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Abstract

In this paper we study semiparametric efficiency for the estimation of a finite-

dimensional parameter defined by generalized moment conditions under the local in-

strumental variable assumptions. These parameters identify treatment effects on the

set of compliers under the monotonicity assumption. The distributions of covariates,

treatment dummy and the binary instrument are not specified in a parametric form,

making the model semiparametric. We derive the semiparametric efficiency bounds for

both conditional models and unconditional models. We also develop multi-step semi-

parametric efficient estimators that achieve the semiparametric efficiency bound.

Using data from the Florida Family Transition Program, we apply the suggested

estimation procedure to analyze the effect of the parent’s employment on children’s

achievement for single-parent households who applied for state welfare support. We

find that the linear regression estimate of the treatment effect has a substantial attenu-

ation bias as compared to instrument-based methods. In general, parent’s employment

adversely affects child’s achievement. Our result suggests that ignoring the selection

effect indeed leads to substantial bias in the estimate of effect of parent’s employment.

1Departments of Economics, Stanford University and Duke University, USA. The authors acknowledge

generous research supports from the NSF. The usual disclaimer applies. The authors have made use of the

FTP data without representing positions by the State of Florida and MDRC.
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1 Introduction

Semiparametric efficiency is an important issue in the estimation of treatment effect models

and models with endogenous regressors. For models with endogenous regressors, many pa-

pers in the literature including Chernozhukov and Hansen (2005) and Newey (1990a) among

others have developed efficient estimators under conditional mean independence or quan-

tile independence assumptions. Under the strong ignorability assumption, Hahn (1998a)

and Hirano, Imbens, and Ridder (2003) derived the semiparametric efficiency bound and

developed semiparametric efficient estimators for averaged treatment effect and the aver-

aged treatment effect on the treated, while Firpo (2006) extended the analysis to quantile

treatment effects.

An alternative approach to address the endogeneity problem is based on the local in-

strumental variable (LIV) method developed in a sequence of papers by Imbens and Angrist

(1994), Angrist (2004), Angrist, Imbens, and Rubin (1996), Imbens and Rubin (1997) and

Abadie, Angrist, and Imbens (2002). The baseline model for this method has a dummy

endogenous regressor and a dummy instrument variable. Under the LIV assumption, the

instrument variable weakly changes the endogenous regressor in one direction. Abadie, An-

grist, and Imbens (2002) showed that the entire distributional causal effect is identified for

the complier population where the endogenous regressor changes from zero to one as the

instrumental variable changes from zero to one. The causal parameters identified by this

method are fundamentally different from those identified by models with conditional inde-

pendence assumptions. In contrast to the strong ignorability assumption, semiparametric

efficiency under the LIV ssumption has not been subject to careful studies. An exception is

Frolich (2006), who derives the efficiency bound for the average treatment effect of compliers

and shows that the propensity score, properly defined in the LIV context, does not affect

the efficiency bound.

We make several theoretical contributions in this paper. First we extend the paramet-

ric quantile treatment effect parameter model in Abadie, Angrist, and Imbens (2002) to

treatment parameters that are defined by general nonlinear conditional moment conditions.

Second, we fill an gap in the literature by deriving the semiparametric efficiency bound

for these parameters and special them to quantile and linear treatment effect parameters.
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To our knowledge we provide new semiparametric efficiency results for local treatment ef-

fect parameters. In addition, we also develop semiparametric estimators that achieve the

theoretical efficiency bounds. Our semiparametric efficiency calculations include both con-

ditional models and unconditional models, which characterize different treatment effect

parameters. The unconditional efficiency bounds include as a special case the mean pa-

rameter of Frolich (2006), and also include the treatment effect on the treated compliers,

which is related to the average treatment effect of the treated (ATT) when endogeneity is

absent. The semiparametric efficiency bounds for the treatment effect of treated compli-

ers are different when the propensity score is unknown, is known, or is correctly specified

parametrically. We also simplify the structure of the efficiency analysis compared to the

existing literature.

Efficient estimators are developed for both conditional and unconditional models. In

the conditional case, we find that the estimator in Abadie, Angrist, and Imbens (2002) does

not achieve the semiparametric efficiency bound, and we construct an alternative estimator

which allows us to obtain the estimates with the asymptotic variance achieving the efficiency

bound. The structure of the model allows us to make use of the binary instrument feature of

a conditional moment model, and to reduce the problem of finding semiparametric efficiency

bound in the moment-based framework as in Newey (1990b) and Bickel, Klaassen, Ritov,

and Wellner (1993). The estimator naturally produces a GMM - based method which

produces the estimator achieving the semiparametric efficiency bound. For unconditional

models, we described efficient estimators for both the treatment effect of compliers and

the treatment effect of treated compliers, for cases when the propensity score is unknown,

known, and parametrically specified.

