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Abstract

This paper proposes a Sieve Simulated Method of Moments (Sieve-SMM) estima-
tor for the parameters and the distribution of the shocks in nonlinear dynamic models
where the likelihood and the moments are not tractable. An important concern with
SMM, which matches sample with simulated moments, is that a parametric distri-
bution is required but economic quantities that depend on this distribution, such as
welfare and asset-prices, can be sensitive to misspecification. The Sieve-SMM estima-
tor addresses this issue by flexibly approximating the distribution of the shocks with
a Gaussian and tails mixture sieve. The asymptotic framework provides consistency,
rate of convergence and asymptotic normality results, extending sieve theory to more
general dynamics with latent variables. Monte-Carlo simulations illustrate the finite
sample properties of the estimator. Two empirical applications highlight the impor-
tance of the distribution of the shocks. The first provides evidence of non-Gaussian
shocks in macroeconomic data and their implications on welfare and the risk-free rate.
The second finds that Gaussian estimates of stochastic volatility are significantly biased
in exchange rate data because of fat tails.

JEL Classification: C14, C15, C32, C33.
Keywords: Simulated Method of Moments, Mixture Sieve, Semi-Nonparametric Estimation.

∗Department of Economics, Columbia University, 420 W. 118 St., New York, NY 10027.
Email: jmf2209@columbia.edu, Website: http://jjforneron.com.
I am indebted to my advisor Serena Ng for her continuous guidance and support. I also greatly benefited from com-
ments and discussions with Jushan Bai, Tim Christensen, Benjamin Connault, Gregory Cox, Ronald Gallant, Dennis
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1 Introduction

Complex nonlinear dynamic models with an intractable likelihood or moments are increasingly

common in economics. A popular approach to estimating these models is to match informative

sample moments with simulated moments from a fully parameterized model using SMM. How-

ever, economic models are rarely fully parametric since theory usually provides little guidance on

the distribution of the shocks. The Gaussian distribution is often used in applications but in prac-

tice, different choices of distribution may have different economic implications; this is illustrated

below. Yet to address this issue, results on semiparametric simulation-based estimation are few.

This paper proposes a Sieve Simulated Method of Moments (Sieve-SMM) estimator for both

the structural parameters and the distribution of the shocks and explains how to implement it.

The dynamic models considered here have the form:

yt = gobs(yt−1, xt, θ, f , ut) (1)

ut = glatent(ut−1, θ, f , et), et ∼ f (2)

The observed outcome variable is yt, xt are exogenous regressors and ut is an unobserved latent

process. The unknown parameters include θ, a finite dimensional vector, and the distribution f of

the shocks et. The functions gobs, glatent are known, or can be computed numerically, up to θ and

f . The Sieve-SMM estimator extends the existing Sieve-GMM literature to more general dynamics

with latent variables and the literature on sieve simulation-based estimation of some static models.

The estimator in this paper has two main building blocks: the first one is a sample moment

function, such as the empirical characteristic function (CF) or the empirical CDF; infinite dimen-

sional moments are needed to identify the infinite dimensional parameters. As in the finite di-

mensional case, the estimator simply matches the sample moment function with the simulated

moment function. To handle this continuum of moment conditions, this paper adopts the objec-

tive function of Carrasco & Florens (2000); Carrasco et al. (2007a) in a semi-nonparametric setting.

The second building block is to nonparametrically approximate the distribution of the shocks

using the method of sieves, as numerical optimization over an infinite dimension space is gener-

ally not feasible. Typical sieve bases include polynomials and splines which approximate smooth

regression functions. Mixtures are particularly attractive to approximate densities for three rea-

sons: they are computationally cheap to simulate from, they are known to have good approxi-

mation properties for smooth densities, and draws from the mixture sieve are shown to satisfy

the L2-smoothness regularity conditions of the moments required for the asymptotic results. Re-

strictions on the number of mixture components, the tails and the smoothness of the true density

ensure that the bias is small relative to the variance so that valid inferences can be made in large

1



samples. To handle potentially fat tails, this paper introduces a Gaussian and tails mixture. The tail

densities in the mixture are constructed to be easy to simulate from and also satisfy L2-smoothness

properties. The algorithm below summarizes the steps required to compute the estimator.

ALGORITHM: Computing the Sieve-SMM Estimator

Set a sieve dimension k(n) ≥ 1 and a number of lags L ≥ 1.
Compute ψ̂n, the Characteristic Function (CF) of (yt, . . . , yt−L, xt, . . . , xt−L).
for s = 1, . . . , S do

Simulate the shocks es
t from fω,µ,σ: a k(n) component Gaussian and tails mixture distribution

with parameters (ω, µ, σ).
Simulate artificial samples (ys

1, . . . , ys
n) at (θ, fω,µ,σ) using es

t .
Compute ψ̂s

n(θ, fω,µ,σ), the CF of the simulated data (ys
t , . . . , ys

t−L, xt, . . . , xt−L).

Compute the average simulated Characteristic Function ψ̂S
n(θ, fω,µ,σ) =

1
S ∑S

s=1 ψ̂s
n(θ, fω,µ,σ).

Compute the objective function Q̂S
n(θ, fω,µ,σ) =

∫ ∣∣ψ̂n(τ)− ψ̂S
n(θ, fω,µ,σ)

∣∣2 π(τ)dτ.
Find the parameters (θ̂n, ω̂n, µ̂n, σ̂n) that minimize Q̂S

n.

To illustrate the class of models considered and the usefulness of the mixture sieve for eco-

nomic analysis, consider the first empirical application in section 6 where the growth rate of con-

sumption ∆ct = log(Ct/Ct−1) is assumed to follow the following process:

∆ct = µc + ρc∆ct−1 + σtet,1, et,1 ∼ f (3)

σ2
t = µσ + ρσσ2

t−1 + κσet,2, et,2 ∼ χ2
1. (4)

Compared to the general model (1)-(2), the ∆ct corresponds to the outcome yt, the latent variable

ut is (σ2
t , et,1) and the parameters are θ = (µy, ρy, µσ, ρσ, κσ). This very simple model, with a

flexible distribution f for the shocks et,1, can explain the low level of the risk-free rate with a

simple power utility and recent monthly data. In comparison, the Long-Run Risks models relies

on more complex dynamics and recursive utilities (Bansal & Yaron, 2004) and the Rare Disasters

literature involves hard to quantify very large, low frequency shocks (Rietz, 1988; Barro, 2006b).

Empirically, the Sieve-SMM estimates of distribution of f in the model (3)-(4) implies both a 25%

larger higher welfare cost of business cycle fluctuations and an annualized risk-free rate that is up

to 4 percentage points lower than predicted by Gaussian shocks. Also, in this example the risk-free

rate is tractable, up to a quadrature over σt+1, when using Gaussian mixtures:

rmixt
t = − log(δ) + γµc + γρc∆ct − log

(
k

∑
j=1

ωjEt

[
e−γσt+1µj+

γ2
2 σ2

t+1[σ
2
j −1]

])
.

In comparison, for a general distribution the risk-free rate depends on all moments but does not
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necessarily have closed form. The mixture thus combines flexible econometric estimation with

convenient economic modelling.1

As in the usual sieve literature, this paper provides a consistency result and derives the rate of

convergence of the structural and infinite dimensional parameters, as well as asymptotic normal-

ity results for finite dimensional functionals of these parameters. While the results apply to both

static and dynamic models alike, two important differences arise in dynamic models compared to

the existing literature on sieve estimation: proving uniform convergence of the objective function

and controlling the dynamic accumulation of the nonparametric approximation bias.

The first challenge is to establish the rate of convergence of the objective function for dynamic

models. To allow for the general dynamics (1)-(2) with latent variables, this paper adapts results

from Andrews & Pollard (1994) and Ben Hariz (2005) to construct an inequality for uniformly

bounded empirical processes which may be of independent interest. It allows the simulated data

to be non-stationary when the initial (y0, u0) is not taken from the ergodic distribution. It requires

a geometric ergodicity condition as in Duffie & Singleton (1993). The boundedness condition is

satisfied by the CF and the CDF for instance. Also, the inequality implies a larger variance than

typically found in the literature.2

The second challenge is that in the model (1)-(2) the nonparametric bias accumulates dynami-

cally. At each time period the bias appears because draws are taken from a mixture approximation

instead of the true f0, this bias is also transmitted from one period to the next since (ys
t , us

t) depends

on (ys
t−1, us

t−1). To ensure that this bias does not accumulate too much, a decay condition is im-

posed on the DGP. For the consumption process (3)-(4), this condition holds if both |ρy| and |ρσ|
are strictly less than 1. The resulting bias is generally larger than in static models and usual sieve

estimation problems. Together, the increased variance and bias imply a slower rate of conver-

gence for the Sieve-SMM estimates. Hence, in order to achieve the rate of convergence required

for asymptotic normality, the Sieve-SMM requires additional smoothness of the true density f0.

Monte-Carlo simulations illustrate the properties of the estimator and the effect of dynamics

on the bias and the variance of the estimator. Two empirical applications highlight the importance

of estimating the distribution of the shocks. The first is the example discussed above, and the

second estimates a different stochastic volatility model on a long daily series of exchange rate

data. The Sieve-SMM estimator suggests significant asymmetry and fat tails in the shocks, even

after controlling for the time-varying volatility. As a result, commonly used parametric estimates

1Gaussian mixtures are also convenient in more complicated settings where the model needs to be solved numeri-
cally. For instance, all the moments of a Gaussian mixture are tractable and quadrature is easy so that it can be applied
to both the perturbation method and the projection method (see e.g. Judd, 1996, for a review of these methods) instead
of the more commonly applied Gaussian distribution.

2See Chen (2007, 2011) for a summary of existing results with iid and dependent data.
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for the persistence are significantly downward biased which has implications for forecasting; this

effect is confirmed by the Monte-Carlo simulations.

Related Literature

The Sieve-SMM estimator presented in this paper combines two literatures: sieves and the Simu-

lated Method of Moments (SMM). This section reviews the existing methods and results in each

literature to introduce the new challenges arising from the combined Sieve-SMM setting.

A key aspect to simulation-based estimation is the choice of moments ψ̂n. The Simulated

Method of Moments (SMM) estimator of McFadden (1989) relies on unconditional moments, the

Indirect Inference (IND) estimator of Gouriéroux et al. (1993) uses auxliary parameters from a sim-

pler, tractable model and the Efficient Method of Moments (EMM) of Gallant & Tauchen (1996)

uses the score of the auxiliary model. Simulation-based estimation has been applied to a wide

array of economic settings: early empirical applications of these methods include the estimation

of discrete choice models (Pakes, 1986; Rust, 1987), DSGE models (Smith, 1993) and models with

occasionally binding constraints (Deaton & Laroque, 1992). More recent empirical applications

include the estimation of earning dynamics (Altonji et al., 2013), of labor supply (Blundell et al.,

2016) and the distribution of firm sizes (Gourio & Roys, 2014). Simulation-based estimation can

also applied to models that are not fully specified as in Berry et al. (1995), these models are not

considered in the Sieve-SMM estimation.

To achieve parametric efficiency a number of papers consider using nonparametric moments

but they assumed the distribution f is known.3 To avoid dealing with the nonparametric rate of

convergence of the moments Carrasco et al. (2007a) use the continuum of moments implied by

the CF. This paper uses a similar approach in a semi-nonparametric setting. Bernton et al. (2017)

use the Wasserstein, or Kantorovich distance, between the empirical and simulated distributions.

This distance relies on unbounded moments and is thus excluded from the analysis in this paper.

General asymptotic results are given by Pakes & Pollard (1989) for SMM with iid data and Lee

& Ingram (1991); Duffie & Singleton (1993) for time-series. Gouriéroux & Monfort (1996) provide

an overview of existing results for a large number of simulation-based estimation methods.

While most of the literature discussed so far deals with fully parametric SMM models, there

are a few papers concerned with sieve simulation-based estimation. Bierens & Song (2012) pro-

3See e.g. Gallant & Tauchen (1996); Fermanian & Salanié (2004); Kristensen & Shin (2012); Gach & Pötscher (2010);
Nickl & Pötscher (2011).
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vide a consistency result for Sieve-SMM estimation of a static first-price auction model.4 Newey

(2001) uses a sieve simulated IV estimator for a measurement error model and proves consis-

tency as both n and S go to infinity. These papers only consider specific static models and only

provide limited asymptotic results. Furthermore, they consider sampling methods for the sim-

ulations that are very computationally costly (see section 2.3 for a discussion). Additionally, an

incomplete working paper by Blasques (2011) uses the high-level conditions in Chen (2007) for a

”Semi-NonParametric Indirect Inference” estimator. These conditions are very difficult to verify

in practice and additional results are needed to handle the dynamics.5

An alternative to using sieves in SMM estimation involves using more general parametric

families to model the first 3 or 4 moments flexibly. Ruge-Murcia (2012, 2017) considers the skew

Normal and the Generalized Extreme Value distributions to model the first 3 moments of produc-

tivity and inflation shocks. Gospodinov & Ng (2015); Gospodinov et al. (2017) use the Generalized

Lambda famility to flexibly model the first 4 moments of the shocks in a non-invertible moving

avergage and a measurement error model. However, in applications where the moments depend

on the full distribution of the shocks, which is the case if the data yt is non-separable in the shocks

et, then the estimates θ̂n will be sensitive to the choice of parametric family. Also, quantities of

interest such as welfare estimates and asset prices that depend on the full distribution will also be

sensitive to the choice of parametric family.

Another related literature is the sieve estimation of models defined by moment conditions.

These models can be estimated using either Sieve-GMM, Sieve Empirical Likelihood or Sieve

Minimum Distance (see Chen, 2007, for a review). Applications include nonparametric estima-

tion of mean instrumental variables regressions6, of quantile instrumental variables regressions,7

and the semi-nonparametric estimation of asset pricing models,8 for instance. Existing results

cover the consistency and the rate of convergence of the estimator as well as asymptotic normality

of functional of the parameters for both iid and dependent data. Recent general asymptotic results

include Chen & Pouzo (2012, 2015) for iid data and Chen & Liao (2015) for dependent data.

In the empirical Sieve-GMM literature, an application closely related to the dynamics encoun-

4In order to do inference on f , they propose to invert a simulated version of Bierens (1990)’s ICM test statistic. A re-
cent working paper by Bierens & Song (2017) introduces covariates in the same auction model and gives an asymptotic
normality result for the coefficients θ̂n on the covariates.

5Also, to avoid using sieves and SMM in moment conditions models that are tractable up to a latent variable,
Schennach (2014) proposes an Entropic Latent Variable Integration via Simulation (ELVIS) method to build estimating
equations that only involve the observed variables. Dridi & Renault (2000) propose a Semi-Parametric Indirect Inference
based on a partial encompassing principle.

6See e.g. Hall & Horowitz (2005); Carrasco et al. (2007b); Blundell et al. (2007); Darolles et al. (2011); Horowitz (2011).
7See e.g. Chernozhukov & Hansen (2005); Chernozhukov et al. (2007); Horowitz & Lee (2007).
8See e.g. Hansen & Richard (1987); Chen & Pouzo (2009); Chen et al. (2013); Christensen (2017).
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tered in this paper appears in Chen et al. (2013). The authors show how to estimate an Euler

equation with recursive preferences when the value function is approximated using sieves. Re-

cursive preferences require a filtering step to recover the latent variable. This implies that the

moments depend on the whole history of the data (yt, . . . , y1). However, general results based on

coupling results (see e.g. Doukhan et al., 1995; Chen & Shen, 1998) do not apply to this class of

moments. The authors use a Bootstrap for inference without formal asymptotic results.

Notation

The following notation and assumptions will be used throughout the paper: the parameter of

interest is β = (θ, f ) ∈ Θ × F = B. The finite dimensional parameter space Θ is compact and

the infinite dimensional set of densities F is possibly non-compact. The sets of mixtures satisfy

Bk ⊆ Bk+1 ⊆ B, k is the data dependent dimension of the sieve set Bk. The dimension k increases

with the sample size: k(n)→ ∞ as n→ ∞. Using the notation of Chen (2007), Πk(n) f is the mixture

approximation of the density f . The vector of shocks e has dimension de ≥ 1 and density f . The

total variation distance between two densities is ‖ f1 − f2‖TV = 1/2
∫
| f1(e) − f2(e)|de and the

supremum (or sup) norm is ‖ f1− f2‖∞ = supe∈Rde | f1(e)− f2(e)|. For simplification, the following

convention will be used ‖β1 − β2‖TV = ‖θ1 − θ2‖+ ‖ f1 − f2‖TV and ‖β1 − β2‖∞ = ‖θ1 − θ2‖+
‖ f1 − f2‖∞, where ‖θ‖ and ‖e‖ correspond the Euclidian norm of θ and e respectively. ‖β1‖m is a

norm on the mixture components: β1‖m = ‖θ‖+ ‖(ω, µ, σ)‖where ‖ · ‖ is the Euclidian norm and

(ω, µ, σ) are the mixture parameters. For a functional φ, its pathwise, or Gâteau, derivative at β1 in

the direction β2 is dφ(β1)
dβ [β2] =

dφ(β1+εβ2)
dε

∣∣∣
ε=0

, it will be assumed to be continuous in β1 and linear

in β2. For two sequences an and bn, the relation an � bn implies that there exists 0 < c1 ≤ c2 < ∞

such that c1an ≤ bn ≤ c2an for all n ≥ 1.

Structure of the Paper

The paper is organized as follows: Section 2 introduces the Sieve-SMM estimator, explains how

to implement it in practice and provides important properties of the mixture sieve. Section 3

gives the main asymptotic results: under regularity conditions, the estimator is consistent. Its

rate of convergence is derived, and under further conditions, finite dimensional functionals of the

estimates are asymptotically normal. Section 4 provides two extensions, one to include auxiliary

variables in the CF and another to allow for dynamic panels with small T. Section 5 provides

Monte-Carlo simulations to illustrate the theoretical results. Section 6 gives empirical examples

for the estimator. Section 7 concludes. Appendix A gives some information about the CF and

details on how to compute the estimator in practice. Appendix B provides the proofs to the main
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results. The online supplement includes:9 Appendix C which provides results for more general

moment functions and sieve bases and Appendix D which provides the proofs for these results.

2 The Sieve-SMM Estimator

This section introduces the notation used in the remainder of the paper. It describes the class of

DGPs considered in the paper and describes the DGP of the leading example in more details. It

discusses the choice of mixture sieve, moments and objective function as well as some important

properties of the mixture sieve. The running example used throughout the analysis is based on

the empirical applications of section 6.

Example 1 (Stochastic Volatility Models). In both empirical applications, yt follows an AR(1) process

with log-normal stochastic volatility

yt = µy + ρyyt−1 + σtet,1.

The first empirical application estimates a linear volatility process:

σ2
t = µσ + ρσσ2

t−1 + κσet,2

where et,2 ∼ χ2
1. The second empirical application estimates a log-normal stochastic volatility process:

log(σt) = µσ + ρσ log(σt−1) + κσet,2.

where et,2
iid∼ N (0, 1). In both applications et,1

iid∼ f with the restrictions E(et,1) = 0 and E(e2
t,1) = 1.

The first application approximates f with a mixture of Gaussian distributions, the second adds two tail

components to model potential fat tails.

Stochastic volatility (SV) models in Example 1 are intractable because of the latent volatility.

With log-normal volatility, the model becomes tractable after taking the transformation log([yt −
µy − ρyyt−1]

2) (see e.g. Kim et al., 1998) and the problem can be cast as a deconvolution problem

(Comte, 2004). However, the transformation removes all the information about asymmetries in

f , which turn out to empirically significant (see section 6). In the parametric case, alternatives to

using the transformation involve Bayesian simulation-based estimators such as the Particle Filter

and Gibbs sampling or EMM for frequentist estimation.

9The online supplement can be found at http://jjforneron.com/SieveSMM/Supplement.pdf.
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2.1 Sieve Basis - Gaussian and Tails Mixture

The following definition introduces the Gaussian and tails mixture sieve that will be used in the

paper. It combines a simple Gaussian mixture with two tails densities which model asymmetric

fat tails parametrically. Drawing from this mixture is computationally simple: draw uniforms and

gaussian random variables, switch between the Gaussians and the tails depending on the uniform

and the mixture weights ω. The tail draws are a simple function of uniform random variables.

Definition 1 (Gaussian and Tails Mixture). A random variable e follows a k component Gaussian and

Tails mixture if its density has the form:

fω,µ,σ(e) =
k

∑
j=1

ωj

σj
φ(

e− µj

σj
) +

ωk+1

σk+1
1e≤µk+1 fL

(
e− µk+1

σk+1

)
+

ωk+2

σk+2
1e≥µk+2 fR

(
e− µk+2

σk+2

)
where φ is the standard Gaussian density and its left and right tail components are

fL(e, ξL) = (2 + ξL)
|e|1+ξL

[1 + |e|2+ξL ]2
for e ≤ 0, fR(e, ξR) = (2 + ξR)

e1+ξR

[1 + e2+ξR ]2
for e ≥ 0

with fL(e, ξL) = 0 for e ≥ 0 and fR(e, ξL) = 0 for e ≤ 0. To simulate from the Gaussian and tails

mixture, draw Z1, . . . , Zk
iid∼ N (0, 1), ν, νL, νR

iid∼ U[0,1] and compute Zk+1 = −
(

1
νL
− 1
) 1

2+ξL and Zk+2 =(
1

νR
− 1
) 1

2+ξR . Then, for ω0 = 0:

e =
k+2

∑
j=1

1
ν∈[∑j−1

l=0 ωl ,∑
j
l=0 ωl ]

(
µj + σjZj

)
follows the Gaussian and tails mixture fω,µ,σ.

For application where fat tails are deemed unlikely, as in the first empirical application, the

weights ωk+1, ωk+2 can be set to zero to use a Gaussian mixture. If ωk+1
σk+1
6= 0 and ωk+2

σk+2
6= 0 then the

left and right tails satisfy:

fL(e)
e→−∞∼ |e|−3−ξL , fR(e)

e→+∞∼ e−3−ξR .

If ξL, ξR ≥ 0 then draws from the tail components have finite expectation, they also have finite

variance if ξL, ξR ≥ 1. More generally, for the j-th moment to be finite, j ≥ 1, ξL, ξR ≥ j is necessary.

Gallant & Nychka (1987) also add a parametric component to model fat tails by using a mixture of

a Hermite polynomial with a Student density. However, neither the Hermite polynomial nor the

Student t-distribution have closed-form quantiles, which is not practical for simulation. Here, the

densities fL, fR are constructed to be easy to simulated from.
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The indicator function 1
νs

t∈[∑
j−1
l=0 ωl , ∑

j
l=0 ωl ]

introduces discontinuities in the parameter ω. Stan-

dard derivative-free optimization routines such as the Nelder-Mead algorithm (Nelder & Mead,

1965) as implemented in the NLopt library of Johnson (2014) can handle this estimation problem

as illustrated in section 5.10

In the finite mixture literature, mixture components are known to be difficult to identify be-

cause of possible label switching and the likelihood is globally unbounded.11 Using the character-

istic function rather than the likelihood resolves the unbounded likelihood problem as discussed

in Yu (1998). More importantly, the object of interest in this paper is the mixture density fω,µ,σ

itself rather than the mixture components. As a result, permutations of the mixture components

are not a concern, since they do not affect the resulting mixture density fω,µ,σ.

2.2 Moments - Empirical Characteristic Function and Objective Function

As in the parametric case, the moments need to be informative enough to identify the parame-

ters. In Sieve-SMM estimation, the parameter β = (θ, f ) is infinite dimensional so that no finite

dimensional vector of moments could possibly identify β. As a result, this paper relies on moment

functions which are themselves infinite dimensional.

The leading choice of moment function in this paper is the empirical characteristic function for

the joint vector of lagged observations (yt, xt) = (yt, . . . , yt−L, xt, . . . , xt−L):

ψ̂n(τ) =
1
n

n

∑
t=1

eiτ′(yt,xt), ∀τ ∈ Rdτ

where i is the imaginary number such that i2 = −1.12 The CF is one-to-one with the joint distri-

bution of (yt, xt), so that the model is identified by ψ̂n(·) if and only if the distribution of (yt, xt)

identifies the true β0. Using lagged variables allows to identify the dynamics in the data. Knight

& Yu (2002) show how the characteristic function can identify parametric dynamic models. Some

useful properties of the CF are given in Appendix A.1.

