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Abstract

This paper considers the evaluation of the average treatment effect of a binary endogenous
regressor on a binary outcome when one imposes a threshold crossing model on both the en-
dogenous regressor and the outcome variable but without imposing parametric functional form
or distributional assumptions. Without parametric restrictions, the average effect of the binary
endogenous variable is not generally point identified. This paper constructs sharp bounds on
the average effect of the endogenous variable that exploit the structure of the threshold crossing
models and any exclusion restrictions. We also develop methods for inference on the resulting
bounds.
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1 Introduction

This paper considers the evaluation of the average treatment effect of a binary endogenous regressor
on a binary outcome when one imposes threshold crossing models on both the endogenous variable
and the outcome variable but without imposing parametric functional form or distributional as-
sumptions. Without parametric restrictions, the average effect of the binary endogenous variable is
not generally point identified even in the presence of exclusion restrictions. This paper constructs
sharp bounds on the average effect of the endogenous variable that exploit the structure of the
threshold crossing models and any exclusion restrictions.

As an example, suppose the researcher wishes to evaluate the average effect of job training on
later employment. The researcher will often impose a threshold crossing model for the employment
outcome and include a dummy variable for receipt of training as a regressor in the model. The
researcher may believe that individuals self-select into job training in such a way that job training is
endogenous within the outcome equation: It might be the case, for example, that those individuals
with the worst job prospects are the ones who self-select into training. The researcher might model
job training as also being determined by a threshold crossing model, resulting in a triangular system
of equations for the joint determination of job training and later employment, as in Heckman (1978).

If the researcher is willing to impose parametric assumptions, then the researcher can estimate
the model described above by maximum likelihood. In the classic case of Heckman (1978), linear
index and joint normality assumptions are imposed so the resulting model is in the form of a
bivariate probit.1 However, suppose that the researcher does not wish to impose such strong
parametric functional form or distributional assumptions. What options are available under these
circumstances? If the researcher has access to an instrument, a standard approach to estimate the
effect of an endogenous regressor is to use a two-stage least squares (TSLS) estimator.2,3 But in
the example described above, a classic TSLS approach is invalid due to the fact that the error term
is not additively separable from the regressors in the outcome equation. Likewise, semiparametric
“control function” approaches, such as that developed by Blundell and Powell (2004), are relevant
if the endogenous variable is continuous but do not extend to the current context of a binary
endogenous regressor. The recent analysis of Altonji and Matzkin (2005) is not applicable unless
one believes that the error term is independent of the regressors conditional on some external
variables. If the researcher has access to an instrument with “large support”, then the researcher
can follow Heckman (1990) in using identification-at-infinity arguments. The support condition
required for this approach to work, however, is very strong, and the researchers might not have

1A number of other estimators are also available if the endogenous variable is continuous instead of being discrete,

see Amemiya (1978), Lee (1981), Newey (1986), and Rivers and Vuong (1988). See also Blundell and Smith (1986,

1989) for closely related analysis when the outcome equation is given by a tobit model.
2See Amemiya (1974) for a classic treatment of endogenous variables in regression equations that are non-linear

in both variables and parameters. See Blundell and Powell (2003) for a recent survey of instrumental variable

techniques in semiparametric regression models. See Angrist (1991) and Bhattacharya, McCaffrey, and Goldman

(2005) for related monte carlo evidence on the properties of TSLS in this context.
3As argued by Angrist (2001), standard linear TSLS will still identify the “local average treatment effect” (LATE)

parameter of Imbens and Angrist (1994) if there are no other covariates in the regression, if the other covariates are

all discrete and the model is fully saturated, or if the LATE Instrumental Variable assumptions hold even without

conditioning on covariates. See Heckman and Vytlacil (2001) for the relationship between the LATE parameter

and other mean treatment parameters including the average treatment effect. Also, see Vytlacil (2002) for the

equivalence between the assumptions imposed in LATE analysis and imposing a threshold crossing model on the

endogenous variable.
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access to an instrument with large support.4,5 Another option is to follow Vytlacil and Yildiz
(2004), but their approach requires a continuous co-variate that enters the outcome equation but
which does not enter the model for the endogenous variable.

The researcher can also construct bounds on the average effect of a binary endogenous variable
using, e.g., Manski (1990, 1994), Balke and Pearl (1997), Manski and Pepper (2000), and Heck-
man and Vytlacil (2001).6 Yet, these methods may only exploit a subset of the assumptions the
researcher is willing to make, and, as a result, the bounds may not be as informative as possible.
In particular, these methods would not allow the researcher to exploit the fact that the outcome
variable might be determined by a threshold crossing model, as in the scenario described above.

This paper constructs sharp bounds on the average effect of the binary endogenous variable
inside of a threshold crossing model under the assumptions that the binary endogenous variable
itself is given by a threshold crossing model. We assume that there exists at least one variable that
directly enters the first stage equation determining the endogenous treatment variable but does not
directly enter the second stage outcome equation. The analysis will also exploit any variables that
enter the outcome equation but not the treatment equation if such variables are present, but the
bounds will hold even in the absence of such variables. The analysis will exploit the assumption of a
threshold crossing model on the outcome equation and a threshold crossing model on the treatment
equation, but does not impose any parametric functional form or distributional assumptions such
as linear indices or normality assumptions.

This paper proceeds as follows. In Section 2, we introduce our model and assumptions, and
define some notation that will be used in the later sections. We define and discuss our average
treatment parameters of interest in Section 3. We then proceed with our bounding analysis in
Sections 4 and 5, first considering the bounds without covariates in the outcome equation and
then showing how covariates in the outcome equation can be exploited to narrow the width of
the bounds. In Section 6, we compare and contrast our bounds with the bounds of Manski (1990),
Manski and Pepper (2000), and Heckman and Vytlacil (2001). We develop inference for the bounds
in Section 7. Section 8 concludes.

2 Model, Assumptions, and Notation

Assume that for each individual there are two potential outcomes, (Y0, Y1), corresponding respec-
tively to the potential outcomes in the untreated and treated states. Let D = 1 denote the receipt

4Heckman (1990) assumed that the outcome equation is additively separable in the regressors and the error term,

but his analysis extends immediately to the case without additive separability. See also Cameron and Heckman

(1998), Aakvik, Heckman, and Vytlacil (1998), and Chen, Heckman, and Vytlacil (1999) for identification-at-infinity

arguments in the context of a system of discrete choice equations. See also Lewbel (2005) for identification and

estimation using large support assumptions on a “special regressor.”
5While this paper examines the average effect of a dummy endogenous variable on the outcome of interest without

imposing any linear latent index structure on the model, a separate problem arises in the literature which imposes a

linear latent index for the binary choice model and then seeks to identify and estimate the slope coefficients on the

linear index. Identification of the slope coefficients of the linear index does not imply identification of the average

effect of covariates on the outcome of interest. Recent contributions to that literature with endogenous regressors

include Hong and Tamer (2003), Lewbel (2000), and Magnac and Maurin (2005).
6Chesher (2003) provides a related bounding analysis, but his bounds are not applicable to the current model

since his results do not extend to the case in which the endogenous regressor takes only two values.
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of treatment and D = 0 denote nonreceipt. Let Y be the measured outcome variable so that

Y = DY1 + (1−D)Y0.

For example, in labor economics D might be an indicator variable for receipt of job training, Y1 an
indicator variable for whether the individual would have been employed had she received training,
Y0 an indicator variable for whether the individual would have been employed had she not received
training, and Y an indicator variable for observed employment status. In health economics, on the
other hand, D might be an indicator variable for receiving a particular medical intervention, Y1 an
indicator variable for survival given the medical intervention, Y0 an indicator variable for survival
without the medical intervention, and Y an indicator variable for survival. We impose the following
latent index model on Y1, Y0 and D:

Y1 = 1[Y ∗
1 ≥ 0]

Y0 = 1[Y ∗
0 ≥ 0]

D = 1[D∗ ≥ 0],
(1)

with
Y ∗

1 = ν1(X)− ε1
Y ∗

0 = ν0(X)− ε0
D∗ = ϑ(Z)− U,

(2)

where (X, Z) ∈ <KX × <KZ is a random vector of observed covariates, ε1, ε0, U are unobserved
random variables, and 1[·] is the logical indicator function taking the value 1 if its argument is true
and the value 0 otherwise. The model for Y can be rewritten as

Y = 1[Y ∗ ≥ 0]
Y ∗ = ν0(X) + D(ν1(X)− ν0(X)− ε1 + ε0)− ε0

D∗, Y ∗
1 , and Y ∗

0 are latent indices. The model for Y and D are threshold-crossing models. Here,
ϑ(Z) + U is interpreted as net utility to the agent from choosing D = 1. In the labor supply
example, Y ∗

1 and Y ∗
0 might be offered wage minus reservation wage with and without job training,

respectively. In the health example, Y ∗
1 and Y ∗

0 might be latent measures of health with and without
the medical intervention, respectively. We are considering threshold crossing models with additive
separability in the latent index between observables and unobservables. These models are more
general than they may at first appear: It is shown in Vytlacil (2004) that a wide class of threshold
crossing models without the additive structure on the latent index will have a representation with
the additive structure on the latent index.7

We will maintain the following assumptions:

(A-1) The distribution of U is absolutely continuous with respect to Lebesgue measure;

(A-2) (U, ε1, ε0) is independent of (Z,X);

(A-3) εj | U ∼ ε | U , for j = 0, 1;

(A-4) ϑ(Z) is nondegenerate conditional on X;
7See also Vytlacil (2002) for an equivalence result between the threshold-crossing model on D with independence

between Z and (U, ε1, ε0) and the independence and monotonicity assumptions of Imbens and Angrist (1994).
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(A-5) The distribution of ε conditional on U has a strictly positive density with respect to Lebesgue
measure on <; and

(A-6) The support of the distribution of (X, Z) is compact, and ϑ(·), ν1(·), and ν0(·) are continu-
ous.

Assumption (A-1) is a regularity condition imposed to guarantee smoothness of the relevant con-
ditional expectation functions. Assumption (A-2) is a critical independence condition, that the
observed covariates (with the exception of the binary endogenous variable of interest) are indepen-
dent of the unobserved covariates. Assumption (A-3) is the assumption that ε1 and ε0 have the
same distribution conditional on U . This assumption that ε1 and ε0 have the same distribution
conditional on U will be critical to the following analysis. This assumption makes the analysis more
restrictive than the Roy-model/switching regression framework considered in Heckman (1990). The
assumption would be implied by a model where ε1 = ε0 in which case the effect of D on the latent
index for Y ∗ is the same for all individuals with given X covariates. The assumption will also be
satisfied if ε1 6= ε0 with restrictions on what information is available to the agent when deciding
whether to receive treatment. Assumption (A-4) requires an exclusion restriction – there is at
least one variable in Z that is not a component of X. Assumption (A-5) is a standard regularity
condition that aids in the exposition of the analysis. It is implied by most standard parametric as-
sumptions on (ε, U), for example, by (ε, U) ∼ BV N as long as Corr(ε, U) 6= 1. The assumption can
be removed at the cost of somewhat weaker results.8. Assumption (A-6) also eases the exposition
by ensuring that certain supremums and infimums are obtained. This assumption can be easily
relaxed for the identification analysis.

As a normalization, we will set U ∼ Unif[0, 1] and ϑ(Z) = P (Z), where P (Z) = Pr(D = 1|Z).
This normalization is innocuous given assumptions (A-1) and (A-2). Given the model of equations
(1)-(2) and assumptions (A-2) and (A-3) we also have the following index sufficiency restriction:

E(DY |X, Z) = E(DY |X, P (Z)),
E((1−D)Y |X, Z) = E((1−D)Y |X, P (Z)).

(3)

It will often be more convenient as a result to condition on P (Z) instead of conditioning on Z
directly. We will sometimes suppress the Z argument and write P as a shorthand for the variable
P (Z).

We do not impose any parametric structure on ν1(·), ν0(·), or ϑ(·), and we do not impose a para-
metric distribution on ε1, ε0 or U . Many classic latent index models that impose specific parametric
distributional and functional form assumptions are nested within the assumptions considered here,
even though we do not impose any such parametric structure. For example, the classical bivariate
probit with structural shift described in Heckman (1978) can be written in the form (1) and (2) by
taking

D∗ = Zγ − U ≥ 0,

Y ∗
1 = Xβ − ε,

Y ∗
0 = Xβ + α− ε,

so that
D = 1[Zγ − U ≥ 0]

8See the discussion in footnotes 16, 18, 20 and 24.
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Y = 1[Xβ + αD − ε ≥ 0],

and (ε, U) to be distributed bivariate normal. Notice that the classical bivariate probit model has
much more structure than is imposed in this paper, including: the linear structure on ϑ(·), ν1(·),
and ν0(·); ε1 = ε0 = ε and the parametric distributional assumption on (ε, U); ν1(·) = ν0(·) + α so
that the effect of treatment on the latent index does not depend on X. In comparison, our analysis
does not impose any parametric functional form assumption on ϑ(·), ν1(·), ν0(·), allows ε1 6= ε0 as
long as ε1|U ∼ ε0|U , and allows the effect of D on the latent index to depend on X.

We conclude this section by defining some additional notation. For any random variables A
and B, let FA(·) denote the cumulative distribution function of A and let FA|B(·|b) denote the
cumulative distribution function of A conditional on B ≤ b. For any random vector A, let ΩA

denote the support of the distribution of A and let Ωj
A denote the support of the distribution of

A conditional of D = j. Thus, using this notation, we have that ΩX,P denotes the support of the
distribution of (X, P ) and Ωj

X,P denote the support of the distribution of (X, P ) conditional on
D = j.

Let sgn[t] denote the sign function, defined as follows:

sgn[t] =


1 if t > 0
0 if t = 0
−1 if t < 0.

Define9

m0(x, p, p̃) = p−1
(
Pr[D = 0, Y = 1|X = x, P = p̃]− Pr[D = 0, Y = 1|X = x, P = p]

)
,

m1(x, p, p̃) = (1− p)−1
(
Pr[D = 1, Y = 1|X = x, P = p̃]− Pr[D = 1, Y = 1|X = x, P = p]

)
.
(4)

For j = 0, 1, define

qj(p, p̃) =
[
p̃

p

]1−j [
1− p̃

1− p

]j

. (5)

For scalar evaluation points p0, p1 with p0 > p1, define

h0(p0, p1, x) = pm0(x, p0, p1)
= Pr

[
D = 0, Y = 1

∣∣X = x, P = p1

]
− Pr

[
D = 0, Y = 1

∣∣X = x, P = p0

]
h1(p0, p1, x) = (1− p)m1(x, p1, p0)

= Pr
[
D = 1, Y = 1

∣∣X = x, P = p0

]
− Pr

[
D = 1, Y = 1

∣∣X = x, P = p1

]
,

(6)

h(p0, p1, x) ≡ h1(p0, p1, x)− h0(p0, p1, x)
= Pr[Y = 1 | X = x, P = p0]− Pr[Y = 1 | X = x, P = p1], (7)

and

H(x0, x1)

=
∫ 1

0

∫ p0

0
[h1(p0, p1, x1)− h0(p0, p1, x0)]1[(xi, pj) ∈ ΩX,P , i, j = 0, 1]dFP (p1)dFP (p0). (8)

9For ease of exposition, we will often leave implicit that m0 and m1 are only well defined for appropriate values

of (x, p, p̃), i.e., for (x, p, p̃) such that (x, p), (x, p̃) ∈ ΩX,P .
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Define
XU

0 (x0) = {x1 : H(x0, x1) ≥ 0}
XL

0 (x0) = {x1 : H(x0, x1) ≤ 0}
XL

1 (x1) = {x0 : H(x0, x1) ≥ 0}
XU

1 (x1) = {x0 : H(x0, x1) ≤ 0}.

