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1 Introduction

A substantial literature approaches dyadic interactions between agents by means of models

featuring agent-specific parameters. The Bradley-Terry model for paired comparisons of

Zermelo (1929) and Bradley and Terry (1952) and the β-model for network formation with

degree heterogeneity (Yan and Xu, 2013; Graham, 2015) are two classic examples. The use

of fixed-effect models for network data is now widespread in empirical work. Applications

include studies of risk sharing (Fafchamps and Gubert, 2007), sorting between workers

and firms in the labor market (Abowd, Kramarz and Margolis, 1999), and the interaction

between students and teachers (Aaronson, Barrow and Sander, 2007; Rivkin, Hanushek

and Kain, 2005), as well as the analysis of trade flows (Harrigan, 1996; Anderson and van

Wincoop, 2003).

The structure of the network, that is, who interacts with whom and to which extent,

differs strongly across applications. While rather dense networks might be observed in

the analysis of financial markets (Acemoglu, Ozdaglar and Tahbaz-Salehi, 2015), sparse

networks—i.e., networks with relatively few links—are typically the norm in networks of

friendship or trust (Jackson, Rodriguez-Barraquer and Tan, 2012). The network structure

is also an important determinant of the accuracy of statistical inference. One important

illustration is given by fixed-effect regressions of log wages on matched employer-employee

data (Abowd, Kramarz and Margolis, 1999). There, estimated worker and firm effects are

typically found to be negatively correlated (Goux and Maurin, 1999; Barth and Dale-Olsen,

2003), which is in contrast with economic intuition. The origin of this negative assortative

matching puzzle is limited-mobility bias (Abowd, Kramarz, Lengermann and Perez-Duarte,

2004; Andrews, Gill, Schank and Upward, 2008), that is, the fact that, throughout their

working history, workers are employed in only few firms. Moreover, even though linked

data sets are typically very large, the worker fixed effects are estimated from very small

subsamples.

We are not aware of studies of the statistical accuracy of fixed-effect estimators in the

network literature. A chief reason would appear to be that the structure of a network
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becomes complex very fast and so it is rather difficult to see how data carries information

about certain parameters. In this paper we analyze this issue in the context of a linear

version of the Bradley and Terry (1952) model. The linear regression model contains all

the main features of the typical models for network data, yet is sufficiently simple to lend

itself to careful analysis.

We use results from graph theory to show that the variance of the fixed-effect estimator

is related to the Laplacian of the network. A bound on the variance of the fixed-effect

estimator is obtained that depends inversely on the smallest non-zero eigenvalue of the

(normalized) Laplacian. This eigenvalue is a measure of connectivity of the network. The

larger it is, the more dense is the network. One interesting consequence of this bound is

that consistent estimation is possible even if the network becomes less connected as the

sample grows. Eigenvalues of network matrices have previously been found to be important

in determining equilibrium conditions in games on networks (Bramboullé, Kranton and

D’Amours, 2014) but our result seems the first to uncover their importance for statistical

inference.

We next refine the variance bound to uncover how the local structure of the network

around a given vertex influences the variance of the vertex-specific parameter estimator.

Clearly, the variance of such an estimator is decreasing in the degree of the vertex—the

number of edges that originate or arrive in it—that is, the number of neighbors of the vertex.

The improved bounds, however, uncover the sensitivity of the variance with respect to the

degree of the neighbors of the vertex.

A potential issue with a global connectivity measure such as the smallest non-zero

eigenvalue is that it can lead to variance bounds that are overly conservative. A leading

situation where this will be the case is when the network consists of clusters, so that units

within a cluster are strongly connected, but the clusters are connected by relatively few

links with each other. To deal with such cases we consider within-between decompositions

of the network as a way to characterize the variance in terms of the eigenvalues within each

cluster and the number of links across clusters.

In Section 2 we introduce the model and estimator under study. In Section 3 we
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derive bounds on the variance of the estimator. In Section 4 we provide corresponding

bounds for parameter differences. In Section 5 we present our results on within-between

decompositions of the network. In Section 6 we discuss weighted graphs. Concluding

remarks end the paper. An Appendix contains additional results. All technical proofs are

available as supplementary material.

2 Model and estimator

Consider a graph G := G(V,E) where m := |E| edges are placed between n := |V | vertices.

We will work with a simple undirected graph without loops. Without loss of generality

we label the vertices by natural numbers, so V = {1, . . . , n}. The set E contains the

m ≤ n(n−1)/2 unordered pairs (i, j) from the product set V ×V that are connected by an

edge, where we assume throughout that m > 0. Vertices i and j are said to be connected

if G contains a path from i to j, and the graph G is said to be connected if every pair of

vertices in the graph is connected.

2.1 A fixed-effect model

Our interest lies in estimating a linear regression model where outcomes are labelled by

elements of E. For each (i, j) ∈ E, we observe the real-valued outcome

yij = −yji = αi − αj + uij, uij ∼ i.i.d. N (0, σ2), (2.1)

where α1, . . . , αn ∈ R are vertex-specific parameters to be estimated and the uij ∈ R are

unobserved disturbances with unknown variance σ2. Equation (2.1) is overparametrized,

so we impose that
n∑
i=1

αi = 0. (2.2)

The choice of normalization on the αi is not unique but (2.1) is conventional (see, e.g.,

Simons and Yao, 1999) and will prove convenient for our purposes.

Equation (2.1) is similar to a regression version of the classic Bradley and Terry (1952)

model for paired comparisons.
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Example 1 (Inversion of market shares). Consider an extended version of the classic

Bradley and Terry (1952) model, where the probability that team i wins against team j

equals

pij := Pr(i beats j) = Λ(αi − αj + uij),

for Λ(a) := (1 + e−a)−1. The odds ratio is

pij
1− pij

= eαi−αj+uij .

This equation fits (2.1) with yij = ln(pij/(1 − pij)) and is estimable provided the pij are

observed (or estimable). One situation where this model arises is in repeated interactions

in the Bradley-Terry setting. Suppose that teams i and j meet multiple times and that, at

encounter k,

i beats j if (αi − αj) + uij > εijk,

where εijk ∼ i.i.d.Λ. Then pij can be recovered nonparametrically (Berry, 1994). Note

that, here, αi and αj represent team-specific heterogeneity while uij captures heterogeneity

that is specific to the match-up. �

Example 2 (Matched employer-employee data). Partition V as V1 ∪ V2 and consider a

bipartite graph. That is, suppose that E is a subset of the product set V1×V2. Then edges

are formed between the vertex sets V1 and V2 but not within V1 and V2. So, for an edge

(i, j) we necessarily have that i ∈ V1 and j ∈ V2. A leading example of a regression model

here are wage regressions as in Abowd, Kramarz and Margolis (1999), where the log wage

of worker i in firm j decomposes as

yij = µi + ηj + uij,

for worker effects µi and firm effects ηj. To obtain (2.1) we set

αi =

 µi if i ∈ V1,

−ηi if i ∈ V2.

Choosing the sign in front of ηi is without loss of generality here because the graph under

consideration is bipartite; links are only formed between, but never within, V1 and V2. We
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extend this example to panel data, where workers and firms are observed over multiple

time periods, later. �

The literature on estimation of fixed-effect models for network data typically assumes

that m = n(n−1)/2, that is, that each vertex is connected to all other vertices by a path of

length one; see Simons and Yao (1999) and Yan and Xu (2013) for results on the Bradley

and Terry (1952) model, Dzemski (2014) and Graham (2015) for work on network-formation

models, and Fernández-Val and Weidner (2016) for two-way models for panel data. In this

case, distribution theory for the maximum-likelihood estimator of the αi in (2.1) would be

rather standard, with the estimator of each of the αi being unbiased, normally distributed,

and converging at the
√
n-rate. In this paper we specifically study the case of an incomplete

graph. Our aim is to see how the structure of G affects the precision of statistical inference.

As of yet, this is an unexplored issue in the literature. Allowing for incomplete graphs is

important, as data, where all vertices interact, is rare. In country-level data on bilateral

trade, for example, only around half of the potential trade flows are realized. Similarly, in

the bipartite graphs of workers and firms in Example 2, each worker is related to at most

a handful of firms. Finally, friendship networks are typically sparse; see, for example, the

data of Jackson, Rodriguez-Barraquer and Tan (2012).

While the model in (2.1) may appear overly restrictive, we note that certain features

are not essential to the following analysis. For example, the presumption of normality and

the assumption of homoskedastic disturbances could easily be dispensed with. They are

introduced here as they allow us to focus on exact finite-sample inference. Also, everything

to follow can be modified to hold for weighted graphs. One example would be a situation

where we observe multiple outcomes for each (i, j) ∈ E. We will come back on each of

these issues in more detail at a later stage. Our choice of (2.1) is motivated by a desire

to concentrate on a setting that contains all essential features of a fixed-effect model for

random graphs while at the same time connecting as much as possible to the literature on

graph theory.
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2.2 Estimation and inference

In the following we will work under the convention that i < j for (i, j) ∈ E. This choice

imposes an orientation on the graph G, and the corresponding oriented incidence matrix of

G is the m× n matrix B with entries

(B)ei :=


1 if the eth edge is given by (i, j) ∈ E for some j ∈ V ,

−1 if the eth edge is given by (j, i) ∈ E for some j ∈ V ,

0 otherwise.

The incidence matrix fully describes G. Note that the oriented incidence matrix is unique

up to negation of any of the columns, since negating the entries of a rows corresponds to

reversing the orientation of an edge. Moreover, the analysis to follow is invariant to our

choice of orientation. Indeed, changing the orientation of the edge (i, j) jointly with the

sign of yij leaves model (2.1) invariant. Throughout, the network structure is treated as

fixed, that is, B is conditioned on.

Let α := (α1, . . . , αn)′. Collect all outcomes in the m-vector y and all regression errors

in the m-vector u. Write ιn for the n-vector of ones and Im for the m×m identity matrix.

Equations (2.1)–(2.2) can then be written as

y = Bα+ u, u ∼ N (0, σ2 Im),

subject to

α′ιn = 0.

Because of normality of u, the maximum-likelihood estimator of α is equal to the (ordinary)

least-squares estimator, that is,

α̂ := (α̂1, . . . , α̂n)′ = arg min
a∈{a∈Rn:a′ιn=0}

‖y −Ba‖2, (2.3)

where ‖·‖ denotes the Euclidean norm.

We first address existence and uniqueness of α̂. Here and later, we let M † denote the

Moore-Penrose pseudoinverse of matrix M .
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Lemma 1 (Existence). Let G be connected. Then

α̂ = (B′B)†B′y

and is unique.1

The need for a pseudoinverse arises because B′B is singular, as Bιn = 0. The use of the

Moore-Penrose pseudoinverse follows from our normalization choice on α, that is, α′ιn = 0.

The result of the lemma is intuitive. If G is connected, then m ≥ n − 1 must hold, and

the zero eigenvalue of B′B has multiplicity one and corresponding eigenvector ιn; see our

discussion of the Laplacian matrix below. If G is disconnected our analysis for α̂ could be

applied separately to each connected component.

The following theorem is immediate.

Theorem 1 (Sampling distribution). Let G be connected. Then

α̂ ∼ N
(
α, σ2 (B′B)†

)
for any n.

The main implication of Theorem 1 is the sampling distribution of the conventional

F -statistic for testing linear hypotheses on α.