Besides the CF, another choice of bounded moment function is the CDF. While the CF is a

smooth transformation of the data, the empirical CDF has discontinuities at each point of support

of the data (yt, xt) which could make numerical optimization more challenging. Also, the CF

around τ = 0 summarizes the information about the tails of the distribution (see Ushakov, 1999,

page 30). This information is thus easier to extract from the CF than the CDF. The main results of

10The NLopt library is available for C++, Fortran, Julia, Matlab, Python and R among others.
11See e.g. McLachlan & Peel (2000) for a review of estimation, identification and applications of finite mixtures. See

also Chen et al. (2014b) for some recent results.
12The moments can also be expressed in terms of sines and cosines since eiτ′(yt ,xt) = cos(τ′(yt, xt)) + i sin(τ′(yt, xt)).
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this paper can be extended to any bounded moment function satisfying a Lipschitz condition.13

Since the moments are infinite dimensional, this paper adopts the objective function of Car-

rasco & Florens (2000); Carrasco et al. (2007a) to handle the continuum of moment conditions:14

Q̂S
n(β) =

∫ ∣∣∣ψ̂n(τ)− ψ̂S
n(τ, β)

∣∣∣2 π(τ)dτ. (5)

The objective function is a weighted average of the square norm between the empirical ψ̂n and

the simulated ψ̂S
n moment functions. As discussed in Carrasco & Florens (2000) and Carrasco

et al. (2007a), using the continuum of moments avoids the problem of constructing an increasing

vector of moments. The weighting density π is chosen to be the multivariate normal density for

the main results. Other choices for π are possible as long as it has full support and is such that∫ √
π(τ)dτ < ∞. As an example, the exponential distribution satisfies these two conditions, while

the Cauchy distribution does not satisfy the second. In practice, choosing π to be the Gaussian

density with same mean and variance as (yt, xt) gave satisfying results in sections 5 and 6.15 In

the appendix, the results allow for a bounded linear operator B which plays the role of the weight

matrix W in SMM and GMM as in Carrasco & Florens (2000). Carrasco & Florens (2000); Carrasco

et al. (2007a) provide theoretical results for choosing and approximating the optimal operator B in

the parametric setting. Similar work is left to future research in this semi-nonparametric setting.

Given the sieve basis, the moments and the objective function, the estimator β̂n = (θ̂n, f̂n) is

defined as an approximate minimizer of Q̂S
n:

Q̂S
n(β̂n) ≤ inf

β∈Bk(n)

Q̂S
n(β) + Op(ηn) (6)

where ηn ≥ 0 and ηn = o(1) corresponds to numerical optimization and integration errors. In-

deed, since the integral in (5) needs to be evaluated numerically, some form of numerical integra-

tion is required. Quadrature and sparse quadrature were found to give satisfying results when

dim(τ) is not too large (less than 4). For larger dimensions, quasi-Monte-Carlo integration using

either the Halton or Sobol sequence gave satisfying results.16 All Monte-Carlo simulations and

empirical results in this paper are based on quasi-Monte-Carlo integration. Additional details on

the computation of the objective function are given in Appendix A.2.
13Appendix C allows for more general non-Lipschitz moment functions and other sieve bases. However, the condi-

tions required for these results are more difficult to check.
14Carrasco & Florens (2000) provide a general theory for GMM estimation with a continuum of moment conditions.

They show how to efficiently weight the continuum of moments and propose a Tikhonov (ridge) regularization ap-
proach to invert the singular variance-covariance operator. Earlier results, without optimal weighting, include Koul
(1986) for minimum distance estimation with a continuum of moments.

15Monte-Carlo experiments not reported in this paper showed similar results when using the exponential density for
π instead of the Gaussian density.

16See e.g. Heiss & Winschel (2008); Holtz (2011) for an introduction to sparse quadrature in economics and finance,
and Owen (2003) for quasi-Monte-Carlo sampling.
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2.3 Approximation and L2-Smoothness Properties of the Mixture Sieve

This subsection provides more details on the approximation and Lp-smoothness properties of the

mixture sieve. It also provides the necessary restrictions on the true density f0 to be estimated.

Gaussian mixtures can approximate any smooth univariate density but the rate of this approxi-

mation depends on both the smoothness and the tails of the density (see e.g. Kruijer et al., 2010).

The tail densities parametrically model asymmetric fat tails in the density. This is useful in the

second empirical example since a thin tail assumption may not hold for exchange rate data. The

following lemma extends the approximation results of Kruijer et al. (2010) to a multivariate den-

sity with independent components and potentially fat tails.

Lemma 1 (Approximation Properties of the Gaussian and Tails Mixture). Suppose that the shocks

e = (et,1, . . . , et,de) are independent with density f = f1 × · · · × fde . Suppose that each marginal f j can be

decomposed into a smooth density f j,S and the two tails fL, fR of Definition 1:

f j = (1−ωj,1 −ωj,2) f j,S + ωj,1 fL + ωj,2 fR.

Let each f j,S satisfy the assumptions of Kruijer et al. (2010):

i. Smoothness: f j,S is r-times continuously differentiable with bounded r-th derivative.

ii. Tails: f j,S has exponential tails, i.e. there exists ē, M f , a, b > 0 such that:

f j,S(e) ≤ M f e−a|e|b , ∀|e| ≥ ē.

iii. Monotonicity in the Tails: f j,S is strictly positive and there exists e < e such that f j,S is weakly

decreasing on (−∞, e] and weakly increasing on [e, ∞).

and ‖ f j‖∞ ≤ f for all j. Then there exists a Gaussian and tails mixture Πk f = Πk f1 × · · · × Πk fde

satisfying the restrictions of Kruijer et al. (2010):

iv. Bandwidth: σj ≥ σk = O( log[k]2/b

k ).

v. Location Parameter Bounds: µj ∈ [−µ̄k, µ̄k] with µ̄k = O
(
log[k]1/b)

such that as k→ ∞:

‖ f −Πk f ‖F = O
(

log[k]2r/b

kr

)
where ‖ · ‖F = ‖ · ‖TV or ‖ · ‖∞.
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The space of true densities satisfying the assumptions will be denoted as F and Fk is the

corresponding space of Gaussian and tails mixtures Πk f .

Note that additional restrictions on f may be required for identification, such as mean zero,

unit variance or symmetry. The assumption that the shocks are independent is not too strong

for structural models where this, or a parametric factor structure is typically assumed. Note that

under this assumption, there is no curse of dimensionality because the components f j can be

approximated separately. Also, the restriction ‖ f j‖∞ ≤ f is only required for the approximation

in supremum norm ‖ · ‖∞.

An important difficulty which arises in simulating from a nonparametric density is that draws

are a very nonlinear transformation of the nonparametric density f . As a result, standard regular-

ity conditions such as Hölder and Lp-smoothness are difficult to verify and may only hold under

restrictive conditions. The following discusses these regularity conditions for the methods used in

the previous literature and provides a Lp-smoothness result the mixture sieve (Lemma 2 below).

Bierens & Song (2012) use Inversion Sampling: they compute the CDF Fk from the nonpara-

metric density and draw F−1
k (νs

t ), νs
t

iid∼ U[0,1]. Computing the CDF and its inverse to simulate is

very computationally demanding. Also, while the CDF is linear in the density, its inverse is a

highly non-linear transformation of the density. Hence, Hölder and Lp-smoothness results for the

draws are much more challenging to prove without further restrictions.

Newey (2001) uses Importance Sampling for which Hölder conditions are easily verified but

requires S → ∞ for consistency alone. Furthermore, the choice of importance distribution is very

important for the finite sample properties (the effective sample size) of the simulated moments.

In practice, the importance distribution should give sufficient weight to regions for which the

nonparametric density has more weight. Since the nonparametric density is unknown ex-ante,

this is hard to achieve in practice.

Gallant & Tauchen (1993) use Accept/Reject (outside of an estimation setting): however, it is

not practical for simulation-based estimation. Indeed, the required number of draws to generate

an accepted draw depends on both the instrumental density and the target density fω,µ,σ. The

latter varies with the parameters during the optimization. This also makes the Lp-smoothnes

properties challenging to establish. In comparison, the following lemma shows that the required

L2-smoothness condition is satisfied by draws from a mixture sieve.

Lemma 2 (L2-Smoothness of Simulated Mixture Sieves). Suppose that

es
t =

k(n)

∑
j=1

1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

(
µj + σjZs

t,j

)
, ẽs

t =
k(n)

∑
j=1

1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

(
µ̃j + σ̃jZs

t,j

)
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with |µj| and |µ̃j| ≤ µ̄k(n), |σj| and |σ̃j| ≤ σ̄. If E(|Zs
t,j|2) ≤ C2

Z < ∞ then there exists a finite constant C

which only depends on CZ such that:[
E

(
sup

‖ fω,µ,σ− fω̃,µ̃,σ̃‖m≤δ

∣∣∣es
t − ẽs

t

∣∣∣2)]1/2

≤ C
(

1 + µ̄k(n) + σ̄ + k(n)
)

δ1/2.

Lemma 2 is key in proving the L2-smoothness conditions of the moments ψ̂s
n required to es-

tablish the convergence rate of the objective function and stochastic equicontinuity results. Here,

the Lp-smoothness constant depends on both the bound µk(n) and the number of mixture com-

ponents k(n).17 Kruijer et al. (2010) showed that both the total variation and supremum norms

are bounded above by the pseudo-norm ‖ · ‖m on the mixture parameters (ω, µ, σ) up to a factor

which depends on the bandwidth σk(n). As a result, the pseudo-norm ‖ · ‖m controls the distance

between densities and the simulated draws as well. Furthermore, draws from the tail components

are shown in the appendix to be L2-smooth in their tail parameters ξL, ξR. Hence, draws from the

Gaussian and tails mixture are L2-smooth in both (ω, µ, σ) and ξ.

3 Asymptotic Properties of the Estimator

This section provides conditions under which the Sieve-SMM estimator in (6) is consistent. Its rate

of convergence is derived and an asymptotic normality result for functionals of β̂n is given.

3.1 Consistency

Consistency results are given under low-level conditions on the DGP using the Gaussian and tails

mixture sieve with the CF.18 First, the population objective Qn is:

Qn(β) =
∫ ∣∣∣E(ψ̂n(τ)− ψ̂S

n(τ, β)
) ∣∣∣2π(τ)dτ. (7)

The objective depends on n because (ys
t , xt) are not covariance stationary: the moments can de-

pend on t. Under geometric ergodicity, it has a well-defined limit:19

Qn(β)
n→∞→ Q(β) =

∫ ∣∣∣ lim
n→∞

E
(

ψ̂n(τ)− ψ̂S
n(τ, β)

) ∣∣∣2π(τ)dτ.

In the definition of the objective Qn and its limit Q, the expectation is taken over both the data

(yt, xt) and the simulated samples (ys
t , xt). The following assumption, provide a set of sufficient

conditions on the true density f0, the sieve space and a first set of conditions on the model (iden-

tification and time-series properties) to prove consistency.

17See e.g. Andrews (1994); Chen et al. (2003) for examples of Lp-smooth functions.
18Consistency results allowing for non-mixture sieves and other moments are given in Appendix C.1.
19Since the CF is bounded, the dominated convergence theorem can be used to prove the existence of the limit.
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Assumption 1 (Sieve, Identification, Dependence). Suppose the following conditions hold:

i. (Sieve Space) the true density f0 and the mixture sieve space Fk(n) satisfy the assumptions of Lemma

1 with k(n)4 log[k(n)]4/n→ 0 as k(n) and n→ ∞. Θ is compact and 1 ≤ ξL, ξR ≤ ξ < ∞.

ii. (Identification) limn→∞ E
(
ψ̂n(τ)− ψ̂s

n(τ, β)
)
= 0, π a.s. ⇔ ‖β − β0‖B = 0 where π is the

Gaussian density. For any n, k ≥ 1 and for all ε > 0, infβ∈Bk , ‖β−β0‖B≥ε Qn(β) is strictly positive

and weakly decreasing in both n and k.

iii. (Dependence) (yt, xt) is strictly stationary and α-mixing with exponential decay, the simulated

(ys
t(β), xt) are geometrically ergodic, uniformly in β ∈ B.

Condition i. is stronger than the usual condition k(n)/n → 0 in the sieve literature (see e.g

Chen, 2007). The additional log[k(n)] term is due to the mixture being a non-linear sieve basis and

the fourth power is due to the dependence. Indeed, the inequality in Lemma D15 implies that the

variance is of order k(n)2 log[k(n)]2/
√

n instead of
√

k(n) log[k(n)]/n for iid data.

Condition ii. is the usual identification condition. It is assumed that the information from the

joint distribution of (yt, xt) = (yt, . . . , yt−L, xt, . . . , xt−L) uniquely identifies β = (θ, f ). Proving

general global identification results is quite challenging in this setting and is left to future research.

Local identification in the sense of Chen et al. (2014a) is also challenging to prove here because the

dynamics imply that the distribution of (ys
t , xt, us

t) is a convolution of f with the distribution of

(ys
t−1, xt, us

t−1). Since the stationary distributions of (ys
t , xt, us

t) and (ys
t−1, xt, us

t−1) are the same,

the resulting distribution is the fixed point of its convolution with f . This makes derivatives with

respect to f difficult to compute in many dynamic models. Note that the identification assumption

does not exclude ill-posedness.20 The space F is assumed to include the necessary restrictions (if

any) for identification such as mean zero and unit variance. Global identification results for the

stochastic volatility model in Example 1 are given in Appendix A.4.

Condition iii. is common in SMM estimation with dependent data (see e.g. Duffie & Single-

ton, 1993). In this setting, it implies two important features: the simulated (ys
t , xt) are α-mixing

(Liebscher, 2005), and the initial condition bias is negligible: Qn(β0) = O(1/n2).21

Assumption 2 (Data Generating Process). ys
t is simulated according to the dynamic model (1)-(2) where

gobs and glatent satisfy the following Hölder conditions for some γ ∈ (0, 1]:

y(i). ‖gobs(y1, x, β, u)− gobs(y2, x, β, u)‖ ≤ C1(x, u)‖y1 − y2‖ with E
(
C1(xt, us

t)
2|ys

t−1

)
≤ C̄1 < 1.

y(ii). ‖gobs(y, x, β1, u)− gobs(y, x, β2, u)‖ ≤ C2(y, x, u)‖β1− β2‖γ
B with E

(
C(ys

t , xt, us
t)

2) ≤ C̄2 < ∞.

20See e.g. Carrasco et al. (2007b) and Horowitz (2014) for a review of ill-posedness in economics.
21See Proposition C4 in the supplemental material for the second result.
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y(iii). ‖gobs(y, x, β, u1)− gobs(y, x, β, u2)‖ ≤ C3(y, x)‖u1 − u2‖γ with E
(
C3(ys

t , xt)2|us
t
)
≤ C̄3 < ∞.

u(i). ‖glatent(u1, β, e)− glatent(u2, β, e)‖ ≤ C4(e)‖u1 − u2‖ with E
(
C4(es

t)
2) ≤ C̄4 < 1.

u(ii). ‖glatent(u, β1, e)− glatent(u, β2, e)‖ ≤ C5(u, e)‖β1 − β2‖γ
B with E

(
C5(us

t−1, es
t)

2) ≤ C̄5 < ∞.

u(iii). ‖glatent(u, β, e1)− glatent(u, β, e2)‖ ≤ C6(u)‖e1 − e2‖ with E
(
C6(us

t−1)
2) ≤ C̄6 < ∞.

for any (β1, β2) ∈ B, (y1, y2) ∈ Rdim(y), (u1, u2) ∈ Rdim(u) and (e1, e2) ∈ Rdim(e). The norm ‖ · ‖B is

either the total variation or supremum norm.

Conditions y(ii), u(ii) correspond to the usual Hölder conditions in GMM and M-estimation

but placed on the DGP itself rather than the moments. Since the cosine and sine functions are

Lipschitz, it implies that the moments are Hölder continuous as well.22

The decay conditions y(i), u(i) together with condition y(iii) ensure that the differences due

to ‖β1 − β2‖B do not accumulate too much with the dynamics. As a result, keeping the shocks

fixed, the Hölder condition applies to (ys
t , us

t) as a whole. It also implies that the nonparametric

approximation bias ‖β0 −Πk(n)β0‖B does not accumulate too much. These conditions are similar

to the L2-Unit Circle condition which Duffie & Singleton (1993) suggest as an stronger alternative

to geometric ergodicity in a uniform LLN and a CLT. The decay conditions play a more important

role here since they are needed to control the nonparametric bias of the estimator.

Condition u(iii) ensures that the DGP preserves the L2-smoothness properties derived for mix-

ture draws in Lemma 2. This condition does not appear in the usual sieve literature which does

not simulate from a nonparametric density. In the SMM literature, a Lipschitz or Hölder condition

is usually given on the moments directly. Note that a condition analogous to u(iii) would also be

required for parametric SMM estimation of a parametric distribution.

Assumption 2 does not impose that the DGP be smooth. This allows for kinks in gobs or glatent

as in the sample selection model or the models of Deaton (1991) and Deaton & Laroque (1992).

Assumption 2′ in Appendix B.2 extends Assumption 2 to allow for possible discontinuities in

gobs, glatent. The following shows how to verify the conditions of Assumption 2 in Example 1 with

χ2
1 volatility shocks.23

22For any choice of moments that preserve identification and are Lipschitz, the main results will hold assuming
‖τ‖∞

√
π(τ) and

∫ √
π(τ)dτ are bounded. For both the Gaussian and the exponential density, these quantities turn

out to be bounded. In general Lispchitz transformations preserve Lp-smoothness properties (see e.g. Andrews, 1994;
van der Vaart & Wellner, 1996), here additional conditions on π are required to handle the continuum of moments with
unbounded support.

23Some additional examples are given in Appendix C.4. They are not tied to the use of mixtures, and as a result,
impose stronger restrictions on the density f such as bounded support.
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Example 1 (Continued) (Stochastic Volatility). If |ρy| < 1 then assumption y(i) is satisfied. Also:

|µy,1 + ρy,1yt−1 − µy,2 − ρy,2yt−1| ≤ (|µy,1 − µy,2|+ |ρy,1 − ρy,2|)(1 + |yt−1|)

and thus condition y(ii) is satisfied assuming E(y2
t−1) is bounded. Since f has mean zero and unit variance,

E(y2
t−1) is bounded if |µσ| ≤ µ̄σ < ∞, |ρσ| ≤ ρ̄σ < 1 and κσ ≤ κ̄σ < ∞ for some µ̄σ, ρ̄σ, κ̄σ. For condition

y(iii), take ut = (σ2
t , et,1) and ũt = (σ̃2

t , ẽt,1):

|σtet,1 − σ̃tet,1| ≤ |et,1|
√
|σ2

t − σ̃2
t |, |σtet,1 − σt ẽt,1| ≤ σt|et,1 − ẽt,1|.

The first inequality is due to the Hölder continuity of the square-root function.24 σt and ẽt,1 are independent,

E(σ2
t ) is bounded above under the previous parameter bounds and E(e2

t,1) = 1 and so condition y(iii) holds

term by term. If the volatility σ2
t is bounded below by a strictly positive constant for all paramater values

then the Hölder continuity y(iii) can be strengthened to a Lipschitz continuity result. Given that σ2
t follows

an AR(1) process, assumptions u(i), u(ii) and u(iii) are satisfied.

The Hölder coefficient in conditions y(ii), y(iii) and u(ii) is assumed to be the same to simplify

notation. If they were denoted γ1, γ2 and γ3, in order of appearance, then the rate of convergence

would depend on min(γ1, γ2γ3) instead of γ2. This could lead to sharper rates of convergence in

section 3.2 and weaker condition for the stochastic equicontinuity result in section 3.3. As shown

above, in Example 1 the Hölder coefficients are γ1 = γ3 = 1, γ2 = 1/2 when σt does not have a

strictly positive lower bound.

Lemma 3 (Assumption 2/2′ implies L2-Smoothness of the Moments). Under either Assumption 2 or

2′, if the assumptions of Lemma 2 hold and π is the Gaussian density, then there exists C > 0 such that for

all δ > 0, uniformly in t ≥ 1, (β1, β2) ∈ Bk(n) and τ ∈ Rdτ :

E

(
sup

‖β1−β2‖m≤δ

∣∣∣eiτ′(ys
t (β1),xt) − eiτ′(ys

t (β2),xt)
∣∣∣2√π(τ)

)
≤ C max

 δγ2

σ
2γ2

k(n)

, [k(n) + µk(n) + σ]γδγ2/2


where ‖β‖m = ‖θ‖ + ‖(ω, µ, σ)‖ is the pseudo-norm on θ and the mixture parameters (ω, µ, σ) from

Lemma 2. Also, since π is the Gaussian density the integral
∫ √

π(τ)dτ is finite.

Lemma 3 gives the first implication of Assumption 2. It shows that the moments ψ̂s
t are L2-

smooth, uniformly in t ≥ 1. The L2-smoothness factor depends on the bounds of the sieve compo-

nents. In the SMM and sieve literatures, the Lp-smoothness constant depends on neither k nor n by

assumption. Here, drawing from the mixture distribution implies that the constant will increase

24For any two x, y ≥ 0, |
√

x−√y| ≤
√
|x2 − y2|.
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with the sample size n. The rate at which it increases is implied by the assumptions of Lemma 1.25

Furthermore, because the index τ has unbounded support, the L2-smoothness result involves the

weights via
√

π. Without π, the L2-smoothness result may not hold uniformly in τ ∈ Rdτ .

Lemma 4 (Nonparametric Approximation Bias). Suppose Assumptions 1 and 2 (or 2′) hold. Further-

more suppose that E
(
‖ys

t‖2) and E
(
‖us

t‖2) are bounded for β = β0 and β = Πk(n)β0 for all k(n) ≥ 1,

t ≥ 1 then:

Qn(Πk(n)β0) = O

(
max

[
log[k(n)]4r/b+2

k(n)2r ,
log[k(n)]4γ2r/b

k(n)2γ2r
,

1
n2

])
= O

(
log[k(n)]4r/b+2

k(n)2γ2r

)
where Πk(n)β0 is the mixture sieve approximation of β0, γ the Hölder coefficient in Assumption 2, b and r

are the exponential tail index and the smoothness of the density fS in Lemma 1.

Lemma 4 gives the second implication of Assumption 2; it computes the value of the objective

function Qn at Πk(n)β0, which is directly related to the bias of the estimator β̂n. Two terms are

particularly important for the rate of convergence: the smoothness of the true density r and the

roughness of the DGP as measured by the Hölder coefficient γ ∈ (0, 1]. If r and γ are larger then

the bias will be smaller. The rate in this lemma is different from the usual rate found in the sieve

literature. Chen & Pouzo (2012) assume for instance that Qn(Πk(n)β0) � ‖β0 − Πk(n)β0‖2
B . In

comparison, the rate derived here is:

Qn(Πk(n)β0) � max
(
‖β0 −Πk(n)β0‖2

B log
(
‖β0 −Πk(n)β0‖B

)2
, ‖β0 −Πk(n)β0‖2γ2

B , 1/n2
)

with ‖β0 −Πk(n)β0‖B = O(log[k(n)]2r/b/k(n)r) as given in Lemma 1. The 1/n2 term corresponds

to the bias due to the nonstationarity, its order is implied by the geometric ergodicity condi-

tion and the boundedness of the moments. The log-bias term log
(
‖β0 −Πk(n)β0‖B

)
is due to

the dynamics: ys
t depends on the full history (es

t , . . . , es
1) which are iid Πk(n) f0, so that the bias

accumulates. The decay conditions y(i), y(iii), u(i) ensure that the resulting bias accumulation

only inflates bias by a log term. The term ‖β0 − Πk(n)β0‖2γ2

B is due to the Hölder smoothness

of the DGP. If the DGP is Lipschitz, i.e. γ = 1, and the model is static then the rate becomes

Qn(Πk(n)β0) � ‖β0 −Πk(n)β0‖2
B , which is the rate assumed in Chen & Pouzo (2012).

Theorem 1 (Consistency). Suppose Assumptions 1 and 2 (or 2′) hold. Suppose that β → Qn(β) is

continuous on (Bk(n), ‖ · ‖B) and the numerical optimization and integration errors are such that ηn =

25 Under the assumption of Lemma 1: σ
−2γ2

k(n) = O
(

k(n)2γ2
/ log[(n)]4γ2/b

)
and [k(n) + µk(n) + σ]γ = O (k(n)γ). As a

result, the maximum term is bounded above by max
(

k(n)2γ2
, k(n)γ

)
δγ2/2 (up to a constant).
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o(1/n). If for all ε > 0 the following holds:

max
(

log[k(n)]4r/b+2

k(n)2γ2r
,

k(n)4 log[k(n)]4

n
,

1
n2

)
= o

(
inf

β∈Bk(n),‖β−β0‖B≥ε
Qn(β)

)
(8)

where r is the assumed smoothness of the smooth component fS and b its exponential tail index. Then the

Sieve-SMM estimator is consistent:

‖β̂n − β0‖B = op(1).

Theorem 1 is a consequence of the general consistency lemma in Chen & Pouzo (2012) repro-

duced as Lemma D12 in the appendix. They provide high level conditions which Assumption

2 together with Lemmas 3 and 4 verify for simulation-based estimation of static and dynamic

models. Condition (8) in Theorem 1 allows for ill-posedness but requires the minimum to be well

separated on the sieve space relative to the bias and the variance.

The variance term k(n)4 log[k(n)]4/n is derived using the inequality in Lemma D15 which

is adapted from existing results of Andrews & Pollard (1994); Ben Hariz (2005). It is based on

the moment inequalities for α-mixing sequences of Rio (2000) rather than coupling results (see

e.g. Doukhan et al., 1995; Chen & Shen, 1998; Dedecker & Louhichi, 2002). This implies that the

moments can be nonstationary, because of the initial condition, and depend on arbitrarily many

lags as in Example 1 where ys
t is a function of es

t , . . . , e1
t . It also allows for filtering procedures as in

the first extension of the main results. The two main drawbacks of this inequality is that it requires

uniformly bounded moments and implies a larger variance than, for instance, in the iid case. The

boundedness restricts the class of moments used in Sieve-SMM and the larger variance implies a

slower rate of convergence.