A natural application of our estimation procedure is on the relationship between the

employment of a parent in single-parent households and the child achievement at school.

We study this relation using data from the sample initially constructed for the analysis of

Family Transition Program (FTP), an experimental alternative welfare program launched

in the state of Florida in 1994. A major concern in estimation of the relationship between

parental employment and child’s achievement is the endogeneity of the binary variable of

employment. Both the probability of employment of a parent and the children’s achievement
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should depend on the unobserved intellectual abilities of the parents. This dependence will

bias the estimate of the effect of employment on the achievement of children. In particular,

parents’ employment should adversely affect the achievement of children because working

parents will have less control over school attendance and preparation for classes of their

children. However, the presence of unobserved ability (which is positively correlated with

children’s achievement) induces an upward bias in the estimate of the employment effect.

This means that a naive estimate that doest not correct for endogeneity will understate the

effect of employment.

The structure of the dataset that we use allows us to create a natural binary instrument

to correct for endogeneity. The dataset that we use in this study was build from random

assignment of people applying for welfare in Florida either to the conventional unemploy-

ment aid to families with children - Aid to Families with Dependent children (ADFC), or to

the alternative Florida Transition Program (FTP). The latter program limited the amount

of of time when unemployed can be supported by welfare, but also provided more inten-

sive training to the participants. The data show that participation in the FTP significantly

increases the probability of employment in the subsequent periods. For this reason, the pro-

gram assignment dummy is a valid instrument for the employment variable in our model. In

particular, unobserved individual ability and the program choice are independent due to the

random nature of the program assignment, while the more intensive training in the FTP

tends to increase employment. We maintain the complier assumption that participation

in FTP weakly increase employment status. The set of of compliers in our study will be

formed by the people for whom participation in the FTP strictly changes the employment

dummy. For this subset of families we produce a consistent and efficient estimate of the

effect of employment on children’s achievement using our semiparametric methodology.

Section 2 develops the semiparametric efficiency of a complier treatment effect model

that generalizes Abadie, Angrist, and Imbens (2002). Section 3 develops efficient estima-

tion methods that achieve the semiparametric efficiency bound, and explicitly quantify the

amount of efficiency improvement over existing methods. Section 4 discusses extensions to

parameters that are defined unconditionally. Section 3.3 gives regularity assumptions that

validate the proposed semiparametric efficient estimator. Section 5 applies the efficient
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estimation to the FTP program. Finally section 6 concludes.

2 Semiparametric efficiency bound

2.1 Local treatment effect parameters

The local (complier) treatment effect model (see Imbens and Angrist (1994) and Abadie,

Angrist, and Imbens (2002) for example) is defined as the following through a random vector

Y = (Y1, Y0)
′ ∈ R2, a vector of binary variables D = (D1, D0)

′ ∈ {0, 1} × {0, 1}, a binary

instrument Z ∈ {0, 1} and a vector of covariates X ∈ X ⊂ Rk. The following assumptions

are used by these authors to describe the distributions of the variables under consideration:

Assumption 1 Almost everywhere in X :

1. (Y,D) ⊥ Z |X,

2. Pr (Z = 1 | X) ∈ (0, 1),

3. E [D1 | X] 6= E [D0 | X],

4. Pr (D1 ≥ D0 | X) = 1.

Under these four assumptions, in particular the last assumption (monotonicity), the data

directly identifies the differences between the cohort that would have been treated for both

values of the instrument (always takers) and the cohort that would not have been treated

under any circumstances (never takers). The combination of the always taker cohort and

the never taker cohort indirectly recovers the compliers which is the cohort that change

behavior when the instrument changes.

The variables in the model, Y and D are not always completely observable. Only the

following transformed variables are observed:{
w1 = g1 (y, d, z, x) = y1w2 + y0 (1− w2)

w2 = g2 (y, d, z, x) = d0 + z (d1 − d0) .
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Due to assumption A1.1, the conditional probabilities of the observable binary variable w2

can be written as:

P0(x) = P (w2 = 1 | Z = 0, X) = E [D0 | X] ,

P1(x) = P (w2 = 1 | Z = 1, X) = E [D1 | X] .

where the second equalities follow from the conditional independence assumption 1.1.

