable

with κ̄ (0) +
∫
Rd κ̄(u)du <∞, where κ̄(u) = sup‖r‖≥u ‖∂κ(r)/∂r‖.

The first result gives an upper bound on the convergence rate of Ψ̂n on (possibly) ex-

panding sets of the form Xn =
{
x ∈ Rd : ‖x‖ ≤ CX,n

}
, where CX,n is a positive sequence

satisfying

limn→∞
log (CX,n)

log n
<∞. (B-1)

Lemma B-1. Suppose Assumptions B1 and B2 are satisfied and suppose (B-1) holds. If

hn → 0 and n1−1/shdn/ log n→∞, then

sup
x∈Xn

∣∣∣Ψ̂n (x)−Ψn (x)
∣∣∣ = Op (ρn) , ρn =

√
log n

nhdn
max

(
1,

√
log n

n1−2/shdn

)
,

where Ψn (x) = E
[
Ψ̂n (x)

]
.

Remark. The natural “s =∞”analog of Lemma B-1 holds if Y is bounded (e.g., if Y ≡ 1,

as in the case of density estimation). In other words, the lower bound nhdn/ log n→∞

suffi ces and ρn can be set equal to
√

log n/ (nhdn) when Y is bounded.

Lemma B-1 generalizes Newey (1994b, Lemma B.1) in a couple of respects. First, by

borrowing ideas from Hansen (2008) we are able to accommodate kernels with unbounded

support and to establish uniform convergence over certain types of expanding sets. More

importantly (for our purposes at least), Lemma B-1 relaxes the condition n1−2/shdn/ log n→

∞ imposed by Newey (1994b, Lemma B.1). In typical applications of Newey (1994b, Lemma

B.1), a condition like s ≥ 4 is imposed in order to ensure that n1−2/shdn/ log n→∞ is implied

by “natural”conditions on hn, such as nh2dn / (log n)2 → ∞ (e.g., Newey (1994b, Theorem

4.2), Newey and McFadden (1994, Theorem 8.11)). In contrast, only s ≥ 2 is required for

the condition imposed in Lemma B-1 to be implied by nh2dn / (log n)2 →∞.
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If n1−2/shdn/ log n → 0, then the uniform rate obtained in Lemma B-1 falls short of the

“usual”rate
√
nhdn/ log n. This is potentially problematic if Lemma B-1 is used to establish

uniform convergence with a certain rate (e.g., n1/4 or n1/6, as in proofs of results such as

(7)). On the other hand, the slower rate of convergence is of no concern when any rate of

convergence will do (as in proofs of consistency results such as (12)).

Because of their ability to control bias in some cases, leave one out estimators of the form

Ψ̂n,i (x) =
1

(n− 1)hdn

n∑
j=1,j 6=i

Yjκ

(
x−Xj

hn

)

are sometimes of interest. The next result extends Lemma B-1 to such estimators.

Lemma B-2. Suppose Assumptions B1 and B2 are satisfied and suppose (B-1) holds. If

hn → 0 and n1−1/shdn/ log n→∞, then

max
1≤i≤n

sup
x∈Xn

∣∣∣Ψ̂n,i (x)−Ψn,i (x)
∣∣∣ = Op (ρn) , Ψn,i (x) = E[Ψ̂n,i (x)].

Another corollary of Lemma B-1 is the following result, which can be useful when uniform

convergence on the support of the empirical distribution of X suffi ces.

Lemma B-3. Suppose E[‖X‖sX ] < ∞ for some sX > 0 and suppose Assumptions B1 and

B2 are satisfied. If hn → 0 and n1−1/shdn/ log n→∞, then

max
1≤i≤n

∣∣∣Ψ̂n (Xi)−Ψn (Xi)
∣∣∣ = Op (ρn)

and

max
1≤i≤n

∣∣∣Ψ̂n,i (Xi)−Ψn,i (Xi)
∣∣∣ = Op (ρn) .

Remark. Lemmas B-2 and B-3 are not used elsewhere in the paper. We have included

them because they may be of independent interest.
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Supplemental Appendix to
“Generalized Jackknife Estimators of Weighted Average

Derivatives"
(Intended for web-publication.)

This supplement provides brief proofs for the Lemmas stated in the main text. Further

details on these proofs, and the proofs of Theorems 1 —3, are available upon request from

the authors.