(9)

Define
pl = inf{p ∈ ΩP }
pu = sup{p ∈ ΩP }

pl(x) = inf{p : (x, p) ∈ ΩX,P }
pu(x) = sup{p : (x, p) ∈ ΩX,P }.

(10)

3 Parameters of Interest and the Identification Problem

Let ∆ denote the treatment effect on the given individual:

∆ = Y1 − Y0 = 1[ε1 ≤ ν1(X)]− 1[ε0 ≤ ν0(X)].

For example, suppose that Y is mortality and D is a medical intervention. In this case, ∆ = 1
if the individual would have died without the medical intervention but lives with the intervention
(the intervention saves the individual’s life); ∆ = 0 if the individual would die with or without the
intervention, or would survive with or without the intervention (the intervention has no effect); and
∆ = −1 if the individual would have lived without the intervention but not with the intervention
(the intervention kills the individual). In general, ∆ will vary even among individuals with the same
observed characteristics. For example, the model allows the possibility that the intervention saves
the lives of some individuals while costing the lives of other individuals with the same observed
characteristics.

Y1 is only observed for individuals who received the treatment, and Y0 is only observed for
individuals who did not receive the treatment. Thus ∆ = Y1 − Y0 is never observed for any
individual. We do not attempt to recover ∆ for each individual but rather consider two averaged
versions of ∆.10 The first parameter that we consider is the average effect of treatment on person
with given observable characteristics. This parameter is known as the average treatment effect
(ATE) and is given by

∆ATE(x) ≡ E(Y1 − Y0|X = x) = Pr[Y1 = 1|X = x]− Pr[Y0 = 1|X = x] = Fε(ν1(x))− Fε(ν0(x)),

where the final equality is exploiting our independence assumption (A-2) and that ε1, ε0 ∼ ε from
assumption (A-3). For example, ∆ATE(x) might represent the change in probability of survival
resulting from the medical intervention among those individuals with specified X characteristics.

The second parameter that we consider is the average effect of treatment on individuals who
selected into treatment and have given observable characteristics. This parameter is known as

10See Heckman and Vytlacil (2001) for a discussion of treatment parameters and the connections among them

within selection models.
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treatment on the treated (TT) and is given by:11

∆TT (x, p) ≡ E(∆|X = x, P = p, D = 1)
= Pr[Y1 = 1|X = x, P = p, D = 1]− Pr[Y0 = 1|X = x, P = p, D = 1]

= Fε|U (ν1(x) | p)− Fε|U (ν0(x)|p), (11)

where the final equality is exploiting our independence assumption (A-2) and that εj |U ∼ ε|U for
j = 0, 1 from assumption (A-3). For example, ∆TT (x, p) might represent the change in probability
of survival resulting from the medical intervention among those individuals who did receive the
medical intervention and have the specified covariates.

Neither ATE nor TT are immediately identified from the population distribution of (Y, D, X, Z).
Knowledge of the distribution of (Y, D, X, Z) implies identification of P (z) ≡ Pr[D = 1 | Z = z]
for z in the support of the distribution of Z, and of the following conditional expectations,

E(Y |D = 1, X = x, P = p) = Pr[Y1 = 1|D = 1, X = x, P = p] = Fε|U (ν1(x)|p)
E(Y |D = 0, X = x, P = p) = Pr[Y0 = 1|D = 0, X = x, P = p] = Fε|−U (ν0(x)|p),

(12)

where the first equation is identified for (x, p) ∈ Ω1
X,P and the second equation is identified for

(x, p) ∈ Ω0
X,P .12

While knowledge of the population distribution of (Y, D, X, Z) immediately implies identifica-
tion of equations (12), it does not immediately imply identification of the treatment parameters.
First consider the treatment on the treated parameter. Recall from equation (11) that TT is com-
prised of the sum of two terms. The first term, Pr[Y1 = 1 | D = 1, X = x, P = p], is the average
with treatment outcome among those who did receive the treatment and is immediately identified
from the data using equation (12). However, the second term, Pr[Y0 = 1 | D = 1, X = x, P = p],
is the average without treatment outcome among those who did receive the treatment. This term
corresponds to a counterfactual value: What would have happened to treated individuals if they
had, counter to fact, not received the treatment? This term is not directly identified from the data.
The analysis will proceed by bounding this term, which in turn will imply bounds on the treatment
on the treated parameter.

11Note that we define the average treatment effect conditional on X while we define treatment on the treated

conditional on (X, P ). From our model and independence assumptions, we have that the treatment effect is mean

independent of P conditional on X so that E(∆ | X, P ) = E(∆ | X). In contrast, in general the treatment effect is

not independent of P conditional on (X, D = 1) so that in general E(∆ | X, P, D = 1) 6= E(∆ | X, D = 1). Also note

that while we define the treatment on the treated parameter conditional on P instead of conditional on Z, we have

that E(∆|X, P (Z), D = 1) = E(∆ | X, Z, D = 1).
12For ease of exposition, we will often leave implicit that we are only identifying and evaluating these conditional

expectations over the appropriate support. We will explicitly state the support condition when failure to do so might

reasonably lead to confusion or ambiguity.
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Likewise, consider the average treatment effect. For any p, we have that13

∆ATE(x) = E(Y1 − Y0 | X = x)
= E(Y1 − Y0 | X = x, P = p)
= Pr[Y1 = 1 | X = x, P = p]− Pr[Y0 = 1 | X = x, P = p]

=
[
p Pr[Y1 = 1 | D = 1, X = x, P = p] + (1− p) Pr[Y1 = 1 | D = 0, X = x, P = p]

]
−

[
p Pr[Y0 = 1 | D = 1, X = x, P = p] + (1− p) Pr[Y0 = 1 | D = 0, X = x, P = p]

]
,

where the second equality follows from our independence assumption (A-2). Thus, for the average
treatment effect, we will again consider bounds on Pr[Y0 = 1 | D = 1, X = x, P = p] and will also
need to bound Pr[Y1 = 1 | D = 0, X = x, P = p]. Bounds on Pr[Y0 = 1 | D = 1, X = x, P = p] and
Pr[Y1 = 1 | D = 0, X = x, P = p] will imply bounds on the average treatment effect.

We now turn to our bounding analysis. For the bounding analysis we assume that the population
distribution of (Y, D, X, Z) is known and consider bounds on the average treatment effect and
treatment on the treated. We first consider the analysis with no X covariates in Section 4 and then
proceed to consider how X covariates can allow one to shrink the bounds in Section 5.

4 Analysis With No X Covariates

Consider the model with no X covariates. In this case the model has a very simple structure:

Y1 = 1[ν1 − ε1 ≥ 0]
Y0 = 1[ν0 − ε0 ≥ 0]
D = 1[ϑ(Z)− U ≥ 0],

(13)

As discussed in the previous section, our goal is to bound Pr[Y0 = 1|D = 1, P = p] = Fε|U (ν1|p)
and Pr[Y1 = 1|D = 0, P = p] = Fε|−U (ν0|p) which in turn allow us to bound ∆ATE = E(Y1−Y0) =
Fε(ν1)− Fε(ν0) and ∆TT (p) = E(Y1 − Y0|D = 1, P = p) = Fε|U (ν1|p)− Fε|U (ν0|p).

Our analysis exploits two central ideas. First, we use a strategy similar to Heckman and Vytlacil
(2001), to express Pr[Y0 = 1|D = 1, P = p] and Pr[Y1 = 1|D = 0, P = p] as a sum of an identified
term and an unidentified term. The result underlying this part of the analysis is formally stated
in Lemma 4.1. Second, we use an instrumental variables type of expression to identify the sign of
ν1 − ν0, which then provides bounds on unidentified terms. The central result needed for this part
of the analysis is formally stated in Lemma 4.2.

We now state the first lemma, using the notation mj and qj , j = 0, 1, introduced above in
equations (4) and (5).

Lemma 4.1. Assume that (D,Y0, Y1) are generated according to equation (13). Assume conditions
(A-1), (A-2) and (A-4). Then, for j = 0, 1 and for any p, p̃ evaluation points,14

Pr[Yj = 1 | D = 1− j, P = p] = mj(p, p̃) + qj(p, p̃) Pr[Yj = 1 | D = 1− j, P = p̃].
13Recall that we are leaving implicit that we are only evaluating the conditional expectations where the conditional

expectations are well defined. Thus, the following equalities hold for any p such that (x, p) ∈ Ω1
X,P

T
Ω0

X,P .
14Recall that we are leaving implicit the standard support condition. Thus, this lemma holds for p, p̃ ∈ ΩP .
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Proof. Consider the case where p̃ > p (the case where p̃ < p is symmetric, and the case p = p̃ is
immediate). Consider Pr[Y1 = 1 | D = 0, P = p] (the analysis for Pr[Y0 = 1 | D = 1, P = p] is
symmetric). We have

Pr[Y1 = 1|D = 0, P = p] = Pr[ε ≤ ν1|U > p]
= 1

1−p Pr[U > p, ε ≤ ν1]
= 1

1−p

{
Pr[p < U ≤ p̃, ε ≤ ν1] + Pr[U > p̃, ε ≤ ν1]

}
= 1

1−p

{
Pr[U ≤ p̃, ε ≤ ν1]− Pr[U ≤ p, ε ≤ ν1] + Pr[U > p̃, ε ≤ ν1]

}
= Pr[D=1,Y =1|P=p̃]−Pr[D=1,Y =1|P=p]

1−p + 1−p̃
1−p Pr[Y1 = 1|D = 0, P = p̃]

where the first equality is using our model of equation (13) and our independence assumption (A-2);
the second equality is using our normalization that U ∼Unif[0, 1]; and the final equality is again
using our model of equation (13), our independence assumption (A-2), and the equivalence of the
events (D = 1, Y1 = 1) and (D = 1, Y = 1).

Since mj and qj , j = 0, 1, are identified from the population distribution of (Y, D, Z), and since
any probability is bounded by zero and one, we can now use Lemma 4.1 to bound Pr[Y0 = 1 | D =
1, P = p] and Pr[Y1 = 1 | D = 0, P = p] by

Pr[Y0 = 1 | D = 1, P = p] ∈ [m0(p, p̃),m0(p, p̃) + q0(p, p̃)]

Pr[Y1 = 1 | D = 0, P = p] ∈ [m1(p, p̃),m1(p, p̃) + q1(p, p̃)].

Since these bounds hold for any p̃ evaluation point, we have15

Pr[Y0 = 1 | D = 1, P = p] ∈
⋂
p̃

[m0(p, p̃),m0(p, p̃) + q0(p, p̃)]

Pr[Y1 = 1 | D = 0, P = p] ∈
⋂
p̃

[m1(p, p̃),m1(p, p̃) + q1(p, p̃)].
(14)

It is possible to further improve upon these bounds using an IV-like strategy to identify the
sign of ν1 − ν0. For any p0, p1 with p0 > p1, consider

h(p0, p1) = Pr[Y = 1|P = p0]− Pr[Y = 1|P = p1].

h(p0, p1) is the numerator of the population analog of the instrumental variables estimator. Let H
denote an integrated version of h(p0, p1),

H =
∫ 1

0

∫ p0

0
h(p0, p1)dFP (p1)dFP (p0).

Using this notation, we have the following lemma:

Lemma 4.2. Assume that (D,Y0, Y1) are generated according to equation (13). Assume conditions
(A-1)-(A-5).16 Then, for any p0, p1, with p0 > p1,17

sgn
[
H

]
= sgn

[
h(p0, p1)

]
= sgn

[
ν1 − ν0

]
.

15The following intersections are implicitly taken over p̃ ∈ ΩP .
16A weaker version of the lemma holds without assumption (A-5). Without assuming (A-5), we still have that

h(p0, p1) > 0 ⇒ ν1 > ν0 and h(p0, p1) < 0 ⇒ ν1 < ν0, but are no longer able to infer the sign of ν1−ν0 if h(p0, p1) = 0.
17Recall that we are leaving implicit that we are only evaluating expressions where they are well defined. Thus,

the following assertion holds for p0, p1 ∈ ΩP with p0 > p1.
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Proof. We have

Pr[Y = 1|P = p] = Pr[D = 1, Y = 1|P = p] + Pr[D = 0, Y = 1|P = p]

= Pr[D = 1, Y1 = 1|P = p] + Pr[D = 0, Y0 = 1|P = p]

= Pr[U ≤ p, ε ≤ ν1] + Pr[U > p, ε ≤ ν0]

where the last equality is using our independence assumption and that εj |U ∼ ε|U for j = 0, 1.
Thus, for any p0, p1 with p0 > p1,

h(p0, p1) =


Pr[p1 < U ≤ p0, ν0 < ε ≤ ν1] if ν1 > ν0

0 if ν1 = ν0

−Pr[p1 < U ≤ p0, ν1 < ε ≤ ν0] if ν1 < ν0.

Using (A-5), we thus have that h(p0, p1) will be strictly positive if ν1−ν0 > 0, h(p0, p1) will equal zero
if ν1−ν0 = 0, and h(p0, p1) will be strictly negative if ν1−ν0 < 0. Thus sgn[h(p0, p1)] = sgn[ν1−ν0].
Since the sign of h(p0, p1) does not depend on the p0, p1 evaluation points provided that p0 > p1,
we have sgn[H] = sgn[h(p0, p1)].

Figure 4, below, provides a graphical illustration of the proof of Lemma 4.2 for an example with
ν1 > ν0. Pr[Y = 1|P = p0] corresponds to the probability that (U, ε) lies in one of two rectangles:
(1) the set of all (U, ε) values lying southwest of (p0, ν1), which is the set of (U, ε) values resulting
in (D = 1, Y = 1), and (2) the set of all (U, ε) values lying southeast of (p0, ν0), which is the set
of all (U, ε) values resulting in (D = 0, Y = 1). Likewise, Pr[Y = 1|P = p1] corresponds to the
probability that (U, ε) lies in one of two rectangles, the set of all (U, ε) values lying southwest of
(p1, ν1) and the set of all (U, ε) values lying southeast of (p1, ν0). Thus, if ν1 > ν0 (as in the figure),
then h(p0, p1) = Pr[Y = 1|P = p0]−Pr[Y = 1|P = p1] corresponds to the probability that (ε, U) lies
in a particular rectangle with positive Lebesgue measure on <2 and thus the probability that (ε, U)
lies in this rectangle is strictly positive by our Assumption (A-5). The figure is done for an example
with ν1 > ν0. In contrast, if ν1 = ν0, then h(p0, p1) = Pr[Y = 1|P = p0] − Pr[Y = 1|P = p1]
corresponds to the probability that (ε, U) lies along a line which has zero Lebesgue measure on
<2 and thus the probability that (ε, U) lies along the line is zero by Assumption (A-5). Finally, if
ν1 < ν0 then h(p0, p1) corresponds to the negative of the probability of (U, ε) lying in a particular
rectangle.

