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Abstract

I study a pro�t-maximizing monopolist selling a durable good to buyers who arrive over time. Buyers

are forward looking and their values for the good evolve stochastically. I �rst suppose that the seller

commits to a path of posted prices in a stationary environment. Contrary to the case where values

remain constant, optimal prices �uctuate over time. This is consistent with the use of sales or periodic

discounts. If the arrival rate varies with time, the seller favors discounting when the rate is at its fastest,

suggesting an explanation for the common empirical �nding of countercyclical markups. A path of

posted prices, however, is not the most pro�table mechanism. Because values evolve over time, higher

pro�t can be obtained with more sophisticated mechanisms. In particular, the unrestricted optimal

mechanism can be implemented by selling options to purchase the good at future dates. As is the case

for optimal posted prices, buyers who arrive later expect to earn less rent and expect to wait longer to

obtain the good. Contracts agreed at later dates are therefore less e¢ cient.

JEL classi�cation : D82. Keywords : changing types, durable goods, dynamic mechanism design,

price cycles, sales, countercyclical markups
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1 Introduction

This paper examines the problem of a monopolist selling a durable good to buyers who arrive over time

and whose values evolve stochastically. Buyers are forward looking and both values and arrival times are

their private information. Sellers of a wide range of durable goods face buyers with these characteristics.

One reason is simply that the private circumstances of consumers are always changing, leading them to

consider new goods that they have not considered in the past, and implying that their values for these

goods subsequently evolve with the passage of time. Somebody who develops an interest in photography

may start considering high-end cameras; from this time on, the value of owning a camera depends on the

extent of opportunities to take interesting photos. A family that newly acquires a beach house may consider

purchasing a boat; from then on, their value for a boat depends on the amount of time that they have for

vacation. Since consumers often �nd it di¢ cult to predict how much they will use a good, or how much

they will enjoy doing so, they face private uncertainty about their future values. Since values and arrival

times re�ect personal circumstances, they are typically private information.

I study pro�t-maximizing mechanisms in the environment described above. One question that continues

to be debated in the economics literature as well as in the business press is �under what conditions should

�rms hold sales in order to maximize pro�ts�?1 In terms of what is observed empirically, there are �rms

such as Apple Inc. which have reputations for rarely discounting their products.2 On the other hand, price

�uctuations and sales are observed across a broad range of markets (see, e.g., Warner and Barsky (1995)

for appliances and other consumer durables, and Bils and Klenow (2004) for a more extensive data set).

Although there are many theories of sales in the literature (I attempt a review below), the optimality of a

constant price is nonetheless a common prediction in environments where the seller can fully commit and

where buyers�values are constant. Supposing that �rms can �nd ways to credibly commit to future actions

(e.g., through reputation, as in the case of Apple), why they should choose to vary their prices over time, at

least in stationary environments, remains something of a puzzle.3

Motivated by these questions, the �rst part of this paper studies the pro�t-maximizing path of posted

prices when the seller can fully commit. The main reason for studying posted prices is that they are

the predominant institution in retail markets. I do not try to explain why posted prices are so common.

1See Kadet (2004) for an example of detailed discussion in the business press. For the economics literature, see the review
provided below.

2See Sutter (2010, November 29).
3See McAfee and te Velde (2006) for a discussion in this regard.
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Possible explanations seem to include the cost of repeated interactions between �rms and customers required

to implement more sophisticated mechanisms, as well as the costs of contractual complexity, especially the

cost of keeping records. Instead, I examine the tradeo¤s a seller faces in the environment described above

when selling goods according to the prevailing institution.

Assuming buyers�values switch stochastically between two levels (�low�and �high�), the pro�t-maximizing

price path often exhibits a distinctive pattern of cycles. The price is high at the beginning of a cycle, but it

falls gradually over time before jumping at the start of a new cycle. After arriving on the market, the buyer

purchases immediately whenever his value is high but waits until the end of the cycle before purchasing if

his value remains low. Following others in the literature (e.g., Conlisk et al. (1984)), I interpret the end of

each cycle as a �sale�. Contrary to some existing explanations for sales (e.g., Board (2008), where prices

�uctuate because di¤erent kinds of buyers arrive on the market at di¤erent times), the environment which I

consider is completely stationary. Sales in my theory are therefore not driven by systematic changes in the

environment, but are rather a response to using the posted price institution in a setting where buyers have

private uncertainty about their future values.

Because buyers face private uncertainty, the seller can obtain greater pro�ts by using more sophisticated

mechanisms than posted prices. In order to understand the institution which maximizes seller pro�ts in

the environment described above, I characterize the unrestricted optimal mechanism. The unrestricted

optimum can be implemented by selling options to buy the good at prices which depend on both the date

of and on the time since the option�s sale. The fee paid for the option contract also depends on the date of

sale. Option contracts expire after �nite time, after which buyers can no longer obtain the good. Buyers

execute their options whenever their values are high, or, if their values remain low, at the expiration date.

This paper is the �rst to characterize pro�t-maximizing mechanisms in an environment where agents�

values change stochastically and where their arrival is dynamic. Since buyers�values and arrival times are

their private information, a key di¢ culty is incentivizing them to reveal themselves at the moment of arrival

by purchasing an option.4 In particular, buyers with low values must be discouraged from waiting and

participating only when their values become high. Whether buyers �nd it optimal to participate as soon as

they arrive depends on what they can expect to obtain by participating upon arrival as well as at each date

into the in�nite future.
4Contracting before the arrival date is impossible simply because buyers do not read the seller�s advertisements or pay any

attention to her o¤ers. That is, the search technology is such that buyers come into contact with the seller�s o¤er only after
developing an interest in the product.
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Several papers study sellers facing buyers who arrive over time (for a discussion of the work on selling to

dynamic populations see Bergemann and Said (2010) as well as the literature review below). However, the

work on pro�t maximization does not consider the possibility that buyer values change stochastically. At the

same time, the literature on pro�t-maximizing dynamic mechanisms for agents with stochastically changing

types does not consider the possibility of dynamic arrival. Allowing for both elements simultaneously raises

new challenges for the design of optimal mechanisms.

In contrast to the above literature, buyers expect at the time they participate to earn positive rent even if

their values are low. Often, buyers who arrive su¢ ciently early receive a subsidy to take the option (rather

than paying a positive fee for it). In return for the subsidy, buyers give up the right to participate in the

mechanism later (i.e., to purchase future option contracts or to receive any future subsidies). That buyers

are subsidized can mean that they pay less for the good than its expected value, even when their values are

low at the time of acquisition. These e¤ects arise because the seller must dissuade buyers with low initial

values from waiting to participate only when their values become high.

For the purposes of deriving the optimal mechanism, the most convenient way to understand the problem

is that buyers face endogenous outside options which depend both on their values upon arrival and on the

nature of the mechanism they face if they decide to delay participation. The approach is then to consider

a �relaxed program�that takes into account the endogenous participation constraints only for buyers with

low initial values. The approach yields a complete solution, with closed-form expressions for the relevant

prices. A companion paper, Garrett (2011), shows how a similar approach can be applied in an environment

where buyers have a continuum of values and where values can evolve according to a rich class of stochastic

processes. However, it only achieves a partial characterization and can con�rm the validity of the relaxed

program only in particular instances. The analysis in the companion paper suggests nonetheless that the

principles and �ndings described here apply more generally.

Two important observations about the dynamics of the optimal contracts are as follows. First, the buyer

always receives the good eventually, even if his value remains low. This re�ects a general principle for

contracts with agents who have partially persistent private information: contractual relationships become

more e¢ cient as time passes. This is the �principle of vanishing distortions� explained, for example, by

Battaglini (2005). Second, the later the buyer purchases the option contract, the longer he waits to obtain

the good if his value remains low. That is, contracts become more distorted the later they are signed. This
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is a new principle relative to the two strands of literature discussed above. Indeed, imposing tougher terms

at later contracting dates, which require buyers to wait longer to obtain the good, is the seller�s key tool for

punishing those who hide their presence and participate later than their arrival.

Now return to considering the optimal path of posted prices. This restricted mechanism is conceptually

simpler and so is treated �rst in the analysis. Rather than selling individualized price paths to buyers, as

in the unrestricted optimum, the price buyers face on each date is constrained to be the same regardless of

their moment of arrival.

To study the optimal path of posted prices, I focus on the allocation rule. Recognizing that optimal

prices must induce immediate purchase whenever buyers have high values, this requires considering the set

of dates at which buyers purchase if their values are low. This set is termed the �sales policy�.

I �rst determine the price path that is optimal conditional on a given sales policy. Consider an interval

over which buyers purchase only if their values are high, followed by a date at which they also purchase if

their values are low (a �sale�). The price declines over the interval since the sales date must have a relatively

low price, and because the option of waiting until this date to purchase given a high value becomes more

valuable as the date approaches. That the option of waiting becomes more valuable re�ects both discounting

and the reduced probability that the value switches to low whilst waiting.

Now consider the optimal choice of sales policy. The �nding of occasional sales or price cycles corresponds

to a sales policy that includes intermittent dates. A crucial consideration explaining the optimality of price

cycles is that, if a buyer�s value is high at a given date, it may not remain high at future dates in the sales

policy. Since it is opportunities to buy at dates in the sales policy when their values are high that give

rise to the rent earned under the optimal price path, a �sparse� sales policy reduces the rents buyers can

expect to earn. Importantly, because buyers understand that their values may become low when they are

high, they are e¤ectively �impatient�to obtain the good quickly, and this impatience can be exploited most

e¤ectively if the opportunities to purchase at a low price in the future are limited. On the other hand,

delayed purchase when buyers�values are low is ine¢ cient. The optimal policy re�ects a trade-o¤ between

the concern for e¢ ciency and the concern for rent extraction.

The optimality of price cycles is not driven by any particular assumption on the distribution of buyer

values upon arrival. My focus is on showing that price cycles are optimal in case the evolution of buyer

values is stationary, which will be the case provided buyers� initial values are drawn from the stationary
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(i.e., ergodic) distribution. Considering a large population of buyers, the assumption implies (at least

approximately) that the proportion of buyers with a high value in the population remains constant with

time; in the words of Biehl (2001, p 568), there is �individual demand uncertainty�whilst the composition

of �aggregate demand is stationary�.

Although the evolution of values is stationary, the probability that a given buyer has arrived (equivalently,

the size of the population that has arrived) increases with the date. As a result, the trade-o¤s involved in

determining whether to hold a sale change with time. In particular, since a low price at any date increases

the option value of delaying purchase at all previous dates, it becomes less desirable to hold sales later on.

This re�ects the same principle as described above for the fully-optimal mechanism: the seller optimally

punishes buyers for late arrival in order to reduce the rents left to early arrivers. As a result, after a

su¢ ciently long time, optimal prices remain at a constant level such that buyers purchase only if their values

are high. A related �nding, at least in numerical examples, is that the duration between sales increases over

time. The last two observations imply that, although the optimal price path is non-monotone, there is an

upward trend.

The upward trend in prices seems inconsistent with price patterns in many durable-good markets. For

example, Pashigian and Bowen (1991), in their study of apparel pricing, �nd it di¢ cult to explain the use

of discounts at the beginning of the season, but also note that prices are on average lower at the end of the

season. Taking the beginning of the season as date zero, my baseline model seems to suggest an explanation

for the �rst observation but not the second. In my model, discounting is attractive early in the season

precisely because it only implies a rent for buyers who arrive early, but the same logic suggests prices should

tend to rise with time. The theory does become consistent with a price path that eventually declines,

however, if one supposes that the value the buyer obtains from the product is smaller at later dates. This

assumption seems to make sense in fashion markets (which, broadly de�ned, include markets for consumer

electronics) since consumers anticipate the value of their purchase will be eroded by the new fashion they

expect to come on the market. By allowing the possibility of declining values, I am able to rationalize both

the use of initial and periodic discounts as well as prices that eventually decline.

The �nding in the baseline model that sales eventually cease completely turns out to depend on the

assumption that buyers remain in the market forever. More realistically, one would expect buyers may

leave the market. This could re�ect that they have no further use for the good, but it might also re�ect
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an inability to continue waiting. In either case, I show that price cycles may persist inde�nitely, with the

pattern becoming stationary over time. This provides a notion of �steady state� pricing which may be

appropriate for goods that have been o¤ered for a long time.

Another important empirical regularity that has created a puzzle for theory is countercyclical markups.

Markups of prices over costs have often been observed to be lowest during booms, and, at the micro level,

at times when shoppers are particularly active (e.g., weekends and Christmas). There are a number of

competing theories, although none seem entirely satisfactory (see Chevalier et al. (2003)). The prediction

of my model is that periods during which the rate of buyer arrival is high are more likely to be associated

with lower prices. During these times, the concern for limiting the rents of buyers who arrive earlier is less

important relative to the objective of obtaining pro�t from buyers arriving at the time in question. For the

parameter values of interest, the latter concern requires lowering the price.

The rest of the paper is set out as follows. Next, I review the relevant literature. Section 2 introduces

the model, Section 3 examines the optimal path of posted prices, and Section 4 examines the fully-optimal

mechanism and compares it to the optimal posted prices. Section 5 concludes. The Appendix collect proofs

for the various results and is split into two parts: Appendix A contains proofs of results on posted prices,

and Appendix B contains those for the fully-optimal mechanism.

1.1 Related literature

The economics literature has frequently enquired whether a monopolist selling a durable good to buyers who

arrive over time should occasionally discount its products. In what might be described as the �standard

framework� (McAfee and te Velde (2006)), the answer is that it should not.56 The mechanism the seller

should commit to is a constant price equal to the monopoly level in the static problem. The standard

framework includes at least the following assumptions: (i) once having entered the market, buyers�values

do not change, (ii) the distribution of buyer values does not depend on the time of arrival in the market,

(iii) there is no rivalry for the good (i.e., the seller has at least as many units available as there are buyers),

(iv) the seller�s commitment power is absolute, and (v) there is no competition among sellers.

This paper is the �rst one to examine the role of stochastically changing values in the above framework

5McAfee and te Velde argue that this framework might apply to airline prices. But they remark: �The extent of price
changes found in actual airline pricing is mysterious because a monopolist with commitment ability, in a standard framework,
doesn�t want to engage in it at all!�

6See Riley and Zeckhauser (1983) and Conlisk et al. (1984) for early discussions of the optimality of a constant price when
the seller can commit and buyers arrive over time.
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(hence relaxing (i)). In order to highlight the implications of this assumption, I deliberately maintain the

other assumptions (ii)-(v). Other authors, however, have examined their role. For example, Board (2008)

characterizes price �uctuations when the values of di¤erent cohorts of buyers are distributed di¤erently

(relaxing (ii)). As explained above, I focus instead on an environment which is stationary: a buyer�s value

at any date is independent both of his arrival date and of the time since his arrival.

A growing literature in operations research and economics (examples include Wang (1993), Gallego and

Van Ryzin (1994), Das Varma and Vettas (2001), Gallien (2006), Board (2008), Gershkov and Moldovanu

(2009), Board and Skrzypacz (2010), Pai and Vohra (2011) and Said (2011)) considers the problem of selling

to buyers who arrive over time under the assumption of scarcity (relaxing (iii)). One possibility (see, e.g.,

Gallego and Van Ryzin and Gershkov and Moldovanu), given both scarcity and a deadline for the seller, is

that prices fall as the deadline approaches but jump whenever a unit is purchased. Although the resulting

price path may be non-monotone, prices always decline monotonically (or remain constant) conditional on

the inventory level in the speci�cations examined in these papers. Because price �uctuations in my model

do not depend on changes in the inventory level, the two theories should be easily distinguished empirically.

