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Abstract
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Introduction

In recent years, economists have made significant progress in estimating models of job search using

data on wages and job durations. These estimates can be applied to analyze a host of questions

that are of interest to economists. For example, we can use them to identify the sources of wage

growth among labor market entrants, which in turn can be used to determine why wage growth

varies by race and education, as was done in Wolpin (1992) and Bowlus, Kiefer, and Neumann

(2001); or we can use these estimates to infer the degree to which current wage inequality among

a given group of workers is likely to translate into inequality over lifetime earnings, as was done in

Flinn (2002) and Bowlus and Robin (2003); or we can use them to predict the effects of changes in

the minimum wage and other government policies on equilibrium wages and employment, as was

done in van den Berg and Ridder (1998); or we can use them to calibrate macroeconomic models

in order to gauge the effects of cyclical fluctuations on the labor market, as was done in Barlevy

(2002). Clearly, the ability to estimate job search models is an important tool for economists who

wish to better understand the operation of labor markets.

While previous authors have made significant progress in estimating such models, the procedures

they suggest have some important shortcomings. For example, most of the aforementioned papers

employ maximum likelihood using particular functional forms for the wage offer distribution (or

alternatively for the distribution of firm productivities that gives rise to the wage offer distribution

in equilibrium). As such, these papers assume rather than identify the shape of the wage offer

distribution. But since there is no consensus as to what is an appropriate functional form, this

seems unsatisfactory without some a priori evidence on the shapes of this distribution. Indeed,

identifying the exact shape of the wage offer distribution will be important for some of the questions

above. For example, the effects of changes in the minimum wage depend on how many firms

set their wage close to the minimum wage level, and a functional form that fits the data well

along some dimensions may do poorly in matching this region of the distribution. Although

some nonparametric procedures to estimating the wage offer distribution have been proposed,

most notably in Bontemps, Robin, and van den Berg (2000), these procedures do not allow for

unobserved earnings heterogeneity, i.e. they require that differences in wages across workers be

driven entirely by differences in wages paid across firms. In practice, though, even within narrowly

defined groups, differences in wages are likely to reflect unobserved differences in ability beyond

just differences in pay scales across firms. This paper proposes an alternative approach that allows

us to estimate these models in the presence of unobserved and time-varying ability, even without

having to specify the distribution of the unobserved ability across agents or over time.
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The innovation of my approach is that rather than using data on wages and job duration to

estimate the model, as previous work has done, I use data on wages and individual work histories,

specifically the number of voluntary and involuntary job changes a worker experienced before

settling into each of his jobs. Work history data allows us to treat jobs as records, where a record

corresponds to an observation in a sequence that exceeds all of the observations that preceded

it in the sequence. Statisticians have studied record processes as a particular branch of extreme

value theory, and have applied them to study various phenomena such as record temperatures,

record athletic performances, road congestion, optimal tolerance testing, and ruin probabilities.1

A similar connection exists between record theory and models of on-the-job search: a worker’s job

at any point in time can be viewed as the record most attractive offer he received since his last

involuntary job change. It turns out that we can exploit the implicit record structure of search

models to make inference about the search problem workers face.

In what follows, I follow many of the above cited papers in focusing on the Burdett and Mortensen

(1998) model of on-the-job search. That model implies an equilibrium wage offer distribution that

depends on the distribution of productivity across all firms. I show that we can identify the shape

of this wage offer distribution even when there is unobserved variation in workers’ ability. Exact

identification requires us to estimate an infinite list of record moments. Although we can obtain a

consistent estimator for the offer distribution based on a finite number of moments, this estimator

may not be very precise when we use a small number of moments. Nevertheless, even a small

number of moments can yield sharp tests for particular hypotheses about the shape of the offer

distribution. Using data from the National Longitudinal Survey of Youth (NLSY), I argue that

the offer distribution for this sample is consistent with a Pareto distribution, which coincides with

the functional-form assumptions in some of the papers above, e.g. Flinn (2002). At the same time,

I can reject the hypothesis that the wage offer distribution is lognormal, which has also been cited

as a plausible form for the wage offer distribution.

The paper is organized as follows. Section 1 introduces the concept of record statistics. Section

2 describes the model and shows how to use record statistics to estimate it non-parametrically.

Section 3 describes data from the NLSY that can be used to implement this approach. Section

4 reports the results. Section 5 comments on the applicability of my approach to more general

search models in which wages may not correspond to record statistics but where there is still an

underlying record structure inherent to the model. Section 6 concludes.

1An entertaining survey on the various applications of record statistics is provided in Glick (1978).
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1. Record Statistics

Although statisticians have written extensively on record theory, it has attracted scant attention

from economists.2 I therefore begin with a quick overview of record statistics. More comprehen-

sive reviews are available in Arnold, Balakrishnan, and Nagaraja (1992, 1998) and Nevzorov and

Balakrishnan (1998).

Consider a sequence of real numbers {Xm}Mm=1. An element in the sequence is a record if it
exceeds the realized value of all observations that preceded it in the sequence. Formally, letM1 = 1,

and for any integer n > 1 define the observation number of the n-th record Mn recursively as

Mn = min
©
m : Xm > XMn−1

ª
(1.1)

The n-th record, denoted Rn, is just the value of Xm at the n-th record time, i.e.

Rn = XMn (1.2)

As an illustration, suppose we recorded the daily average temperatures in a particular city on the

same date each year, and obtained the following sequence:

{65, 61, 68, 69, 63, 67, 71, 66, ...} (1.3)

The first observation is trivially a record, so M1 = 1 and R1 = 65. The next observation that

exceeds this value is the third one, so M2 = 3 and R2 = 68. The very next observation exceeds

this value, so M3 = 4, and R3 = 69. Similarly, M4 = 7 and R4 = 71. Thus, we can construct a

sequence of records {Rn} from the original sequence {Xm} in (1.3):

{65, 68, 69, 71, ...}

Note that {Rn} is a subsequence of {Xm}, and as such will be less informative. For example, we
cannot use the sequence {Rn} to infer the number of observations between consecutive records,
i.e. how many years transpired between when any two consecutive record temperatures were set,

whereas we could infer this information from the original sequence {Xm}. Formally, we cannot
deduce Mn from the sequence {Rn}, an observation I return to below.

2Exceptions are Kortum (1997) and Munasinghe, O’Flaherty, and Danninger (2001). Kortum remarks on the
connection between his model of innovation and record theory. However, most of his analysis does not make
use of the underlying record structure, since he conditions on time elapsed rather than the number of previously
successful innovations. Munasinghe et al analyze the number of track and field records in national and international
competitions to gauge the effects of globalization, and remark on the likely applicability of record theory in economics.
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In applications, the sequence {Xm}Mm=1 is assumed to follow some stochastic process, so the

occurrence of records and the values they assume are well-defined probabilistic events. For example,

suppose M = ∞ and the individual observations Xm are i.i.d. random variables. This case was

examined by Chandler (1952), who first introduced the notion of record statistics, and has come

to be known as the classical record model. Various results for this special case have been derived,

including the distribution of record times Mn; the distribution of the number of records within a

given sample size; the distribution of the n-th record value given the distribution of any individual

observation in the sequence (which is known as the parent distribution); the distribution of the

original parent distribution given various properties of the record statistics; and the asymptotic

distribution of the n-th record value as n tends to∞ (if it exists). If Xm are not i.i.d., the analysis

becomes much more difficult, although some results have been developed for special cases; see

Arnold, Balakrishnan, and Nagaraja (1998) for a summary of recent developments. As we shall

see below, the conventional search model does not quite correspond to the classical record model,

which introduces some complications in the analysis.

Finally, given the frequent occurrence of order statistics in economic applications, it is worth

commenting on the connection between order statistics and record statistics. The n-th maximal or-

der statistic, denoted Xn:n, corresponds to the maximum of n random variables, max {X1, ...,Xn}.
By contrast, the n-th record statistic Rn corresponds to the maximum of a random numberMn of

random variables, max {X1, ..., XMn}. Thus, if we had to characterize the distribution of the n-th
record Rn, we would not be able to describe it as an order statistic, since the record sample comes

from a sample whose size is not known in advance and cannot be recovered from the sequence of

records {Rn}. Note that we could still express a record as a mixture of order statistics. Specifically,
since the number of observations Mn must be equal to an integer greater than or equal to n, the

probability that the n-th record is equal to x can be expressed as

Prob (Rn = x) =
∞X
m=n

Prob (Mn = m)× Prob (Xm:m = x) (1.4)

Since we can often compute the distribution of the n-th record directly without computing the

mixing probabilities Prob(Mn = m), appealing to the order statistics structure that underlies

record data may unnecessarily complicate the analysis.

2. Job Search and Record Statistics

We can now turn our attention to the task of estimating job search models. In line with most

of the previous literature on structural estimation of search models, I focus on the Burdett and
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Mortensen (1998) model for my theoretical framework. I begin with a brief summary of the model.

I then illustrate why previous approaches to estimating the model either require us to make explicit

functional-form assumptions, or, if not, are incapable of dealing with unobserved heterogeneity. I

then show that appealing to the implicit record structure of the model allows us to identify the

shape of the wage offer distribution without any assumptions on the distribution of unobserved

heterogeneity. Although I focus exclusively on the Burdett and Mortensen model in my discussion,

I briefly comment on alternative models below in Section 5.

2.1. The Burdett and Mortensen Model

The original Burdett and Mortensen (1998) model is an equilibrium model in which firms post

wages and workers sample these wages at random, choosing optimally among the offers they receive.

Given a distribution of productivity across firms, the model makes a precise prediction as to the

wage offer distribution that will arise in equilibrium. Among the papers cited above, some, such as

van den Berg and Ridder (1998), Bontemps, Robin, and van den Berg (2000) and Bowlus, Kiefer,

and Neumann (2001), explicitly estimate the distribution of firm productivities. Others, such as

Flinn (2002), estimate the wage offer distribution without directly relating them to an underlying

distribution of firm productivity. I will pursue the latter strategy, i.e. I take the distribution of

wages posted as a primitive. As I observe below, we will still be able to apply the analysis of

Bontemps, Robin, and van den Berg (2000) to back out the original productivity distribution of

firms from the wage offer distribution if we are so inclined.

Given a wage offer distribution, the Burdett and Mortensen model can be summarized as follows.

At any point in time, individuals can be either employed or unemployed. An unemployed worker

receives a utility payoff of b per unit time, and faces a constant hazard λ0 per unit time of receiving

a job offer when he is unemployed. An offer, when it does arrive, specifies a fixed wage drawn

from the wage offer distribution denoted by F (·). Employed workers face a constant hazard λ1
of receiving an offer, which is also drawn from the same offer distribution F (·), and each draw
is independent of all previous draws. In addition, employed workers face a probability δ per unit

time of losing their job. This rate is assumed constant and independent of the wage on a worker’s

current job.

Each worker has to decide whether to accept a new offer when one arrives or to stay on his

previous job (or remain unemployed if he doesn’t yet have a job). The optimal policy for an

unemployed worker is to set a reservation wage W ∗ that depends on b, δ, λ0, λ1, and F (·), and
to accept job offers if and only if they offer a wage of at least W ∗. For an employed worker, the
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optimal policy dictates accepting any wage offer that exceeds the worker’s current wage W and

turning down any offer below it. The optimal behavior of firms imposes at least two restrictions

that the equilibrium offer distribution F (·), both of which I make use of in my analysis. First,
the equilibrium offer distribution F (·) must be continuous, i.e. it cannot exhibit any mass points.
Second, F (W ∗) = 0, i.e. no firm will offer a wage below the common reservation wage W ∗.