Corollary 1 (Inference). Let R be an n×r matrix of maximal column rank that is linearly

independent of ιn. If G is connected, then

m− (n− 1)

r

(α̂−α)′R (R′(B′B)†R)−1R′ (α̂−α)

(y −Bα̂)′(y −Bα̂)

follows an F -distribution with parameters r and m− (n− 1).

The F -statistic can be used to test the null hypothesis that Rα = 0 against the alternative

that Rα 6= 0. The requirement that R is linearly independent of ιn is needed because

1Note that (B′B)†B′ equals B†, and so the expression for the estimator could be shortened. Our choice

to highlight the longer formulation in the lemma is motivated by the developments to follow, where the

matrix B′B features prominently.
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ι′nα = 0 holds by construction. The degrees of freedom being m − (n − 1) rather than

m− n is for the same reason.

Corollary 1 shows that test statistics and confidence bounds constructed in the usual

way will have correct coverage. This is a direct consequence of Theorem 1. These results,

however, do not aid in understanding when test statistics will have low power or when

confidence bounds will be wide. In the sequel we aim to understand how the structure of

the network affects the standard error of the least-squares estimator. Such an analysis is

also a useful aid when setting up sampling designs. Furthermore, it also yields conditions for

consistent estimation and asymptotically-valid inference under non-normality for sequences

of growing networks.

3 Network structure and variance bounds

Theorem 1 shows that, up to the scalar factor σ2, the variance of α̂ is completely determined

by the n× n Laplacian matrix of G,

L := B′B = D −A,

whereD := diag(d1, . . . , dn) = diag (B′B) is the degree matrix andA is the n×n adjacency

matrix of G, with entries

(A)ij :=

 1 if (i, j) ∈ E or (j, i) ∈ E,

0 otherwise.

Note that di, the degree of i, equals the number of vertices that vertex i is connected to.

It will be convenient to work with the normalized Laplacian

S := D−
1
2LD−

1
2 = In −D−

1
2AD−

1
2 .

We have (L†)ii = d−1i (S†)ii, and so

var(α̂i) = E((α̂i − αi)2) =
σ2

di
(S†)ii. (3.1)
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Equation (3.1) highlights the importance of the degree di, which is the effective number of

observations that are used to infer αi. However, (3.1) does not imply that var(α̂i) shrinks

as di → ∞, nor would it give a convergence rate if it did, as the normalized Laplacian

matrix of G, too, changes when n grows.

3.1 Zero-order bound

To make progress on bounding the variance, let λi denote the ith eigenvalue of S, arranged

in increasing order; so, λ1 ≤ λ2 ≤ · · · ≤ λn. From Chung (1997, Lemma 1.7) we have

mini λi = 0 and maxi λi ≤ 2. Zero is always an eigenvalue of S because Bιn = 0, but, if G

is connected, it has multiplicity one. That is, λ2 > 0 is the smallest non-zero eigenvalue of

the normalized Laplacian when G is connected. As a simple example, λ2 = n/(n− 1) when

G is complete, that is, when m = n(n− 1)/2.

The following result bounds the variance of α̂ as a function of λ2.

Theorem 2 (Global bound). Let G be connected. Then

var(α̂i) ≤
1

di

σ2

λ2
.

The theorem follows from (3.1) and the fact that (S†)ii ≤ ‖S†‖2 = λ2, where ‖.‖2 refers

to the spectral norm; see the proof in the supplementary material for further details. We

note that, analogous to Lemma 2, we can also show that

var(α̂i) ≤
σ2

λ̃2
,

where λ̃2 is the smallest non-zero eigenvalue of the (unnormalized) Laplacian L. In the

graph literature, the spectrum of L has been the subject of more study than that of S.

However,

λ̃2 ≤
n

n− 1
min
i∈V

di.

Thus, λ̃2 may be very small—and the corresponding bound on var(α̂i) very large—as soon

as a single vertex in V has a small degree, making it an unattractive quantity for our

purposes.
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To interpret the bound it is useful to connect it to the Cheeger constant,

C := min
U∈{U⊂V : 0<

∑
i∈U di≤m}

∑
i∈U
∑

j /∈U(A)ij∑
i∈U di

.

The constant C ∈ [0, 1] reflects how difficult it is to disconnect G by removing edges.

Moreover, a larger value of C implies a more strongly-connected graph. From Chung

(1997, Theorems 2.1 and 2.3),

2C ≥ λ2 ≥ 1−
√

1− C2 ≥ 1

2
C2. (3.2)

Hence, Theorem 2 states that inference will be more precise when the graph is more strongly

connected.

Theorem 2 also allows to derive some asymptotic properties under sequences of growing

networks G. First, we find the pointwise consistency result

(α̂i − αi)
p→ 0 if λ2 di →∞.

This result allows λ2 → 0 as n → ∞. Second, letting h be the harmonic mean of the

sequence d1, . . . , dn, we have
E(‖α̂−α‖2)

n
≤ 1

h

σ2

λ2
,

and so
‖α̂−α‖√

n

p→ 0 if λ2 h→∞ as n→∞,

by an application of Markov’s inequality.

Example 3 (Erdős-Rényi graph). Consider the Erdős and Rényi (1959) random-graph

model, where edges between n vertices are formed independently with probability pn. The

threshold on pn for G to be connected is ln(n)/n. That is, if

pn = c
lnn

n

for a constant c, then, as n → ∞, with probability approaching one, G is disconnected if

c < 1 and connected if c > 1 (Erdős and Rényi, 1960). In the former case, λ2 → 0 while, in

the latter case, λ2 → 1, almost surely; see Hoffman, Kahle and Paquette (2013, Theorem

1.1). and Kolokolnikov, Osting and von Brecht (2014, Corollary 1.2). �
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We next proceed by refining the variance bound in Theorem 2 to take into account the

local structure of the graph around vertex i.

3.2 First-order bound

A refinement of Theorem 2 takes into account the connectivity of the direct neighbors of

i. Here, we call a direct neighbor, or a path-one neighbor, a vertex to which i is connected

via a path of length one. Similarly, we will call those vertices that have geodesic distance

equal to two from i path-two neighbors of i. The collection of direct neighbors of vertex i

is

[i] := {j ∈ V : (i, j) ∈ E or (j, i) ∈ E};

note that |[i]| = di. Let

hi :=

 1

di

∑
j∈[i]

1

dj

−1 , (3.3)

the harmonic mean of the degrees of all j ∈ [i]. Note that, for a given vertex i, hi is

increasing in the degree of its direct neighbors.

Theorem 3 (First-order bound). Let G be connected. Then

σ2

di

(
1− 2

n

)
≤ var(α̂i) ≤

σ2

di

(
1− 2

n
+

1

λ2hi

)
.

Theorem 3 states that, for a given degree di and global connectivity measure λ2, the upper

bound on the variance of α̂i is smaller if the direct neighbors of vertex i are themselves more

strongly connected to other vertices in the network. Another implication of the theorem is

the rate refinement

var(α̂i) =
σ2

di
+ o(d−1i ), (3.4)

provided that λ2hi → ∞ as n → ∞. Furthermore, the parametric rate is achievable even

if λ2 is not treated as fixed.

12



Figure 1: three-dimensional hypercube (left) and extended hypercube (right).

In the Appendix we present a refinement of Theorem 3 that accounts for the dependence

on hi in the lower bound as well, and also adjusts the upper bound for overlap between [i]

and the sets [j1], . . . , [jdi ] for j1, . . . , jdi ∈ [i], that is, for common neighbors. These bounds

can be particularly useful when hi is small, but are vacuous when all path-two neighbors of

vertex i are also path-one neighbors. This is the case, for example, in the complete graph,

where all vertices are direct neighbors.

We illustrate the usefulness of improving on Theorem 2 in our running example of a

random graph.

Example 3 (cont’d). Consider the Erdős and Rényi (1959) random-graph model with

pn = c ln(n)/n for c > 1. Let i be a randomly chosen vertex. Then, as n → ∞, we have,

almost surely,

λ2 → 1,
di

lnn
→ c,

hi
lnn
→ c.

Consequently,

var(α̂i) =
σ2

di
+O(d−2i )

follows from Theorem 3. �

The next example deals with an analytically-tractable case where λ2 → 0 as n→∞.
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Example 4 (Hypercube graph). Consider the N -dimensional hypercube, where each of

n = 2N vertices is involved in N edges; see the left hand side of Figure 1. This is an

N -regular graph — that is, di = hi = N for all i — with the total number of edges in the

graph equaling 2N−1. Here,

λ2 =
2

N
= O((lnn)−1).

Thus, λ2 hi is constant in n. An application of Theorem 3 yields

1 + o(1) ≤ N var(α̂i)

σ2
≤ 3

2
+ o(1).

From this, we obtain the convergence rate result (α̂i−αi) = Op

(
(lnn)−1/2

)
, but the bounds

are not sufficient to determine the leading order asymptotic variance of α̂i. However, using

the bound in Theorem A.1 of the Appendix one obtains var(α̂i) = σ2/N + O(N−2), that

is, (3.4) holds. See the Appendix for details. �

Theorem 3 allows to establish the convergence rate for the hypercube, but the conditions

are too stringent to obtain (3.4). This is so because hi does not increase fast enough to

ensure that λ2 hi →∞. The following example illustrates that despite λ2 → 0 we can still

have λ2 hi →∞.

Example 5 (Extended Hypercube graph). Start with the N -dimensional hypercube G

from the previous example and add edges between all path-two neighbors in G; see the

right hand side of Figure 1 for an example. The resulting graph still has n = 2N vertices,

but now has N(N + 1) 2N−1 edges. Here,

di = hi =
N(N + 1)

2
, λ2 =

4

N + 1
,

so that λ2 hi →∞ holds, despite λ2 → 0 as n→∞. Theorem 3 therefore implies (3.4) in

this example. �

The next example illustrates that the first-order bounds can still be informative in

situations where hi does not converge to infinity.
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Figure 2: Star graph (left) and Wheel graph (right) for n = 8.

Example 6 (Star graph). Consider a Star graph around the central vertex 1, that is, the

graph with n vertices and edges

E = {(1, j) : 2 ≤ j ≤ n};

see the left hand side of Figure 2. Here, λ2 = 1 for any n while d1 = n − 1, h1 = 1 and

di = 1, hi = n− 1 for i 6= 1. For i = 1 one finds that the bounds in Theorem 3 imply that

var(α̂1) = O(n−1), and so

(α̂1 − α1) = Op

(
n−1/2

)
.

In contrast, for i 6= 1 we find λ2 hi → ∞ and thus, although (3.4) holds, these αi cannot

be estimated consistently as di = 1. �

Our last example shows the effect on the upper bound in Theorem 3 when neighbors

themselves are more strongly connected.

Example 7 (Wheel graph). The Wheel graph is obtained on combining a Star graph

centered at vertex 1 with a Cycle graph on the remaining n− 1 vertices; see the right hand

side of Figure 2. Thus, a Wheel graph contains strictly more edges than the underlying

Star graph, although none of these involve the central vertex directly. From Butler (2016),

we have

λ2 = min

{
4

3
, 1− 2

3
cos

(
2π

n

)}
,
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which satisfies λ2 ≥ 1 only for n ≤ 4, and converges to 1/3 at an exponential rate. However,

while, as in the Star graph, d1 = n − 1, we now have that hi = 3 for all i 6= 1. Hence,

λ2 h1 > 1 for any finite n and the upper bound in Theorem 3 is strictly smaller than in the

Star graph. �

3.3 Asymptotic linearity under weaker assumptions

The bounds in Theorem 3 continue to hold when the errors in (2.1) are non-normal, as the

variance of α̂i depends only on the first and second moments of the data. The asymptotic

statements obtained in the previous subsection, too, carry over. We now want to briefly

discuss how the results can be extended to also allow for heteroskedasticity and correlation

in the error term.