3.2 Rate of Convergence

Once the consistency of the estimator is established, the next step is to derive its rate of conver-

gence. It is particularly important to derive rates that are as sharp as possible since a rate of a

least n−1/4 under the weak norm of Ai & Chen (2003) is required for the asymptotic normality

results. This weak norm is introduced below for the continuum of complex valued moments. It is

related to the objective function Qn, and as such allows to derive the rate of convergence of β̂n.26

Ultimately, the norm of interest in the strong norm ‖ · ‖B which is generally not equivalent to the

weak norm since the space is infinite dimensional. The two are related by the local measure of

ill-posedness of Blundell et al. (2007) which allows to derive the rate of convergence in the strong

norm, that is in either the total variation or the supremum norm.

26For a discussion see Ai & Chen (2003) and Chen (2007).
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Assumption 3 (Weak Norm and Local Properties). Let Bosn = Bk(n) ∩ {‖β− β0‖B ≤ ε} for ε > 0

small and for (β1, β2) ∈ Bosn:

‖β1 − β2‖weak =

[∫ ∣∣∣dE
(
ψ̂S

n(τ, β0)
)

dβ
[β1 − β2]

∣∣∣2π(τ)dτ

]1/2

(9)

is the weak norm of β1 − β2. Suppose that there exists Cw > 0 such that for all β ∈ Bosn:

Cw‖β− β0‖2
weak ≤

∫ ∣∣∣E(ψ̂S
n(τ, β0)− ψ̂S

n(τ, β)
) ∣∣∣2π(τ)dτ. (10)

Assumption 3 adapts the weak norm of Ai & Chen (2003) to an objective with a continuum of

complex-valued moments. Note that
∫
|E
(
ψ̂S

n(τ, β0)− ψ̂S
n(τ, β)

)
|2π(τ)dτ = Qn(β0) + Op(1/n2)

under geometric ergodicity. As a result, Assumption 3 implies that the weak norm is Lipschitz

continuous with respect to
√

Qn. Additional assumptions on the norm and the objective are usu-

ally required such as: Qn(β) � ‖β− β0‖2
weak and Qn(β) ≤ CB‖β− β0‖B (see e.g. Chen & Pouzo,

2015, Assumption 3.4). Instead of these assumptions, the results in this paper rely on Lemma 4 to

derive the bias of the estimator. The resulting bias is larger than in the usual sieve literature.

Theorem 2 (Rate of Convergence). Suppose that the assumptions for Theorem 1 hold and Assumption 3

also holds.The convergence rate in weak norm is:

‖β̂n − β0‖weak = Op

(
max

(
log[k(n)]r/b+1

k(n)γ2r
,

k(n)2 log[k(n)]2√
n

))
. (11)

The convergence rate in either the total variation or supremum norm ‖ · ‖B is:

‖β̂n − β0‖B = Op

(
log[k(n)]r/b

k(n)r + τB,n max
(

log[k(n)]r/b+1

k(n)γ2r
,

k(n)2 log[k(n)]2√
n

))
where τB,n is the local measure of ill-posedness of Blundell et al. (2007):

τB,n = sup
β∈Bosn, ‖β−Πk(n)β0‖weak 6=0

‖β−Πk(n)β0‖B
‖β−Πk(n)β0‖weak

.

As usual in the (semi)-nonparametric estimation literature, the rate of convergence involves a

bias/variance trade-off. As discussed before, the bias is larger than usual because of the dynamics

and involves the Hölder smoothness γ of the DGP.

The variance term is of order k(n)2 log[k(n)]2/
√

n instead of
√

k(n)/
√

n in the iid case or

strictly stationary case with fixed number of lags in the moments. This is because the inequality

in Lemma D15 is more conservative than the inequalities found in Theorem 2.14.2 of van der

Vaart & Wellner (1996) for iid observations or the inequalities based on a coupling argument in
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Doukhan et al. (1995); Chen & Shen (1998) for strictly stationary dependent data. However, in this

simulation-based setting the dependence properties of ys
t varies on θ over the parameter space Θ

so that a coupling approach may not apply unless it only depends on finitely many lags of et and

xt. Determining whether this inequality can be sharpened in subject to future research.

The increased bias and variance imply a slower rate of convergence than usual. The optimal

rate of convergence equates the bias and variance terms in equation (11). This is achieved (up to

a log term) by picking k(n) = O(n
1

2(2+γ2r) ). To illustrate, for a Lipschitz DGP γ = 1 and f0 twice

continuously differentiable r = 2 and k(n) � n1/8, the rate of convergence becomes:

‖β̂n − β0‖weak = Op(n−1/4 log(n)max(2/b+1,2)).

In comparison, if (ys
t , xt) were iid, keeping γ = 1 and r = 2, the variance term would be

√
k(n) log[k(n)]/n

and the optimal k(n) � n1/5. The rate of convergence becomes:

‖β̂n − β0‖weak = Op

(
n−2/5 log(n)max(2/b+1,2)

)
.

To achieve a rate faster than n−1/4, as required for asymptotic normality, the smoothness of the

true density f0 must satisfy r ≥ 3/γ2 where γ is the Hölder coefficient in Assumption 2. In the

Lipschitz case, γ = 1, at 3 derivatives are needed compared to 12 derivatives when γ = 1/2. In

comparison, in the iid case 2 and 8 derivatives are needed for γ = 1 and γ = 1/2 respectively.

The following corollary shows that the number of simulated samples S can significantly reduce

the sieve variance. This changes the bias-variance trade-off and improves the rate of convergence

in the weak norm.

Corollary 1 (Number of Simulated Samples S and the Rate of Convergence). If a long sample

(ys
1, . . . , ys

nS) can be simulated then the variance term becomes:

min
(

k(n)2 log[n]2√
n× S

,
1√
n

)
.

As a result, for S(n) � k(n)4 log[k(n)]4 the rate of convergence in weak norm is:

‖β̂n − β0‖weak = Op

(
max

(
log[k(n)]r/b+1

k(n)γ2r
,

1√
n

))
.

And the rate of convergence in either the total variation or the supremum norm is:

‖β̂n − β0‖B = Op

(
log[k(n)]r/b

k(n)r + τB,n max
(

log[k(n)]r/b+1

k(n)γ2r
,

1√
n

))
where τB,n is the local measure of ill-posedness in Theorem 2.
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The assumption that a long sample can be simulated is called the ECA assumption in Kris-

tensen & Salanié (2017); it is more commonly found in dynamic models than cross-sectional or

panel data models. In the parametric SMM and Indirect Inference literature, S has an effect on

the asymptotic variance whereas in the Sieve-SMM setting, Corollary 1 shows that increasing S

with the sample size n can also improve the rate of convergence in the weak norm. Assuming

undersmoothing so that the rate in weak norm is of order 1/
√

n, the rate of convergence in the

stronger norm ‖ · ‖B becomes Op(k(n)−r + τB,n/
√

n), up to a log term. This is faster than the rates

of convergence found in the literature.

In practice, the number of simulated sample S(n) required to achieve the rate in Corollary 1 can

be very large. For n = 1, 000, γ = 1 and r = 2, the optimal k(n) ' 5 and S(n) = k(n)4 ' 625. The

total number of simulated ys
t required is n× S(n) = 625, 000. For iid data, the required number of

simulations is n× S(n) = 5, 000. As a result, improving the rate of convergence of the estimator

can be computationally costly since it involves increasing both the number of samples to simulate

and the number of parameters to be estimate.

Remark 1 (An Illustration of the Local Measure of Ill-Posedness). The sieve measure of ill-posedness

is generally difficult to compute. To illustrate a source of ill-posedness and its order of magnitude, consider

the following basic static model:

ys
t = es

t
iid∼ f .

The only parameter to be estimated is the density f which can also be approximated with kernel density

estimates. For this model the characteristic function is linear in f and as a consequence the weak norm for

f1 − f2 is the weighted difference of the CFs ψ f1 , ψ f1 for f1, f2:

‖ f1 − f2‖weak =

[∫
|ψ f1(τ)− ψ f2(τ)|

2π(τ)dτ

]1/2

.

The weak norm is bounded above by 2 for any two densities f1, f2. However, the total variation and supre-

mum distances are not bounded above: as a result the ratio between the weak norm and these stronger norms

is unbounded. To illustrate, simplify the problem further and assume there is only one mixture component:

f1,k(n)(e) = σ−1
k(n)φ

(
e

σk(n)

)
, f2,k(n)(e) = σ−1

k(n)φ

(
e− µk(n)

σk(n)

)
.

As the bandwidth σk(n) → 0, the two densities approach Dirac masses. Unless µk(n) → 0, the total

variation and supremum distances between the two densities go to infinity while the distance in weak norm

is bounded. The distance between f1 and f2 in weak, total-variation and supremum norm are given in

Appendix A.3. For a well chosen sequence µk(n), the total variation and supremum distances are bounded

21



above and below while the weak norm goes to zero. The ratio provides the local measures of ill-posedness:

τTV,n = O
(

k(n)
log[k(n)]2/b

)
, τ∞,n = O

(
k(n)2

log[k(n)]4/b

)
.

Hence, this simple example suggests that Characteristic Function based Sieve-SMM estimation problems

are at best mildly ill-posed.

3.3 Asymptotic Normality

This section derives asymptotic normality results for plug-in estimates φ(β̂n) where φ are smooth

functionals of the parameters. As in Chen & Pouzo (2015), the main result finds a normalizing

sequence rn → ∞ such that:

rn ×
(
φ
(

β̂n
)
− φ (β0)

) d→ N (0, 1)

where rn =
√

n/σ∗n , for some sequence of standard errors (σ∗n )n≥1 which can go to infinity. If

σ∗n → ∞, the plug-in estimates will converge at a slower than
√

n-rate. In addition, sufficient

conditions for θ̂n to be root-n asymptotically normal, that is limn→∞ σ∗n < ∞, are given in Appendix

A.5 for the stochastic volatility model of Example 1.

To establish asymptotic normality results, stochastic equicontinuity results are required. How-

ever, the L2-smoothness result only holds in the space of mixtures Bk(n) with the pseudo-norm

‖ · ‖m on the mixture parameters. This introduces two difficulties in deriving the results: a rate of

convergence for the norm on the mixture components is required, and since β0 6∈ Bk(n) in general,

the rate and the stochastic equicontinuity results need to be derived around a sequence of mix-

tures that are close enough to β0 so that they extend to β0. The following lemma provides the rate

of convergence in the mixture norm.

Lemma 5 (Convergence Rate in Mixture Pseudo-Norm). Let δn = (k(n) log[k(n)])2/
√

n and Mn =

log log(n + 1). Suppose the following undersmoothing assumptions hold:

i. (Rate of Convergence) ‖β̂n − β0‖weak = Op(δn)

ii. (Negligible Bias) ‖Πk(n)β0 − β0‖weak = o(δn).

Furthermore, suppose that the population CF is smooth in β and satisfies:

iii. (Approximation Rate 1) Uniformly over β ∈ {β ∈ Bosn, ‖β− β0‖weak ≤ Mnδn}:∫ ∣∣∣dE(ψ̂S
n(τ, β0))

dβ
[β− β0]−

dE(ψ̂S
n(τ, Πk(n)β0))

dβ
[β− β0]

∣∣∣2π(τ)dτ = O(δ2
n).
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iv. (Approximation Rate 2) The approximating mixture Πk(n)β0 satisfies:∫ ∣∣∣dE(ψ̂S
n(τ, Πk(n)β0))

dβ
[Πk(n)β0 − β0]

∣∣∣2π(τ)dτ = O(δ2
n).

Let λn be the smallest eigenvalue of the matrix∫ dE(ψ̂S
n(τ, Πk(n)β0))

d(θ, ω, µ, σ)

′ dE(ψ̂S
n(τ, Πk(n)β0))

d(θ, ω, µ, σ)
π(τ)dτ.

Suppose that λn > 0 and δnλ−1/2
n = o(1) then the convergence rate in the mixture pseudo-norm is:

‖β̂n −Πk(n)β0‖m = Op

(
δnλ−1/2

n

)
where ‖β‖m = ‖(θ, ω, µ, σ)‖ is the pseudo-norm on θ and the mixture parameters (ω, µ, σ).

The rate of convergence in mixture norm ‖ · ‖m corresponds to the rate of convergence in the

weak norm ‖ · ‖m times a measure of ill-posedness λ−1/2
n . Relations between the mixture norm

and the strong norm ‖ · ‖B imply that the local measure of ill-posedness in Theorem 2 can be

computed using λ−1/2
n . Indeed, results in van der Vaart & Ghosal (2001); Kruijer et al. (2010)

imply that ‖β−Πk(n)β0‖TV ≤ σ−1
k(n)‖β−Πk(n)β0‖m and ‖β−Πk(n)β0‖∞ ≤ σ−2

k(n)‖β−Πk(n)β0‖m.

These inequalities imply upper-bounds for ill-posedness in total variation and supremum norms:

τTV,n ≤ λ−1/2
n σ−1

k(n) and τ∞,n ≤ λ−1/2
n σ−2

k(n).

The quantity λ−1/2
n can be approximated numerically using sample estimates and σk(n) is the band-

width in Lemma 1. As a result, even though the local measure of ill-posedness from Theorem 2

is generally not tractable, an upper bound can be computed using Lemma 5. Chen & Christensen

(2017) shows how to achieve the optimal rate of convergence using plug-in estimates of the mea-

sure of ill-posedness in nonparametric instrumental variable regression, a similar approach should

be applicable here using these bounds. This is left to future research.

Lemma 6 (Stochastic Equicontinuity Results). Let δmn = δnλ−1/2
n . Suppose that the assumptions

of Lemma 5 hold and (Mnδmn)
γ2
2 max(log[k(n)]2, | log[Mnδmn]|2)k(n)2 = o(1), then a first stochastic

equicontinuity result holds:

sup
‖β−Πk(n)β0‖m≤Mnδmn

∫ ∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ = op(1/n).

Also, suppose that β→
∫

E

∣∣∣ψ̂s
t (τ, β0)− ψ̂s

t (τ, β)
∣∣∣2π(τ)dτ is continuous with respect to ‖ · ‖B at β = β0,

uniformly in t ≥ 1, then a second stochastic equicontinuity result holds:

sup
‖β−Πk(n)β0‖m≤Mnδmn

∫ ∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)dτ = op(1/n).
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Lemma 6 uses the rate of convergence in mixture norm to establish stochastic equicontinuity

results. With these results, the moments ψ̂s
n(τ, β)− ψ̂s

n(τ, β0) can be substituted with a smoothed

version under the integral of the objective function.

Remark 2 (Required Rate of Convergence). To achieve the rate of convergence required in Lemma 6,

k(n) must grow at a power of the sample size n, hence: log(n) � log[k(n)] � | log(δmn)|. As a result, the

condition on the rate of convergence in mixture norm (Mnδmn)
γ2
2 max(log[k(n)]2, | log[Mnδmn]|2)k(n)2 =

o(1) in Lemma 6 can be simplified to:

Mnδn = o

( √
λn

[k(n) log(n)]4/γ2

)
.

The following definition adapts the tools used in the sieve literature to establish asymptotic

normality of smooth functionals (see e.g. Wong & Severini, 1991; Ai & Chen, 2003; Chen & Pouzo,

2015; Chen & Liao, 2015) to a continuum of complex valued moments.

Definition 2 (Sieve Representer, Sieve Score, Sieve Variance). Let β0,n be such that ‖β0,n− β0‖weak =

infβ∈Bosn ‖β− β0‖weak, let Vk(n) be the closed span of Bosn − {β0,n}. The inner product 〈·, ·〉 of (v1, v2) ∈
Vk(n) is defined as:

〈v1, v2〉 =
1
2

∫ [
ψβ(τ, v1)ψβ(τ, v2) + ψβ(τ, v1)ψβ(τ, v2)

]
π(τ)dτ.

i. The Sieve Representer is the unique vector v∗n ∈ Vk(n) such that ∀v ∈ Vk(n): 〈v∗n, v〉 = dφ(β0)
dβ [v].

ii. The Sieve Score S∗n is:

S∗n =
1
2

∫ [
ψβ(τ, v∗n)[ψ̂S

n(τ, β0)− ψ̂n(τ)] + ψβ(τ, v∗n)[ψ̂
S
n(τ, β0)− ψ̂n(τ)]

]
π(τ)dτ

=
∫

Real
(

ψβ(τ, v∗n)[ψ̂S
n(τ, β0)− ψ̂n(τ)]

)
π(τ)dτ.

iii. The Sieve Long Run Variance σ∗n is:

σ∗2n = nE
(
S∗2n
)
= nE

([∫
Real

(
ψβ(τ, v∗n)[ψ̂S

n(τ, β0)− ψ̂n(τ)]
)

π(τ)dτ

]2
)

.

iv. The Scale Sieve Representer u∗n is: u∗n = v∗n/σ∗n .

Assumption 4 (Equivalence Condition). There exists a > 0 such that for all n ≥ 1: a‖v∗n‖weak ≤ σ∗n .

Furthermore, suppose that σ∗n does not increase too fast: σ∗n = o(
√

n).
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In Sieve-MD literature, Assumption 4 is implied by an eigenvalue condition on the conditional

variance of the moments.27 Because the moments are bounded and the data is geometrically er-

godic, the long-run variance of the moments is bounded above uniformly in τ.28 However, since

τ has unbounded support, the eigenvalues of the variance may not have a strictly positive lower

bound. Assumption 4 plays the role of the lower bound on the eigenvalues.29

Assumption 5 (Convergence Rate, Smoothness, Bias). Bosn is a convex neighborhood of β0 where

i. (Rate of Convergence) Mnδn = o(n−1/4) and Mnδn = o
(√

λn/ (k(n) log(n))4/γ2
)

.

ii. (Smoothness) A linear expansion of φ is locally uniformly valid:

sup
‖β−β0‖≤Mnδn

√
n

σ∗n

∣∣∣φ(β)− φ(β0)−
dφ(β0)

dβ
[β− β0]

∣∣∣ = o(1).

A linear expansion of the moments is locally uniformly valid:

sup
‖β−β0‖weak≤Mnδn

(∫ ∣∣∣E(ψ̂S
n(τ, β))−E(ψ̂S

n(τ, β0))−
dE(ψ̂S

n(τ, β0))

dβ
[β− β0]

∣∣∣2π(τ)dτ

)1/2

= O
(
(Mnδn)

2
)

.

The second derivative is bounded:

sup
‖β−β0‖weak≤Mnδn

(∫ ∣∣∣d2E(ψ̂S
n(τ, β0))

dβdβ
[u∗n, u∗n]

∣∣∣2π(τ)dτ

)1/2

= O(1).

iii. (Bias) The approximation bias is negligible:
√

n
σ∗n

dφ(β0)

dβ
[β0,n − β0] = o(1).

Note that if Bosn is a convex neighborhood of β0 then θ0 is in the interior of Θ. Assumption 5 is

standard in the literature. The first rate condition ensure the nonparametric component converges

fast enough so that the central limit theorem dominates the asymptotic distribution (Newey, 1994;

Chen et al., 2003), the second rate condition is required in Lemma 6. The smoothness and bias

conditions can also be found in Ai & Chen (2003) and Chen & Pouzo (2015). The bias condition

implies undersmoothing so that the variance term dominates asymptotically.

27See e.g. assumption 3.1(iv) in Chen & Pouzo (2015).
28This is shown in Appendix C.3.
29A discussion of this assumption is given in Appendix C.5
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Theorem 3 (Asymptotic Normality). Suppose the assumptions of Theorems 1, 2 and lemmas 5, 6 hold

as well as Assumptions 4 and 5, then as n goes to infinity:

rn ×
(
φ(β̂n)− φ(β0)

) d→ N (0, 1)

where rn =
√

n
σ∗n
→ ∞.

Theorem 3 shows that under the previous assumptions, inferences on φ(β0) can be conducted

using the confidence interval [φ(β̂n)± 1.96× σ∗n /
√

n]. The standard errors σ∗n > 0 adjust automat-

ically so that rn =
√

n/σ∗n gives the correct rate of convergence. If limn→∞ σ∗n < ∞, then φ(β̂n) is
√

n−convergent. A result for θ̂n is given in Proposition A1 in the Appendix for a smaller class of

models that include the stochastic volatility model in Example 1.

As in Chen & Pouzo (2015) and Chen & Liao (2015), the sieve variance has a closed-form

expression analogous to the parametric Delta-method formula. The notation is taken from Chen

& Pouzo (2015), with sieve parameters (ω̂n, µ̂n, σ̂n) the sieve variance can be estimated using:

σ̂2∗
n =

dφ(θ̂n, ω̂n, µ̂n, σ̂n)

d(θ, ω, µ, σ)

′

D̂nf̂nD̂n
dφ(θ̂n, ω̂n, µ̂n, σ̂n)

d(θ, ω, µ, σ)

where

D̂n =

(
Real

(∫
dψ̂S

n(τ, θ̂n, ω̂n, µ̂n, σ̂n)

d(θ, ω, µ, σ)′
dψ̂S

n(τ, θ̂n, ω̂n, µ̂n, σ̂n)

d(θ, ω, µ, σ)
π(τ)dτ

))−1

f̂n =

∫
Ĝn(τ1)

′Σ̂n(τ1, τ2)Ĝn(τ2)π(τ1)π(τ2)dτ1dτ2.

Ĝn stacks the real and imaginary components of the gradient:

Ĝn(τ) =

 Real
(

dψ̂S
n(τ,θ̂n,ω̂n,µ̂n,σ̂n)

d(θ,ω,µ,σ)

)
Im
(

dψ̂S
n(τ,θ̂n,ω̂n,µ̂n,σ̂n)

d(θ,ω,µ,σ)

)
 .

Let ZS
n(τ, β) = ψ̂n(τ)− ψ̂S

n(τ, β) The covariance operator Σ̂n approximates the population long-

run covariance operator Σn:

Σn(τ1, τ2) = nE

 Real
(
ZS

n(τ1, β0)
)

Real
(
ZS

n(τ2, β0)
)

Real
(
ZS

n(τ1, β0)
)

Im
(
ZS

n(τ2, β0)
)

Im
(
ZS

n(τ1, β0)
)

Im
(
ZS

n(τ2, β0)
)

Im
(
ZS

n(τ1, β0)
)

Real
(
ZS

n(τ2, β0)
)
 .

Carrasco et al. (2007a) gives results for the Newey-West estimator of Σn. In practice, applying the

block Bootstrap to the quantity

Real

(
dψ̂S

n(τ, θ̂n, ω̂n, µ̂n, σ̂n)

d(θ, ω, µ, σ)

(
ψ̂n(τ)− ψ̂n(τ, β̂n)

))
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is more convenient than computing the large matrices Ĝn, Σ̂n. β̂n is held fixed across Bootstrap

iterations so that the model is only estimated once. The Gaussian and uniform draws Zs
j,t and νs

t

are re-drawn at each Bootstrap iteration.

4 Extensions

This section considers two extensions to the main results: the first covers auxiliary variables in the

CF and the seconds allows for panel datasets with small T.

4.1 Using Auxiliary Variables

The first extension involves adding transformations of the data, such as using simple functions

of yt or a filtered volatility from an auxiliary GARCH model, to the CF ψ̂n. This approach can be

useful in cases where (yt, ut) is Markovian but yt alone is not, in which case functions of the full

history (yt, . . . , y1) provide additional information about the unobserved ut. It is used to estimate

stochastic volatility models in sections 5 and 6. Other potential applications include filtering latent

variables from an auxiliary linearized DSGE model to estimate a more complex, intractable non-

linear DSGE model.

The auxiliary model consists of an auxiliary variable zaux
t (the filtered GARCH volatility) and

auxiliary parameters η̂aux
n (the estimated GARCH parameters). The estimates η̂aux

n are computed

from the full sample (y1, . . . , yn, x1, . . . , xn) and the auxiliary variables zaux
t , zs,aux

t are computed

using the full and simulated samples:30

zaux
t = gt,aux(yt, . . . , y1, xt, . . . , x1, η̂aux

n ), zs,aux
t = gt,aux(ys

t , . . . , ys
1, xt, . . . , x1, η̂aux

n ).

The moment function ψ̂n is now the joint CF of the lagged data (yt, xt) and the auxiliary zaux
t :

ψ̂n(τ, η̂aux
n ) =

n

∑
t=1

eiτ′(yt,xt,zaux
t ), ψ̂s

n(τ, η̂aux
n , β) =

n

∑
t=1

eiτ′(ys
t ,xt,zs,aux

t ).

The following assumption provides sufficient conditions on the estimates η̂aux
n and the filtering

process gt,aux for the asymptotic properties in section 3 to also hold with auxiliary variables.

Assumption 6 (Auxiliary Variables). The estimates η̂aux
n are such that:

i. Compactness: with probability 1 η̂aux
n ∈ E finite dimensional, convex and compact.