Note that model makes a clear distinction between voluntary job changes that the worker initiates

upon receiving a better offer and involuntary job changes in which the worker is forced to leave his

job to unemployment and resume searching from scratch. Following Wolpin (1992), we can break

down each worker’s employment history in the model into distinct employment cycles, where a

cycle is defined as the time between involuntary job changes. That is, a cycle begins the instant

the worker leaves his job involuntarily, continues on through his unemployment spell and each

job he subsequently takes on, and ends the next time he is laid off. Of course, in empirical

applications it will be important to classify job changes in a way in accordance with the model

so that we correctly identify distinct employment cycles, a point I return to in my data analysis.

In principle, we should index observations by the employment cycle they are associated with. For

ease of notation, though, I will omit this subscript in what follows.

LetM denote the (random) number of job offers a worker receives on a given employment cycle,

and letm ∈ {1, 2, ...,M} index these offers. Let {Xm}Mm=1 denote the list of wages on the respective
job offers that the worker encounters over his employment cycle. The fact that F (W ∗) = 0

implies that workers will always accept the first offer they receive out of unemployment. Thus,

X1 represents both the wage on first job offer the worker receives and the the wage on the first

job the worker is employed on. This will not be true more generally; for example, by a simple

exchangeability argument, half of the the time when a worker draws a second wage offer it will

be lower than his first offer, so the second offer will often not be the second job the worker is

employed on. As such, let us define N ≤M as the number of actual jobs the worker is employed

on in a given cycle, and let n ∈ {1, 2, ...,N} index these jobs. Let {Wn, tn}Nn=1 denote the wages
and durations of all the jobs the worker is employed on over the cycle. Using the definition of Mn

in (1.1), the optimal search strategy for a worker implies that

Wn = XMn

i.e. the wage on the n-th job in the cycle must be the n-th record from the sequence {Xm}Mm=1,
and N is the total number of records set within this sequence. The fact that wages correspond to

record statistics will eventually figure prominently in my analysis.
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2.2. Previous Approaches to Estimation

Having described the model, I now turn to the question of how to use data to identify its key

parameters. One approach is to assume that the offer distribution F (·) lies in a class of functions
parameterized by some finite-dimensional vector ξ, i.e. F (·) = F (· ; ξ). Thus, identifying the
model amounts to estimating a finite vector {λ0,λ1, δ, ξ}. In the full-fledged version of the Burdett
and Mortensen model, ξ corresponds to the ratio λ1/δ and any parameters that characterize the

distribution of productivity across firms. For example, if we assume all firms in a given labor market

are equally productive, as in van den Berg and Ridder (1998), estimating ξ amounts to estimating

a single productivity parameter for each market.3 Alternatively, if we assume the distribution of

productivity across firms in each market has finite support, as in Bowlus, Kiefer, and Neumann

(2001), ξ amounts to the different levels of productivity and their respective probabilities. In

the reduced-form version of the model where we treat the wage offer distribution as a given, ξ

corresponds to the parameters that characterize the particular functional form imposed on the

wage offer distribution. For example, Flinn (2002) assumes F (·) is Pareto, and then estimates the
curvature parameter associated with this distribution.

Given an expression for F (· ; ξ), we can write down the likelihood of a given cycle, i.e. the
likelihood of there being exactly N jobs in the cycle and that the particular sequence of wages and

job durations for these N jobs are given by {W1, t1, ...,WN , tN}. As I show below, this likelihood is
a function of λ1, δ, and ξ, so we can estimate these parameters using maximum likelihood. Armed

with these estimates, we can proceed to estimate λ0 using data on unemployment durations,

although I ignore this step in my discussion since I have nothing novel to say about it.4 To obtain

the likelihood function L (W1, t1, ...,WN , tN ,N), note that the likelihood for any sequence that

fails to satisfy the condition that

W1 ≤W2 ≤ · · · ≤WN

must be zero. For sequences that satisfy this requirement, we can compute the likelihood of

{W1, t1, ...,WN , tN ,N} as follows. First, we compute the likelihood of the wage and duration on
each job and whether it ends voluntarily or involuntarily conditional on the same information for

all of the jobs that preceded it in the cycle. Then, we multiply all of these terms to obtain the joint

3More precisely, van den Berg and Ridder assume a worker can participate in only one market. Different workers
(as distinguished by observable and unobservable characteristics) operate in different markets, and the productivity
of any worker is assumed the same across all firms in the market in which he sells his labor services. Thus, there is
only one parameter to estimate per market, but the number of markets is large.

4As previous authors have noted, estimating λ0 in this model is simplified by the fact that F (W ∗) = 0 in the
Burdett and Mortensen model, which avoids the question of recoverability raised in Flinn and Heckman (1982).
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likelihood of the entire cycle. Formally, for each job except the last job in the cycle, we compute

the conditional likelihood

L (Wn, tn, N ≥ n+ 1 | Wn−1, tn−1, ...,W1, t1,N ≥ n) (2.1)

For the last job on the cycle, we compute the conditional likelihood

L (Wn, tn, N = n | Wn−1, tn−1, ...,W1, t1, N ≥ n) (2.2)

To compute (2.1) and (2.2), we again break down these likelihoods into products of conditional

likelihoods, i.e.

L (Wn, tn,N | Wn−1, ...) = L (Wn | Wn−1, ...)×L (tn | Wn,Wn−1, ...)×L (N | Wn, tn,Wn−1, ...)

Turning to the first term, since the wage on the n-th job is a random draw from the distribution

truncated atWn−1, the likelihood of observingWn on the n-th job givenWn−1 (as well as all other
past data, which are independent of Wn given Wn−1) corresponds to

L(Wn | Wn−1, ...) =
f (Wn)

F (Wn−1)
(2.3)

where F (·) = 1−F (·). Adopting the convention thatW0 ≡W ∗, this expression also characterizes
the distribution of the wage on the very first job in the cycle. Next, the duration of the n-th

job given the wage Wn will be exponential with an arrival rate equal to δ + λF (Wn). Thus, the

conditional likelihood of tn given Wn and all other past data corresponds to

L(tn | Wn,Wn−1, ...) =
¡
δ + λF (Wn)

¢
e−[δ+λF (Wn)]tn (2.4)

Finally, the conditional probabilities that the n-th job ends because of a quit and a layoff, respec-

tively, correspond to

L(N ≥ n+ 1 | Wn, tn,Wn−1, ...) =
λ1F (Wn)

δ + λ1F (Wn)

L(N = n | Wn, tn,Wn−1, ...) =
δ

δ + λ1F (Wn)

(2.5)

Multiplying (2.3) through (2.5), we get

L(Wn, tn, N ≥ n+ 1 | Wn−1, ...) = λ1F (Wn)
f (Wn)

F (Wn−1)
e−[δ+λF (Wn)]tn

L(Wn, tn,N = n | Wn−1, ...) = δ
f (Wn)

F (Wn−1)
e−[δ+λF (Wn)]tn
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Multiplying the above for all jobs n = 1, ...,N and cancelling redundant terms yields the following

expression for the likelihood of a given employment cycle:

L(W1, t1, ...,WN , tN ,N) =
δ

λ1

"
NY
n=1

λ1f (Wn) e
−[δ+λ1F (Wn)]tn

#
(2.6)

Maximum likelihood then amounts to choosing the values of {λ1, δ, ξ} that maximize (2.6) evalu-
ated at the sample data from different employment cycles. As long as we correctly specified the

function F (· ; ξ), these values are consistent estimates of the true {λ1, δ, ξ}.

We can easily amend the model above to allow for heterogeneity in ability across workers, a

feature most economists would agree is important for explaining actual data. Suppose the offers

{Xm}Mm=1 reflect price offers of how much a firm is willing to pay per unit of effective labor rather

than wage offers, and that workers vary in the amount of effective labor they can supply.5 All

workers, regardless of their productivity, face the same distribution of prices and the same arrival

rate λ1 and δ. Let `it denote the amount of effective labor per hour that worker i can supply at date

t, and let cWn
it denote the wage we observe for worker i at date t on the n-th job in his employment

cycle. Then the wages we would observe for worker i on his various jobs in an employment cycle

correspond to cWn
it =Wn`it (2.7)

A virtue of maximum likelihood estimation is that it does not require worker ability to be observ-

able. For example, if we assume that there is a finite number of productivity levels `it a worker

could operate at, we can add these values and their respective frequency in the population as

parameters we need to estimate.6

The main drawback of the approach outlined above is that the choice of the offer distribution

F (·, ξ) is arbitrary. Since the answers to the questions raised in the Introduction often hinge on the
exact shape of the relevant distribution, assuming rather than estimating the shape of this function

runs counter to the original spirit of this undertaking. Although we can conceptually overcome

this concern by allowing for a sufficiently large parametric class, in practice the papers cited in

the Introduction focus on mutually exclusive parametric families; the wage offer distribution is

sometimes assumed to be lognormal, sometimes Pareto, sometimes a power distribution, and so

5If the production of output is linear in effective labor, this is equivalent to assuming firms post piece rates.

6To ensure workers of different ability choose the same cutoff price W ∗ in the distribution of prices, we would
have to further assume that the value of leisure is proportional to productivity, i.e. bit = b`it. This interpretation
could reflect the fact that the value of leisure is really the value of home production, and individuals are just as
productive at home as they are in the market sector.
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on. At the very least, we would like some procedure to determine what shape restrictions on the

relevant distributions are valid before we carry out maximum likelihood.

In recent work, Bontemps, Robin, and van den Berg (2000) attempt to do just that by devising

a non-parametric estimator for the wage offer distribution. They suggest the following two-step

procedure in the case where there is no unobserved ability. First, since the first job in the cycle

is a random draw from F (·), they advocate using the empirical distribution of wages across all
workers on their first job to estimate F (·). Next, given this estimate of the offer distribution,
they use data on job duration to identify λ1 and δ. Recall from (2.4) that the duration of a job

is distributed as an exponential with rate δ + λ1F (W ). One can therefore identify λ1 and δ from

the way the duration of a job t varies with the wage paid on the job W . Formally, they choose

λ1 and δ to maximize the likelihood in (2.6) where they substitute in the estimate for F (·) from
the first stage.7 This approach has the virtue that it does not impose any shape restrictions on

F (·), or alternatively on distribution of productivity across firms that gives rise to this distribution.
However, this approach cannot accommodate unobserved differences in worker ability. For suppose

once again that the wages we observe for worker i on his various jobs over the cycle are given by

cWn
it =Wn`it (2.8)

where `it denotes the productivity of worker i at date t. The empirical distribution of wages on the

first job workers accept out of unemployment, cW 1
it, is a convolution of the true offer distribution

F (·) and the distribution of `it across workers. Improperly attributing dispersion in `it to dispersion
in offers would overstate the dispersion of the true offer distribution F (·), and this misspecification
could then further contaminate estimates for λ1 and δ.