If we only assume that

E(u) = 0, ‖E(uu′)‖2 ≤ σ2, (3.5)

we have the following result.

Theorem 4 (Generalized first-order approximation). Suppose that (2.1) is weakened by

imposing only (3.5). Let G be connected. Then√
di (α̂i − αi) =

1√
di

∑
j∈[i]

uij + εi ,

where E(εi) = 0 and E(ε2i ) ≤ σ2/(λ2hi).

It follows that

α̂i
a∼ N

(
αi,

ω2
i

di

)
if d

−1/2
i

∑
j∈[i] uij

d→ N (0, ω2
i ) for finite ω2

i , provided E(ε2i ) = o(1), which follows from

λ2hi →∞ and σ2 <∞. Thus, the key asymptotic condition that λ2hi →∞ is unchanged

compared to the previous subsection. The corresponding discussion and examples are thus

also applicable to the more general situation of heteroscedastic and weakly correlated errors,

but now with ω2
i featuring in the asymptotic variance.
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4 Variance bounds for differences

Our focus thus far has been inference on the αi, under the constraint in (2.2),
∑

i αi = 0.

An alternative to normalizing the parameters that may be useful in certain applications is

to focus directly on the differences αi−αj for all i 6= j (Bradley and Terry, 1952). We give

corresponding versions of Theorem 2 and Theorem 3 here.

The resistance distance between vertices i and j in G is

rij :=
(
L†
)
ii

+
(
L†
)
jj
− 2

(
L†
)
ij

(Klein and Randić, 1993), and is a metric on the set V (Klein, 2002). It is linked to the

commute distance, say cij, which is the expected time it takes for a random walk to travel

from i to j and back again, through the relation

cij = 2mrij ,

see, e.g., von Luxburg, Radl and Hein (2010). For example, vertices in different clusters

of a graph have a large commute distance, relative to vertices in the same cluster of the

graph. The precise connection between the magnitude of these quantities and the precision

of statistical inference is

var(α̂i − α̂j) = σ2 rij =
σ2

2

cij
m
. (4.1)

This is the equivalent of (3.1) for differences.

The counterpart to Theorem 2 is intuitive.

Theorem 5 (Global bound for differences). Let G be connected. Then

var(α̂i − α̂j) ≤
(

1

di
+

1

dj

)
σ2

λ2
,

for all i 6= j.

Let dij := |[i] ∩ [j]| be the number of vertices that are neighbors of both i and j. Write

hij :=


(

1

dij

∑
k∈[i]∩[j]

1

dk

)−1
for dij 6= 0,

∞ for dij = 0,
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for the corresponding harmonic mean of the degrees of the vertices k ∈ [i] ∩ [j]. We have

the following theorem.

Theorem 6 (First-order bound for differences). Let G be connected. Then

σ2

(
1

di
+

1

dj
− 2(A)ij

didj

)
≤ var(α̂i−α̂j) ≤ σ2

(
1

di
+

1

dj
− 2(A)ij

didj

)
+
σ2

λ2

(
1

dihi
+

1

djhj
− 2 dij
didjhij

)
One implication of the theorem is that, when [i] = [j] but i /∈ [j] and i /∈ [j], that is, when

vertices i and j share exactly the same neighbors and are not connected themselves, we

have

var(α̂i − α̂j) = σ2

(
1

di
+

1

dj

)
, (4.2)

as, in that case, both (A)ij and the second term in the upper bound in Theorem 6 are zero.

Theorem 6 is related to work on the amplified commute distance by von Luxburg,

Radl and Hein (2014), which they propose as an alternative to the commute distance in

large graphs. However, their results are restricted to the class of random geometric graphs

and are purely asymptotic in nature. Here, we provide finite-sample bounds for arbitrary

connected graphs, using λ2 as a measure of global connectivity.

5 Variance bounds using graph partitioning

The variance bounds obtained so far depend on λ2, which is a global measure of connectivity.

Moreover, for a given vertex i, we require λ2 hi →∞ for our bounds to yield the first-order

asymptotic variance. The value of λ2 may be rather low even if most vertices are rather

densely connected. Consequently, Theorem 3 and Theorem 6 may be overly conservative.

A leading situation where this will be the case is when the network consists of clusters, so

that units within a cluster are strongly connected but the clusters themselves are connected

by relatively few links. As a remedy, in this section we obtain bounds on the variance of

α̂i that are based on partitioning the graph into subgraphs.

Consider a graph G = G(V,E). Partition V into q non-empty subsets V1, . . . , Vq. For

each r = 1, . . . , q, let Er := E ∩ (Vr × Vr), the set of edges connecting all vertices in Vr, so
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Figure 3: An approximate decomposition of a graph into two components, with many

connections inside the two components (blue edges), but few across components (red edges).

that

Gr := G(Vr, Er)

denotes the subgraph of G that is induced by Vr. Note that none of these subgraphs have

a vertex in common. Throughout this section we assume that G and each of G1, . . . ,Gq are

connected. Let EW := ∪rEr and EB := E −EW . The graph G can then be decomposed as

G = GW ∪ GB, (5.1)

for GW := G(V,EW ) and GB := G(V,EB). This is what we call a within-between decompo-

sition of the graph G; the graph GW consists of q connected components, G1, . . . ,Gq, and

the graph GB connects these q isolated components. We will let nr := |Vr| and denote by

mB the number of edges in EB.

Our variance bounds in terms of λ2 turn out to be conservative when mB/nr is small.

Example 8 (Partition into two sets). Partition V into two sets V1 and V2. An example is

given in Figure 3. Using, (3.2) we find

λ2 ≤
mB

2 min
(∑

i∈V1 di,
∑

i∈V2 di
) ≤ mB

2 min(n1, n2) mini∈V di
.
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Suppose that maxi∈V di/mini∈V di = O(1), so that all degrees grow at the same rate as

n→∞. Then λ2hi →∞ requires that

mB

min(n1, n2)
→∞. (5.2)

In this section we show that the actually-required condition for the rate result in (3.4) in

this setting is

mB

di
→∞, (5.3)

which is considerably weaker. �

Example 3 (cont’d). Specialize Example 8 by assuming that G1 and G2 are both Erdős-

Rényi graphs with pn = c ln(n)/n of equal size, that is, n1 = n2. Then

di = c log(n1) (1 + o(1))� n1,

which highlights the importance of the improvement of (5.3) over (5.2). �

To make use of the partitioning G = GW ∪GB we decompose α1, . . . , αn accordingly. We

let

βi := αi − γr, γr :=
1

nr

∑
i∈Vr

αi,

for all i ∈ Vr and each r = 1, . . . , q. We let β := (β1, . . . , βn)′ and γ := (γ1, . . . , γq)
′. The

relation between both these vectors and α = (α1, . . . , αn)′ can then be succinctly stated as

α = β + P ′ γ, (P )ri :=

 1 if i ∈ Vr,

0 otherwise.
(5.4)

This decomposition gives an alternative (infeasible) estimator of α based on estimators of

the within parameter β and the between parameter γ. The estimator of β is simply the

least-squares estimator applied to the subgraph GW , subject to the proper normalization

constraints, namely

β̂ := arg min
b∈Rn

∑
(i,j)∈EW

(yij − (bi − bj))2 s.t.
∑
i∈Vr

bi = 0, r = 1, . . . , q.
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Similarly, an (infeasible) least-squares estimator for γ, which assumes β to be known,

equals

γ̂ := arg min
g∈Rq

∑
(i,j)∈EB

(
yij − (βi + gr(i)) + (βj + gr(j))

)2
s.t.

q∑
r=1

nr gr = 0,

where we write r(·) to denote the map V → {1, . . . , q} that satisfies i ∈ Vr(i). Note that

these estimators are statistically independent of each other. The sampling variability of

these estimators can be studied, and can be used to sharpen our results on the statistical

accuracy of α̂.

Let LW and LB be the n×n Laplacian matrices of the graphs GW and GB, respectively.

We also introduce H := diag(n1, . . . , nq) and the q × q matrix

L∗ := P LBP
′,

which is the Laplacian matrix of the multigraph G∗ with vertex set {1, . . . , q}, obtained

from G by edge contraction of the subgraphs Gr, r ∈ {1, . . . , q}. Analogous to Theorem 1

for α̂ one can show the following lemma.

Lemma 2 (Variances of component estimators). Let G and G1, . . . ,Gq be connected. Then

β̂ ∼ N (β, σ2L†W ), and γ̂ ∼ N (γ, σ2Linv
∗ ),

for Linv
∗ := H−1/2(H−1/2L∗H

−1/2)†H−1/2.2

If we label the elements of V such that V1 = {1, . . . , n1}, V2 = {n1+1, . . . , n2}, etc, then

LW is a block-diagonal matrix with q non-zero blocks given by Lr, the Laplacian of Gr,

r = 1, . . . , q. The Moore-Penrose inverse L†W is also block-diagonal with q non-zero blocks

given by L†r. The first part of Lemma 2 therefore is simply Theorem 1 applied separately

to each of the connected components of GW , and all our results from the previous sections

apply. For example, with dWi the degree of vertex i in GW , hWi the corresponding harmonic

mean, and λr2 the second-smallest eigenvalue of the normalized Laplacian of Gr, we have

var(β̂i) =
σ2

dWi
+ o

(
1

dWi

)
, (5.5)

2 Linv
∗ is a pseudoinverse of L∗, but unless n1 = n2 = . . . = nq it is not the Moore-Penrose pseudoinverse.
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provided that λ
r(i)
2 hWi → ∞ as n → ∞. The second part of the lemma deals with the

between component of the graph. The following example illustrates the result for the case

where q = 2.

Example 8 (cont’d). When V is partitioned into two sets V1 and V2 we have that

L∗ =

 mB −mB

−mB mB

 , Linv
∗ =

1

n2mB

 n2
2 −n1n2

−n1n2 n2
1

 .

Lemma 2 then yields

var (γ̂1) =
(n2

n

)2 σ2

mB

, var (γ̂2) =
(n1

n

)2 σ2

mB

, var (γ̂1 − γ̂2) =
σ2

mB

.

As one would expect, the variance of γ̂ crucially depends on the magnitude of mB, but also

on the relative size n1 and n2 of the two graph components. �

The following theorem allows us to use Lemma 2 to bound the variance of our estimator

of interest, α̂. To state the result we introduce

κ := max
r:nr>1

min
i∈Vr

2

λr2

dBi
dWi

,

where, analogous to dWi , we denote by dBi the degree of vertex i in the graph GB. If nr = 1

for all r ∈ {1, . . . , q}, then we define κ = 0.

Theorem 7 (Variance bounds from graph partitioning). Let G and G1, . . . ,Gq be connected.