30Note that using the same estimates η̂aux
n for filtering the data and the simulated samples avoids the complication of

proving uniform convergence of the auxiliary parameters over the sieve space.
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ii. Convergence: there exists a ηaux ∈ E such that:

√
n (η̂aux

n − ηaux)
d→ N (0, Vaux).

iii. Lipschitz Continuity: for any two ηaux
1 , ηaux

2 and for both ys
t and yt:

‖gt,aux(yt, . . . , y1, xt, . . . , x1, ηaux
1 )− zt,aux(yt, . . . , y1, xt, . . . , x1, ηaux

2 )‖

≤ Caux(yt, . . . , y1, xt, . . . , x1)× ‖ηaux
1 − ηaux

2 ‖

with E(Caux(yt, . . . , y1, xt, . . . , x1)
2) ≤ C̄aux < ∞ and E(Caux(ys

t , . . . , ys
1, xt, . . . , x1)

2) ≤ C̄aux <

∞. The average of the Lipschitz constants Caux
n = 1

n ∑n
t=1 Caux(yt, . . . , y1, xt, . . . , x1) is uniformly

stochastically bounded, it is Op(1), for both the data and the simulated data.

iv. Dependence: for all ηaux ∈ E, (yt, xt, zaux
t ) is uniformly geometric ergodic.

v. Moments: for all ηaux ∈ E, β = β0 and β = Πk(n)β0, the moments E(‖zaux
t ‖2) and E(‖zs,aux

t ‖2)

exist and are bounded.

vi. Summability: for any (yt, . . . , y1), (ỹt, . . . , ỹ1), any ηaux ∈ E and for all t ≥ 1:

‖gt,aux(yt, . . . , y1, xt, . . . , x1, ηaux)− zt,aux(ỹt, . . . , ỹ1, xt, . . . , x1, ηaux)‖ ≤
t

∑
j=1

ρj‖yj − ỹj‖

with ρj ≥ 0 for all j ≥ 1 and ∑∞
j=1 ρj < ∞.

vii. Central Limit Theorem for the Sieve Score:

√
nReal

(∫
ψβ(τ, u∗n, ηaux)

(
ψ̂n(τ, η̂aux

n )− ψ̂s
n(τ, η̂aux

n , β0)
)
π(τ)dτ

)
d→ N (0, 1)

The summability condition iv. is key in preserving the Hölder continuity and bias accumula-

tion results of section 3 when using auxiliary variables in the CF. For auxiliary variables gener-

ated using the Kalman Filter or a GARCH model, this corresponds to a stability condition in the

Kalman Filter or the GARCH volatility equations.

Conditions ii. and iii. ensure that η̂aux
n is well behaved and does not affect the rate of conver-

gence. Condition iv implies that the inequality for the supremum of the empirical process still ap-

plies. Condition vii. assumes a CLT applies to the leading term in the expansion of φ(β̂n)− φ(β0).

It could be shown by assuming an expansion of the form η̂aux
n = 1

n ∑n
t=1 ηaux(yt, xt) + op(1/

√
n)

and expanding ψ̂n, ψ̂s
n around the probability limit ηaux. The following illustrates the Lipschitz

and summability conditions for the SV with GARCH filtered volatility.

28



Example 1 (Continued) (Stochastic Volatility and GARCH(1,1) Filtered Volatility). For simplicity,

assume there are only volatility dynamics:

yt = σtet,1

For simplicity, consider the absolute value GARCH(1,1) auxiliary model:31

yt = σaux
t et,1, σaux

t = ηaux
1 + ηaux

2 |yt|+ ηaux
3 σaux

t−1.

The focus here is on the Lipschitz and summability conditions in the GARCH auxiliary model. First, to

prove the Lipschitz condition, consider a sequence (yt) and two sets of parameters ηaux, η̃aux, by recursion:

|σaux
t − σ̃aux

t | = |ηaux
1 − η̃aux

1 + (ηaux
2 − η̃aux

2 )|yt|+ (ηaux
3 − η̃aux

3 )σaux
t−1 + η̃aux

3 (σaux
t−1 − σ̃aux

t−1)|

≤ ‖ηaux − η̃aux‖ × (
1 + σaux

0
1− ηaux

3
+ [1 + ηaux

2 ][|yt|+ · · ·+ (ηaux
3 )t−1|y1|])

ηaux are upper-bounds on the parameters. If E(|yt|2)) and E(|ys
t |2)) are finite and bounded and 0 ≤

ηaux
3 < 1 then the Lispchitz condition holds with:

C̄aux ≤ 1 + ηaux
2

1− ηaux
3

(
1 + σaux

0 + My
)

where E(|yt|2) and E(|ys
t |2) ≤ My, for all t ≥ 1 and β ∈ B. Next, the proof for the summability is very

similar, consider two time-series yt, ỹt and a set of auxiliary parameters ηaux:

|σaux
t − σ̃aux

t | ≤ η2|yt − ỹt|+ ηaux
3 |σ

aux
t−1 − σ̃aux

t−1|.

By a recursive argument, the inequality above becomes:

|σaux
t − σ̃aux

t | ≤ η2|yt − ỹt|+ ηaux
3 η2|yt−1 − ỹt−1|+ · · ·+ (ηaux

3 )t−1η2|y1 − ỹ1|+ (ηaux
3 )t−1|σaux

0 − σ̃aux
0 |.

Suppose that σaux
0 only depends on ηaux or is fixed, for instance equal to 0. Then the summability condition

holds, if the upper-bound ηaux
3 < 1, with:

ρj = ηaux
2 (ηaux

3 )j,
∞

∑
j=0

ρj =
ηaux

2
1− ηaux

3
< ∞.

The Lipschitz and summability conditions thus hold for the auxiliary GARCH model.

31The process is also known as the AVGARCH or TS-GARCH (see e.g. Bollerslev, 2010) and is a special case of the
family GARCH model (see e.g. Hentschel, 1995). The method of proof is slightly more involved for a standard GARCH
model, requiring for instance a lower bound on the volatility σaux

t together with finite and bounded fourth moments
for yt, ys

t to prove the Lipschitz condition.
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The following corollary shows that the results of section 3 also hold when addition auxiliary

variables to the CF.

Corollary 2 (Asymptotic Properties using Auxiliary Variables). Suppose the assumptions for Theo-

rems 1, 2 and 3 hold as well as Assumption 6, then the results of Theorems 1, 2 and 3 hold with auxiliary

variables. The rate of convergence is unchanged.

The proof of Corollary 2 is very similar to the proofs of the main results. Rather than repeating

the full proofs, Appendix B.5 shows where the differences with and without the auxiliary variables

are and explains why the main results are unchanged.

To compute standard errors, a block Bootstrap is applied to compute the variance term for

the difference ψ̂n(·, η̂aux
n ) − ψ̂S

n(·, β0, η̂aux
n ) in the sandwich formula for the standard errors. The

unknown β0 is replaced by β̂n in practice.

4.2 Using Short Panels

The main theorems 1, 2 and 3 allow for either iid data or time-series. However, SMM estimation

is also common in panel data settings where the time dimension T is small relative to the cross-

sectional dimension n. The following provides a simple application of these results.

Example 2 (Dynamic Tobit Model). yt follows a dynamic Tobit model:

yj,t = (x′j,tθ1 + uj,t)1x′j,tθ1+uj,t≥0

uj,t = ρuj,t−1 + ej,t

where |ρ| < 1, ej,t
iid∼ f , E(ej,t) = 0. The parameters to be estimated are θ = (θ1, ρ) and f .

An overview of the dynamic Tobit model is given in Arellano & Honoré (2001). Applications

of the dynamic Tobit model include labor participation studies such as Li & Zheng (2008); Chang

(2011). Li & Zheng (2008) find that estimates of ρ can be biased downwards under misspecifica-

tion. This estimate matters for evaluating the probability of (re)-entering the labor market in the

next period for instance.

Quantities of interest in the dynamic Tobit model includes the probability or re-entering the

labor market P(yt+1 > 0|xt+1, . . . , xt, yt = 0, yt−1, . . . , y1) which depends on both the parameters

θ and the distribution f . Marginal effects such as ∂xt+1P(yt+1 > 0|xt+1, . . . , xt, yt = 0, yt−1, . . . , y1)

also depend on the true distribution f . As a result these quantities are sensitive to a particular

choice of distribution f , this motivates a semi-nonparametric estimation approach for this model.

Other applications of simulation-based estimation in panel data settings include Gourinchas

& Parker (2010) and Guvenen & Smith (2014) who consider the problem of consumption choices

30



with income uncertainty. For the simulation-based estimates, shocks to the income process are

typically assumed to be Gaussian. Guvenen et al. (2015) use a very large and confidential panel

data set from the U.S. Social Security Administration covering 1978 to 2013 to find that individual

income shocks are display large negative skewness and excess kurtosis: the data strongly rejects

Gaussian shocks.32 They find that non-Gaussian income shocks help explain transitions between

low and higher earnings states. Hence, a Sieve-SMM approach should also be of interest in the

estimation of precautionary savings behavior under income uncertainty.

Because of the fixed T dimension, the initial condition (y0, u0) cannot be systematically han-

dled using a large time dimension and geometric ergodicity argument as in the time-series case.

Some additional restrictions on the DGP are given in the assumption below.

Assumption 7 (Data Generating Process for Panel Data). The data (yj,t, xj,t) with j = 1, . . . , n, t =

1, . . . , T is generated by a DGP with only one source of dynamics either:

yj,t = gobs(xj,t, β, uj,t)

uj,t = glatent(uj,t−1, β, ej,t)
(12)

or

yj,t = gobs(yj,t−1, xj,t, β, ej,t) (13)

where ej,t
iid∼ f in both models. The observations are iid over the cross-sectional dimension j.

In situations where the DGPs in Assumption 7 are too restrictive, an alternative approach

would be to estimate the distribution of uj,1 conditional on (yj,1, xj,1). The methodology of Norets

(2010) would apply to this particular estimation problem, the dimension of (yj,1, xj,1) should not

be too large to avoid a curse of dimensionality. This is left to future research.

For the DGP in equation (12), geometric ergodicity applies to us
j,t when simulating a longer

history us
j,−m, . . . , us

j,0, . . . , us
j,1, . . . , us

j,T and letting the history increase with n, the cross-sectional

dimension: m/n → c > 0 as n → ∞. For the DGP in equation (13), fixing ys
j,1 = yj,1 ensures that

(ys
j,1, . . . , ys

j,T, xj,1, . . . , xj,T) and (yj,1, . . . , yj,T, xj,1, . . . , xj,T) have the same distribution when β = β0

(the DGP is assumed to be correctly specified).

The moments ψ̂n, ψ̂s
n are the empirical CF of (yt, xt) and (ys

t , xt) respectively where yt =

(yt, . . . , yt−L) for 1 ≤ L ≤ T − 1; yt, xt, ys
t are defined similarly. The identification Assumption

1 is assumed to hold for the choice of L.
32Also, Geweke & Keane (2000) estimate the distribution of individual income shocks using Bayesian estimates of

a finite Gaussian mixture. They also find evidence of non-Gaussianity in the shocks. Arellano et al. (2017) use non-
linear panel data methods to study the relation between incomes shocks and consumption. They provide evidence of
persitence in earnings and conditional skewness.
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The following lemma derives the initial condition bias for dynamic panel models with fixed T.

Lemma 7 (Impact of the Initial Condition). Suppose that Assumption 7 holds. If the DGP is given by

(12) and (ys
j,t, us

j,t) with a long history for the latent variable (uj,T, . . . , uj,0, . . . , uj,−m) where m/n→ c >

0 as n→ ∞. Suppose that us
j,t is geometrically ergodic in t and the integrals∫ ∫

f (ys
j,t, xj,t|us

j,t)
2 f (us

j,t)dys
j,tdxs

j,tdus
j,t,

∫ ∫
f (ys

j,t, xj,t|us
j,t)

2 f ∗(us
j,t)dys

j,tdxs
j,tdus

j,t

are finite and bounded when β = β0. Then, there exists a constant ρ̄u ∈ (0, 1) such that:

Qn(β0) =
∫ ∣∣∣E(ψ̂n(τ)− ψ̂S

n(τ, β0)
) ∣∣∣2π(τ)dτ = O (ρ̄m

u ) .

The effect of the initial condition is exponentially decreasing in m for DGP (12). If the DGP is given by (13)

and the data is simulated with ys
j,1 = yj,1 fixed then there is no initial condition effect:

Qn(β0) =
∫ ∣∣∣E(ψ̂n(τ)− ψ̂S

n(τ, β0)
) ∣∣∣2π(τ)dτ = 0

Simulating a long history us
j,T, . . . , us

j,−m implies that the impact of the initial condition us
j,m =

u−m on the full simulated sample ys
j,1, . . . , ys

j,T delines exponentially fast in m. If m does not grow

faster than n, that is m/n → c > 0, than the dynamic bias accumulation is the same as in the

time-series setting. In terms of bias, these m simulations play a similar role as the burn-in draws

in MCMC estimation.

Corollary 3 (Asymptotic Properties for Short Panels). Suppose that Assumption 7 and Lemma 7 hold.

For the DGP (12) in Assumption 7, assume that m is such that log[n]/m → 0 as n → ∞. Suppose

the assumptions for Theorems 1, 2 and 3 hold, then the resuls of Theorems 1, 2 and 3 hold. The rate of

convergence in weak norm is the same as for iid data:

‖β̂n − β0‖weak = Op

(
max

(
log[k(n)]r/b+1

k(n)γ2r
,

√
k(n) log[k(n)]

n

))
.

The rate of convergence in total variance and supremum distance are:

‖β̂n − β0‖B = Op

(
log[k(n)]r/b

k(n)r + τB,n max

(
log[k(n)]r/b+1

k(n)γ2r
,

√
k(n) log[k(n)]

n

))
.

Remark 3. For the DGP (13), the simulated history is finite and fixed so that the approximation bias is not

inflated by the dynamics:

‖β̂n − β0‖weak = Op

(
max

(
log[k(n)]r/b

k(n)γ2r
,

√
k(n) log[k(n)]

n

))
.

As a result, the rate of convergence is the same as for static models.
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The assumption that log[n]/m → 0 can be weakened to m → ∞ and limn→∞ log[n]/m <

− log[ρ̄u]. Heuristically, the requirement is m � log[n], for instance when n = 1, 000 this implies

m � 7: a short burn-in sample for uj,t is sufficient to reduce the impact of the initial condition.

The following verifies some of the conditions in Assumption 2 for the Dynamic Tobit model.

Example 2 (Continued) (Dynamic Tobit). Since the function x → x1x≥0 is Lipschitz the conditions

y(i),y(ii) and y(iii) are satisfied as long as ‖θ1‖ is bounded, E(‖xt‖2
2) is finite and E(u2

t ) is finite and

bounded. The last variance is bounded if |ρ| ≤ ρ̄ < 1 and E(e2
t ) is bounded above. The last condition is a

restriction on the density f . Since |ρ| ≤ ρ̄ < 1, condition u(i) is automatically satisfied. Together, E(u2
t )

bounded and linearity in ρ imply u(ii). Finally, linearity in et implies u(iii).

5 Monte-Carlo Illustrations

This section illustrates the finite sample properties of the Sieve-SMM estimator. First, two very

simple examples illustrate the estimator in the static and dynamic case against tractable estima-

tors. Then, Monte-Carlo simulations are conducted for the stochastic volatility model Example 1

and Dynamic Tobit Example 2 for panel data.

For all Monte-Carlo simulations, the initial value for the mixture is a Gaussian density in the

optimization routine. In most examples the Nelder & Mead (1965) algorithm in the NLopt pack-

age of Johnson (2014) was sufficient for optimization. In more difficult problems, such as the SV

model with tail mixture components, the DIRECT global search algorithm of Jones et al. (1993)

was applied to initialize the Nelder-Mead algorithm. The Monte-Carlo simulations were con-

ducted using R33 for all examples except for the AR(1) for which Matlab was used.

The Generalized Extreme Value (GEV) distribution is used in all Monte-Carlo examples. For

the chosen parametrization, it displays negative skewness (−0.9) and excess kurtosis (3.9). It was

also chosen because the approximation bias is larger for both kernel and mixture sieve estimates,

and is thus more visible than alternative designs with smoother densities not reported here. This

is useful when illustrating the increased bias due to the dynamics.

The Student t-distribution is also considered in the stochastic volatility design to illustrate the

Sieve-SMM estimates with tail components. The density is smooth compared to the GEV. As a

result, the bias is smaller and less visible.
33Some routines such as the computation of the CF and the simulation of mixtures were written in C++ and im-

ported into R using Rcpp - see e.g. Eddelbuettel & Fran (2011a,b) for an introduction to Rcpp - and RcppArmadillo
(Eddelbuettel & Sanderson, 2016) for linear algebra routines.
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5.1 Basic Examples

The following basic tractable examples are used as benchmarks to understand the basic properties

of the Sieve-SMM estimator in terms of bias and dynamic bias accumulation as well as the impact

of dependence on the variance. As a benchmark, the estimates are compared to feasible kernel

density and OLS estimates.

A Static Model

To illustrate Remark 1, the first example uses the static DGP: yt = et
iid∼ f , the only parameter to be

estimated is f and kernel density estimation is feasible. The true distribution f is the Generalized

Extreme Value (GEV) distribution. It is a 3 parameter distribution which allows for asymmetry

and displays excess kurtosis.34 In a recent application, Ruge-Murcia (2017) uses the GEV distri-

bution to model the third moment in inflation and productivity shocks in a small asset pricing

model. The Sieve-SMM estimates f̂n are compared to the feasible kernel density estimates f̂n,kde.

Figure 1: Static Model: Sieve-SMM vs. Kernel Density Estimates

Note: dotted line: true density, solid line: average estimate, bands: 95% pointwise interquantile range.
Top panel n = 200 observation, bottom panel: n = 1, 000 obervations. Left and middle: Sieve-SMM with
k = 2, 3 Gaussian mixture components respectively and S = 1. Right: kernel density estimates.

Figure 1 plots the density estimates for k = 2, 3 with sample sizes n = 200 and 1, 000. The

comparison between k = 2 and k = 3 illustrates the bias-variance trade-off: the bias is smaller

34The GEV distribution was first introduced by McFadden (1978) to unify the Gumbel, Fréchet and Weibull families.
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for k = 3 but the variance of the estimates is larger compared to k = 2. Theorem 2 implies that

when the sample size n increases, the number of mixture components k should increase as well to

balance bias and variance. Here k = 2 appears to balance the bias and variance for n = 200 while

k ≥ 3 would be required for n = 1, 000.

Autoregressive Dynamics

The second basic example considers an AR(1) model with an unknown distribution for the shocks:

yt = ρyt−1 + et, et
iid∼ (0, 1).

The shocks are drawn from a GEV density as in the previous example. The empirical CFs are

computed using one lagged observation:

ψ̂n(τ) =
1
n

n

∑
t=1

eiτ′(yt,yt−1), ψ̂s
n(τ) =

1
n

n

∑
t=1

eiτ′(ys
t ,ys

t−1).

Knight & Yu (2002) note that additional lags do not improve the asymptotic properties of the

estimator since yt is Markovian of order 1.

This example illustrates Corollary 1 so the Monte-Carlo considers several choices of S =

1, 5, 25. Increasing S from 1 to 5 makes a notable difference on the variance of f̂n. Further increas-

ing S has a much smaller effect on the variance of the estimates. Table 1 compares the Sieve-SMM

with OLS estimates for ρ = 0.95 for n = 200 and n = 1, 000, S = 1, 5, 25. In all cases, k = 2 mixture

components are used.

Table 1: Autoregressive Dynamics: Sieve-SMM vs. OLS Estimates

Parameter: ρ
Sieve-SMM

OLS True
S = 1 S = 5 S = 25

n = 200
Mean Estimate 0.942 0.934 0.933 0.927 0.95

√
n× Std. Deviation (0.54) (0.45) (0.44) (0.46) -

n = 1, 000
Mean Estimate 0.949 0.947 0.947 0.946 0.95

√
n× Std. Deviation (0.47) (0.38) (0.37) (0.34) -
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Figure 2: Autoregressive Dynamics: Sieve-SMM vs. Kernel Density Estimates

Note: dotted line: true density, solid line: average estimate, bands: 95% pointwise interquantile range. Top
panel: n = 200, bottom panel: n = 1, 000. Left and middle: Sieve-SMM with S = 1, 5 repsectively and
k = 2. Right: infeasible kernel density estimates.

Figure 2 compares the Sieve-SMM estimates with kernel density assuming the shocks et are

observed - this is an infeasible estimator. The top panel shows results for n = 200 and the bottom

panel illustrates the larger sample size n = 1, 000.

There are several features to note. First, as discussed in section 3.2, the bias is more pronounced

under AR(1) dynamics than in the static case. The variance is larger with AR(1) dynamics com-

pared to the static model. Second, as shown in Corollary 1 the number of simulated samples S

shifts the bias/variance trade-off so that k(n) can be larger.

5.2 Example 1: Stochastic Volatility

The stochastic volatility model of Example 1, illustrates the properties of the Sieve-SMM estimator

for an intractable, non-linear state-space model. As a simplification, there are no mean dynamics:

yt = σtet,1, log(σt) = µσ + ρσ log(σt−1) + κσet,2

where et,2
iid∼ N (0, 1) and et,1

iid∼ f with mean zero and unit variance. Using an extension of the

main results, a GARCH(1,1) auxiliary model is introduced:

yaux
t = σaux

t eaux
t , (σaux

t )2 = µaux + αaux
1 [eaux

t−1]
2 + αaux

2 (σaux
t−1)

2.
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Using the data yt, the parameters η̂aux
n = (µaux

n , αaux
1,n , αaux

2,n ) are estimated. The same η̂aux
n is used to

compute both filtered volatilities σ̂aux
t , σ̂s,aux

t . The empirical CFs uses both y and σ̂aux:35

ψ̂n(τ) =
1
n

n

∑
t=1

eτ′(yt,yt−1,σ̂aux
t ,log(σ̂aux

t−1)), ψ̂s
n(τ, β) =

1
n

n

∑
t=1

eτ′(ys
t ,ys

t−1,σ̂s,aux
t ,log(σ̂s,aux

t−1 )).

The use of a GARCH model as an auxiliary model was suggested for indirect inference by Gouriéroux

et al. (1993). Andersen et al. (1999) compare the EMM using ARCH, GARCH with the QML and

GMM estimator using Monte-Carlo simulations. They find that EMM with GARCH(1,1) auxiliary

model is more precise than GMM and QMLE in finite samples.

The parametrization is taken from Andersen et al. (1999): µσ = −0.736, ρσ = 0.90, κσ =

0.363. Since Bayesian estimation is popular for SV models, the estimates are compared to a Gibbs

sampling procedure, which assumes Gaussian shocks, using the R package stochvol of Kastner

(2016). For Sieve-SMM estimation, the auxiliary GARCH filtered volatility estimates are computed

using the R package rugarch of Ghalanos (2017).

The Monte-Carlo consists of 1, 000 replications using n = 1, 000 and S = 2. The distributions

considered are the GEV and the Student t-distribution with 5 degrees of freedom. For the GEV

density, k = 4 Gaussian mixture components are used and for the Student density, 4 Gaussian and

2 tail components are used.

Table 2: Stochastic Volatility: Sieve-SMM vs. Parametric Bayesian Estimates

Parameter True
GEV Student

Sieve-SMM Bayesian Sieve-SMM Bayesian

µσ

1−ρσ

Mean Estimate -7.36 -7.28 -7.37 -7.29 -7.63

Std. Deviation - (0.16) (0.13) (0.15) (0.13)

ρσ

Mean Estimate 0.90 0.90 0.88 0.92 0.71

Std. Deviation - (0.03) (0.04) (0.08) (0.10)

κσ

Mean Estimate 0.36 0.40 0.40 0.29 0.74

Std. Deviation - (0.05) (0.06) (0.06) (0.12)

The standard deviations are comparable to the EMM with GARCH(1,1) generator found in

Andersen et al. (1999). Results based only on the CF of yt = (yt, . . . , yt−2) (not reported here) were

35The simulation results are similar whether σ̂aux or log(σ̂aux) is used in the CF.
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more comparable to the GMM estimates reported in Andersen et al. (1999) - both for SMM and

Sieve-SMM. Applying some transformations such as log(y2
t ) provided somewhat better results

but information about potential asymmetries in f is lost. This motivated the first extension of

the main result in section 4 to allow for auxiliary variables. Also not reported here, the bias and

standard deviations of parametric estimates with f0 are comparable to the GEV results.

Table 2 shows that the parametric Bayesian estimates and the SMM estimator are well be-

haved when the true density is Gaussian. For the GEV distribution, both the Sieve-SMM and the

misspecified parametric Bayesian estimates are well behaved. However, under heavier tails, the

Student t-distribution implies a significant amount of bias for the misspecified Bayesian estimates.

The Sieve-SMM estimates are only slightly biased compared with the Bayesian estimates.

Figure 3: Stochastic Volatility: Sieve-SMM vs. Kernel Density Estimates

Note: dotted line: true density, solid line: average estimate, bands: 95% pointwise interquantile range. Top
panel: estimates of a GEV density, bottom panel: estimates of a Student t-distribution with 5 degrees of
freedom.

Figure 3 compares the density estimates with the infeasible kernel density estimates based on

et,1 directly. The top panel shows the results for the GEV density and the bottom panel for the

Student t-distribution. The Sieve-SMM is less precise than the infeasible estimator, as one would

expect. As a comparison, the density is less precisely estimated than in the AR(1) case in figure 2.

The two figures also illustrate bias reduction: the bias is larger for the AR(1) example which only

uses k = 2 mixture components whereas the SV example uses k = 4.

The Monte-Carlo simulations for the stochastic volatility model highlight the lack of robust-
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ness of the parametric Bayesian estimates to the tail behavior of the shocks. This is particularly

important for the second empirical application where Sieve-SMM and Bayesian estimates differ a

lot and there is evidence of fat tails and asymmetry in the shocks.

