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Abstract

Postel-Vinay and Robin’s (2002) sequential auction model is extended to allow

for aggregate productivity shocks. Workers exhibit permanent differences in ability

and firms are identical. The model first predicts that negative productivity shocks

may induce job destruction by driving the surplus of matches with low ability workers

to negative values. Endogenous job destruction coupled with worker heterogeneity

thus provides a mechanism for amplifying productivity shocks that offers an original

solution to the unemployment volatility puzzle (Shimer, 2005). Second, positive or

negative shocks may lead employers and employees to renegotiate low wages up and

high wages down when agents’ individual surpluses become negative. The model

thus delivers a rich business cycle dynamics of wage distributions that allows to

explain why both low wages and high wages are more procyclical than wages in the

middle of the distribution and why wage inequality may be countercyclical, as the

data seem to suggest is true.
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1 Introduction

The initial motivation for this paper is two-fold. First, empirical results in Bonhomme and

Robin (2009) and Heathcote, Perri and Violante (2009), among others, suggest that wage

and earnings inequality increase in downturns (while earnings mobility decreases) and that

low earnings, and low wages to a lesser extent, are more procyclical than high earnings

or wages. The reason why it is so is not totally clear by lack of a theory of the business

cycle fluctuations of wage distributions. Second, models of individual earnings dynamics

in Haider (2001), Baker and Solon (2003), Guvenen (2007), Moffitt and Gottschalk (1995,

2008), and others, consider extensions of the basic permanent-and-transitory-factor model:

yit = ptµi + λtvit

where yit is the residual of a regression of log earnings on time dummies, education, etc.,

and vit is a stationary (“transitory” ) process; pt and λt are factor loadings, i.e. time-

varying parameters to be estimated. Increasingly more complex structures have been

proposed in the literature without strong economic rationale.

The aim of this work is to propose a theory of the interaction of aggregate shocks

and worker heterogeneity for understanding business cycle fluctuations of wage distribu-

tions. In passing, I will also reconsider the unemployment volatility puzzle (Shimer, 2005)

through the lens of this model.

I shall use Postel-Vinay and Robin’s (2002) sequential auctions to model wage setting,

in a way that is similar to the model in Lise et al. (2009) except than I allow for aggregate

shocks to productivity instead of firm-specific shocks. Wage contracts are long term

contracts that can be renegotiated by mutual agreement only. Employees search on the

job and employers counter outside offers. There is no invisible hand to set wages as in a

Walrasian equilibrium. Instead, it is assumed that firms have full monopsony power vis-à-

vis unemployed workers and hire them at a wage that is only marginally greater than their

reservation wage. However, a worker paid less than the competitive wage has a strong

incentive to look for an alternative employer in order to trigger Bertrand competition. In
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such an environment, at a steady-state equilibrium, with identical workers and identical

firms, there are only two wages in the support of the equilibrium distribution: the lower

and the upper bounds of the bargaining set; either the firm gets all the surplus, or the

worker.

In a very influential paper, Rob Shimer (2005) argues that the search-matching model

of Mortensen and Pissarides (1990) cannot reproduce unemployment dynamics well. A

long series of papers have tried to offer a remedy, essentially by making wages sticky (Hall,

2005, Hall and Milgrom, 2008, Gertler ad Trigari, 2009, Pissarides, 2007) or by reducing

the match surplus to a very small value (Hagedorn and Manovskii, 2008). Mortensen and

Nagypal (2007) review this literature and consider other mechanisms. Interestingly, al-

though endogenous job destruction is at the heart of the Mortensen-Pissarides model, this

literature has neglected endogenous job destruction as a possible amplifying mechanism

when coupled with worker heterogeneity. However, if negative aggregate productivity

shocks make the job surplus of low ability workers negative, even a small fraction of

workers (around 5%) at risk of a negative surplus is enough to amplify the effect of nega-

tive productivity shocks on unemployment above and beyond the steady exogenous layoff

flows. I will show that realistic unemployment dynamics can be generated with an exoge-

nous layoff rate of 4.3% and an overall job destruction rate of 4.5%. The 0.2% difference

is the endogenous part. Exogenous job destruction (idiosyncratic) implies a minimum

unemployment rate of about 4% (say frictional unemployment). Endogenous job destruc-

tion (macroeconomic) implies additional unemployment between 0 and 5% (shall we call

it classical?).

A few interesting search-matching models with endogenous earnings distribution dy-

namics have recently been proposed in the literature. Pissarides (2007) suggests a novel

approach to solve the unemployment volatility puzzle by assuming that productivity

shocks change entry wages in new jobs differently from wages in on-going jobs. Gertler

and Trigari (2009) generate wage stickiness using a Calvo-type mechanism such that only

a fraction of contracts are renegotiated in every period. Both models generate cross-

sectional wage dispersion but they do not address the issue of wage inequality dynamics.

3



In my model, wages in new matches and wages in on-going matches may also be differ-

ent. However, they reflect state-dependent rent sharing mechanisms with not effect on

unemployment dynamics, as unemployment dynamics depends on the level of the rent or

surplus (and how it compares to zero), not on how it is split.

Two other recent papers are worth mentioning. Moscarini and Postel-Vinay (2009)

study the non-equilibrium dynamics of Burdett and Mortensen’s wage posting model.