Also define Q(x) = E [Z | X]. Consequently, the conditional probability of the binary

treatment w2 given the instrument in terms of the probabilities of treatment dummies can

be expressed as

P (w2 = 1 | z, x) = F(z, x) = P1(x)z + P0(x) (1− z) .

Taking expectation over z given x gives the conditional probability of w2 given only x:

P(x) = P1(x)Q(x) + P0(x) (1−Q(x)) .

The object of interest that can be identified under assumption 1 are the distributions

of the outcomes Y1 and Y0 given D1 > D0 (implying that D1 = 1 and D0 = 0): for

j = 0, 1, f (yj |d1 > d0, x). The subpopulation for which D1 > D0 is usually referred to

as “compliers”, for whom random selection into treatment affects the treatment dummy

monotonically. Under monotonicity assumption 1 the distributions of compliers can be

expressed in terms of the observed conditional distributions:

f∗∗ (w1 | x, w2 = 1) = f (y1 = w1 | d1 > d0, x)

= P1(x)
P1(x)−P0(x)f (w1 | w2 = 1, z = 1, x)− P0(x)

P1(x)−P0(x)f (w1 | w2 = 1, z = 0, x) .
(1)

To see this relation, note that under the monotonicity assumption, P0(x) is the propor-

tion of always takers (D0 = D1 = 1) conditional on x while P1(x) is the sum of always

takers and compliers. f (y1 | w2 = 1, z = 1, x) gives the distribution of y1 conditional on

being either an always taker or a complier and the covariate x. f (y1 | w2 = 1, z = 0, x)

gives the distribution of y1 conditional on being just an always taker and x. Therefore,

P1 (x) f (y1 | w2 = 1, z = 1, x) can be written as a linear combination for the known dis-

tribution of always-takers and the unknown distribution for compliers. Similarly, one can

write the joint distribution of y0 and the event of being either a never taker or a complier,
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which is (1− P0(x)) f (y0 | w2 = 0, z = 0, x), as a linear combination of the distributions for

never-takers and compliers. This results in:

f∗∗ (w1 | x, w2 = 0) = f (y0 = w1 | d1 > d0, x)

= 1−P0(x)
P1(x)−P0(x)f (w1 | w2 = 0, z = 0, x)− 1−P1(x)

P1(x)−P0(x)f (w1 | w2 = 0, z = 1, x) .
(2)

We consider a generalization of the linear quantile regression model of Abadie, Angrist,

and Imbens (2002) to a parameter vector β determined by a conditional moment equation,

for ∀x and ∀w2:

ϕ (β, x, w2) = E [g (w1, w2, x, β) | x, w2, d1 > d0] = 0, (3)

for some parametric function g (·). The conditional expectation for w2 = 1, 0 is taken with

respect to the corresponding conditional density f∗∗ (w1 | x, w2).

Two direct applications of this general definition are the mean treatment effect of Imbens

and Angrist (1994) and the quantile treatment effect of Abadie, Angrist, and Imbens (2002).

The mean treatment effect model corresponds to a moment condition:

g (w1, w2, x, β) = w1 − β1w2 − (1− w2)β0 − β′2x.

The quantile treatment effect model characterizes the difference in conditional distributions

of potential outcomes y1 and y0 for compliers through a linear specification of the conditional

quantile functions:

Qτ (w1|x,w2, d1 > d0) = β0w2 + β′1x.

The corresponding moment function that defines the QTE parameter is therefore:

g (w1, w2, x, β) = 1
(
w1 ≤ β0w2 + β′1x

)
− τ.

These models can be extended to allow for a semiparametric component in the conditional

moment function. For µ (x) being a nonparametric function of x, we may consider estimat-

ing µ (x) and β simultaneously in the moment function:

g (w1, w2, x, µ (x) , β) .
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For example, the parametric mean treatment effect model can be generalized to a semipara-

metric partial linear model:

g (w1, w2, x, µ (x) , β) = w1 − β1w2 − (1− w2)β0 − µ (x) .

In the rest of the paper we derive semiparametric efficiency bounds for the parameter

vector β and develop a semiparametric procedure that achieves the efficiency bound. This

framework can be extended to derive the semiparametric efficiency bound for a nonpara-

metric component in the specification of the conditional moment equations.

2.2 Semiparametric efficiency bound for treatment effect parameters

We will use the arguments of Newey (1990a) and Severini and Tripathi (2001) to construct

the efficiency bounds for the system of conditional moments. More specifically, given a set

of instrument functions of the covariates x, the conditional moments are first transformed

into a system of unconditional moments. Then choosing the instrument functions optimally

will produce the semiparametric efficiency bound of the conditional moment model.