Conlisk et al. (1984) and Sobel (1991) consider an environment where the seller cannot commit (hence

relaxing (iv)) and argue that equilibrium often involves periodic sales.7 This paper, in contrast, seeks

an understanding of the optimal choice of mechanism for �rms which can establish credible commitments.

Commitment seems possible, for instance, when �rms can establish reputations for their pricing practices.8

Many of the earlier theories of sales are based on price dispersion arising due to competition between

�rms (see Salop and Stiglitz (1977), Shilony (1977), Rosenthal (1980) and Varian (1980)). For the most

part, these models are entirely static, and it is only informally argued that they might have implications

for the patterns of prices over time.9 Maskin and Tirole (1988) study how �Edgeworth cycles�, or cycles

of price wars, can arise in a duopoly model with partial commitment to future prices. In contrast to these

theories, where competition between �rms is essential, I �nd price �uctuations in the absence of competition.

The possibility of changing values has also been given some attention. Stokey (1979) shows that com-

mitting to a declining price path can be optimal when buyers�values change gradually and deterministically

with time. Board and Skrzypacz (2010) show that prices decline over time when the good expires at a known

7Lack of commitment is also central in a number of other papers which �nd periodic discounting. Examples are Sobel
(1984), Pesendorfer (2002), Villas-Boas (2004), Chevalier and Kashyap (2010) and Eichenbaum et al. (2011).

8See Waldman (2003) for a review of the treatment of commitment in the analysis of durable-goods markets.
9An exception is Rosenthal (1982).
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date. Deb (2010) �nds an increasing price path in a model where buyers�values change stochastically.10

Although these papers often interpret the low point of the price path as a �sale�, none of them explain why

prices should vary non-monotonically, even less why they should �uctuate repeatedly.11

As explained above, the paper makes an important contribution to the literature on optimal dynamic

mechanisms for agents with stochastically evolving types. This is to allow agents�arrival times both to be

stochastic as well as their private information. All of the other papers � for instance, Baron and Besanko

(1984), Besanko (1985), Courty and Li (2000), Battaglini (2005), Board (2007), Eso and Szentes (2007),

Zhang (2009), Pavan et al. (2011) and Garrett and Pavan (2011) � take it as given that agents are available

to contract at the time the principal commits to the dynamic mechanism. Equivalently for the purposes of

analysis, it is an implicit assumption that the principal perfectly observes agents�arrival times. What these

papers therefore miss is an account of how the contracts the principal o¤ers can be expected to evolve with

time.

I do rely on some of the methods developed in the earlier papers; in particular, the use of a continuous-

time framework with Markov switching between two values is the same as in Zhang�s work on dynamic

taxation. The reason for choosing this special structure is both that it facilitates the study of the optimal

price path and that it allows me to completely characterize the fully-optimal mechanism. The companion

paper, Garrett (2011), discussed in more detail in Section 4, studies the fully-optimal mechanism in a richer

discrete-time environment, but is unable to achieve a complete characterization. It tends to con�rm the

key �ndings that buyers with low initial values expect strictly positive rent and that buyers who participate

later in the mechanism receive tougher contractual terms and expect to wait longer to receive the good.

In follow-on work, Ely et al. (2011) apply some related ideas to the problem of overbooking in the airline

industry, considering a restricted class of mechanisms.12

Finally, one might conjecture that some of the work that does not consider dynamic arrivals could accom-

modate the possibility directly by including �latent types�who have especially low values until, according to

some stochastic process, the buyer �arrives�, i.e. has a relatively high value at which he might conceivably

10Contrary to my paper and to the �standard framework� described above, the buyer in Deb�s model is known to be in the
market at the time the seller commits to a price path. Prices increase monotonically in his model, but this seems to rely on the
assumption that either (i) the buyer�s value changes only once, or (ii) the buyer�s value continues to change but any purchase
must be made on the date of a shock to his value.
11A number of other papers �nd prices that rise or decline monotonically for other reasons. A few examples include Lazear

(1986), Courty and Li (1999), Su (2007), Nocke and Peitz (2007), and Horner and Samuelson (2011).
12The class of mechanisms studied in that paper is motivated by the idea that a �ticket� should be thought of as an option

to �y, which might be given up or retained on the date of travel.
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purchase. This kind of approach is mentioned, for instance, by Bergemann and Valimaki (2010) for the

problem of maximizing e¢ ciency. However, the approach does not apply for pro�t maximization (assuming

no restriction on mechanisms), where the time at which the buyer is available to contract is critical. In

particular, the ability to contract with latent types at the time the mechanism is determined would allow the

seller to extract more rent and would imply a di¤erent allocation rule. For example, if the buyer is always a

latent type at date zero and has no private information at that time, then the pro�t-maximizing mechanism

involves date-zero contracting, full e¢ ciency and zero expected rent for the buyer.

2 Model

Players. There is a single seller and a single representative buyer. All of the results will apply also if

there is a population of buyers, provided the problem remains separable across them, i.e. provided that all

buyers are ex-ante identical and have independently distributed information.

Arrival. My analysis is chie�y concerned with the case where the buyer�s arrival time � is distributed

exponentially with parameter � > 0 (I also consider the case where the seller knows the buyer�s arrival

date in advance; i.e., where there is no uncertainty about the date of arrival). Note that this process is

memoryless; i.e., the distribution of the time until the buyer�s arrival, conditional on his having not yet

arrived, remains the same at each date. Before arrival to the market, any communication with the seller is

taken to be impossible. This is simply because the buyer is unable to observe any o¤ers or communication

from the seller until after arrival.

Payo¤s. The buyer and seller are risk neutral and have a common discount rate r > 0. The buyer has

unit demand and the seller�s cost of production is normalized to zero.

There is no re-sale; i.e., the good is �sold outright�and, after purchase, the buyer keeps it forever. More

generally, one might want to allow that the buyer can return the good to the seller. In Section 3, where I

restrict attention to outright sale at posted prices, the seller cannot bene�t from instead posting prices for

rental of the good (this possibility is discussed further in Section 3 and has been discussed in the context of

a related model by Biehl (2001)). In Section 4, where the seller can use any mechanism, there is also no

possibility to bene�t from temporary allocation of the good (see footnote 35). These observations, however,

would not be expected to apply in more general environments; e.g., environments with rivalry for the good

among buyers or where there are more than two distinct values for the good.
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Abusing notation, the buyer�s �ow value of holding the good is !t 2 f!L; !Hg, where !H > !L > 0.

Thus the buyer�s value at time t is either �low�(the �ow consumption value equals !L) or �high�(the �ow

consumption value equals !H). The buyer�s expected value from obtaining the good will be determined by

the evolution of values described below.

Evolution of values. Upon arrival at any date � , the buyer has a high value with probability 
 2 (0; 1)

and a low value with probability 1 � 
. Values change at a Poisson rate: the value switches from low to

high at rate �L and from high to low at rate �H . Unless otherwise speci�ed, these values are strictly

positive. The initial distribution is then �stationary�in case 
 is equal to 
S � �L
�L+�H

. This means that

the probability the buyer has a high value at any date does not depend on the time since arrival.

Denote by �t the buyer�s date-t expected discounted value from owning the good forever conditional on

his date-t �ow value. Again abusing notation, if the buyer�s �ow value at t is high, this is equal to13

�H = E
�Z 1

t

e�r(s�t)~!sdsj~!t = !H

�
.

If his �ow value at t is low, it is equal to

�L = E
�Z 1

t

e�r(s�t)~!sdsj~!t = !L

�
.

Note that

�H =
(�L + r)!H + �H!L
r (�L + �H + r)

, and

�L =
�L!H + (�H + r)!L
r (�L + �H + r)

.

Clearly, the entire analysis may be carried out by reference to the values �L and �H . However, it is often

helpful to refer to the �ow values !L and !H .

A sample path for the process from the buyer�s arrival time � is denoted �[�;1), where, for any s � � ,

�[�;1) (s) = �s 2 f�L; �Hg. A history of values over any interval I � R+ is recorded by letting, for any

s 2 I, �I (s) = �s 2 f�L; �Hg. Throughout, if the buyer arrives at date � , then at any subsequent date

t � � , the history of values �[�;t], as well as the arrival time, remains his private information.

Finally, one statistic which shall be used frequently in the analysis is the probability that the buyer�s

13Throughout, I denote random variables using tildes.
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value is high conditional on an earlier value. For any dates s; t, s > t,

Pr
�
~�s = �H j~�t = �H

�
=

�L + �He
�(�L+�H)(s�t)

�L + �H
, and

Pr
�
~�s = �H j~�t = �L

�
=

�L
�
1� e�(�L+�H)(s�t)

�
�L + �H

.

For clarity, I will often leave expressions in terms of these conditional probabilities.

3 Posted prices

This section considers pro�t-maximizing posted prices. Because my main objective is to demonstrate the

optimality of price �uctuations in an environment which is stationary, I focus on the case in which the

distribution of initial values is the stationary one, i.e. 
 = 
S . However, the �nding that optimal prices

may �uctuate does not depend upon this restriction.

I require that the seller commits at date zero to a price path p : R+ ! R+ with the implication that,

if the buyer purchases the good at date t, he pays price p (t). The buyer perfectly observes the price path

upon arrival to the market.14 The price the seller charges at any date cannot depend on communication by

the buyer (e.g., communication that signals his arrival).1516 The inability to adjust prices in response to

communication simply re�ects the prevailing norm in retail markets. The restriction to deterministic price

paths does not harm the seller.17

The buyer�s problem of when to purchase is an optimal stopping problem. Let � be the set of Markov

stopping rules, i.e. right-continuous functions � (�L; �) ; � (�H ; �) : R+ ! f0; 1g. The set � is taken to be

the set of feasible strategies for the buyer. The restriction to Markov strategies is without loss of generality

given that (i) the buyer�s problem is Markov (i.e., dependent only on his current value for the good, and

14Perfect observability, however, is not essential; all that is required is that, upon arrival to the market, the buyer correctly
anticipates that he can purchase the good from the seller and the corresponding price path p. For instance, it is enough that
the seller su¢ ciently values that the buyer perceives the choice of full-commitment prices when he purchases the good. This
may be the case in the context of a repeated game involving the seller and a population of buyers who can communicate their
purchase prices among one another.
15Although I do not explore the issue of when posted prices might be the optimal institution, note that the mechanism

described above is optimal in an environment in which the entire transaction (in particular, both communication and delivery
of the good) must take place at a single instance selected by the buyer. This seems a reasonable approximation for inexpensive
goods, where the cost of repeated interactions between the buyer and seller is large relative to the size of the information rents
at stake.
16Although not immediate, it turns out that the seller can do no better by committing to the in�nite price path at a date

later than zero (say after the buyer has arrived and made some communication with the seller). This is a straightforward
consequence of Result 1 in the next subsection.
17The reason the restriction to deterministic mechanisms is without loss of optimality relates to the linearity of the seller�s

problem of choosing an optimal allocation rule for conditionally optimal prices (see the expression for the seller�s total pro�t
(23) in the Appendix).
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not on past values or time of arrival; this means that the value of the buyer�s problem can be attained by

a Markov strategy), and (ii) the seller can never pro�t by asking the buyer to follow a strategy that is not

Markov.18 For any arrival date � and any �[�;1), the date of purchase for the buyer when using the strategy

� 2 � is ��
�
�[�;1)

�
� inf fs � � : � (�s; s) = 1g. In case ��

�
�[�;1)

�
= +1, the interpretation is that the

buyer never purchases.

A �posted-price mechanism�MP = hp; xi is fully speci�ed by appending to the price path p the pre-

scription x 2 � of whether the buyer is to purchase for each value at each date (without loss of generality,

the seller speci�es x also at date zero). The interpretation is that the buyer is to purchase the good at date

t paying p (t) if and only if (a) he has arrived to the market by date t, (b) he has not yet purchased the

good, and (c) his value for the good at date t is �t, with x (�t; t) = 1. If the buyer �nds it optimal to follow

this prescription given p, then the mechanism is said to be incentive compatible.

3.1 Benchmarks

Known arrival date. A natural starting point for the analysis is to consider an environment which is

simpler to analyze, namely one where the seller knows the buyer�s arrival date in advance. The date of arrival

can be normalized to zero (equivalently, one can think of the buyer as always being active and receptive to

the seller�s o¤ers, so that the buyer is active in the market at the time the seller has the opportunity to

commit to a path of prices).

Pro�t-maximizing posted prices for buyers with known arrival dates and stochastically changing values

are analyzed by Conlisk (1984), Biehl (2001) and Deb (2010). The analysis here is best thought of as

extending Biehl�s (see Proposition 2 of his paper) from a setting with two periods to one with an in�nite

horizon (I also generalize his model by allowing �L 6= �H). The discussion is somewhat heuristic, but all

results can be derived from arguments made formally in the next subsection.

The kinds of price paths the seller might choose in the environment with a known arrival date can be

divided between situations in which the buyer purchases only if his value is high (Case 1) and those where

the buyer purchases at some point also if his value is low (Case 2). In Case 1, the best the seller can do is

to set a constant price �H , with the buyer purchasing either on date zero if his initial value is high, or on the

�rst date that his value turns high. In Case 2, if the buyer �nds it optimal to purchase with a low value on

some date z, then it is easy to show that he must �nd it optimal to purchase at that date also if his value

18The restriction to deterministic strategies is also without loss of generality (see the previous footnote).
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is high (see Lemma 1 below). As a consequence, no purchases occur in equilibrium after date z, and any

price path that remains above �H after date z is consistent with pro�t maximization.

For Case 2, the highest price the seller can charge on date z consistent with purchase by the buyer when

his value is low is �L. It is easy to see that the optimal path of prices between date zero and date z is the

one which induces the buyer to purchase if his value is high, but ensures his expected rent is the same as if

he were to purchase at date z. Thus, for all t 2 [0; z], let

p (t) = �H � Pr
�
~�z = �H j~�t = �H

�
e�r(z�t) (�H � �L) . (1)

The pro�t the seller expects for a given date z is then

R (z) =

�

S +

�
1� 
S

� �L
�L + r

�
�H +

�
1� 
S

�
e�(�L+r)z

�
�L �

�L�H
�L + r

�
�
Se�rz (�H � �L) . (2)

The �rst term is the expected surplus when the buyer obtains the good only if his value is high. The second

term is the expected gain in surplus from instead having the buyer obtain it at date z if his value begins low

and remains so until this date.19

The �nal term is the buyer�s expected rent. This can be decomposed according to whether the initial

value is low or high: conditional on a high initial value it is

Pr
�
~�z = �H j~�0 = �H

�
e�rz (�H � �L) ,

and conditional on a low initial value it is

Pr
�
~�z = �H j~�0 = �L

�
e�rz (�H � �L) . (3)

The former is decreasing faster than the rate of discounting (since Pr
�
~�z = �H j~�0 = �H

�
is decreasing

in z), but the latter is either increasing, or it is decreasing slower than the rate of discounting (since

Pr
�
~�z = �H j~�0 = �L

�
is increasing in z). For the following result, what it is enough to notice is that

the buyer�s ex-ante expected rents are exactly proportional to the discount factor e�rz.