Workers are identical but firms are different. This model yields very interesting insights

on the business-cycle dynamics of firm size distributions. Menzio and Shi (2009) also con-

sider a wage posting model but they assume undirected search instead of directed search.

Moreover, neither firms nor workers are intrinsically different but a match productivity

value is drawn after installing a new partnership.

Here, wage dispersion accrues partly because “starting wages” (upon exiting unem-

ployment) differ from “promotion wages” (from Bertrand competition), partly because of

workers’ heterogeneous abilities, and partly because the long term nature of wage con-

tracts induces aggregate state dependence (renegotiation occurs after a productivity shock

only if it puts the current contract outside the bargaining set). At any point in time, new

wage contracts are signed which depend on the current aggregate state. Some of these new

wages result from a contact between a worker, employed or unemployed, and an employer.

Some of these new wages reflect a contract renegotiation with the same employer due to

the recent change in the macroeconomic environment. A low wage may suddenly become

lower than the worker’s reservation wage and the employer is forced to renegotiate the

wage upward. A high wage may suddenly become higher than the employer’s reservation

value and the worker is forced to accept a wage cut. It is therefore expected that both

low and high wages will be more procyclical than wages in the middle of the distribution.

Table 1 shows elasticities of three hourly wage inequality measures (D9/D5, D5/D1,

D9/D1 where Dx stands for the xth decile). Elasticities are calculated with respect to

aggregate unemployment (CPS) and productivity (BLS) using a log-log regression that

includes a linear trend.1 One can see that the data seem to comply with the model’s
1The inequality data are obtained from about 20 years of CPS surveys starting in1967. I am immensely
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D9/D5 D5/D1 D9/D1
Hourly Wage

Unempl. Rate (linear trend) -0.048 (0.014) 0.056 (0.018) 0.007 (0.017)
Unempl. Rate (HP-filtered) -0.095 (0.003) 0.113 (0.011) 0.017 (0.009)
Productivity (linear trend) 0.21 (0.14) -0.53 (0.16) -0.32 (0.15)
Productivity (HP-filtered) 0.44 (0.15) -0.98 (0.15) -0.53 (0.03)

Annual Earnings
Unempl. Rate (linear trend) 0.010 (0.012) 0.25 (0.032) 0.26 (0.033)
Unempl. Rate (HP-filtered) -0.005 (.009) 0.36 (.024) 0.35 (0.025)
Productivity (linear trend) -0.10 (0.11) -1.41 (0.41) -1.51 (0.43)
Productivity (HP-filtered) -0.044 (0.16) -2.46 (0.50) -2.51 (0.50)

Table 1: Wage and Earnings Inequality. (Source: CPS, 1967-2005. Each case corresponds
to the elasticity of the column variable with respect to the row variable. The log of
variables has been first detrended using a linear trend or the HP-filter.)

predictions. The table also displays the elasticities of inequality indices of annual earn-

ings. Low wage earners also facing more unemployment risk, low earnings are therefore

much more procyclical than high earnings. Moreover, it seems that hours worked are

more procyclical than hourly wages. These points were already made by Heathcote et

al. (2009). I shall present a calibration of the dynamic sequential auction model that

generates more procyclicality in low wages than in high wages and that also produces a

swiftier employment response of low ability workers to aggregate productivity.

The paper is organized as follows. I will first start to develop a search-matching,

sequential-auction model with heterogeneous workers and identical firms. Then, I will

explain how the model’s parameters are calibrated or estimated. Lastly, I will interpret

the results.

2 The Model

We start by laying out the model.

grateful to Gianluca Violante who passed me these data.
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2.1 Employment and turnover

Aggregate shocks. Time is discrete and indexed by t ∈ N. The global state of the

economy is described by an ergodic Markov chain yt ∈ {y1 < ... < yN} with transition

probability matrix Π = (πij) (with a slight abuse of notation, yt denotes the stochastic

process and yi an element of the support). Aggregate shocks accrue at the beginning of

each period.

Workers. There are M types of workers and #m workers of each type (with
∑M

m=1 #m =

1). Each type is characterized by a time-invariant ability xm, m = 1, ...,M , with xm <

xm+1. Workers are paired with identical firms to form productive units. The per-period

output of a job, if the worker is of ability xm and aggregate productivity is yi, is denoted

yi(m), and a natural specification for match productivity is yi(m) = xmyi. We assume

that firms cannot direct their search to specific worker types. We denote as Si(m) the

surplus of a match (xm, yi), that is, the present value of the match minus the value of

unemployment and minus the value of a vacancy (assumed to be nil). Only matches with

Si(m) > 0 are viable.

Turnover. Matches form and break at the beginning of each period, after the aggregate

state has been reset for the whole period. Let ut(m) (resp. 1 − ut(m)) denote the

proportion of unemployed (employed) in the population of workers of ability xm at the

end of period t−1, and let ut =
∑M

m=1 ut(m)#m denote the aggregate unemployment rate.

A the beginning of period t, the new aggregate productivity state is revealed to be equal

to some i ∈ {1, ..., N}. A fraction 1{Si(m) ≤ 0}[1 − ut(m)]#m is then endogenously laid

off, and another fraction δ1{Si(m) > 0}[1− ut(m)]#m is exogenously destroyed.

For simplicity, we assume that workers meet employers at exogenous rates. It is easy

to work out an extension of the model with a standard matching function if necessary.