1. Appendix A: Proofs

1.1. Proof of Lemma A-1. Expanding ŝn (x;hn) around s (x) , we have

ŝn (x;hn) = ŝ∗∗ (x;hn)− w (x)

f (x)2 f̂n (x;hn)
δn (x;hn)2

[
δ̇n (x;hn) + ` (x) δn (x;hn)

]
,

where

δn (x;hn) = f̂n (x;hn)− f (x) , δ̇n (x;hn) =
∂

∂x
f̂n (x;hn)− ∂

∂x
f (x) .

Because ∆0,n (hn) = op (1) it follows from a simple bounding argument that for any ε > 0

there exists a constant Cε such that, for n suffi ciently large,

supx∈W ‖ŝn (x;hn)− ŝ∗∗ (x;hn)‖ ≤ Cε∆0,n (hn)2 ∆1,n (hn) (1)

with probability no less than 1− ε. If (1) holds and ∆0,n (hn)2 ∆1,n (hn) = op
(
n−1/2

)
, then

∥∥∥θ̂n (hn)− θ̂∗∗n (hn)
∥∥∥ ≤ Cε

(
n−1

n∑
i=1

|yi|
)

∆0,n (hn)2 ∆1,n (hn) = op
(
n−1/2

)
,
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where the equality uses E (|y|) <∞. This establishes (7) in case (i).

Next, suppose ∆0,n (hn) ∆1,n (hn) = op
(
n−1/2

)
. Then, by the triangle inequality and the

result for case (i),

∥∥∥θ̂n (hn)− θ̂∗n (hn)
∥∥∥ ≤ ∥∥∥θ̂n (hn)− θ̂∗∗n (hn)

∥∥∥+
∥∥∥θ̂∗∗n (hn)− θ̂∗n (hn)

∥∥∥
=

∥∥∥θ̂∗∗n (hn)− θ̂∗n (hn)
∥∥∥+ op

(
n−1/2

)
,

so validity of (7) in case (ii) follows from the fact that

∥∥∥θ̂∗∗n (hn)− θ̂∗n (hn)
∥∥∥ ≤ C

(
n−1

n∑
i=1

|yi|
)

∆0,n (hn) ∆1,n (hn) = op
(
n−1/2

)
,

where the inequality uses the elementary bound

supx∈W ‖ŝ∗∗n (x;hn)− ŝ∗ (x;hn)‖ ≤ C∆0,n (hn) ∆1,n (hn) ,

in which

C = supx∈W

[
|w (x)|
f (x)2

(1 + |` (x)|)
]
<∞. �

1.2. Proof of Lemma A-4. Part (a) is a standard result on the bias of kernel estimators

(e.g., Newey (1994b, Lemma B.2)), while parts (b) and (c) follow from change of variables

and simple bounding arguments. For instance,

E
[
F (z1)

2K (x1 − x2;hn)2
∥∥∥K̇ (x1 − x3;hn)

∥∥∥2]
= E

[∫
Rd

∫
Rd
F (z1)

2K (x1 − s;hn)2
∥∥∥K̇ (x1 − t;hn)

∥∥∥2 f (s) f (t) dtds

]
= h−2(d+1)n E

[∫
Rd

∫
Rd
F (z1)

2K (u)2
∥∥∥K̇ (v)

∥∥∥2 f (x1 − uhn) f (x1 − vhn) dvdu

]
≤ h−2(d+1)n C2fE

[
F (z)2

] ∫
Rd
K (u)2 du

∫
Rd

∥∥∥K̇ (v)
∥∥∥2 dv = O

(
h−2(d+1)n

)
,
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where Cf = supx∈Rd f (x). �

1.3. Proof of Lemma A-2. Defining

V µ
i = Vi − E (Vi) = yis (xi)− θ, Vi = yis (xi) ,

V µ
ij (h) = Vij (h)− E [Vij (h)] , Vij (h) = −yi

w (xi)

f (xi)

[
K̇ (xi − xj;h) + ` (xi)K (xi − xj;h)

]
,

we have the decomposition

θ̂
∗
n (h) = n−1

n∑
i=1

Vi + n−2
n∑
i=1

n∑
j=1

Vij (h)

= E
[
θ̂
∗
n (h)

]
+ n−1

n∑
i=1

V µ
i + n−2

n−1∑
i=1

n∑
j=i+1

[
V µ
ij (h) + V µ

ji (h)
]

+ n−2
n∑
i=1

V µ
ii (h) ,

where n−2
∑n

i=1 V
µ
ii (hn) = op

(
n−1/2

)
because

V

[
n−2

n∑
i=1

V µ
ii (hn)

]
= n−3V [V11 (hn)] = n−1

(
nhdn

)−2
K (0)2V

[
y
w (x)

f (x)
` (x)

]
= o

(
n−1
)
.