While we could in principle try to estimate `it from observed worker characteristics, e.g. age

and education, it is unlikely that we could ever capture all of the unobserved variation in wages.

In particular, an important feature of the data is that a non-negligible fraction of voluntary job

changes report a lower wage on their new job than on their previous job. Thus, we need to allow

for the possibility that cWn+1
it < cWn

it even when Wn+1 ≥ Wn, and it is hard to come up with

observable characteristics that can account for such fluctuations in individual earnings over time.

Bontemps, Robin, and van den Berg (2000) avoid this issue by only using wage data for the first

7Since Bontemps et al cannot observe when a worker began his employment cycle in their data, they cannot
isolate workers who are on their first job. Instead, they assume that any given worker in their sample is drawn
from the steady-state distribution of wages across all workers, denoted by G (·). The distribution G (·) can then be
directly related to F (·) given a ratio λ1/δ. They estimate G (·) non-parametrically, and then maximize a variant
of (2.6) in which f (·) is replaced with the appropriate expression in terms of g (·) and the ratio λ1/δ. They then
choose λ1 and δ to maximize the implied likelihood function.
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job they observe for a worker, so they never have to consider wage changes across jobs. But both

van den Berg and Ridder (1998) and Flinn (2002), who use multiple jobs from each employment

cycle, need to introduce an `it term to reconcile the model with the data. They interpret `it
as measurement error in wages, but as the discussion above suggests it could just as well reflect

variability in a worker’s productivity over time. Either way, unless we knew the distribution of `it,

we could not recover the distribution of Wn from the distribution of observed wages cWn
it .

2.3. Non-Parametric Estimation using Record Moments

I now propose a way to estimate the wage offer distribution non-parametrically even in the presence

of unobserved heterogeneity `it. My approach exploits the implicit record structure of the model.

As noted briefly in Section 1, given an i.i.d. sequence {Xm}∞m=1, we can sometimes characterize
the distribution of Xm from observations on the records {Rn}∞n=1 in the sequence {Xm}∞m=1. For
example, Kirmani and Beg (1984) show that the list of record moments {E (Rn)}∞n=1, assuming
these moments exist, uniquely characterize the distribution of Xm within the set of continuous

distributions. To appreciate why this result might be useful, consider the case where `it reflects

pure measurement error, i.e. `it is i.i.d. across workers and over time and is independent of Wn.

In this case, the average wage across all workers on their n-th job converges to

E(cWn
it) = E (Wn)E (`it)

= E (Wn)× constant

Thus, we can empirically estimate the sequence {E (Wn)}∞n=1 up to a scalar. Since {Wn} corre-
sponds to the list of records in a sequence of i.i.d. draws from the underlying wage offer distribution,

the list {E (Wn)}∞n=1 should allow us to identify the underlying wage offer distribution without
having to characterize the distribution of `it. The approach outlined below adapts this argument

for richer specifications of `it that capture differences in productivity as well as just pure measure-

ment error. Note that this approach is conceptually different from the approaches above, since

it relies on different data to identify the fundamental parameters of the model. Whereas the ap-

proaches above rely on wage and duration data, i.e. on {cWn
it , tn}Nn=1, my approach relies on wage

data and the position in the cycle of each job, i.e. {cWn
it , n}Nn=1.

While the discussion above conveys the basic intuition, it is also somewhat imprecise. Kirmani

and Beg (1984) assume records come from an infinite sequence {Xm}∞m=1, whereas in the model
wages correspond to records from a sequence {Xm}Mm=1 in which M is a random variable. Why

is this relevant? Since the occurrence of a record is a random event, the expected value of the
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n-th record is conditional on the event that there are at least n records in the original sequence,

and should more properly be denoted as E (Rn | N ≥ n) where N denotes the total number of

records in the sequence {Xm}. If the distribution for each Xm is continuous, the infinite sequence
{Xm}∞m=1 will contain infinitely many records almost surely, i.e. Prob(N ≥ n) = 1 for any finite
n, and it is common to simply omit the conditioning event and write E (Rn) for E (Rn | N ≥ n).
But when we only get to observe {Xm}Mm=1 where M can be finite, it will no longer be the case

that every sequence we observe will contain n records. Thus, when we compute an average value

for the n-th record Rn, we can only average over those employment cycles in which the worker

makes it to his n-th job. But this is hardly a random sample; quite to the contrary, on those cycles

where the worker makes it to his n-th job before being laid off it is more likely that the first few

offers the worker received were low enough that the worker could still find a better offer before

being laid off. As a result, the moments E (Rn | N ≥ n) for records drawn from the sequence

{Xm}Mm=1 will typically be smaller than the corresponding moments E (Rn | N ≥ n) from the

infinite sequence {Xm}∞m=1. We will therefore not be able to rely on Kirmani and Beg’s results,
and must independently confirm that record moments for records from a sequence of random length

still uniquely identify the parent distribution of the individual observations.

I begin by laying out my assumptions on `it. My key assumption is that `it is independent of

both the job worker i is employed on at date t and the price per unit labor that it pays. This

assumption preserves the basic search structure of the model, since a worker should seek out the

jobs offering the highest price per unit labor. The prices per unit labor on the jobs the worker

is employed on {Wn}Nn=1 thus still correspond to record values among the price offers {Xm}Mm=1
the worker encounters over the cycle. Note that this assumption rules out match-specific wage

dynamics, since any change in the wage a worker earns on his current job must also affect the

wages he would earn on all other jobs. This is hardly innocuous; for example, my framework does

not allow for the possibility that a worker becomes more skilled at only one particular job, i.e. any

human capital a worker accumulates must be general in nature. Nevertheless, in the next section

I argue that this assumption is reasonable for the sample of workers I consider.

Following Flinn (1986), I proceed to impose the following form for `it:

`it = exp (φi + βZit + εit)

The first term, φi, is fixed over time and serves to capture variations in innate ability that make

some workers consistently more productive than others, all other things equal. The next term,

Zit, represents observable time-varying characteristics for individual i that affect his productivity.

In my application, this will correspond to the time since the worker first entered the market,
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i.e. the worker’s potential experience. Lastly, εit denotes unobserved productivity shocks. It

serves to capture a combination of any shocks to productivity not accounted for by Zit as well

as multiplicative measurement error that may appear in reported wages. I assume εit follows a

stochastic process with the sole restriction that

E (∆εit) = 0 (2.9)

i.e. the unconditional mean change in εit is zero. Note that (2.9) does not restrict the shape of

the distribution of εit or its autocorrelation; in particular, my approach allows for the presence of

serial correlation in earnings over the duration of a job.

It will be easier to work from now on with log wages than with wages. Let wn = lnWn denote

the log price per unit labor on the worker’s n-th job. It follows that wn represents the n-th record

in the sequence of log price offers {xm}Mm=1 where xm = lnXm, so we can still hope to exploit the
record structure of wn to identify the distribution of xm (from which we can deduce the distribution

of Xm). After substituting in for `it, we obtain the following equation for the log wage:

lncWn
it = wn + φi + βZit + εit (2.10)

We next first-difference equation (2.10) to get rid of the fixed effect term φi. Let ∆ denote the

difference in a particular variable between two distinct points in time. Then we have

∆ lncWit = ∆w+ β∆Zit +∆εit (2.11)

For a worker who is employed on the same job at these two points in time, ∆w = 0, implying wage

growth on the job is given by

∆ lncWit = β∆Zit +∆εit (2.12)

It follows that we can use ordinary least squares on (2.12) to estimate β, i.e. to estimate the

contribution of observable characteristics to productivity growth. This estimate will be important

in what follows.

Next, consider the wage growth of workers across jobs. Using our estimate for β, we can net out

the role of observable productivity growth in these cases. Thus, for a worker who moves from his

n-th job to his n+ 1-th job, the net wage gain from changing jobs is given by

∆ lncWit − β∆Zit = (wn+1 −wn) +∆εit (2.13)

In other words, the net wage gain for a voluntary job changer who leaves his n-th job is the sum

of the gap between the n-th record and the n + 1-th record from a sequence of i.i.d. draws from
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the log price offer distribution and a noise term ∆εit. Averaging these net wage gains across all

such workers, we have

E(∆ lncWit − β∆Zit | N > n) = E (wn+1 −wn | N > n) +E(∆εit | N > n)

= E (wn+1 −wn | N > n)

where we use the fact that ∆εit is independent of N . Thus, using observations on wage growth

∆ lncWit both within jobs and across jobs, we can estimate the expected record gaps

{E (Rn+1 −Rn | N > n)}∞n=1 (2.14)

for records that are drawn from the sequence {xm}Mm=1 where the xm are i.i.d. random variables

with the same distribution as the log wage offer distribution. As anticipated by the previous

discussion, these record moments may be enough to identify the parent distribution of each xm. In

the next subsection, I show that the sequence of moments in (2.14) is indeed enough to characterize

the shape of the parent distribution of xm within the set of continuous distribution functions, and

show how to recover the parent distribution from this list.

2.4. Recovering the Distribution from Record Moments

I begin by establishing that the sequence of expected record gaps in (2.14) uniquely identifies

the shape of the parent distribution. First, though, I need to characterize the distribution of

the number of offers M in each employment cycle. The proof of the next lemma, as well as all

remaining propositions, are contained in an appendix.

Lemma 1: The unconditional number of offers on a cycle M is distributed as a geometric, i.e.

Prob (M = m) = qm−1p

where q =
λ1

λ1 + δ
and p =

δ

λ1 + δ
. ¥

The next lemma provides a sufficient condition for the moments in (2.14) to be well-defined:

Lemma 2: Consider a sequence of i.i.d. random variables {Xm}Mm=1 whereM is independent of

the realizations of {Xm} and Prob(M = m) = qm−1p, for p+q = 1. Let {Rn}Nn=1 denote the records
of this sequence. If E (|Xm|) < ∞, then the conditional expectation E (Rn+1 −Rn | N > n) is

finite for n = 1, 2, 3, ...
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Assuming the moments in (2.14) exist, we have the following result:8

Proposition 1: Consider a sequence of i.i.d. random variables {Xm}Mm=1 where Prob(M = m) =

qm−1p. If E (|Xm|) <∞, the sequence

{E (Rn+1 −Rn | N > n)}∞n=1
uniquely characterizes the distribution of Xm in the set of continuous distributions up to a lo-

cation shift. That is, if bF (·) is a continuous function that gives rise to the same sequence
{E (Rn+1 −Rn | N > n)}∞n=1 as F (·), then bF−1 (·) = F−1 (·)+ constant.
Remark: Following up on the present paper, Nagaraja and Barlevy (2003) analyze record

moments when the number of observationsM is geometric in more detail. Interestingly, they show

that characterization results based on record moments from a geometric number of observations are

stronger than those that are based on record moments from an infinite number of observations, i.e.

moment sequences that are not enough to uniquely identify the parent distribution in the classical

model can identify the parent distribution when M is geometric.