Thus, a fraction λ01{Si(m) > 0}ut(m)#m of unemployed workers meet an employer and a

fraction λ1(1−δ)1{Si(m) > 0}[1−ut(m)]#m of employed workers meet an alternative em-

ployer, where λ0 and λ1 are the respective search intensities of unemployed and employed
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workers. We assume that employers have full monopsony power with respect to work-

ers. Hence, unemployed workers are offered their reservation wage. However, employees

benefit from the competition between the incumbent and the poacher. Because firms are

identical and there is no mobility cost, Bertrand competition transfers the whole surplus

to the worker and the worker is indifferent between staying with the incumbent employer

or moving to the poacher. We assume that the tie is broken in favour of the poacher with

probability τ .2

The following turnover rates can then be computed:

• Exit rate from unemployment:

f0t = λ0

∑
m 1{Si(m) > 0}ut(m)#m

ut
;

• Quit rate (job-to-job mobility):

f1t = τλ1(1− δ)

∑
m 1{Si(m) > 0}[1− ut(m)]#m

1− ut
;

• Lay-off rate:

st = δ + (1− δ)

∑
m 1{Si(m) ≤ 0}(1− ut(m))#m

1− ut
.

The value of unemployment. Let Ui(m) denote the present value of remaining un-

employed for the rest of period t for a worker of type m if the economy is in state yi.

An unemployed worker receives a flow-payment zi(m) for the period. At the beginning

of the next period, the state of the economy changes to yj with probability πij and the

worker receives a job offer with some probability. However, because the employer has full

monopsony power, the present value of a new job to the worker is only marginally better

than the value of unemployment. Consequently, the value of unemployment solves the
2The randomness in the eventual mobility may explain why employers engage in Bertrand competition

in the first place.
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following linear Bellman equation:

Ui(m) = zi(m) +
1

1 + r

∑

j

πijUj(m).

The match surplus. After a productivity shock from i to j all matches yielding neg-

ative surplus are destroyed. Otherwise, if the worker is poached, Bertrand competition

transfers the whole surplus to the worker whether s/he moves or not. Everything that

the worker or the firm will earn in the future is included in the definition of the current

surplus. It follows that the surplus of a match (xm, yi) solves the following (nearly linear)

Bellman equation:

Si(m) = yi(m)− zi(m) +
1− δ

1 + r

∑

j

πijSj(m)+,

where we denote x+ = max(x, 0). This nearly-linear system of equations can be numeri-

cally solved by value function iteration.

Unemployment process. The law of motion of individual-specific unemployment rates

is:

ut+1(m) = 1− [(1− δ)(1− ut(m)) + λ0ut(m)]1{Si(m) > 0}

=






1 if Si(m) ≤ 0,

ut(m) + δ(1− ut(m))− λ0ut(m) if Si(m) > 0.

It is clear that the dynamics of unemployment is completely independent on how the

surplus is split between employers and employees.

Steady-state. If the economy remains in state i for ever, the unemployment rate in

group m is

ui(m) =
δ

δ + λ0
1{Si(m) > 0} + 1{Si(m) ≤ 0}.
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The aggregate unemployment rate is:

ui =
M∑

m=1

ui(m)#m =
δ

δ + λ0
Li + 1− Li = 1− λ0

δ + λ0
Li,

where Li =
∑M

m=1 #m1{Si(m) > 0} is the number of employable workers.

2.2 Wages

Let Wi(w, m) denote the present value of a wage w in state i to a worker of type m. The

worker surplus, Wi(w, m)− Ui(m), satisfies the following Bellman equation:

Wi(w, m)− Ui(m) = w − zi(m)

+
1− δ

1 + r

∑

j

πij1{Sj(m) > 0}
[
λ1Sj(m) + (1− λ1)(W

∗
j (w, m)− Uj(m))

]

with

W ∗
j (w, m)− Uj(m) = min{max{Wj(w, m)− Uj(m), 0}, Sj(m)}.

The surplus flow for the current period is w − zi(m). In the following period, the worker

is laid off with probability 1{Sj(m) ≤ 0} + δ1{Sj(m) > 0}, and suffers zero surplus.

Alternatively, with probability λ1, the worker receives an outside offer and enjoys the

whole surplus. In the absence of poaching (with probability 1− λ1) wage contracts may

still be renegotiated if a productivity shock moves the current wage outside the bargaining

set. We follow McLeod and Malcomson (1993) and Postel-Vinay and Turon (2007) and

assume that the new wage contract is the closest point in the bargaining set from the

old, now infeasible wage. That is, if Wj(w, m) − Uj(m) < 0, the worker has a creadible

threat to quit to unemployment and her employer accepts to renegotiate the wage up to

the point where the worker obtains zero surplus. If Wj(w, m)− Uj(m) > Sj(m), now the

employer has a credible threat to fire the worker unless she accepts to renegotiate down

to the point where she gets the whole surplus and no more.

For all aggregate states yi and all worker types xm, there are only two possible starting
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wages. Either the worker was offered a job while unemployed, and he can only claim a

wage wi(m) such that Wi(wi(m), m) = Ui(m) (his reservation wage); or he was already

employed and he benefits from a wage rise to wi(m) such that Wi(wi(m), m) = Ui(m) +

Si(m) (the employer’s reservation value).