Theorem 1 Under Assumption 1, the semiparametric efficiency bound for a k-dimensional
parameter β characterizing the subsample of compliers in (3) can be expressed as:

V (β) = E

(
(P1(x)− P0(x))

2
E

[
∂ϕ(w2, x, β)

∂β
ζ(x,w2)′

∣∣∣∣x]Ω(x)−1E

[
ζ(x,w2)

∂ϕ(w2, x, β
′)

∂β

∣∣∣∣x])−1

.

Denote ωw2,z(x) = V (g (w, x, β) | w2, z, x) and γw2,z(x) = E (g (w, x, β) | w2, z, x). We can

then express the elements of the matrix Ω(x) in the following way:

Ω11(x) =
(
P1(x)ω11(x)

Q(x) + P0(x)ω10(x)

1−Q(x) + γ2
11(x)P1(x)P(x)

P0(x)Q(x)(1−Q(x))

[
1− P1(x)P0(x)

P(x)

])

Ω22(x) =
„

(1−P1(x))ω01(x)
Q(x)

+
(1−P0(x))ω00(x)

1−Q(x)
+

γ2
00(x)(1−P0(x))(1−P(x))

Q(x)(1−Q(x))(1−P1(x))

h
1− (1−P0(x))(1−P1(x))

1−P(x)

i«

and

Ω21(x) = Ω12(x) =
(
P1(x)(1−P0(x))
Q(x)(1−Q(x)) γ11(x)γ00(x)

)
= L12

.
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In this theorem we have used the notation:

ζ (w2, x) =
(

w2

P(x)
,

1− w2

1−P(x)

)′
.

This structure of the variance bound shows several visible features. First of all, the semi-

parametric efficiency bound will grow if the fraction of compliers P1 (x) − P0 (x) in the

sample decreases. Moreover, the efficiency bound will be higher if the binary instrument is

taking one of the values most of the time, in which case Q (x) is closer to 0 or 1. In addition,

the proof and the estimation section show that the structural of the variance reflects the

optimal instrument function as M (x) ζ (x,w2) where the weight function is defined as

M(x) = E

[
∂ϕ(w2,x,β)

∂β ζ(x,w2)′
∣∣∣∣x]Ω(x)−1diag

{
P(x)
Q(x) ,

1−P(x)
1−Q(x)

}
.

3 Efficient estimation

In this section we describe an estimator that achieves the semiparametric efficiency bound

that makes use of the knowledge of the efficiency variance bound and the efficient score

function of the model. The connection betweeen the efficient estimators and the structure

of the efficient influence function is exploited in Bickel, Klaassen, Ritov, and Wellner (1993)

and Murphy and van der Vaart (1997). In particular, the linear quantile treatment effect

estimator of Abadie, Angrist, and Imbens (2002) has a limiting variance that is strictly

larger than the semiparametric variance bound.

3.1 Efficiency improvement over existing methods

We have seen that the parameters of the treated and non-treated distributions form a

conditional moment equation:∫
g (w1, w2, x, β) f (w1 | w2, d1 > d0, x) = 0.

The idea of the estimator is closely related to the identification argument. First of all, any

given set of instrument functions, denoted

A (w2, x) = M (x) ζ (x,w2)
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and

A (w2, x) = (P1(x)− P0(x))
(
Q(x)w2

P(x)
+

(1−Q(x)) (1− w2)
1−P(x)

)
A (w2, x) , (4)

can be used to transform the conditional moment equations (3) into unconditional ones:

E [E [A (x,w2) g (w1, w2, x, β) | d1 > d0, x, w2]] = 0,

where the outer expectation is taken with respect to the marginal distribution of w2 and x.

For a given A (x,w2), we conjecture the form of the efficient estimator from the identification

arguments. It is then shown that efficiency bound is achieved when the optimal A (x,w2)

is estimated consistently.

The identification condition in (2) translates into the following implications on the con-

ditional moment functions, for g̃ = A (x,ww2) g (w, x, β) and ĝ = A (x,ww2) g (w, x, β):

E (ĝ | w2, d1 > d0, x)

= P1(x)w2

P1(x)−P0(x)E (ĝ | w2 = 1, z = 1, x)− P0(x)w2

P1(x)−P0(x)E (ĝ | w2 = 1, z = 0, x)

+ (1−P0(x))(1−w2)
P1(x)−P0(x) E (ĝ | w2 = 0, z = 0, x)− (1−P1(x))(1−w2)

P1(x)−P0(x) E (ĝ | w2 = 0, z = 1, x) .