Then, for any v ∈ Rn,

− κ var
(
v′β̂
)
− 2κ1/2

[
var
(
v′β̂
)

var (v′P ′γ̂)
]1/2

≤ var (v′α̂)−
[
var
(
v′β̂
)

+ var (v′P ′γ̂)
]

≤ κ var (v′P ′γ̂) + 2κ1/2
[
var
(
v′β̂
)

var (v′P ′γ̂)
]1/2

.

The theorem shows that, if κ is small, the variance of α̂ is close the the variance of an

infeasible estimator of α constructed from (5.4), which equals

σ2(L†W + P ′Linv
∗ P ).
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One can also show that not only their variances but actually the estimators α̂ and β̂+P ′γ̂

themselves are close to each other when κ is small; see Section S.2 of the supplementary

material.

Only components with nr > 1 enter into the definition of κ. For those components

we need dBi � λr2 d
W
i , uniformly over i ∈ Vr, for κ to be small. This requires that for

every vertex i ∈ Vr the number of between edges is much smaller than the number of

within edges, that is, the vertices need to be much more connected within components

than between components.

Example 8 (cont’d). Consider the example with two components, V = V1 ∪ V2. Assume

that the mB edges between V1 and V2 are chosen such that maxi∈V d
B
i = O(1). For example,

if the vertices of those edges are drawn without repetition from V1 and V2, then we have

maxi∈V d
B
i = 1, but this requires mB ≤ max(n1, n2). If we furthermore assume that

mini∈V λ
r(i)
2 dWi → ∞, then we have κ → 0. This also implies that λ

r(i)
2 hWi → ∞, so that

(5.5) holds. Applying Theorem 7 we then find, as n→∞,

var(α̂i) � σ2

(
1

di
+
(n2

n

)2 1

mB

)
, var(α̂j) � σ2

(
1

dj
+
(n1

n

)2 1

mB

)
,

and

var(α̂i − α̂j) � σ2

(
1

di
+

1

dj
+

1

mB

)
,

where we write di instead of dWi , because di/d
W
i = 1 + dBi /d

W
i → 1 under our assumptions.

Thus, if mB/di → ∞, then our original first-order results (3.4) still holds. For mB values

that are smaller the asymptotic variance needs to be adjusted. Finally, if n1/n2 → c ∈

(0,∞) and mB/di → 0, then the asymptotic variance is completely dominated by the weak

global connectivity of G, and the local structure of the graph is no longer of first-order

relevance. �

Example 9 (Partition into three sets). Consider an analogous situation as in Example 8,

only now with q = 3 partitions, each of which containing many vertices; as in Figure 4.
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Figure 4: An approximate decomposition of a graph into three components, with many

connections inside each of the three components (blue edges), but few across components

(red, green and cyan edges).
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For r, s ∈ {1, 2, 3}, with r 6= s, let mrs be the number of edges between Vr and Vs. Then

L∗ =


m12 +m13 −m12 −m13

−m12 m12 +m23 −m23

−m13 −m23 m13 +m23

 .

For the pseudo-inverse Linv
∗ we calculate(
Linv
∗
)
11

=
n2
3m12 + n2

2m13 + (n2 + n3)
2m23

n2 (m12m13 +m12m23 +m13m23)
,

and 
1

0

−1


′

Linv
∗


1

0

−1

 =
m12 +m23

m12m13 +m12m23 +m13m23

.

Thus, if we again assume that maxi∈V d
B
i = O(1) and mini∈V λ

r(i)
2 dWi → ∞, applying

Theorem 7 for i ∈ V1 and j ∈ V3 we have

var(α̂i) � σ2

(
1

di
+
n2
3m12 + n2

2m13 + (n2 + n3)
2m23

n2 (m12m13 +m12m23 +m13m23)

)
,

and

var(α̂i − α̂j) � σ2

(
1

di
+

1

dj
+

m12 +m23

m12m13 +m12m23 +m13m23

)
.

The asymptotic result for var(α̂i) again depends not only on m12, m13 and m23, but also on

the relative component sizes n1, n2 and n3, while those component sizes do not matter at all

for the asymptotic result on var(α̂i−α̂j). Our original first-order results (4.2) for var(α̂i−α̂j)

still holds if, for example, either m13/min(di, dj)→∞ or min(m12,m23)/min(di, dj)→∞.

An interesting special case is m12 = 0, where the result simplifies to

var(α̂i − α̂j) � σ2

(
1

di
+

1

dj
+

1

m12

+
1

m23

)
.

This simple formula generalizes to four and more components. For example, for q = 4 with

m13 = m14 = m24 = 0 we find for i ∈ V1 and j ∈ V4 under the asymptotic assumptions

above that var(α̂i − α̂j) � σ2(1/di + 1/dj + 1/m12 + 1/m23 + 1/m34). �
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Figure 5: An approximate decomposition of a graph into three components with n2 = 1

and m13 = 0.

Theorem 7 is also applicable if nr = 1 for some r ∈ {1, . . . , q}, as the following example

illustrates.

Example 10 (Subgraphs connected by individual vertices). Take the setup of Example 9

but now set

n2 = 1, n1, n3 = large , m13 = 0.

This situation is depicted in Figure 5. This is a setting where one vertex i ∈ V2 provides

the only connection between V1 and V3; the degree of this connecting vertex is m12 +m23.

For r ∈ {1, 3} we again assume maxi∈Vr d
B
i = O(1) and mini∈Vr λ

r
2d
W
i →∞. Application of

Theorem 7 then gives the same asymptotic conclusions as in Examples 9, in particular for

i ∈ V1 and j ∈ V3 we again find

var(α̂i − α̂j) � σ2

(
1

di
+

1

dj
+

1

m12

+
1

m23

)
.

This example can again be extended. If we introduce an additional vertex i ∈ V4 that

also connects the subgraphs V1 and V3, and we have m24 = 0 and n4 = 1, then applying

Theorem 7 with q = 4, i ∈ V1 and j ∈ V3 yields

var(α̂i − α̂j) � σ2

 1

di
+

1

dj
+

((
1

m12

+
1

m23

)−1
+

(
1

m14

+
1

m34

)−1)−1 .

The result for three and more connecting vertices is analogous. �
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6 Weighted graphs

So far we have considered simple graphs. Our variance bounds generalize to weighted

graphs. Let G be an undirected weighted graph with associated (weighted) adjacency

matrix A. A simple example is a multigraph, which differs from a simple graph in that

multiple edges may exist between vertices. In this case, (A)ij equals the number of edges

between i and j. More generally, A is symmetric, has diagonal entries equal to zero, and

has off-diagonal entries that are non-negative.

Our variance bounds generalize to situations where an estimator α̌, constructed from

G, has variance L† for

L = D −A,

where, as before, D is a diagonal (weighted) degree matrix with entries di =
∑n

j=1(A)ij.

A symmetric matrix L is such a Laplacian matrix if and only if

(i) All off-diagonal elements of L are negative;

(ii) All column sums of L are equal to zero;

(iii) rank (L) = n− 1.

The variance bounds in Theorems 2–7 continue to apply, on setting σ = 1 and redefining

the harmonic means

hi =

(
1

di

∑
j∈V

(A)ij
dj

)−1
, hij =

(
1

dij

∑
k∈V

(A)ik (A)jk
dk

)−1
,

with dij =
∑

k∈V (A)ik (A)jk. Our proofs of the theorems fully cover the weighted-graph

case.

We give some examples of weighted graphs.

Example 11 (Weighted least squares). We generalize the least-squares estimator in (2.3)

to situations where (i, j) ∈ E interact on mij ≥ 1 occasions and errors are heteroskedastic
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across meetings. Using obvious notation, the weighted least-squares estimator of α equals

α̌ := arg min
a∈{a∈Rn:a′ιn=0}

∑
(i,j)∈E

mij∑
k=1

(
yijk − (ai − aj)

σk

)2

.

Let A be the weighted adjacency matrix with entries

(A)ij :=


∑mij

k=1 σ
−2
k if (i, j) ∈ E or (j, i) ∈ E,

0 otherwise.

and let L be the associated Laplacian matrix. Then Theorem 1 can be suitably extended

to yield α̌ ∼ N (α,L†). �

Example 12 (Profiled estimator for bipartite graph). Consider a bipartite graph G, where

V is partitioned as V1 ∪ V2 and edges are formed between V1 and V2 but not within these

sets. Let n1 := |V1| and n2 := |V2|. The Laplacian is

L = D −A =

 D1 0

0 D2

−
 0 C

C ′ 0

 ,

where D1 and D2 are n1 × n1 and n2 × n2 diagonal degree matrices and C is the n1 × n2

upper-right block of the adjacency matrix of the graph. Decompose α accordingly as

α = (α′1,α
′
2)
′. The corresponding estimator α̂ is defined in (2.3) for the case of a simple

graph, but the following construction works for any estimator that satisfies var(α̂) = σ2L†,

with L being the Laplacian matrix of a simple, weighted or multigraph, as described above

(we may simply have σ = 1). We also define

α̌2 := α̂2 − α̂2, α̂2 :=
1

n2

∑
i∈V2

α̂i.

corresponding to the natural normalization ι′n2
α̌2 = 0. By the block-inversion formula we

find

var(α̌2) = Ľ†, Ľ := σ−2
(
D2 −C ′D−11 C

)
.

This is the variance formula after profiling-out all the parameters corresponding to vertices

in V1. It can be verified that Ľ satisfies the Conditions (i)–(iii). The adjacency matrix

28



Figure 6: A simple bipartite graph G (left) with links between V1 (red vertices) and V2

(yellow vertices), and the induced weighted graph Ǧ (right) on V2 alone resulting from

profiling out the parameters associated with V1.

of the corresponding graph, say Ǧ, that involves only the vertices in V2 is given by the

off-diagonal part of σ−2C ′D−11 C. Thus, even when starting with a simple bipartite graph

G we naturally obtain a weighted graph Ǧ when profiling out some of the parameters.

Moreover, two vertices in Ǧ are connected if and only if they are path-two neighbors in the

original graph G. �

An interesting application of Example 12 is Example 2.

Example 2 (cont’d) (Matched employer-employee data). Consider the wage regression

with panel data, where the log wage of worker i in firm j at time t equals

yijt = µi + ηj + uijt, t = 1, . . . ,mij.

To maintain focus, assume that the uijt are i.i.d. Then, with α = (µ′,−η′)′ as discussed

before, the pooled (ordinary) least squares estimator satisfies

var(α̂) = σ2L†,

where L is the Laplacian associated with the adjacency matrix

(A)ij = (A)ji =

 mij if (i, j) ∈ E,

0 otherwise.
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This illustration is interesting because, here, the µi cannot be estimated precisely due to

limited cross-firm mobility (Andrews, Gill, Schank and Upward, 2008). It therefore makes

sense to focus on the ηj, that is, on the firm effects. Profiling-out µ and letting

η̌ := η̂ − η̂, η̂ :=
1

n2

∑
i∈V2

η̂i,

where n2 := |V2| is the number of firms, application of Example 12 gives

var(η̌) = Ľ†,

where Ľ is the n2 × n2 Laplacian matrix associated with the weighted n2 × n2 adjacency

matrix

(Ǎ)jk :=


σ−2

∑
i∈[j]∩[k]

mijmik

di
for j 6= k,

0 for j = k,

where di =
∑

j∈V mij is the degree of i ∈ V1, that is, the total number of observations for

that worker, and [j]∩ [k] is the set of all workers for which wages are observed both in firm

j and in firm k. In this example the vertex set of of the weighted graph Ǧ are the firms.