We can use Lemma 4.2 to bound Pr[Y0 = 1|D = 1, P = p] = Fε|U (ν1|p) and Pr[Y1 = 1|D =
0, P = p] = Fε|−U (ν0|p). For example, suppose that H > 0. Then we know that ν1 > ν0, and thus

Pr[Y1 = 1|D = 0, P = p] = Fε|−U (ν1|p) > Fε|−U (ν0|p) = Pr[Y = 1|D = 0, P = p]
Pr[Y0 = 1|D = 1, P = p] = Fε|U (ν0|p) < Fε|U (ν1|p) = Pr[Y = 1|D = 1, P = p],

where the strict inequalities follow from assumption (A-5) implying that both conditional cumula-
tive distribution functions are strictly increasing. Thus, if H > 0, we can bound the unidentified
term Pr[Y1 = 1|D = 0, P = p] from below by the identified term Pr[Y = 1|D = 0, P = p], and
we can bound the unidentified term Pr[Y0 = 1|D = 1, P = p] from above by the identified term
Pr[Y = 1|D = 1, P = p]. Since any probability must lie in the unit interval, we then have

Pr[Y = 1|D = 0, P = p] < Pr[Y1 = 1|D = 0, P = p] ≤ 1
0 ≤ Pr[Y0 = 1|D = 1, P = p] < Pr[Y = 1|D = 1, P = p].

(15)
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Figure 1: Graphical Illustration of Lemma 4.2, Example with ν1 > ν0
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Parallel bounds hold if H < 0. If H = 0, then Pr[Y1 = 1|D = 0, P = p] = Pr[Y = 1|D = 0, P = p] =
and Pr[Y0 = 1|D = 1, P = p] = Pr[Y = 1|D = 1, P = p].

Combining the results of Lemma 4.1 and Lemma 4.2, we immediately have:

Pr[Y0 = 1 | D = 1, P = p] ∈
⋂

p̃ [m0(p, p̃), m0(p, p̃) + q0(p, p̃) Pr[Y = 1|D = 1, P = p̃]] if H > 0
{Pr[Y = 1 | D = 1, P = p]} if H = 0⋂

p̃ [m0(p, p̃) + q0(p, p̃) Pr[Y = 1|D = 1, P = p̃], m0(p, p̃) + q0(p, p̃)] if H < 0

(16)

Pr[Y1 = 1 | D = 0, P = p] ∈
⋂

p̃ [m1(p, p̃) + q1(p, p̃) Pr[Y = 1|D = 0, P = p̃], m1(p, p̃) + q1(p, p̃)] if H > 0
{Pr[Y = 1|D = 0, P = p]} if H = 0⋂

p̃ [m1(p, p̃), m1(p, p̃) + q1(p, p̃) Pr[Y = 1|D = 0, P = p̃]] if H < 0.

(17)

We can simplify this expression somewhat. Consider the case where H > 0 and consider the
bounds on Pr[Y1 = 1 | D = 0, P = p]. Given our model of equation (13) and independence
assumption (A-2), we have

m1(p, p̃) + q1(p, p̃) =


1

1−p {Pr[p < U ≤ p̃, ε ≤ ν1] + Pr[U > p̃]} if p̃ > p
1

1−p Pr[U > p̃] if p̃ = p

− 1
1−p {Pr[p̃ < U ≤ p, ε ≤ ν1]− Pr[U > p̃]} if p̃ < p,

and

m1(p, p̃) + q1(p, p̃) Pr[Y = 1|D = 0, P = p̃]

=


1

1−p {Pr[p < U ≤ p̃, ε ≤ ν1] + Pr[U > p̃, ε ≤ ν0]} if p̃ > p
1

1−p Pr[U > p̃, ε ≤ ν0] if p̃ = p

− 1
1−p {Pr[p̃ < U ≤ p, ε ≤ ν1]− Pr[U > p̃, ε ≤ ν0]} if p̃ < p.

For any c > 0

(m1(p, p̃ + c) + q1(p, p̃ + c))− (m1(p, p̃) + q1(p, p̃))

= 1
1−p {Pr[p̃ < U ≤ p̃ + c, ε ≤ ν1]− Pr[p̃ < U ≤ p̃ + c]}

= − 1
1−p Pr[p̃ < U ≤ p̃ + c, ε > ν1]

< 0,

so that m1(p, p̃)+ q1(p, p̃) is decreasing in p̃. From H > 0, we have ν0 < ν1, and thus for any c > 0,

(m1(p, p̃ + c) + q1(p, p̃ + c) Pr[Y = 1|D = 0, P = p̃ + c])
− (m1(p, p̃) + q1(p, p̃) Pr[Y = 1|D = 0, P = p̃])

= 1
1−p {Pr[p̃ < U ≤ p̃ + c, ε ≤ ν1]− Pr[p̃ < U ≤ p̃ + c, ε ≤ ν0]}

= 1
1−p Pr[p̃ < U ≤ p̃ + c, ν0 < ε ≤ ν1]

> 0,
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so that m1(p, p̃) + q1(p, p̃) Pr[Y = 1|D = 0, P = p̃] is increasing in p̃. Thus, if H > 0,

Pr[Y1 = 1 | D = 0, P = p]

∈
⋂
p̃

[m1(p, p̃) + q1(p, p̃) Pr[Y = 1|D = 0, P = p̃], m1(p, p̃) + q1(p, p̃)]

= [m1(p, pu) + q1(p, pu) Pr[Y = 1|D = 0, P = pu], m1(p, pu) + q1(p, pu)] ,

where pu was defined by equation (10) as the supremum of the support of the distribution of P .
Furthermore, note that

q1(p, pu) Pr[Y = 1|D = 0, P = pu] =
1− pu

1− p
Pr[Y = 1|D = 0, P = pu]

= (1− p)−1 Pr[D = 0, Y = 1|P = pu],

so that

[m1(p, pu) + q1(p, pu) Pr[Y = 1|D = 0, P = pu], m1(p, pu) + q1(p, pu)]

=
[
m1(p, pu) + (1− p)−1 Pr[D = 0, Y = 1|P = pu], m1(p, pu) + q1(p, pu)

]
.

Following the analogous arguments for Pr[Y0 = 1 | D = 1, P = p] and following the analogous
argument for both Pr[Y1 = 1 | D = 0, P = p] and Pr[Y0 = 1 | D = 1, P = p] for the case of H < 0,
we see that the bounds of equations (16) and (17) simplify to

Pr[Y0 = 1 | D = 1, P = p] ∈ B0(p)

Pr[Y1 = 1 | D = 0, P = p] ∈ B1(p)

with

B0(p) =


[
m0(p, pl), m0(p, pl) + p−1 Pr[D = 1, Y = 1|P = pl]

]
if H > 0

{Pr[Y = 1 | D = 1, P = p]} if H = 0[
m0(p, pl) + p−1 Pr[D = 1, Y = 1|P = pl], m0(p, pl) + q0(p, pl)

]
if H < 0,

(18)

B1(p) =
[
m1(p, pu) + (1− p)−1 Pr[D = 0, Y = 1|P = pu], m1(p, pu) + q1(p, pu)

]
if H > 0

{Pr[Y = 1|D = 0, P = p]} if H = 0[
m1(p, pu), m1(p, pu) + (1− p)−1 Pr[D = 0, Y = 1|P = pu]

]
if H < 0,

(19)

where pl was defined by equation (10) as infimum of the support of the distribution of P .

The following theorem uses these bounds on Pr[Y0 = 1 | D = 1, P = p] and Pr[Y1 = 1 | D =
0, P = p] to bound the effect of treatment on the treated and the average treatment effect.

Theorem 4.1. Assume that (D,Y0, Y1) are generated according to equation (13). Assume condi-
tions (A-1)-(A-6).18 Then,

∆TT (p) ∈ BTT (p)

∆ATE ∈ BATE ,

18A weaker version of the theorem holds without assumption (A-5). Without assuming (A-5), we still have that

the stated bounds hold when H 6= 0, though the stated bounds no longer hold when H = 0.
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where

BTT (p) =


[
p−1h(p, pl), p−1

(
h(p, pl) + Pr[D = 1, Y = 1 | P = pl]

)]
if H > 0

{0} if H = 0[
p−1

(
h(p, pl)− Pr[D = 1, Y = 0 | P = pl]

)
, p−1h(p, pl)

]
if H < 0,

BATE =


[
h(pu, pl), h(pu, pl) + Pr[D = 1, Y = 1|P = pl] + Pr[D = 0, Y = 0|P = pu]

]
if H > 0

{0} if H = 0[
h(pu, pl)− Pr[D = 1, Y = 0|P = pl]− Pr[D = 0, Y = 1|P = pu], h(pu, pl)

]
if H < 0.

The bounds are sharp, they cannot be improved without additional restrictions.

Proof. First consider the bounds for TT. From Pr[Y0 = 1|D = 1, P = p] ∈ B0(p), we immediately
have

∆TT (p) ∈ {Pr[Y = 1 | D = 1, P = p]− s : s ∈ B0(p)}.

By plugging in the definitions of m0 and q0 and rearranging terms, one can easily show that

Pr[Y = 1 | D = 1, P = p]−m0(p, pl)− p−1 Pr[D = 1, Y = 1|P = pl] = p−1h(p, pl),

and

Pr[Y = 1 | D = 1, P = p]−m0(p, pl)− q0(p, pl) = p−1
(
h(p, pl)− Pr[D = 1, Y = 0|P = pl]

)
.

The stated bounds on TT now immediately follow.

Now consider the bounds for ATE. From Pr[Y0 = 1|D = 1, P = p] ∈ B0(p) and Pr[Y1 = 1|D =
0, P = p] ∈ B1(p), we have

∆ATE ∈
⋂
p,p̃

{Pr[D = 1, Y = 1 | P = p] + (1− p)t

− Pr[D = 0, Y = 1 | P = p̃]− p̃s : s ∈ B0(p̃), t ∈ B1(p)}.

Following reasoning analogous to how we simplified from equations (16) and (17) to equations (18)
and (19), one can show that⋂

p,p̃

{Pr[D = 1, Y = 1 | P = p] + (1− p)t

− Pr[D = 0, Y = 1 | P = p̃]− p̃s : s ∈ B0(p̃), t ∈ B1(p)}
= {Pr[D = 1, Y = 1 | P = pu] + (1− pu)t

− Pr[D = 0, Y = 1 | P = pl]− pls : s ∈ B0(pl), t ∈ B1(pu)}. (20)

Using the definitions of m1,m0, q1, and q0, we have m1(pu, pu) = m0(pl, pl) = 0 and q1(pu, pu) =
q0(pl, pl) = 1. By adding and subtracting terms, one can easily show that

Pr[D = 1, Y = 1|P = pu] + (1− pu)− Pr[D = 0, Y = 1|P = pl]

= h(pu, pl) + Pr[D = 1, Y = 1|P = pl] + Pr[D = 0, Y = 0|P = pu]
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and

Pr[D = 1, Y = 1|P = pu]− Pr[D = 0, Y = 1|P = pl]− pl

= h(pu, pl)− Pr[D = 1, Y = 0|P = pl]− Pr[D = 0, Y = 1|P = pu].

The stated bounds on ATE now immediately follow.

We now show that the constructed bounds are sharp. First consider the bounds on TT. Let
(ε∗, U∗) denote a random vector with (ε∗, U∗) ⊥⊥ Z and with (ε∗, U∗) having density f∗ε,U with
respect to Lebesgue measure on <2. Let f∗U denote the corresponding marginal density of U∗ and
let f∗ε|U denote the corresponding density of ε∗ conditional on U∗. We show that for any fixed p̃ ∈ Ωp,
and s in the interior of BTT (p̃), there exists a density function f∗ε,U such that: (1) f∗ε|U is strictly
positive on <; (2) Pr[D = 1 | P = p] = Pr[U∗ ≤ p], Pr[Y = 1|D = 1, P = p] = Pr[ε∗ ≤ ν1 | U∗ ≤ p],
and Pr[Y = 1|D = 0, P = p] = Pr[ε∗ ≤ ν0 | U∗ > p] for all p ∈ ΩP (i.e., the, proposed model is
consistent with the observed data); (3) Pr[ε∗ ≤ ν1 | U∗ ≤ p̃] − Pr[ε∗ ≤ ν0 | U∗ ≤ p̃] = s (i.e., the
proposed model is consistent with the specified value of TT). If we can construct a density f∗ε,U
satisfying conditions (1)-(3) for any s in the interior of BTT (p̃), we can conclude that any value in
BTT (p̃) can be rationalized by a model consistent both with the observed data and our assumptions,
and thus BTT (p̃) are sharp bounds.

Take the case where H > 0. The case with H < 0 is symmetric, and the case with H = 0 is
immediate. Fix some p̃ ∈ Ωp and some s in the interior of BTT (p̃). Let s∗ = p̃[Pr[Y = 1|D = 1, P =
p̃] − m0(p̃, pl)] − s], and note that s being in the interior of BTT (p̃) implies s∗ ∈ (0, Fε,U (ν1, p

l)).
Note that ν1 > ν0 since H > 0 by assumption. Construct the proposed f∗ε,U as follows. Let
f∗ε,U (t1, t2) = f∗ε|U (t1|t2)f∗U (t2), where f∗U (t2) = fU (t2) = 1[0 ≤ t2 ≤ 1] and

f∗ε|U (t1|t2) =


fε|U (t1|t2) if t1 ≥ ν1 or t2 ≥ pl

b(t2)fε|U (t1|t2) if ν0 < t1 < ν1 and t2 < pl

a(t2)fε|U (t1|t2) if t1 < ν0 and t2 < pl

(21)

with
a(t2) = Pr[ε≤ν1|U=t2]

Pr[ε≤ν0|U=t2]
s∗

Fε,U (ν1,pl)

b(t2) = Pr[ε≤ν1|U=t2]−a(t2) Pr[ε≤ν0|U=t2]
Pr[ν0≤ε<ν1|U=t2] .

(22)

First consider whether f∗ε|U integrates to one and is strictly positive on <. For t2 ≥ pl, f∗ε|U (·|t2) =
fε|U (·|t2) and thus trivially

∫
f∗ε|U (t1|t2)dt1 =

∫
fε|U (t1|t2)dt1 = 1. For t2 < pl,∫ ∞

−∞
f∗ε|U (t1|t2)dt1 = a(t2)

∫ ν0

−∞
fε|U (t1|t2)dt1 + b(t2)

∫ ν1

ν0

fε|U (t1|t2)dt1 +
∫ ∞

ν1

fε|U (t1|t2)dt1

= Pr[ε ≤ ν1|U = t2] + Pr[ε > ν1|U = t2] = 1.