19This term can be understood better by noting that �L� �L�H
�L+r

= !L
�L+r

, which is the present value of an annuity that pays
!L until termination at rate �L, when the discount rate is r. After discounting, this annuity coincides with the di¤erence in
surplus between the two purchasing policies given that the buyer�s value begins low and remains so until date z.
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Result 1 Suppose the seller knows that the buyer arrives at date zero. If

�L >

�

S +

�
1� 
S

� �L
�L + r

�
�H , (4)

it is optimal to set p (0) = �L and p (t) = �H for all t > 0; the buyer purchases immediately irrespective of

his value. Otherwise, it is optimal to set p (t) = �H for all t; the buyer purchases if and only if his value is

high (and he has not yet purchased a unit).

The interesting qualitative result is that inducing the buyer to purchase with a low value at a positive

date, i.e. choosing z > 0 in Case 2, is never optimal. As noted above, increasing z reduces the buyer�s

expected rents by a factor of e�rz, re�ecting discounting. However, it reduces the gain in surplus from

having the buyer purchase with a low value by a factor of e�(�L+r)z, re�ecting both discounting and the

probability that the buyer with a low initial value purchases before date z.

A similar insight is available when buyer values are constant, as �rst analyzed by Stokey (1979) (note

that, in case of constant values, the fully-optimal mechanism coincides with the posted price mechanism). In

this case, letting 
C be the probability of a high value, it is optimal to have the buyer purchase immediately

irrespective of his value if �L > 
C�H , and to have him purchase immediately only if his value is high

otherwise, with the low-value buyer never purchasing. In particular, any date on which the buyer purchases

must be date zero. The optimal date-zero prices are �L and �H respectively.

Uncertain arrival date. Now consider the possibility that the buyer�s arrival date is uncertain (say,

drawn from the exponential distribution de�ned in the model set-up, although the precise distribution is

not important) and is the buyer�s private information. If buyer values are constant, it is easy to see that

the seller should simply choose a constant price �L for all of time in case �L > 
C�H and should choose a

constant price �H for all of time otherwise. The buyer �nds it optimal to make any purchase immediately

and, in this sense, the solution replicates the outcome for the problem where the buyer�s arrival date is

known in advance.

When values change stochastically, things are di¤erent and more interesting. To see this, suppose that

(4) holds; then, the above logic does not apply. Choosing a constant price of �L does not induce purchase

by the buyer when his value is low. The reason is simply that the buyer expects zero rent from purchasing

if his value is low. He can do better by delaying purchase until his value changes to �H . At such time, his

expected value of holding the good forever, compared to the price paid, is positive. This means that the
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option value of waiting to satisfy his unit demand is positive.

It turns out that the highest constant price the seller can charge to induce purchase when the buyer�s

value is low is equal to !L
r , the discounted value of receiving �ow payo¤ !L in perpetuity. To see this,

suppose the constant price is pC . Suppose the buyer�s value is low at t0 and remains so until t00 > t0 and

compare the strategy of purchasing the good at date t0 with that of purchasing instead at date t00 (say, when

the buyer�s value changes to high). The di¤erence between the buyer�s payo¤s under the two strategies, as

evaluated at date t0, is equal to �!L
r
� pC

��
1� e�r(t

00�t0)
�
.

Therefore, if pC > !L
r , the buyer should clearly purchase only once his value turns high.

Given that setting a constant price !L
r fails to extract any of the surplus anticipated from the buyer�s

value becoming high, it is not too surprising that such a price path turns out never to be optimal. What one

should predict is that the seller must �nd ways to limit the rents the buyer expects to earn, without giving

up entirely on the objective of inducing purchase when the buyer�s value is low. The rest of this section

shows how the seller optimally responds to these tradeo¤s given that she is restricted to using posted prices.

Of course, if the seller is not restricted in her choice of mechanism, she can also �nd other ways to reduce

the buyer�s rent (this is true whether or not she knows the buyer�s arrival date). Section 4 will show how

she chooses the mechanism in this case.

3.2 Optimal prices for a given sales policy

Allowing for the possibility that the buyer�s arrival date is uncertain, this subsection derives pro�t-maximizing

prices for given dates at which the buyer is induced to purchase if his value is low (i.e., for a given �sales

policy�). I start by describing more carefully the buyer�s problem when confronted with a mechanismMP .

Buyer�s problem. The expected payo¤ to the buyer from using the Markov strategy � 2 � at any

date t at which he has not yet purchased is given by

uMP
t (�L;�) = E

h
e�r(~���t)

�
~�~�� � p (~��)

�
j~�t = �L

i
and

uMP
t (�H ;�) = E

h
e�r(~���t)

�
~�~�� � p (~��)

�
j~�t = �H

i
,

where ~�� is the stopping time determined by �.

Incentive compatibility of the posted-price mechanism MP = hp; xi is then the requirement that, for
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each t and �t,

uMP
t (�t;x) = �MP

t (�t)

where

�MP
t (�t) � sup

�2�
uMP
t (�t;�) .

Seller�s problem. For an incentive-compatible mechanismMP = hp; xi, the pro�t the seller expects

to earn at date � from a buyer who arrives at that date is

�MP (�) = E
h
e�r(~�x��)p (~�x)

i
.

Therefore, the present value of total expected pro�t is

PROFMP =

Z 1

0

�e�(�+r)��MP (�) d� .

The seller�s problem is to maximize PROFMP by choice of an incentive-compatible posted-price mechanism

MP .

Sales policy. Although, in this section, I am considering only a restricted set of mechanisms, I adopt

the approach common in the mechanism design literature of formulating the seller�s objective in terms of

the allocation rule rather than prices. For any incentive-compatible mechanism MP = hp; xi, de�ne the

corresponding sales policy to be the set A � R+ of times t such that x (�L; t) = 1. If A is the corresponding

sales policy, then I say that the mechanism is �consistent with A�and denote it byMP;A = hpA; xAi. The

collection of feasible sales policies is simply the collection of left-closed subsets of the positive reals.20

A sales policy A can be completely described by a function mA : R+! R+ [ f+1g, such that, at any

date t, the next date in A is21

mA (t) � inf fs 2 A : s � tg . (5)

Thus, mA (t) = +1 simply states that A is bounded below t (below I use the convention that, for any

function g : R! R, g (+1) = lims!+1 g (s)).

20By left-closed it is meant that the limit of any decreasing sequence of points in A is contained in A.
21Note that because A is left-closed, it is measurable. Hence mA is a measurable function.
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Value of buyer�s problem and optimal prices given sales policy. The �rst step to �nding

conditionally optimal prices is to deduce for a given sales policy A certain conditions that the value functions�
�
MP;A

t (�)
�
t�0

must satisfy. In particular, I establish tight lower bounds for these functions, which will

turn out to coincide with the rents the buyer expects to earn for the price path that maximizes pro�ts given

A.

The following lemma establishes a monotonicity property of the allocation rule associated with any

mechanismMP;A, which will be helpful in determining the aforementioned lower bounds.

Lemma 1 For any sales policy A, any mechanismMP;A, and any t 2 A, (i) xA (�H ; t) = 1, and hence

(ii) �MP;A

t (�H) = �
MP;A

t (�L) + �H � �L.

The property is simply that, if the buyer is willing to purchase when his value is low, he must also be

willing to purchase if his value is high. The additional rent he earns is the di¤erence in the expected value

from holding the good conditional on a high or low value at the time of purchase.

For any sales policy A, I now derive a lower bound on the buyer�s expected rent in mechanisms con-

sistent with A. To do so, I �rst restrict attention to the problem where the buyer can only employ a

limited set of strategies (since this can only lower his achievable rent). In particular, I restrict atten-

tion to strategies where the buyer is unable to make purchases except at dates in the sales policy (i.e., to

f� 2 � : � (�t; t) = 0 for all t =2 A and all �t 2 f�L; �Hgg), and de�ne �MP ;rest:
t (�t) to be the value of the

buyer�s problem given the restricted strategies for each t and each �t.

Consider any sales policy A. By Lemma 1, given a mechanism MP;A, the buyer �nds it optimal to

purchase at all dates in A irrespective of his value. Therefore, at any date t,

�
MP;A;rest:
t (�L) = e�r(mA(t)�t)

�
�
MP;A;rest:

mA(t)
(�L) + Pr

�
~�mA(t) = �H j~�t = �L

�
(�H � �L)

�
, and

�
MP;A;rest:
t (�H) = e�r(mA(t)�t)

�
�
MP;A;rest:

mA(t)
(�L) + Pr

�
~�mA(t) = �H j~�t = �H

�
(�H � �L)

�
.

Evaluating the probabilities,

�
MP;A;rest:
t (�H)� �MP;A;rest:

t (�L) = e�(r+�L+�H)(mA(t)�t) (�H � �L) .

The buyer, if his value is low at date t, anticipates that he can obtain at least the rent from avoiding all

purchases until such time as his value becomes high, and then following a (restricted) optimal strategy from
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then on. For any s � t, this is given by �MP;A;rest:
s (�H) if his value changes to high at date s. Therefore,

�
MP;A;rest:
t (�L) �

Z 1

t

�Le
�(r+�L)(s�t)�MP;A;rest:

s (�H) ds

=

Z 1

t

�Le
�(r+�L)(s�t)

�
�MP;A;rest:
s (�L) + e

�(r+�L+�H)(mA(s)�s) (�H � �L)
�
ds. (6)

A lower bound for the buyer�s rents is obtained by supposing that the buyer is in fact willing to wait until

his value changes to high before making future purchases, i.e. that (6) holds with equality. The unique

solution to this equation consistent with the transversality condition that buyer rents remain bounded is22

�LB;At (�L) =

Z 1

t

e�r(s�t)�Le
�(r+�L+�H)(mA(s)�s) (�H � �L) ds.

This equation, together with

�LB;At (�H) = �LB;At (�L) + e
�(r+�L+�H)(mA(t)�t) (�H � �L) ,

de�nes a lower bound on the agent�s payo¤s in an incentive-compatible mechanism consistent with A, not

only for the restricted strategies considered, but also for the unrestricted strategies �.

The next result gives a mechanism consistent with a sales policy A for which the lower bounds coincide

with the value function of the agent. The idea is to choose this mechanism so that, subject to consistency

with A, both (i) the lower bound on rents is attained, and (ii) surplus is maximized, i.e. the buyer purchases

the good whenever his value is high. I then show in the Appendix that the proposed mechanism is incentive

compatible. To simplify this proof, I restrict attention to sales policies A which are at most countable

collections of intervals and points. In the following subsection, I show that restricting attention to these

kinds of sales policies is without loss of optimality.

22The solution is found by considering the linear �rst-order di¤erential equation

r�LB;At (�L) =
@�LB;At (�L)

@t
+ �Le

�(r+�L+�H )(mA(t)�t) (�H � �L) :
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Lemma 2 Let A be any sales policy that is an at most countable union of intervals and points. De�ne the

price path p�A by

p�A (t) = �L �
Z 1

t

e�r(s�t)�Le
�(r+�L+�H)(mA(s)�s) (�H � �L) ds

if t 2 A and by

p�A (t) = �H �
Z 1

t

e�r(s�t)�Le
�(r+�L+�H)(mA(s)�s) (�H � �L) ds

�e�(r+�L+�H)(mA(t)�t) (�H � �L)

if t =2 A. Choose the purchase prescription x�A consistent with A and such that the buyer purchases im-

mediately on all dates such that his value is high (i.e., x�A (�H ; t) = 1 for all t). Then, M�
P;A = hp�A; x�Ai

maximizes the seller�s expected pro�t conditional on consistency with the sales policy A.

The optimal choice of prices for a sales policy A can be completely speci�ed from the following obser-

vations. First, at any date t 2 A, if the buyer�s value is low, then he is indi¤erent between a strategy of

purchasing at that date and waiting and instead purchasing if and only if his value turns high. Second, at

any date t =2 A at which the buyer�s value is high, he is indi¤erent between a strategy of purchasing at date

t and waiting and purchasing with certainty at the next date in the sales policy mA (t), or never purchasing

again if there are no future dates (mA (t) = +1).

Before moving to consider optimal sales policies, it is useful to consider more carefully how prices are

a¤ected by the choice of sales policy. Suppose �rstly that [t0; t00] � A, with t0 < t00. Then, using

�LB;At0 (�L) = e�r(t
00�t0)�LB;At00 (�L) +

�
1� e�r(t

00�t0)
� �L (�H � �L)

r
, (7)

one can easily deduce that

p�A (t
0)� e�r(t

00�t0)p�A (t
00) =

�
1� e�r(t

00�t0)
� !L
r
. (8)

This simply states that the di¤erence in the value of payments at t0 from purchasing at t0 rather than t00

equals the value of holding the good between t0 and t00 when the buyer�s value remains low. This re�ects

the same principle described in the previous subsection for constant prices.
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Second, suppose that t0; t00 2 A with t0 < t00, but that (t0; t00) \A = ;. In this case

�LB;At0 (�L) = e�r(t
00�t0)

�
�LB;At00 (�L) + Pr

�
~�t00 = �H j~�t0 = �L

�
(�H � �L)

�
(9)

i.e., if the buyer�s value is low at t0, his rent must equal that from waiting to purchase at t00, when there is

a positive probability that his value is high.

Now compare the two scenarios, assuming that the dates t0 and t00, as well as the rent at date t00 (as

determined by �LB;At00 (�L)), are the same in each. It is easy to see that the buyer�s rent at t0 (as given by

�LB;At0 ) is strictly larger if the dates (t0; t00) are included in A (as given by (7)) than if they are excluded (as

for (9)). Thus the price at t0 in the �rst scenario is also lower. The reason for this result is that the option

value of waiting to purchase at date t0 is greater if prices are known to be lower in the future, i.e. if there

are more future dates in the sales policy A.

Finally note that, for optimal prices, a given change in the rents expected at any date in the sales

policy (e.g., consider a change in the sales policy after that date) a¤ects the buyer�s rents at all earlier

dates in present value (i.e., date zero) terms by the same amount. This observation plays a crucial role in

determining the key features of the optimal sales policy, which is characterized in the next subsection. A

similar observation will apply also when I turn to discuss the fully-optimal mechanism in the next section.

3.3 Optimal sales policy

Characterization of optimal sales policy. This subsection considers pro�t-maximizing sales policies

when the buyer�s arrival date is uncertain and determined according to the exponential distribution de�ned

in the model set-up. I next give the main characterization result. To do so, I restrict attention to parameters

such that the inequality (4) holds, since for the remaining parameters it is optimal simply to choose a constant

price equal to �H . To simplify the statement of the result, and without loss of optimality, I restrict attention

to sales policies that are closed sets.
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Proposition 1 Suppose that (4) holds.23 An optimal sales policy exists. Let

T =

8<: 0 if !L � 
S!H

1
� log

�
1 +

�(!L�
S!H)
�L(!H�!L)

�
if !L > 
S!H

: (10)

Any optimal policy A� satis�es

(i) there exists K 6= ; such that A� = [0; T ] [ ftk : k 2 Kg, where tk > T for all k 2 K, and

(ii) for any � > 0, there exist at most �nitely many points in A� above T + �;24 hence A� is bounded.

This result, together with the observations in Subsection 3.1, imply the following corollary for the envi-

ronment with uncertain arrival.