To gain some insight as to why record moments allow us to identify the parent distribution,

consider the expression E (X | X > x) − x, i.e. the amount we expect to rise above a given

number x when we sample at random from the parent distribution truncated at x. The n-th

average record gap E (Rn+1 −Rn | N > n) is just a weighted average of all these expected gains,

where the weight on the expected gain over a particular x corresponds to the probability that the

n-th record is equal to x. At low values of n, more weight is put on the expected gain starting

at low values of x, while at higher values of n, more weight is put on the expected gain starting

at high values of x. Taking all of these moments together, we can essentially deduce how much

a worker would expect to gain from moving to a better job starting at any initial wage; for low

initial wages, these gains will depend more on the average record gap for low values of n, while for

high initial wages, these gains will depend on the average record gap for higher values of n. Given

two different wage offer distributions, the expected gain from mobility will have to differ at some

starting wage, implying at least some of the expected record gaps will be different.

To make practical use of Proposition 1, we need to be able to invert the set of moments to

obtain the underlying parent distribution that gives rise to these moments. Since the moments in

(2.14) are all functions of the parameter p in Lemma 1, we first need to estimate this parameter.

8 I am indebted to H. N. Nagaraja for suggesting the proof of this proposition.
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Since p is just a function of the ratio
λ1
δ
, it would seem natural to appeal to existing methods

for estimating these parameters. Unfortunately, the way previous authors have estimated these

arrival rates is not applicable. Recall that previous work estimated these parameters using the fact

that job duration is exponential with rate δ+λ1F (W ), so the way job duration varies with wages

allows us to identify these two parameters. However, this approach requires that we know the

shape of the function F (·), which we are still in the progress of trying to determine. Fortunately,
p can be estimated directly from data on employment history. In particular, Bunge and Nagaraja

(1991) show that when M is geometric, the number of records N in an i.i.d. sequence {Xm}Mm=1
will distributed according to the truncated Poisson

Pr (N = n) =
p (− ln p)n

qn!
(2.15)

Since the number of records N on each employment cycle corresponds to the number of jobs a

worker was employed on before he was laid off, we can estimate p and q directly from mobility

data, without using information on job duration. Formally, we have

Proposition 2: Let Qn denote the number of employment cycles with exactly n records. A
consistent estimator for p is given by

bp = argmax
p

∞Y
n=1

·
p

1− p
(− lnp)n
n!

¸Qn

Armed with this estimate, I now tackle the problem of constructing a function from the list of

expected record gaps in (2.14). To do this, note from the proof of Proposition 1 in the Appendix

that the n-th element of the list E (Rn+1 −Rn | N > n) can be expressed as

E (Rn+1 −Rn | N > n) =
(− lnp)n

(n− 1)! Pr (N > n)

Z 1

0
g (x)xn−1dx (2.16)

where g (x) is a function that depends on p and the parent distribution for each observation in

the sequence. To recover the parent distribution F (·), we proceed in two steps. First, we use the
moments E (Rn+1 −Rn | N > n) and our estimate for p to determine the function g (x). Second,

we invert the function g (x) to recover the distribution F (·).

To determine the function g (x), rewrite (2.16) asZ 1

0
g (x)xn−1dx = E (Rn+1 −Rn | N > n)

(n− 1)! Pr (N > n)

(− ln p)n ≡ µn−1 (2.17)
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Given estimates for p and E (Rn+1 −Rn | N > n) for all n, we can determine each of the µn−1.
The task of finding a function g (x) that solves the infinite system of equations above is known

as the Hausdorff moment problem. That is, in a variety of applications, we will often want to

find a function g (x) defined over the unit interval whose moments (i.e. integrals of the function

multiplied by different powers of x) are equal to a particular sequence of values. Shohat and

Tamarkin (1943) offer a set of sufficient conditions for this problem to have a solution (which

proves to be unique) and provide an analytical representation for this solution g (x) in terms of

µn. Essentially, we use the expressions for µn to construct coefficients for an infinite polynomial

expansion, which allows us to reconstruct any continuous function. A little algebra then allows us

to recover the distribution function of interest F (·) from the function g (x) we just constructed.

This procedure is summarized in the next proposition:

Proposition 3: Given the complete sequence of moments {E (Rn+1 −Rn | N > n)}∞n=1, the
inverse parent distribution F−1 (x) can be constructed according to the following procedure:

1. Let {Pn (x)}∞n=0 denote the set of Legendre polynomials defined on (−1, 1). Define a new set
of polynomials {Pn (x)}∞n=0 on (0, 1) as

Pn (x) = Pn (2x− 1)R 1
0 P

2
n (2x− 1)dx

≡
nX
j=0

cnjx
j (2.18)

2. Define a sequence {µn}∞n=0 where

µn−1 = E (Rn+1 −Rn | N > n)× (n− 1)! Pr (N > n)

(− ln p)n

Using the coefficients cnj from (2.18), construct a new sequence {λn}∞n=1 where

λn =
nX
j=0

cnjµk

Define a function g (x) over (0, 1) as the sum of polynomials Pn (x) with coefficients λn, i.e.

g (x) =
∞X
j=0

λnPn (x) (2.19)

3. The inverse parent distribution function F−1 (x) over (0, 1) can be constructed from g (x) as

follows:

F−1 (x) =
Z x

0

qg0
µ
ln (1− qz)
lnp

¶
(1− z) (1− qz) ln pdz + constant

where the constant of integration denotes the unidentified location parameter.
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Remark: Bontemps, Robin, and van den Berg (2000) offer an explicit way to obtain the distri-
bution of productivity in the Burdett and Mortensen model given a wage offer distribution. The

inversion requires knowing the ratio
λ1
δ
. Since Proposition 2 establishes that we can identify p,

one can extend Proposition 3 to recover the implied distribution of productivities across firms from

the distribution F (·).

In practice, we can only estimate finitely many moments µn required to implement the method

laid out in Proposition 3, and even those moments are only imprecisely estimated due to sampling

error. Talenti (1987) examines a variant of the Hausdorff moment problem with finitely many

moments measured with error. He suggests replacing the infinite sum in (2.19) with the finite sum

g (x) =
JX
j=0

λnPn (x) (2.20)

where J denotes the number of moments we can observe. Talenti shows that the problem is stable,

in the sense that the inaccuracy from using a finite set of moments is bounded by the number

of moments J and the magnitude of the sampling error, and this bound converges to zero as the

number of moments goes to infinity and the error term both go to zero. Thus, the estimator

for F (·) in Proposition 3 is consistent as long as in the limit we can precisely estimate all of the
relevant moments. But with only a small number of moments, the approximation in (2.20) is likely

to be quite poor. Thus, while Proposition 3 yields a consistent non-parametric estimator for the

wage offer distribution, this estimator may not be reliable if we can only estimate a small number

of moments in the list (2.14).

While a precise estimate for F (·)may be hard to come by in practice, a small number of moments
may still suffice to check if a particular functional form is consistent with data. As an illustration,

Figure 1 displays the expected record gaps E (Rn+1 −Rn | N > n) for two different log wage

offer distributions, an exponential and a normal (which correspond to Pareto and lognormal wage

offers, respectively, both of which have been suggested in the previous literature). The moments

are computed for a geometric M with the probability p that is estimated in Section 4, and both

distributions are normalized to yield the same average wage gain across voluntary job changers as

in the data when we use the empirical distribution of job changes across n. As Figure 1 reveals,

the two distributions can be easily distinguished from one another even with only a small number

moments. In particular, the average net wage gain does not depend on n for the exponential

distribution, reflecting the memoryless property of this distribution, while the average wage gain

declines rapidly with n for the normal distribution. I will return to this observation below, where

I argue that we can in fact reject the null hypothesis that the wage offer distribution is lognormal.
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3. Data

To implement the above methodology, I need a dataset with detailed work-history data that can

be used to assign n for each job. Since job mobility is highest when workers first enter the labor

market, it also seems wise to focus on young workers. Not only will this allow for larger samples

of job changers, but the fact that young workers are so mobile makes them less likely to invest in

match-specific human capital, in line with my assumption that human capital is general. These

considerations lead me to data from the early part of the National Longitudinal Survey of Youth

(NLSY) dataset. The NLSY follows a single cohort of individuals who were between 14 and 22

years old in 1979. To avoid using observations where workers are already well established in

their careers, I only use data through 1993, at which point the oldest worker in the sample is 36.

Each year, respondents were asked questions about all jobs they worked on since their previous

interview, including starting and stopping dates, the wage paid, and the reason for leaving the job.

To mitigate the influence of mobility due to non-wage considerations, e.g. pregnancy or child-care,

I restrict attention to male workers.

Most of the variables that I use are standard. For the wage, I use the hourly wage as reported by

the worker for each job, divided by the GDP deflator (with base year 1992). I also experimented

with the CPI, but the results were similar. To minimize the effect of extreme outliers on means, I

removed observations for which the reported hourly wage was less than or equal to $0.10 or greater

than or equal to $1000. This eliminated 0.1% of all wage observations. Many of these outliers

appear to be coding errors, since these wages appear to be out of line with what these same workers

report at other times, including on the same job. For my measure of potential experience, I follow

previous literature in dating entry into the labor market at the worker’s birthyear plus 6 plus his

reported years of schooling (highest grade completed). However, if an individual reported working

on a job prior to that year, I date his entry at the year in which he reports his first job. Table 1

provides summary statistics for the original sample of all jobs.

The more unconventional variable in my analysis is the position n each job represents in its

respective cycle. To construct this statistic, we first need to distinguish between voluntary job-to-

job changes from involuntary job changes in order to delineate employment cycles. One approach

is to use individual self-reports on the reason they left each of their jobs, i.e. whether they quit

voluntarily or were laid off. Alternatively, we can use the time lapsed between jobs to gauge

whether a move was voluntary or not, since a voluntary job changer would immediately move

into a new job while a worker who changed jobs involuntarily would spend some time unemployed.

According to the model, these approaches should coincide. But in practice, the two agree only 60%
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of the time. More precisely, it is true that the vast majority of workers who report an involuntary

job loss spend at least one week unemployed. Moreover, the majority of workers who do not spend

any time unemployed between jobs indeed report leaving their previous job voluntarily. The main

discrepancy is that nearly half of all workers who report leaving their job voluntarily do not start

their next job for weeks or even months later. Although some of these cases are probably due

to planned delays, it seems as if workers often report leaving a job voluntarily without having

another job already lined up. This could be because workers are embarrassed to admit they were

laid off, or because they decided to quit for reasons that are not captured by the model. I assume

these reasons are independent of the wage, and so can be considered as an involuntary job loss

in the model, i.e. workers who quit without lining up another job must resume searching from

scratch. Thus, if a worker reports leaving a job voluntarily, I classify that job as having ended

involuntarily if his next job began more than two months (8 weeks) after his previous job ended.

But if a worker reports leaving a job involuntarily, I continue to classify the job as having ended

involuntarily regardless of how long it took him to start a new job. If the worker offers no reason

for leaving his job, I classify his job change as voluntary if he starts his next job immediately and

involuntary is he starts it over two months later, but otherwise do not classify the job.9

With this classification complete, we can assign n as follows. After the first involuntary job

change, we set n = 1. From then on, we either increment n by 1 if the worker leaves his job

voluntarily, or reset n to 1 if he did so involuntarily. One complication is that a non-trivial

fraction of workers simultaneously hold more than one job. To deal with this, I draw on Paxson

and Sicherman (1996), who argue that the primary reason workers hold multiple jobs is that they

are constrained to work a maximum number of hours on each job. Suppose then that workers

are constrained and can work on only one job full time. However, workers can receive additional

draws from the distribution F (·) and work on those jobs on a part time basis. If we observe a
worker employed in job A take on a second job B, we treat job B as a second draw from F (·) that
is available for part-time work. If the worker leaves job B before he leaves his original job A, job

B provides us with no information on the price of labor on job A. I therefore ignore job B in my

analysis, i.e. it is as if the worker had never taken on a secondary job. Alternatively, is the worker

leaves job A and remains in job B, then a full-time position must have opened up on job B. Since

the wages on these jobs are assumed to be drawn from the same distribution F (·), we can treat it
in the same way as a new job that started only after job A ended.