Since fε|U is strictly positive on <, we have that f∗ε|U is strictly positive on < if a(t2) > 0 and b(t2) >

0. Recall that s∗ ∈ (0, Fε,U (ν1, p
l)). s∗ > 0 implies a(t2) > 0. Using that s∗ ∈ (0, Fε,U (ν1, p

l)), we
have Pr[ε ≤ ν1|U = t2] − a(t2) Pr[ε ≤ ν0|U = t2] = Pr[ε ≤ ν1|U = t2](1 − s∗/Fε,U (ν1, p

l)) > 0 and
thus that b(t2) > 0. We have thus shown that f∗ε|U is a proper density satisfying part (1) of the
assertion.
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Now consider part (2) of the assertion. f∗U = fU implies that

Pr[U∗ ≤ p] =
∫ p

0
f∗U (t)dt =

∫ p

0
fU (t)dt = Pr[U ≤ p] = Pr[D = 1|P = p] ∀p ∈ ΩP .

f∗U = fU and f∗ε|U (t1|t2) = fε|U (t1|t2) for t2 ≥ pl imply that f∗ε,U (t1, t2) = fε,U (t1, t2) for all t2 ≥ pl,
and thus

Pr[ε∗ ≤ ν0|U∗ > p] =
1

1− p

∫ 1

p

∫ ν0

−∞
f∗ε,U (t1, t2)dt1dt2

=
1

1− p

∫ 1

p

∫ ν0

−∞
fε,U (t1, t2)dt1dt2

= Pr[ε ≤ ν0|U > p] = Pr[Y = 1|D = 0, P = p]

for all p ∈ ΩP . Likewise,

Pr[ε∗ ≤ ν1|U∗ ≤ p]

= 1
p

∫ p
0

∫ ν1

−∞ f∗ε,U (t1, t2)dt1dt2

= 1
p

{∫ p
pl

∫ ν1

−∞ fε,U (t1, t2)dt1dt2 +
∫ pl

0

[
b(t2)

∫ ν1

ν0
fε,U (t1, t2)dt1 + a(t2)

∫ ν0

−∞ fε,U (t1, t2)dt1

]
dt2

}
= 1

p

{
Pr[ε ≤ ν1, p

l < U ≤ p] + Pr[ε ≤ ν1, U ≤ pl]
}

= Pr[ε ≤ ν1|U ≤ p] = Pr[Y = 1 | D = 1, P = p]

for all p ∈ ΩP . We have thus established part (2) of the assertion. Consider part (3) of the
assertion. We have already shown Pr[ε∗ ≤ ν1|U∗ ≤ p̃] = Pr[ε ≤ ν1|U ≤ p̃] since p̃ ∈ ΩP . Consider
Pr[ε∗ ≤ ν0|U∗ ≤ p̃],

Pr[ε∗ ≤ ν0|U∗ ≤ p̃] =
1
p̃

∫ p̃

0

∫ ν0

−∞
f∗ε,U (t1, t2)dt1dt2

=
1
p̃

{∫ pl

0

∫ ν0

−∞
f∗ε,U (t1, t2)dt1dt2 +

∫ p̃

pl

∫ ν0

−∞
f∗ε,U (t1, t2)dt1dt2

}
=

1
p̃

{∫ pl

0
a(t2)

∫ ν0

−∞
fε,U (t1, t2)dt1dt2 +

∫ p̃

pl

∫ ν0

−∞
fε,U (t1, t2)dt1dt2

}
=

1
p̃

{
s∗ + p̃m0(p̃, pl)

}
= Pr[ε ≤ ν1|U∗ ≤ p̃]− s

and thus Pr[ε∗ ≤ ν1|U∗ ≤ p̃]− Pr[ε∗ ≤ ν0|U∗ ≤ p̃] = s.

Now consider the bounds on ATE. Take the case where H > 0. The case with H < 0 is
symmetric, and the case with H = 0 is immediate. Fix some b ∈ BATE . Fix some s, t pair, s in the
interior of B0(pl) and t in the interior of B1(pu), such that

b = Pr[D = 1, Y = 1 | P = pu] + (1− pu)t− Pr[D = 0, Y = 1 | P = pl]− pls.

(The existence of such an s, t pair follows from equation (20)). Let s∗ = pls, t∗ = (1−pu)t. Construct

16



f∗ε,U as follows. Let f∗ε,U (t1, t2) = f∗ε|U (t1|t2)f∗U (t2), where f∗U (t2) = fU (t2) = 1[0 ≤ t2 ≤ 1] and

f∗ε|U (t1|t2) =



fε|U (t1|t2) if (pl < t2 ≤ pu) or (t1 > ν1, t2 < pl) or (t1 ≤ ν0, t2 > pu)

b(t2)fε|U (t1|t2) if ν0 < t1 < ν1 and t2 < pl

a(t2)fε|U (t1|t2) if t1 < ν0 and t2 < pl

d(t2)fε|U (t1|t2) if t1 > ν1 and t2 > pu

c(t2)fε|U (t1|t2) if ν0 < t1 < ν1, and t2 > pu

with a(t2) and b(t2) defined by equation (27) and c(t2) and d(t2) defined by:

c(t2) =
t∗ − Pr[ε ≤ ν0, U > pu]

Pr[ε > ν0, U > pu]
Pr[ε > ν0|U = t2]

Pr[ν0 < ε ≤ ν1, U > pu|U = t2]

d(t2) =
Pr[ε > ν0|U = t2]− c(t2) Pr[ν0 < ε < ν1|U = t2]

Pr[ε > ν1|U = t2]
.

Following arguments closely analogous to those given above for the TT bounds, one can now
proceed to show that proposed density has the desired properties and that the bounds on ATE are
sharp.

By Lemma 4.1, the sign of H equals the sign of h(p0, p1) for all p0, p1 with p0 > p1. Thus, the
constructed bounds on ∆ATE and ∆TT (p) always identify whether these parameters are positive,
zero, or negative. For example, consider ATE. If H > 0, then ATE is identified to be positive
and the width of the bounds on ATE is Pr[D = 1, Y = 1|P = pl] + Pr[D = 0, Y = 0|P = pu]; if
H = 0, then ATE is point identified to be zero; if H < 0 then ATE is identified to be negative
and the width of the bounds on ATE is Pr[D = 1, Y = 0|P = pl] + Pr[D = 0, Y = 1|P = pu].
Sufficient conditions for the bounds on ATE to collapse to point identification are either H = 0
or pu = 1 and pl = 0. The width of the bounds on ATE if H > 0 are shrinking in (1 − pu), pl,
Pr[Y = 1|D = 1, P = pl] and Pr[Y = 0|D = 0, P = pu]. The width of the bounds on ATE if H < 0
are shrinking in (1− pu), pl, Pr[Y = 0|D = 1, P = pl] and Pr[Y = 1|D = 0, P = pu]. We will show
in the next section that any covariates that directly affect Y can also be exploited to further narrow
the bounds on ATE and TT. We will show further in Section 6 that these bounds are expected to
be substantially narrower than alternative bounds that exploit an instrument but do not impose
or exploit the threshold crossing structure on D and Y .

5 Analysis With X Covariates

We now consider analysis with X covariates. If there is variation in X conditional on P (Z), then
the X covariates can be used to substantially decrease the width of the bounds compared to the
case with no X covariates. A sufficient condition for X to vary conditional on P (Z) is that there
exists an element of X that is not contained in Z. However, this condition is not required: even if
all elements of X are contained in Z, then it is still possible to have X nondegenerate conditional
on P (Z). We first generalize Lemmas 4.1 and 4.2 to allow for X regressors.
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Lemma 5.1. Assume that (D,Y0, Y1) are generated according to equations (1)-(2). Assume con-
ditions (A-1)-(A-4). Then, for j = 0, 1 and for any (x, p), (x, p̃),19

Pr[Yj = 1 | D = 1− j, X = x, P = p] = mj(x, p, p̃) + qj(p, p̃) Pr[Yj = 1 | D = 1− j,X = x, P = p̃].

Proof. Follows from a trivial modification to the proof of Lemma 4.1.

Lemma 5.2. Assume that (D,Y0, Y1) are generated according to equations (1)-(2). Assume con-
ditions (A-1)-(A-5).20 Then, for any x0, x1, p0, p1 evaluation points with p0 > p1,21

sgn
[
H(x0, x1)

]
= sgn

[
h1(p0, p1, x1)− h0(p0, p1, x0)

]
= sgn

[
ν1(x1)− ν0(x0)

]
.

Proof. We have

Pr[D = 1, Y = 1|X = x, P = p] = Pr[D = 1, Y1 = 1|X = x, P = p]

= Pr[U ≤ p, ε ≤ ν1(x)]

and

Pr[D = 0, Y = 1|X = x, P = p] = Pr[D = 0, Y0 = 1|X = x, P = p]

= Pr[U > p, ε ≤ ν0(x)],

where we are using our independence assumption and that εj |U ∼ ε|U for j = 0, 1. Thus

h1(p0, p1, x1) = Pr[p1 < U ≤ p0, ε ≤ ν1(x1)]

h0(p0, p1, x0) = Pr[p1 < U ≤ p0, ε ≤ ν0(x0)]

and thus

h1(p0, p1, x1)− h0(p0, p1, x0) =


Pr[p1 < U ≤ p0, ν0(x0) < ε ≤ ν1(x1)] if ν1(x1) > ν0(x0)

0 if ν1(x1) = ν0(x0)

−Pr[p1 < U ≤ p0, ν1(x1) < ε ≤ ν0(x0)] if ν1(x1) < ν0(x0).

Using (A-5), we thus have that h1(p0, p1, x1) − h0(p0, p1, x0) will be strictly positive if ν1(x1) −
ν0(x0) > 0, h1(p0, p1, x1) − h0(p0, p1, x0) will be strictly negative if ν1(x1) − ν0(x0) < 0, and
thus sgn[h1(p0, p1, x1) − h0(p0, p1, x0)] = sgn[ν1(x1) − ν0(x0)]. Since the sign of h1(p0, p1, x1) −
h0(p0, p1, x0) does not depend on the p0, p1 evaluation points provided that p0 > p1, we have
sgn[H(x0, x1)] = sgn[h1(p0, p1, x1)− h0(p0, p1, x0)].

19Recall that we are leaving implicit the standard support condition. Thus, this lemma holds for (x, p), (x, p̃) ∈
ΩX,P .

20A weaker version of the lemma holds without assumption (A-5). Without assuming (A-5), we still have that

h1(p0, p1, x1)−h0(p0, p1, x0) > 0 ⇒ ν1(x1) > ν0(x0) and h1(p0, p1, x1)−h0(p0, p1, x0) < 0 ⇒ ν1(x1) < ν0(x0), but we

are no longer able to infer the sign of ν1(x1)− ν0(x0) if h1(p0, p1, x1)− h0(p0, p1, x0) = 0.
21Recall that we are leaving implicit that we are only evaluating expressions where they are well defined. Thus,

this lemma holds for (xi, pj) ∈ ΩX,P for i = 0, 1, j = 0, 1, with p0 > p1.
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Figures 2 and 3, below, provide a graphical illustration of the proof of Lemma 5.2 for an
example with ν1(0) > ν0(1). Pr[D = 1, Y = 1|X = 0, P = p0] and Pr[D = 1, Y = 1|X = 0, P = p1]
correspond to the probability that (U, ε) lies southwest of (p0, ν1(0)) and (p1, ν1(0)), respectively,
so that h1(p0, p1, 0) = Pr[D = 1, Y = 1|X = 0, P = p0] − Pr[D = 1, Y = 1|X = 0, P = p1]
corresponds to the probability that (U, ε) lies in a particular rectangle. In comparison, Pr[D =
0, Y = 1|X = 1, P = p0] and Pr[D = 0, Y = 1|X = 1, P = p1] correspond to the probability
that (U, ε) lies southeast of (p0, ν0(1)) and (p1, ν0(1)), respectively, so that h0(p0, p1, 1) = Pr[D =
0, Y = 1|X = 1, P = p1] − Pr[D = 0, Y = 1|X = 1, P = p0] corresponds to the probability
that (U, ε) lies in a particular rectangle. Thus, in this example with ν1(0) > ν0(1), we have that
h1(p0, p1, 0) − h0(p0, p1, 1) corresponds to the probability that (ε, U) lies in a particular rectangle
(with positive Lebesgue measure on <2), and thus the probability that (ε, U) lies this rectangle is
positive by Assumption (A-5).

Now consider bounds on ATE and TT. As discussed in Section 3, our goal is to bound E(Y0|D =
1, X = x, P = p) and E(Y1|D = 0, X = x, P = p) which in turn will allow us to bound E(Y1 −
Y0|X = x) and E(Y1 − Y0|D = 1, X = x, P = p). First consider Pr[Y0 = 1 | D = 1, X = x, P = p].
From Lemma 5.1 we can decompose Pr[Y0 = 1 | D = 1, X = x, P = p] as

Pr[Y0 = 1 | D = 1, X = x, P = p] = m0(x, p, p̃) + p−1p̃ Pr[Y0 = 1 | D = 1, X = x, P = p̃].

While the first term, m0(x, p, p̃), is identified, the second term, Pr[Y0 = 1 | D = 1, X = x, P = p̃] =
Fε|U (ν0(x)|p̃), is not immediately identified. However, we can use Lemma 5.2 to bound this term.
For example, suppose that H(x, x̃) ≥ 0, i.e., x̃ ∈ XU

0 (x) where XU
0 was defined by equation (9).

Then we know that ν1(x̃) > ν0(x), and thus

Pr[Y0 = 1|D = 1, X = x, P = p] = Fε|U (ν0(x)|p)

< Fε|U (ν1(x̃)|p) = Pr[Y = 1|D = 1, X = x̃, P = p].