Corollary 1 If values for the good do not change, then optimal prices are constant over time. If values

change stochastically (i.e., given �L; �H > 0), and if (4) holds, then optimal prices �uctuate.

The proof of Proposition 1 proceeds by determining the seller�s expected total pro�t for a given sales

policy PROFMP;A (see (23) in the Appendix) and then analyzing a dynamic program. This centers on a

particular recursive statement of the problem, the details of which are delayed until the end of this subsection.

Next, I provide an example (calculated by implementing the recursive approach numerically) to highlight

further the key features of the optimal price path and then provide intuition for why these features arise.

Example 1 Suppose that !L = 1 14 , that !H = 2, �L = �H =
1
4 , that � = r = 1

10 and that 
 = 
S = 1
2 . It

follows that �L = 15 58 and �H = 16
7
8 . I approximate A by considering only subsets of fn=100 : n 2 Ng. The

optimal sales policy and price path is depicted in Figure 1.

Several features are apparent from considering Figure 1. As stated in Part (ii) of Proposition 1, the

optimal sales policy is bounded, which means that prices are eventually constant and equal to �H . Before

this time, prices �uctuate as they fall up to isolated points in the sales policy and jump thereafter. These

�sales�events are anticipated by the proposition, for it states the optimality of a discrete sales policy above

T +� for any � > 0 (here, T � 1:25). Further, the sales policy includes an initial interval [0; T ] and then the
23The result of Proposition 1 holds true also if 
 6= 
S provided that �L; �H > 0. Whilst (4) remains su¢ cient, a weaker

condition often su¢ ces for other values of 
. What is needed is simply that there be a positive probability that the buyer
purchases with a low value under the optimal price path. None of the arguments given in the proof turn out to depend on
the value of 
. An earlier working paper version provides more detailed discussion.
24 It can be shown, in addition, that if !L � 
S!H , T must be an accumulation point of A�n [0; T ].
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Figure 1: Optimal price path and sales policy for Example 1

subsequent dates are spaced further apart with time.25 This, together with the boundedness of the optimal

policy, means that prices trend upwards over time. I now provide intuition for these key features.

Boundedness of sales policy. That the optimal sales policy A� is bounded follows for the reason

discussed at the end of the previous subsection. Including additional dates in the sales policy after some

date t implies higher buyer rents and lower prices at all dates before date t back to date zero. Obviously

the expected e¤ect on the buyer�s rent is therefore larger the later the date t. In addition, the probability

of the buyer arriving on the market is smaller the later the date under consideration, so the e¢ ciency gains

from including additional dates in the sales policy are less. Both these e¤ects work in the same direction.

Together with the intuition discussed below, they also explain why the distance between dates in the sales

policy grows with time. In Subsection 3.5, however, I explain that the sales policy may be unbounded and

that the pattern of prices may converge to a stationary one in case the buyer leaves the market stochastically

at a su¢ ciently fast rate.

Discreteness of sales policy after T (�price �uctuations�). Now consider the �nding of isolated

points in the optimal sales policy. In particular, it seems important to understand why it is optimal to

induce the buyer to purchase when his value is low after a delay when the buyer�s arrival date is uncertain

and is his private information, but not (as stated by Result 1) when the seller knows the arrival date in

25The �nding that sales become uniformly less frequent with time is common to all the numerical examples I have considered.
I have not yet been able to verify that this result always holds.
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advance.

A signi�cant component of the intuition can be understood by recalling Stokey�s (1979) intuition about

the optimality of intertemporal price discrimination. The following example illustrates.

Example 2 Suppose that �L = 0, but that 
 2 (0; 1), and suppose as in Subsection 3.1 that the buyer

is known to arrive at date zero. Again, other than the empty policy, one can restrict attention to sales

policies that contain only one point, say z. The corresponding optimal prices are such that p�fzg (0) =

�H�e�(r+�H)z (�H � �L) and p�fzg (z) = �L; prices at other dates are irrelevant provided they are su¢ ciently

high. The seller�s expected pro�t is equal to


�H + e
�rz �(1� 
) �L � 
e��Hz (�H � �L)� .

If �H is set equal to zero, this is linear in the discount factor e�rz, and so one recovers the result for constant

values mentioned in Subsection 3.1: the optimal sales policy is either empty or f0g and so any purchases are

immediate. However, if �H > 0 and 
 is su¢ ciently large, then a sales policy fzg is optimal for z > 0.

The reason for the optimality of z > 0 in Example 2 is that, if the buyer�s value is high, he expects

it to decline. This makes the strategy of purchasing at date z > 0 unattractive. In e¤ect, the buyer is

�impatient�to obtain the good if his value is high, and so the seller can charge a higher price at date zero.

Stokey (1979) identi�es the same e¤ect in a model where values change deterministically (here, it is instead

expected changes in the value that make the buyer e¤ectively impatient when his value is high).

The above e¤ect is clearly not the only force at play. If one extends Example 2 to allow for an uncertain

arrival time, the optimal price may be constant at �L = !L
r with the corresponding sales policy A = R+

(this is true whenever the parameters are such that the optimal sales policy in the example is f0g). The

reason is that, at any date t in the sales policy, the choice of subsequent dates in the policy has no e¤ect on

rents before date t. For the subsequent dates to a¤ect the buyer�s rents when arriving before t requires that

he anticipate the possibility of purchasing with a high value on such dates when his value is low, i.e. that

�L > 0.

Instead, Proposition 1 assumes that both �L and �H are positive and states that, provided the buyer

purchases with a low value with positive probability (i.e., provided (4) holds), the sales policy always includes

isolated points, possibly after an initial interval [0; T ].26 The reason relates to the weight that must be placed

26As mentioned in footnote 23, this conclusion holds provided �L; �H > 0 regardless of the value of 
.
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on limiting the rent the buyer earns in case of arrival at earlier dates. At dates in [0; T ], this weight is low

enough that the e¢ ciency advantage of inducing immediate purchase with a low value dominates. At dates

above maxA�, the weight is high enough that it dominates the e¢ ciency advantage of inducing any purchase

with a low value. Between T and maxA�, the seller balances the trade-o¤s by inducing purchase with a low

value only occasionally, i.e. by �holding sales�. This allows the seller to provide the good to the buyer if

he is waiting with a low value, whilst (by exploiting his �impatience�) still charging a relatively high price

if he arrives with a high value (or if his value switches to high) at times in between.27 This of course also

lowers the option value of delaying purchase if the buyer arrives at an earlier time, so it reduces the rents

the buyer earns at earlier arrival dates as well.

Another way to understand the discreteness of the sales policy after T is by considering mechanisms that

involve both rental and outright sale. In case (4) holds, it follows easily from Result 1 that the sales policy

A = [0; �t] achieves a higher expected pro�t than A = ;, provided that �t is su¢ ciently small. The question

of why a simple interval [0; �t], for optimally chosen �t (see Lemma 9 in the Appendix), does not maximize

pro�t can then be understood from the fact that it raises the same pro�t as the following mechanism which

involves rental. First, the good is rented at rate !L from date zero up to �t. Second, the mechanism reverts

to the original mechanism at �t, i.e. the buyer is given the opportunity to purchase outright at �t at a price

�L before the price changes to �H for outright purchase for the rest of time. That the two mechanisms

are equivalent is immediate from (8). Suppose that !L � 
S!H . Then, if the seller must rent the good

rather than sell it between date zero and �t, a better policy would be to set a rental price !H , inducing the

buyer to rent only if his value is high (again reverting to the original mechanism at �t). This mechanism

is, however, strictly dominated by using the posted price mechanism with outright sale with a sales policy

equal to f�tg and optimally chosen prices. (The reason that selling dominates rental in this case is simply

that outright selling is more e¢ cient, as the buyer continues to hold the good even if his value turns low,

while his expected rents, assuming optimal prices, are the same.) The same intuition can be extended to

the case where !L > 
S!H for dates later than T by recognizing that a commitment to rent at a price of !L

over an interval of positive length (rather than, say, to sell at a price which induces the buyer to purchase

only if his value is high) implies that earlier prices must be lower.

27The e¤ect of �impatience� is crucial. In case �H = 0, price �uctuations are never optimal for any level of 
. If 
 is
su¢ ciently small, the optimal sales policy is an interval of the form [0; �t] with �t > 0, which means that prices gradually rise up
to �t and then jump to �H .
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Recursive formulation. I now discuss the recursive formulation that is used to prove Proposition 1

and which allows optimal sales policies to be derived numerically using value function iteration. The idea

is to consider a sequence of sub-problems such that, for each date t that is included in the sales policy, the

problem is to choose the subsequent date in the sales policy. Each sub-problem accounts for the e¤ect of

the future selection of dates not only on the revenue the seller expects after date t, but also on the rents

earned by the buyer when arriving before t. The value of each sub-problem W � (t) satis�es the functional

equation

W � (t) = sup
t0>t

8<: � (t0 � t)�
�
e�t � 1

�
Pr
�
~�t0 = �H j~�t = �L

�
e�r(t

0�t) (�H � �L)
+e�(r+�)(t

0�t)W � (t0)

9=; (11)

on R+, where

� (z) =

Z z

0

�e�(�+r)sR (z � s) ds (12)

and where R (�) is given by (2).

As explained in the Appendix, the functional equation is helpful for identifying the points in an optimal

sales policy following date T . If A� is a solution, then for dates s00 > s0 > T to be consecutive members of

A� it must be that s00 attains the value W � (s0) for the sub-problem at s0.28 Note that the inclusion of no

further dates in the sales policy can be approximated by taking t0 arbitrarily large in (11) (the value from

including no future dates is �
r+�

�

S +

�
1� 
S

�
�L
�L+r

�
�H).

Now consider the optimization problem. The �rst term, � (t0 � t), is the revenue the seller expects to

earn over the interval [0; t0 � t] for the hypothetical sales policy which includes only the point ft0 � tg. The

third term, e�(r+�)(t
0�t)W � (t0), is the value of the seller�s problem of choosing additional dates in the policy

after t0, discounted to re�ect the rate of time preference as well as the reduced probability that the buyer

arrives after date t0.

Finally, consider the second term. This term accounts for the e¤ect of including date t0 in the sales

policy on the buyer�s rent when arriving before date t; see (9). It is weighted by e�t� 1, which, after taking

into account the fact that the value of the seller�s problem is discounted also by the probability of arrival

subsequent to t (i.e., e��t) corresponds to the probability of an earlier arrival (i.e., 1 � e��t). It is this

term which captures the non-stationarity of the trade-o¤s described above, with the consequence that the

28That the functional equation is valid on [0; T ] re�ects the continuity of the problem: the pro�t obtained from any sales
policy which includes an interval can be approximated arbitrarily closely by a discrete sales policy. This is immediate from
considering (23) in the Appendix.
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distance between sales increases over time and that eventually there are no further sales.

3.4 Diminishing value for the good

As mentioned in the Introduction, the �nding that prices tend to rise over time is not borne out in many

markets where the evolution of fashion and technology play an important role. One possible explanation is

that, as fashions and technology are replaced, consumers derive less and less value from the older products.

As this occurs, it seems reasonable to expect the price also to decline. The model can be extended to

accommodate this possibility, and it is easy to see that the key tradeo¤s in determining when and whether

to reduce prices remain.

One particularly tractable possibility is to posit that the �ow value derived from the good vanishes with

the time since date zero at a constant rate f > 0. In this case, !H (t) = !H (0) e
�ft and !L (t) = !L (0) e

�ft

for all t � 0, where !H (0) > !L (0) > 0. This implies that the expected values from obtaining the good in

the high and low states are �H (t) = e�ft�H (0) and �L (t) = e�ft�L (0), where

�H (0) =
(�L + r + f)!H (0) + �H!L (0)

(r + f) (�L + �H + r + f)

�L (0) =
�L!H (0) + (�H + r + f)!L (0)

(r + f) (�L + �H + r + f)
.

Using the same arguments as in the previous subsection, it is straightforward to check that the optimal

sales policy is identical for the problem where the discount rate is given by r + f . For any sales policy A,

conditionally optimal prices are given by

p�A (t) = e�ft
�
�L (0)�

Z 1

t

e�(r+f)(s�t)�Le
�(r+f+�L+�H)(mA(s)�s) (�H (0)� �L (0)) ds

�

if t 2 A and by

p�A (t) = e�ft

 
�H (0)�

R1
t
e�(r+f)(s�t)�Le

�(r+f+�L+�H)(mA(s)�s) (�H (0)� �L (0)) ds
�e�(r+f+�L+�H)(mA(t)�t) (�H (0)� �L (0))

!

if t =2 A. The following example illustrates one possibility for the pattern of prices.

Example 3 Suppose that !L = 1 14 , !H = 2, �L = �H =
1
4 ; � =

1
10 , r =

4
50 and f =

1
50 (hence r+ f =

1
10).

It follows that �L (0) = 15 58 and �H (0) = 16
7
8 . The optimal sales policy is the same as in Example 1. The

optimal sales policy and price path is depicted in Figure 2.
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Figure 2: Optimal prices and sales policy for Example 3

In Example 3, after su¢ cient time, the buyer purchases only once his value turns high. At such a date t,

the price is equal to the expected value from acquiring the good at date t, �H (t), which is declining. Thus,

by combining the hypothesis of private uncertainty about future values with the hypothesis of an anticipated

and predictable decline in values, one can account for discounting both early and late in the product life

cycle, which, as mentioned in the Introduction, is consistent with price patterns found in fashion retail (see

Pashigian and Bowen (1991)).29

3.5 Buyer attrition from the market

Another important feature of the model considered so far is that the buyer anticipates having the opportunity

to purchase the good into the in�nite future. As discussed in Subsections 3.2-3.3, including additional dates

in the sales policy after some date t in the policy therefore increases the rent expected at all dates before t

by the same amount in date-zero terms. This is what drives the optimality of a bounded sales policy.

The above conclusion does not remain true, however, if the buyer expects to exit the market. Suppose

that the buyer, having arrived to the market, exits it permanently at some rate d > �. Then the ex-ante

probability the buyer is in the market at any date t is e��t �
d��

�
1� e�(d��)t

�
, which eventually becomes

proportional to the ex-ante arrival rate �e��t.

29 In particular, Pashigian and Bowen document discounting of shirts both at the beginning and end of the relevant season,
noting (p 1030) "The percentage of shirts sold on sale at the beginning of each season is unexpectedly and surprisingly high.�
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To understand the implications for the optimal price path, consider how one must modify the recursive

formulation discussed in Subsection 3.3. For simplicity, suppose that the buyer continues to use the good

after exiting the market, so his value from obtaining it is either �L or �H , as de�ned in the model set-up. The

timing is such that the buyer simply learns that he can no longer purchase the good and cannot subsequently

purchase (i.e., there is no �last chance� to purchase the good before exiting). If the buyer instead stops

having any need for the good, then the values from obtaining the good when he is still in the market should

be appropriately adjusted, but the rest of the analysis remains the same.

Consider the expected pro�t given arrival at date zero when the sales policy is fzg for z � 0. Abusing

notation, instead of the pro�t de�ned in (2), this is

R (z; d) =

�

S +

�
1� 
S

� �L
�L + r + d

�
�H +

�
1� 
S

�
e�(�L+r+d)z

�
�L �

�L�H
�L + r + d

�
�
Se�(r+d)z (�H � �L) .