Two firms are connected by an edge if there is at least one worker who has worked in both

firms. The weight (Ǎ)jk of the edge is larger the more workers there are connecting firms

j and k, and the longer these workers have worked in both firms. Figure 6 provides an

illustration of a simple bipartite graph (with all mij = 1) for workers (red vertices) and

firms (yellow vertices), given in the left plot, and the induced weighted graph featuring

only firms, given in the right plot. The thickness of the edge between (j, k) in the plot of

Ǧ reflects the magnitude of the weight (Ǎ)jk. �

7 Conclusions and outlook

The model we have discussed has the feature that each observed outcome depends on

exactly two fixed-effect parameters, and we accordingly consider the graph G where each

parameter is a vertex and observations are edges connecting those vertices. Examples
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are the Bradley and Terry (1952) model for paired comparisons, wage regressions with

worker and firm fixed effects (e.g. Abowd, Kramarz and Margolis, 1999), gravity equations

with exporter and importer fixed effects (e.g. Harrigan, 1996), and panel data models with

individual specific fixed effects and time dummies. In applications of such models it is

often the case that not all possible pairings of parameters are actually observed in the

data, implying that the underlying G is not a complete graph or a complete bipartite

graph, but has a more complicated connectivity structure.

We have derived bounds on the variance of the fixed-effect estimators for such network

data applications. The bounds highlight the role of both global and local measures of

network connectivity on the precision of statistical inference.

The local-connectivity measures that are relevant for our first-order variance bounds on

the estimator α̂i of the fixed effect αi are the degree di, that is, the number of observations

that depend on the parameter αi, and the harmonic mean hi of the degrees of the direct

neighbors of vertex i. For the second-order bound (given in the appendix) the degrees of

the path-two neighbors are also important as local measures of connectivity. These are

very natural descriptors of the local connectivity of the vertex i.

For most of our variance bounds the global connectivity of the graph is described by

the second-smallest eigenvalue of the normalized graph Laplacian matrix, which is well

studied in the graph theory literature (e.g. Chung, 1997), and is closely related to other

conventional connectivity measures like the Cheeger constant. We also discuss cases where

our bounds based on those global connectivity measures are crude, and we derive more

precise variance bounds for situations where the graph consists of well-connected clusters

that are only connected by relatively few observations with each other.

Our variance bounds provide new insight into the potential for accurate statistical

inference from network data that highlight the structure of the network. This can aid

when deciding on sampling design or when performing sample selection. The bounds also

readily yield conditions for consistent estimation and asymptotically valid inference under

non-normality.

We have focused on linear models in this paper. In ongoing work we are extending
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our analysis to nonlinear models, such as the original Bradley and Terry (1952) model. In

that case, again, the variance of the estimator takes the form of (the inverse of) a weighted

Laplacian. A complication, however, is the presence of bias in the estimator coming from

the nonlinearity. Like the variance, the magnitude of the bias is driven by the structure of

the network, and so requires careful analysis. For example, it is not guaranteed that, even

in regular problems, the bias is small relative to the standard deviation.

A restriction of our model is that each observation involves only two model parameters,

which enter complementarily (that is, the off-diagonal Hessian elements have the opposite

sign from the diagonal Hessian elements, implying that the Hessian of the log-likelihood can

be interpreted as a graph Laplacian). Focusing on such a model allows us to connect very

closely with the graph-theory literature, in particular with the results on global-connectivity

measures for graphs. Models where more than two fixed-effect parameters determine one

observation would lead to hypergraphs. Extrapolating our results, one would again expect

that the precision of statistical inference in such models is governed by the local and global

connectivity of the underlying hypergraph, but formalizing this relation is left for future

research.

Appendix Second-order bound

This section discusses an improvement on the bounds in Theorem 3. Recall that dij =

|[i] ∩ [j]| denotes the number of vertices that are direct neighbors of both vertex i and

vertex j. For j ∈ [i], let dj,i := dj − dij, the number of direct neighbors of j that are not

also direct neighbors of i. The following example illustrates that dj,i can be a more relevant

measure than dj for the dependence of var(α̂i) on the connectedness of a neighbor j of i.

Example 6 and 7 (cont’d). Both for the Star and for the Wheel graph example above

one finds

var(α̂1) =
σ2

n

n− 1

n

by direct calculation. Thus, the additional edges in the Wheel graph between the neighbors

of vertex i = 1 relative to the Star graph do not lower the variance of α̂1. For i 6= 1 we
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have di = 1 for the Star graph but di = 3 for the Wheel graph, while for both graphs we

have di,1 = 1. �

Let

[i]2 :=
⋃
j∈[i]

[j] \ {i},

the set of all path-two neighbors of vertex i. Analogous to the definition of the harmonic

mean hi above we let

hi :=

 1

di

∑
j∈[i]

1

dj,i

−1 , hi;2 :=

 1

|[i]2|
∑
j∈[i]2

1

dj

−1 .
In addition, for i ∈ V we define the set

Wi =
{

(j, k, `) ∈ V 3 : k 6= i & (i, j) ∈ E & (j, k) ∈ E & (k, `) ∈ E
}
,

which is the set of all triplets (j, k, `) such that (i, j, k, `, i) is a closed walk in G that reaches

distance two from i (thus ruling out k = i). Notice that we may have j = `, that is, the

closed walk need not be a simple cycle.

Theorem A.1 (Second-order bound). Let G be connected and let hi > 1. Then

σ2

di(1− h−1i )

(
1− 2

n
− 2

n

di
hi

)
≤ var(α̂i) ≤

σ2

di(1− h−1i )

((
1− 2

n
− 2

n

di
hi

)
+

Ci
λ2 hi;2(hi − 1)

)
where Ci := hi hi;2 d

−1
i

∑
(j,k,`)∈Wi

(
dk dj,i d`,i

)−1
.

Including the factor hi hi;2 d
−1
i in the definition of Ci guarantees that Ci is naturally scaled

in many examples; see below.

An asymptotic implication of Theorem A.1 is that

σ2

di(1− h−1i )
+O

(
1

min(di, hi)n

)
≤ var(α̂i) ≤

σ2

di(1− h−1i )
+O

(
1

min(di, hi)n

)
+ o(d−1i h−1i ),

(A.1)

provided λ2hi;2/Ci → ∞ as n → ∞ and hi ≥ 1 + ε for some constant ε > 0 independent

of n. Notice that this does not require that hi → ∞, and the refinement obtained here
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relative to the first order asymptotic result (3.4) is in fact particularly important for those

cases where hi and hi are small.

The term Ci requires further discussion. Notice that (j, k, `) ∈ Wi implies j, ` ∈ [i] and

k ∈ [i]2, and for any tensor aijk` we have∑
(j,k,`)∈Wi

aijk` =
∑
k∈[i]2

∑
j∈[i]∩[k]

∑
`∈[i]∩[k]

aijk`. (A.2)

Applying this to aijk` = 1 and using that
∑

j∈[i]∩[k] = dik we obtain

|Wi| =
∑
k∈[i]2

d2ik.

Thus, the number of elements in Wi depends on the number of path-two neighbors of i

and on the typical number of neighbors that i has in common with one of its path-two

neighbors. The cases of interest in the following are those where the typical value of dik is

small compared to the degree di for k ∈ [i]2, so that the ratio between |Wi| and |[i]2| is not

large. This is true in many interesting examples. Applying (A.2) to Ci gives

Ci = hi hi;2
1

di

∑
k∈[i]2

1

dk

 ∑
j∈[i]∩[k]

1

dj,i

2

=
|[i]2|
di hi

 1

|[i]2|
∑
k∈[i]2

d2ik

(
hi;2
dk

) 1

dik

∑
j∈[i]∩[k]

hi
dj,i

2  .
Using the last result we want to argue that Ci is of order one in cases where dik is not

large for k ∈ [i]2. To do so, first notice that the sums in the last expression for Ci are

all self-normalized (i.e., divided by the number of terms that is summed over). We also

typically have |[i]2|
di hi

= O(1), because

|[i]2|
di
≤ 1

di

∑
j∈[i]

dj,i,

and one expects the arithmetic mean
(

1
di

∑
j∈[i] dj,i

)
to be of the same order as the harmonic

mean hi.

In the following we present concrete examples where dik is relatively small for k ∈ [i]2

and thus Ci is of order one asymptotically.
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Example 3 (cont’d). Consider the Erdős and Rényi (1959) random-graph model with

pn = c (lnn)/n. Let c > 1 to guarantee that the graph is connected as n → ∞. In this

model for randomly picked (i, j) ∈ E we have dj,i = di[1 + O(pn)], that is, the difference

between dj,i and di is typically very small. Also, for randomly picked i ∈ V and k ∈ [i]2

we have dik = 1 + O(np2n), and therefore |Wi| = |[i]2| [1 + O(np2n)] = n2p2n + O(n3p4n).

We therefore have λ2 → 1, di/(lnn) → c, dj,i/(lnn) → c, hi/(lnn) → c, hi/(lnn) → c,

hi;2/(lnn)→ c and Ci → 1, almost surely, as n→∞. Applying Theorem A.1 thus gives

var(α̂i) =
σ2

di(1− h−1i )
+O

(
d−1i h−1i h−1i;2

)
,

which is simpler than (A.1), because in this example 3-cycles are relatively rare, implying

that hi and hi are typically very close to each other. �

Example 2 (cont’d) (Matched employer-employee data). In the worker-firm example the

graph G is bipartite, so that two neighboring vertices have no direct neighbors in common,

implying that di,j = di and hi = hi. Let i ∈ V2 be a firm. Then, j ∈ [i] are workers,

and the number of observations dj for workers are typically small in this application, so

that the harmonic mean hi is typically small. Also, j ∈ [i]2 are firms, and the number of

observations dj for firms are often large in this application, so the harmonic mean hi;2 is

often large. Therefore, the second-order bound in Theorem A.1 is particularly simple in this

example (because the distinction between di,j and di is irrelevant), and is also particularly

important (because hi = hi is small, so that the improvement relative to the first-order

bound is very relevant). For simplicity, we consider the case of a simple graph where dj = 2

for all workers j ∈ V1.3 Then, for i ∈ V2 the bounds in Theorem A.1 become

2σ2

di

(
1− 2

n
− di
n

)
≤ var(α̂i) ≤

2σ2

di

(
1− 2

n
− di
n

)
+

2σ2Ci
λ2 di hi;2

,

3This occurs if we observe wages annually for two years, and we drop workers from the dataset that

do not change firms in those two years, because their observations are not informative for the firm fixed

effects. For all remaining workers we then have exactly dj = 2 log wage observations and the graph is

simple.
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where

Ci =
hi;2
2

1

di

∑
j∈[i]2

d2ij
dj
≤ 1

2
max
j∈[i]2

d3ij ,

where for the last inequality we used the definition of hi;2 and |[i]2| ≤ di maxj∈[i]2 dij. For

example, if any two firms are connected by at most two workers, then we have dij ≤ 1 and

therefore Ci = 1/2. Thus, the leading order asymptotic variance is increased by a factor of

two compared to the first order result in (3.4). �

It is also possible that Theorem A.1 cannot be used to obtain a refinement of the

variance as in (A.1) but that it can justify the first-order rate in (3.4) for cases where

this first-order asymptotic variance of α̂i does not follow from Theorem 3. The following

example illustrates this.