5.3 Example 2: Dynamic Tobit Model

The dynamic Tobit model in Example 2 illustrates the properties of the estimator in a non-linear

dynamic panel data setting:

yj,t = (θ1 + x′j,tθ2 + uj,t)1θ1+x′j,tθ2+uj,t≥0

uj,t = ρuj,t−1 + ej,t

with j = 1, . . . , n and t = 1, . . . , T. The Monte-Carlo simulations consider a sample with n = 200,

T = 5 for a total of 1, 000 observations. The burn-in sample for the latent variable uj,t, described

in section 4, is m = 10 which is about twice the log of n. The regressors xt follow an AR(1)

with Gaussian shocks. The AR process is calibrated so that x has mean 2, autocorrelation 0.3

and variance 2. The other parameters are chosen to be: (ρ, θ1, θ2) = (0.8,−1.25, 1) and f is the

GEV distribution as in the other examples. As a result, about 40% of the sample is censored. The

numbers of simulated samples are S = 1 and S = 5. The moments used in the simulations are:

ψ̂n(τ) =
1

nT

T

∑
t=2

n

∑
j=1

eiτ′(yt,yt−1,xt,xt−1), ψ̂s
n(τ) =

1
nT

T

∑
t=2

n

∑
j=1

eiτ′(ys
t ,ys

t−1,xt,xt−1).

Table 3: Dynamic Tobit: SMM vs. Sieve-SMM Estimates

Parameter
S = 1 S = 5

SMM Sieve-SMM SMM Sieve-SMM True

ρ
Mean 0.796 0.801 0.796 0.796 0.80

Std. Deviation (0.042) (0.039) (0.031) (0.031) -

θ1
Mean -1.259 -1.230 -1.250 -1.233 -1.25

Std. Deviation (0.234) (0.200) (0.178) (0.169) -

θ2
Mean 1.002 1.002 1.000 0.997 1.00

Std. Deviation (0.059) (0.052) (0.045) (0.043) -
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Table 3 compares the parametric SMM and the Sieve-SMM estimates. The numbers are com-

parable except for θ1 which has a small bias for the Sieve-SMM estimates. Additional results for

misspecified SMM estimates with simulated samples use Gaussian shocks instead of the true GEV

distribution also show bias for θ1, the average estimate is higher than −1.1. The other estimates

were found to have negligible bias.36

Figure 4: Dynamic Tobit: Sieve-SMM vs. Kernel Density Estimates

Note: dotted line: true density, solid line: average estimate, bands: 95% pointwise interquantile range.

Figure 4 shows the Sieve-SMM estimates of the distribution of the shocks and the infeasible

kernel density estimates of the unobserved et. Because of the censoring in the sample, note that the

effective sample size for the Sieve-SMM estimates is smaller than for the kernel density estimates

in this model. The left and middle plots show the sieve estimates when S = 1, 5; the right plot

corresponds to the kernel density estimates.

Figure 5 illustrates the differences between SMM and Sieve-SMM for a counterfactual that

involves the full density f . It shows the estimates of the probability of re-entering the market

P(yj,5 > 0|yj,4 = 0, x5 = · · · = x1 = x̄) using the true value (θ0, f0), the SMM estimates θ̂SMM
n

with Gaussian shocks and the Sieve-SMM estimates (θ̂n, f̂n). The true distribution is the GEV

density which differs from the Gaussian density in the tails which implies a larger difference in

the counterfactual when x̄ is large, as shown in figure 5. For this particular counterfactual, the

Sieve-SMM estimates are much closer to the true value for larger values of x̄.

The Monte-Carlo simulations show the good finite sample behavior of the Sieve-SMM estima-

tor with a non-smooth DGP. Indeed, the indicator function implies that the DGP is Lipschitz but

not continuously differentiable. It also illustrates the extension to short panels in section 4.

36Li & Zheng (2008) consider an alternative design where ρ displays more significant bias.
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Figure 5: Dynamic Tobit: SMM vs. Sieve-SMM Estimates of the Counterfactual

Note: Estimated counterfactual: P(yj,5 > 0|yj,4 = 0, x5 = · · · = x1 = x̄) - solid line: true probabil-
ity, dashed line: Sieve-SMM estimate, dotted line: SMM estimate with Gaussian shocks, 1 Monte-Carlo
estimate for SMM, Sieve-SMM, probabilities computed using 106 Simulated Samples.

6 Empirical Applications

This section considers two empirical examples of the Sieve-SMM estimator. The first example

illustrates the importance of non-Gaussian shocks for welfare analysis and asset pricing using US

monthly output data. The shocks are found to display both asymmetry and tails after controlling

for time-varying volatility. As a result, the Sieve-SMM estimates imply welfare costs that are 25%

greater than with the Gaussian SMM estimates. Furthermore, the effect of uncertainty on risk-free

is nearly 3 times as large for the Sieve-SMM estimates compared to the Gaussian SMM estimates.

The second one uses daily GBP/USD exchange rate data and highlights the bias and sensitivity

implications of fat tails on parametric SV volatility estimates.

6.1 Welfare and Asset Pricing Implications of Non-Gaussian Shocks

The first example considers a simplified form of the DGP for output in the Long-Run Risks (LRR)

model of Bansal & Yaron (2004). The data consists of monthly growth rate of US industrial pro-

duction (IP), as a proxy for monthly consumption, from January 1960 to March 2017 for a total of

690 observations, from the FRED37 database and downloaded via the R package Quandl.38 IP is

modeled using a stochastic volatility model with AR(1) mean dynamics:

∆ct = µc + ρc∆ct−1 + ztet,1

σ2
t = µσ + ρσσ2

t−1 + κσ[et,2 − 1]

where et,2
iid∼ χ2

1 and et,1
iid∼ f to be estimated assuming mean zero and unit variance. The stochastic

volatility literature has mainly focused on the distribution of the shocks to the mean et,1 rather

37https://fred.stlouisfed.org/.
38https://www.quandl.com/tools/r
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than the volatility39 hence the volatility shocks are modelled parametrically in this application.

Using the chi-squared distribution ensures that the volatility is non-negative. This DGP is a sim-

plification of the one considered in Bansal & Yaron (2004). They assume that consumption is the

sum of an AR(1) process and iid shocks with a common SV component. The DGP above only esti-

mates the AR(1) component for simplicity given that the focus is of this example is on the shocks

and the volatility rather than the mean dynamics. The volatility shocks are also assumed to be χ2
1

rather than Gaussian to ensure non-negativity.

6.1.1 Empirical Estimates

The model is estimated using a Gaussian mixture and is compared with parametric SMM esti-

mates. S = 10 simulated samples are used to perform the estimation. As in the Monte-Carlo an

auxiliary GARCH(1,1) model is used. The empirical CF uses 2 lagged observations:

ψ̂n(τ) =
1
n

n

∑
t=1

eiτ′(∆ct,∆ct−1,∆ct−2,log(σ̂aux
t ),log(σ̂aux

t−1)), ψ̂s
n(τ) =

1
n

n

∑
t=1

eiτ′(∆cs
t ,∆cs

t−1,∆cs
t−2,log(σ̂s,aux

t ),log(σ̂s,aux
t−1 )).

Table 4 shows the point estimates and the 95% confidence intervals for the parametric SMM, as-

suming Gaussian shocks, and the Sieve-SMM estimates using k = 3 mixture components. For

reference, the OLS point estimate for ρc is 0.34 and the 95% confidence interval using HAC stan-

dard errors is [0.23, 0.46] which is very similar to the SMM and Sieve-SMM estimates.40

Table 4: Industrial Production: Parametric and Sieve-SMM Estimates

ρc µσ ρσ κσ

SMM
Estimate 0.33 0.39 0.65 0.15

95% CI [0.22, 0.43] [0.34, 0.45] [0.22, 0.86] [0.08, 0.26]

Sieve-SMM
Estimate 0.32 0.43 0.75 0.13

95% CI [0.20, 0.42] [0.34, 0.55] [0.35, 0.92] [0.06, 0.29]

Figure 6 compares the densities estimated using the parametric SMM and Sieve-SMM. The

log-density reveals a larger left tail for the sieve estimates and potential asymmetry: conditional

on the volatility regime, large negative shocks are more likely than the Gaussian SV estimates

39See Fridman & Harris (1998); Mahieu & Schotman (1998); Liesenfeld & Jung (2000); Jacquier et al. (2004); Comte
(2004); Jensen & Maheu (2010); Chiu et al. (2017) for instance.

40HAC standard errors are computed using the R package sandwich (Zeileis, 2004).
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suggest. For instance, the log-difference at e = −4 is about 5 so that the ratio of densities is nearly

150 and the log-difference for e = −5 is roughly 10 so the density ratio is more than 20, 000.

Figure 6: Industrial Production: Sieve-SMM Density Estimate vs. Normal Density

Note: dotted line: Sieve-SMM density estimate, solid line: standard Normal density.

Table 5 shows that sieve estimated shocks have significant skewness and large kurtosis. It also

shows the first four moments of the data compared to those implied by the estimates. Both sets of

estimates match the first two moments similarly. The Sieve-SMM estimates provide a better fit for

the skewness and kurtosis.

Table 5: Industrial Production: Moments of ∆ct, ∆cs
t and es

t

Mean Std Dev Skewness Kurtosis

Data yt 0.21 0.75 -0.92 7.56

SMM ys
t 0.25 0.66 0.06 4.39

Sieve-SMM ys
t 0.24 0.67 -0.35 6.65

SMM es
t 0.00 1.00 0.00 3.00

Sieve-SMM es
t 0.00 1.00 -0.75 7.74

Altogether, these results suggest significant non-Gaussian features in the shocks with both

negative skewness and excess kurtosis. The welfare implications and the impact on the risk-free

rate are now discussed.
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6.1.2 Welfare Implications

The first implication considered here is the welfare effect of the fluctuations implied by each set

of estimates. The approach considered here is based on the simple calculation approach of Lucas

(1991, 2003).41 The main advantage of this approach is that it does not require a full economic

model: only a statistical model for output and a utility function are needed. To set the framework,

a brief overview of his setting is now given. Lucas (1991) considers a setting where consumption

is iid log-normal with constant growth rate Ct = eµt+σet where et
iid∼ N (0, 1) and has a certainty

equivalent C?
t = eµt+σ2/2.

For a given level of risk-aversion γ ≥ 0 and time preference e−a ∈ (0, 1), he defines the welfare

cost of business cycle fluctuations as the proportion λ by which the Cts increase to achieve the

same lifetime utility as under C?
t . This implies the following equation:

(1 + λ)1−γ ∑
t≥0

e−atE0

(
C1−γ

t − 1
1− γ

)
= ∑

t≥0
e−at C?1−γ

t − 1
1− γ

.

The estimates for the cost of business cycle fluctuations depends only on γ and σ in the Gaussian

case: log(1 + λ) = γ σ2

2 . Lucas estimates this cost to be very small in the US.

Combining the SMM and Sieve-SMM with Monte-Carlo simulations42, the welfare cost of busi-

ness cycle fluctuations is now computed under Gaussian and mixture SV dynamics. Table 6 com-

pares the two welfare costs for different levels of risk aversion with the baseline iid Gaussian case

of Lucas.43 For the full range of risk aversion considered here the welfare cost is estimated to be

above 1% of monthly consumption. As a comparison Lucas (1991) estimates the welfare cost to

be very small, a fraction of a percent, while Krusell et al. (2009) estimates it to be around 1%.44

Both SV models imply much larger costs for business cycle fluctuations compared to the iid re-

sults: for γ = 4 and an annual income of $55,000 the estimated welfare cost is $990, $800 and $7

for Sieve-SMM, SMM and Gaussian iid estimates respectively. The Sieve-SMM estimates imply a

welfare cost that is nearly $200, or 25%, higher than the parametric SMM welfare estimates. This

difference is quite large highlighting the non-negligible role of asymmetry in welfare.

41A number of alternative methods to estimate the welfare effect of business cycle fluctuations exist in the literature
using, to cite only a few, models with heterogeneous agents (Krusell & Smith, Jr., 1999; Krusell et al., 2009), asset pricing
models (Alvarez & Jermann, 2004; Barro, 2006a) and RBC models (Cho et al., 2015).

42Expectations are taken over 1,000 Monte-Carlo samples for an horizon of 5,000 months or about 420 years.
43The iid case is calibrated to match the mean and standard deviation of monthly IP growth. The monthly time

preference parameter is chosen to match a quarterly rate of 0.99.
44Additional calculations and results under an AR(1) process and using linearized DSGE models are also given in

Reis (2009).
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Table 6: Welfare Cost of Business Cycle Fluctuations λ (%)

Risk Aversion γ 2 4 6 10

Gaussian iid 0.01 0.01 0.02 0.03

SMM 1.32 1.46 1.53 1.65

Sieve-SMM 1.54 1.80 1.93 2.12

6.1.3 Implications for the risk-free rate

The second implication considers the effect of uncertainty on the risk-free rate. As discussed in the

introduction, the Euler equation implies that the risk-free rate rt satisfies: e−rt = e−aEt

(
(Ct+1/Ct)

−γ
)

where e−a and γ are the time preference and risk aversion parameters. To explain the low-level

of the risk-free rate observed in the data (Weil, 1989) a number of resolutions have been proposed

including the long-run risks model of Bansal & Yaron (2004), which involves stochastic volatility

and a recursive utility, and the rare disasters literature which involves very low frequency, high

impact shocks and a power utility (Rietz, 1988; Barro, 2006b). This empirical application considers

a simple power utility together with the higher frequency of shocks (monthly) over a recent period

(since 1960) to achieve a similar result.

Given the AR(1) mean dynamics and volatility process postulated for IP growth, the risk-free

rate can be written as:

rt = a + γµc + γρc∆ct︸ ︷︷ ︸
Predictable Component

− log
(∫

e−γet+1,1

√
µσ+ρσσ2

t +κσ [et+1,2−1] f (et+1,1) fχ2
1
(et+1,2)det+1,1det+1,2

)
︸ ︷︷ ︸

Effect of uncertainty

where fχ2
1

is the density of a χ2
1 distribution.

Other than time preference a, there are two components in the risk-free rate: a predictable com-

ponent γµc + γρc∆ct and another factor which only depends on the distribution of the shocks, it

is the effect of uncertainty. In the second term, the integral over et+1,1 is the moment generat-

ing function of et+1,1 evaluated at −γ
√

µσ + ρσσ2
t + κσ[et+1,2 − 1] and has closed-form when the

distribution is either a Gaussian or a Gaussian mixture:∫
e−γet+1,1

√
µσ+ρσσ2

t +κσ [et+1,2−1] f (et+1,1) fχ2
1
(et+1,2)det+1,1det+1,2

=
k

∑
j=1

ωj

∫
e−γµj

√
µσ+ρσσ2

t +κσ [et+1,2−1]+ γ2
2 σ2

j (µσ+ρσσ2
t +κσ [et+1,2−1]) fχ2

1
(et+1,2)det+1,2.
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The integral over et+1,2 is computed using Gaussian quadrature. Using this formula, table 7 com-

putes the effect of uncertainty on the risk-free rate over a range of values for risk aversion γ for a

Gaussian AR(1) model as well as the parametric SMM and Sieve-SMM SV estimates. The effect of

uncertainty is estimated to be nearly 3 times as large under the Sieve-SMM estimates compared to

the Gaussian SMM estimates. Given that the risk free-rate is predicted to be much lower with the

Table 7: Effect of uncertainty on the risk-free rate (% annualized)

Risk aversion γ 2 4 6 10

Gaussian AR(1) -0.12 -0.24 -0.35 -0.59

SMM -0.09 -0.37 -0.84 -2.34

Sieve-SMM -0.25 -1.02 -2.32 -6.59

Sieve-SMM estimates, the results suggest that the non-Gaussian features in the shocks matter for

precautionary savings. Altogether, the results suggest that the choice of distribution f matters in

computing both welfare effects and the risk-free rate.

6.2 GBP/USD Exchange Rate Data

The second example highlights the effect of fat tails and outliers on SV estimates for GBP/USD

exchange rate data. The results highlight the presence of heavy tails even after controlling for

time-varying volatility. Similar findings were also documented with parametric methods (see e.g.

Fridman & Harris, 1998; Liesenfeld & Jung, 2000). This paper also finds significant asymmetry

in the distribution of the shocks. Furthermore, comparing the estimates with common Bayesian

estimates shows that parametric estimates severely underestimate the persistence of the volatil-

ity. Mahieu & Schotman (1998) also consider a mixture approximation for the distribution of the

shocks in a SV model, using quasi-MLE for weekly exchange rate data. However, they do not

provide asymptotic theory for their estimator and quasi-MLE does not estimate asymmetries in

the density which turns out to be significant in this setting.

The data consists of a long series of daily exchange rate data between the British Pound and

the US Dollar (GBP/USD) downloaded using the R package Quandl. The data begins in January

2000 and ends in December 2016 for a total of 5, 447 observations. The exchange rate is modeled

using a log-normal stochastic volatility model with no mean dynamics:

yt = µy + σtet,1, log(σt) = ρσ log(σt−1) + κσet,2
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where et,2
iid∼ N (0, 1) and et,1

iid∼ f to be estimated assuming mean zero and unrestricted variance.

This allows to model extreme events associated with volatility clustering, when σt is large, as well

as more isolated extreme events, represented by the tails of f . For this empirical application, µσ

is set to 0 and f is only constrained to have unit variance. This illustrates the type of flexibility

allowed when using mixtures for estimation. The data yt consists of the daily log-growth rate of

the GBP/USD exchange rate:

yt = 100× log
(

GBP/USDt

GBP/USDt−1

)
.

Sieve-SMM estimates are compared to a common Gibbs sampling Bayesian estimate using the R

package stochvol (Kastner, 2016). Two sets of Sieve-SMM estimates are computed: the first uses a

Gaussian mixture with k = 5 components and the second a Gaussian and tails mixture with k = 5

components: 3 Gaussians and 2 tails. The two Sieve-SMM estimators have the same number of

parameters to be estimated.

Table 8 shows the posterior mean and 95% credible interval for the Bayesian estimates as well

as the point estimates and te 95% confidence interval for two Sieve-SMM estimators. The Bayesian

estimate for the persistence of volatility ρz is much smaller than the SMM and Sieve-SMM esti-

mates: it is outside their 95% confidence intervals. This reflects the bias issues discussed in the

Monte-Carlo when f has large tails. As a robustness check, the estimates for the Sieve-SMM are

similar when removing observations after the United Kingdom European Union membership ref-

erendum, that is between June 23rd and December 31st 2016: (ρ̂n, σ̂z) = (0.96, 0.23) for the Gaus-

sian mixture and (0.97, 0.20) for the Gaussian and tails mixture. The Bayesian estimates are also

of the same order of magniture (0.26, 1.27). The density estimates f̂n are also very similar when

removing these observations.

Figure 7 compares the density f̂n of et,1 for the Bayesian and Sieve-SMM estimates. The log-

density log[ f̂n] is also computed as it higlights the differences in the tails. The Bayesian assumes

Gaussian shocks, so the log-density is quadratic, the density declines faster in the tails compared

to the other two estimates. For the mixture with tail components, the density decays much slower

than for both the Bayesian and Gaussian mixture estimates.

Table 9 compares the first four moments in the data to those implied by the estimates.45 The

Bayesian estimates fit the fourth moment of the full dataset best. Note that for time series data,

estimates of kurtosis can be very unprecise (Bai & Ng, 2005). Hence a robustness check can be

important: when removing the observation corresponding to United Kingdom European Union

45The moments for the Bayesian and Sieve-SMM estimates are computed using numerical simulations.
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Table 8: Exchange Rate: Bayesian and Sieve-SMM Estimates

ρz σz

Bayesian
Estimate 0.24 1.31

95% CI [0.16, 0.34] [1.21, 1.41]

Sieve-SMM
Estimate 0.96 0.22

95% CI [0.59, 0.99] [0.06, 0.83]

Sieve-SMM Tails
Estimate 0.97 0.19

95% CI [0.62, 0.99] [0.05, 0.79]

Note: CI is the credible interval for the Bayesian and the confidence interval for the frequentist estimates.

Figure 7: Exchange Rate: Density and log-Density Estimates

Note: solid line: Gaussian density, dotted line: Gaussian mixture, dashed: Gaussian and tails mixture.

membership referendum on June 23rd 2016 which is the largest variation in the sample,46 the

kurtosis drops to about 10. Furthermore, when removing all observations between June 23rd

and December 31st 2016, the kurtosis declines further to about 9. As discussed above, the point

estimates remain similar when removing these observations. The Sieve-SMM estimates match

the fourth moment of the restricted sample more closely but the Gaussian mixture fits the third

moment poorly. The Gaussian and tails mixture fits all four moments of the restricted sample best.

It also has the lowest value for the sample objective function. The Gaussian and tails mixture is

thus the preferred specifications for this dataset.

In terms of forecasting, there are three main implications. First, the Bayesian estimates severely

46It is associated with a depreciation of the the GBP of more than 8 log percentage points. This is much larger than
typical daily fluctuations.
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Table 9: Exchange Rate: Moments of yt, ys
t and es

t

Mean Std Dev Skewness Kurtosis

Data yt 0.00 0.49 -1.15 21.05

Data∗ yt 0.00 0.47 -0.32 8.92

Bayesian ys
t 0.00 0.52 0.00 18.47

Sieve-SMM ys
t 0.00 0.85 0.10 5.88

Sieve-SMM tails ys
t 0.00 0.45 -0.28 7.74

Bayesian es
t 0.00 1.00 0.00 3.00

Sieve-SMM es
t 0.00 1.00 -0.06 3.68

Sieve-SMM tails es
t 0.00 1.00 -0.17 4.83

Note: Data corresponds to the full sample: January 1st 2000-December 31st 2016. Data∗ is a restricted
sample: January 1st 2000-June 22nd 2016. Sieve-SMM: Gaussian mixture, Sieve-SMM tails: mixture
with tail components.

underestimate the persistence of the volatility: as a result, forecasts would underestimate the per-

sistence of a high volatility episode. Second, f̂n displays a significant amount of tails: a non-

negligible amount of large shocks are isolated rather than associated with high volatility regimes.

Third, there is evidence of asymmetry in f̂n: large depreciations in the GBP relative to the USD are

historically more likely than large appreciations.

7 Conclusion

Simulation-based estimation is a powerful approach to estimate intractable models. This paper

extends the existing parametric literature to a semi-nonparametric setting using a Sieve-SMM es-

timator. General asymptotic results are given using the mixture sieve for the distribution of the

shocks and the empirical characteristic function as a moment function. On the theoretical side,

this paper provides new and more general results for static models and allows for a new class of

dynamics in the Sieve-GMM literature. Monte-Carlo simulations illustrate the range of applica-

tions of the method and its finite sample properties. Extensions to a larger class of moments and

short panels are given.

Two empirical applications highlight the importance of the density in the shocks in practice.

The first one shows asymmetry and tail behavior in output shocks. Welfare estimates suggest that
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the cost of business cycle fluctuations are larger under these non-Gaussian shocks. The risk-free

rate is also significantly lower, reflecting the greater downside risks in the estimated distribution

and the additional precautionary savings it implies.

The second empirical example highlights the effect of misspecification on volatility estimates.

Sieve-SMM estimation applied to daily GBP/USD exchange rate data reveals significant tail be-

havior and asymmetry, even after controlling for the time-varying volatility. The parametric

Bayesian estimates are not robust to misspecification and large rare events.

Going forward, a number of extensions to this paper’s results should be of interest. On the

theoretical side, extending the inequality in this paper to unbounded moments would allow for

more general Sieve-GMM settings as in Chen et al. (2013). The results could also be extended to a

generalization of Indirect Inference with both infinite dimensional moments and parameters. The

mixture sieve can be extended to accommodate heteroskedasticiy as in Norets (2010) or multivari-

ate densities without the independence assumption as in De Jonge & Van Zanten (2010). On the

empirical side, the results in this paper suggest that the distribution of the shocks is important in

estimating welfare effects in DSGE models or risk-premia in asset pricing models. Also, using the

results in this paper, the Sieve-SMM can be applied to estimate cross-sectional heterogeneity in

short panels where fixed effects cannot be differenced out.
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Appendix A Background Material

A.1 The Characteristic Function and Some of its Properties

The joint characteristic function (CF) of (yt, xt) is defined as

ψ : τ → E
(

eiτ′(yt,xt)
)
= E

(
cos(τ′(yt, xt)) + i sin(τ′(yt, xt))

)
.

An important result for the CF is that the mapping between distribution and CF is bijective: two

CFs are equal if, and only if they come from the same distribution f1 = f2 ⇔ ψ f1 = ψ f2 . The

characteristic function has several other attractive features:

i. Existence: The CF is well defined for any probability distribution: it can be computed even

if no moment of (yt, xt) exist.

ii. Boundedness: The CF is bounded |ψ(τ)| ≤ 1 for any distribution. As a result, the objective

function Q̂S
n is always well defined assuming the density π is integrable.

iii. Continuity in f : The CF is continuous in the distribution fn → f0 implies ψ fn → ψ f0 .

iv. Continuity in τ: The CF is continuous in τ.

The continuity properties are very useful when the data yt does not have a continuous density,

e.g. discrete, but the density of the shocks f is continuous as in Example 2. For instance, the data

generated by:

yt = 1x′tθ+et≥0

is discrete but its conditional characteristic function is continuous in both f and θ:

E
(

eiτyyt |xt

)
= 1− F(x′tθ) + F(x′tθ)e

iτy ,

where F is the CDF of et ∼ f . As a result, the joint CF is also continuous:

E
(

eiτ(yt,xt)
)
= E

(
eiτxxt [1− F(x′tθ) + F(x′tθ)e

iτy ]
)

.

The empirical CDF however is not continuous. As a result, a population objective Q based on the

CF is continuous but the one based on a CDF is not.