The proof for θ̂
A

n = θ̂
∗
n (hn) will be completed by showing that

n−1
n−1∑
i=1

n∑
j=i+1

[
V µ
ij (hn) + V µ

ji (hn)
]

= n−1
n∑
i=1

ϕ (zi) + op
(
n−1/2

)
,

where

ϕ (z) = ψ (z)− [ys (x)− θ] =
∂

∂x
[w (x) g (x)]− w (x) g (x) ` (x) .

To do so, let Ei denote conditional expectation given zi and for any positive sequence

{rn}, let Xn = O2 (rn) and Xn = o2 (rn) be shorthand for limn→∞E (X2
n) /r2n < ∞ and

limn→∞ E (X2
n) /r2n = 0, respectively.
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Because hn → 0 and nhd+2n →∞,

Vij (hn) = −yi
w (xi)

f (xi)

[
K̇ (xi − xj;hn) + ` (xi)K (xi − xj;hn)

]
= O2

(
h−(d+2)/2n

)
= o2

(√
n
)
,

where the second equality uses Lemma A-4 (b). Therefore, by the projection theorem for

variable U -statistics (e.g., Powell, Stock, and Stoker (1989, Lemma 3.1)),

n−2
n−1∑
i=1

n∑
j=i+1

[
V µ
ij (hn) + V µ

ji (hn)
]

= n−1
n∑
i=1

Ei
[
V µ
ij (hn) + V µ

ji (hn)
]

+ op
(
n−1/2

)
,

where, by Lemma A-4 (a),

EiVij (hn) = −yi
w (xi)

f (xi)

[
ḃ (xi;hn) + ` (xi) b (xi;hn)

]
= O2

(
hPn
)

= o2 (1)

and, using integration by parts and change of variables,

EiVji (hn) = −
∫
Rd
g (r)w (r)

[
K̇ (r − xi;hn) + ` (r)K (r − xi;hn)

]
dr

=

∫
Rd

(
∂

∂r
[g (r)w (r)]

)
K (r − xi;hn) dr −

∫
Rd
g (r)w (r) ` (r)K (r − xi;hn) dr

=

∫
Rd

∂

∂x
[g (xi + thn)w (xi + thn)]K (t) dt

−
∫
Rd
g (xi + thn)w (xi + thn) ` (xi + thn)K (t) dt

= ϕ (zi) + o2 (1) .

Using these results and the fact that E [ϕ (z)] = 0 it is easy to show that

n−1
n∑
i=1

Ei
[
V µ
ij (hn) + V µ

ji (hn)
]

= n−1
n∑
i=1

ϕ (zi) + op
(
n−1/2

)
,

completing the proof for θ̂
A

n = θ̂
∗
n (hn) .
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Finally, having established the result for θ̂
A

n = θ̂
∗
n (hn) the result for θ̂

A

n = θ̂
∗∗
n (hn) will

follow if it can be shown that V
[
θ̂
∗∗
n (hn)− θ̂∗n (hn)

]
= o (n−1). To do so, we employ the

decomposition

θ̂
∗∗
n (h)− θ̂∗n (h) = n−3

n∑
i=1

n∑
j1=1

n∑
j2=1

Vij1j2 (h)

= E
[
θ̂
∗∗
n (h)− θ̂∗n (h)

]
+ n−3

n∑
i=1

n∑
j1=1

n∑
j2=1

V µ
ij1j2

(h) ,

where V µ
ij1j2

(h) = Vij1j2 (h)− E [Vij1j2 (h)] and

Vij1j2 (h) = yi
w (xi)

f (xi)
2 [K (xi − xj1 ;h)− f (xi)]

[
K̇ (xi − xj2 ;h) + ` (xi)K (xi − xj2 ;h)

]
.

The Hoeffding decomposition yields

V

[
n∑
i=1

n∑
j1=1

n∑
j2=1

V µ
ij1j2

(h)

]
=

3∑
p=1

 n

p

V[ n∑
i=1

n∑
j1=1

n∑
j2=1

Hij1j2 (p;h)

]
,

where

Hij1j2 (1;h) = E1 [Vij1j2 (h)]− E [Vij1j2 (h)] ,

Hij1j2 (2;h) = E1,2 [Vij1j2 (h)]− E1 [Vij1j2 (h)]− E2 [Vij1j2 (h)] + E [Vij1j2 (h)] ,

Hij1j2 (3;h) = E1,2,3 [Vij1j2 (h)]− E1,2 [Vij1j2 (h)]− E1,3 [Vij1j2 (h)]− E2,3 [Vij1j2 (h)]