Example 4 (cont’d). For N ≥ 2 consider the N -dimensional hypercube graph, which

has n = 2N edges, as introduced above. In that case, firstly, we have di = N for all i ∈ V .

Secondly, there are no edges among the vertices in [i], implying that di,j = di = N and

hi = hi = N for all possible i, j ∈ V . Thirdly, we have |[i]2| = N(N − 1)/2, and for all

i ∈ V and k ∈ [i]2 we have dik = 2 implying that |Wi| = 4 |[i]2| = 2N(N − 1). We thus find

Ci = 2(N − 1)/N . The bounds in Theorem A.1 thus become

σ2

N (1−N−1)

(
1− 4

2N

)
≤ var(α̂i) ≤

σ2

N (1−N−1)

(
1− 4

2N
+

2

λ2 N2

)
.

Because λ2 = 2/N we thus find,

var(α̂i) =
σ2

N
+O(N−2),

as N →∞. �
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SUPPLEMENTARY MATERIAL FOR

‘FIXED-EFFECT REGRESSIONS ON NETWORK DATA’

S.1 Proofs

PROOF OF LEMMA 1 (EXISTENCE)

The estimator is defined by the constraint minimization problem in (2.3). For convenience

we express the constraint in quadratic form, (a′ιn)2 = 0. By introducing the Lagrange

multiplier λ > 0 we can write

α̂ = arg min
a∈Rn

(y −Ba)′(y −Ba) + λ (a′ιn)
2
.

Solving the corresponding first-order condition we obtain

α̂ = (B′B + λ ιnι
′
n)
−1
B′y.

Here, the matrix B′B + λ ιnι
′
n is invertible, because L = B′B only has a single zero

eigenvalue (because we assume the graph to be connected) with eigenvector ιn, so that

adding λ ιnι
′
n gives a non-degenerate matrix. The matrices B′B and ιnι

′
n commute, and

by properties of the Moore-Penrose inverse we thus have

(B′B + λ ιnι
′
n)
−1

= (B′B)
†

+ λ−1 (ιnι
′
n)
†
.

We furthermore have (ιnι
′
n)† = n−2ιnι

′
n and, because Bιn = 0, the contribution from

(ιnι
′
n)† drops out of the above formula for α̂, and we obtain α̂ = (B′B)†B′y. This

concludes the proof.

PROOF OF THEOREM 1 (SAMPLING DISTRIBUTION)

As y = Bα+ u, Lemma 1 gives

α̂ = α+ (B′B)
†
B′u.

Conditional on B, u ∼ N (0, σ2 In), and so

α̂ ∼ N
(
α, σ2 (B′B)†

)
,
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where the variance expression follows from properties of the Moore-Penrose pseudoinverse.

This concludes the proof.

PROOF OF COROLLARY 1 (INFERENCE)

The result follows from Theorem 1 by standard arguments on the F -statistic in linear

regression models. Here, the degrees-of-freedom correction from m − n to m − (n − 1)

arises, because the projection matrix

Im −B (B′B)
†
B′

has rank m−(n−1). Notice that althoughB has n columns, we have that rankB = (n−1).

This concludes the proof.

PROOF OF THEOREMS 2 AND 5 (ZERO-ORDER BOUNDS)

There are no isolated vertices, because G is connected and n > 2. That is, di > 0 for all i,

and so D is invertible. From Theorem 1 and the definition of the normalized Laplacian S

we find

var(α̂) = σ2D−
1
2S†D−

1
2 .

In the following we write M1 ≤M2 for symmetric matrices M1 and M2 to indicate that

M2−M1 is positive semi-definite. We have S† ≤ λ−12 In, because λ2 is the smallest non-zero

eigenvalue of S. Therefore,

var(α̂) ≤ σ2

λ2
D−1.

This result implies that, for any vector v ∈ Rn,

var(v′α̂) = v′var(α̂)v ≤ σ2

λ2
v′D−1v =

σ2

λ2
v′ diag(d−11 , d−12 , . . . , d−1n )v.

The bound in Theorem 2 follows on setting v = ei, the ith unit vector. The corresponding

bound for the differences in Theorem 5 follows on setting v = ei − ej for i 6= j. This

concludes the proof.

ii



PROOF OF THEOREMS 3 AND 6 (FIRST-ORDER BOUNDS)

We first show that, if G is connected, then

0 ≤
[
var(α̂)− σ2

(
D−1 +D−1AD−1 − ιnι

′
nD

−1

n
− D

−1ιnι
′
n

n

)]
≤ σ2

λ2
D−1AD−1AD−1.

(S.3)

Theorems 3 and 6 will then follow readily. First note that, because G is connected, we

know that the zero eigenvalue of the Laplacian matrix L has multiplicity one, and the

corresponding eigenvector is given by ι. The Moore-Penrose pseudoinverse of L therefore

satisfies L†L = In − n−1 ιnι
′
n, where the right hand side is the idempotent matrix that

projects orthogonally to ιn. Using that L = D −A and solving this equation for L† gives

L† = D−1 +L†AD−1 − n−1 ιnι′nD−1. (S.4)

The Laplacian is symmetric, and so transposition gives

L† = D−1 +D−1AL† − n−1D−1ιnι′n. (S.5)

Replacing L† on the right-hand side of (S.4) by the expression for L† given by (S.5) yields

L† = D−1 +D−1AD−1 +D−1AL†AD−1 − n−1ιnι′nD−1 − n−1D−1ιnι′n,

where we have also used the fact that D−1Aιn = ιn. Re-arranging this equation allows us

to write

L† −
(
D−1 +D−1AD−1 − n−1ιnι′nD−1 − n−1D−1ιnι′n

)
= D−1AL†AD−1.

Because L ≥ 0 and by the arguments in the preceding proof we also have the bounds

0 ≤ L† ≤ λ−12 D
−1.

Put together this yields

0 ≤ L† −
(
D−1 +D−1AD−1 − n−1ιnι′nD−1 − n−1D−1ιnι′n

)
≤ λ−12 D

−1AD−1AD−1,

and multiplication with σ2 gives the bounds stated in (S.3).
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To show Theorems 3 and 6 we calculate, for i 6= j,

e′iD
−1 ei = d−1i ,

e′iD
−1 ej = 0,

e′iD
−1AD−1 ei = 0,

e′iD
−1AD−1 ej = d−1i d−1j (A)ij,

e′iD
−1AD−1AD−1 ei = d−1i h−1i ,

e′iD
−1AD−1AD−1 ej = d−1i d−1j dijh

−1
ij ,

e′i ιnι
′
nD

−1 ei = ι′nD
−1 ei = d−1i ,

e′i ιnι
′
nD

−1 ej = ι′nD
−1 ej = d−1j .

Combining these results with (S.3) gives the bounds on var(α̂i) = e′ivar(α̂)ei and var(α̂i−

α̂j) = (ei − ej)′var(α̂)(ei − ej) stated in the theorems and concludes the proof.

PROOF OF THEOREM 4 (GENERALIZED APPROXIMATION)

From the proof of Lemma 1, the least-squares estimator satisfies the first-order condition

Lα̂ = B′y.

Using that y = Bα+ u and that L = D −A this yields D1/2 (α̂−α) = D−1/2B′u+ ε,

where

ε := D−1/2A (α̂−α) .

Note that this is the vector version of the expression for
√
di(α̂i − αi) as given in the

theorem. From α̂ − α = (B′B)†B′u it follows that E(ε) = 0 while from the assumption

that E(uu′) ≤ σ2In we have that

E(εε′) = D−1/2A(B′B)†B′ E (uu′)B(B′B)†AD−1/2 = σ2D−1/2AL†AD−1/2.

As in the preceding proofs, we still have that L† ≤ λ−12 D
−1, and so

E(εε′) ≤ σ2λ−12 D
−1/2AD−1AD−1/2.

From this we find

E(ε2i ) ≤
σ2

λ2 hi
.

Thus, if σ2λ−12 h−1i → 0 as n → ∞, then by Markov’s inequality we have εi →p 0. By the

continuous mapping theorem we therefore have√
di (α̂i − αi)→p

1√
di

∑
j∈[i]

uij.
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Moreover, if 1√
di

∑
j∈[i] uij is asymptotically normal, then so is

√
di (α̂i − αi). This concludes

the proof.

PROOF OF LEMMA 2 (VARIANCE OF COMPONENT ESTIMATORS)

Additional notation. Without loss of generality we relabel the elements of V such that

V1 = {1, . . . , n1}, V2 = {n1 + 1, . . . , n2}, . . . Vq = {n− nq + 1, . . . , n}.

We decompose β = (β′1,β
′
2, . . . ,β

′
q)
′ and β̂ = (β̂′1, β̂

′
2, . . . , β̂

′
q)
′, where each βr and β̂r are

nr column vectors. Note that the Laplacian matrix LW is block-diagonal; moreover,

LW = diag (L1,L2, . . . ,Lq) ,

where Lr is the Laplacian of the graph Gr. We also decompose A = AW +AB, where AW

andAB are the adjacency matrix of GW and GB, respectively, and writeDW = diag (AW ιn)

and DB = diag (ABιn) for the corresponding degree matrices. We have LW = DW −AW

and LB = DB −AB. We also relabel the elements of E such that

EB = {1, . . . ,mB}, EW = {mB + 1, . . . ,m},

and correspondingly we decompose B = (B′B,B
′
W )′, where BB and BW are mB × n and

mW ×n matrices, respectively, whose rows correspond to edges in GB and GW , respectively.

We then have L = B′B = B′WBW +B′BBB = LW +LB.

Inverse expressions. Notice that, under the conventions from above, P is simply given

by

P =


ι′n1

0 . . . 0

0 ι′n2
. . . 0

...
...

. . .
...

0 0 . . . ι′nq

 .

v



We define the block-diagonal n× n matrix

M = In − P ′H−1P =


In1 − n−11 ιn1ι

′
n1

0 . . . 0

0 In2 − n−12 ιn2ι
′
n2

. . . 0
...

...
. . .

...

0 0 . . . Inq − n−1q ιnqι
′
nq

 .

Some useful relations are H = PP ′, M 2 = M , PM = 0, P ′ιq = ιn, Pιn = Hιq, and

thus also H−1Pιn = ιq. The various pseudo-inverses that appear in the following satisfy

L†WLW = M ,(
H−1/2L∗H

−1/2)† (H−1/2L∗H−1/2) = Iq − n−1H1/2ιqι
′
qH

1/2,(
P ′H−1L∗H

−1P
)† (
P ′H−1L∗H

−1P
)

= P ′H−1P − n−1 ιnι′n,(
LW + P ′H−1L∗H

−1P
)† (
LW + P ′H−1L∗H

−1P
)

= In − n−1 ιnι′n, (S.6)

where on the right-hand side always appears the projector orthogonal to the null-space of

the respective matrix, e.g. we have LWM = LW . Using that
(
H−1/2P

)†
= P ′H−1/2 and

the definition of Linv
∗ we find that(

P ′H−1L∗H
−1P

)†
= P ′H−1/2

(
H−1/2L∗H

−1/2)†H−1/2P = P ′Linv
∗ P .

Proof of Lemma 2. We derive the result for β̂ first. By applying Theorem 1 to each Gr
separately we obtain

β̂r ∼ N (βr, σ
2L†r),

for r = 1, . . . , q. Note that we do not rule out nr = 1 (i.e., Gr may be a graph with one

vertex and no edges), but in this case we simply have β̂r = βr = Lr = L†r = 0, so the

result for β̂r holds trivially. Independence of the errors uij across observations implies

independence of β̂r and β̂s for all r 6= s. We thus find β̂ ∼ N (β, σ2L†W ), which is the

result in the theorem.