Thus, we can bound the unidentified term Pr[Y0 = 1|D = 1, X = x, P = p] from above by the
identified term Pr[Y = 1|D = 1, X = x̃, P = p] for any x̃ such that H(x, x̃) ≥ 0, i.e., for any
x̃ ∈ XU

0 (x). Symmetrically, we can bound Pr[Y0 = 1|D = 1, X = x, P = p] from below by the
identified term Pr[Y = 1|D = 1, X = x̃, P = p] for any x̃ such that H(x, x̃) ≤ 0, i.e., x̃ ∈ XL

0 (x).
We thus have22

sup
x̃∈XL

0

{Pr[Y = 1 | D = 1, X = x̃, P = p]}

≤ Pr[Y0 = 1 | D = 1, X = x, P = p]
≤ inf

x̃∈XU
0

{Pr[Y = 1 | D = 1, X = x̃, P = p]}, (23)

assuming that XL
0 and XU

0 are nonempty. If either XL
0 or XU

0 is empty, we can replace the upper
and lower bounds by zero or one, respectively. For ease of exposition, we will write supx̃∈XL

0
{Pr[Y =

1 | D = 1, X = x̃, P = p]} with the implicit understanding that this term is 0 when XL
0 is empty,

and inf x̃∈XU
0
{Pr[Y = 1 | D = 1, X = x̃, P = p]} with the implicit understanding that this term is 1

when XU
0 is empty. This notation corresponds to the adopting the convention that the supremum

over the empty set is zero and the infimum over the empty set is one.
22Recall that we are implicitly only evaluating terms where they are well defined. Thus, the following surpremum

and infimum are over x̃ such that (x̃, p) ∈ ΩX,P .
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Figure 2: Graphical Illustration of Lemma 5.2, Example with ν1(0) > ν0(1)
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Figure 3: Graphical Illustration of Lemma 5.2, Example with ν1(0) > ν0(1)
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The parallel argument can be made to construct bounds on Pr[Y1 = 1 | D = 0, X = x, P = p].
Thus, combining the results of Lemmas 5.1 and 5.2, we have, for j = 0, 1,

Pr[Yj = 1 | D = 1− j,X = x, P = p] ∈ Bj(x, p),

where23

Bj(x, p) =[
sup

p̃

mj(x, p, p̃) + qj(p, p̃) sup
x̃∈XL

j (x)

{Pr[Y = 1 | D = 1− j,X = x̃, P = p̃)]}

 ,

inf
p̃

{
mj(x, p, p̃) + qj(p, p̃) inf

x̃∈XU
j (x)

{Pr[Y = 1 | D = 1− j, X = x̃, P = p̃]}

}]
. (24)

We now use these bounds on Pr[Y0 = 1 | D = 1, X = x, P = p] and Pr[Y1 = 1 | D = 0, X =
x, P = p] to form bounds on our objects of interest, the treatment on the treated and average
treatment effect parameters.

Theorem 5.1. Assume that (D,Y0, Y1) are generated according to equations (1)-(2). Assume
conditions (A-1)-(A-6).24 Then,

∆TT (x, p) ∈ [LTT (x, p), UTT (x, p)]

∆ATE(x) ∈ [LATE(x), UATE(x)],

where25

LTT (x, p) =
1
p

sup
p̃

{
h(p, p̃, x) + Pr[D = 1, Y = 1|X = x, P = p̃]

− p̃ inf
x̃∈XU

0 (x)
{Pr[Y = 1 | D = 1, X = x̃, P = p̃]}

}

UTT (x, p) =
1
p

inf
p̃

{
h(p, p̃, x) + Pr[D = 1, Y = 1|X = x, P = p̃]

− p̃ sup
x̃∈XL

0 (x)

{Pr[Y = 1 | D = 1, X = x̃, P = p̃]}
}

23Recall that we are implicitly only evaluating terms where they are well defined. Thus, for example, the first

surpremum is over p̃ such that (x, p̃) ∈ ΩX,P , and the second supremum is over x̃ ∈ XL
j (x) such that (x̃, p̃) ∈ ΩX,P .

Further recall that we are implicitly adopting the convention that the supremum over the empty set is zero and the

infimum over the empty set is one.
24A weaker version of the theorem holds without assumption (A-5). Without assuming (A-5), the stated bounds

still hold but we must redefine the sets X k
j (x) for k ∈ {U, L}, j = 0, 1, to be defined in terms of strict inequalities

instead of weak inequalities.
25Recall our notational convention that the supremum over the empty set is zero and the infimum over the empty

set is one.

22



LATE(x) =

sup
p

{
Pr[D = 1, Y = 1|X = x, P = p] + (1− p) sup

x̃∈XL
1 (x)

{Pr[Y = 1 | D = 0, X = x̃, P = p]}

}

− inf
p̃

{
Pr[D = 0, Y = 1|X = x, P = p̃] + p̃ inf

x̃∈XU
0 (x)

{Pr[Y = 1|D = 1, X = x̃, P = p̃]}

}

UATE(x) =

inf
p

{
Pr[D = 1, Y = 1|X = x, P = p] + (1− p) inf

x̃∈XU
1 (x)

{Pr[Y = 1 | D = 0, X = x̃, P = p]}

}

− sup
p̃

{
Pr[D = 0, Y = 1|X = x, P = p̃] + p̃ sup

x̃∈XL
0 (x)

{Pr[Y = 1|D = 1, X = x̃, P = p̃]}

}
.

If ΩX,P = ΩX ×ΩP , then the bounds are sharp, they cannot be improved without additional restric-
tions.

Proof. First consider TT. From our previous analysis, we have

∆TT (x, p) ∈ {Pr[Y = 1 | D = 1, X = x, P = p]− s : s ∈ B0(x, p)}.

Rearranging terms, one can easily show that

Pr[Y = 1 | D = 1, X = x, P = p]−m0(x, p, p̃)

=
1
p
h(p, p̃, x) + Pr[D = 1, Y = 1|X = x, P = p̃]

where h(p, p̃, x) was defined by equation (7). The stated bounds on TT now immediately follow.

Now consider ATE. From our previous analysis, we have:26

∆ATE(x) ∈
⋂
p,p∗

{Pr[D = 1, Y = 1 | X = x, P = p] + (1− p)s

− Pr[D = 0, Y = 1 | X = x, P = p∗]− p∗t : s ∈ B1(x, p), t ∈ B0(x, p∗)}.

The stated result now follows by rearranging terms.

We now show that the stated bounds are sharp if ΩX,P = ΩX ×ΩP . Impose ΩX,P = ΩX ×ΩP .
Consider the bounds on TT (the proof that the bounds on ATE are sharp follows from an analogous
argument). Let (ε∗, U∗) denote a random vector with (ε∗, U∗) ⊥⊥ (X, Z) and with (ε∗, U∗) having
density f∗ε,U with respect to Lebesgue measure on <2. Let f∗U denote the corresponding marginal
density of U∗ and let f∗ε|U denote the corresponding density of ε∗ conditional on U∗. We show
that for any fixed (x̃, p̃) ∈ ΩX,P , and s ∈ (LTT (x̃, p̃), UTT (x̃, p̃)), there exists a density function

26Recall that we are leaving implicit that we are only evaluating the conditional expectations where the condi-

tional expectations are well defined. Thus, e.g., the following intersection is over all p, p∗ such that (x, p), (x, p∗) ∈
Ω1

X,P

T
Ω0

X,P .
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f∗ε,U such that: (1) f∗ε|U is strictly positive on <; (2) Pr[D = 1 | X = x, P = p] = Pr[U∗ ≤ p],
Pr[Y = 1|D = 1, X = x, P = p] = Pr[ε∗ ≤ ν1(x) | U∗ ≤ p], and Pr[Y = 1|D = 0, X = x, P =
p] = Pr[ε∗ ≤ ν0(x) | U∗ > p] for all (x, p) ∈ ΩX,P (i.e., the, proposed model is consistent with the
observed data); (3) Pr[ε∗ ≤ ν1(x̃) | U∗ ≤ p̃]− Pr[ε∗ ≤ ν0(x̃) | U∗ ≤ p̃] = s (i.e., the proposed model
is consistent with the specified value of TT). If we can construct a density f∗ε,U satisfying conditions
(1)-(3) for any s ∈ (LTT (x̃, p̃), UTT (x̃, p̃)), we can conclude that any value in (LTT (x̃, p̃), UTT (x̃, p̃))
can be rationalized by a model consistent both with the observed data and our assumptions, and
thus (LTT (x̃, p̃), UTT (x̃, p̃)) are sharp bounds.

Fix some (x̃, p̃) ∈ ΩX,P and some s ∈ (LTT (x̃, p̃), UTT (x̃, p̃)). Take the case where XL
0 (x̃),XU

0 (x̃)
are both nonempty and are disjoint. The proof for the case where XL

0 (x̃) or XU
0 (x̃) are empty follows

from an analogous argument, and the case where XL
0 (x̃) ∩ XU

0 (x̃) 6= ∅ is immediate. Using that
XL

0 (x̃),XU
0 (x̃) are both nonempty and are disjoint, we have that

B0(x̃, p̃) =
[
m0(x̃, p̃, pl) +

1
p̃
Fε,U (ν1(xl

0(x̃)), pl), m0(x̃, p̃, pl) +
1
p̃
Fε,U (ν1(xu

0(x̃)), pl)
]

(25)

where xl
0(x̃), xu

0(x̃) denote evaluation points such that27

Pr[D = 1, Y = 1|X = xl
0(x̃), P = pl] = sup

x∗∈XL
0 (x̃)

{
Pr[D = 1, Y = 1|X = x∗, P = pl]

}
Pr[D = 1, Y = 1|X = xu

0(x̃), P = pl] = inf
x∗∈XU

0 (x̃)

{
Pr[D = 1, Y = 1|X = x∗, P = pl]

}
.

Let s∗ = p̃[Pr[Y = 1|D = 1, P = p̃] − m0(x̃, p̃, pl)] − s]. Using equation (25), we have that s ∈
(LTT (x̃, p̃), UTT (x̃, p̃)) implies s∗ ∈ (Fε,U (ν1(xl

0(x̃)), pl), Fε,U (ν1(xu
0(x̃)), pl)). Note that ν1(xu

0(x̃)) >

ν0(x̃) > ν1(xl
0(x̃)) with the strict inequalities following from our assumption that XL

0 (x̃),XU
0 (x̃) are

disjoint. Further notice that given the definitions of xu
0(x̃), xl

0(x̃), we have ν1(x) /∈ (ν1(xl
0(x̃)), ν1(xu

0(x̃)))
for any x ∈ ΩX . Construct the proposed f∗ε,U as follows. Let f∗ε,U (t1, t2) = f∗ε|U (t1|t2)f∗U (t2), where
f∗U (t2) = fU (t2) = 1[0 ≤ t2 ≤ 1] and

f∗ε|U (t1|t2) =


fε|U (t1|t2) if t1 ≥ ν1(xu

0(x̃)) or t2 ≥ pl or t1 ≤ ν1(xl
0(x̃))

b(t2)fε|U (t1|t2) if ν0(x̃) < t1 < ν1(xu
0(x̃)) and t2 < pl

a(t2)fε|U (t1|t2) if ν1(xl
0(x̃)) < t1 < ν0(x̃) and t2 < pl

(26)

with
a(t2) = Pr[ν1(xl

0(x̃))<ε<ν1(xu
0 (x̃))|U=t2]

Pr[ν1(xl
0(x̃))<ε<ν0(x̃)|U=t2]

s∗−Fε,U (ν1(xl
0(x̃)),pl)

Fε,U (ν1(xu
0 (x̃)),pl)−Fε,U (ν1(xl

0(x̃)),pl)

b(t2) = Pr[ν1(xl
0(x̃))<ε<ν1(xu

0 (x̃))|U=t2]−a(t2) Pr[ν1(xl
0(x̃))<ε<ν0(x̃)|U=t2]

Pr[ν0(x̃)<ε<ν1(xu
0 (x̃))|U=t2] .

(27)

First consider whether f∗ε|U integrates to one and is strictly positive on <. For t2 ≥ pl, f∗ε|U (·|t2) =

27The existence of such evaluation points follows from our assumption (A-6).
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fε|U (·|t2) and thus trivially
∫

f∗ε|U (t1|t2)dt1 =
∫

fε|U (t1|t2)dt1 = 1. For t2 < pl,∫ ∞

−∞
f∗ε|U (t1|t2)dt1

=
∫ ν1(xl

0(x̃))
−∞ fε|U (t1|t2)dt1 + a(t2)

∫ ν0(x̃)

ν1(xl
0(x̃))

fε|U (t1|t2)dt1 + b(t2)
∫ ν1(xu

0 (x̃))

ν0(x̃) fε|U (t1|t2)dt1

+
∫∞
ν1(xu

0 (x̃)) fε|U (t1|t2)dt1

= Pr[ε ≤ ν1(xl
0(x̃))|U = t2] + Pr[ν1(xl

0(x̃)) < ε ≤ ν1(xu
0(x̃))|U = t2] + Pr[ε > ν1(xu

0(x̃))|U = t2]
= 1.

Since fε|U is strictly positive on <, we have that f∗ε|U is strictly positive on < if a(t2) > 0 and
b(t2) > 0. Recall that s∗ ∈ (Fε,U (ν1(xl

0(x̃)), pl), Fε,U (ν1(xu
0(x̃)), pl)). s∗ > Fε,U (ν1(xl

0(x̃)), pl) implies
a(t2) > 0. s∗ < Fε,U (ν1(xu

0(x̃)), pl) implies that

s∗ − Fε,U (ν1(xl
0(x̃)), pl)

Fε,U (ν1(xu
0(x̃)), pl)− Fε,U (ν1(xl

0(x̃)), pl)
< 1

and thus

Pr[ν1(xl
0(x̃)) < ε < ν1(xu

0(x̃))|U = t2]− a(t2) Pr[ν1(xl
0(x̃)) < ε < ν0(x̃)|U = t2]

= Pr[ν1(xl
0(x̃)) < ε < ν1(xu

0(x̃))|U = t2]
(

1−
s∗ − Fε,U (ν1(xl

0(x̃)), pl)
Fε,U (ν1(xu

0(x̃)), pl)− Fε,U (ν1(xl
0(x̃)), pl)

)
> 0

so that b(t2) > 0. We have thus shown that f∗ε|U is a proper density satisfying part (1) of the
assertion.

Now consider part (2) of the assertion. f∗U = fU implies that

Pr[U∗ ≤ p] =
∫ p

0
f∗U (t)dt =

∫ p

0
fU (t)dt = Pr[U ≤ p] = Pr[D = 1|P = p] ∀p ∈ ΩP .

f∗U = fU and f∗ε|U (t1|t2) = fε|U (t1|t2) for t2 ≥ pl imply that f∗ε,U (t1, t2) = fε,U (t1, t2) for all t2 ≥ pl,
and thus

Pr[ε∗ ≤ ν0(x)|X = x, U∗ > p] =
1

1− p

∫ 1

p

∫ ν0(x)

−∞
f∗ε,U (t1, t2)dt1dt2

=
1

1− p

∫ 1

p

∫ ν0(x)

−∞
fε,U (t1, t2)dt1dt2

= Pr[ε ≤ ν0(x)|U > p] = Pr[Y = 1|D = 0, X = x, P = p]

for all (x, p) ∈ ΩX,P .