The value of the seller�s problem of choosing the next date in the sales policy is then given by

W � (t) = sup
t0>t

8<: � (t0 � t; d)� �
d��

�
1� e�(d��)t

�
Pr
�
~�t0 = �H j~�t = �L

�
e�(r+d)(t

0�t) (�H � �L)
+e�(r+�)(t

0�t)W � (t0)

9=; (13)

where, again abusing notation,

� (z; d) =

Z z

0

�e�(�+r)sR (z � s; d) ds.

Assuming d > �, the seller�s continuation problem of choosing the next date in the sales policy becomes

stationary over time, with the value function converging to

W �
LR = sup

z>0

8<:� (z; d)�
�
d�� Pr

�
~�z = �H j~�0 = �L

�
e�(r+d)z (�H � �L)

1� e�(r+�)z

9=; . (14)

To understand the long-run pattern of prices, one can focus on an auxiliary problem with a value function

satisfying (14). For instance, as stated in the following result, if a discrete sales policy is uniquely optimal

in the auxiliary problem, then any optimal policy in the problem of interest must become discrete after

su¢ cient time, with the distance between sales dates the same as in the solution to the auxiliary problem.
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Result 2 Suppose that W �
LR in (14) is uniquely attained by z

� > 0, and that this exceeds the value attained

at z = +1.30 Suppose Aopt is an optimal sales policy in the problem of interest (see (13)). Then

(i) Aopt is unbounded, and

(ii) for any " > 0, there exists a date t̂ > 0 such that (a) Aoptn
�
0; t̂
�
is a discrete set, and (b) if s0; s00

are consecutive dates in Aoptn
�
0; t̂
�
, then jjs00 � s0j � z�j < ".

Using Result 2, one can easily �nd parameter values such that any optimal sales policy is discrete after

su¢ cient time (to give an example, this is true if d = 1=5 and the other parameters are as given in Example

1; in this case the distance between dates in the sales policy converges to z� = 2:1 with time). Thus, one

possibility is that price �uctuations persist and become stationary in the long run.

3.6 Countercyclical markups

The theory developed above provides a possible explanation for countercyclical markups that seems to have

gone unnoticed. The hypothesis of countercyclical markups was proposed originally by Pigou (1927) and

Keynes (1939), who observed that prices tend to change little in response to increases in aggregate demand.

Murphy et al. (1989) report countercyclical movements in the prices of �nished goods relative to intermediate

inputs in the post-war period, with the �nding most pronounced for consumer durables. At the micro level,

Pashigian and Bowen (1991) document the evolution of prices for men�s shirts and Warner and Barsky (1995)

document the prices of a wider range of durables and �semi-durables�. They �nd evidence that prices tend to

be lower during times that shoppers are more active, such as before Christmas and on weekends. Chevalier

et al. (2003) �nd lower markups during high demand periods in supermarket data.

One way to model variation in the level of buyer activity is to allow variation in the arrival rate of buyers

to the market (see the discussion of Bils�(1989) theory below). One might expect that dates with a faster

arrival rate would be associated with lower prices because of a simple trade-o¤made by sellers when deciding

their price paths. At any date, a seller trades o¤ between two objectives: (i) extracting as much pro�t as

possible from buyers arriving at (or just before) a given date, which may require setting a low price, and

(ii) lowering the option value of waiting for earlier arrivers, which requires setting a high price at the date

in question. The �rst objective becomes much more important if there is a rush of buyers to the market

at (or just before) this date. Thus, one might expect to see lower prices at dates when the rate of arrival

30That is, W �
LR > �

r+�

�

S +

�
1� 
S

� �L
�L+r+d

�
�H . In other words, the value from including an optimal choice of future

dates in the auxiliary problem exceeds that from not including any future dates.
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is high. However, this intuition is incorrect in a model where values for the good do not change because

optimal prices are constant and set at a level that maximizes the expected pro�t for each possible arrival

date (see the discussion of Stokey�s (1979) result in Subsection 3.1). It can be correct, though, if values for

the good change stochastically.

One way to formalize the intuition is to allow a mass point in the distribution of the buyer�s arrival date.

The following result is an immediate consequence of the previous analysis.

Result 3 Suppose that (4) holds. Suppose that the buyer arrives at date �mass with probability �, and that

with complementary probability he arrives according to the exponential distribution with parameter � > 0

(all other assumptions are as set out in Section 2). For any " > 0, there exists �� 2 [0; 1) such that, for all

� 2 (��; 1], any optimal sales policy includes a date t 2 [�mass; �mass + ").

The intuition for this result is indeed the one given above. If the probability the buyer arrives at a given

mass point is taken close enough to one, then the objective of maximizing pro�t for the event of arrival at

that date dominates. If maximizing pro�t conditional on arrival at that date requires inducing immediate

purchase irrespective of the buyer�s value (i.e., if (4) holds), then it is optimal to induce purchase irrespective

of value either at that date, or just after it, also when arrival is uncertain. If other nearby dates are not

included in the sales policy, then prices must be especially low at the date of the mass point. It seems

reasonable to expect that a similar implication would hold more generally also with less extreme variation

in the arrival rate, at least often enough to show up when averaged across di¤erent products with di¤erent

initial dates and evolution of buyer values.

There are a couple of other points to note. First, one might object that sellers often cannot anticipate

spikes in buyer activity in advance (this seems more the case with business cycles than with the Christmas

and weekend e¤ects mentioned above). Full-commitment prices might, however, be conditioned on some

publicly observable variable that is correlated with the rate of arrival. Secondly, countercyclical markups

are also observed for goods usually considered non-durables. However, the theory does seem likely to extend

to goods that buyers perceive to be substitutable across time; in particular, to goods with the property that

purchase at one moment reduces the value obtained from purchasing again at a later date.

A number of theories for countercyclical markups have already been proposed in the literature. Bils�

(1989) theory has a similar �avor to mine in that it is based on the optimal response of the seller to changes in

the rate of arrival. He suggests that, for experience goods, �rms would like to lower prices in order to attract
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new customers but want to raise them to extract rent from customers who have previously purchased and

know that the product is e¤ective or to their liking. Periods associated with the greatest in�ux of new buyers

are ones where the trade-o¤ between extracting rent from previous purchasers and enticing new customers

to experiment is resolved in favor of the latter. Assuming the seller cannot commit, Bils shows that prices

are lowest during these periods. One di¢ culty with this theory is that it requires experimentation to play

a key role in the purchase decision, which seems unlikely to be true for all goods (e.g., where the consumer

only makes a one-o¤ purchase, or where relevant information is available without the need to experiment).

Chevalier et al. (2003) review other theories (especially, Rotemberg and Saloner (1986) and Warner and

Barsky (1995)) and suggest that they do not match their data set well. They propose an explanation based

on loss-leadership in advertising. Because advertising is costly and consumer attention scarce, it is optimal

to lower the prices of the most popular products. They therefore suggest that, when the consumption rate

of a good is high for exogenous reasons (e.g., the consumption of tuna during Lent), the good will tend to

be sold at a discount. Again, however, the applicability of this theory across a range of markets is an open

question.

What drives countercyclical markups therefore seems unresolved in the literature. The contribution

of this subsection is simply to show that countercyclical pricing patterns may be consistent with full-

commitment pricing when buyer values change stochastically. The intuition driving this result is necessarily

absent from models where the seller does not commit. A seller lacking commitment ability does not take

into account the e¤ect of prices at each date on the pro�t earned in case of earlier arrival. It is variation in

the weight assigned to the the pro�t earned in case of earlier arrival which drives countercyclical markups

in my theory.

4 The fully-optimal mechanism

I now consider the unrestricted optimal mechanism. As discussed in the Introduction, the seller will want

to incentivize the buyer to participate in the mechanism immediately. At the same time, since the buyer is

forward-looking and strategic, the time at which he wants to participate potentially depends on the seller�s

choice of mechanism over the in�nite future. An apparent di¢ culty is therefore understanding how the seller

can choose the mechanism to induce immediate participation without giving up excessive rent. Moreover,

since the level of rent will depend on the equilibrium allocation of the good, it will be important to understand
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the relationship between this allocation and the size of the information rents that the buyer receives.

Without loss of optimality, the seller fully commits to a deterministic mechanism at date zero.31 As

described above, the buyer cannot participate in the mechanism until he arrives. However, upon arrival, he

perfectly observes the mechanism and can engage in unrestricted communication with the seller.32

Because the seller can fully commit, the revelation principle applies in this environment, and so it is

without loss of optimality to restrict attention to incentive-compatible direct mechanismsMD in which the

buyer participates in the mechanism at the time of arrival and then reports how his value evolves over time

(by the revelation principle, the seller cannot do better than inducing immediate participation; it turns out

that a policy of inducing immediate participation is strictly preferred). Direct mechanisms are de�ned

formally in the Appendix, where I also note standard measurability restrictions.

What is important to understand for the purposes of my analysis is that, for any mechanism, there exists

a measurable function m : R+ ! R+ such that, in equilibrium, if the buyer arrives at date � , he receives

the good at m (�) � � if his value is low upon arrival and remains low. I say that such a mechanism is

�consistent with m�.

The approach is to initially consider a �relaxed program�. For any function m, I �nd a mechanism that

maximizes expected pro�t among mechanisms consistent with m taking account only of certain incentive

constraints (and thus assuming that the buyer always participates and reports truthfully, provided these

constraints are satis�ed). The constraints of the relaxed program are:

1. If the buyer has a high value but has reported only to have a low value in the past, then he prefers to

report truthfully from then on rather than continuing to report a low value forever.

2. Suppose that the buyer follows a truthful reporting strategy after participating. If the buyer�s initial

value upon arrival is low, then he prefers to participate immediately at this time rather than wait and

participate if and only if his value becomes high.

Having derived the mechanism that maximizes pro�t subject to consistency with m in the relaxed pro-

gram, I �nd the optimal choice of m for this program, and then verify that, for this choice of m, all incentive

31As for posted prices, it is optimal to consider deterministic mechanisms due to the �bang-bang� nature of the solution to
the pro�t-maximization problem � see (21) in the Appendix.
32Some care is needed in extending the analysis to a population of agents. The novel concern with respect to the single-buyer

environment is the possibility the buyer tries to contract more than once. In e¤ect, the buyer may �nd it advantageous to claim
to have two or more identities. In case the seller cannot identify buyers who have contracted previously, the implementation
of the optimal mechanism may need to be chosen carefully to discourage the buyer obtaining multiple contracts.
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constraints are indeed satis�ed. In deriving the solution to the relaxed program, the following result, which

follows from arguments in Battaglini (2005), is helpful.

Lemma 3 Let MD be any mechanism satisfying Constraints 1 and 2. There exists an alternative mecha-

nism M0
D such that (a) the buyer is always indi¤erent between the alternative strategies in Constraint 1,33

(b) Constraint 2 is satis�ed, and (c) the pro�t for the seller is at least as high as for the original mechanism

MD.

For the purposes of solving the relaxed program, Lemma 3 allows me to restrict attention to mechanisms

satisfying Part (a) of the lemma. For each date � and each �� 2 f�L; �Hg, let �MD
� (�� ; ;) be the buyer�s

expected payo¤ from participating for the �rst time at date � in the mechanismMD and then following an

optimal reporting strategy (the reason for conditioning �MD
� on ; is that the buyer has not yet reported any

values to the seller at the time he �rst participates).34 For any function m as de�ned above, the relevant

mechanisms are the ones such that, assuming truth-telling is optimal for the buyer, at any date � ,

�MD
� (�H ; ;)� �MD

� (�L; ;)

= e�r(m(�)��) (�H � �L)
�
Pr
�
~�m(�) = �H j~�� = �H

�
� Pr

�
~�m(�) = �H j~�� = �L

��
= e�(r+�L+�H)(m(�)��) (�H � �L) . (15)

That is, the di¤erence in the buyer�s expected payo¤ conditional on high and low values at the participation

date � is simply the discounted expected di¤erence in the values at date m (�).

Known arrival time. The analysis when the seller knows the buyer�s arrival time is essentially the

same as in Battaglini (2005), and it turns out one can characterize the optimal mechanism directly by

appropriately adjusting the �dynamic virtual surpluses� for his problem to the present one.35 To provide

a benchmark for my results when the buyer�s arrival time is uncertain and his private information, I brie�y

show how the above relaxed program applies to the case where the buyer�s arrival time is known.

Using the same normalization as in Subsection 3.1, suppose the buyer arrives at date zero. Assuming

33That is, if the buyer has a high value but has reported only low values, he is indi¤ erent between reporting truthfully from
then on and instead continuing to report a low value forever.
34 In terms of the notation in the Appendix, �MD

t

�
�t;h[�;t)

�
denotes the value of the buyer�s problem at date t > � when his

value is �t and when he has participated at date � and reported his values since that time to be h[�;t).
35 In particular, one can solve the problem by focussing on the �ow values, and then noticing that the optimal mechanism has

the property that, once the buyer receives the good, he holds it forever. Thus, whilst in richer environments there is a di¢ culty
related to the non-time separability of the optimization problem (see Pavan, Segal and Toikka (2011) and Garrett (2011)), this
di¢ culty is not present when the buyer has only two values.
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truth-telling is optimal conditional on participation, Constraint 2 is then simply �MD
0 (�L; ;) � 0, since the

seller optimally commits not to allow the buyer another chance to obtain the good if he does not participate

at date zero. (Alternatively, the seller �nds it optimal to induce purchase only when the buyer�s value is

high, i.e. to set m (�) = +1 for all � > 0.) The indirect mechanism in the following result ensures that

this constraint holds with equality.

Result 4 Consider the environment of the model set-up (with any value 
 2 (0; 1)), but where the seller

knows that the buyer�s arrival date is equal to zero. The following mechanism is optimal conditional on

the buyer receiving the good at m (0) if his value remains low. The buyer obtains at date zero an option to

purchase the good at prices

p#0 (t;m (0)) = �H � Pr
�
~�m(0) = �H j~�t = �H

�
e�r(m(0)�t) (�H � �L)

for dates t 2 [0;m (0)], and for this option he pays at date zero the fee

f#0 (m (0)) = Pr
�
~�m(0) = �H j~�0 = �L

�
e�rm(0) (�H � �L) .

The buyer purchases the good at the �rst moment his value is high, or at m (0) if he has not already purchased.

The optimal choice of m (0) is

m# (0) =
1

�H
ln

�

 (!H � !L)
(1� 
)!L

�
.

The price path p#0 coincides with (1) derived in Section 3.1. It is chosen to keep the buyer indi¤erent

between purchasing the good and waiting to purchase at date m (0) (the expiration date of the option)

when his value is high. It therefore achieves the lower bound e�(r+�L+�H)m(0) on the di¤erence in expected

payo¤s from participation given high and low initial values (as given by (15)). The fee f#0 (m (0)) is set

equal to the rent the buyer expects conditional on a low initial value from having the option to purchase

at the prices p#0 (see (3)). These two observations imply that the buyer�s expected rents are as small as

possible for a mechanism consistent with m (0). Moreover, the buyer receives the good as soon as his value

is high at dates before m (0), so the mechanism is as e¢ cient as possible. Hence, the proposed mechanism

maximizes expected pro�t subject to Constraints 1 and 2.