9 I experimented with cutoffs other than two weeks. These had very little impact on the first few record moments
(i.e. n = 1, 2, and 3) that can be estimated quite precisely, although they did affect the less precisely estimated
moments for higher values of n.
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Out of the 52,827 distinct jobs in my original sample, the procedure above throws out 8,232 as

secondary jobs that the worker was always employed on in addition to some other job. As a check,

we can use the fact that the NLSY asks workers to rank their jobs each year in terms of which

is their primary job. Of the 8,234 jobs I identify as secondary jobs, 72% are never ranked as the

primary job in any year, and only 9% are ranked as the primary job each year the job is reported.

Figure 2 reports the distribution of n across the remaining 44,593 jobs. Figure 2a shows the

fraction of all jobs each year for which a value for n cannot be assigned. Since we can only assign n

following the first involuntary job change, we will have to wait some time before we can assign n for

any one worker. Thus, in the first few years of the sample, we can assign n to only a small fraction

of jobs. However, by 1993, n was assigned to 87% of all the jobs respondents reported working on

in that year. Figure 2b shows the distribution of n where a value for n could be assigned. Not

surprisingly, most jobs early on in the sample that can be classified are associated with n = 1. But

over time, a larger share of workers is observed on higher levels of n. The distribution of n appears

to settle down after about 10 years, with roughly half of all jobs associated with n = 1, a quarter

with n = 2, 12% with n = 3, 6% with n = 4, and 3% with n = 5. Note that very high values of

n are uncommon, in line with the known result that records from a sequence of i.i.d. draws are

relatively rare.

Before I use this data to estimate the average wage for leaving the n-th job net of growth in

observable characteristics ∆Zit, a few issues remain to be settled. First, we need to decide the

horizon at which to compute the differences in equation (2.13). Since the NLSY provides one wage

on each job per interview, we can only measure within-job wage growth at one year differences.

However, when Topel and Ward (1992) study a similar sample of young workers using quarterly

data, they report a “strong tendency for within-job earnings changes to occur at annual intervals.”

Thus, it seems that little is lost by focusing on annual wage growth. Since my estimates involve the

difference between wage growth across jobs and within jobs, consistency would suggest restricting

attention to wage growth across jobs that is also computed at one year horizons. To ensure this,

I only use wage data for jobs the worker reported working on within two weeks of the interview

date, which is carried out on a yearly basis. My approach thus abstracts from wage growth for

jobs that fall between interviews. Although I ignore intervening jobs over the year in estimating

average wage growth, I do use these jobs for constructing n. My ultimate sample consists of 40,370

observations in which a wage is reported in both the current year and previous year. Of these,

28,015 observations involve the same job in both the current year and the previous year, and 12,355

observations involve a change in jobs between the previous interview and the current one.
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Next, I need to specify the vector of observable characteristics Zit. I assume Zit is quadratic in

potential experience, i.e.

Zit = β1EXPit + β2EXP
2
it (3.1)

Since at annual horizons EXPit = EXPi,t−1 + 1, it follows that

∆Zit = β1 + β2 (2EXPit − 1)

As noted above, the fact that (3.1) depends on the time the worker spent on all jobs rather on

any one job rules out the possibility of match-specific human capital. To gauge the plausibility of

this assumption, let TENit denote the tenure of worker i on the job he holds at date t. Suppose

we amended (3.1) to include TENit, i.e.

Zit = β1EXPit + β2EXP
2
it + γTENit (3.2)

Under this alternative specification, a part of the wage growth the worker achieves on a given job

would disappear if he were to move to a new job where Tit = 0. This would invalidate my analysis,

since a worker would no longer find it optimal to accept an offer if and only if it pays a higher

price per unit labor than his previous job. Thus, it is important to confirm that the coefficient γ

in (3.2) is negligible for my sample.

In what follows, I use the approach advocated by Topel (1991) for estimating γ. This approach

tends to produce the largest estimates for returns to tenure in other samples, so finding small

returns to tenure using this methodology would be more compelling. Topel’s approach uses the

fact that EXPit = EXP0it + TENit, where EXP0it is the experience of the worker when he first

started working on the job he holds at date t. Thus, the observed log wage can be written as

lncWn
it = wn + φi + β1EXP0it + β2EXP

2
it + (β1 + γ)TENit + εit (3.3)

To estimate γ, we use the following two-step procedure. First, wage growth over a one-year interval

on a given job will equal

∆ lncWit = (β1 + γ) + β2 (2EXPit − 1) +∆εit

Hence, we can estimate (β1 + γ) and β2 by ordinary least squares. Next, we use these estimates

to construct the difference

lncWn
it − (β1 + γ)TENit − β2EXP 2it = lnwn + φi + β1EXP0it + εit

We then regress this difference on EXP0it and individual fixed effects to estimate β1 and φi. The

estimate for γ is the difference between the estimates for β1 + γ and β1. Table 2 reports the
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results of this two-step procedure. The point estimate for β1 + γ and β1 are 0.0794 and 0.0740,

respectively, implying γ = 0.0054. The implied point estimate for γ is significantly different from

zero at the 5% level, but its magnitude is so small relative to the wage gains from job changing I

estimate in the next section that it seems safe to ignore it.10

In comparing my results to those of Topel (1991), the returns to experience in the two papers

are quite consistent. In fact, his point estimate for β1 of 0.0713 is quite close to mine, implying

that returns to experience will be nearly identical at short horizons. The main difference is that

wage growth on the job is considerably smaller in my sample than in Topel’s sample. In particular,

he estimates β1 + γ at 0.1258, compared to my estimate of 0.0794. Thus, wages in my sample

appear to grow on-the-job at nearly the same rate as wages rise with initial experience across jobs,

while wages in his sample grow on-the-job by much more than wages rise with initial experience.

This finding appears to be robust to variations in the functional form for the returns to tenure.

The bottom panel of Table 2 allows for tenure to enter as a quadratic, i.e. γ1TENit + γ2TEN
2
it.

The estimated returns remain small; although not reported, returns to tenure attain a maximum

of only 0.0433 log points at 5 years. The fact that returns to tenure are so much smaller in my

sample may reflect the fact that young workers have little incentive to invest in match-specific

skills given their high degrees of mobility, in contrast with older workers in Topel’s sample for

whom this incentive is presumably greater.

4. Empirical Results

In implementing the methodology above, we should keep in mind that different worker groups, e.g.

high school graduates and college graduates, might sample from different offer distributions and

draw offers at different rates. We could carry out the estimation separately for each such group,

but since the number of observations in my sample is already relatively small, I resort to grouping

together all workers and assuming they all face identical search problems.

Since relating the moment sequence {E (Rn+1 −Rn | N > n)}∞n=1 back to an underlying parent
distribution requires knowing the parameter p = (1 + λ1/δ)

−1, I begin with estimates for this

10As noted in Topel (1991), this two-step procedure is likely to overstate the true β1, since initial experience
EXP0it is likely to be positively correlated with n and hence wn. As a result, the estimated returns to tenure should
really be viewed as a lower bound for the true γ. However, with involuntary job changes, EXP0it is likely to be
weakly correlated with n, since workers with high experience can still be on the first job in their employment cycle.
Hence, the lower bound we estimate is likely to be close to the true estimate. Indeed, when Altonji and Williams
(1998) estimate returns to tenure in the same NLSY sample using an alternative instrumental variables approach,
they find returns to tenure that are only slightly larger than those reported here.
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parameter. Recall that Proposition 2 offers a maximum likelihood estimator for p based on the

distribution of n across jobs that ended in an involuntary job change. Of the 44,593 jobs in

my sample, 22,135 are classified as ending involuntarily. Among these, the distribution of n is

heavily skewed towards n = 1. This would suggest a relatively high probability of involuntary job

termination, i.e. a relatively large value of p. The exact point estimates are reported in Table

3. Grouping all workers together, p is estimated at 0.48, implying that the ratio λ1/δ ≈ 1. To

check whether grouping workers together overlooks important differences in p across identifiable

subgroups, I also estimated p separately for different education groups. The point estimates do

not seem to differ much from one another, confirming a similar result in van den Berg and Ridder

(1998). The implied ratio for λ1/δ of 1 is smaller than the ratio of 10 reported in several previous

papers using job duration data as opposed to employment history data (including some that use

the same NLSY dataset). However, not all papers find this ratio to be as large. In particular,

Bowlus, Keifer, and Neumann (2001), who use job duration data in the NLSY data to estimate

these parameters, also report a ratio λ1/δ ≈ 1.

Next, I turn to estimating (2.13), which should yield estimates of the average record gaps.

Once again, to mitigate the effect of outliers, I eliminated the most extreme 0.1% of my sample,

specifically those observations where |∆ lncWit| > 2. Most of these deletions appear to be due to
coding errors, since these wage changes are typically followed by equally large wage changes in

the opposite direction. Since there are very few observations for high values of n, I also confine

my analysis to job changers who leave their n-th job for n ≤ 5. Let Dn,n+1it represent a dummy

variable which equals 1 if worker i moved from his n-th job in date t− 1 to his n+1-th in date t.
Rather than estimating returns to experience from a separate first-stage regression as suggested

in Section 2, I combine job stayers and job changers to run a single regression of the form

∆ lncWit = β1∆EXPit + β2∆EXP
2
it +

∞X
n=1

πnD
n,n+1
it +∆εit (4.1)

The coefficients πn in this regression correspond to the estimates of the expected moment gaps

E (Rn+1 −Rn | N > n). Combining the two allows the wage growth of job changers to help in

identifying the coefficient β2, and should therefore be more efficient.

The results of this regression are reported in Table 4. The number of workers who are observed

to change from the n-th job to the n+1-th job in the previous year for each n is reported next to

the corresponding dummy variable. The estimated coefficients for (4.1) are reported in the second

column of Table 4. The first column in the table reports the estimated coefficients β1 and β2
omitting job changers, confirming that estimating β1 and β2 from job stayers alone would have

negligible effects on my point estimates. The estimated coefficients πn are all clustered around
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8%, with the exception of π4. However, this coefficient (as well as those with even higher values

of n) is rather imprecisely estimated given the small number of job changers for this value of n.

With only three moments that are estimated with any reasonable degree of precision, using the

coefficients πn to construct the estimator in Proposition 3 is likely to provide a poor approximation

of the true log wage offer distribution. However, as noted earlier, we can still use a small number of

moments to test particular functional form restrictions. Recall from Figure 1 that if the wage offer

is Pareto, in which case the log wage offer distribution is exponential, the coefficients πn should be

constant for all n. Thus, testing this particular functional form restriction amounts to testing a set

of linear restrictions on the coefficients πn in (4.1), namely that they are all equal. Note that this

is a test of an entire family of distributions rather than a test of one particular distribution. To

the extent that we fail to reject that the πn are equal, we can then estimate the exact exponential

distribution (specifically, the inverse of the hazard rate that characterizes this distribution) from

the implied common value of the πn.