+E1 [Vij1j2 (h)] + E2 [Vij1j2 (h)] + E3 [Vij1j2 (h)]− E [Vij1j2 (h)] ,

with E1,2,3 [Vij1j2 (h)] = E [Vij1j2 (h) |z1, z2, z3] , E2,3 [Vij1j2 (h)] = E [Vij1j2 (h) |z2, z3] , and so
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on. It therefore suffi ces to show that

V

[
n∑
i=1

n∑
j1=1

n∑
j2=1

Hij1j2 (p;hn)

]
= o

(
n5−p

)
, p ∈ {1, 2, 3} . (2)

The proof of (2) for p = 1 will be based on the relation

V

[
n∑
i=1

n∑
j1=1

n∑
j2=1

Hij1j2 (1;h)

]
= V [Hn (1;h)] ,

where

Hn (1;h) = H111 (1;h) + (n− 1) [H112 (1;h) +H121 (1;h) +H211 (1;h)]

+ (n− 1) [H122 (1;h) +H212 (1;h) +H221 (1;h)]

+ (n− 1) (n− 2) [H123 (1;h) +H213 (1;h) +H231 (1;h)] .

Because V [Hijk (1;h)] ≤ V (E1 [Vijk (h)]) for each (i, j, k) , the result V [Hn (1;hn)] = o (n4)

can be established by means of polynomial (in n) bound on the second moment of each

E1 [Vijk (hn)].

First,

E1 [V111 (hn)] = y1
w (x1)

f (x1)
2 [K (0;hn)− f (x1)] ` (x1)K (0;hn)

= h−2dn K (0)2 y1
w (x1)

f (x1)
2 ` (x1)− h−dn K (0) y1

w (x1)

f (x1)
2f (x1) ` (x1)

= O2
(
h−2dn

)
= o2

(
n4
)
.
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Next, using Lemma A-4 (a), change of variables, and simple bounding arguments,

E1 [V112 (hn)] = y1
w (x1)

f (x1)
2K (0;hn)

∫
Rd

[
K̇ (x1 − s;hn) + ` (x1)K (x1 − s;hn)

]
f (s) ds

−y1
w (x1)

f (x1)
2f (x1)

∫
Rd

[
K̇ (x1 − s;hn) + ` (x1)K (x1 − s;hn)

]
f (s) ds

= y1
w (x1)

f (x1)
2

[
h−dn K (0)− f (x1)

] [
ḃ (x1;hn) + ` (x1) b (x1;hn)

]
= O2

(
hP−dn

)
= o2

(
n2
)
.

Similarly, it can be shown that

E1 [V121 (hn)] = O2
(
hP−dn

)
= o2

(
n2
)
, E1 [V211 (hn)] = O2

(
h−(d+1)n

)
= o2

(
n2
)
,

E1 [V122 (hn)] = O2
(
h−(d+1)n

)
= o2

(
n2
)
, E1 [V212 (hn)] = O2

(
h−dn
)

= o2
(
n2
)
,

E1 [V221 (hn)] = O2
(
h−(d+1)n

)
= o2

(
n2
)
, E1 [V123 (hn)] = O2

(
h2Pn
)

= o2 (1) ,

E1 [V213 (hn)] = O2
(
hPn
)

= o2 (1) , E1 [V231 (hn)] = O2
(
hP−1n

)
= o2 (1) ,

from which (2) follows for p = 1.

The proofs of (2) are very similar for p = 2 and p = 3, so we give only the proof for

p = 3, which is based on the relation

V

[
n∑
i=1

n∑
j1=1

n∑
j2=1

Hij1j2 (3;h)

]
= V [H (3;h)] ,

where

H (3;h) = H123 (3;h) +H132 (3;h) +H213 (3;h) +H231 (3;h) +H312 (3;h) +H321 (3;h)

and V [Hijk (3;h)] ≤ V (E1,2,3 [Vijk (h)]) for each (i, j, k) .
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Using Lemma A-4 (c),

E1,2,3 [V123 (hn)] = V123 (hn)

= y1
w (x1)

f (x1)
2 [K (x1 − x2;hn)− f (x1)]

[
K̇ (x1 − x3;hn) + ` (x1)K (x1 − x3;hn)

]
= O2

(
h−(d+1)n

)
= o

(
n2
)
.