For all k, let us denote the worker surpluses when the economy is in state k evaluated

at wages wi(m) and wi(m) as

W k,i(m) = Wk(wi(m), m)− Uk(m),

W k,i(m) = Wk(wi(m), m)− Uk(m),

and let

W ∗
k,i(m) = min{max{W k,i(m), 0}, Si(m)},

W
∗
k,i(m) = min{max{W k,i(m), 0}, Si(m)}.

Making use of the definitions of wages, W i,i(m) = 0 and W i,i(m) = Si(m), these worker

surpluses therefore satisfy the following modified Bellman equations:

W k,i(m) = W k,i(m)−W i,i(m)

= zi(m)− zk(m) +
1− δ

1 + r

∑

j

(πkj − πij)1{Sj(m) > 0}
[
λ1Sj(m) + (1− λ1)W

∗
j,i(m)

]

and

W k,i(m)− Si(m) = W k,i(m)−W i,i(m)

= zi(m)− zk(m) +
1− δ

1 + r

∑

j

(πkj − πij)1{Sj(m) > 0}
[
λ1Sj(m) + (1− λ1)W

∗
j,i(m)

]
.

Again, value function iteration delivers a simple numerical solution algorithm.
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Having determined W k,i(m) and W k,i(m) for all k, i and m, wages then follow as

wi(m) = zi(m)− 1− δ

1 + r

∑

j

πij1{Sj(m) > 0}
[
λ1Sj(m) + (1− λ1)W

∗
j,i(m)

]

and

wi(m) = Si(m) + zi(m) − 1− δ

1 + r

∑

j

πij1{Sj(m) > 0}
[
λ1Sj(m) + (1 − λ1)W

∗
j,i(m)

]
.

2.3 Wage distributions

The support of the wage distribution is the union of all sets Ωm = {wi(m), wi(m),∀i}.

Let gt(w, m) denote the measure of workers of ability m employed at wage w ∈ Ω at the

end of period t− 1.

Conditional on the state of the economy changing to yt = yi (maybe equal to yt−1)

at the beginning of period t, no worker can be employed if Si(m) ≤ 0. The inflow

into the stock of workers paid the minimum wage wi(m) is otherwise made of those

unemployed workers drawing an offer (λ0ut(m)#m) plus all employees paid a wage w such

that Wi(w, m) − Ui(m) < 0 who were not laid off but were also not lucky enough to get

poached. The outflow is made of those workers previously paid wi(m) who are either laid

off or poached. That is,

gt+1(wi(m), m) = 1{Si(m) > 0}
[
λ0ut(m)#m

+ (1− δ)(1− λ1)

(
gt(wi(m), m) +

∑

w∈Ωm

1{Wi(w, m)− Ui(m) < 0}gt(w, m)

)]
.

The inflow into the stock of workers paid wi(m) has two components. First, any

employee paid less than wi(m) (in present value terms) who is contacted by another

employer benefits from a pay rise to wi(m). Second, any employee paid more than wi(m)

(in present value) has to accept a pay cut to wi(m) to avoid layoff. The only reason to
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flow out is layoff. Hence,

gt+1(wi(m), m) = 1{Si(m) > 0}(1− δ)

[
λ1(1− ut(m))#m

+ (1− λ1)

(
gt(wi(m), m) +

∑

w∈Ωm

1{Wi(w, m)− Ui(m) > Si(m)}gt(w, m)

)]
.

Lastly, for all w ∈ Ω\{wi(m), wi(m)}, only those workers paid w greater than wi(m)

and less than wi(m) (in value terms), who are not laid off or poached, keep their wage:

gt+1(w, m) = 1{Si(m) > 0}(1− δ)(1− λ1)

× 1{0 ≤ Wi(w, m)− Ui(m) ≤ Si(m)}gt(w, m).

Notice that summing up gt+1(w, m) over all wages and dividing by #m yields the law

of motion for the unemployment rates ut(m):

1− ut+1(m) = 1{Si(m) > 0}[λ0ut(m) + (1− δ)(1− ut(m))].

3 Parameterization and Calibration

3.1 Aggregate shocks

I use the BLS quarterly series of seasonally adjusted real output per person in the non-

farm business sector (BLS series PS85006163) to construct the aggregate productivity

process yt. The data cover the period 1947q1-2009q1. The raw data are successively

log-transformed, HP-filtered, and exponentiated.3

I assume that the aggregate productivity process yt is an ergodic Markov chain. For

each value of yt I define the state of the economy as the rank of yt in its marginal/ergodic

distribution, say F . The joint distribution of two consecutive ranks F (yt) and F (yt+1) is
3I follow the usual practice since Shimer (2005) and use a smoothing parameter of 105 instead of the

value of 1, 600 that is usually used with quarterly data. The usual smoothing parameter seems to put
too much cycle in the trend. This is particularly clear for the nearly non-trended unemployment series
(see Figure 6 below).
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a copula C (i.e. the cdf of the distribution of two random variables with uniform mar-

gins). For example, the usual Gaussian AR(1) process used in the literature has Gaussian

margins and a Gaussian copula. It is commonplace to obtain a discrete approximation of

the copula by calculating the transition probability matrix across discretized states (quin-

tiles, deciles, etc.) but fitting a parametric copula (archimedean, elliptical) is a much

more parsimonious way than fitting all transition probabilities separately.