A.2 Computing the Sample Objective Function Q̂S
n

This section discusses the numerical implementation of the Sieve-SMM estimator. First, several

transformations are used to normalize the weights ω and impose restrictions such as mean zero
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∑j ωjµj = 0 and unit variance ∑j ωj(µ
2
j + σ2

j ) = 1 without requiring constrained optimization. For

the weights, take k− 1 unconstrained parameters ω̃ and apply the transformation:

ω1 =
1

1 + ∑k−1
`=1 eω̃`

, ωj =
eω̃j−1

1 + ∑k−1
`=1 eω̃`

for j = 2, . . . , k.

The resulting ω1, . . . , ωk are positive and sum to one. To impose a mean zero restriction take

µ2, . . . , µk unconstrained and compute:

µ1 = −
∑k

j=2 ωjµj

ω1

The mixture has mean zero by construction. In practice, it is assumed that σj ≥ σk. Take uncon-

strained σ̃1, . . . , σ̃k and compute:

σj = σk + eσ̃j .

The resulting σj are greater or equal than the lower bound σk ≥ 0. To impose unit variance,

restrict σ̃1 = 0 and then divide µ, σ by
√

∑j ωj(µ
2
j + σ2

j ): standardized this way, the mixture has

unit variance.

Once the parameters ω, µ, σ are appropriately transformed and normalized, the mixture draws

es
t can be simulated, and then ys

t itself is simulated. Numerical integration is used to approximate

the sample objective function Q̂S
n. For an integration grid τ1, . . . , τm with weights π1, . . . , πm com-

pute the vectors:

ψ̂n = (ψ̂n(τ1), . . . , ψ̂n(τm))
′, ψ̂S

n = (ψ̂S
n(τ1), . . . , ψ̂S

n(τm))
′

and the objective:

Q̂S
n(β) = (ψ̂n − ψ̂S

n)
′diag(π1, . . . , πm)(ψ̂n − ψ̂S

n).

In practice, the objective function is computed the same as for a parametric SMM estimator. If a

linear operator B is used to weight the moments, then the finite matrix approximation Bm is com-

puted on τ1, . . . , τm and the objective becomes (ψ̂n − ψ̂S
n)
′B′diag(π1, . . . , πm)(ψ̂n − ψ̂S

n)
′; a detailed

overview on computing the objective function with a linear operator B, using quadrature, is given

in the appendix of Carrasco & Kotchoni (2016).

A.3 Local Measure of Ill-Posedness

The following provides the derivations for Remark 1. Recall that the simple model consists of:

f1,k(n)(e) = σ−1
k(n)φ(

e
σk(n)

), f2,k(n)(e) = σ−1
k(n)φ(

e− µk(n)

σk(n)
).

The only difference between the two densities is the location parameter µk(n) in f2,k(n). The total

variance, weak and supremum distances between f1,k(n) and f1,k(n) are given below:
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i. Distance in the Weak Norm

The distance between f1 and f2 in the weak norm is:

‖ f1 − f2‖2
weak = 2

∫
e−σ2

k(n)τ
2

sin(τµk(n))
2π(τ)dτ.

When µk(n) → 0, sin(τµk(n))
2 → 0 as well. By the dominated convergence theorem this

implies that ‖ f1,k(n) − f2,k(n)‖weak → 0 as µk(n) → 0 regardless of the sequence σk(n) > 0. The

rate at which the distance in weak norm goes to zero when µk(n) → 0 can be approximated

using the power series for the sine function ‖ f1 − f2‖weak = |µk(n)|
√

2
∫

e−σ2
k(n)τ

2
τ2π(τ)dτ +

o(|µk(n)|). For µk(n) → 0, the distance in weak norm declines linearly in µk(n). For a specific

choice of sequence (µk(n)) the total variation and supremum distances can be shown to be

bounded below. As a result, the ratio with the distance in weak norm is proportional to

|µk(n)|−1 → +∞.

ii. Total Variation Distance

The total variation distance between f1,k(n) and f2,k(n) is bounded below and above by47:

1− e
−

µ2
k(n)

8σk(n) ≤ ‖ f1 − f2‖TV ≤
√

2

1− e
−

µ2
k(n)

8σk(n)

1/2

.

For any ε > 0, one can pick µk(n) = ±σk(n)
√
−8 log(1− ε2) so that ‖ f1,k(n) − f2,k(n)‖TV ∈

[ε2/2, ε]. However, for the same choice of µk(n), the paragraph above implies that ‖ f1,k(n) −
f2,k(n)‖weak → 0 as σk(n) → 0. The ratio goes to infinity when σk(n) → 0:

‖ f1,k(n) − f2,k(n)‖TV

‖ f1,k(n) − f2,k(n)‖weak
≥ σ−1

k(n)
1√

2ε
√
−8 log(1− ε2)

iii. Distance in the Supremum Norm

Using the intermediate value theorem the supremum distance can be computed as:

‖ f1,k(n) − f2,k(n)‖∞ = sup
e∈R

1
σk(n)

∣∣∣∣∣φ
(

e
σk(n)

)
− φ

(
e− µk(n)

σk(n)

)∣∣∣∣∣
= sup

ẽ∈R

|µk(n)|
σ2

k(n)

∣∣∣∣∣φ′
(

ẽ
σk(n)

)∣∣∣∣∣ = |µk(n)|
σ2

k(n)
‖φ′‖∞

47The bounds make use of the relationship between the Hellinger distance H( f1, f2): H( f1, f2)
2 ≤ ‖ f1 − f2‖TV ≤√

2H( f1, f2). The Hellinger distance between two univariate Gaussian densities is available in closed-form: H( f , g)2 =

1−
√

2σf σg

σ2
f +σ2

g
e
− 1

4

(µ f −µg )2

(σ2
f +σ2

g ) .
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For any ε > 0, pick µk = ±εσ2
k(n)/‖φ

′‖∞ then the distance is supremum norm is fixed,

‖ f1,k(n) − f2,k(n)‖∞ = ε, for any strictly positive sequence σk(n) → 0. However, the distance

in weak norm goes to zero, again the ratio goes to infinity when σk(n) → 0:

‖ f1,k(n) − f2,k(n)‖∞

‖ f1,k(n) − f2,k(n)‖weak
≥ σ−2

k(n)ε‖φ
′‖∞

The degree of ill-posedness depends on the bandwidth σk(n) in both cases. In order to achieve

the approximation rate in Lemma 1, the bandwidth σk(n) must be O(log[k(n)]2/b/k(n)). As a result

the local measures of ill-posedness for the total variation and supremum distances are:

τTV,n = O
(

k(n)
log[k(n)]2/b

)
, τ∞,n = O

(
k(n)2

log[k(n)]4/b

)
.

A.4 Identification in the Stochastic Volatility Model

This section provides an identification result for the SV model in the first empirical application:

yt = µy + ρyyt−1 + σtet,1, et,1
iid∼ f

σ2
t = µσ + ρσσ2

t−1 + κσet,2

with the restriction et,1 ∼ (0, 1), |ρy|, |ρσ| < 1 and et,2 follows a known distribution standardized to

have mean zero and unit variance.48 Suppose the CF ψ̂n includes yt and two lagged observations

(yt−1, yt−2) and that the moment generating functions of (yt, yt−1, yt−2) and et,1 are analytic so that

all the moments are finite and characterise the density. Suppose that for two sets of parameters

β1, β2 we have: Q(β1) = Q(β2) = 0. This implies that π almost surely:

E(ψ̂s
n(τ, β1)) = E(ψ̂s

n(τ, β2)), ∀τ ∈ R3. (A.14)

Using the notation τ = (τ1, τ2, τ3) this implies that for any integers `1, `2, `3 ≥ 0:

i`1+`2+`3Eβ1(y
`1
t y`2

t−1y`3
t−2) =

d`1+`2+`3E(ψ̂s
n(τ, β1))

dτ`1
1 dτ`2

2 dτ`3
3

∣∣∣
τ=0

=
d`1+`2+`3E(ψ̂s

n(τ, β2))

dτ`1
1 dτ`2

2 dτ`3
3

∣∣∣
τ=0

= i`1+`2+`3Eβ2(y
`1
t y`2

t−1y`3
t−2)

In particular for `1 = 1, `2 = 0, `3 = 0, it implies µy,1 = µy,2 so that the mean is identified.

Then, taking `1 = 2, `2 = 0, `3 = 0 implies that Eβ1(σ
2
t )/(1 − ρ2

y,1) = Eβ2(σ
2
t )/(1 − ρ2

y,2). For

`1 = `2 = 1, `3 = 0 it implies ρy,1Eβ1(σ
2
t )/(1− ρ2

y,1) = ρy,2Eβ2(σ
2
t )/(1− ρ2

y,2) which, given the

48This assumption makes the derivations easier in terms of notation.
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result above implies ρy,1 = ρy,2 and then Eβ1(σ
2
t ) = Eβ2(σ

2
t ). The latter implies µσ,1/(1− ρσ,1) =

µσ,2/(1− ρσ,2). Taking `1 = 2, `2 = 2, `3 = 0 and `1 = 2, `2 = 0, `3 = 0 implies two additional

moment conditions (after de-meaning):49 ρσ,1κ2
σ,1/(1− ρ2

σ,1) = ρσ,2κ2
σ,2/(1− ρ2

σ,2) and ρ2
σ,1κ2

σ,1/(1−
ρ2

σ,1) = ρ2
σ,2κ2

σ,2/(1− ρ2
σ,2). If ρσ,1, ρσ,2 6= 0 this imples ρσ,1 = ρσ,2 and κσ,1, κσ,2 and also µσ,1 = µσ2 .

Overall if ρσ 6= 0, then condition (A.14) implies θ1 = θ2, the parametric component is identi-

fied. Since θ is identified, all the moments of σt are known. After recentering, this implies that for

all `1 ≥ 3 if Eθ(σ
`1
t ) 6= 0:

E f1(e
`1
t,1) = E f1(e

`1
t,2). (A.15)

If σt is non-negative, which is implied by e.g. et,2 ∼ χ2
1 and parameter constraints, then all mo-

ments are stictly positive so that (A.15) holds. Since the moment generating function is analytic

and the first two moments are fixed, (A.15) implies f1 = f2. Altogether, if ρσ 6= 0 and σt > 0 then

the joint CF of (yt, yt−1, yt−2) identifies β.

A.5 Additional Results on Asymptotic Normality

The following provides two additional results on the root-n asymptotic normality of θ̂n. A positive

result is given in Proposition A1 and a negative result is given in Remark A4. The results apply to

DGPs of the form:50

yt = gobs(yt−1, θ, ut)

ut = glatent(ut−1, θ, et)

where gobs, glatent are smooth in θ. In this class of models, the data depends on f only through et.

Examples 1 and 2 satisfy this restriction but dynamic programming models typically don’t. The

smoothness restriction holds in Example 1 but not Example 2.

Proposition A1 (Sufficient Conditions for Asymptotic Normality of θ̂n). If Eθ0, f (ys
t) and Vθ0, f (ys

t)

do not depend on f then θ̂n is root-n asymptotically normal if:

Eθ0, f0

(
dys

t
dθ′

[
( 1 ys′

t )⊗ Idy

])
has rank greater or equal than dθ when t→ ∞.

49Since µy, ρy are identified, it is possible to compute E([yt − µy − ρyyt−1]
2[yt−1 − µy − ρyyt−2]

2) = E(σ2
t σ2

t−1) from
the information given by the CF.

50The regressors xt are omitted here to simplify notation in the proposition and the proof, results with xt can be
derived in a similar way as in this section.
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Proposition A1 provides some sufficient conditions for models where the mean and the vari-

ance of ys
t do not vary with f , this holds for Example 1 but not Example 2. This condition requires

that ys
t varies sufficiently with θ on average to affect the draws. The proof of the proposition is

given at the end of this subsection.

Example 1 (Continued) (Stochastic Volatility). Recall the DGP for th stochastic volatility model:

yt =
t

∑
j=0

ρ
j
yσt−jet−j,1 σ2

t =
t

∑
j=0

ρ
j
σ(µσ + κσet−j,2).

It is assumed that the initial condition is y0 = σ0 = 0 in the following. To reduce the number of derivatives

to compute, suppose µσ, κσ are known and et−j,2 is normalized so that it has mean zero and unit variance.

During the estimation et,1 is also restricted to have mean zero, unit variance which implies that the mean of

ys
t and its variance do not depent on f . First, compute the derivatives of ys

t with respect to ρy, ρσ:

dys
t

dρy
=

∞

∑
j=1

jρj−1
y σt−jet−j,1

dys
t

dρσ
= 0.5

∞

∑
j=0

ρ
j
y

dσ2
t−j

dρσ
et−j,1/σt−j where

dσ2
t−j

dρσ
=

t−j

∑
`=1

`ρ`−1
σ (µσ + κσe`,2).

Both derivatives have mean zero, the derivatives of the lags are zero as well. Hence, E
(

dys
t

dθ′ y
s
t

)
must have

rank greater than 2 for Proposition A1 to apply. Now, compute a first set of expectations:

E(
dys

t
dρy

ys
t) =

t

∑
j=1

jρ2j−1
y E(σ2

t−j)

E(
dys

t
dρy

ys
t−1) =

t−1

∑
j=0

(j + 1)ρ2j
y E(σ2

t−j−1)

E(
dys

t
dρy

ys
t−2) =

t−2

∑
j=0

(j + 2)ρ2j+1
y E(σ2

t−j−2)

E(
dys

t−1

dρy
ys

t) =
t−1

∑
j=1

jρ2j
y E(σt−j−1)

E(
dys

t−2

dρy
ys

t) =
t−2

∑
j=1

jρ2j+1
y E(σt−j−2).

The remaining expectation for ρy can be deduced from the expectations above. Since E(
dys

t
dρy

ys
t−1) > 0, these

expectations are not all equal to zero as long as E(σ2
t ) > 0. If ρσ was known then the rank condition would
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hold. For the second set of expectations:

E(
dys

t
dρσ

ys
t) =

t

∑
j=0

ρ
j
yE(

dσ2
t−j

dρσ
) =

t

∑
j=0

ρ
j
y

t−j

∑
`=1

`ρ2`−1
σ µσ

E(
dys

t
dρσ

ys
t−1) =

t

∑
j=1

ρ
j+1
y E(

dσ2
t−j

dρσ
) =

t

∑
j=1

ρ
j+1
y

t−j

∑
`=1

`ρ2`−1
σ µσ

E(
dys

t
dρσ

ys
t−2) =

t

∑
j=2

ρ
j+2
y E(

dσ2
t−j

dρσ
) =

t

∑
j=1

ρ
j+1
y

t−j

∑
`=1

`ρ2`−1
σ µσ.

The remaining derivatives can be computed similarly. The calculations above imply that the matrix is full

rank only if ρσ 6= 0 and µσ 6= 0 since all the expectations above are zero when either ρσ = 0 or µσ = 0.

Remark A4 (θ̂n is generally not an adaptive estimator of θ0). For the estimator θ̂n to be adaptive51 an

orthogonality condition is required, namely:

d2Q(β0)

dθd f
[ f − f0] = 0, for all f ∈ Fosn.

For the CF, this amounts to:

lim
n→∞

∫
Real

(
dE(ψ̂s

n(τ, β0))

dθ

dE(ψ̂s
n(τ, β0))

d f
[ f − f0]π(τ)dτ

)
= 0.

Given the restrictions on the DGP and using the notation in the proof of Proposition A1, it implies:

lim
t→∞

∫
Real

(
iτ′

dgt(θ0, e1)

dθ
eiτ′[gt(θ0,e1)−gt(θ0,e2)] f0(e1)∆ f (e2)π(τ)dτde1de2

)
= 0.

After some simplification, the orthogonality condition can be re-written as:

lim
t→∞

∫
τ′

dgt(θ0, e1)

dθ
sin
(
τ′[gt(θ0, e1)− gt(θ, e2)]

)
f0(e1)∆ f (e2)π(τ)dτde1de2 = 0.

This function is even in τ so that it does not average out over τ in general when π is chosen to be the

Gaussian or the exponential density with mean-zero. Hence, the orthogonality condition holds if the integral

of dgt(θ0,e1)
dθ sin (τ′[gt(θ0, e1)− gt(θ, e2)]) f0(e1)∆ f (e2) over e1 and e2 is zero. This is the case if gt(θ0, e1)

is separable in e1 and f0, f are symmetric densities which is quite restrictive.

Proof of Proposition A1. Chen & Pouzo (2015), pages 1031-1033 and their Remark A.1, implies that

θ̂n is root-n asymptotically normal if:

lim
n→∞

inf
v∈V,vθ 6=0

1
‖vθ‖2

1

∫ ∣∣∣dE(ψ̂s
n(τ, β0))

dθ
vθ +

dE(ψ̂s
n(τ, β0))

d f
[v f ]

∣∣∣2π(τ)dτ > 0.

51If the estimator is adaptive then θ̂n is root-n asymptotically normal and its asymptotic variance does not depend
on f̂n, i.e. it has the same asymptotic variance as the CF based parametric SMM estimator with f0 known.
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By definition of V the vector v = (vθ , v f ) has the form vθ ∈ Rdθ and v f = ∑∞
j=0 aj[ f j − f0] for a

sequence (a1, a2, . . . ) in R and ( f1, f2, . . . ) such that (θj, f j) ∈ Bosn for some θj. To prove the result,

we can proceed by contradiction suppose that for some non-zero vθ and a v f :∫ ∣∣∣dE(ψ̂s
n(τ, β0))

dθ
vθ +

dE(ψ̂s
n(τ, β0))

d f
[v f ]

∣∣∣2π(τ)dτ = 0. (A.16)

This implies that dE(ψ̂s
n(τ,β0))
dθ vθ +

dE(ψ̂s
n(τ,β0))
d f [v f ] = 0 for all τ (π almost surely). This implies that

the following holds:

dE(ψ̂s
n(0, β0))

dθ
vθ +

dE(ψ̂s
n(0, β0))

d f
[v f ] = 0 (A.17)

d2E(ψ̂s
n(τ, β0))

dθdτ

∣∣∣
τ=0

vθ +
d2E(ψ̂s

n(τ, β0))

d f dτ
[v f ]

∣∣∣
τ=0

= 0 (A.18)

d3E(ψ̂s
n(τ, β0))

dθdτdτ`

∣∣∣
τ=0

vθ +
d3E(ψ̂s

n(τ, β0))

d f dτdτ`

∣∣∣
τ=0

[v f ] = 0 (A.19)

for all ` = 1, . . . , dy. To simplify notation the following will be used: f (e) = f (e1)× · · · × f (et)

and ∆ f j(e) = [ fk(e1) − f0(e1)] f0(e2) × · · · × f0(et) + f0(e1)[ f j(e2) − f0(e2)] f0(e3) × · · · × f0(et) +

· · ·+ f0(e1) . . . f0(et−1)[ f j(et)− f0(et)] and ys
t = gt(θ, es

t , . . . , es
1) (the dependence on x is removed

for simplicity). The first order derivatives can be written as:

dE(ψ̂s
t (τ, β0))

dθ
=
∫

iτ′
dgt(θ0, e)

dθ
eiτ′gt(θ0,e) f0(e)de,

dE(ψ̂s
t (τ, β0))

d f
[v f ] =

∞

∑
j=0

aj

∫
eiτ′gt(θ0,e)∆ f j(e)de

For τ = 0 this yields dE(ψ̂s
t (0,β0))
dθ = 0 and dE(ψ̂s

t (0,β0))
d f [v f ] = 0, so equality (A.17) holds automatically.

Taking derivatives and setting τ = 0 again implies:

d2E(ψ̂s
t (τ, β0))

dθdτ

∣∣∣
τ=0

= i
∫ dgt(θ0, e)

dθ′
f0(e)de

d2E(ψ̂s
t (τ, β0))

d f dτ
[v f ]

∣∣∣
τ=0

= i
∞

∑
j=0

aj

∫
gt(θ0, e)∆ f j(e)de

If E(ys
t) does not depend on f then

∫
gt(θ0, e)∆ f j(e)de = 0 for all j and d2E(ψ̂s

t (τ,β0))
d f dτ [v f ]

∣∣∣
τ=0

= 0

holds automatically. This implies that condition (A.18) becomes:

E

(
dys

t
dθ

)
vθ = 0 (A.20)

If E
(

dys
t

dθ

)
has rank greater or equal than dθ then condition (A.20) holds only if vθ 6= 0; this is a

contradiction. If the rank is less than dθ , then taking derivatives with respect to τ again yields
d3E(ψ̂s

n(0,β0))
d f dτdτ′

∣∣∣
τ=0

[v f ] = −∑∞
j=0 aj

∫
gt(θ, e)gt(θ, e)′∆ f j(e)de = 0 assuming E(ys

ty
s′
t ) does not depend
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on f . Computing the other derivatives imply that condition (A.19) becomes−v′θ
∫ dg(θ0)

dθ′ g(θ0, e) f0(e)de

i.e.:

v′θE

(
dys

t
dθ′

ys
t,`

)
= 0 for all ` = 1, . . . , dy. (A.21)

Then, stacking conditions (A.20)-(A.21) together implies:

v′θE

(
dys

t
dθ′

[
( 1 ys′

t )⊗ Idy

])
= 0. (A.22)

If the matrix has rank greater or equal to dθ then it implies vθ = 0 which is a contradiction. Hence

(A.16) holds only if vθ = 0 which proves the result.

Appendix B Proofs for the Main Results

The proofs for the main results allow for a bounded linear operator B, as in Carrasco & Florens

(2000), to weight the moments. In the appendices, the operator is assumed to be fixed:

Q̂S
n(β) =

∫ ∣∣∣Bψ̂n(τ)− Bψ̂S
n(τ, β)

∣∣∣2π(τ)dτ.

Since B is bounded linear there exists a MB > 0 such that for any two CFs:∫ ∣∣∣Bψ̂n(τ)− Bψ̂S
n(τ, β)

∣∣∣2π(τ)dτ ≤ M2
B

∫ ∣∣∣ψ̂n(τ)− ψ̂S
n(τ, β)

∣∣∣2π(τ)dτ.

As a result, the rate of convergence for the objective function with the weighting B is the same as

the rate of convergence without.52

B.1 Properties of the Mixture Sieve

Lemma B8 (Kruijer et al. (2010)). Suppose that f is a continuous univariate density satisfying:

i. Smoothness: f is r-times continuously differentiable with bounded r-th derivative.

ii. Tails: f has exponential tails, i.e. there exists ē, M f1 , a, b > 0 such that:

f1(e) ≤ M f1 e−a|e|b , ∀|e| ≥ ē.

iii. Monotonicity in the Tails: f is strictly positive and there exists e < e such that fS is weakly decreasing

on (−∞, e] and weakly increasing on [e, ∞).

52For results on estimating the optimal B see Carrasco & Florens (2000); Carrasco et al. (2007a). Using their method
would lead to MB̂ → ∞ as n → ∞ resulting in a slower rate of convergence for β̂n. Further investigation of this effect
and the resulting rate of convergence are left to future research.
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Let Fk be the sieve space consisting of Gaussian mixtures with the following restrictions:

iv. Bandwidth: σj ≥ σk = O( log[k(n)]2/b

k ).

v. Location Parameter Bounds: µj ∈ [−µ̄k, µ̄k].

vi. Growth Rate of Bounds: µ̄k = O
(
log[k]1/b).

Then there exists Πk f ∈ Fk, a mixture sieve approximation of f , such that as k→ ∞:

‖ f −Πk f ‖F = O
(

log[k(n)]2r/b

k(n)r

)
where ‖ · ‖F = ‖ · ‖TV or ‖ · ‖∞.

Proof of Lemma 2. :

The difference between es
t and ẽs

t can be split into two terms:

k(n)

∑
j=1

(
1

νs
t∈[∑

j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

) (
µj + σjZs

t,j

)
(B.23)

k(n)

∑
j=1

1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

(
µj − µ̃j + [σj − σ̃j]Zs

t,j

)
. (B.24)

To bound the term (B.23) in expectation, combine the fact that |µj| ≤ µ̄k(n), |σj| ≤ σ̄ and νs
t and Zs

t,j

are independent so that:[
E

(
sup

‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣ k(n)

∑
j=1

(
1

νs
t∈[∑

j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

) (
µj + σjZs

t,j

) ∣∣∣2)]1/2

≤
k(n)

∑
j=1

[
E

(
sup

‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∣∣∣2)]1/2 (
µ̄k(n) + σ̄E

(
|Zs

t,j|2
)1/2

)
.

The last term is bounded above by µ̄+ σ̄CZ. Next, note that 1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

−1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∈
{0, 1} so that:

E

(
sup

‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∣∣∣2)

= E

(
sup

‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∣∣∣) .
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Also, for any j: |∑j
l=0 ω̃l −∑

j
l=0 ωl | ≤ ∑

j
l=0 |ω̃l −∑

j
l=0 ωl | ≤

(
∑

j
l=0 |ω̃l −ωl |2

)1/2
≤ ‖ω̃ − ω‖2 ≤

δ. Following a similar approach to Chen et al. (2003):[
E

(
sup

‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣1
νs

t∈[∑
j−1
l=0 ωl ,∑

j
l=0 ωl ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∣∣∣)]1/2

≤
[

E

(
sup

‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣1
νs

t∈[(∑
j−1
l=0 ω̃l)−δ,(∑

j
l=0 ω̃l)+δ]

− 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

∣∣∣)]1/2

=

[(
[(

j

∑
l=0

ω̃l) + δ]− [(
j−1

∑
l=0

ω̃l)− δ]− [(
j

∑
l=0

ω̃l)− (
j−1

∑
l=0

ω̃l)]

)]1/2

=
√

2δ.