To see that all of the incentive constraints are satis�ed, not only Constraints 1 and 2, note that after

the buyer has purchased the option, he simply faces the optimal price path for a sales policy A = fm (0)g
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as studied in the previous section. That the buyer optimally purchases at the times indicated given these

prices is shown in the proof of Lemma 2. That he �nds it optimal to participate, i.e. to purchase the option,

simply follows because he expects a non-negative payo¤ from doing so.

Note also that the optimal mechanism always induces purchase eventually if the buyer�s value remains

low, i.e. m# (0) < +1. That the buyer is eventually induced to take the e¢ cient action irrespective of

his realized values re�ects the �principle of vanishing distortions�demonstrated by Battaglini (2005) for a

model with two values (�types�), and earlier by Besanko (1985) for a model with a continuum of types. The

reason for the result is that the rents that must be left to the buyer are small provided m (0) is su¢ ciently

large, because the buyer�s initial information is a poor predictor of his value at dates far in the future.

This result can be contrasted with Result 1, where it is seen that, if the reverse of (4) holds, the buyer

never receives the good in case his value remains low forever (the price is simply constant at �H). The

reason for the di¤erent result is that, when the seller is restricted to using posted prices, she has no way to

recover rent that the buyer expects to earn from the option to purchase at given prices. It therefore becomes

more important to limit buyer rents by the choice of the price path itself.

Arrival time uncertain and private information. Now consider the setting where the buyer�s

arrival time is uncertain and is his private information. The novel di¢ culty in considering this environment

relates to the endogenous participation constraint. Because arrival is uncertain, one objective of the seller

is to raise as much pro�t as possible contingent on each arrival date (as opposed to the case above where she

cares only about the pro�t obtained when the buyer arrives at date zero). One might therefore expect that,

for each arrival date, the seller may want to allocate the good to the buyer eventually if his value remains

low; i.e., that m (�) < +1 for each arrival date � . The buyer must then earn additional rent if his value is

high at the time he participates. Contrary to the case for a known arrival time, the buyer must therefore

expect to earn positive rent also if his initial value is low. The reason is that he must be discouraged from

delaying participation until such time as his value becomes high.

Assuming truth-telling is optimal conditional on participating, Constraint 2 now requires, for each � ,

that

�MD
� (�L; ;) �

Z 1

�

�Le
�(r+�L)(s��)�MD

s (�H ; ;) ds,

35



and hence that

�MD
� (�L; ;) �

Z 1

�

�Le
�(r+�L)(s��)

�
�MD
s (�L; ;) + e�(r+�L+�H)(m(s)�s) (�H � �L)

�
ds. (16)

A lower bound for the expected rents of the buyer conditional on a low initial value is therefore given by

the function that solves (16) with equality, subject to the transversality condition that buyer rents remain

bounded. This is given by

�LB� (�L; ;) =
Z 1

�

e�r(s��)�Le
�(r+�L+�H)(m(s)�s) (�H � �L) ds. (17)

Let

�LB� (�H ; ;) = �LB� (�L; ;) + e�(r+�L+�H)(m(�)��) (�H � �L) . (18)

Assuming immediate participation and truth-telling is optimal, the following indirect mechanism ensures the

buyer expects rents equal to �LB� (�L; ;) and �LB� (�H ; ;) for low and high initial values at date � . At each

date � , the seller o¤ers an option to buy the good at prices

p#� (t;m (�)) = �H � Pr
�
~�m(�) = �H j~�t = �H

�
e�r(m(�)�t) (�H � �L) (19)

at dates t 2 [� ;m (�)]. For this option, the seller charges the date-� fee

f#� (m (�)) = Pr
�
~�m(�) = �H j~�� = �L

�
e�r(m(�)��) (�H � �L)� �LB� (�L; ;) . (20)

The buyer is asked to purchase the option immediately upon arrival and then purchase the good immediately

whenever his value is high, or on date m (�) if he has not purchased by that date. This mechanism is the

solution to the relaxed program conditional on the function m: it maximizes expected surplus among

mechanisms consistent with m and minimizes expected rent among mechanisms consistent with m and

satisfying Constraints 1 and 2.

Next, for a given functionm, one can calculate the expected pro�t assuming the buyer �nds the mechanism

incentive compatible. This is given by

Z 1

0

�e�(r+�)� b (� ;m (�)) d� , (21)
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where

b (� ;m (�)) = 
�H + (1� 
)
�

�L
r + �L

�H + e
�(r+�L)(m(�)��)

�
�L �

�L
r + �L

�H

��
�1� e

���

�e���
�Le

�(r+�L+�H)(m(�)��) (�H � �L)� 
e�(r+�L+�H)(m(�)��) (�H � �L) .

The function b is a �dynamic virtual surplus�for an environment with both evolving valuations and dynamic

arrival. The �rst two terms are the expected surplus given arrival at date � when the buyer purchases at

date m (�) if his value remains low. The fourth term re�ects the additional rent earned in case the buyer�s

value is high when he arrives at date � . The third term is the most interesting one and is absent in case

the seller knows the buyer�s arrival date. For each date � , it captures the e¤ect of the choice of m (�) on

the rents of the buyer in case of arrival before date � . The ratio of the probability of previous arrival to the

ex-ante arrival rate 1�e���
�e���

ensures an appropriate balance between reducing rent in case of earlier arrival

and maximizing pro�t conditional on arrival at date � .

Maximizing (21) simply requires maximizing the dynamic virtual surplus at each arrival date � . Having

identi�ed the optimal function m, I verify that all incentive constraints are satis�ed, yielding the following

result.

Proposition 2 Consider the environment of the model set-up (with any value 
 2 (0; 1)), where the buyer�s

arrival is determined according to the exponential distribution de�ned there. For all � � 0, let

m# (�) � max
(
� +

1

�H
ln

 
(!H � !L)

�
�L
�
e�� � 1

�
+ �


�
!L� (1� 
)

!
; �

)
.

The following mechanism is incentive compatible and optimal. Upon arrival at date � , the buyer pays the fee

f#�
�
m# (�)

�
(given by (20)) and in return receives the option to purchase the good at prices p#�

�
t;m# (�)

�
(given by (19)) for each t 2

�
� ;m# (�)

�
.36 The buyer purchases the good the �rst time his value turns high

or at date m# (�), whichever comes �rst.

The reason why the mechanism in the proposition is incentive compatible is as follows. Having purchased

the option, the buyer faces the same price path as considered in Result 4. He therefore �nds it optimal to

follow the prescribed purchase rule. That it is optimal for him to purchase an option immediately upon

arrival is established using a standard veri�cation argument.

36The buyer is only ever allowed to acquire one option.
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What is critical for the optimality of immediate participation in the above mechanism is that the function

m is non-decreasing, i.e. that conditional on his value remaining low, the buyer receives the good (weakly)

sooner if he participates earlier. This turns out to be precisely what is required to ensure that, when the

buyer�s initial value is high, he expects to earn more rent by participating immediately than by waiting to

participate at a later date.

The method can be applied also for other distributions of arrival times, but it is important that the arrival

rate of the buyer does not increase too quickly with time. For instance, if one considers a distribution of

arrival times with a mass point �mass > 0 (see Result 2), the function m that solves the relaxed program

jumps downwards at �mass. The solution to the relaxed program is then not implementable, and some form

of �ironing�is required to calculate the optimal mechanism.

Properties of the optimal mechanism. Now consider the main features of the optimal mechanism.

That m# (�) < +1 for all � re�ects that the principle of vanishing distortions still applies. In addition, a

key innovation with respect to Battaglini�s work and the rest of the dynamic mechanism design literature is

to shed light on the way optimal long-term contracts evolve with the date they are signed. Examining the

formula for m# in Proposition 2 yields the following corollary.

Corollary 2 Consider the environment of the model set-up (with any value 
 2 (0; 1)), where the buyer�s

arrival is determined according to the exponential distribution de�ned there. The length of time the buyer

waits to purchase when he arrives at date � and his value remains low, m# (�) � � , is increasing without

bound.

Corollary 2 implies that contracts signed later are less e¢ cient. The reason for the result is that the

seller optimally reduces the rent earned at later arrival dates in order to discourage delayed participation in

case of early arrival (because this consideration is absent at date zero, the value of m# (0) in Proposition 2

and Result 4 coincide).

This result seems likely to be robust also in other settings. For instance, if H is a continuously di¤eren-

tiable distribution of arrival times on R+, and if h is the corresponding density, then the same arguments as

for Proposition 2 imply that the result holds also if H(t)h(t) is increasing in t. The result would be tempered in

case the buyer departs stochastically from the market as discussed in Subsection 3.5. For the same reason

discussed there, provided the departure rate is su¢ ciently fast, the length of waiting when the buyer�s value

remains low increases with time, but is bounded above. The possibility of other processes for the evolution
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of values for the good is discussed below.

The following example illustrates the evolution of optimal contracts. In order to represent the payments

graphically, I suppose that the buyer pays the fee at the same time as he procures the good. Of course, this

means that the fee must be adjusted appropriately to re�ect discounting.

Example 4 (Example 1 continued) Consider the parameters of Example 1. Consider the fully-optimal

mechanism, adjusted so that the �xed fee is paid at the time the buyer receives the good. Figure 3 gives the

execution price and total payment for selected arrival times (� = 0; 1; 2; 3).

Figure 3: Execution prices and total payments for Example 4

An immediate observation from Figure 3 is that the fee for the option may initially be negative. That is,

a subsidy may be required to induce participation in case the buyer arrives su¢ ciently early.37 It is therefore

important that the buyer can obtain only one option; i.e., he must not be allowed to obtain the subsidy

multiple times, foregoing his right to purchase on each. Note also that the buyer�s total payment may be

less than his expected value from obtaining the good, even if his value is low at the time of acquisition.

This parallels the observation for the optimal path of posted prices, where prices are often set below �L at

su¢ ciently early dates.

37The use of subsidies to induce timely participation has been studied by Gershkov and Moldovanu (2010) in an environment
where buyers have constant values, but where buyer arrival may provide information to the seller about the likely timing of future
arrivals. However, their focus is on e¢ cient mechanisms and to the extent they consider pro�t maximization, they identify
environments where such subsidies are not required (in particular, where it su¢ ces to consider �winner-pays mechanisms�).
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Second, the length of time between the sale of the option and the expiry date when the price drops to

�L is greater the later the option is sold. This simply re�ects the result in Corollary 2. A key implication

is that the additional rent available in case the buyer�s initial value is high is less at later contracting dates

(equivalently, the initial posted price is higher). This means that the amount of rent that must be left to

the buyer to induce his participation when his value is low, as opposed to waiting for his value to become

high, diminishes with time. This explains why the �xed fee is negative only initially.38

Other stochastic processes. Finally, an important question is the extent to which the principles de-

veloped in this section hold when the buyer�s value evolves according to other stochastic processes. Although

the simple continuous-time framework studied here has the advantage of tractability, and, for example, al-

lows me to obtain the elegant closed-form expression for the expiry dates in Proposition 2, the fully-optimal

mechanism can also be characterized for a richer class of �rst-order Markov processes. A companion paper,

Garrett (2011), achieves this in a discrete-time setting with a continuum of values for the good. It demon-

strates that the approach of relaxing the participation constraints for buyers whose initial values are above

the minimum is also helpful in this setting.

A solution to this relaxed program involves the buyer being indi¤erent between participating upon arrival

and waiting to participate in the next period when his initial value is equal to the minimum. Whether the

solution to the relaxed program is incentive compatible is more di¢ cult to check. A su¢ cient condition

is that it has the following property. Supposing the buyer always reports values truthfully, for every

possible path of values, he receives the good at least as soon by participating immediately as by delaying

his participation. This is in fact the same condition required in the present framework with only two values

for the good. However, for the broader class of stochastic processes, whether the solution to the relaxed

program has this property is sensitive to the process in question.

The companion paper argues that, as established by Corollary 2 for the present environment, contracts

signed at later dates tend to be more distorted; i.e., buyers who arrive later tend to wait longer to receive

the good. On the other hand, the option contracts no longer take the simple form considered here. Instead,

the optimal mechanism often requires the buyer to constantly update and adjust his option to purchase as

new information about his value arrives. This requires ongoing communication with the seller rather than

38Note that the �xed fee does not necessarily increase monotonically with the contracting date. As the contracting date �
tends to in�nity, the waiting length for a buyer with a low value, m# (�) � � , tends to in�nity as well. Hence the amount of
rent expected by the buyer from holding an option purchased at date � tends to zero. As a result, while in the example the
fee becomes positive after su¢ cient time, it eventually converges to zero.
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a one-o¤ decision to purchase.

4.1 Comparison to posted prices

I now consider the key di¤erences between optimal posted prices and the fully-optimal mechanism. One

important observation is that there is a form of revenue equivalence. For allocation rules that can be

implemented by posted prices, the seller cannot increase pro�t by using a more sophisticated mechanism.

For any sales policy A, this is immediate from noticing that the conditionally-optimal posted price mechanism

M�
P;A (see Lemma 2) is payo¤ equivalent to the solution to the relaxed program as given by (19) and (20)

provided m is taken to equal mA. One way to understand this is that the value to the buyer of obtaining

an option to purchase that is personalized to his date of arrival lies only in the advantage it conveys to him

in being able to obtain the good sooner at lower prices. In case the price paid for the good does not depend

on the buyer�s time of arrival, a personalized option has no value.

Figure 4: Time of purchase if values remain low: posted prices and fully-optimal mechanism

A key advantage of the option contracts proposed above is that they allow the seller to achieve �ner

intertemporal price discrimination by conditioning how long the buyer waits if his value remains low on the

time of arrival. This is illustrated in Figure 4 for the posted price and unrestricted mechanisms of Examples

1 and 4 (parameter values are given in Example 1). The �gure gives, for each arrival date, the date the

buyer receives the good if his value remains low (for an arrival time � , this is mA� (�) for posted prices and

m# (�) for the fully-optimal mechanism). If the buyer arrives su¢ ciently early (in particular, before date
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T as de�ned in Proposition 1; here, circa 1:25), purchase is immediate under both mechanisms. Later, the

buyer waits to purchase on the next �sale�date under the posted price mechanism, and waits until a time

particular to his date of arrival under the unrestricted mechanism. At dates su¢ ciently far in the future

(circa date 4:1), the buyer waits inde�nitely under the posted price mechanism but waits a �nite length

under the unrestricted mechanism.39

These observations suggest a di¤erent way to understand the theory of sales with posted prices in Section

3. For the fully-optimal mechanism, the buyer receives the good eventually if his value remains low. The

date he receives it depends on the date of arrival. With posted prices, the allocation of the good must be

pooled across arrival dates: for two di¤erent arrival dates immediately preceding a given sales date, the

buyer purchases at the same time if his value remains low. In this sense, when the seller is restricted to

o¤ering posted prices, �uctuations in prices re�ect a lack of instruments to screen arrival times.