The first row in the bottom panel of Table 4 reports the results for the test that all of the

coefficients πn are equal. The probability of observing these average wage gains under the null

that the log wage offer distribution is exponential equals 0.264. Thus, we fail to reject the null that

the wage offer distribution is Pareto at conventional significance levels. The third column of Table

4 then reports the estimate for πn assuming these coefficients are equal. The average net wage

growth from voluntarily moving jobs is 0.0806, which is consistent with the estimated wage growth

for young workers reported in Topel and Ward (1992). This estimate implies that the underlying

log wage offer distribution is exponential with hazard 0.0806−1 = 12.41. This is larger than the
estimate of 4.17 Flinn (2002) reports for this hazard using the same NLSY dataset (Table 4, p633).

But Flinn abstracts from on-the-job wage growth out of concern for sample selection, and instead

attributes all of the growth between the starting wage on the n-th job in the cycle to the starting

wage on the n+1-th job in the cycle to a better price from the underlying offer distribution. Since

the average wage gain from the start of one job to the start of the next job is 0.2400 in his sample,

the implied hazard rate of the underlying offer distribution, 0.2400−1 = 4.17, will be smaller.

The fact that the estimated coefficents πn = E (Rn+1 −Rn | N > n) are roughly constant nat-

urally suggests the exponential distribution as a candidate for the log wage offer distribution. But

we could similarly test other functional forms that have been proposed in the literature. The

second row in the bottom panel of Table 4 reports the results for an analogous test of whether the

log wage offer distribution is normal. Once again, we can devise a test against the entire class of

normal distributions as opposed to a single candidate distribution, and then proceed to estimate
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the exact normal distribution to the extent that we fail to reject this hypothesis. To see why,

suppose log wage offers are distributed as N
¡
µ,σ2

¢
. One can verify that the average net wage

growth among workers who move from their n-th job to their n+ 1-th job would equal

σE
¡
R0n+1 −R0n | N > n

¢
(4.2)

where E
¡
R0n+1 −R0n | N > n

¢
denotes the average moment gap from the sequence {X 0

m}Mm=1 in
which the X 0

m are i.i.d. standard normals, i.e. X 0
m ∼ N (0, 1). Thus, the sequence {πn}∞n=1 is

uniquely determined for any normal distribution up to a scalar. To the extent that we fail to

reject the hypothesis of a normal distribution, we can estimate σ from the exact values of πn.11

As can be seen from the last line of Table 4, the probability that we would observe these average

wage gains under the null of any lognormal distribution is only 0.014, so we can reject this null

at conventional levels of significance. This is not quite precise, since the null hypothesis depends

on p, but p is an estimated parameter. However, since the moment sequence in (4.2) is sharply

declining for a variety of different p, and since p is relatively tightly estimated, the rejection of the

normal is likely to be robust to incorporating sampling error. Interestingly, the expected record

gaps for the exponential distribution are independent of p, so the confidence interval in Table 4

does not need to be adjusted to reflect sampling error in the estimate of p.

Since the small sizes involved in my estimation make it hard to estimate the exact offer distri-

bution with great confidence, it would be useful to look for additional tests that can be used to

further gauge whether the wage offer distribution is indeed Pareto, i.e. whether the log wage offer

distribution is indeed exponential. Since my estimation relies only on the wage growth of volun-

tary job changers, a natural overidentifying restriction to consider would involve the wage losses of

involuntary job changers, data that I have so far ignored in my analysis. If a worker leaves his n-th

job involuntarily, it follows that the that the total number of records in the employment cycle he

just ended is exactly n, i.e. N = n (recall that employment cycles are defined as the time between

involuntary job changes). Thus, the average log price per unit labor on the job the worker left

involuntarily is given by E (wn | N = n), i.e. it is the expected value of the n-th record conditional

on the event that there are exactly n records in the sequence {Xm}Mm=1. On his next job, all we
know is that he started a new cycle, so the number of records in his next employment cycle is at

least one. Hence, the average log price per unit labor on his new job is given by E (w1 | N ≥ 1),
which we can denote E (w1) since the event N ≥ 1 is true by default. Hence, the average net wage

11By contrast, the parameter µ is not identified, since recall from Proposition 1 that we can only identify a
distribution up to a location parameter. Similarly, the exponential distribution is really defined by two parameters,
its hazard and its lower support, but only the hazard is identified.
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loss suffered by the n-th work can again be expressed as a difference of record moments, namely

E
³
|∆ lncWit − β∆Zit|

¯̄̄
Nt−1 = n

´
= E (Rn | N = n)−E (R1)

Now, suppose the wage offer distribution were exponential with a hazard rate λ. Then these

average losses can be written as

λ−1
£
E
¡
R0n | N = n

¢−E ¡R01¢¤ (4.3)

where R0n denotes the n-th record the sequence {X 0
m}Mm=1 in which the X 0

m are i.i.d. standard

exponentials, i.e. with hazard rate 1. Let Dn,1it denote a dummy which equals 1 if worker i moved

from his n-th job in date t− 1 to a job where n is reset to 1 by date t. Then if the log wage offer
distribution were indeed exponential, the coefficients πn in the regression

∆ lncWit = β1∆EXPit + β2∆EXP
2
it −

∞X
n=1

πnD
n,1
it +∆εit (4.4)

should line up with (4.3) up to a scale parameter. More precisely, the scaling parameter λ−1

should be the inverse of the hazard for the exponential distribution we estimated from voluntary

job changers, i.e. λ−1 should equal 0.0806.

The first column in Table 5 reports the estimates for the coefficients πn. Using the estimate

for p of 0.48 from Table 3, one can compute the moments E (R0n | N = n) − E (R01) numerically,
yielding

{0.197, 0.762, 1.127, 1.396, 1.616, ...} (4.5)

The first row in the bottom panel of Table 5 reports the results of the test that the coefficients

πn are equal to a this sequence up to a scale parameter. The probability of observing these values

under the null of an exponential distribution is given by 0.291, so we indeed fail to reject the

null hypothesis. The second column of Table 5 reports the implied value of the constant λ−1

if we impose the restriction that the wage offer distribution is exponential. That is, we replace
∞P
n=1

πnD
n,1
it in (4.4) with the expression

λ−1
³
0.197D1,1it + 0.762D

2,1
it + 1.127D

3,1
it + 1.396D

4,1
it + 1.616D

5,1
it

´
and estimate λ−1 by ordinary least squares. The estimated coefficient is 0.0816, nearly identical
to the value of 0.0806 implied by the wage gains of voluntary job changers. In other words, the

relationship between the wage gains of voluntary job changers and the wage losses of involuntary

job changers implied by the model appears to be satisfied in the data.
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As a final remark, note that so far I have only used the fact that if the log wage offer dis-

tribution is exponential, the average wage losses would have to be proportional to the sequence

in (4.5). However, a simple adaptation of an argument in Nagaraja and Barlevy (2003) shows

that the converse is also true, i.e. if wage losses are proportional to (4.5), then the offer dis-

tribution has to be exponential. Formally, the sequence {E (Rn | N = n)−E (R1)}∞n=1 uniquely
characterizes the parent distribution within the class of continuous distribution functions up to a

location parameter. As such, we could potentially use wage losses to similarly discriminate be-

tween different candidate wage offer distributions. Unfortunately, this approach proves to be less

powerful than using the wage gains of voluntary job changers. For example, once again we can test

whether the wage change data is consistent with a normal distribution by computing the sequence

{E (Rn | N = n)−E (R1)}∞n=1 for the normal distribution and testing whether the coefficients πn
are consistent with this series. As reported in the second row of the bottom panel of Table 5, we

cannot reject the null hypothesis that the log wage offer distribution is normal as we could from

wage data for voluntary job changers. The reason for this is illustrated in Figure 3, which shows the

actual estimated net wage loss and the best-fitting moment differences E (Rn | N = n) − E (R1)
for the normal and the exponential distribution. Although the two sequences are distinguishable

— the average wage losses decay more rapidly for the normal distribution — it is more difficult to

tell them apart given that both sequences are necessarily increasing, in contrast the sequence of

moments for the difference between consecutive records which need not be monotonic. Thus, the

fact that wage losses for involuntary job changers can be reconciled with the exponential distri-

bution serves more to affirm the internal consistency of the model than to further pin down the

exact functional form of the wage offer distribution.

5. Alternative Models of Search

The estimation strategy described in this paper relies heavily on the fact that according to the

model, observed wages over an employment cycle {cWn
it} correspond to a sequence of records

{Wn}Nn=1 from an i.i.d. sequence that are contaminated by a noise term `it. In more general

search models, this may no longer be the case. Nevertheless, I now argue that even when the

underlying sequence {Wn}Nn=1 does not correspond to a list of record values, it will often be the
case that a model with on-the-job search has some implicit record structure, and in some cases

we might still be able to exploit this fact for purposes of identification. This section offers two

suggestive examples. A more comprehensive treatment is clearly necessary to deal with each of

these variations, but this is beyond the scope of this paper.
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As my first example, suppose a job offer specifies both a wage W and a number of hours H that

the worker is required to work. Workers draw job offers from a fixed distribution over (W,H) and

choose the job that maximizes their utility. Thus, on a job offering the pair (W,H), an individual

would earn an hourly wage of cWit = W`it, and an income bIit = WH`it. Once again, define an

employment cycle as the time between the beginning of adjacent unemployment spells, and let

{Wn, Hn}Nn=1 denote the wages and hours on the different jobs over each such cycle. The sequence
{Wn}Nn=1 will no longer correspond to a sequence of records; in fact, it need not even be monotonic,
since a worker might voluntarily move to a job that offers lower W if it is more attractive in terms

of the hours it offers. Nevertheless, the n-th job in the cycle still corresponds to the n-th record

in utility space, i.e. it is the n-th time the worker encounters a job he prefers to all of his previous

job offers. Formally, the sequence {U (Wn, Hn)}∞n=1 corresponds to records from the set {Um}Mm=1
where Um denotes the utility the worker derives from the m-th job offer. If we know the function

U (·, ·), or could estimate it from observed choices, we might be able to use data on wages and

hours to identify the distribution of utility across job offers, and possibly even use this to back

out the joint distribution of (W,H). As an illustration, consider the case where agents do not

care about leisure. Then they would always choose the job that offers the greatest income, i.e.

U (W,H) =WH. In this case, the income on the n-th job corresponds to a record from i.i.d. draws

from the implied distribution for income across all offers, and we can easily adapt the argument

above to identify the distribution of income levels across job offers from observations on incomebInit = (WnHn)× `it. One might be able to extend a similar argument to other utility functions.