Consider Pr[ε∗ ≤ ν1(x)|U∗ ≤ p]. By the definition of xl
0(x̃) and xu

0(x̃), we have that ν1(x) ≤
ν1(xl

0(x̃)) or ν1(x) ≥ ν1(xu
0(x̃)) for any x ∈ ΩX . For x such that ν1(x) ≤ ν1(xl

0(x̃)), and for any
p ∈ ΩP ,

Pr[ε∗ ≤ ν1(x)|U∗ ≤ p] =
1
p

∫ p

0

∫ ν1(x)

−∞
f∗ε,U (t1, t2)dt1dt2

=
1
p

∫ p

0

∫ ν1(x)

−∞
fε,U (t1, t2)dt1dt2

= Pr[ε ≤ ν1(x)|U ≤ p] = Pr[Y = 1 | D = 1, X = x, P = p].
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For x such that ν1(x) ≥ ν1(xu
0(x̃)), and for any p ∈ ΩP ,

Pr[ε∗ ≤ ν1(x)|U∗ ≤ p]

= 1
p

∫ p
0

∫ ν1(x)
−∞ f∗ε,U (t1, t2)dt1dt2

= 1
p

{∫ p
pl

∫ ν1(x)
−∞ fε,U (t1, t2)dt1dt2 +

∫ pl

0

[∫ ν1(xl
0(x̃))

−∞ fε|U (t1|t2)dt1 + a(t2)
∫ ν0(x̃)

ν1(xl
0(x̃))

fε|U (t1|t2)dt1

+b(t2)
∫ ν1(xu

0 (x̃))

ν0(x̃) fε|U (t1|t2)dt1 +
∫ ν1(x)
ν1(xu

0 (x̃)) fε|U (t1|t2)dt1

]
dt2

}
= 1

p

{
Pr[ε ≤ ν1(x), pl < U ≤ p] + Pr[ε ≤ ν1(x), U ≤ pl]

}
= Pr[ε ≤ ν1(x)|U ≤ p] = Pr[Y = 1 | D = 1, X = x, P = p].

We thus have that Pr[ε∗ ≤ ν1(x)|U∗ ≤ p] = Pr[Y = 1 | D = 1, X = x, P = p] for all (x, p) ∈ ΩX,P .

We have thus established part (2) of the assertion. Consider part (3) of the assertion. We have
already shown Pr[ε∗ ≤ ν1(x̃)|U∗ ≤ p̃] = Pr[ε ≤ ν1(x̃)|U ≤ p̃] since (x̃, p̃) ∈ ΩX,P . Consider
Pr[ε∗ ≤ ν0(x̃)|U∗ ≤ p̃],

Pr[ε∗ ≤ ν0(x̃)|U∗ ≤ p̃]

= 1
p̃

∫ p̃
0

∫ ν0(x̃)
−∞ f∗ε,U (t1, t2)dt1dt2

= 1
p̃

{∫ pl

0

(∫ ν1(xl
0(x̃))

−∞ f∗ε,U (t1, t2)dt1 +
∫ ν0(x̃)

ν1(xl
0(x̃))

f∗ε,U (t1, t2)dt1

)
dt2 +

∫ p̃
pl

∫ ν0(x̃)
−∞ f∗ε,U (t1, t2)dt1dt2

}
= 1

p̃

{∫ pl

0

(∫ ν1(xl
0(x̃))

−∞ fε,U (t1, t2)dt1 + a(t2)
∫ ν0(x̃)

ν1(xl
0(x̃))

fε,U (t1, t2)dt1

)
dt2 +

∫ p̃
pl

∫ ν0(x̃)
−∞ fε,U (t1, t2)dt1dt2

}
= 1

p̃

{
s∗ + p̃m0(x̃, p̃, pl)

}
= Pr[ε ≤ ν1(x̃)|U∗ ≤ p̃]− s

and thus Pr[ε∗ ≤ ν1(x̃)|U∗ ≤ p̃]− Pr[ε∗ ≤ ν0(x̃)|U∗ ≤ p̃] = s.

Corollary 5.1. The bounds on ATE and TT defined in Theorem 5.1 always identify whether these
parameters are positive, zero, or negative.

Proof. Consider the assertion for TT. An analogous argument proves the assertion for ATE. Suppose
E(Y1 − Y0|D = 1, X = x, P = p) > 0 so that ν1(x) > ν0(x). Then, by Lemma 5.2, H(x, x) > 0 and
thus x ∈ XU

0 (x) and h(p, p̃, x) > 0 for any p̃ < p. Thus, fixing any arbitary p̃ < p,

LTT (x, p) >

1
p
{h(p, p̃, x) + Pr[D = 1, Y = 1|X = x, P = p̃]− Pr[D = 1, Y = 1|X = x, P = p̃]}

=
1
p
{h(p, p̃, x)} > 0.

The symmetric argument shows that E(Y1 − Y0|D = 1, X = x, P = p) < 0 implies UTT (x, p) < 0,
and E(Y1 − Y0|D = 1, X = x, P = p) = 0 implies LTT (x, p) = UTT (x, p) = 0.
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Clearly, having X covariates allows us to narrow the bounds compared to the case considered
in Section 4 without X covariates. The extent to which the X covariates are able to narrow the
bounds depends on the extent to which X varies conditional on P . For example, suppose that
X is degenerate conditional on P . Then one can easily show that the bounds of Theorem 5.1
collapse down to the same form as the bounds of Theorem 4.1. In contrast, consider the case
where ΩX,P = ΩX × ΩP , i.e., when the support of the distribution of (X, P ) equals the products
of the support of the distributions of X and P . In addition, suppose that XL

j ,XU
j are nonempty

for j = 0, 1. Then, following the same type of argument used to simplify from equations (16) and
(17) to (18) and (19), one can show

UTT (x, p)− LTT (x, p) = p−1

(
inf

x̃∈XU
0 (x)

{
Pr[D = 1, Y = 1|X = x̃, P = pl]

}
− sup

x̃∈XL
0 (x)

{
Pr[D = 1, Y = 1|X = x̃, P = pl]

})
.

Notice that the width of the bounds collapse to zero if there exists any x̃ such that H(x̃, x) = 0,
in which case x̃ ∈ XU

0 (x)
⋂
XL

0 (x). In other words, if there exists any x̃ such that ν0(x̃) = ν1(x)
(i.e., not receiving the treatment and having X = x̃ leads to the same value of the latent index as
receiving treatment but having X = x), then the bounds provide point identification. This point
identification result is a special case of our bounding analysis, and is essentially the same as the
central identification result from Vytlacil and Yildiz (2004).

To further analyze the bounds on TT, let xl
0(x), xu

0(x) denote evaluation points such that
Pr[D = 1, Y = 1|X = xu

0(x), P = pl] = inf x̃∈XU
0 (x)

{
Pr[D = 1, Y = 1|X = x̃, P = pl]

}
, and Pr[D =

1, Y = 1|X = xl
0(x), P = pl] = supx̃∈XL

0 (x)

{
Pr[D = 1, Y = 1|X = x̃, P = pl]

}
. Then the width of

the bounds can be rewritten as

UTT (x, p)− LTT (x, p) = p−1 Pr[U ≤ pl, ν1(xl
0(x)) < ε ≤ ν1(xu

0(x))]

if ν1(xl
0(x)) is strictly smaller than ν1(xu

0(x)), and the width of the bounds equals zero if ν1(xl
0(x)) =

ν1(xu
0(x)). Clearly, the closer ν1(xl

0(x)) is to ν1(xu
0(x)), the narrower the resulting bounds on TT.

The more variation there is in X the smaller we expect the difference to be between ν1(xl
0(x)) and

ν1(xu
0(x)).

Now consider ATE. Again following the same type of argument used to simplify from equations
(16) and (17) to (18) and (19), one can show

UATE(x)− LATE(x) =
inf

x̃∈XU
1 (x)

{Pr[D = 0, Y = 1|X = x̃, P = pu]} − sup
x̃∈XL

1 (x)

{Pr[D = 0, Y = 1|X = x̃, P = pu]}

+ inf
x̃∈XU

0

{
Pr[D = 1, Y = 1|X = x̃, P = pl]

}
− sup

x̃∈XL
0

{
Pr[D = 1, Y = 1|X = x̃, P = pl]

}
.

Notice that the width of the bounds collapse to zero if there exists a x̃ such that H(x̃, x) = 0 and
a x∗ such that H(x, x∗) = 0, in which case x̃ ∈ XU

0 (x)
⋂
XL

0 (x) and x∗ ∈ XU
1 (x)

⋂
XL

1 (x). In other
words, if there exists any x̃, x∗ such that ν0(x̃) = ν1(x), ν0(x) = ν1(x∗) (i.e., not receiving the
treatment and having X = x̃ leads to the same value of the latent index as receiving treatment
but having X = x, and not receiving the treatment and having X = x leads to the same value
of the latent index as receiving treatment but having X = x∗), then the bounds provide point
identification on ATE. Again, following the same analysis as for TT, we expect the bounds on ATE
to be narrower the greater the variation in X.
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6 Comparison to Other Bounds

This paper is related to a large literature on the use of instrumental variables to bound treatment
effects. Particularly relevant are the IV bounds of Manski (1990), Heckman and Vytlacil (2001),
and Manski and Pepper (2000).28 We now compare our assumptions and resulting bounds. First
consider the Manski (1990) mean-IV bounds. Manski (1990) imposes a mean-independence as-
sumption: E(Y1|X, Z) = E(Y1 | X), and E(Y0|X, Z) = E(Y0 | X). This assumption is strictly
weaker than the assumptions imposed in this paper.29 The mean independence assumption and
the assumption that the outcomes are bounded imply that

BL
M (x) ≤ E(Y1 − Y0 | X = x) ≤ BU

M (x),

with30

BL
M (x) = sup

z
{Pr[D = 1, Y = 1|X = x,Z = z]} − inf

z
{Pr[D = 0, Y = 1|X = x,Z = z] + P (z)},

BU
M (x) = inf

z
{Pr[D = 1, Y = 1|X = x,Z = z] + (1− P (z))}

− sup
z
{Pr[D = 0, Y = 1|X = x,Z = z]}.

As discussed by Manski (1994), these bounds are sharp under the mean-independence condition.
Note that these bounds neither impose nor exploit the full statistical independence assumptions
considered in this paper, the structure of the threshold crossing model on the outcome equation,
or the structure of the threshold crossing model on the treatment selection equations.

Now consider the analysis of Heckman and Vytlacil (2001). They strengthen the assumptions
imposed by Manski (1990) by imposing statistical independence instead of mean independence, and
imposing a threshold crossing model on the treatment equation. In particular, they assume that
D = 1[ϑ(Z)−U ≥ 0] and that Z is statistically independent of (Y1, Y0, U) conditional on X. Given
these assumptions, they derive the following bounds on the average treatment effect:

BL
HV (x) ≤ E(Y1 − Y0 | X = x) ≤ BU

HV (x),

with

BU
HV (x) = Pr[D = 1, Y = 1|X = x, P = pu(x)] + (1− pu(x))− Pr[D = 0, Y = 1|X = x, P = pl(x)]

BL
HV (x) = Pr[D = 1, Y = 1|X = x, P = pu(x)]− Pr[D = 0, Y = 1|X = x, P = pl(x)]− pl(x).

28The bounds of Chesher (2003) do not apply to the problem of this paper with a binary endogenous regressor

since his bounds are only relevant when the endogenous regressor takes at least three values. Other IV bounds not

considered in this paper include the contaminated IV bounds of Hotz, Mullins, and Sanders (1997), the IV bounds

of Balke and Pearl (1997) and Blundell, Gosling, Ichimura, and Meghir (2004), and the bounds on policy effects of

Ichimura and Taber (1999). We do not attempt a review or survey of the entire bounding literature or even of the

entire literature on bounds that exploits exclusion restrictions. Surveys of the bounding approach include Manski

(1995, 2003). Heckman, LaLonde, and Smith (1999) includes an alternative survey of the bounding approach.
29In particular, note that our model and assumption (A-2) immediately implies Manski’s mean independence

assumption.
30Recall that we are leaving implicit that we are only evaluating the conditional expectations where the conditional

expectations are well defined. Thus, e.g., the supremum and infimum in the following expressions are over z in the

support of the distribution of Z conditional on X = x.
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The width of the bounds is

BU
S (x)−BL

S (x) = ((1− pu(x)) + pl(x)).

Trivially, pu(x) = 1 and pl(x) = 0 is necessary and sufficient for the bounds to collapse to point
identification.

Heckman and Vytlacil (2001) analyze how these bounds compare to the Manski (1990) mean
independence bounds, and analyze whether these bounds are sharp. They show that the selection
model imposes restrictions on the observed data such that the Manski (1990) mean independence
bounds collapse to the simpler Heckman and Vytlacil (2001) bounds. Furthermore, Heckman and
Vytlacil (2001) establish that their bounds are sharp given their assumptions. Thus, somewhat
surprisingly, imposing a threshold crossing model on the treatment equation does not narrow the
bounds when compared to the case of imposing only the weaker assumption of mean independence,
but does impose structure on the observed data such that the mean-independence bounds simplify
substantially. By the Vytlacil (2002) equivalence result, the same conclusion holds for the Local
Average Treatment Effect (LATE) assumptions of Imbens and Angrist (1994) – imposing the LATE
assumptions does not narrow the bounds compared to only imposing the weaker assumption of mean
independence, but does impose restrictions on the observed data that substantially simplifies the
form of the bounds.31 Note that the Heckman and Vytlacil (2001) bounds do not exploit a threshold
crossing structure on the outcome equation.

In comparison, the analysis of this paper imposes and exploits more structure than either the
Manski (1990) or Heckman and Vytlacil (2001) bounds. In return for this additional structure we
obtain substantially narrower bounds. First, consider the case of no X covariates and the resulting
comparison of their bounds with the bounds of Theorem 4.1. Imposing our assumptions, including
that the first stage model for D is given by a threshold crossing model, we have that the Manski
(1990) and Heckman and Vytlacil (2001) bounds coincide. By adding and subtracting terms, we
can rewrite BL

HV and BU
HV as

BL
HV = h(pu, pl)− Pr[D = 0, Y = 1|P = pu]− Pr[D = 1, Y = 0|P = pl]

BU
HV = h(pu, pl) + Pr[D = 1, Y = 1|P = pl] + Pr[D = 0, Y = 0|P = pu],

where h(pu, pl) was defined as Pr[Y = 1|P = pu]− Pr[Y = 1|P = pl]. First consider the case when
h(pu, pl) > 0. Then the upper bound on ATE of Theorem 4.1 coincides with the Manski/Heckman-
Vytlacil upper bound, while the lower bound of Theorem 4.1 is h(pu, pl). Thus, if h(pu, pl) > 0,
then imposing the threshold crossing structure on the outcome equation does not improve the upper
bound but does increase the lower bound by the quantity Pr[D = 0, Y = 1|P = pu]+Pr[D = 1, Y =
0|P = pl]. The improvement in the lower bound will be a strict improvement except in the special
case of point identification for Manski/Heckman-Vytlacil when pu = 1 and pl = 0, and in general
can be expected to be a considerable improvement. Symmetrically, if h(pu, pl) < 0, then the lower
bound on ATE of Theorem 4.1 coincides with the Manski/Heckman-Vytlacil upper bound, while the
upper bound of Theorem 4.1 is h(pu, pl). Thus, if h(pu, pl) < 0, then imposing the threshold crossing
structure on the outcome equation does not improve the lower bound but does improve the upper

31This same essential result was shown previously by Balke and Pearl (1997) for the special case of a binary

outcome variable and binary instrument. They show that imposing statistical independence generally results in

more informative and more complex bounds than the Manski (1990) mean independence bounds. However, they

show that under the Imbens and Angrist (1994) assumptions, the full independence bounds simplify to the Manski

mean-independence bounds.
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bound. Finally, if h(pu, pl) = 0, then the bounds of Theorem 4.1 collapse to point identification
at zero while the Manski/Heckman-Vytlacil bounds will still have width (1 − pu) + pl. Notice
only in the case where pu = 1, pl = 0 will the Manski/Heckman-Vytlacil bounds and the bounds of
Theorem 4.1 coincide, and otherwise the bounds of Theorem 4.1 will offer a strict improvement over
the Manski/Heckman-Vytlacil bounds. The cost of this improvement are the added assumptions
required for this analysis, in particular imposing the threshold crossing structure on both D and
on Y .