Waiting lists. Comparisons like the one above potentially o¤er a new lens through which to understand

retail practices that diverge from posted prices. Although somewhat less sophisticated than the option

contracts I propose, waiting lists and other delays in service appear to be used in practice to achieve similar

objectives.40 For example, retailers of luxury products sometimes require customers to join a waiting list

with the possibility of obtaining the same or a similar good sooner at a higher price.41

To be more speci�c, consider the fashion designer Hermès, who, until recently, would place customers on

a lengthy waiting list for its famous Birkin bags. Both the opportunity to join the waiting list, as well as

to skip it altogether, appear to have been associated with fees implicit in the requirement of buying other

Hermès items (see Tonello (2008) and Heit (2009, October 14)). This scheme, in addition to other possible

advantages (e.g., creating an impression of scarcity), seems to have allowed intertemporal price discrimination

to be tailored �nely to the customer�s date of arrival.42 The implicit fee for joining the waiting list is also

consistent with an attempt to extract rent expected by customers from the option to purchase. There do

seem to be important di¤erences, however, between the implicit Hermès mechanism and the fully-optimal

mechanism described above. It is not clear how a customer was to be treated in case changing their mind
39 In the example, the posted price mechanism turns out to be less e¢ cient than the fully-optimal mechanism. Whether this

is true in general remains to be shown.
40Related, Donaldson and Eaton (1981) suggest that one role of queuing is price discrimination based on a relationship

between preferences for the good and preferences for waiting in queues. In my model, however, the buyer su¤ers no direct cost
of waiting.
41Similarly, corrupt bureaucrats also often extract bribes in return for early service (the so-called �Myrdal e¤ect�, Myrdal

(1968)).
42Another explanation for the use of waiting lists by Hermès is that the �rm experienced higher than forecast demand.

Whether that is a good explanation seems to depend on the extent to which Hermès could manipulate the length of its waiting
lists by simply increasing its rate of production.
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and wanting the bag earlier than originally forecast (it also seems there was considerable uncertainty about

the waiting time for obtaining a bag).

5 Conclusion

This paper studied pro�t-maximizing mechanisms in an environment where buyers arrive over time and

have values for the good which change stochastically. When the seller is restricted to o¤ering posted prices,

pro�t-maximizing prices �uctuate over time. Prices fall gradually up to dates when purchases are made by

buyers whose values are low, which might be interpreted as �sales�, and jump thereafter. Prices also trend

upwards over time.

When the seller can use any mechanism, she optimally sells options to purchase the good at prices that

depend on the time the option is purchased as well as how long the option has been held. If a buyer�s value

remains low, he executes the option after waiting a length which is greater the later he arrives. This uncovers

a �principle of increasing distortions�in dynamic contracting with uncertain and unobservable arrival times

which is new to the dynamic mechanism design literature.

The interest in posted price mechanisms was motivated by the fact that posted prices are the prevailing

institution in many markets. Understanding the unrestricted optimal mechanism may cast some light on

the cost to sellers of using this simple institution. It may also suggest why sellers sometimes deviate from

this institution, for instance by requiring buyers to join waiting lists to obtain the good. The relative

performance of various simple mechanisms in environments with changing values and stochastic arrival is a

possible area for further research.

Finally, questions related to the ones studied here arise in a number of other principal-agent settings.

Garrett and Pavan (2010) consider the problem of a �rm hiring a sequence of managers to run the business.

How should these contracts be designed if potential managers are not necessarily available to contract when

the �rm seeks a new one? Battaglini and Coate (2008), Zhang (2009), Farhi and Werning (2010) and

Golosov et al. (2010) study optimal dynamic taxation when individuals�abilities evolve stochastically and

exhibit persistence. How should the tax code treat the incomes of people who decide to immigrate to the

country in question? The principles and methods in this paper appear relevant for addressing these kinds

of questions.
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Appendix A: Proofs of results on posted prices

This appendix provides proofs of the results in Section 3. Result 1 and Example 2 follow from arguments

in the main text, and so proofs are omitted.

Proof of Lemma 1. Let A be any sales policy and let t 2 A. Incentive compatibility of MP;A and

consistency ofMP;A with A imply that, for any stopping rule � 2 �,

E
h
e�r(~�xA�t)
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Suppose that
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�
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is determined independently and identically to
�
~�s

�
s�t
. Then (22) and independence

of the two stochastic processes imply that
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This is possible only if xA (�H ; t) = 1. This establishes Part (i); Part (ii) is an immediate consequence.

Proof of Lemma 2. As explained in the text, if the buyer �nds the mechanismM�
P;A = hp�A; x�Ai incentive

compatible, then this mechanism must maximize expected pro�t subject to consistency with A. That is, it

is enough to verify x�A is indeed an optimal stopping rule for the buyer given p
�
A, so that the value of the

buyer�s problem is given by �LB;At .

For any stopping rule � 2 �, any t, and any �t 2 f�L; �Hg,
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where 1 (�) is the indicator function. The �rst inequality follows by choice of the function p�A (�). The

second inequality follows by applying Dynkin�s formula after using that (by the assumption that A is a

countable union of intervals and points) �LB;As (�H) contains only countably many downward discontinuities

and is continuously di¤erentiable elsewhere, and that �LB;As (�L) is continuously di¤erentiable except at the
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discontinuities of �LB;As (�H). The third follows because

�r�LB;At (�L) +
@�LB;At (�L)

@t
+ �L

�
�LB;At (�H)� �LB;At (�L)

�
= 0

and

�r�LB;At (�H) +
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+ �H

�
�LB;At (�L)� �LB;At (�H)

�
� 0

wherever the derivatives exist. When � = x�A, all inequalities hold with equality (the second because the

stopping is either immediate or is before any discontinuity in �LB;At ). Thus �LB;At is the value function

associated with the buyer�s problem and x�A is an optimal strategy for the buyer.

Proof of Proposition 1.

A �rst step to understanding the problem of choosing a pro�t-maximizing sales policy is to derive the

expected pro�t for the seller for a given sales policy A. Here, I merely require that A be left-closed and

derive expected revenue assuming that all such policies are implementable by the prices speci�ed in Lemma

2. It turns out that the optimal policy always satis�es the mild restriction of Lemma 2 that it be a countable

collection of intervals and points. Because none of the arguments rely on the assumption 
 = 
S , I will

simply require that 
 2 (0; 1) as in the model set-up.
Using integration by parts, the buyer�s ex-ante expected rent for a mechanism M�

P;A = hp�A; x�Ai as
de�ned in Lemma 2 is equal to
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The total expected surplus from the mechanismM�
P;A is

SURPM
�
P;A =

Z 1

0

�e�(r+�)�

0@
�H + (1� 
)
0@ �L

r+�L

�
1� e�(r+�L)(mA(�)��)

�
�H

+e�(r+�L)(mA(�)��)�L

1A1A d� .

Therefore, the seller�s expected pro�t is equal to
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If mA (�) may be chosen without constraint, PROFM
�
P;A can be maximized by simply maximizing

pointwise under the integral (see the solution to the problem for the fully-optimal mechanism). However,

mA (�) must be given by (5) for some sales policy A. For instance, if A is taken to be discrete, then mA (�)
is a step function and it is easy to see that pointwise maximization is not possible; i.e., the problem is not

separable across the dates � . However, the problem of selecting the policy subsequent to any date � with

mA (�) = � , i.e. after any date � 2 A, is separable. The following observation therefore allows one to focus
on the problem of choosing the optimal sales policy after date T (the �continuation problem�).

Lemma 4 It is always optimal for the sales policy to contain dates [0; T ], where T is de�ned by (10).

Proof. Note that

@b (� ;m)

@m
= e�(r+�L)(m��)

0@ � (1� 
)!L + 
e��H(m��) (!H � !L)

+
�L(e���1)

� e��H(m��) (!H � !L)

1A .
For all � � T and m � � , @b(�;m)@m � 0. Hence, for all � � T , b (� ;m) is maximized by choosing m = � . The

separability of the continuation problem at dates in the sales policy described above then implies the result.

Now consider the continuation problem. The solution to this problem is a set of dates above date T ,

which I refer to as the �continuation policy� (to avoid possible confusion with the sales policies A de�ned

on R+, continuation policies are denoted by B � [T;1)·).
The problem is most easily understood with a recursive formulation. To show that a solution exists, it

is helpful to consider a sequence of constrained problems where the sales policy is required to be discrete,

with the distance between dates in the sales policy bounded above zero (Denardo (1967) uses this approach

to solve a similar problem). Thus de�ne, for any " > 0 and all t � T , the functional equation

W (t) = sup
t0�t+"

8>>><>>>:
� (t0 � t)�

�
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~�t0 = �H j~�t = �L

�
e�r(t

0�t) (�H � �L)

+e�(r+�)(t
0�t)W (t0) ;

�
r+�

�

 + �L(1�
)

�L+r

�
�H

9>>>=>>>; , (25)

where � (z) is given by (12). Here, I include explicitly the option to hold no further sales, which has value
�
r+�

�

 + �L(1�
)

�L+r

�
�H (thus, any date t in the sales policy must be the last date if the value �

r+�

�

 + �L(1�
)

�L+r

�
�H

is uniquely attained by this option). Otherwise, the interpretation is the same as for the problem described

in the main text (where the distance between dates is not constrained) except that any subsequent date in

the sales policy t0 must be at least " above t.

The proof of existence of an optimal policy is as follows. Lemma 5 establishes that, for any � > 0, the

number of points above T + � is bounded uniformly across ". Lemma 6 establishes the existence of a value

tmax > T such that any continuation policy which solves the "�constrained problem, irrespective of the
value ", contains no dates above tmax. Using Lemma 6 and standard arguments in dynamic programming,
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Lemma 7 establishes the existence of a solution to the "�constrained problem. Lemma 8 establishes that

the solution to the "�constrained problem converges to the solution to the problem of interest.

That any (closed)43 optimal policy satis�es Parts (i) and (ii) of the proposition follows from applying the

same arguments as in Lemmas 4, 5, and 6 (for Lemmas 5 and 6, these arguments must now be applied for

the unconstrained problem). Part (i) requires also to argue that there is at least one point above T in any

optimal policy, which is the result in Lemma 9.

Lemma 5 For every � > 0, there is �� > 0 such that, for any " > 0, any optimal "�constrained continuation
policy B�" , if t

0; t00; t000 are dates in B�" with t
000 > t00 > t0 � T + �, then t000 � t0 > ��. Hence, for any � > 0,

there exists N� 2 N such that, for any " > 0, the number of points in any "�constrained continuation policy
B�" above T + � is no greater than N�.

Proof. Suppose with a view to contradiction that there is a value � > 0 for which there exists no value

�� > 0 satisfying the property in the lemma. Note that there exists �� > 0 such that, for all � � T + �, and

all m 2 [� ; � + ��)
@b (� ;m)

@m
> 0,

where b is de�ned by (24). By the above assumption, there exists an optimal "�constrained continuation
policy B�" containing dates t

0; t00; t000 in B�" with t
000 > t00 > t0 � T + � such that t000� t0 < ��. However, since

b is increasing in m over the relevant values, b (� ; t000) > b (� ; t00) for all � 2 (t0; t00]. It follows immediately

that omitting t00 from the policy B�" strictly increases pro�t, a contradiction.

Lemma 6 There exists tmax > T such the solution to any "�constrained problem is bounded below tmax.

Proof. Suppose with a view to contradiction that there is a solution to an "�constrained problem, for
some " > 0, which is unbounded. It therefore contains an increasing sequence (t0n)

1
n=1 which is unbounded.

For each n, let t00n > t0n be the next element in the solution.

Denote the value function of the "�constrained problem by W �
" , which must be a solution to (25). Note

that W �
" must be non-increasing and never take values less than

�
r+�

�

 + �L(1�
)

�L+r

�
�H .

First, there must exist � > 0 and N 2 N such that n > N implies t00n � t0n � �. To see this, note that

�0 (z) is uniformly bounded over z in a su¢ ciently small neighborhood of zero. Also

@

@z

�
e�t

0
n � 1

�
Pr
�
~�t0n+z = �H j~�t0n = �L

�
e�rz (�H � �L)

grows without bound with n, uniformly over z in a su¢ ciently small neighborhood of zero. These observa-

tions, together with the fact that W �
" (�) is non-increasing, imply the result.

Next, there exists �z su¢ ciently large that t00n � t0n � �z irrespective of n. To see this, notice that, for

43The reason for considering closed policies is simply to ease exposition; the only other possibility is that the date T is omitted
from an optimal policy.
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z > 0,
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where the �rst equality holds whenever � = �L; �L+�H only after taking the appropriate limits. The result

then follows from noting thatW �
" is non-increasing and discounted by e

�(r+z) 2 o (e�rz) in the maximization
problem of (25), implying that, for �z large enough, t00n � t0n > �z is inconsistent with optimality. This follows

from noting that a value of �
r+�

�

 + (1� 
) �L

�L+r

�
�H can be obtained by including no further dates after

t0n (�z is chosen so that including t
00
n > t0n + �z achieves a strictly lower value).

Finally, note that �
�
e�t

0
n � 1

�
Pr
�
~�t0n+z = �H j~�t0n = �L

�
e�rz (�H � �L) becomes arbitrarily small with

n uniformly across z 2 [�; �z], whilst � (z) is uniformly bounded on [�; �z]. This contradicts the observation

that W �
" remains above

�
r+�

�

 + (1� 
) �L

�L+r

�
�H .

Lemma 7 For any " > 0, there exists an optimal "�constrained continuation policy B�" � [T;1).

Proof. Consider the functional operator de�ned by the right-hand side of (25) on the space of bounded

continuous functions W : [T;1) ! R+ with sup norm. This operator satis�es the �monotonicity� and

�discounting� conditions of Blackwell�s result and is hence a contraction mapping. By the contraction

mapping theorem, there exists a unique �xed point of (25); this is the value function W �
" (�) considered

in the previous lemma. Importantly, since the space of functions considered is complete, this shows that

W �
" (�) is continuous. Moreover, since one can restrict attention to points below tmax, as de�ned in Lemma

6, solutions to the relevant maximization problems exist by the extreme value theorem. Denote by B�" the

union of the members of the sequence of solutions starting at T . A standard veri�cation argument shows

that B�" is the solution to the "�constrained continuation problem.

Lemma 8 A solution B� to the unconstrained continuation problem exists.

Proof. Let "n = 1
n for all n 2 N. Let

�
B�"n

�1
n=1

be a sequence of solutions to the "n�constrained problem.
Using the axiom of choice, the property of Lemma 5 and the compactness of the interval [T; tmax] (with tmax

de�ned in Lemma 6), it is easy to see that there must exist a subsequence of
�
B�"n

�1
n=1

which is convergent in

an appropriate metric to some set B�. In particular, for each k 2 N, there exists a subsequence of
�
B�"n

�1
n=1
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such that the lth-to-last point in each set is convergent (in Euclidean distance) to the lth-to-last point in B�

uniformly over l � k. An appropriate subsequence of
�
B�"n

�1
n=1

therefore converges to B� taking the metric

to be the uniform distance between lth-to-last elements (taking the minimum element of the set in case no

lth-to-last element exists). Since the expected pro�t is continuous in this metric (see (23)), it must be that

B� is a solution to the unconstrained problem.

Lemma 9 Suppose that (4) holds. Any (unconstrained) optimal continuation policy contains at least one

date above T .

Proof. Total expected revenue from a sales policy [0; �t], �t � 0, is given by

�
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A �rst-order condition yields that, given (4) holds, the optimal value of �t is positive and equal to
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(This comparison is straightforward after noticing that either T = 0 or
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Hence, including only dates [0; T ] in the sales policy is suboptimal.