As another example, suppose once again that a job offer only specifies a wage W , and workers

draw offers from a fixed offer distribution. However, the productivity of the worker is in part

match-specific. Formally, the log wage on the n-th job is given by

lncWn
it = wn + φi + β1EXP + β2EXP

2 + γ (TENit) + εit

where γ (·) is a strictly increasing function. Although we could rule out this case for the NLSY
sample, returns to tenure might be more relevant for workers who are at a more advanced stage

of their career. In this case, an individual might deliberately choose a job that pays a low wage

today because of the promise of higher growth in the future. That is, a worker will move from

his n-th job to his n + 1-th job even though cWn
it >

cWn+1
it because he anticipates that the wage

on the n+ 1-th job will be higher at some future date, i.e. that cWn
iτ <

cWn+1
iτ for some τ > t.12,13

12This would not be true in the Burdett and Mortensen model, i.e. it would never be the case that cWn
it > cWn+1

it .
However, it is possible in that model that cWn

i,t−1 > cWn+1
it , i.e. the worker might voluntarily move to a job that pays

a lower wage than he earned in the past.

13A closely related model is developed by Postel-Vinay and Robin (2002). In their model, wages rise on the job not
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At first glance, the fact that workers accept wage cuts would suggest the record structure of the

model breaks down. But this turns out to be incorrect. In particular, a worker would never accept

a job that offers a lower log price w than his current match, since the monotonicity of γ (·) implies
the wage on such a job would always lag behind his current job. Hence, the sequence {wn} is still
a monotonically increasing sequence. More precisely, the set wn forms a sequence of records in

which the threshold for setting a record evolves over time. That is, an observation forms a record

if it exceeds the previous record by at least some (time-varying) amount, in much the same way

that in athletic competitions a record is set only if it beats the previous record by more than the

degree of precision by which performances are measured (which conceivably changes over time as

technology makes it possible to measure time at higher precision). More generally, the different

jobs in a worker’s employment cycle correspond to records in value function space as opposed to

wage space or instantaneous utility space. Using this insight for identification involves a non-trivial

modification to the record model explored here, and it is not obvious whether one can still obtain

as strong of a characterization result. But to the extent that such a result can be established,

the fact that we can directly estimate the function γ (·) using Topel’s method above suggests we
should still be able to estimate the average underlying record gaps ∆wn.

6. Conclusion

In many applications that use search models, we would like to estimate the structural parameters

of the model to learn about the underlying search process. Previous authors have indeed obtained

important insights on various interesting questions on labor markets by proceeding to estimate

such models. However, the methods they used require fairly stringent assumptions, either on the

functional form of the wage offer distribution or on the presence of unobserved earnings hetero-

geneity. This paper proposes a way to estimate this distribution that can avoid these assumptions

by exploiting the underlying record structure of the standard search model. While the number of

observations in my dataset is too small to provide very precise estimates of the underlying wage

offer distribution, my approach can still rule out certain functional forms, including some that have

been used in applications such as the lognormal distribution. At a first pass, the evidence appears

consistent with a Pareto wage offer distribution, i.e. the wages a worker could expect to earn in

the various jobs available to him have a Pareto distribution. Note that this observation is distinct

because the worker becomes more productive, but because his employer is forced to match outside offers the worker
receives. Since outside offers arrive at random, the wage would no longer be a deterministic function of tenure on
the job. Ironically, in this case the wage on the job forms a record process, since the current wage reflects the record
outside offer the worker encountered since he started working for his current employer.
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from the oft-noted fact that the cross-sectional distribution of wages exhibits a Pareto tail.14 For

one thing, the cross-sectional distribution is a convolution of the distribution of prices firms pay

and the distribution of ability across agents. In addition, selection from workers moving to higher

wage jobs would tend to put more mass on higher values of this distribution. In the simple search

model explored here, the record structure is reflected in wages and can be used to uncover the

underlying wage offer distribution. But more generally, the jobs on each employment cycle corre-

spond to records in utility space, not wage space. Whether this still yields useful restrictions for

observable data (e.g. wages, hours, etc) remains as an open question.

While this paper only examines search applications, record theory is potentially applicable in

a variety of contexts. Records statistics arise whenever we get to observe the extremes from an

unknown number of observations. This structure characterizes a variety of economic environments.

For example, in the Postel-Vinay and Robin (2002) model, the wage a worker earns on his job

is the maximum of the outside offers the worker receives, but most panel surveys do not record

the number of times the worker receives a matching outside offer. A related example is the

problem of optimal contracting with one-sided commitment in Beaudry and DiNardo (1991) in

which the optimal strategy for the firm is to pay its worker a wage that reflects the record economic

conditions since the employment relationship began, which may be only imperfectly observable to

the econometrician. Another example involves auctions in which we do not observe how many

potential bidders there are (e.g. internet auctions where we don’t know whether those who visit

the site are seriously intent on bidding), and all we get to observe are those bids that already

exceed previous bids without knowing how many bidders had the opportunity to offer a higher bid

but chose not to. Yet another application that is discussed at some length in Arnold, Balakrishnan,

and Nagaraja (1998) involves optimal stopping problems, since the event that we reach a point

at which we exceed some threshold can be translated into the statement that the record value

exceeds some cutoff. Record statistics could thus serve as an important tool for economists in

both empirical and theoretical applications.

14On the presence of a Pareto tail in cross-sectional earnings distributions, see Neal and Rosen (2000).
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7. Appendix

Proof of Lemma 1: To derive the expression for Prob(M = m), let condition on the time between
the first offer and the end of the cycle, which is distributed as an exponential with rate δ. Then
the probability that there are exactly m offers on an employment cycle can be expressed as

Prob (M = m) =

Z ∞

0
Prob (m− 1 offers arrive by date t) δe−δtdt

Since offers arrive at rate λ1, the number of offers that arrive within t units of time is Poisson with
parameter λ1t, so that

Prob (M = m) =

Z ∞

0

e−λ1t (λ1t)m−1

(m− 1)! δe−δtdt

=

µ
λ1

λ1 + δ

¶m−1 δ

λ1 + δ

To solve for these integrals, we use an induction argument together with the fact that for any
positive integer k

lim
t→0 t

ke−(λ1+δ)t = 0

lim
t→∞ t

ke−(λ1+δ)t = 0

This establishes the claim. ¥

Proof of Lemma 2: Given an i.i.d. sequence {Xm}Mm=1 where Xm ∼ F (·) and where
Prob(M = m) = qm−1p, Theorem 4.1 in Bunge and Nagaraja (1991) implies that the proba-
bility density for the first n + 1 records when there are at least n + 1 records in the sequence is
given by

h (r1, r2, ..., rn+1 ∩N > n) = f (rn+1)
nY
i=1

qf (ri)

1− qF (ri) (7.1)

where f (·) = dF (·). Integrating out r1 through rn in (7.1) and using an induction argument, we
can show that the marginal density for rn+1where there are at least n+ 1 records is given by

h (rn+1 ∩N > n) =
[− ln (1− qF (rn+1))]n

n!
f (rn+1)

Define the inverse cdf F−1 (x) for x ∈ (0, 1) as sup {y : F (y) ≤ x}. Then using the change of
variables u = F (rn+1) and du = f (rn+1)drn+1, the expected value of |Rn+1| conditional on
N > n is given by

E
³
|Rn+1|

¯̄̄
N > n

´
=

Z 1

0

¯̄
F−1 (u)

¯̄ [− ln (1− qu)]n
n! Pr (N > n)

du

≤ [− ln (1− q)]n
n! Pr (N > n)

Z 1

0

¯̄
F−1 (u)

¯̄
du

=
[− ln (1− q)]n

n!
E (|Xm|) <∞



SinceE
³
|Rn|

¯̄̄
N > n

´
< E

³
|Rn+1|

¯̄̄
N > n

´
, the former is also finite. Lastly, sinceE (|Rn|) <

∞ implies E (Rn) <∞, the lemma follows. ¥

Proof of Proposition 1: Integrating out (7.1) yields the following densities:

h (rn+1, rn ∩N > n) = f (rn+1)
[− ln (1− qF (rn))]n−1

(n− 1)!
qf (rn)

1− qF (rn)

h (rn ∩N > n) =
q − qF (rn)
1− qF (rn)

[− ln (1− qF (rn))]n−1
(n− 1)! f (rn)

Define ∆ = rn+1 − rn. By construction, ∆ ≥ 0. Using the law of iterated expectations, we have

E (∆ | N ≥ n) = E (E (∆ | rn, N > n))

= E

µZ ∞

0
∆ h (∆ | rn,N ≥ n)d∆

¶
where h (∆ | rn, N ≥ n) is the density of the difference between the n-th record and the n+ 1-th
record conditional on rn, and is given by

h (∆ | rn,N ≥ n) = f (rn +∆)

1− F (rn)
Hence, the conditional expectation of ∆ is given by

E (∆ | rn, N ≥ n) =

Z ∞

0
∆
f (rn +∆)

1− F (rn) d∆
≡ F (rn)

If we integrate the above expression over rn, we have

E (∆ | N > n) = E (F (rn)| N > n)

=

Z ∞

−∞
F (rn) h (rn ∩N > n)

Pr (N > n)
drn

=

Z ∞

−∞
F (rn) q − qF (rn)

1− qF (rn)
[− ln (1− qF (rn))]n−1
(n− 1)! Pr (N > n)

f (rn) drn

=

Z ∞

−∞

·Z ∞

0
[1− F (rn +∆)] d∆

¸
q

1− qF (rn)
[− ln (1− qF (rn))]n−1
(n− 1)! Pr (N > n)

f (rn) drn(7.2)

Now, suppose we have two functions F1 and F2 such that

E
³
R
(1)
n+1 −R(1)n | N > n

´
= E

³
R
(2)
n+1 −R(2)n | N > n

´



for n = 1, 2, 3, ... Then we haveZ ∞

−∞

·Z ∞

0
[1− F1 (rn +∆)] d∆

¸
(− ln (1− qF1 (rn)))n−1
(n− 1)! (1− F1 (rn))

qf1 (rn)

1− qF1 (rn)drn =Z ∞

−∞

·Z ∞

0
[1− F2 (rn +∆)] d∆

¸
(− ln (1− qF2 (rn)))n−1
(n− 1)! (1− F2 (rn))

qf2 (rn)

1− qF2 (rn)drn

Rewrite both integrals using the change of variables u = F (rn) to getZ 1

0

·Z ∞

0

£
1− F1

¡
F−11 (u) +∆

¢¤
d∆

¸
(− ln (1− qu))n−1
(n− 1)! (1− u)

q

1− qudu =Z 1

0

·Z ∞

0

£
1− F2

¡
F−12 (u) +∆

¢¤
d∆

¸
(− ln (1− qu))n−1
(n− 1)! (1− u)

q

1− qudu

Applying Lemma 3 in Lin (1987), we know that given a function ψ (·),Z 1

0
ψ (x) (− ln (1− x))n dx = 0

for all n = 1, 2, 3, ... if and only if ψ (x) = 0 almost surely. By a simple contradiction argument,
one can show that this implies that ψ (x) = 0 almost surely if and only ifZ 1

0
ψ (x) (− ln (1− qx))n dx = 0

Hence, for any u, it follows thatZ ∞

0

£
1− F1

¡
F−11 (u) +∆

¢¤
d∆ =

Z ∞

0

£
1− F2

¡
F−12 (u) +∆

¢¤
d∆

Let t = F−11 (u) +∆. Then it follows that for any u,"Z ∞

F−11 (u)
[1− F1 (t)] dt

#
=

"Z ∞

F−12 (u)
[1− F2 (t)] dt

#

Since F1 (·) and F2 (·) are continuous, nondecreasing, and bounded, it follows that they are both
differentiable almost everywhere. This, in turn, implies that F−11 (u) and F−12 (u) are differentiable
for almost every u ∈ (0, 1). Differentiating with respect to such u yields