The result V [Hn (3;hn)] = o (n2) follows from this and the fact that V123 (3;h), V132 (3;h),

V213 (3;h), V231 (3;h), H312 (3;h), and V321 (3;h) are identically distributed. �

1.4. Proof of Lemma A-3. Using the same notation as in the proof of Lemma A-2, we

have

E
[
θ̂
∗
n (h)

]
= n−1

n∑
i=1

E (Vi) + n−2
n∑
i=1

n∑
j=1

E [Vij (h)]

= E (V1) + n−1E [V11 (h)] +
(
1− n−1

)
E [V12 (h)] ,

where E (V1) = θ, E [V11 (h)] = h−dB∗0, and, using Lemma A-4 (a),

E [V12 (hn)] = −
∫
Rd
g (r)w (r)

[
ḃ (r;hn) + ` (r) b (r;hn)

]
dr = O

(
hPn
)
.

Next,

E
[
θ̂
∗∗
n (hn)− θ̂∗n (hn)

]
= n−3

n∑
i=1

n∑
j1=1

n∑
j2=1

E [Vij1j2 (hn)]

= n−2E [V111 (hn)] + n−1
(
1− n−1

)
(E [V112 (hn)] + E [V121 (hn)])

+n−1
(
1− n−1

)
E [V122 (hn)] +

(
1− n−1

) (
1− 2n−1

)
E [V123 (hn)]

= n−1
(
1− n−1

)
E [V122 (hn)] +O

(
n−1hP−dn + n−2h−2dn + h2Pn

)
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because it follows from Lemma A-4 (a) and simple bounding arguments that

E [V111 (hn)] = O
(
h−2dn

)
, E [V112 (hn)] = O

(
hP−dn

)
,

and

E [V121 (hn)] = O
(
hP−dn

)
, E [V123 (hn)] = O

(
h2Pn
)
.

Moreover,

E [V122 (hn)] =

∫
Rd

∫
Rd
g (r)

w (r)

f (r)2
K (r − s;hn) K̇ (r − s;hn) f (r) f (s) dsdr

+

∫
Rd

∫
Rd
g (r)

w (r)

f (r)2
` (r)K (r − s;hn)2 f (r) f (s) dsdr

−
∫
Rd

∫
Rd
g (r)

w (r)

f (r)

[
K̇ (r − s;hn) + ` (r)K (r − s;hn)

]
f (r) f (s) dsdr

= h−(d+1)n

∫
Rd
g (r)

w (r)

f (r)

[∫
Rd
K (t) K̇ (t) f (r − thn) dt

]
dr

+h−dn

∫
Rd
g (r)

w (r)

f (r)
` (r)

[∫
Rd
K (t)2 f (r − thn) dt

]
dr +O

(
hPn
)
,

where Taylor’s theorem can be used to show that

∫
Rd
g (r)

w (r)

f (r)

[∫
Rd
K (t) K̇ (t) f (r − thn) dt

]
dr =

P∑
j=0

Ḃjh
j
n +O

(
hP+1n

)
,

∫
Rd
g (r)

w (r)

f (r)
` (r)

[∫
Rd
K (t)2 f (r − thn) dt

]
dr =

P∑
j=0

Bjh
j
n +O

(
hP+1n

)
,

Ḃj =
(−1)j+1

j!

∑
l∈Zd+(j)

ḂK (l) Ḃz (l) , Bj =
(−1)j

j!

∑
l∈Zd+(j)

BK (l)Bz (l) .

Because K is even, BK (l) = 0 whenever l ∈ Zd+ (j) for j odd and ḂK (l) = 0 whenever
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l ∈ Zd+ (j) for j even. As a consequence,

E [V122 (hn)] = h−(d+1)n

P∑
j=0

Ḃjh
j
n + h−dn

P∑
j=0

Bjh
j
n +O

(
hP−dn + hPn

)
=

b(P−1)/2c∑
j=0

h2j−dn B∗∗j +O
(
hP−dn + hPn

)
,

where B∗∗j = B2j + Ḃ2j+1. �

2. Appendix B: Uniform Convergence Rates for Kernel Estimators

2.1. Proof of Lemma B-1. Similarly to the proof of Newey (1994b, Lemma B.1), the

proof consists of three steps, of which the first step is a truncation step, the second step

is a discretization step, and the final step uses Bernstein’s inequality to bound certain tail

probabilities. To accommodate kernels with unbounded support, the second step borrows

ideas from Hansen (2008). In the third step, we use Bernstein’s inequality in two distinct

ways (and employ a subsequence argument) in order to accommodate bandwidths that do

not satisfy n1−2/shdn/ log n→∞.