I use the following two-stage semi-parametric estimation procedure:

1. Estimate the marginal distribution F by kernel smoothing the empirical distribution.

2. Estimate the copula parameters by maximum likelihood on sample {F (yt−1), F (yt)}.

A simple scatterplot gives a good indication regarding to which parametric specifi-

cation of the copula to choose.

Chen et al. (2009) argue that a more efficient estimation of the marginal distribution

can be obtained if the marginal distribution is peaked and the copula displays strong tail

dependence. This should be less of a problem here because this two-step procedure is

applied to detrended – hence less autocorrelated – data. Figure 1, panel (a), shows the

marginal distribution of detrended productivity. The kernel density estimate is of course

much less dented than the histogram. It resembles a normal density except for the left

tail that is fatter than the normal.

Figure 1, panel (b), provides a graphical display of the copula. The actual scatterplot

(left panel) indicates an elliptical distribution with no specific tail-dependence. Hence,

I use a t-copula with parameters ρ (linear correlation coefficient) and ν (the number of

degrees of freedom; a large ν ≥ 30, indicates Gaussianity). I estimate ρ = 0.89 and

ν = 13.11. Parameter ν is large, indicating a close-to-Gaussian copula. The right panel

shows a simulation of the t-copula with estimated parameters ρ and ν. No apparent

discrepancy with the true one can be easily detected.4

4The simulation algorithm is very simple: given observation rt−1 of the (t− 1)th rank, generate rt as

t−1
ν (rt) = ρt−1

ν (rt) + et

√
ν + (t−1

ν (rt))2

ν + 1
(1− ρ2)
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(a) Marginal productivity distribution
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(b) Scatterplot of t, t + 1 productivity ranks
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Figure 1: Two-step Estimation of the Aggregate Productivity Process

14



(a) Actual HP-filtered productivity series
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Figure 2: Simulation of Productivity Dynamics
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Figure 2 displays a simulation of productivity levels. Panel (a) shows the actual series

of exponentiated HP-filtered log-productivity. Panel (b) shows two simulations obtained

with the same sequence of iid uniform innovations: one uses the semi-parametric estimate

and the other one uses a Gaussian AR(1) model.5

Finally, a discrete Markov chain approximation can be obtained as follows. Let a0 =

y < a1 < ... < aN = y delimit a grid on the support of the productivity distribution. I use

equal-sized intervals (ai − ai−1 =
y−y

N ) and extreme points y and y are chosen according

to the estimated marginal distribution F as F (y) ( 0 and F (y) ( 1. Then,

1. Set discrete productivity values as bins’ midpoints yi = ai−1+ai

2 .

2. Estimate marginal state probabilities as pi = F (ai)− F (ai−1).

3. Set transition probabilities as:

πij =
Pr {[ai−1, ai]× [aj−1, aj]}

Pr {[ai−1, ai]}

=
1

pi

[
C(F (ai), F (aj))− C(F (ai−1), F (aj))

−C(F (ai), F (aj−1)) + C(F (ai−1), F (aj−1))

]
.

3.2 Parameterization and calibration

I specify match productivity as

yi(m) = yi(Bxm + C)

where et = t−1
ν+1(u) with u ∼ Uniform[0, 1] (or et ∼ tν+1). Then generate yt = F−1(rt) for any marginal

cdf F . Note that for ν → ∞, tν → Φ the cdf of the standard normal distribution and the recursive
formula for ranks becomes:

Φ−1(rt) = ρΦ−1(rt−1) +
√

1− ρ2et

where et ∼ N(0, 1).
5For completeness, the autoregression of detrended log-productivity yields an autocorrelation coeffi-

cient ρ = 0.876 and a standard deviation of residuals σ = 0.0097.
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where B and C are two constant and xm ∈]0, 1[. Specifically,

xm =
m− 0.5

M
, m = 1, ...,M.

The distribution of individual ability is approximately beta-distributed:

#m = betacdf(
m

M
, µ, 1)− betacdf(

m− 1

M
, µ, 1)

( 1

M
betapdf(xm, µ, 1) (as M →∞).

Lastly, the opportunity cost of employment (leisure cost) is specified as:

zi(m) = z0 + α [yi(m)− z0] .

I also set the unit of time equal to a quarter.

The parameters that have to be estimated are the turnover parameters λ0, λ1 and δ,

the probability of moving upon receiving an outside offer τ , the leisure cost parameters z0

and α, the parameters of the support of worker heterogeneity, B and C, and parameter

µ shaping the distribution of heterogeneity. These parameters will be calibrated so as to

match a set of moments using the simulated method of moments. I now explain which

moments I chose to target.

Shimer (2005, 2007) uses CPS data to measure the exit rate from unemployment and

the overall separation rate (f0t and st in Section 2.1) assuming that all separations end

up in unemployment. To separate quits from layoffs I use the JOLTS data (Job Openings

and Labor Turnover Survey) from the BLS that provide information on the number of

firm hires per month (H), the number of quits (Q) and involuntary separations (layoffs

and discharges), denoted L. I also use the total employment series (E) from the Current

Employment Statistics (CES), that is supposedly consistent with the JOLTS series. The

number of unemployed (U) is extracted from the Current Population Survey (CPS). These

are monthly series spanning 2000m12-2009m1.

Assuming that no employee quits her job to become unemployed (the exact opposite
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From Unempl. Job to Job Job to Unempl.