�

Proof of Result 2. Step 1. First, I verify that W �
LR cannot be approached by taking z arbitrarily close

to zero in (14). The value of the auxiliary program from a sales policy A is

VLR (A) =

Z 1

0

�e�(r+�)� bLR (� ;mA (�) ; d) d� ,

where
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The claim follows from the observation that, for any � , it must be that

@bLR (� ;m; d)

@m
> 0
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for m in some su¢ ciently small neighborhood of (but greater than) � . If this observation is not true, it is

easy to show that @bLR(�;m;d)@m < 0 for all m > � , and this contradicts the optimality of a discrete solution to

the auxiliary problem.

Step 2. For any z > 0, let

X (z) =W �
LR �

� (z; d)� Pr
�
~�z = �H j~�0 = �L
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For any date t and any z > 0, let
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I now establish that X (z)! Y (t; z) as t!1 uniformly over z > 0. The key observation is that

W � (t)� e�(r+�)zW � (t+ z)

1� e�(r+�)z !W �
LR (26)

as t ! 1 uniformly over z > 0. To see this, note that, by the envelope theorem (see Milgrom and Segal,

2002), W � (�) is absolutely continuous, and

e�(r+�)zW � (t+ z) =W � (t) +

Z z

0

e�(r+�)s (W �0 (t+ s)� (r + �)W � (t+ s)) ds; (27)

where W �0 (t+ s) satis�es, for almost all s > 0,

jW �0 (t+ s)j � �e�(d��)t (�H � �L) .

From (27),

W � (t)� e�(r+�)zW � (t+ z)

1� e�(r+�)z =
(r + �)

R z
0
e�(r+�)sW � (t+ s) ds�

R z
0
e�(r+�)sW �0 (t+ s) ds

1� e�(r+�)z

The observation that W � (t)!W �
LR, and that W

�0 (t)! 0; then implies (26).

Step 3. It follows from Part 1 that X (z) is bounded above zero for z in a su¢ ciently small neighborhood

of zero. Since z� uniquely attainsW �
LR in (14), and since this value strictly exceeds that approached as z !1

in (14), X (z) is also bounded above zero for all su¢ ciently large z. Using the continuity of X, the following

must therefore be true. For any " > 0, there is �" such that X (z)�X (z�) = X (z) > �" for all z > 0 with

jz � z�j � ".

Step 4. Now, suppose with a view to contradiction that the result does not hold. Note that W � (t)

can be approximated arbitrarily closely by choosing a discrete unbounded sales policy. Using this, it follows

that there must exist " > 0 such that, for all �t, there is t > �t with the following property. For all � > 0,

there exists zt;� > 0 such that jzt;� � z�j � " and Y (t; zt;�) < �.
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Take �t su¢ ciently large that jX (z)� Y (t; z)j < �"
3 for all t > �t and all z > 0 (such a choice is possible

by Step 2). Let t > �t be chosen to have the aforementioned property and let � = �"
3 , with a corresponding

choice of zt;�. Since Y (t; z) � 0 for all z, it follows that,

X (zt;�) = X (zt;�)� Y (t; zt;�) + Y (t; zt;�)� Y (t; z�) + Y (t; z�)�X (t; z�)

< �",

contradicting the property of �" in Step 3.

Proof of Result 3. Consider any sales policy A and suppose the buyer arrives at date �mass. The present

value of expected pro�t given this arrival date (for conditionally-optimal prices; see Lemma 2) is

PROF
M�

P;A
mass = e�r�massR (mA (�mass)� �mass)�

Z 1

mA(�mass)

e�rs�Le
�(r+�L+�H)(mA(s)�s) (�H � �L) ds,

where R is given by (2). Since (4) holds, a sales policy A maximizes PROF
M�

P;A
mass i¤max fAg = �mass.

Let " > 0. There exists �" > 0 such that, if A is a sales policy with mA (�mass) � �mass + ", then

PROF
M�

P;f�massg
mass � PROFM

�
P;A

mass � �".

For any sales policy A, the expected pro�t conditional on arrival according to the exponential distribution

with parameter � is PROFM
�
P;A in (23). Let �� = PROF

M�
P;A�

�"+PROF
M�

P;A�
where A� maximizes PROFM

�
P;A . Then,

for any � � �� and any A that includes no date in [�mass; �mass + "), expected pro�t for the distribution of

arrival times in the result is

�PROF
M�

P;A
mass + (1� �)PROFM

�
P;A � �

�
PROF

M�
P;f�massg

mass � �"
�
+ (1� �)PROFM

�
P;A�

� �PROF
M�

P;f�massg
mass + PROFM

�
P;A� � ��

�
PROFM

�
P;A� + �"

�
= �PROF

M�
P;f�massg

mass ,

so that A achieves less pro�t than the policy f�massg.
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Appendix B: Proofs of results on the fully-optimal mechanism

This Appendix provides proofs of the results on the fully-optimal mechanism. As explained in the main

text, since the seller can fully commit, the revelation principle applies in this environment. One therefore

needs only to consider incentive-compatible direct mechanisms, i.e. mechanisms in which the buyer �nds it

optimal to participate upon arrival and subsequently report his values truthfully.44

Direct mechanisms. In order to de�ne the direct mechanism, one needs to de�ne the probability

space for the buyer�s information. Let a (�) : R+ ! f0; 1g denote a sample path of the arrival process, i.e. a
right-continuous function such that a (t) = 1 if and only if he has arrived by date t. Let �a = inft�0 fa (t)g.
For any t � 0, let a[0;t] denote the restriction of a to [0; t]. A sample path for the joint process is therefore�
a; �[�a;1)

�
where �[�a;1) (�) is right continuous and has a �nite number of jumps on any �nite interval.

Let 
 be the set of all sample paths and endow it with the Borel �ltration F = fFtgt�0, where each Ft is
the sigma-algebra de�ned on feasible histories (i.e., restrictions of some sample path)

�
a[0;t]; �[�a;t]

�
. De�ne

by P the probability measure consistent with the Markov processes for buyer arrival and the transition of

values de�ned in the model set-up. Then, (
;F ; P ) is a probability space.
The buyer can choose to report for the �rst time to the seller at any date after the arrival date �a.

Let �̂ : 
 ! R+ be a stopping time such that �̂
�
a; �[�a;1)

�
� �a for all

�
a; �[�a;1)

�
2 
. The buyer

reports a value at each t � �̂
�
a; �[�a;1)

�
. For any t � �̂

�
a; �[�a;1)

�
, let �t

�
a[0;t]; �[�a;t]

�
2 f�L; �Hg be a

progressively measurable function which speci�es the buyer�s report at date t. The buyer is restricted to

reports that coincide with realizations of the process. In case �̂
�
a; �[�a;1)

�
> t there is no report at or

before t, and, assuming truthful reporting, the seller infers that a (s) = 0 for all s � t. For any interval I

bounded below by �̂
�
a; �[�a;1)

�
, let �I

�
a[0;t]; �[�a;1)

�
=
�
�t

�
a[0;t]; �[�a;t]

��
t2I
. Let hI denote an arbitrary

history of values over I. Histories may be denoted by concatenations: for example, h[t;t
0)h[t

0;1) denotes a

realization of reports from date t. A truthful reporting strategy is de�ned by �̂ truth
�
a; �[�a;1)

�
= �a and

�truth;t

�
a[0;t]; �[�a;t]

�
= �t for all t � �a.

Without loss of generality, the direct mechanismMD can be taken to be a collection of stopping times

y = (y� )��0 and a collection of functions q = (q�;t (�))��0;t�� such that, if the buyer�s realized report is the
sequence of values �[�;1) from time � , then (i) y�

�
�[�;1)

�
denotes the time the buyer receives the good,

and (ii) q�;t
�
�[�;t]

�
2 R denotes the date-t �ow payment from the buyer to the seller. Both functions are

required to be progressively measurable with respect to the �ltration de�ned above (a reporting time of � is

interpreted as a (t) = 0 for t < � and a (t) = 1 for t � � ; however, here and in what follows, I omit dependence

on the sample path a). Without any signi�cant loss of generality, I restrict attention to payments q such

that, for any � , any t > � , and any �[�;1) with y�
�
�[�;1)

�
< t, q�;t

�
�[�;t]

�
= 0.

Seller�s payo¤. The date-� value of the seller�s expected pro�t from an incentive-compatible direct

44This is a well understood principle in dynamic mechanism design. It follows from the same replication argument as in
static mechanism design. For any mechanismM, one can consider the direct mechanismMD which prescribes, for any history
of reports of an arrival date � and history of values �[�;t], the same outcome as obtained in equilibrium under the original
mechanism when the buyer�s actual history corresponds to the reported one. Since it is optimal for the buyer to choose the
given outcome in the original mechanism (and since the attainable outcomes under the direct mechanism is a subset of those
under the original mechanism), it is optimal for him to report truthfully in the direct mechanism.
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mechanismMD conditional on arrival at � is

�MD (�) = E
�Z 1

�

e�r(s��)q�;s

�
~�
[�;s]
�
ds

�
.

Therefore, the present value of total expected pro�t is

PROFMD =

Z 1

0

�e�(r+�)��MD (�) d� :

Buyer payo¤s and incentive compatibility. The buyer�s expected continuation payo¤ at date t,

given that he contracted at date �̂ � t and has not yet received the good at any earlier date, depends only on

the contract he signed at date �̂ (as given by y�̂ and (q�̂ ;t)t��̂ ), his value �t at date t (and, since the process

is Markov, not on earlier values), the history of reports h[�̂ ;t), and his continuation reporting strategy �[t;1).

Omitting dependence of the buyer�s reporting strategy on irrelevant past values, this is

uMD
t

�
�t;h

[�̂ ;t); �[t;1)
�

= E
�
e
�r
�
y�̂

�
h[�̂;t)�[t;1)

�
~�
[t;1)

��
�t
�
~�
y�̂

�
h[�̂;t)�[t;1)

�
~�
[t;1)

�� �
Z 1

t

e�r(s�t)q�̂ ;s

�
h[�̂ ;t)�[t;s]

�
~�
[t;s]
��

ds j ~�t = �t

�
.

The value of the reporting problem at date t � �̂ after he has contracted with the seller and reported h[�̂ ;t),

when his date-t value is �t (and he has not yet received the good), is

�MD
t

�
�t;h

[�̂ ;t)
�
= sup

�[t;1)

uMD
t

�
�t;h

[�̂ ;t); �[t;1)
�
.

The mechanismMD induces incentive-compatible reporting conditional on contracting at date �̂ if and only

if, for all dates t � �̂ and feasible histories h[�̂ ;t) such that the buyer has not yet received the good at date

t, and for each �t 2 f�L; �Hg, �MD
t

�
�t;h

[�̂ ;t)
�
= uMD

t

�
�t;h

[�̂ ;t); �
[t;1)
truth

�
.

Proofs of results.

Proof of Lemma 3. For all � , t, t � � , let �[�;t)L = �[�;t) such that �[�;t) (s) = �L for all s 2 [� ; t). Let
�
[t;1)
L be the strategy of reporting �L regardless of the buyer�s values from t onwards.

LetMD = hy; qi be a mechanism satisfying Constraints 1 and 2. Suppose thatMD is consistent with

a function m, and de�ne, for all � , all t 2 [� ;m (�)],

q0�;t

�
�
[�;t)
L �H

�
= q�;t

�
�
[�;t)
L �H

�
+�t �

�
uMD
t

�
�H ; �

[�;t)
L ; �

[t;1)
truth

�
� uMD

t

�
�H ; �

[�;t)
L ; �

[t;1)
L

��
and let

q0�;� (�L) = q�;� (�L)����
 Z m(�)

�

�Le
�(�L+r)(t��)

�
uMD
t

�
�H ; �

[�;t)
L ; �

[t;1)
truth

�
� uMD

t

�
�H ; �

[�;t)
L ; �

[t;1)
L

��
dt

!

where �s is the Dirac delta function indicating a strictly positive payment on date s. Let q0�;t = q�;t for all

other histories of reports.

Let q0 =
�
q0�;t (�)

�
��0;t�� and y

0 = y, and consider the mechanism M0
D = hy0; q0i. By choice of q0, for
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all � , all t 2 [� ;m (�)], uMD
t

�
�H ; �

[�;t)
L ; �

[t;1)
truth

�
= uMD

t

�
�H ; �

[�;t)
L ; �

[t;1)
L

�
, which is the claim in part (a).

Part (b) follows because, for all � , uM
0
D

�

�
�L; ;; �[�;1)

truth

�
= uMD

�

�
�L; ;; �[�;1)

truth

�
and uM

0
D

�

�
�H ; ;; �[�;1)

truth

�
�

uMD
�

�
�H ; ;; �[�;1)

truth

�
. Hence, if the buyer arrives with a low value, he expects to earn the same rent by

participating immediately as under the original mechanism, but he expects to earn weakly less by delaying

participation. Part (c) follows because the buyer expects weakly less rents under the modi�ed mechanism,

assuming he tells the truth, but the allocation rule remains the same.

Proof of Result 4. All arguments are given in the text except for the derivation of the optimal choice

of m (0), which is chosen to maximize expected revenue (for the m (0)-conditionally optimal mechanism) as

given by �

 + (1� 
) �L

�L + r

�
�H + (1� 
) e�(r+�L)m(0)

�
�L �

�L�H
�L + r

�
�
e�(r+�L+�H)m(0) (�H � �L) .

Proof of Proposition 2. As argued in the main text, the proposed mechanism with m# chosen to

maximize (21) solves the relaxed problem. The prescribed purchase rule is incentive compatible for the buyer

once he has purchased an option, and his payo¤ from participating with a low or high value is therefore given

by �LB� (�L; ;) and �LB� (�H ; ;), as given by (17) and (18) in the main text. What is left to check is that the
buyer is willing to purchase an option at the time of arrival.

Suppose the buyer arrives at date � with value �� and employs an arbitrary participation strategy �̂ .

Using Dynkin�s formula, and the continuous di¤erentiability of �LB� (�L; ;) and �LB� (�H ; ;) at all points
except � = T , where T is de�ned by (10), his expected payo¤ is equal to

E�
�
e
�r
�
�̂
�
~�
[�;1)

�
��

�
�LB
�̂
�
~�
[�;1)

��~�
�̂
�
~�
[�;1)

�; ;
�
j~�� = ��

�

= �LB� (�� ; ;) + E�

266664
Z �̂

�
~�
[�;1)

�
�

e�r(s��)

0BBBB@
1
�
~�s = �L

� �r�LBs (�L; ;) + @�LBs (�L;;)
@s

+�L
�
�LBs (�H ; ;)� �LBs (�L; ;)

� !

+1
�
~�s = �H

� �r�LBs (�H ; ;) + @�LBs (�H ;;)
@s

+�H
�
�LBs (�L; ;)� �LBs (�H ; ;)

� !
1CCCCA dsj~�� = ��

377775 .

The terms multiplied by the indicator function 1
�
~�s = �L

�
are equal to zero for all s 6= T . Moreover, it is

easily checked that, for each s 6= T ,

�r�LBs (�H ; ;) +
@�LBs (�H ; ;)

@s
+ �H

�
�LBs (�L; ;)� �LBs (�H ; ;)

�
= � (�L + �H + r) e�(r+�L+�H)(m(s)�s) (�H � �L)m0 (s) ,

which is non-positive provided thatm0 (�) � 0. Therefore, the payo¤ expected from contracting immediately,
�LB� (�� ; ;), exceeds that from any alternative strategy involving delay.
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