Given a sequence τn, let

Ψ̃n (x) =
1

nhdn

n∑
j=1

Yjnκ

(
x−Xj

hn

)
, Yjn = Yj1 (|Yj| ≤ τn) ,

denote a version of Ψ̂n obtained by replacing Yj with the truncated variable Yjn. The

processes Ψ̂n (·) and Ψ̃n (·) coincide with a probability that can be made arbitrarily close to

one (uniformly in n) by setting τn = Cτn
1/s for some large Cτ because

Pr
[
Ψ̂n (·) 6= Ψ̃n (·)

]
≤ Pr [Yj 6= Yjn for some j] = Pr [|Yj| > τn for some j]

≤ nPr [|Y | > τn] ≤ nτ−sn CY (s) ,
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whereCY (r) = E (|Y |r)+supx∈Rd E (|Y |r |X = x) fX (x) and the last inequality uses Markov’s

inequality. Also,

∣∣∣E [Ψ̂n (x)− Ψ̃n (x)
]∣∣∣ =

∣∣∣∣E [Y 1 (|Y | > τn)h−dn κ

(
x−X
hn

)]∣∣∣∣
=

∣∣∣∣∫
Rd
E [Y 1 (|Y | > τn) |X = r]h−dn κ

(
x− r
hn

)
fX (r) dr

∣∣∣∣
≤ τ−(s−1)n

∫
Rd
E [|Y |s 1 (|Y | > τn) |X = r]h−dn

∣∣∣∣κ(r − xhn

)∣∣∣∣ fX (r) dr

≤ τ−(s−1)n CY (s)Cκ, Cκ = supu∈Rd |κ (u)|+
∫
Rd
|κ (u)| du,

so if τn = Cτn
1/s, then

sup
x∈Rd

∣∣∣E [Ψ̂n (x)
]
− E

[
Ψ̃n (x)

]∣∣∣ = O
(
n1/s−1

)
= o (ρn) .

To complete the proof, it therefore suffi ces to show that

sup
x∈Xn

∣∣∣Ψ̃n (x)− E
[
Ψ̃n (x)

]∣∣∣ = Op (ρn) , τn = Cτn
1/s.

Remark. Hansen (2008, p. 740) employs τn = ρ
−1/(s−1)
n = o

(
n1/s

)
in his truncation argu-

ment and shows that with this choice of τn

∣∣∣(Ψ̃n (x)− E
[
Ψ̃n (x)

])
−
(

Ψ̂n (x)− E
[
Ψ̂n (x)

])∣∣∣ = Op (ρn)

for every x. It is unclear whether this pointwise rate of convergence holds uniformly in

x ∈ Xn, so we err on the side of caution and set τn = Cτn
1/s.
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Continuing with the proof of Lemma B-1, we discretize by employing a sequence Gn

(depending on CX,n and hn) and associated points
{
x∗g,n : j = 1, . . . , Gn

}
such that

limn→∞ log (Gn) / log n <∞ (3)

and

Xn ⊆ ∪Gng=1Xg,n, Xg,n =
{
x :
∥∥x− x∗g,n∥∥ ≤ min (1, δκ)hn

}
. (4)

It follows from (3) that Gn = o
(
nR
)
for some R <∞, while (4) implies that, for any M ,

Pr

[
sup
x∈Xn

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]
≤ Gn max

1≤g≤Gn
Pr

[
sup
x∈Xg,n

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]
.

To complete the proof it therefore suffi ces to show that for any R <∞, there is an M such

that

max
1≤g≤Gn

Pr

[
sup
x∈Xg,n

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]
= O

(
n−R

)
. (5)

If x ∈ Xg,n and ρn ≤ δκ, then

∣∣∣∣κ(x−Xj

hn

)
− κ

(
x∗g,n −Xj

hn

)∣∣∣∣ ≤ ρnκ
∗
(
x∗g,n −Xj

hn

)
(j = 1, . . . , n) ,

so ∣∣∣Ψ̃n (x)− Ψ̃n

(
x∗g,n

)∣∣∣ ≤ ρnΨ̃∗n
(
x∗g,n

)
, Ψ̃∗n (x) =

1

nhdn

n∑
j=1

Yjnκ
∗
(
x−Xj

hn

)
.

Therefore, if ρn ≤ δκ, then

sup
x∈Xg,n

∣∣∣Ψ̃n (x)− E
[
Ψ̃n (x)

]∣∣∣ ≤ ∣∣∣Ψ̃n

(
x∗g,n

)
− E

[
Ψ̃n

(
x∗g,n

)]∣∣∣
+ρn

∣∣∣Ψ̃∗n (x∗g,n)− E [Ψ̃∗n (x∗g,n)]∣∣∣
+2ρnE

(∣∣∣Ψ̃∗n (x∗g,n)∣∣∣) ,
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where

E
(∣∣∣Ψ̃∗n (x∗g,n)∣∣∣) ≤ ∫

Rd
E [|Y | |X = x]h−dn κ∗

(
x∗g,n − x
hn

)
fX (x) dx

≤ CY (1)Cκ∗, Cκ∗ = supu∈Rd κ
∗ (u) +

∫
Rd
κ∗ (u) du.