Mean rate, %/month 30%/mth 2.1% 1.5%
(%/qtr) (66%/qtr) (6.2%) (4.5%)

Elasticity wrt unemployment -1.01 -0.61 0.33
(R2) (75%) (71%) (33%)

Table 2: Turnover (Source: JOLTS)

to assuming that all separations are layoffs) the exit rate from unemployment is H−Q
U

(measuring f0t), the job-to-job mobility rate is the quit rate Q
E (measuring f1t) and the

layoff rate is L
E (measuring st). The unemployment rate is U

U+E . Figure 3, panel (a),

displays turnover series, and panel (b) graphs the turnover series as a function of the

unemployment rate to emphasize the link with the business cycle. As expected, hiring

rates are procyclical and the layoff rate is countercyclical, with elasticities reported in

Table 2. Shimer (2005, 2007) estimates a separation rate of 3.4% per month from CPS

data, which is roughly the same rate that can be calculated using Q+L
E from JOLTS data,

i.e. the sum of the layoff rate and the quit rate. Notice that the elasticity of the layoff rate

is not only lower that the other rates (in absolute value), the correlation is also weaker (as

indicated by the R2 of the log-log regression in brackets). This point was already made

by Shimer (2007).

Using results in Jolivet, Postel-Vinay, Robin (2006), who estimate a wage posting,

equilibrium search model on PSID data, I estimate the proportion of employees’ contacts

with alternative employers resulting in actual mobility to 53%. I thus set τ = 0.5. Also,

because the exit rate of unemployment is so high at the quarterly frequency – 66% using

the JOLTS data –6 I arbitrarily set λ0 = 1.

I set the number of aggregate states equal to N = 50, the number of different ability

types equal to M = 300 and I simulate very long series of T = 5000 observations so as to

match the following moments:7

• The mean productivity is 1 and the standard deviation of log productivity is equal
6Shimer (05, 07) estimates an even higher rate of 83% (45% per month, hence 1 − (1 − .45)3 = 83%

per quarter) using CPS data.
7A high number of worker types is necessary to smooth the dynamics of unemployment (more on this

later) and I simulate a large number of observations to reduce the variance of empirical moments.
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Figure 3: Turnover (Source: JOLTS)
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to 0.02; the mean unemployment rate is 5.6% and the standard deviation of log

unemployment is 0.20.8

• The mean layoff rate is 4.5% per quarter (1.5%/month) and the mean job-to-job

mobility rate is 6.2% per quarter (from JOLTS data).

• The standard deviation of log wages is 0.017, the elasticity of wages to productivity

is 0.53 (from long quarterly BLS series)9 and the mean values of D9/D5 and D5/D1

for wages are equal to 2.05 and 2.20 (from CPS).

The wage moments aim at identifying parameter α, as for any value of α there is an

observationally equivalent value of (z0, B, C) yielding the same unemployment values and

surpluses, and also at identifying the range of worker heterogeneity [C, B + C].

I estimate α = 0.5, z0 = 0.6115, B = 0.935, C = 0.5935, η = 1.33, λ1 = 0.13 and

δ = 0.043.

The mean leisure cost zt(m) averaged over worker types and time is 0.80, somewhere

between Hagedorn and Manovskii (2008), 0.95, and Hall and Milgrom (2008), 0.70. The

estimate of the on-the-job offer arrival rate, λ1 = 0.13, is consistent with estimates from

micro studies (see e.g. Jolivet et al., 2006). Lastly, note that the exogenous job destruction

rate δ is estimated 4.3% which is very close to the targeted value for the overall separation

rate. This means that, on average, endogenous job destruction contributes little to the

overall separation flows.

Figure 4 shows the distribution of worker heterogeneity and how it affects individual

productivity given the state of the economy. Every thin line in the top figure corresponds

to a different ability type. The thick line in the middle is the aggregate productivity

level yi. The other thick line at the bottom indicates the viability threshold. For a given
8These values moments were calculated using HP-filtered, long (1947q1-2009q1), quarterly series from

the BLS as in Shimer (2005).
9I use hourly compensation (PRS85006103) divided by the implicit output deflator (PRS85006113),

readjusted per person by multiplying by hours (PRS85006033) and dividing by employment
(PRS85006013). One argument in favor of this series is that when I detrend it using the HP-filter
with the same smoothing parameter, I obtain exactly the same trend as for productivity, and regress-
ing wage on productivity gives a coefficient of one. Note that the estimated elasticity is close to that
calculated by Gertler and Trigari (2009) from CPS data (series posterior to 1967).
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Figure 4: Heterogeneous productivity

aggregate state i all individual types m such that Si(m) ≤ 0 have their productivity below

the threshold. Only very few lines are below the threshold (namely 11 low productivity

types, 4.85% of all workers, bear a risk of endogenous layoff). The bottom panel displays

the distributions of workers’ expected productivity in the whole population, and in the

sub-populations of employed and unemployed workers. The distribution is more concen-

trated in the region of low ability workers. Moreover, as expected low ability workers are

over-represented amongst the unemployed.
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yt ut f0t st f1t

Actual moments (Shimer, 2005)
mean 1 0.056 0.83 0.045
std 0.020 0.19 0.118 0.075
corr wrt ln yt 1 -0.41 0.40 -0.52
reg on ln yt 1 -4.08 4.56 -1.95

Simulated moments
mean 1 0.056 0.77 0.045 0.062
std 0.019 0.19 0.19 0.070 0.0035
corr wrt ln yt 1 -0.95 0.90 -0.32 0.28
reg on ln yt 1 -9.49 9.16 -1.18 0.048
reg on ln ut 1 -0.98 0.097 -0.005

Table 3: Fit of employment and turnover moments. (Rows labelled “mean” refer to the
mean of levels while the other rows refer to the log of the variable in each column.)