Overall the term (B.23) is bounded above by
√

2(1 + CZ)
(

µ̄k(n) + σ̄ + k(n)
)√

δ. The term (B.24)

can be bounded above by using the simple fact that 0 ≤ 1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

≤ 1 and:

[
E

(
sup

‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣ k(n)

∑
j=1

1
νs

t∈[∑
j−1
l=0 ω̃l ,∑

j
l=0 ω̃l ]

(
µj − µ̃j + [σj − σ̃j]Zs

t,j

) ∣∣∣2)]1/2

≤
k(n)

∑
j=1

[
E

(
sup

‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣(µj − µ̃j) + [σj − σ̃j]Zs
t,j

∣∣∣2)]1/2

≤
k(n)

∑
j=1

sup
‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

(
|µj − µ̃j|+ |σj − σ̃j|CZ

)
≤ (1 + CZ) sup

‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

(
k(n)

∑
j=1
|µj − µ̃j|2 + |σj − σ̃j|2

)1/2

≤ (1 + CZ)δ.

Without loss of generality assume that δ ≤ 1 so that:[
E

(
sup

‖(ω,µ,σ)−(ω̃,µ̃,σ̃)‖2≤δ

∣∣∣es
t − ẽs

t

∣∣∣2)]1/2

≤ 2
√

2(1 + CZ)
(

1 + µ̄k(n) + σ̄ + k(n)
)

δ1/2.

which concludes the proof.

Lemma B9 (Properties of the Tails Distributions). Let ξ̄ ≥ ξ1, ξ2 ≥ ξ > 0. Let νs
t,1 and νs

t,2 be uniform

U[0,1] draws and:

es
t,1 = −

(
1

νs
t,1
− 1

) 1
2+ξ1

, es
t,2 =

(
1

1− νs
t,2
− 1

) 1
2+ξ2

.

The densities of es
t,1, es

t,2 satisfy fes
t,1
(e) ∼ e−3−ξ1 as e→ −∞, fes

t,2
(e) ∼ e−3−ξ2 as e→ +∞. There exists a

finite C bounding the second moments E
(
|es

t,1|2
)
≤ C < ∞ and E

(
|es

t,2|2
)
≤ C < ∞. Furthermore, the
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draws ys
t,1 and ys

t,2 are L2-smooth in ξ1 and ξ2 respectively:[
E

(
sup

|ξ1−ξ̃1|≤δ

|es
t,1(ξ1)− es

t,1(ξ̃1)|2
)]1/2

≤ Cδ,

[
E

(
sup

|ξ2−ξ̃2|≤δ

|es
t,2(ξ2)− es

t,2(ξ̃2)|2
)]1/2

≤ Cδ

Where the constant C only depends on ξ and ξ̄.

Proof of Lemma B9. :

To reduce notation, the t and s subscripts will be dropped in the following. The proof is similar

for both e1 and e2 so the proof is only given for e1.

First, the densities of e1 and e2 are derived, the first two results follow. Noting that the draws

are defined using quantile functions, inverting the formula yields: ν1 = 1
1−e2+ξ1

1

. This is a proper

CDF on (−∞, 0] since e1 → 1
1−e2+ξ1

1

is increasing and has limits 0 at −∞ and 1 at 0. Its deriva-

tive is the density function: (2 + ξ1)
e1+ξ1

1

(1−e2+ξ1
1 )2

which is continuous on (−∞, 0] and has an asymp-

tote at −∞: (2 + ξ1)
e1+ξ1

1

(1−e2+ξ1
1 )2

× e3+ξ1
1 → (2 + ξ1) as e1 → −∞. Since ξ1 ∈ [ξ, ξ̄] with 0 < ξ

then E|e1|2 ≤ C < ∞ for some finite C > 0. Similar results hold for e2 which has density

(2 + ξ2)
e1+ξ2

2

(1+e2+ξ2
2 )2

on [0,+∞).

Second, ξ1 → e1(ξ1) is shown to be L2-smooth. Let |ξ1 − ξ̃1| ≤ δ, using the mean value

theorem, for each ν1 there exists an intermediate value ξ̌1 ∈ [ξ1, ξ̃1] such that:(
1
ν1
− 1
) 1

2+ξ1
−
(

1
ν1
− 1
) 1

2+ξ̃1
=

1
2 + ξ̌1

log(
1
ν1
− 1)

(
1
ν1
− 1
) 1

2+ξ̌1
(ξ1 − ξ̃1).

The first part is bounded above by 1/(2 + ξ), the second part is bounded above by:

log(
1
ν1

+ 1)
(

1
ν1

+ 1
) 1

2+ξ

and the last term is bounded above, in absolute value, by δ.

Finally, in order to conclude the proof, the following integral needs to be finite:

∫ 1

0
log(

1
ν1

+ 1)
(

1
ν1

+ 1
) 2

2+ξ

dν1.

By a change of variables, it can be re-written as:∫ ∞

2
log(ν)ν

2
2+ξ−2dν.
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Since 2
2+ξ − 2 < −1, the integral is finite and thus:

[
E

(
sup

|ξ1−ξ̃1|≤δ

|es
t,1(ξ1)− es

t,1(ξ̃1)|2
)]1/2

≤ δ

2 + ξ

√∫ ∞

2
log(ν)ν

2
2+ξ−2dν.

Proof of Lemma 1. The proof proceeds by recursion. Denote πk(n) f j ∈ BBk(n) the mixture approxi-

mation of f j from Lemma B8. For de = 1, Lemma B8 implies

‖ f1 −Πk(n) f1‖TV = O(
log[k(n)]r/b

k(n)r ), ‖ f1 −Πk(n) f1‖∞ = O(
log[k(n)]r/b

k(n)r ).

Suppose the result holds for f1 × · · · × fde . Let f = f1 × · · · × fde × fde+1; let:

dt+1 = f1 × · · · × fde × fde+1 −Πk(n) f1 × · · · ×Πk(n) fde ×Πk(n) fde+1

dt = f1 × · · · × fde −Πk(n) f1 × · · · ×Πk(n) fde .

The difference can be re-written as a recursion:

dt+1 = dt fde+1 + Πk(n) f1 × · · · ×Πk(n) fde

(
fde+1 −Πk(n) fde+1

)
.

Since
∫

fde+1 =
∫

Πk(n) f1 × · · · ×Πk(n) fde = 1, the total variation distance is:

‖dt+1‖TV ≤ ‖dt‖TV + ‖ fde+1 −Πk(n) fde+1‖TV = O
(

log[k(n)]r/b

k(n)r

)
.

And the supremum distance is:

‖dt+1‖∞ ≤ ‖dt‖∞‖ fde+1‖∞ + ‖Πk(n) f1 × · · · ×Πk(n) fde‖∞‖ fde+1 −Πk(n) fde+1‖∞

≤ ‖dt‖∞

(
‖ fde+1‖∞ + ‖ f1 × · · · × fde‖∞‖ fde+1 −Πk(n) fde+1‖∞

)
= O

(
log[k(n)]r/b

k(n)r

)
.

Definition B3 (Pseudo-Norm ‖ · ‖m on Bk(n)). Let β1, β2 ∈ Bk(n) where βl = (θl , fl), l = 1, 2 with

f j = f1,j × . . . fde,j, each fl,j as in definition 1. The pseudo-norm ‖ · ‖m is the `2 norm on (θ, ω, µ, σ, ξ), the

associated distance is:

‖β1 − β2‖m = ‖(θ1, ω1, µ1, σ1, ξ1)− (θ2, ω2, µ2, σ2, ξ2)‖2

using the vector notation ω1 = (ω1,1, . . . , ω1,k(n)+2, . . . , ωde,1, . . . , ωde,k(n)+2) for θ, ω, µ, σ, ξ.
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Remark B5. Using lemma 6 in Kruijer et al. (2010), for any two mixtures f1, f2 in Bk(n):

‖ f1 − f2‖∞ ≤ C∞
‖ f1 − f2‖m

σ2
k(n)

, ‖ f1 − f2‖TV ≤ CTV
‖ f1 − f2‖m

σk(n)

for some constants C∞, CTV > 0. The result extends to de > 1, for instance when de = 2:

f 1
1 f 2

1 − f 1
2 f 2

2 = f 1
1 ( f 2

1 − f 2
2 ) + ( f 2

1 − f 1
2 ) f 2

2

In total variation distance the difference becomes:

‖ f 1
1 f 2

1 − f 1
2 f 2

2 ‖TV ≤ = ‖ f 2
1 − f 2

2 ‖TV + ‖ f 2
1 − f 1

2 ‖TV

≤ CTV
‖ f 2

1 − f 2
2 ‖m + ‖ f 2

1 − f 1
2 ‖m

σk(n)
≤ CTV,2

‖ f1 − f2‖m

σk(n)
.

A recursive argument yields the result for arbitrary de > 1. In supremum distance a similar result holds

assuming ‖ f j
1‖∞, ‖ f j

2‖∞, with j = 1, 2, are bounded above by a constant.

B.2 Consistency

Assumption 2′ (Data Generating Process - L2-Smoothness). ys
t is simulated according to the dynamic

model (1)-(2) where gobs and glatent satisfy the following L2-smoothness conditions for some γ ∈ (0, 1] and

any δ ∈ (0, 1):

y(i)′. For some 0 ≤ C̄1 < 1:[
E

(
sup

‖β1−β2‖B≤δ

‖gobs(ys
t(β1), xt, β1, us

t(β1))− gobs(ys
t(β2), xt, β1, us

t(β1))‖2
∣∣∣ys

t(β1), ys
t(β2)

)]1/2

≤ C̄1‖ys
t(β1)− ys

t(β2)‖

y(ii)′. For some 0 ≤ C̄2 < ∞:[
E

(
sup

‖β1−β2‖B≤δ

‖gobs(ys
t(β1), xt, β1, us

t(β1))− gobs(ys
t(β1), xt, β2, us

t(β1))‖2

)]1/2

≤ C̄2δγ

y(iii)′. For some 0 ≤ C̄3 < ∞:[
E

(
sup

‖β1−β2‖B≤δ

‖gobs(ys
t(β1), xt, β1, us

t(β1))− gobs(ys
t(β1), xt, β1, us

t(β2))‖2
∣∣∣us

t(β1), us
t(β2)

)]1/2

≤ C̄3‖us
t(β1)− us

t(β2)‖γ
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u(i)′. For some 0 ≤ C̄4 < 1[
E

(
sup

‖β1−β2‖B≤δ

‖glatent(us
t−1(β1), β, es

t(β1))− glatent(us
t−1(β2), β, es

t(β1))‖2

)]1/2

≤ C̄4‖us
t−1(β1)− us

t−1(β2)‖

u(ii)′. For some 0 ≤ C̄5 < ∞:

E

(
sup

‖β1−β2‖B≤δ

‖glatent(us
t−1(β1), β1, es

t(β1))− glatent(us
t−1(β1), β2, es

t(β1))‖2

)
≤ C̄5δγ

u(iii)′. For some 0 ≤ C̄5 < ∞:

E

(
sup

‖β1−β2‖B≤δ

‖glatent(us
t−1(β1), β1, es

t(β1))− glatent(us
t−1(β1), β1, es

t(β2))‖2
∣∣∣es

t(β1), es
t(β2)

)
≤ C̄6‖e1 − e2‖

for ‖β1 − β2‖B = ‖θ1 − θ2‖+ ‖ f1 − f2‖∞ or ‖θ1 − θ2‖+ ‖ f1 − f2‖TV .

Proof of Lemma 3: First note that the cosine and sine functions are uniformly Lispchitz on the real

line with Lipschitz coefficient 1. This implies for any two (y1, y2, x) and any τ ∈ Rdτ :

| cos(τ′(y1, x))− cos(τ′(y2, x))| ≤ |τ′(y1 − y2, 0)| ≤ ‖τ‖∞‖y1 − y2‖

| sin(τ′(y1, x))− sin(τ′(y2, x))| ≤ |τ′(y1 − y2, 0)| ≤ ‖τ‖∞‖y1 − y2‖.

As a result, the moment function is also Lipschitz in y, x:

|eiτ′(y1,x) − eiτ′(y2,x)|π(τ)
1
4 ≤ 2‖τ‖∞π(τ)

1
4 ‖y1 − y2‖.

Since π is chosen to be the Gaussian density, it satisfies supτ ‖τ‖∞φ(τ)
1
4 ≤ Cπ < ∞ and φ(τ)

1
2 ∝

φ(τ/
√

2) which has finite integral.

The Lispschitz properties of the moments combined with the conditions properties of π imply

that the L2-smoothness of the moments is implied by the L2-smoothness of the simulated data

itself. As a result, the remainder of the proof establishes the L2-smoothness of ys
t .

First note that since yt = (yt, . . . , yt−L):

‖yt(β1)− yt(β2)‖ ≤
L

∑
j=1
‖yt−j(β1)− yt−j(β2)‖.

75



To bound the term in y above, it suffices to bound the expression for each term yt with arbitrary

t ≥ 1. Assumptions 2, 2′ imply that, for some γ ∈ (0, 1]:[
E

(
sup

‖β1−β2‖m

‖yt(β1)− yt(β2)‖2

)]1/2

≤ C1

[
E

(
sup

‖β1−β2‖m

‖yt−1(β1)− yt−1(β2)‖2

)]1/2

+ C2
δγ

σ
2γ
k(n)

+ C3

[
E

(
sup

‖β1−β2‖m

‖ut(β1)− ut(β2)‖2

)]γ/2

.

The term δγ

σ
2γ
k(n)

comes from the fact that ‖β1 − β2‖∞ ≤ ‖β1−β2‖m
σ2

k(n)
and ‖β1 − β2‖TV ≤ ‖β1−β2‖m

σk(n)
on

Bk(n). Without loss of generality, suppose that σk(n) ≤ 1.53 Applying this inequality recursively,

and using the fact that ys
0, us

0 are the same regardless of β, yields:[
E

(
sup

‖β1−β2‖m

‖yt(β1)− yt(β2)‖2

)]1/2

≤ C2

1− C1

δγ

σ
2γ
k(n)

+ C3

t−1

∑
l=0

Cl
1

[
E

(
sup

‖β1−β2‖m

‖ut−l(β1)− ut−l(β2)‖2

)]γ/2

.

Using Lemmas 2 and B9 and the same approach as above:[
E

(
sup

‖β1−β2‖m

‖ut(β1)− ut(β2)‖2

)]1/2

≤ C4

[
E

(
sup

‖β1−β2‖m

‖ut−1(β1)− ut−1(β2)‖2

)]1/2

+ C5
δγ

σ
2γ
k(n)

+ C6C
(

k(n) + µ̄k(n) + σ̄
)

δγ/2.

Again, applying this inequality recursively yields:[
E

(
sup

‖β1−β2‖m

‖ut(β1)− ut(β2)‖2

)]1/2

≤ C5

1− C4

δγ

σ
2γ
k(n)

+
C6

1− C4
C
(

k(n) + µ̄k(n) + σ̄
)

δγ/2.

Putting everything together:[
E

(
sup

‖β1−β2‖m

‖yt(β1)− yt(β2)‖2

)]1/2

≤ C2

1− C1

δγ

σ
2γ
k(n)

+
C3

1− C1

 C5

1− C4

δγ

σ
2γ
k(n)

+
C6

1− C4
C
(

k(n) + µ̄k(n) + σ̄
)

δγ/2

γ

.

Without loss of generality, suppose that δ ≤ 1. Then, for some positive constant C:[
E

(
sup

‖β1−β2‖m

‖yt(β1)− yt(β2)‖2

)]1/2

≤ C max

 δγ2

σ
2γ2

k(n)

, [k(n) + µk(n) + σ]γδγ2/2

 .

53Recall that by assumption σk(n) = O(
log[k(n)]2/b

k(n) ) goes to zero.
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Lemma B10 (Covering Numbers). Under the L2-smoothness of the DGP (as in Lemma 3), the bracketing

number satisfies for x ∈ (0, 1) and some C:

N[ ](x, Ψk(n)(τ), ‖ · ‖L2)

≤ (3[k(n) + 2] + dθ)

2 max(µ̄k(n), σ)C2/γ2

(
k(n) + µk(n) + σ

)2/γ
+ σ4

k(n)

x2/γ2 + 1


3[k(n)+2]+dθ

.

For τ ∈ Rdτ , let Ψk(n)(τ) be the set of functions Ψk(n)(τ) =
{

β→ eiτ′(yt(β),xt)π(τ)1/2, β ∈ Bk(n)

}
. The

bracketing entropy of each set Ψk(n)(τ) satisfies for some C̃:

log
(

N[ ](x, Ψk(n)(τ), ‖ · ‖L2

)
≤ C̃k(n) log[k(n)])| log δ|.

Using the above, for some C̃2 < ∞:∫ 1

0
log2

(
N[ ](x, Ψk(n), ‖ · ‖L2

)
dx ≤ C̃2k(n)2 log[k(n)]2.

Proof of Lemma B10: Since Bk(n) is contained in a ball of radius max(µk(n), σ, ‖θ‖∞) in R3[k(n)+2]+dθ

under ‖ · ‖m, the covering number for Bk(n) can be computed under the ‖ · ‖m norm using a result

from Kolmogorov & Tikhomirov (1959).54 As a result, the covering number N(x,Bk(n), ‖ · ‖m)

satisfies:

N(x,Bk(n), ‖ · ‖m) ≤ 2 (3[k(n) + 2] + dθ)

(
2 max(µ̄k(n), σ̄)

x
+ 1

)3[k(n)+2]+dθ

.

The rest follows from Lemma 3 and Appendix C.

Proof of Theorem 1: If the assumptions of Corollary C3 hold then the result of Theorem 1 holds as

well. The following relates the previous lemmas and assumptions to the required assumption for

the corollary.

Assumption 1 implies Assumptions C8 and C9. Furthermore, by Lemmas 3 and B10, Assump-

tions 1 with 2 (or 2′) imply Assumption C11 with
√

Cn/n = O( k(n)2 log2[k(n)]√
n ) using the norm ‖ · ‖m.

The order of Qn(Πk(n)β0) is given in Lemma 4. This implies that all the assumptions for Corollary

C3 so that the estimator is consistent if
√

Cn/n = o(1) which concludes the proof.
54See also Fenton & Gallant (1996) for an application of this result for the sieve estimation of a density and Coppejans

(2001) for a CDF.
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B.3 Rate of Convergence

Proof of Lemma 4: First, using the assumption that B is a bounded linear operator:

Qn(Πk(n)β0) ≤ M2
B

∫ ∣∣∣E(ψ̂n(τ)− ψ̂S
n(τ, Πk(n)β0)

) ∣∣∣2π(τ)dτ

≤ 3M2
B

(∫ ∣∣∣E(ψ̂n(τ)− ψ̂S
n(τ, β0)

) ∣∣∣2π(τ)dτ +
∫ ∣∣∣E (̂̂ψS

n(τ, β0)− ψ̂S
n(τ, Πk(n)β0)

) ∣∣∣2π(τ)dτ

)
Each term can be bounded above individually. Re-write the first term in terms of distribution:∣∣∣E(ψ̂n(τ)− ψ̂S

n(τ, β0)
) ∣∣∣ = ∣∣∣ 1

n

n

∑
t=1

∫
eiτ′(yt,xt)[ f ∗t (yt, xt)− ft(yt, xt)]dytdxt

∣∣∣
where ft is the distribution of (yt(β0), xt) and ft the stationary distribution of (yt(β0), xt). Using

the geometric ergodicity assumption, for all τ:∣∣∣ 1
n

n

∑
t=1

∫
eiτ′(yt,xt)[ f ∗t (yt, xt)− ft(yt, xt)]dytdxt

∣∣∣ ≤ 1
n

n

∑
t=1

∫ ∣∣∣ f ∗t (yt, xt)− ft(yt, xt)
∣∣∣dytdxt

=
2
n

n

∑
t=1
‖ f ∗t − ft‖TV ≤

2Cρ

n

n

∑
t=1

ρt ≤
2Cρ

(1− ρ)n

for some ρ ∈ (0, 1) and Cρ > 0. This yields a first bound:

∫ ∣∣∣E(ψ̂n(τ)− ψ̂S
n(τ, β0)

) ∣∣∣2π(τ)dτ ≤
4C2

ρ

(1− ρ)2
1
n2 = O

(
1
n2

)
.

The mixture norm ‖ · ‖m is not needed here to bound the second term since it involves popu-

lation CFs. Some changes to the proof of Lemma 3 allows to find bounds in terms of ‖ · ‖B and

‖ · ‖TV for which Lemma 1 gives the approximation rates.

To bound the second term, re-write the simulated data as:

ys
t = gobs,t(xt, . . . , x1, β, es

t , . . . , es
1), us

t = glatent,t(β, es
t , . . . , es

1)

with β = (θ, f ) and es
t ∼ f . Under Assumption 2 or 2′, using the same sequence of shocks (es

t):

E
(∥∥∥gobs,t(xt, . . . , x1, β0, es

t , . . . , es
1)− gobs,t(xt, . . . , x1, Πk(n)β0, es

t , . . . , es
1)
∥∥∥) ≤ C‖Πk(n) f0 − f0‖γ

B .

This is similar to the proof of Lemma 3, first re-write the difference as:

E
(∥∥∥gobs(gobs,t−1(xt−1, . . . , x1, β0, es

t−1, . . . , es
1), xt, β0, glatent(glatent,t−1(β0, es

t−1, . . . , es
1), β0, es

t))

− gobs(gobs,t−1(xt−1, . . . , x1, Πk(n)β0, es
t−1, . . . , es

1), xt, Πk(n)β0, glatent(glatent,t−1(Πk(n)β0, es
t−1, . . . , es

1), Πk(n)β0, es
t

∥∥∥).
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Using Assumptions 2-2′, there is a recursive relationship:

E
(∥∥∥gobs(gobs,t−1(xt−1, . . . , x1, β0, es

t−1, . . . , es
1), xt, β0, glatent(glatent,t−1(β0, es

t−1, . . . , es
1), β0, es

t))

− gobs(gobs,t−1(xt−1, . . . , x1, Πk(n)β0, es
t−1, . . . , es

1), xt, Πk(n)β0, glatent(glatent,t−1(Πk(n)β0, es
t−1, . . . , es

1), Πk(n)β0, es
t

∥∥∥)
≤
[
E
(∥∥∥gobs(gobs,t−1(xt−1, . . . , x1, β0, es

t−1, . . . , es
1), xt, β0, glatent(glatent,t−1(β0, es

t−1, . . . , es
1), β0, es

t))

− gobs(gobs,t−1(xt−1, . . . , x1, Πk(n)β0, es
t−1, . . . , es

1), xt, Πk(n)β0, glatent(glatent,t−1(Πk(n)β0, es
t−1, . . . , es

1), Πk(n)β0, es
t

∥∥∥2)]1/2

≤ C1

[
E
(∥∥∥gobs,t−1(xt−1, . . . , x1, β0, es

t−1, . . . , es
1)− gobs,t−1(xt−1, . . . , x1, Πk(n)β0, es

t−1, . . . , es
1)
∥∥∥2)]1/2

+ C2‖β0 −Πk(n)β0‖γ
B + C3

[
E
(∥∥∥glatent,t(β0, es

t , . . . , es
1)− glatent,t(Πk(n)β0, es

t , . . . , es
1)
∥∥∥2)]γ/2

.

The last term also has a recursive structure:[
E
(∥∥∥glatent,t(β0, es

t , . . . , es
1)− glatent,t(Πk(n)β0, es

t , . . . , es
1)
∥∥∥2)]1/2

≤ C4

[
E
(∥∥∥glatent,t−1(β0, es

t−1, . . . , es
1)− glatent,t−1(Πk(n)β0, es

t−1, . . . , es
1)
∥∥∥2)]1/2

+ C5‖β0 −Πk(n)β0‖γ
B .

Together these inequalities imply:

E
(∥∥∥gobs(gobs,t−1(xt−1, . . . , x1, β0, es

t−1, . . . , es
1), xt, β0, glatent(glatent,t−1(β0, es

t−1, . . . , es
1), β0, es

t))

− gobs(gobs,t−1(xt−1, . . . , x1, Πk(n)β0, es
t−1, . . . , es

1), xt, Πk(n)β0, glatent(glatent,t−1(Πk(n)β0, es
t−1, . . . , es

1), Πk(n)β0, es
t

∥∥∥)
≤ 1

1− C1

(
C2‖β0 −Πk(n)β0‖γ

B + C3
Cγ

5

(1− C4)γ
‖β0 −Πk(n)β0‖γ2

B

)
.

Recall that ‖τ‖∞
√

π(τ) is bounded above and π(τ)1/4 is integrable so that:∫ ∣∣∣E(eiτ′(yt(β0,xt,...,x1)) − eiτ′(yt(Πk(n)β0,xt,...,x1))
) ∣∣∣2π(τ)dτ

≤ 1
1− C1

(
C2‖β0 −Πk(n)β0‖γ

B + C3
Cγ

5

(1− C4)γ
‖β0 −Πk(n)β0‖γ2

B

)
sup

τ
[‖τ‖∞

√
π(τ)]

∫
π(τ)1/4dτ.

To conclude the proof, the difference due to es
t needs to be bounded. In order to do so, it suffice

to bound the following integral:∫
eiτ′(yt(y0,u0,xt,...,x1,β0,es

t ,...,es
1),xt)

(
f0(es

t)× · · · × f0(es
1)−Πk(n) f0(es

t)× · · · ×Πk(n) f0(es
1)
)

fx(xt)des
t . . . des

1dxt.