Now turn to γ̂. Analogous to the proof of Lemma 1 we can write the minimization

problem for γ̂ as

γ̂ = arg min
g∈Rq

(y −BWβ −BBP
′g)′(y −BWβ −BBP

′g) + λ (g′Pιn)
2
,
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where λ > 0 is a Lagrange multiplier. Solving the corresponding first-order condition gives

γ̂ = (PB′BBBP
′ + λPιnι

′
nP
′)
−1
PB′B(y −BWβ)

= (PB′BBBP
′ + λPιnι

′
nP
′)
−1

[(PB′BBBP
′ + λPιnι

′
nP
′)γ + PB′Bu] ,

= γ + (PB′BBBP
′ + λPιnι

′
nP
′)
−1
PB′Bu,

where in the second step we used the model y = BWβ + BBP
′γ + u, and we added a

term proportional to λ in the square brackets, which is zero due to the normalization of γ,

which can be written as ι′nP
′γ = 0. Notice that PB′BBBP

′ = PLBP
′ = L∗. However,

compared to the proof of Lemma 1 the difficulty is that, here, the matrices L∗ and Pιnι
′
nP
′

do not commute. To resolve this problem we rewrite the last result as

γ̂ − γ = H−1/2
(
H−1/2L∗H

−1/2 + λH−1/2Pιnι
′
nP
′H−1/2

)−1
H−1/2PB′Bu.

Now, the matrices H−1/2L∗H
−1/2 and H−1/2Pιnι

′
nP
′H−1/2 commute, because the zero

eigenvalue of H−1/2L∗H
−1/2 has multiplicity one (as we assume GB to be connected) with

eigenvector given by H−1/2Pιn, namely we have L∗H
−1Pιn = L∗ιq = 0. Here, we used

H−1Pιn = ιq, which follows from the definition of H and P . We therefore have

(
H−1/2L∗H

−1/2 + λH−1/2Pιnι
′
nP
′H−1/2

)−1
=
(
H−1/2L∗H

−1/2)† +
1

λ

(
H−1/2Pιnι

′
nP
′H−1/2

)†
= H1/2Linv

∗ H
1/2 +

1

λn2
H1/2ιqι

′
qH

1/2,

and the last term does not contribute to γ̂ − γ because we have ι′qPB
′
B = ι′nB

′
B = 0. We

therefore have, independent from the choice of λ, that

γ̂ − γ = Linv
∗ PB

′
Bu.

Using E(uu′) = σ2Im we thus find

var(γ̂) = σ2Linv
∗ PB

′
BBBP

′Linv
∗ = σ2Linv

∗ L∗L
inv
∗ = σ2Linv

∗ .

Because γ̂ − γ is a linear combination of the jointly normal errors it is also normally

distributed, so we have γ̂ ∼ N (γ, σ2Linv
∗ ). This concludes the proof.
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PROOF OF THEOREM 7 (GRAPH PARTITIONING)

Throughout the proof we maintain the same notational conventions as for the proof of

Lemma 2. Recall that the variance of α̂ is σ2L†. The variance of the infeasible estimator

based on (5.4) equals σ2(L†W + P ′Linv
∗ P ). We show below that

−Zlow − (Q+Q′) ≤ L† −
(
L†W + P ′Linv

∗ P
)
≤ Zup − (Q+Q′) , (S.7)

for matrices

Zlow := L†WLBL
†
W , Zup := P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P ,

and Q := L†WLBP
′Linv
∗ P . We also establish that

Zlow ≤ κL†W , Zup ≤ κP ′Linv
∗ PLBP

′Linv
∗ P = κP ′Linv

∗ P , (S.8)

and that

|v′Qv| ≤ κ1/2
(
v′L†Wv

)1/2 (
v′P ′Linv

∗ Pv
)1/2

, (S.9)

for any v ∈ Rn. Combining these results yields that, for any v ∈ Rn,

− κv′L†Wv − 2κ1/2
[(
v′L†Wv

) (
v′P ′Linv

∗ P v
)]1/2

≤ v′
(
L† −L†W − P

′Linv
∗ P

)
v ≤

κ v′P ′Linv
∗ P v + 2κ1/2

[(
v′L†Wv

) (
v′P ′Linv

∗ P v
)]1/2

.

By Lemma 2 this is the result of Theorem 7. It remains only to show (S.7), (S.8), and

(S.9), which we do, in turn, next.

Proof of (S.7). Start with the upper bound. Because LB ≥ 0 and LW ≥ 0, it holds that

0 ≤
(
L† − P ′Linv

∗ P
)
LB
(
L† − P ′Linv

∗ P
)

+
(
L† −L†W + P ′Linv

∗ PLBL
†
W

)
LW

(
L† −L†W +L†WLBP

′Linv
∗ P

)
.
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Expanding those terms, and using that LW+LB = L, and L†WLW = M , and L†WLWL
†
W =

L†W , we obtain

0 ≤ L†LL† + P ′Linv
∗ PLBP

′Linv
∗ P −L†LBP ′Linv

∗ P − P ′Linv
∗ PLBL

†

−ML† −L†M + P ′Linv
∗ PLBML† +L†MLBP

′Linv
∗ P

+L†W − P
′Linv
∗ PLBL

†
W −L

†
WLBP

′Linv
∗ P + P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P .

Using that L†LL† = L†, and P ′Linv
∗ PLBP

′Linv
∗ P = P ′Linv

∗ P , and

−L†LBP ′Linv
∗ P +L†MLBP

′Linv
∗ P = −L† (In −M)LBP

′Linv
∗ P

= −L†P ′H−1PLBP ′Linv
∗ P

= −L†P ′H−1P ,

and also the transpose of the last result, we obtain

0 ≤ L† + P ′Linv
∗ P −

(
M + P ′H−1P

)
L† −L†

(
M + P ′H−1P

)
+L†W − P

′Linv
∗ PLBL

†
W −L

†
WLBP

′Linv
∗ P + P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P .

Because M + P ′H−1P = In we thus find

L† ≤ L†W + P ′Linv
∗ P − P ′Linv

∗ PLBL
†
W −L

†
WLBP

′Linv
∗ P + P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P ,

which is the upper bound given in the lemma.

Now turn to the lower bound. Introduce

∆ := MLBM + P ′H−1PLBM +MLBP
′H−1P .

We then have

L = LW +LB = LW + P ′H−1L∗H
−1P +∆.

Plugging this in the equality LL† = In − n−1ιnι′n we obtain

(
LW + P ′H−1L∗H

−1P +∆
)
L† = In − n−1 ιnι′n.
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Bringing ∆L† to the right-hand side, multiplying with (LW + P ′H−1L∗H
−1P )

†
from the

left, and using the last equality in (S.6), we obtain

(
In − n−1 ιnι′n

)
L† =

(
LW + P ′H−1L∗H

−1P
)† (
In −∆L† − n−1 ιnι′n

)
. (S.10)

The matrices LW and P ′H−1L∗H
−1P commute, and we therefore have

(
LW + P ′H−1L∗H

−1P
)†

= L†W +
(
P ′H−1L∗H

−1P
)†

= L†W + P ′Linv
∗ P .

Using this as well as L†ιn = 0 and (LW + P ′H−1L∗H
−1P )

†
ιn = 0 we find that the

equation in (S.10) becomes

L† = L†W + P ′Linv
∗ P −

(
L†W + P ′Linv

∗ P
)
∆L†. (S.11)

Taking the transpose of this last equation gives

L† = L†W + P ′Linv
∗ P −L†∆

(
L†W + P ′Linv

∗ P
)
.

Replacing L† on the right-hand side of the last equation by the expression for L† in (S.11)

we get

L† = L†W + P ′Linv
∗ P −

(
L†W + P ′Linv

∗ P
) (
∆−∆L†∆

) (
L†W + P ′Linv

∗ P
)
.

Using the definition of ∆ we obtain

∆
(
L†W + P ′Linv

∗ P
)

= MLB

(
L†W + P ′Linv

∗ P
)

+ P ′H−1PLBL
†
W ,

and the last result on L† can therefore be rewritten as

L† −
(
L†W + P ′Linv

∗ P −L
†
WLBL

†
W −L

†
WLBP

′Linv
∗ P − P ′Linv

∗ PLBL
†
W

)
=
(
L†W + P ′Linv

∗ P
)
∆L†∆

(
L†W + P ′Linv

∗ P
)
.

Because L† ≥ 0 the last expression is positive semi-definite, which gives the lower bound

on L† in the lemma. This concludes the proof.

x



Proof of (S.8). Let

Λ := diag(λr2 : i ∈ V , with r such that i ∈ Vr),

where we set λr2 = 0 if nr = 1. Then L†W ≤ (ΛDW )†.1 Also define the symmetrically

normalized Laplacian of GB2

SB :=
(
D†B

)1/2
LB

(
D†B

)1/2
.

From Chung (1997, Lemma 1.7) we know λn(SB) ≤ 2, which can also be written as

SB ≤ 2In. We have LB = D
1/2
B SBD

1/2
B , and thus find LB ≤ 2DB.

The diagonal matrix D
1/2
B (ΛDW )†D

1/2
B has ith diagonal element equal to dBi /(λ

r
2 d

W
i )

for nr > 1, i ∈ Vr, and equal to zero otherwise. From the definition of κ in the main text

we thus find

D
1/2
B (ΛDW )†D

1/2
B ≤ κ

2
In,

and therefore

D
1/2
B L†WD

1/2
B ≤D1/2

B (ΛDW )†D
1/2
B ≤ κ

2
In. (S.12)

The matrix D
1/2
B L†WD

1/2
B is similar to

(
L†W

)1/2
DB

(
L†W

)1/2
, and so they share the same

eigenvalues.3 We therefore have that(
L†W

)1/2
DB

(
L†W

)1/2
≤ κ

2
In (S.13)

holds.

1The diagonal matrix ΛDW has non-negative elements but may be non-invertible as, for nr = 1, we

have λr2 d
W
i = 0, with i ∈ Vr. We therefore write (ΛDW )

†
instead of just (ΛDW )

−1
.

2Again we write D†B because we may have dBi = 0 for some i ∈ V .
3Two square matrices M1 and M2 are similar if there exists an invertible matrix M3 such that M1 =

M−1
3 M2M3. Two similar matrices have the same eigenvalues.
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Using the inequalities SB ≤ 2In and LB ≤ 2DB along with (S.12) and (S.13) we obtain

L†WLBL
†
W ≤ 2L†WDBL

†
W

= 2
(
L†W

)1/2 (
L†W

)1/2
DB

(
L†W

)1/2 (
L†W

)1/2
≤ κ

(
L†W

)1/2 (
L†W

)1/2
≤ κL†W ,

(S.14)

and

LBL
†
WLB = D

1/2
B S

1/2
B S

1/2
B D

1/2
B L†WD

1/2
B S

1/2
B S

1/2
B D

1/2
B

≤ κ

2
D

1/2
B S

1/2
B SBS

1/2
B D

1/2
B

≤ κD
1/2
B S

1/2
B S

1/2
B D

1/2
B

= κLB.