3.3 Employment and turnover

Table 3 compares various moments calculated on the actual quarterly series as in Simer

(2005) and on the simulated series (as many as 5000 observations were simulated to

reduced sampling errors).10 The model also predicts an exit rate of unemployment in

the right interval albeit with a slightly higher volatility. The moments of the overall

separation rate are well reproduced. The model tends to overestimate the correlation

with productivity, which induces too much elasticity given that the volatility is well fitted.

However, I believe that this is to be expected if there is only one exogenous source of

business cycle fuctuations. Figure 5 shows a simulation of the dynamics of unemployment

and turnover resulting from an particular simulated history of aggregate productivity

shocks (the number of observations is T = 249 which is the number of quarters in the raw

series, between 1947q1-2009q1). The ranges of productivity indices and unemployment

rates is as in the actual series. The simulated unemployment series is somewhat less

smooth that the true series (see Figure 6).

The elasticity of the exit rate of unemployment with respect to unemployment is cor-

rectly reproduced (close to -1) but the elasticities of the separation rate and, even more

so, the job-to-job mobility rate are underestimated with respect to the values that were

10Aggregate productivity is calculated as yt =
P

m(1−ut(m))"myt(m)
1−ut

with yt(m) = yi(m) if yt = yi.
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face endogenous unemployment risk. When the aggregate productivity index reaches
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calculated with the JOLTS series (Table 2). Yet it is remarkable that, although unemploy-

ment volatility is entirely driven by job destruction dynamics, the model predicts that the

elasticity of the exit rate of unemployment is bigger than the elasticity of job separations.

This is because the whole volatility of unemployment results from the behaviour of a small

fraction of workers (about 5%). The distribution of heterogeneity in the unemployment

group is also different from its distribution in the population of employees. However, the

distorsion is due to such a small fraction of very low ability workers that it may not be

easily detected, especially if this heterogeneity is mostly unobserved.

The mechanism by which productivity shocks are amplified is simple to understand.

In a boom unemployment is steady, all separations follow from exogenous shocks (there is

no endogenous layoff for i ≥ 34 out of N = 50 states). When aggregate productivity falls

more workers lose their jobs as more match surpluses become negative (see Figure 3.3).

About 4% unemployment accrues because of the 4.3% exogenous layoff rate. One may

call this minimum unemployment level frictional unemployment. Classical unemployment,

due to business cycle conditions, ranges between about 0 and 5% depending on the severity
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of the recession. Notice that although job destruction obviously plays a leading role in

determining unemployment, the duration of unemployment however increasing with the

depth of the trough, the elasticity of the exit rate of unemployment with respect to

productivity is much bigger than the elasticity of the job separation rate. This happens

because the elasticity is the correlation divided by the volatility (std). Now the volatility of

a rate depends on the volatility of the stock used in the denominator. For the exit rate from

unemployment, the denominator is the unemployment stock itself, which is highly volatile.

For the job-to-job transition rate and the job destruction rate it is the employment stock

which is less volatile because it is much bigger in level than the unemployment stock.

3.4 Wages

Table 4 shows that the model can replicate the dynamics of the first and second order

wage moments well. In particular, the dynamics of wage inequality in the upper part

of the distribution is procyclical and it is counter-cyclical in the bottom part. Overall,

countercyclicality dominates. I also compare annual earnings with present values. Given

that the model does not have worked hours, it makes sense to consider present values as

a way of mixing wages and labour supply. We obtain countercyclicality in both the upper

and the bottom parts of the present value distributions. One difference between actual

and simulated data is that the volatility of the inequality indices is much lower, equal to

about a fourth of what it is in actual data.

So, with this calibration at least, the median wage is found to be less procyclical than

the first and last deciles. Table 3.4 confirms this point and also shows an interesting phe-

nomenon. This non-monotonicity is entirely due to the fact that the bottom and the top

of the wage distribution are made of two different types of wages: starting wages (wi(m))

and promotion wages (wi(m)). The first decile is made of starting wages whereas the last

decile is made of promotion wages, and for this calibration the median wage is also a pro-

motion wage. Starting wages are considerably more pro-cyclical than promotion wages.