To illustrate the differences in the bounds, consider the following special case of our model:

Y = 1[αD − ε ≥ 0]

D = 1[δZ − U ≥ 0],

with (ε, U) ∼ N(0, I), Z taking values in {−1, 1}, and δ > 0. Figures 4 sets α = 1/4 and plots
ATE, the Manski/Heckman-Vytlacil bounds, and the bounds of Theorem 4.1 for δ in (0, 2). The
upper bounds from Theorem 4.1 coincide with the Manski/Heckman-Vytlacil upper bounds in this
example (since α > 0), while the lower bounds from Theorem 4.1 are substantially higher than the
lower bounds from Manski/Heckman-Vytlacil. The width of the Manski/Heckman-Vytlacil bounds
and the width of the bounds of Theorem 4.1 are both decreasing in δ, and both widths asymptote
to zero as δ goes to infinity. The bounds of Theorem 4.1 provide an improvement over the bounds
of Manski/Heckman-Vytlacil for any value of δ, decreasing the width of the bounds by almost half
and providing the most substantial improvement for low values of δ.

Figure 5 sets δ = 1/4 and plots ATE, the Manski/Heckman-Vytlacil bounds, and the bounds of
Theorem 4.1 for α ∈ (−2, 2). The lower bounds of Theorem 4.1 coincide with the Manski/Heckman-
Vytlacil lower bounds when α < 0, while the upper bounds coincide when α > 0. The width of
the Manski/Heckman-Vytlacil bounds do not depend on α while the bounds of Theorem 4.1 are
decreasing as α approaches zero with a discontinuity at the point α = 0 (they provide point
identification at α = 0). The bounds of Theorem 4.1 cut the width of the Manski/Heckman-
Vytlacil bounds by approximately half for any value of α (as long α 6= 0), with the improvement
most substantial for α close to zero. Notice that in this example, the bounds of Theorem 4.1
are always narrower than the bounds of Manski/Heckman-Vytlacil, with the reduction being most
substantial when both α and δ are close to zero, i.e., when the treatment has only a small effect
on the outcome variable and when the instrument has only a small effect on selection into the
treatment.

Now consider the case with X covariates and the resulting comparison of the Manski and
Heckman-Vytlacil bounds with the bounds of Theorem 5.1. Imposing our assumptions, including
that the first stage model for D is given by a threshold crossing model, we again have that the
Manski (1990) and Heckman and Vytlacil (2001) bounds coincide. To simplify the comparison,
suppose that ΩX,P = ΩX × ΩP , i.e., that the support of the distribution of (X, P ) equals the
product of the supports of the marginal distributions of X and P . In addition, suppose that
XL

j ,XU
j are nonempty for j = 0, 1. Exploiting ΩX,P = ΩX × ΩP and that XL

j ,XU
j are assumed to

be nonempty for j = 0, 1, the bounds on ATE of Theorem 5.1 become

LATE(x) = Pr[D = 1, Y = 1|X = x, P = pu] + sup
x̃∈XL

1 (x)

{Pr[D = 0, Y = 1 | X = x̃, P = pu]}

− Pr[D = 0, Y = 1|X = x, P = pl]− inf
x̃∈XU

0

{
Pr[D = 1, Y = 1|X = x̃, P = pl]

}
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Figure 4: Bounds, For Model with No X Covariates, α = 1/4
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Figure 5: Bounds, For Model with No X Covariates, δ = 1/4
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UATE(x) = Pr[D = 1, Y = 1|X = x, P = pu] + inf
x̃∈XU

1 (x)
{Pr[D = 0, Y = 1 | X = x̃, P = pu]}

− Pr[D = 0, Y = 1|X = x, P = pl]− sup
x̃∈XL

0

{
Pr[D = 1, Y = 1|X = x̃, P = pl]

}
.

By adding and subtracting terms, one can show

LATE(x) = BL
HV (x) + pl

+ sup
x̃∈XL

1 (x)

{Pr[D = 0, Y = 1 | X = x̃, P = pu]} − inf
x̃∈XU

0

{
Pr[D = 1, Y = 1|X = x̃, P = pl]

}

UATE(x) = BU
HV (x) + (1− pu)

+ sup
x̃∈XU

1 (x)

{Pr[D = 0, Y = 1 | X = x̃, P = pu]} − inf
x̃∈XL

0

{
Pr[D = 1, Y = 1|X = x̃, P = pl]

}
,

and by further rearranging terms that

LATE(x) = BL
HV (x)

+ sup
x̃∈XL

1 (x)

{Pr[D = 0, Y = 1 | X = x̃, P = pu]}+ sup
x̃∈XU

0

{
Pr[D = 1, Y = 0|X = x̃, P = pl]

}

UATE(x) = BU
HV (x)

− inf
x̃∈XU

1 (x)
{Pr[D = 0, Y = 0 | X = x̃, P = pu]} − inf

x̃∈XL
0

{
Pr[D = 1, Y = 1|X = x̃, P = pl]

}
.

We thus see that in this case the bounds of Theorem 5.1 provide a strict improvement in both
the lower and upper bounds on ATE compared to the bounds on Manski/Heckman-Vytlacil unless
pu = 1 and pl = 0. The improvement in the bounds is expected to be substantial.

To illustrate the differences in the bounds with X covariates, consider the following special case
of our model:

Y = 1[βX + αD − ε ≥ 0]

D = 1[δZ − U ≥ 0],

with (ε, U) ∼ N(0, I), Z taking values in {−1, 1}, and X takes the values −2,−1, 0, 1, 2. Figures
6 plots ATE, the Manski/Heckman and Vytlacil bounds, and the bounds of Theorem 4.1. In this
figure, we set δ = 1/4, α = 1/4, and plot over β ∈ [1/8, 1/4]. The width of the Manski/Heckman-
Vytlacil bounds do not depend on β while the bounds of Theorem 4.1 do depend on β. In
this example, the bounds of Theorem 4.1 provide a dramatic improvement over the bounds of
Manski/Heckman-Vytlacil, and provide point identification when β = 1/8 or 1/4. The tradeoff for
this improvement in the bounds is the need to impose more structure, in particular, imposing the
threshold crossing model on both D and Y .

Finally, consider the relationship of the bounding analysis of this paper with the bounding analy-
sis of Manski and Pepper (2000). Manski and Pepper consider combining a weakened instrumental
variable assumption (“monotone instrumental variables”, MIV) with a “monotone treatment re-
sponse” (MTR) assumption. The MTR assumption is that one knows a priori that Y1 ≥ Y0 for
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Figure 6: Bounds, For Model with X Covariates
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all individuals or one knows a priori that Y0 ≥ Y1 for all individuals. In comparison, our analysis
identifies the sign of the average treatment effect from the data and does not impose it a priori.
However, our analysis imposes the threshold crossing model on D and Y while no such assumption
is imposed by Manski and Pepper. Consider the case of no X regressors and the Manski and
Pepper bounds that would result from imposing Y1 ≥ Y0 (MTR) and the Manski IV assumption
that Pr[Y1 = 1|Z] = Pr[Y1 = 1], Pr[Y0 = 1|Z] = Pr[Y0 = 1]. Modifying Proposition 2 of Manski
and Pepper, the MTR assumption and Manski-IV assumption jointly imply

sup
z
{Pr[Y = 1|Z = z]} ≤ E(Y1) ≤ inf

z
{Pr[D = 1, Y = 1|Z = z] + Pr[D = 0|Z = z]}

sup
z
{Pr[D = 0, Y = 1|Z = z]} ≤ E(Y0) ≤ inf

z
{Pr[Y = 1|Z = z]}.

Then following the same type of argument used to simplify from equations (16) and (17) to (18)
and (19), given our assumptions including the threshold crossing structure on D, these bounds
simplify to

Pr[Y = 1|P = pu]} ≤ E(Y1) ≤ Pr[D = 1, Y = 1|P = pu] + (1− pu)

Pr[D = 0, Y = 1|P = pl] ≤ E(Y0) ≤ Pr[Y = 1|P = pl]}.

Combining the bounds on E(Y1) and E(Y0) to obtain bounds on E(Y1−Y0), and rearranging terms,
results in the same bounds as in Theorem 4.1 for the case of no X regressors and H > 0 (i.e., for
the case when Y1 ≥ Y0). Thus, if there are no X regressors and our assumptions hold, and the
treatment effect is positive, then our bounds coincide with the Manski and Pepper bounds that
result from imposing a priori a positive effect and the Manski IV assumption. Likewise, one can
show that if there are no X regressors, the treatment effect is negative, and our assumptions hold,
then our bounds of Theorem 4.1 coincide with the Manski and Pepper bounds that impose a priori
a negative effect and impose the Manski IV assumption. Thus, in the case of no X covariates,
there is a tight link between the Manski and Pepper bounds and the bounds of this paper, with
the tradeoff that the Manski and Pepper bounds require that one knows a priori the sign of the
treatment effect but does not impose the threshold crossing structure imposed in this paper. This
discussion, however, has taken the case of no X regressors. With X regressors, the width of our
bounds can shrink substantially while the Manski and Pepper bounds are unaffected by the presence
of X regressors. Thus, the link of our bounds with the bounds of Manski and Pepper breaks down
in the presence of X regressors.

7 Confidence Sets

We now turn to the construction of confidence sets for the bounds on ∆TT (x, p) and ∆ATE(x)
described in Sections 4 and 5. We focus on the construction of confidence sets instead of consistent
estimation of the bounds because of difficulties caused by the discontinuity in the form of the bounds
at H = 0. It is possible to estimate consistently the bounds by equating all values of Hn ∈ (−εn, εn)
with zero for εn ↘ 0 at a rate slower than 1/

√
n. However, consistency places no restrictions on the

level of εn and so estimation of the bounds becomes quite arbitrary. The confidence set approach
we describe below circumvents this difficulty altogether.

Specifically, in this section we will describe a construction of random sets CTT
n and CATE

n that
will asymptotically contain each point in the sets described in Theorems 4.1 and 5.1, respectively,
with probability at least 1 − α for a researcher-specified α ∈ (0, 1). We will do this in the special
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case in which both X and Z are discrete random variables. Concretely, our analysis will assume
the following structure on the data generation process:

(B-1) The observed data {Yi, Di, Zi, Xi}1≤i≤n are i.i.d;

(B-2) ΩX,Z = {(x1, z1), . . . , (xL, zL)}; and

(B-3) z 6= z′ ⇒ Pr[D = 1|Z = z] 6= Pr[D = 1|Z = z′].

Assumtion (B-2) is not essential, but makes the analysis considerably simpler by avoiding the need
to resort to more sophisticated smoothing-based estimators of certain objects. Given Assumption
(B-2), Assumption (B-3) is not especially restrictive, but makes the exposition of our results much
easier. It can be relaxed at the expense of somewhat more notationally involved arguments below.

As before, we will first analyze the situation in which there are no X covariates so as not to
obscure the main ideas behind our construction. We will then generalize our results to allow for X
covariates.

7.1 Analysis With No X Covariates

In order to make the notation less cumbersome, we will use the following shorthand for some of the
terms that appear in the statement of Theorem 4.1:

A =
1
p
h(p, pl)

B+ =
1
p
(h(p, pl) + Pr[D = 1, Y = 1|P = pl])

B− =
1
p
(h(p, pl)− Pr[D = 1, Y = 0|P = pl])

C = h(pu, pl)
D+ = h(pu, pl) + Pr[D = 1, Y = 1|P = pl] + Pr[D = 0, Y = 0|P = pu]
D− = h(pu, pl)− Pr[D = 1, Y = 0|P = pl]− Pr[D = 0, Y = 1|P = pu] ,

where we have suppressed the dependence of both A, B+, and B− on p. Define the function

P (z) = Pr[D = 1|Z = z] (28)

and let zl satisfy P (zl) = pl, zu satisfy P (zu) = pu, and z satisfy P (z) = p. Thus, with zl, zu, and
z so defined, we have, as a result of index sufficiency, that

A =
1

P (z)
h∗(z, zl)

B+ =
1

P (z)
(h∗(z, zl) + Pr[D = 1, Y = 1|Z = zl])

B− =
1

P (z)
(h∗(z, zl)− Pr[D = 1, Y = 0|Z = zl])

C = h∗(zu, zl)
D+ = h∗(zu, zl) + Pr[D = 1, Y = 1|Z = zl] + Pr[D = 0, Y = 0|Z = zu]
D− = h∗(zu, zl)− Pr[D = 1, Y = 0|Z = zl]− Pr[D = 0, Y = 1|P = zu] ,
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where we have defined

h∗(z0, z1) = Pr[Y = 1|Z = z0]− Pr[Y = 1|Z = z1] .

For the purposes of constructing confidence sets, we will therefore think of the parameter ∆TT and
the bounds BTT for it as functions of z rather than p.

It is natural to define estimators An, B+
n , B−

n , Cn, D+
n , and D−

n of their population counterparts
by simply replacing conditional population means with conditional sample means. Consistency of
these estimators follows from assumption (B-1) using conventional arguments, which we omit here.
As an example, we have that

An =
1

P̂ (z)
ĥ∗(z, ẑl) ,

where

P̂ (z) =
1

|{i : Zi = z}|
∑

i:Zi=z

Di

ĥ∗(z, zl) =
1

|{i : Zi = z}|
∑

i:Zi=z

Yi −
1

|{i : Zi = ẑl}|
∑

i:Zi=ẑl

Yi

and ẑl solves minz P̂ (z). Note that as a result of assumptions (B-2) and (B-3), we have that ẑl = zl

with arbitrarily high probability for all sufficiently large n. Thus, asymptotically we need not worry
about the estimation of zl. A similar remark holds for zu.

It follows from assumption (B-3) that the mapping P (z) = z is invertible. Therefore, using
index sufficiency again, we also have that a consistent estimator of

H =
∫ 1

0

∫ p0

0
h(p0, p1)dFP (p1)dFP (p0)

is given by

Hn =
1

|ΩZ |2
∑

(z0,z1):P̂ (z0)<P̂ (z1)

h∗(z0, z1) .

Our construction of confidence intervals will rely on the fact that for each of the terms described
above, it is possible to construct asymptotically valid confidence regions. In this case, since each
of the estimators has the form of a sum of a fixed number of sample means, it is easy to show, for
example, that

√
n(An −A) d→ N(0, σ2

A) . (29)

Analogous statements hold for B+
n , B−

n , Cn, D+
n , D−

n , and Hn. Thus, it is possible to construct
asymptotically valid confidence regions in a number of different ways. For example, if one denotes
by σ̂2

A a consistent estimate of the asymptotic variance of (29) and by q1−α the 1− α quantile of a
standard normal distribution, it follows that

Pr[A > An −
σ̂Aq1−α√

n
] → 1− α .