(S.15)

These yield the inequalities stated in (S.8). This concludes the proof.

Proof of (S.9). Recall that

Q = L†WLBP
′Linv
∗ P .

Applying the Cauchy-Schwarz inequality (x′y)2 ≤ (x′x)(y′y) with x = L
1/2
B L†Wv and

y = L
1/2
B P ′Linv

∗ Pv, and using (S.8) we find

|v′Qv|2 ≤ κ
(
v′L†Wv

) (
v′(P ′Linv

∗ P )v
)
,

which gives (S.9). This concludes the proof.

PROOF OF THEOREM A.1 (SECOND-ORDER BOUND)

Proof of Theorem A.1. We start with the lower bound given in the theorem. Let

Vo := {i} ∪ [i]; then no := |Vo| = 1 + di. Without loss of generality we fix i = 1 and relabel

the elements of V so that Vo = {1, 2, . . . , 1 + di}. Let

Lo :=

 di −ι′di
−ι′di L[i]

 , L[i] := D[i] −A[i],
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using obvious notation for the di×di degree and adjacency matrices in the latter definition.

Now, by the inversion formula for partitioned matrices,

L−1◦ =
1

di − ι′diL
−1
[i] ιdi

 1 ι′diL
−1
[i]

L−1[i] ιdi

[
L[i]−d−1

i ιdiι
′
di

di−ι′diL
−1
[i]
ιdi

]−1
 .

Below we show that

0 ≤

var(α̂i)−
σ2
[
1− 2

n

(
1 + ι′diL

−1
[i] ιdi

)]
di − ι′diL

−1
[i] ιdi

 ≤ σ2 ι′diL
−1
[i] (A◦#)D−1# (A◦#)′L−1[i] ιdi

λ2

(
di − ι′diL

−1
[i] ιdi

)2 ,

(S.16)

where L◦ is the upper left n◦ × n◦ block of L, A◦# is the upper right n◦ × n# block of A,

and D# is the lower right n# × n# block of D. To make further progress, note that the

expansion

L−1[i] =
∞∑
q=0

(
D−1[i] A[i]

)q
D−1[i]

is convergent, because we have ‖D−1[i] A[i]‖∞ < 1, where ‖.‖∞ denotes the maximum absolute

row sum matrix norm. We therefore have

ι′diL
−1
[i] ιdi = ι′diD

−1
[i] ιdi + ι′di

∞∑
q=1

(
D−1[i] A[i]

)q
D−1[i] ιdi

≥ ι′diD
−1
[i] ιdi =

∑
j∈[i]

d−1j , (S.17)

where we used that ι′di
∑∞

q=1

(
D−1[i] A[i]

)q
D−1[i] ιdi ≥ 0, because this is a product and sum of

vector and matrices that all have non-negative entries. Define the n◦× n◦ diagonal matrix

D[i] = diag(dj,i : j ∈ [i]). We have

L[i] −D[i] = diag(A[i]ιdi)−A[i] ≥ 0, (S.18)

because diag(A[i]ιdi)−A[i] can be expressed as a sum of matrices of the form 1 −1

−1 1

 ≥ 0,
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embedded into an n◦ × n◦ matrix. We therefore have L−1[i] ≤D
−1
[i] , implying

ι′diL
−1
[i] ιdi ≤ ι

′
di
D−1[i] ιdi =

∑
j∈[i]

d−1j,i . (S.19)

Combining (S.16), (S.17) and (S.19) gives

var(α̂i) ≥
σ2
[
1− 2

n

(
1 +

∑
j∈[i] d

−1
j,i

)]
∑

j∈[i]
(
1− d−1j

) =
σ2

di(1− h−1i )

(
1− 2

n
− 2

n

di
hi

)
,

which is the lower bound stated in the theorem.

To show the upper bound, consider the the graph G̃ := (V, Ẽ), with Ẽ := E \ [i] × [i].

That is, we construct G̃ by deleting all edges between neighbors of i from G. Note that G̃ is

still connected, because all vertices in [i] are connected through i. Let α̃ be the estimator

for α obtained for G̃, in the same way that α̂ was obtained for G. Let L̃ be the Laplacian

matrix of G̃. Analogous to (S.18) we have L̃ ≤ L, and therefore L̃† ≥ L†. The result

(S.16) holds for any connected graph, and so can equally be applied to G̃, we only need to

replace var(α̂i) by var(α̃i) and L by L̃. The matrices A◦# and D−1# are identical for G̃ and

G. However, for G̃ we find D̃[i] = D[i], because the degree of vertex j is given by dj,i, and

we have Ã[i] = 0, because there are no edges that connect elements in [i]. We thus have

L̃[i] = D̃[i] − Ã[i] = D[i]. Therefore,

var(α̂i) ≤ var(α̃i) ≤
σ2
[
1− 2

n

(
1 + ι′diD

−1
[i] ιdi

)]
di − ι′diD

−1
[i] ιdi

+
σ2 ι′diD

−1
[i] (A◦#)D−1# (A◦#)′D−1[i] ιdi

λ2

(
di − ι′diD

−1
[i] ιdi

)2 ,

and evaluating the right-hand side of the last inequality gives the upper bound on var(α̂i)

in the theorem. This concludes the proof.

Proof of (S.16). We prove the following more general result. Let G be connected. Choose

V◦ ⊂ V with 0 < |V◦| < n, and let V# = V \ V◦. Let n◦ = |V◦| and n# = n − n◦. Relabel

the elements in V such that V◦ = {1, 2, . . . , n◦}. Let α̂◦ = (α̂1, . . . , α̂n◦)
′, L◦ be the upper

left n◦ × n◦ block of L, A◦# be the upper right n◦ × n# block of A, and D# be the lower

right n# × n# block of D. Then,

0 ≤
[
var(α̂◦)− σ2

(
L−1◦ −

ιn◦ι
′
n◦L

−1
◦ +L−1◦ ιn◦ι

′
n◦

n

)]
≤ σ2

λ2
L−1◦ (A◦#)D−1# (A◦#)′L−1◦
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holds.

To show the result, define the n× n matrices

Lb :=

 L◦ 0

0 L#

 , Ab :=

 0 A◦#

(A◦#)′ 0

 ,

with obvious definition of L# such that L = Lb−Ab. Because the graph is connected the

pseudo-inverse L† satisfies L†L = In−n−1ιnι′n. Plugging L = Lb−Ab into this expression

we obtain

L† = L−1b

(
In +AbL

† − n−1 ιnι′n
)
.

Using the transposed of this last equation to replace L† = (L†)′ on the right-hand side of

that same equation we obtain

L† = L−1b +L−1b AbL
−1
b +L−1b AbL

†AbL
−1
b − n

−1L−1b ιnι
′
n − n−1L−1b Abιnι

′
nL
−1
b

= L−1b +L−1b AbL
−1
b +L−1b AbL

†AbL
−1
b − n

−1L−1b ιnι
′
n − n−1 ιnι′nL−1b ,

where in the last step we have used that L−1b Abιn = ιn, which follows from 0 = Lιn =

(Lb −Ab)ιn. Evaluating the last result for the upper left n◦ × n◦ block gives

(L†)◦ = L−1◦ +L−1◦ (A◦#)(L†)#(A◦#)′L−1◦ − n−1L−1◦ ιn◦ι′n◦ − n
−1 ιn◦ι

′
n◦L

−1
◦ ,

with obvious definition of (L†)#. We obtain the result searched for for var(α̂◦) = σ2(L†)◦

by also using 0 ≤ (L†)# ≤ λ−12 D
−1
# . This concludes the proof.

S.2 Component estimators from graph partitioning

Here we strenghten the result of Theorem 7 by showing that the estimator α̂ is close to

the (infeasible) estimator β̂+P ′γ̂ when κ is small. We also provide a corresponding result

for the feasible version β̂ + P ′γ̃, where

γ̃ := arg min
g∈Rq

∑
(i,j)∈EB

(
yij − (β̂i + gr(i)) + (β̂j + gr(j))

)2
s.t.

q∑
r=1

nr gr = 0.
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Our focus in the main text is on the infeasible estimator. This is so because we use it as

a devise to analyze the variance of α̂, and γ̂ is independent of β̂ while its feasible version

is clearly not. If an alternative estimator to α̂ is desired, β̂ + P ′γ̃ will obviously be of

interest. Note, however, that var(α̂i) ≤ var(β̂+P ′γ̃) by the Gauss-Markov theorem (this,

in fact, yields the upper bound given in (S.7)).

The following theorem is the main result of this section.

Theorem 1. Let G and G1, . . . ,Gq be connected. For i ∈ V define ri, Ri ∈ R by

α̂i = β̂i + γ̃r(i) + ri, α̂i = β̂i + γ̂r(i) + ri +Ri.

We then have

E(r2i ) ≤ κ
[
var(β̂i) + var(γ̂r(i))

]
, E(R2

i ) ≤ κ var(γ̂r(i)).

The theorem shows that, if κ is small, then the differences between α̂i and β̂i + γ̃r(i), and

between α̂i and β̂i+γ̂r(i), are both small compared to the stochastic variability of β̂i and γ̂r(i)

themselves. Thus, the result of Theorem 7 generalizes from the variances to the estimators

themselves.

The result (and its proof) also immediately extends to a setting as in Theorem 4,

where the errors uij can be non-normal, heteroscedastic, or correlated. One only needs to

replace var(β̂i) by σ2(L†W )ii and var(γ̂r(i)) by σ2(Linv)rr, where σ2 is a bound on the largest

eigenvalue of E (uu′).

Proof of Theorem 1. In vector notation the estimator decompositions reads

α̂ = β̂ + P ′γ̃ + r, α̂ = β̂ + P ′γ̂ + r +R.

Analogous to the proof of Lemma 1 and Lemma 2 above we can use the first-order conditions

of their respective minimization problem to obtain explicit formulas for β̂, γ̃ and γ̂. We

thus find

r = C1Y , C1 =
(
L†B′ −L†WB

′
W − P ′Linv

∗ PB
′
B + P ′Linv

∗ PLBL
†
WB

′
W

)
,
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and

r +R = C2Y + P ′Linv
∗ PLBβ, C2 =

(
L†B′ −L†WB

′
W − P ′Linv

∗ PB
′
B

)
.

It is easy to verify that C1B = 0 and C2Bα+ P ′Linv
∗ PLBβ = 0, and therefore

r = C1U , r +R = C2U .

Using this we find

σ−2E (rr′) = C1C
′
1

= −L† +L†W + P ′Linv
∗ P + P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P

− P ′Linv
∗ PLBL

†
W −L

†
WLBP

′Linv
∗ P

≤ L†WLBL
†
W + P ′Linv

∗ PLBL
†
WLBP

′Linv
∗ P

≤ κ
(
L†W + P ′Linv

∗ P
)

= κ
[
var
(
β̂
)

+ var (P ′γ̂)
]
,

where in the second to last inequality we used the lower bound for L† in (S.7) above, and

in the last inequality we used results from the proof of Theorem 7. We have thus shown

the result for E(r2i ) in the theorem. Similarly we find

σ−2E (RR′) = (C1 −C2)(C1 −C2)
′

= P ′Linv
∗ PLBL

†
WLBP

′Linv
∗ P

≤ κP ′Linv
∗ P ≤ κ var

(
P ′γ̂ inf

)
,

which implies the result for E(R2
i ) in the theorem. This concludes the proof.
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