A direct bound on this integral yields a term of order of t‖ f0−Πk(n) f0‖TV which increases too fast

with t to generate useful rates. Rather than using a direct bound, consider Assumptions 2-2′. The

time-series ys
t can be approximated by another time-series term which only depends on a fixed and
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finite (es
t , . . . , es

t−m) for a given integer m ≥ 1. Making m grow with n at an appropriate rate allows

to balance the bias m‖ f0−Πk(n) f0‖TV (computed from a direct bound) and the approximation due

to m < t.

The m-approximation rate of yt is now derived. Let β = (θ, f ) ∈ B, es
t , . . . , es

1 ∼ f and ỹs
t such

that ỹs
t−m = 0, ũs

t−m = 0 and then ỹs
j = gobs(ỹs

j−1, xj, β, ũs
j ), ũs

j = glatent(ũs
j−1, β, es

j ) for t− m + 1 ≤
j ≤ t. Each observation t is approximated by its own time-series. For observation t − m, by

construction:

E
(∥∥∥ys

t−m − ỹs
t−m

∥∥∥) = E
(∥∥∥ys

t−m

∥∥∥) ≤ [E

(∥∥∥ys
t−m

∥∥∥2
)]1/2

E
(∥∥∥us

t−m − ũs
t−m

∥∥∥) = E
(∥∥∥us

t−m

∥∥∥) ≤ [E

(∥∥∥us
t−m

∥∥∥2
)]1/2

Then, for any t ≥ t̃ ≥ t−m:

E
(∥∥∥us

t̃ − ũs
t̃

∥∥∥) ≤ C4

[
E

(∥∥∥us
t̃−1 − ũs

t̃−1

∥∥∥2
)]1/2

E
(∥∥∥ys

t̃ − ỹs
t̃

∥∥∥) ≤ C3Cγ
4

[
E

(∥∥∥us
t̃−1 − ũs

t̃−1

∥∥∥2
)]γ/2

+ C1

[
E

(∥∥∥ys
t̃−1 − ỹs

t̃−1

∥∥∥2
)]1/2

.

The previous two results and a recursion arguments leads to the following inequality:

E
(∥∥∥us

t − ũs
t

∥∥∥) ≤ Cm
4

[
E

(∥∥∥us
t−m

∥∥∥2
)]1/2

(B.25)

E
(∥∥∥ys

t − ỹs
t

∥∥∥) ≤ C3Cγm
4

[
E

(∥∥∥us
t−m

∥∥∥2
)]γ/2

+ Cm
1

[
E

(∥∥∥ys
t−m

∥∥∥2
)]1/2

. (B.26)

For β = β0, Πk(n)β0 since the expectations are finite and bounded by assumption, E
(∥∥∥ys

t − ỹs
t

∥∥∥) ≤
C max(C1, C4)

γm with 0 ≤ max(C1, C4) < 1 and some C > 0. For the first observations t ≤ m the

data is unchanged, ys
t = ỹs

t , so that the bound still holds. The integral can be split and bounded:∣∣∣ ∫ eiτ′(yt(y0,u0,xt,...,x1,β0,es
t ,...,es

1),xt)
(

f0(es
t)× · · · × f0(es

1)−Πk(n) f0(es
t)× · · · ×Πk(n) f0(es

1)
)

fx(xt)des
t . . . des

1dxt

∣∣∣
≤
∣∣∣E([ψ̂S

n(τ, β0)− ψ̂S
n(τ, Πk(n)β0)]− [ψ̃S

n(τ, β0)− ψ̃S
n(τ, Πk(n)β0)]

) ∣∣∣
+
∫ ∣∣∣ ( f0(es

t)× · · · × f0(es
t−m+1)−Πk(n) f0(es

t)× · · · ×Πk(n) f0(es
t−m+1)

)
fx(xt)des

t . . . des
t−m+1dxt

∣∣∣
≤ 4C max(C1, C4)

γm + 2m‖Πk(n) f0 − f0‖TV .

The last inequality is due to the cosine, and sine function being uniformly Lipschitz continuous

and equations (B.25)-(B.26). Recall that ‖Πk(n) f0 − f0‖TV = O( log[k(n)]2r/b

k(n)r ). To balance the two

terms, choose:

m = − r
γ log max(C1, C4)

log[k(n)] > 0
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so that max(C1, C4)
γm = k(n)−r and

C max(C1, C4)
γm + 2m‖Πk(n) f0 − f0‖TV = O

(
log[k(n)]2r/b+1

k(n)r

)
.

Combining all the bounds above yields:

Qn(Πk(n)β0) = O

(
max

[
log[k(n)]4r/b+2

k(n)2r ,
log[k(n)]4γ2r/b

k(n)2γ2r
,

1
n2

])

where ‖ · ‖B = ‖ · ‖∞ or ‖ · ‖TV so that ‖β0 −Πk(n)β0‖γ2

B = O( log[k(n)]4γ2r/b

k(n)2γ2r
). The term due to the

non-stationarity is of order 1/n2 = o
(

max
[

log[k(n)]4r/b+2

k(n)2r , log[k(n)]4γ2r/b

k(n)2γ2r

])
so it can be ignored. This

concludes the proof.

Proof of Theorem 2: The theorem is a corollary of Theorem C5 with a mixture sieve. Lemma 4 gives

an explicit derivation of
√

Qn(Πk(n)β0) in this setting.

B.4 Asymptotic Normality

Remark B6. Note that for each τ the matrix B
dE(ψ̂S

n(τ,Πk(n)β0))

d(θ,ω,µ,σ)

′
B

dE(ψ̂S
n(τ,Πk(n)β0))

d(θ,ω,µ,σ) is singular - the require-

ment is that the average, over τ, of this matrix is invertible. Lemma 5 states that β̂n and the approximation

Πk(n)β0 have a representation that are at a distance δnλ−1/2
n of each other in ‖ · ‖m norm.

Proof of Lemma 5: Using the simple inequality 1/2|a|2 ≤ |a− b|2 + |b|2 for any a, b ∈ R:

0 ≤ 1/2
∫ ∣∣∣B dE(ψ̂S

n(τ, Πk(n)β0))

dβ
[β̂n −Πk(n)β0]

∣∣∣2π(τ)dτ

≤
∫ ∣∣∣B dE(ψ̂S

n(τ, β0))

dβ
[β̂n − β0]

∣∣∣2π(τ)dτ

+
∫ ∣∣∣B dE(ψ̂S

n(τ, β0))

dβ
[β̂n − β0]− B

dE(ψ̂S
n(τ, Πk(n)β0))

dβ
[β̂n −Πk(n)β0]

∣∣∣2π(τ)dτ

≤
∫ ∣∣∣B dE(ψ̂S

n(τ, β0))

dβ
[β̂n − β0]

∣∣∣2π(τ)dτ +
∫ ∣∣∣B dE(ψ̂S

n(τ, Πk(n)β0))

dβ
[Πk(n)β0 − β0]

∣∣∣2π(τ)dτ

+
∫ ∣∣∣B dE(ψ̂S

n(τ, β0))

dβ
[β̂n − β0]− B

dE(ψ̂S
n(τ, β0))

dβ
[β̂n −Πk(n)β0]

∣∣∣2π(τ)dτ.

By assumption the term on the left is Op(δ2
n), by assumption ii. the middle term is Op(δ2

n) and

assumption i. implies that the term on the right is also Op(δ2
n). It follows that:

∫ ∣∣∣B dE(ψ̂S
n(τ, Πk(n)β0))

dβ
[β̂n −Πk(n)β0]

∣∣∣2π(τ)dτ = Op(δ
2
n). (B.27)
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Now note that both β̂n and Πk(n)β0 belong to the finite dimensional space Bk(n) parameterized

by (θ, ω, µ, σ). To save space, β̂n will be represented by ϕ̂n = (θ̂n, ω̂n, µ̂n, σ̂n) and Πk(n)β0 by

ϕk(n) = (θk(n), ωk(n), µk(n), σk(n)). Using this notation, equation (B.27) becomes:

∫ ∣∣∣B dE(ψ̂S
n(τ, Πk(n)β0))

dβ
[β̂n −Πk(n)β0]

∣∣∣2π(τ)dτ =
∫ ∣∣∣B dE(ψ̂S

n(τ, Πk(n)β0))

d(θ, ω, µ, σ)
[ϕ̂n − ϕk(n)]

∣∣∣2π(τ)dτ

= trace

(
[ϕ̂n − ϕk(n)]

′
∫

B
dE(ψ̂S

n(τ, Πk(n)β0))

d(θ, ω, µ, σ)

′

B
dE(ψ̂S

n(τ, Πk(n)β0))

d(θ, ω, µ, σ)
π(τ)dτ[ϕ̂n − ϕk(n)]

)
≥ λn‖ϕ̂n − ϕk(n)‖2 = λn‖β̂n −Πk(n)β0‖2

m.

It follows that 0 ≤ λn‖β̂n −Πk(n)β0‖2
m ≤ Op(δ2

n) so that the rate of convergence in mixture norm

is:

‖β̂n −Πk(n)β0‖m = Op

(
δnλ−1/2

n

)
.

Lemma B11 (Stochastic Equicontinuity). Let Mn = log log(n + 1) and δmn = δn/
√

λn. Suppose that

the assumptions of Lemma 5 and Assumption C11 hold then for any η > 0, uniformly over β ∈ Bk(n) :E

 sup
‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)

2
2+η

1/2

≤ C
(Mnδmn)

γ2
2

√
n

∫ 1

0

(
x−ϑ/2

√
log N([xMnδmn]

2
γ2 ,Bk(n), ‖ · ‖m) + log2 N([xMnδmn]

2
γ2 ,Bk(n), ‖ · ‖m)

)
dx

For the mixture sieve the integral is a O(k(n) log[k(n)] + k(n)| log(Mnδmn)|) so that:E

∫ sup
‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ

1/2

= O
(
(Mnδmn)

γ2
2 max(log[k(n)]2, | log[Mnδmn]|2)

k(n)2
√

n

)

Now suppose that (Mnδmn)
γ2
2 max(log[k(n)]2, | log[Mnδmn]|2)k(n)2 = o(1). The first stochastic equicon-

tinuity result is:E

∫ sup
‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ

1/2

= o(1/
√

n).
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Also, suppose that β →
∫

E

∣∣∣ψ̂s
t (τ, β0) − ψ̂s

t (τ, β)
∣∣∣2π(τ)dτ is continuous at β = β0 under the norm

‖ · ‖B , uniformly in t ≥ 1. Then, the second stochastic equicontinuity result is:E

∫ sup
‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)dτ

1/2

= o(1/
√

n).

Proof of Lemma B11. This proof relies on the results in Lemma 3 together with Lemma D16. First,

Lemma 3 implies that, after simplifying the bounds, for some C > 0:E

 sup
‖β1−β2‖m≤δ,‖β j−Πk(n)β0‖m≤Mnδm,n,j=1,2

∣∣∣ψ̂s
t (τ, β1)− ψ̂s

t (τ, β2)
∣∣∣2
1/2 √

π(τ)

(Mnδm,n)γ2/2

≤ Ck(n)2γ2
(

δ

Mnδm,n

)γ2/2

.

Next, apply the inequality of Lemma D15 to generate the bound:E

 sup
‖β−Πk(n)β0‖m≤Mnδm,n

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2
1/2√

π(τ)

≤ C
(Mnδm,n)γ2/2

√
n

∫ 1

0

x−ϑ/2

√√√√log N(

[
xMnδmn

k(n)2γ2

] 2
γ2

,Bk(n), ‖ · ‖m) + log2 N(

[
xMnδmn

k(n)2γ2

] 2
γ2

,Bk(n), ‖ · ‖m)

 dx

for some C > 0, ϑ ∈ (0, 1). Since
∫ √

π(τ)dτ < ∞, the term on the left-hand side ca be squared

and multiplied by
√

π(τ). Then, taking the integral:E

∫ sup
‖β−Πk(n)β0‖m≤Mnδm,n

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ

1/2

≤ Cπ
(Mnδm,n)γ2/2

√
n

∫ 1

0

x−ϑ/2

√√√√log N(

[
xMnδmn

k(n)2γ2

] 2
γ2

,Bk(n), ‖ · ‖m) + log2 N(

[
xMnδmn

k(n)2γ2

] 2
γ2

,Bk(n), ‖ · ‖m)

 dx

where Cπ = C
∫ √

π(τ)dτ. The integral on the right-hand side is a O(k(n)2 max(log[k(n)]2, log[Mnδm,n]2)).

To prove the final statement, notation will be shortened using ∆ψ̂s
t (τ, β) = ψ̂s

t (τ, β0)− ψ̂s
t (τ, β).
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Note that, by applying Davydov (1968)’s inequality:

nE

∣∣∣∆ψ̂S
n(τ, Πk(n)β0)−E[∆ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2

≤ 1
n

n

∑
t=1

E

∣∣∣∆ψ̂s
t (τ, Πk(n)β0)−E[∆ψ̂s

t (τ, Πk(n)β0)]
∣∣∣2

+
24
n

n

∑
m=1

(n−m)α(m)1/3 max
1≤t≤n

(
E

∣∣∣∆ψ̂s
t (τ, Πk(n)β0)−E[∆ψ̂s

t (τ, Πk(n)β0)]
∣∣∣6)2/3

≤
(

1 + 24 ∑
m≥1

α(m)1/3

)
max

1≤t≤n

(
E

∣∣∣∆ψ̂s
t (τ, Πk(n)β0)−E[∆ψ̂s

t (τ, Πk(n)β0)]
∣∣∣6)2/3

≤ 48/3

(
1 + 24 ∑

m≥1
α(m)1/3

)
max

1≤t≤n

(
E

∣∣∣∆ψ̂s
t (τ, Πk(n)β0)−E[∆ψ̂s

t (τ, Πk(n)β0)]
∣∣∣2)2/3

.

The last inequality is due to |∆ψ̂s
t (τ, β)| ≤ 2. By the continuity assumption the last term is a o(1)

when ‖β0 −Πk(n)‖B → 0. As a result:∫
E

∣∣∣∆ψ̂S
n(τ, Πk(n)β0)−E[∆ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ = o(1/n).

To conclude the proof, apply a triangular inequality and the results above:E

∫ sup
‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, β0)]
∣∣∣2π(τ)dτ

1/2

≤

E

∫ sup
‖β−Πk(n)β0‖m≤Mnδmn

∣∣∣[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]−E[ψ̂S
n(τ, β)− ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ

1/2

+

(∫
E

∣∣∣∆ψ̂S
n(τ, Πk(n)β0)−E[∆ψ̂S

n(τ, Πk(n)β0)]
∣∣∣2π(τ)dτ

)1/2

= o(1/
√

n).

Remark B7. Note that δn = k(n)2 log[k(n)]2√
n = o(1) by assumption so that log[δn]2 = O(log(n)2). Fur-

thermore, it is assumed that δn = o
(√

λn
)

and δm,n = o(1), so that max(log[k(n)]2, log[Mnδm,n]2)) is

dominated by a O(log(n)). The condition k(n)2 max(log[k(n)]2, log[Mnδm,n]2) can thus be re-written

as:

(Mnδmn)
γ2
2 [k(n) log(n)]2 = o(1)

which is equivalent to:

δn = o

 √
λn

Mn[k(n) log(n)]
4

γ2 )

 .
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Furthermore, since δn = k(n)2 log[k(n)]2√
n , this condition can be re-written in terms of k(n):

k(n) = o


 √

λn

Mn log(n)
4

γ2

 1
2+4/γ2

n
1

2(2+4/γ2)

 .

Proof of Theorem 3: Theorem 3 mostly follows from Theorem C6 with two differences: the rate

of convergence and the stochastic equicontinuity results in mixture norm. Lemmas 5 and B11

provide these results for the mixture sieve. Hence, given these results, Theorem 3 is a corollary of

Theorem C6.

B.5 Extension 1: Using Auxiliary Variables

Proof of Corollary 2: Since the proof of Corollary 2 is very similar to the main proofs, only the dif-

ferences in the steps are highlighted.

i. Consistency: The objective function with auxiliary variables is:

Qn(β) =
∫ ∣∣∣E (ψ̂n(τ, η̂aux

n )− ψ̂s
n(τ, η̂aux

n , β
) ∣∣∣2π(τ)dτ.

To derive its rate of convergence consider:∫ ∣∣∣ψ̂n(τ, η̂aux
n )−E

(
ψ̂n(τ, η̂aux

n )
) ∣∣∣2π(τ)dτ ≤ 9

∫ ∣∣∣ψ̂n(τ, ηaux)−E
(
ψ̂n(τ, ηaux)

) ∣∣∣2π(τ)dτ

+ 9
∫ ∣∣∣ψ̂n(τ, η̂aux

n )− ψ̂n(τ, ηaux)
∣∣∣2π(τ)dτ

+ 9
∫ ∣∣∣E (ψ̂n(τ, η̂aux

n )− ψ̂n(τ, ηaux)
) ∣∣∣2π(τ)dτ.

The first term is Op(1/n). By the Lipschitz condition, the second term satisfies:∫ ∣∣∣ψ̂n(τ, η̂aux
n )− ψ̂n(τ, ηaux)

∣∣∣2π(τ)dτ ≤ ‖η̂aux
n − ηaux‖2|Caux

n |2
∫
‖τ‖∞π(τ)dτ

= Op(1/n)Op(1).

Caux
n is an average of the Lipschitz constants in the assumptions. The third term can be

bounded using the Lipschitz assumption and the Cauchy-Schwarz inequality:∫ ∣∣∣ψ̂n(τ, η̂aux
n )− ψ̂n(τ, ηaux)

∣∣∣2π(τ)dτ ≤ E‖η̂aux
n − ηaux‖2E|Caux

n |2
∫
‖τ‖∞π(τ)dτ

= Op(1/n2)Op(1).

Altogether, these inequalities imply:∫ ∣∣∣ψ̂n(τ, η̂aux
n )−E

(
ψ̂n(τ, η̂aux

n )
) ∣∣∣2π(τ)dτ = Op(1/n2).
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The L2-smoothness result still holds given the summability condition:[
E
(

sup
‖β1−β2‖B≤δ,η∈E

‖gaux(ys
t(β1), . . . , ys

1(β1), xt, . . . , x1; η)− gaux(ys
t(β2), . . . , ys

1(β2), xt, . . . , x1; η)‖2
)]1/2

≤
t

∑
j=1

ρj

[
E

(
sup

‖β1−β2‖B≤δ,η∈E
‖ys

j (β1)− ys
j (β2)‖2

)]1/2

≤
(

∞

∑
j=1

ρj

)
sup
t≥1

[
E

(
sup

‖β1−β2‖B≤δ,η∈E
‖ys

t(β1)− ys
t(β2)‖2

)]1/2

≤ C̄

(
∞

∑
j=1

ρj

)
max

 δγ2

σ
2γ2

k(n)

, [k(n) + µk(n) + σ]γδγ2/2


The last inequality is a consequence of Lemma 3.∫ ∣∣∣ψ̂s

n(τ, η̂aux
n )−E

(
ψ̂s

n(τ, η̂aux
n )

) ∣∣∣2π(τ)dτ ≤ 9
∫ ∣∣∣ψ̂s

n(τ, ηaux)−E
(
ψ̂s

n(τ, ηaux)
) ∣∣∣2π(τ)dτ

+ 9
∫ ∣∣∣ψ̂s

n(τ, η̂aux
n )− ψ̂s

n(τ, ηaux)
∣∣∣2π(τ)dτ

+ 9
∫ ∣∣∣E (ψ̂s

n(τ, η̂aux
n )− ψ̂s

n(τ, ηaux)
) ∣∣∣2π(τ)dτ.

The first term is a Op(δ2
n) given the L2-smoothness above and the main results. The last two

terms are Op(1/n2) as in the calculations above.

Together, these results imply that the rate of convergence for the objective function is Op(δ2
n)

as before. As a result, given that the other assumptions hold, the estimator is consistent.

ii. Rate of Convergence: The variance term is still Op(δ) as discussed above. The only term

remaining to discuss if the bias accumulation term.

Recall that the first part of the bias term involves changing f in gobs, glatent while keeping the

shocks es
t unchanged. Using the same method of proof as for the L2-smoothness it can be

shown that the first bias term is only inflated by ∑∞
j=1 ρj < ∞: a finite factor.

The second part involves changing the shocks keeping gobs, glatent unaffected. An alternative

simulated sequence ỹs
t where part of the history is changed ỹs

t−j = ũs
t−j = 0 for j ≥ m. For a

well chosen sequence m, the difference between ys
t and ỹs

t declines exponentially in m. Here

z̃s
t only depends on a finite number of shocks since ỹs

t−m = · · · = ỹs
1 = 0. The difference

between zs
t and z̃s

t becomes:

E (‖zs
t − z̃s

t‖) ≤
t

∑
j=1

ρjE
(
‖ys

j − ỹs
j‖
)
≤
(

∞

∑
j=1

ρj

)
C̄ max(C̄1, C̄4)

γm
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where the last inequality comes from Lemma 4. To apply this lemma, the bounded moment

condition v. is required.

Overall, the bias term is unchanged. As a result, the rate of convergence is the same as in the

main proofs.

iii. Asymptotic Normality: The L2-smoothness result was shown above to be unchanged. As

a result, stochastic equicontinuity can be proved the same way as before. The Lipschitz

condition also implies stochastic equicontinuity in ηaux using the same approach as for the

rate of convergence of the objective. The asymptotic expansion can be proved the same

way as in the main results where ψ̂n(τ) and ψ̂s
n(τ, β0) are replaced with ψ̂n(τ, η̂aux

n ) and

ψ̂s
n(τ, η̂aux

n , β0). Eventually, the expansion implies:
√

n
σ∗n

(
φ(β̂n)− φ(β0)

)
=
√

nReal
(∫

ψβ(τ, u∗n, ηaux)
(
ψ̂n(τ, η̂aux

n )− ψ̂s
n(τ, η̂aux

n , β0)
)
π(τ)dτ

)
+ op(1)

where the term on the right is asymptotically normal by assumption.

B.6 Extension 2: Using Short Panels

Proof of Lemma 7. The second part of the lemma is implied by Remark ??.

For the first part of Lemma 7, using the notation for the proof of Proposition C4: f is the distri-

bution for the simulated ys
j,t and us

j,t and f ∗ is the stationary distribution. Note that f (ys
j,t, xj,t|us

j,t) =

f ∗(ys
j,t, xj,t|us

j,t) for β = β0 and ‖ fu − f ∗u‖TV ≤ Cuρ̄m
u for some Cu > 0 and ρ̄u ∈ (0, 1).

√
Qn(β0) ≤ MB

(∫ ∣∣∣E (ψ̂n(τ)− ψ̂s
n(τ, β0)

) ∣∣∣2π(τ)dτ

)1/2

= MB

(∫ ∣∣∣ 1
n

n

∑
j=1

∫
eiτ′(ys

j,t,xj,t)
(

f (ys
j,t, xj,t)− f ∗(ys

j,t, xj,t)
)

dys
j,tdxj,t

∣∣∣2π(τ)dτ

)1/2

= MB

(∫ ∣∣∣ 1
n

n

∑
j=1

∫
eiτ′(ys

j,t,xj,t) f ∗(ys
j,t, xj,t|us

j,t)
(

f (us
j,t)− f ∗(us

j,t)
)

dys
j,tdxj,tdus

j,t

∣∣∣2π(τ)dτ

)1/2

≤ MB

∫
f ∗(ys

j,t, xj,t|us
j,t)
∣∣∣ f (us

j,t)− f ∗(us
j,t)
∣∣∣ dys

j,tdxj,tdus
j,t.

Applying the Cauchy-Schwarz inequality implies:∫
f ∗(ys

j,t, xj,t|us
j,t)
∣∣∣ f (us

j,t)− f ∗(us
j,t)
∣∣∣ dys

j,tdxj,tdus
j,t

≤
(∫

f ∗(ys
j,t, xj,t|us

j,t)
2
∣∣∣ f (us

j,t)− f ∗(us
j,t)
∣∣∣ dys

j,tdxj,tdus
j,t

)1/2 (∫ ∣∣∣ f (us
j,t)− f ∗(us

j,t)
∣∣∣ dus

j,t

)1/2

.

87



By assumption the first term is finite and bounded while the second term is a O(ρ̄m/2
u ). Taking

squares on both sides on the inequality concludes the proof.

Proof of Corollary 3: As discussed in section 4 asymptotic are conducted over the cross-sectional

dimension n for the moments:

ψ̂j(τ) =
1
T

T

∑
t=1

eiτ′(yj,t,xj,t), ψ̂s
j (τ) =

1
T

T

∑
t=1

eiτ′(ys
j,t,xj,t)

which are iid under the stated assumptions. The bias can accumulate dynamically for DGP (12),

as in the time-series case, but it accumulates with m instead of sample size. Assumption 2 or

2′ ensure that the bias does not accumulate too much when m → ∞. Lemma 7 shows how the

assumed DGPs handle the initial condition problem in the panel setting. Note that:

nρ̄m
u = elog[n]+m log[ρ̄u] = em(log[n]/m+log[ρ̄u]) → 0

as m, n → ∞ if limm,n→∞ log[n]/m < − log[ρ̄u] > 0. Given, this result and the dynamic bias

accumulation the results for the iid case apply with an inflation bias term for DGP (12).
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