Moreover, the procyclicality of starting wages diminishes with the rank in the correspond-
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Hourly wages Annual earnings
Mean D9/D5 D5/D1 D9/D1 D9/D5 D5/D1 D9/D1

Actual series
mean 2.05 2.20 4.55 2.08 2.88 6.00
std (∗) 0.017 0.023 0.030 0.026 0.018 0.078 0.081
corr w/ yt

(∗) 0.64 0.15 −0.31 −0.21 −0.10 −0.31 −0.32
reg on yt

(∗) 0.53 0.21 −0.53 −0.32 −0.10 −1.41 −1.51

Simulated series
Wages Present values

Mean D9/D5 D5/D1 D9/D1 D9/D5 D5/D1 D9/D1
mean 0.84 1.56 2.87 4.47 1.20 1.31 1.57
std 0.012 0.0055 0.011 0.0069 0.0061 0.0076 0.0124
corr w/ yt 0.86 0.94 −0.84 −0.54 −0.83 −0.85 −0.93
reg on yt 0.56 0.28 −0.47 −0.20 −0.26 −0.34 −0.61

Table 4: Fit of wage moments. (Column “Mean” either refers to the BLS series (deflated
per person compensation) or to the cross-section mean in the simulated data. Columns
“D9/D5”, “D5/D1” and “D9/D1” are the decile ratios of either hourly wages and annual
earnings calculated from the CPS (panel “Actual series”), or of wages and present values
(Ui(m) or Wi(m)) for simulated data.)

ing distribution, while the opposite is true for promotion wages: procyclicality increases

with rank. Hence, wages in the middle of the distribution are the least procyclical.

Pissarides (2009) builds an argumentation based on initial wages in new jobs being

different from wages in on-going spells. He also documents a long list of empirical papers

looking at initial wages at the beginning of job spells and wages in on-going spells. This

literature usually finds initial wages more procyclical than on-going wages. The opposition

between initial and on-going wages that is used in the literature is less clear than the

opposition between starting and promotion wages that we make here. First, because on-

going wages are not necessarily different from initial wages, and second, because initial

wages are not necessarily wages negotiated with unemployment as only threat point.

Therefore, I expect the difference in elasticities that the model predicts between starting

wages, one one side, and promotion wages and job-to-job mobility wages, on the other

side, to be effectively found in the data.

In order to better understand why starting wages and promotion wages have these

distinct cyclicality patterns, I next consider the following variance decompositions. Let
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Starting wages Promotion wages All wages
Mean

D9 0.57 1.37 1.33
D5 0.36 0.98 0.85
D1 0.08 0.68 0.30

Cyclicality (elasticity wrt productivity)
D9 1.08 0.70 0.67
D5 1.31 0.57 0.38
D1 3.38 0.36 0.91

Table 5: Cyclicality of starting vs promotion wages (simulated data)

wit denote the wage of an individual i of type zit at time t, and zit some characteristics,

then

Var wit = Var E(wit|zit)︸ ︷︷ ︸
between

+ E Var(wit|zit)︸ ︷︷ ︸
within

.

Three conditioning variables zit can be used that contribute to wage dispersion (w ∈

{wi(m), wi(m)}): worker heterogeneity (m), aggregate state dependence (i) and the type

of bargaining (w or w).

Table 3.4 shows the between and within contributions of each of these three sources

of wage dispersion. The bargaining type explains 60% of wage dispersion; aggregate state

dependence, 40%; and ability only 15%. Bertrand competition, via the difference between

starting wages and promotion wages is the main determinant of the level of inequality.

However, only aggregate state dependence contributes negatively to cyclicality. When

productivity increases (in a boom) workers with a very low wage (a starting wage) credi-

bly threaten to quit to unemployment as their reservation wage increases with aggregate

productivity, and firms are thus forced to renegotiate wages up. This is the main deter-

minant of the stronger procyclicality of low wages. At the other end of the distribution,

when aggregate productivity falls (in a downturn) workers with very high wages are forced

by their employer to accept a cut as the firm surplus becomes negative. This is the main

determinant of the stronger procyclicality of high wages. Wage renegotiation without

alternative offers therefore has an interesting effect on wage inequality dynamics.
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Variance Total Between Within
Group = ability

Share 0.14 0.022 (15%) 0.116
Std of log 0.027 0.055 0.022
Elasticity 1.29 2.92 1.00

Group = aggregate state
Share 0.14 0.056 (40%) 0.082
Std of log 0.027 0.21 0.12
Elasticity 1.29 -3.07 3.85

Group = starting/promotion
Share 0.14 0.083 (60%) 0.055
Std of log 0.027 0.021 0.039
Elasticity 1.29 0.89 1.90

Table 6: Wage variance decomposition

4 Conclusion

We have proposed a simple dynamic search-matching model with cross-sectional wage

dispersion and worker heterogeneous abilities. Worker heterogeneity interacts with aggre-

gate shocks to match productivity in a way that allows for endogenous job destruction.

It suffices that a small fraction of the total workforce be at risk of a shock to productivity

that renders match surplus negative to amplify productivity shocks enough to generate

the observed unemployment volatility. Moreover, we show that the model can generate

inequality dynamics similar to the observed pattern: wages in the middle of the distri-

bution are less procyclical than wages in the bottom and the top. We argue that it may

reflect the renegotiation process that is implied by long-term contracts following produc-

tivity shocks. Extreme wages are subject to renegotiation as low wages may become lower

than workers’ reservation wages after a positive productivity shock and high wages may

become greater than firms’ reservation wages following a negative shock. Wages in the

middle of the distribution are more likely to remain in the bargaining set.

Our prototypical model is extremely simple to simulate outside the steady-state equi-

librium and still generates very rich dynamics. This is due to two very strong assumptions:

firms have full monopsony power and they are identical. Giving workers some bargaining
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power as in Cahuc et al. (2006) and Dey and Flinn (2005) and allowing for firm hetero-

geneity as in Lise et al. (2009), in a macrodynamic model, are very exciting avenues for

further research.
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