£
1− F1

¡
F−11 (u)

¢¤ d
du
F−11 (u) =

£
1− F2

¡
F−12 (u)

¢¤ d
du
F−12 (u)

Since F1
¡
F−11 (u)

¢
= F2

¡
F−12 (u)

¢
= u, it follows that for almost all u ∈ (0, 1),
d

du
F−11 (u) =

d

du
F−12 (u)



Integrating out yields
F−11 (u) = F−12 (u) + c

for some constant c, which establishes the claim. ¥

Proof of Proposition 2: the Proposition is an immediate implication of the consistency of the
maximum likelihood estimator. ¥

Proof of Proposition 3: From equation (7.2), we have

E (Rn+1 −Rn | N > n) =

Z ∞

−∞

µZ ∞

0
(1− F (rn +∆)) d∆

¶
[− ln (1− qF (rn))]n−1
(n− 1)! Pr (N > n)

qf (rn)

1− qF (rn)drn

≡
Z ∞

−∞
G (rn)

[− ln (1− qF (rn))]n−1
(n− 1)! Pr (N > n)

qf (rn)

1− qF (rn)drn

Note that G (rn) ≥ 0. Using the change in variables
1− qF (rn) = px

we can rewrite the above as

E (Rn+1 −Rn | N > n) =

Z ∞

−∞
G

µ
F−1

µ
1− px
q

¶¶
(− lnp)n xn−1

(n− 1)! Pr (N > n)
dx

≡ (− ln p)n
(n− 1)! Pr (N > n)

Z ∞

−∞
g (x)xn−1dx

where again g (x) ≥ 0. Set

µn−1 = E (Rn+1 −Rn | N > n)× (n− 1)! Pr (N > n)

(− lnp)n

so that 0 < µn <∞ for all n. The task of recovering g (·) from the system of equationsZ 1

0
g (x)xn = µn (7.3)

for n = 0, 1, 2, ... is just a case of the Hausdorff moment problem, which asks for an arbitrary
sequence {µn}∞n=0 with µ0 = 1 if (1) there exists a function g (·) ≥ 0 that satisfies (7.3); (2) if the
solution is unique; and (3) a closed form expression for any solution g (·). Shohat and Tamarkin
(1943) provide a rigorous treatment of this and related moment problems. They prove that if a
solution exists to the Hausdorff moment problem, it is unique (as it would indeed have to be from
Proposition 1). Moreover, by Theorem 3.7 of Shohat and Tamarkin (p91), they show that the
solution is given by

g (x) =
∞X
n=0

λnPn (x)



where

λn =

Z 1

0
g (x)Pn (x)dx

But we let Pn (x) =
Pn
j=0 cnjx

j

Z 1

0
g (x)Pn (x) dx =

Z 1

0

g (x) nX
j=0

cnjx
j

 dx
=

nX
j=0

cnj

Z 1

0
g (x)xjdx

=
nX
j=0

cnjµj

Hence, steps (1) and (2) allow us to recover the function g (x) where

g (x) = G

µ
F−1

µ
1− px
q

¶¶
=

Z ∞

0

µ
1− F

µ
F−1

µ
1− px
q

¶
+∆

¶¶
d∆

=

Z ∞

F−1
³
1−px
q

´ (1− F (t)) dt

where the last step uses the change in variables t = F−1
µ
1− px
q

¶
+∆. Integration by parts and

a little algebra reveals that we can rewrite the above integral as

g (x) =

Z 1

1−px
q

·
F−1 (u)− F−1

µ
1− px
q

¶¸
du

Differentiating both sides with respect to x yields

g0 (x) =
µ
1− 1− p

x

q

¶
F−1

0
µ
1− px
q

¶
px

q
lnp

Using the change of variables

z =
1− px
q

and integrating, we have

Z 1

0

qg0
µ
ln (1− qz)
ln p

¶
(1− z) (1− qz) lnpdz =

Z x

0
F−1

0
(z) dz



or

F−1 (x) =
Z x

0

qg0
µ
ln (1− qz)
ln p

¶
(1− z) (1− qz) ln pdz + constant

which completes the proof. ¥



Table 1: Summary  Statistics
for Entire Sample

# of individuals 6,284

individual characteristics:
mean median

     age 24.6 25.0
     years of potential experience 8.3 9.0
     years of education 12.7 12.0

# of jobs 44,593

job characteristics:

     % jobs ending voluntarily 0.35
     % jobs ending involuntarily 0.50
     % jobs censored/not classified 0.15

     average job tenure (uncensored) 1.05
     average wage (1992 dollars) $7.00
     median wage (1992 dollars) $5.40

Source: National Longitudinal Survey of Youth, author tabulations. Statistics above are for the original
sample, i.e. for all jobs reported in each year.



Table 2: Estimating Returns to Tenure γ 

linear returns to tenure

within-job wage experience tenure
growth effect effect
β1 + γ β1 γ

0.0794 0.0740 0.0054
0.0065 0.0061 0.0024

1 year 2 years 5 years 7 years 10 years

implied returns to tenure 0.0054 0.0108 0.0271 0.0380 0.0542
0.0024 0.0049 0.0122 0.0171 0.0245

implied returns to experience 0.0723 0.1411 0.3270 0.4337 0.5680
0.0058 0.0109 0.0226 0.0274 0.0300

quadratic returns to tenure

within-job wage experience tenure tenure 
growth effect effect squared
β1 + γ1 β1 γ1 γ2 

0.0826 0.0661 0.0165 -0.0016
0.0065 0.0067 0.0024 0.00048

The regressions above follow the two-step method outlined in Topel (1991). The first stage regresses annual within-job real

wage growth (in 1992 dollars using the implicit GDP deflator) on a ∆EXP (= constant) and ∆EXP2. This is the same
regression in column (1) of Table 4, where β1+γ corresponds to the coefficient on ∆EXP. The second stage regresses the log

real wage net of the estimated (β1+ γ)TEN + β2EXP2 on initial experience and individual fixed-effects. The coefficient on

initial experience corresponds to the estimate of β1, and the difference corresponds to the estimate of γ above. Standard errors

for β1 and γ are adjusted to reflect estimation error in the first-stage regressor, using the stacking and weighting procedure in

Altonji and Williams (1998). Returns to tenure and experience in the middle of the table are based on estimates for γ, β, and

β2. In the bottom panel, the first stage regression is amended to allow for a ∆TEN2 term, which is then subtracted from the log

real wage at the second stage.



Table 3: Estimates for p

Sample p Standard Implied
size error λ1/δ 

All 22,135 0.4823 0.0031 1.074

   Educ < 12 6,515 0.5008 0.0055 0.997
   Educ = 12 6,648 0.4797 0.0058 1.085
   Educ ∈  (13,15) 5,436 0.4504 0.0062 1.220
   Educ > 16 3,536 0.5049 0.0082 0.981

Estimates for p are derived using maximum likelihood in accordance with Proposition 2 in the text.
Sample size corresponds to the number of jobs that end in an involuntary job change used to estimate p.
The standard error is the asymptotic standard error. The implied ratio in the last column is computed

according to the formula p = (1+λ1/δ)-1.



Table 4: The Wage Gains of Voluntary 
Job Changers, by n 

sample size (1) (2) (3)
exponential

∆EXP -- 0.0794 0.0809 0.0816
0.0065 0.0050 0.0050

∆EXP2 
-- -0.0017 -0.0018 -0.0018

0.0003 0.0002 0.0002

D12 2,473 0.0900
0.0094

D23 993 0.0711
0.0137

D34 459 0.0799 0.0806
0.0200 0.0072

D45 206 0.0168
0.0331

D56 78 0.0799
0.0520

# obs 28,015 31,868 31,868
stayers 28,015 28,015 28,015
changers 0 3,853 3,853

Test of particular functional forms:

     Exponential F (4, 31861) = 1.31 Prob > F  = 0.2639

     Normal F (4, 31861) = 3.12 Prob > F  = 0.0140

The dependent variable is the annual growth rate of real wages. The independent variables are

the growth ∆EXP, which is identically equal to 1, ∆EXP2, which is equal to 2 EXP - 1, and a

set of dummy variables Dn,n+1 equal to 1 if the worker moved from his n-th job to his n+1-th
job. The column labeled sample size denotes the number of workers in my sample who
voluntarily left their n-th job for each value of n. Column (1) estimates the coefficients on

∆EXP and ∆EXP2 using job stayers only. Column (2) adds job changers and estimates the
coefficients on the dummy variables as well. Column (3) estimates the same regression as in
column (2) assuming the coefficients on all the dummy variables are equal, which from the text
is true if and only if the log wage offer distribution is exponential. The numbers below the
coefficient denote robust standard errors. The F -statistics in the bottom panel are the robust
Wald-statistics that test constraints on the coefficients on the dummy variables in column (2).
The exponential case compares column (3) to column (2), while the normal case involves an
alternative set of linear restrictions on the coefficients on the dummy variables. 



Table 5: The Wage Losses of Involuntary 
Job Changers, by n 

sample size (1) (2)
exponential

∆EXP -- 0.0837 0.0849
0.0062 0.0050

∆EXP2 -- -0.0020 -0.0020
0.0002 0.0002

D11 2,767 0.0029
0.0094

D21 873 0.0843
0.0153

D31 305 0.0904 0.0816
0.0278 0.0130

D41 137 0.0942
0.0432

D51 50 0.0754
0.0726

# obs 31,844 31,844
stayers 28,015 28,015
changers 3,829 3,829

Test of particular functional forms:

     Exponential              F (4, 31837) = 1.24 Prob > F  = 0.2905

     Normal              F (4, 31837) = 1.08 Prob > F  = 0.3629

The dependent variable is the annual growth rate of real wages. The independent variables are

∆EXP and ∆EXP2 as in Table 4, and a set of dummy variables Dn,n+1 equal to 1 if the worker
moved from his n-th job to his n+1-th job. The column labeled sample size denotes the number
of workers who involuntarily left their n-th job for each value of n. Column (1) reports the
results of this regression, while column (2) estimates the same regression as in column (1) with
a particular set of linear restrictions on the coefficients of the dummy variables that are true if
and only if the log wage offer distribution is exponential. The numbers below the coefficient
denote robust standard errors. The F -statistics in the bottom panel are the robust Wald-
statistics that test constraints on the coefficients on the dummy variables in column (2). The
exponential case compares column (2) to column (1), while the normal case involves an
alternative set of linear restrictions on the coefficients on the dummy variables. 



Figure 1: Expected Record Gaps
for Different Parent Distributions

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

1 2 3 4 5

E(Rn+1 - Rn | N > n)

normal parent

n 

E(Rn+1 - Rn | N > n)

exponential parent



    Figure 2: Summary Statistics for n 

Figure 1a: Proportion of observations where no value for n was assigned

Figure 1b: Share of all observations with n  > 1 for each level of n
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Figure 3: Actual vs. Predicted Wage Loss
for Involuntary Job Changers
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