As a consequence, if ρn ≤ min (1, δκ) and M ≥ 4CY (1)Cκ∗, then

Pr

[
sup
x∈Xg,n

∣∣∣Ψ̃n (x)− E
[
Ψ̃n (x)

]∣∣∣ > Mρn

]
≤ Pr

[∣∣∣Ψ̃n

(
x∗g,n

)
− E

[
Ψ̃n

(
x∗g,n

)]∣∣∣ > Mρn/4
]

+ Pr
[∣∣∣Ψ̃∗n (x∗g,n)− E [Ψ̃∗n (x∗g,n)]∣∣∣ > Mρn/4

]
.

Because

∣∣∣∣h−dn Yjnκ

(
x−Xj

hn

)
− E

[
h−dn Yjnκ

(
x−Xj

hn

)]∣∣∣∣ ≤ 2τnh
−d
n Cκ = 2Cτn

1/sh−dn Cκ,

and

V
[
h−dn Yjnκ

(
x−Xj

hn

)]
≤ h−dn E

[
Y 2
jnh
−d
n κ

(
x−Xj

hn

)2]

≤ h−dn

∫
Rd
E
[
|Y |2 |X = r

]
h−dn κ

(
x− r
hn

)2
fX (r) dr

≤ h−dn CY (2)

∫
Rd
κ (t)2 dt ≤ h−dn CY (2)C2κ,

it follows from Bernstein’s inequality that

Pr
[∣∣∣Ψ̃n

(
x∗g,n

)
− EΨ̃n

(
x∗g,n

)∣∣∣ > Mρn/4
]
≤ 2 exp

[
− nhdnρ

2
nM

2/32

CY (2)C2κ + 1
6
MCτCκρnn

1/s

]
.
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Similarly,

Pr
[∣∣∣Ψ̃∗n (x∗g,n)− EΨ̃∗n

(
x∗g,n

)∣∣∣ > Mρn/4
]
≤ 2 exp

[
− nhdnρ

2
nM

2/32

CY (2)C2κ∗ + 1
6
MCτCκ∗ρnn

1/s

]
,

so if ρn ≤ min (1, δκ) and M ≥ 4CY (1)Cκ∗, then

max
1≤g≤Gn

Pr

[
sup
x∈Xg,n

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]

≤ 4 exp

[
− nhdnρ

2
nM

2/32

CY (2) max (Cκ, Cκ∗)
2 + 1

6
MCτ max (Cκ, Cκ∗) ρnn

1/s

]
.

To complete the proof, we let R < ∞ be given and use the bound just obtained to exhibit

an M such that (5) holds.

First, suppose limn→∞n
1−2/shdn/ log n > 0, in which case there exists a Ch > 0 such that

ρnn
1/s =

√
log n

n1−2shdn
max

(
1,

√
log n

n1−2/shdn

)
≤ 1

Ch

for all n large enough. For any such n,

nhdnρ
2
nM

2/32

CY (2) max (Cκ, Cκ∗)
2 + 1

6
MCτ max (Cκ, Cκ∗) ρnn

1/s

≥ M2/32

CY (2) max (Cκ, Cκ∗)
2 + 1

6
MCτ max (Cκ, Cκ∗) /Ch

log n,

so if n is large enough and if M ≥ 4CY (1)Cκ∗, then

max
1≤g≤Gn

Pr

[
sup
x∈Xg,n

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]

≤ 4n−M
2/32[CY (2)max(Cκ,Cκ∗ )2+ 1

6
MCτ max(Cκ,Cκ∗ )/Ch],

implying in particular that (5) holds if M is large enough.
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Next, suppose limn→∞n
1−2/shdn/ log n < ∞, in which case there exists a Ch < ∞ such

that

n1−2/shdn
log n

≤ Ch,
n1−2/shdn

log n
ρnn

1/s = max

1,

√
n1−2/shdn

log n

 ≤ Ch

for all n large enough. For any such n,

nhdnρ
2
nM

2/32

CY (2) max (Cκ, Cκ∗)
2 + 1

6
MCτ max (Cκ, Cκ∗) ρnn

1/s

≥ M2/32

CY (2) max (Cκ, Cκ∗)
2 n1−2/shdn

logn
+ 1

6
MCτ max (Cκ, Cκ∗)

n1−2/shdn
logn

ρnn
1/s

log n

≥ M2/32

CY (2) max (Cκ, Cκ∗)
2Ch + 1

6
MCτ max (Cκ, Cκ∗)Ch

log n,

so if n is large enough and if M ≥ 4CY (1)Cκ∗, then

max
1≤g≤Gn

Pr

[
sup
x∈Xg,n

∣∣∣Ψ̃n (x)− EΨ̃n (x)
∣∣∣ > Mρn

]