We are now prepared to describe our construction of the confidence sets CTT
n and CATE

n in the
case in which there are no X covariates.

Algorithm 7.1
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1. Construct a two-sided 1− α confidence interval for H as

In = [Hn −
σ̂Hq1−α/2√

n
,Hn +

σ̂Hq1−α/2√
n

] .

2. If

Hn −
σ̂Hq1−α/2√

n
> 0 ,

then let

CTT
n = [An −

σ̂Aq1−α√
n

,B+
n +

σ̂B+q1−α√
n

]

CATE
n = [Cn −

σ̂Cq1−α√
n

,D+
n +

σ̂D+q1−α√
n

] .

3. If

Hn +
σ̂Hq1−α/2√

n
< 0 ,

then let

CTT
n = [B−

n − σ̂B−q1−α√
n

,An +
σ̂Aq1−α√

n
]

CATE
n = [D−

n −
σ̂D−q1−α√

n
,Cn +

σ̂Cq1−α√
n

] .

4. If 0 ∈ In, then let

CTT
n = [B−

n − σ̂B−q1−α√
n

,B+
n +

σ̂B+q1−α√
n

]

CATE
n = [D−

n −
σ̂D−q1−α√

n
,D+

n +
σ̂D+q1−α√

n
] .

We now show that the confidence sets constructed in this way satisfy the desired coverage
property.

Theorem 7.1. The sets CTT
n and CATE

n constructed according to Algorithm 7.1 satisfy for each
θTT ∈ BTT (z) and each θATE ∈ BATE

lim inf Pr[θTT ∈ CTT
n ] ≥ 1− α

lim inf Pr[θATE ∈ CATE
n ] ≥ 1− α .

Proof. We describe the proof for the bounds on the TT parameter in detail. The argument for the
ATE parameter is entirely analogous.

First consider the case in which H > 0, so ∆TT (p) = [A,B+]. Then with probability approach-
ing 1, we have that

Hn −
σ̂Hq1−α/2√

n
> 0 .
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Thus, with probability approaching 1,

CTT
n = [An −

σ̂Aq1−α√
n

,B+
n +

σ̂B+q1−α√
n

] .

Hence, for each θTT ∈ [A,B+], we have that

lim inf Pr[θTT ∈ CTT
n ] ≥ 1− α ,

as desired. The proof for the case in which H < 0 is symmetric. Now consider the case in which
H = 0. Then, with probability at least 1 − α asymptotically, 0 ∈ In. Therefore, with probability
at least 1− α asymptotically, we have that

CTT
n = [B−

n − σ̂B−q1−α√
n

,B+
n +

σ̂B+q1−α√
n

] .

Since B− < 0 < B+, we have that B−
n < 0 < B+

n with probability approaching 1. It follows that
when H = 0, we have that 0 ∈ CTT

n with probability at least 1− α asymptotically, as desired.

7.2 Analysis With X Covariates

We begin as before by noting that as a result of index sufficiency we have that LTT (x, p) =
LTT∗(x, z) and UTT (x, p) = UTT∗(x, z) where

LTT∗(x, z) =
1

P (z)
sup

z̃

{
h(z, z̃, x) + Pr[D = 1, Y = 1|X = x, Z = z̃]

− P (z̃) inf
x̃∈XU

0 (x)
{Pr[Y = 1 | D = 1, X = x̃, Z = z̃]}

}

UTT∗(x, z) =
1

P (z)
inf
z̃

{
h(z, z̃, x) + Pr[D = 1, Y = 1|X = x, Z = z̃]

− P (z̃) sup
x̃∈XL

0 (x)

{Pr[Y = 1 | D = 1, X = x̃, Z = z̃]}
}

where h∗(z0, z1, x) = Pr[Y = 1 | X = x,Z = z0] − Pr[Y = 1 | X = x, Z = z1], for any z such
that P (z) = p. By analogy with the case in which there were no X covariates, for the purposes of
constructing confidence sets we will think of ∆TT as a function of x and z rather than x and p and
thus define the bounds for it in terms of LTT∗ and UTT∗ rather than LTT and UTT .

Similarly, we have for any z such that P (z) = p that LATE(x) = LATE∗(x) and UATE(x) =
UATE∗(x) where

LATE∗(x) =

sup
z

{
Pr[D = 1, Y = 1|X = x, Z = z] + (1− P (z)) sup

x̃∈XL
1 (x)

{Pr[Y = 1 | D = 0, X = x̃, Z = z]}

}

− inf
z̃

{
Pr[D = 0, Y = 1|X = x,Z = z̃] + P (z̃) inf

x̃∈XU
0 (x)

{Pr[Y = 1|D = 1, X = x̃, Z = z̃]}

}
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UATE∗(x) =

inf
z

{
Pr[D = 1, Y = 1|X = x,Z = z] + (1− P (z)) inf

x̃∈XU
1 (x)

{Pr[Y = 1 | D = 0, X = x̃, Z = z]}

}

− sup
z̃

{
Pr[D = 0, Y = 1|X = x,Z = z̃] + P (z̃) sup

x̃∈XL
0 (x)

{Pr[Y = 1|D = 1, X = x̃, Z = z̃]}

}
.

Our analysis for the parameter ∆ATE will hereafter be based on LATE∗ and UATE∗ rather than
LATE and UATE .

Note that the four quantities LTT∗, UTT∗, LATE∗, and UATE∗ depend on the sets XL
0 (x),

XU
0 (x), XL

1 (x), and XU
1 (x). It will be useful for us to make this dependence explicit by writing

LTT∗(x, z,XL
0 (x)), UTT∗(x, z,XU

0 (x)), LATE∗(x, z,XL
1 (x),XU

0 (x)), and UATE∗(x, z,XL
0 (x),XU

1 (x))
and thereby think of these quantities as functions not only of x and z, but also of the underlying
sets XL

0 (x), XU
0 (x), XL

1 (x), and XU
1 (x). In order to avoid later confusion, let us write AL

0 (x),
AU

0 (x), AL
1 (x) and AU

1 (x) for arbitrary such sets.

Because of our assumption (B-2), for fixed values of x, z, AL
0 (x), AU

0 (x), AL
1 (x) and AU

1 (x),
it is straightforward to construct consistent estimates of the quantities LTT∗, UTT∗, LATE∗, and
UATE∗ by simply replacing the conditional population means in the above expressions with their
sample counterparts. Let us denote the estimators obtained in this way as LTT∗

n , UTT∗
n , LATE∗

n ,
and UATE∗

n .

As before, assumption (B-3) and index sufficiency together enable us to construct a consistent
estimator of the quantity

H(x0, x1) =
∫ 1

0

∫ p0

0
[h1(p0, p1, x1)− h0(p0, p1, x0)]1[(xi, pj) ∈ ΩX,P , i, j = 0, 1]dFP (p1)dFP (p0)

as

Hn(x0, x1) =
1

|ΩZ |2
∑

(z0,z1) : P̂ (z1)<P̂ (z0)

[ĥ∗1(z0, z1, x1)− ĥ∗0(z0, z1, x0)]1[(xi, zj) ∈ ΩX,Z , i, j ∈ {0, 1}] ,

where ĥ∗0(z0, z1, x0) and ĥ∗1(z0, z1, x1) are, respectively, the consistent estimates of the quantities

h∗0(z0, z1, x0) = Pr[D = 0, Y = 1|X = x0, Z = z1]− Pr[D = 0, Y = 1|X = x0, Z = z0]
h∗1(z0, z1, x1) = Pr[D = 1, Y = 1|X = x1, Z = z0]− Pr[D = 1, Y = 1|X = x1, Z = z1]

formed by replacing conditional population means with their sample counterparts.

We will need in our construction of confidence sets in the with X case, for fixed values of
x, z, AL

0 (x), AU
0 (x), AL

1 (x) and AU
1 (x), asymptotically valid confidence intervals for each of the

quantities LTT∗, UTT∗, LATE∗, and UATE∗. Note that the estimator LTT∗
n of LTT∗ described above

can easily be shown to satisfy under our assumptions

√
n(LTT∗

n − LTT∗) d→ N ,

where N is a continuous transformation of a multivariate normal random variable. We omit the
details, which are completely straightforward, here. Analogous statements hold for the estimators
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UTT∗
n , LATE∗

n , and UATE∗
n . Thus, using subsampling, for example, it is possible to construct

asymptotically valid confidence regions for each of the quantities LTT∗, UTT∗, LATE∗, and UATE∗.32

Denote by LTT
n (1 − α) the lower bound of a one-sided 1 − α confidence interval for LTT∗ and by

UTT
n (1−α) the upper bound of a one-sided 1−α confidence interval for UTT∗. Define LATE

n (1−α)
and UATE

n (1 − α) analogously. Note that we have suppressed the dependence of these quantities
on x, z, AL

0 (x), AU
0 (x), AL

1 (x) and AU
1 (x).

We will also require an asymptotic confidence band for H(x0, x1), both when viewed as a
function of x0 for fixed x1 and when viewed as a function of x1 for fixed x0. To see how this might
be achieved, first fix x0 and consider the random variable given by

√
n sup

x1

(Hn(x0, x1)−H(x0, x1))
d→ N ,

where N is a continuous transformation of a multivariate normal random variable (distinct from the
one used in the preceding paragraph). Again, using subsampling it is therefore possible to estimate
the 1−α quantile of this limiting distribution. Denote this estimate by ε0n(1−α). Symmetrically,
for fixed x1, we will define ε1n(1− α) to be the subsampling estimate of the 1− α quantile of the
limiting distribution of

√
n supx0

(Hn(x0, x1)−H(x0, x1)). Note that ε0n(1− α) depends on the x0

evaluation point and ε0n(1 − α) depends on the x1 evaluation point, but we have suppressed this
dependence.

Using this notation, we may now describe our construction of confidence sets for the case in
which there are X covariates.

Algorithm 7.2

1. Construct

AL
0 (x) = {x′|Ĥ(x, x′) < −ε0n(1− α)√

n
}

AU
0 (x) = {x′|Ĥ(x, x′) >

ε0n(1− α)√
n

}

AL
1 (x) = {x′|Ĥ(x′, x) >

ε1n(1− α)√
n

}

AU
1 (x) = {x′|Ĥ(x′, x) < −ε1n(1− α)√

n
} .

2. Set

CTT
n = [LTT

n (1− α),UTT
n (1− α)]

CATE
n = [LATE

n (1− α),UATE
n (1− α)] .

We now show that the confidence sets constructed in this way have the desired coverage property.

Theorem 7.2. The confidence sets CTT
n and CATE

n defined in Algorithm 7.2 satisfy for all θTT ∈
[LTT∗(x, z,XL

0 (x)), UTT∗(x, z,XU
0 (x))] and θATE ∈ [LATE∗(x, z,XL

1 ,XU
0 ), UATE∗(x, z,XL

0 ,XU
1 )],

we have that

lim inf Pr[θTT ∈ CTT ] ≥ 1− α

lim inf Pr[θATE ∈ CATE ] ≥ 1− α .

32See Politis, Romano, and Wolf (1999), Theorem 2.2.1.
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Proof. We describe in detail the proof for the bounds on the TT parameter. The argument for
ATE is entirely analogous.

First consider the case in which XL
0 (x) ∩ XU

0 (x) = ∅. Then, for all x′, either H(x, x′) > 0
or H(x, x′) < 0. Therefore, with arbitrarily high probability for large enough n, we have that
AL

0 (x) = XL
0 (x) and AU

0 (x) = XU
0 (x). Thus, for any θ ∈ [LTT∗(x, z,XL

0 (x)), UTT∗(x, z,XU
0 (x))],

we have that
lim inf Pr[θ ∈ [LTT

n (1− α),UTT
n (1− α)]] ≥ 1− α .

Now consider the case in which XL
0 (x)∩XU

0 (x) 6= ∅. Let θ denote the common value LTT∗(x, z,XL
0 (x)) =

UTT∗(x, z,XU
0 (x)). Note that H(x, x′) = 0 for all x′ ∈ XL

0 (x) ∩ XU
0 (x), and thus

lim inf Pr[Ĥ(x, x′)− ε0n(1− α)√
n

≤ 0 ≤ Ĥ(x, x′) +
ε0n(1− α)√

n
∀x′ ∈ XL

0 (x) ∩ XU
0 (x)] ≥ 1− α .

Thus, with probability at least 1 − α asymptotically AL
0 (x) and AU

0 (x) both exclude all values of
x′ in XL

0 (x) ∩ XU
0 (x). Note that for such AL

0 (x) and AU
0 (x) we have that

LTT∗(x, z,AL
0 (x)) ≤ θ ≤ UTT∗(x, z,AU

0 (x)) .

As a result, we have that for such AL
0 (x) and AU

0 (x) with probability approaching 1, θ ∈ [LTT
n (1−

α),UTT
n (1− α)]. Thus, the desired coverage property holds in this case as well.

8 Conclusion

This paper has constructed sharp bounds for the effect of a binary endogenous variable on a
binary outcome variable under the assumption that the endogenous variable and outcome variable
are jointly determined by triangular system of threshold-crossing models. We have also provided
methods for inference for the resulting bounds. The assumptions considered in this paper are
substantially weaker than those underlying, for example, the traditional bivariate probit model,
since no parametric distributional assumptions are imposed. On the other hand, we impose more
structure relative to the earlier analyses of Manski (1990) or Heckman and Vytlacil (2001).

Relaxing the parametric assumptions of a bivariate probit model comes at a cost: While the
average effect of the binary endogenous variable is point-identified under the parametric distri-
butional and functional form assumptions of the traditional bivariate probit model, the average
effect is in general only set-identified without such assumptions. There is no loss of identifying
power from removing these assumptions if the average effect of the treatment is zero or if there
is variation in other regressors that directly compensates for variation in the endogenous variable.
In these instances, even without the parametric assumptions, our analysis also point-identifies the
parameter of interest. Moreover, even when the average treatment effect is not point-identified, we
are still able to identify the sign of the average effect.

Strengthening the assumptions of Manski (1990) and Heckman and Vytlacil (2001) has a benefit:
The width of the bounds are narrower if one imposes the threshold crossing structure, and, as noted
above, always identify the sign of the average treatment effect. The narrowing of the bounds relative
to Manski (1990) and Heckman and Vytlacil (2001) is particularly dramatic if there are regressors
that enter the outcome equation that do not enter the selection equation for the endogenous variable.

42



This is of practical significance because the Manski (1990) and Heckman and Vytlacil (2001) bounds
are sometimes too wide to allow applied researchers to make meaningful inferences in the context of
their application (see, e.g., our empirical example of Bhattacharya, Shaikh, and Vytlacil (2005)). In
exchange for imposing the threshold crossing model (but without having to impose any parametric
assumptions), the techniques developed in this paper circumvent this difficulty, especially in cases
where the sign of the average effect is of primary interest.
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