≤ 4n−M
2/32[CY (2)max(Cκ,Cκ∗ )2Ch+ 1

6
MCτ max(Cκ,Cκ∗ )Ch],

implying once again that (5) holds if M is large enough.

Finally, suppose limn→∞n
1−2/shdn/ log n = ∞ and limn→∞n

1−2/shdn/ log n = 0. Suppose

that for some ε > 0 and for every M , there exists a subsequence n′ with

Pr
[
supx∈Xn′

∣∣∣Ψ̃n′ (x)− E
[
Ψ̃n′ (x)

]∣∣∣ > Mρn′
]
> ε

for every n′. Given ε > 0, pick an M ≥ 4CY (1)Cκ∗ satisfying

limn→∞Gnn
−M2/32[CY (2)max(Cκ,Cκ∗ )2+ 1

6
MCτ max(Cκ,Cκ∗ )] < ε/4.
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Any subsequence n′ contains a further subsubsequence n′′ along which

limn′′→∞ (n′′)
1−2/s

hdn′′/ log n′′ = limn′′→∞ (n′′)
1−2/s

hdn′′/ log n′′ ∈ [0,∞] .

Along such subsubsequences the previous results can be used to show that

limn′′→∞ Pr

[
sup
x∈Xn′′

∣∣∣Ψ̃n′′ (x)− EΨ̃n′′ (x)
∣∣∣ > Mρn′′

]
< ε,

a contradiction. �

2.2. Proof of Lemma B-2. Because Ψn,i(x) = Ψn(x) and

Ψ̂n,i(x) =
n

n− 1
Ψ̂n(x)− 1

(n− 1)hdn
Yiκ

(
x−Xi

hn

)
,

we have the elementary bound

∣∣∣Ψ̂n,i(x)−Ψn,i(x)
∣∣∣ ≤ (1− n−1)−1

∣∣∣Ψ̂n(x)−Ψn(x)
∣∣∣+ (n− 1)−1E

[∣∣∣Ψ̂n(x)
∣∣∣]

+(n− 1)−1h−dn

∣∣∣∣Yinκ(x−Xi

hn

)∣∣∣∣
+(n− 1)−1h−dn

∣∣∣∣(Yi − Yin)κ

(
x−Xi

hn

)∣∣∣∣ ,
where Yin = Yi1(|Yi| ≤ τn) with τn = O

(
n1/s

)
. The first term on the right is covered by

Lemma B-1, the second term is O (n−1), and the third term satisfies

(1− n−1)−1h−dn
∣∣∣∣Yinκ(x−Xi

hn

)∣∣∣∣ ≤ (n− 1)−1h−dn τnCκ = O
(
n1/s−1h−dn

)
,

where

n1/s−1h−dn =

√
1

nhdn

√
1

n1−2/shdn
= o (ρn) .
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Finally, the fourth term is negligible because

Pr

[
max
1≤i≤n

(n− 1)−1 h−dn

∣∣∣∣(Yi − Yin)κ

(
x−Xi

hn

)∣∣∣∣ > 0

]
= Pr [Yi 6= Yin for some i]

can be made arbitrarily close to zero. �

2.3. Proof of Lemma B-3. By Markov’s inequality,

Pr

[
max
1≤i≤n

‖Xi‖ > n2/sX
]
≤ nPr

[
‖X‖sX > n2

]
≤ n−1E[‖x‖sX ] = o (1) .

Setting CX,n = n2/sX , we therefore have

max
1≤i≤n

∣∣∣Ψ̂n(Xi)−Ψn(Xi)
∣∣∣ ≤ sup

x∈Xn

∣∣∣Ψ̂n(x)−Ψn(x)
∣∣∣

and

max
1≤i≤n

∣∣∣Ψ̂n,i(Xi)−Ψn,i(Xi)
∣∣∣ ≤ max

1≤i≤n
sup
x∈Xn

∣∣∣Ψ̂n,i(x)−Ψn,i(x)
∣∣∣

with probability approaching one. The result now follows from Lemmas B-1 and B-2. �
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