(5)

Using (4) this can be expressed in terms of g̃:

E (g̃ | w2, d1 > d0, x)

= P1(x)Q(x)w2

P(x) E (ĝ | w2 = 1, z = 1, x)− P0(x)Q(x)w2

P(x) E (ĝ | w2 = 1, z = 0, x)

+ (1−P0(x))(1−Q(x)(1−w2))
1−P(x) E (ĝ | w2 = 0, z = 0, x)

− (1−P1(x))(1−Q(x))(1−w2)
1−P(x) E (ĝ | w2 = 0, z = 1, x) .

(6)

Using the Bayes rule and the law of iterated expectation, we can further write

E [E (g̃ | w2, d1 > d0, x)]

= E

{(
w2z − Q(x)

1−Q(x)w2 (1− z) + (1− w2) (1− z)− (1−Q(x))
Q(x) (1− w2) z

)
ĝ

}
.

The conditional probability in this moment condition, Q (x), is not observed. However, it
can be consistently estimated in a first step, using for example either a kernel regression or
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a sieve based estimator. This estimate, Q̂ (x), can then be used to form a sample analog of
the above moment conditions given any estimated instrument function Â (x,w2), or M̂ (x):

1
N

∑N
k=1 ψ̂k (β) = 1

N

∑N
k=1 ψk

(
β, Q̂,M̂

)

=
1
N

N∑
k=1

{
w2kz −

Q̂(xk)w2k(1− zk)
1− Q̂ (xk)

+ (1− zk) (1− w2k)−

(
1− Q̂(xk)

)
zk (1− w2k)

Q̂ (xk)

}
g̃k.

The proof of theorem 3 shows that this estimator achieves the efficiency bound under

suitable regularity conditions, and the following asymptotic representation holds:

1√
N

N∑
k=1

ψ̂k (β) =
1√
N

N∑
k=1

M(xk)
{
χk (β) + E

[
∂χk (β)
∂Q

∣∣∣∣xk] (zk −Q(xk))
}

+ op (1) .

In the above we have used the following notation to isolate the instrument matrix:

ψk

(
β, Q̂

)
= M (xk)χk

(
β, Q̂

)
. (7)

We now compare the efficient variance to the variance of the estimator obtained using

the approach in Abadie, Angrist, and Imbens (2002). To describe their estimator we start

with a distance function ρ (·) whose first order condition can produce a moment condition

that is implied by the conditional moment model. Define their weight function:

κ (w2, z, x) = 1− w2 (1− z)
1−Q(x)

− (1− w2) z
Q(x)

.

For some consistent estimate of the probability Q(x) the estimator for β will solve:

β̃ = argmin

{
1
N

N∑
k=1

κ̂ (w2k, zk, xk) ρ (wk, xk, β)

}
This optimization usually leads to a moment equation in the form:

ψ (β) =
(

1− w2 (1− z)
1−Q(x)

− (1− w2) z
Q(x)

)
h (w2, x, β) g (w, x, β) .

In the above h (w2, x, β) is an instrument function that can also depend on β. In estimation

we replace the functions under consideration with their empirical analogs. In this case

1√
N

N∑
k=1

ψ̂k (β) =
1√
N

N∑
k=1

{
ψk (β) + E

[
∂ψk (β)
∂Q

∣∣∣∣xk] (zk −Q(xk))
}

+ op (1) ,
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where ψ̂ is similar to ψ with Q (x) replaced by Q̂ (x). Note that we can write

E
[
∂ψk(β)
∂Q

∣∣x] = θ̃(x)′D̃(x)−1E
[
∂χk(β)
∂Q

∣∣x] ,
where χ is defined implicitly in (7), and

D̃(x) = diag {P(x), 1−P(x)} , θ̃ (x) =
(
h (1, x, β0)

′

h (0, x, β0)
′

)
.

To compute asymptotic variance associated with the empirical moment equation note that:

V

(
E

[
∂ψk(β)
∂Q

∣∣∣∣xk] (zk −Q (xk))
)

= V
{
θ̃(xk)′D̃(xk)−1E

[
∂χk(β)
∂Q

∣∣xk] (zk −Q (xk))
}
.

Moreover:

cov

(
ψk (β) , E

[
∂ψk (β)
∂Q

∣∣∣∣xk] (zk −Q (xk))
)

= −V
(
E

[
∂ψk (β)
∂Q

∣∣∣∣xk] (zk −Q (xk))
)
.

Finally:

V (ψk (β)) = E
{
θ̃(x)′D̃(x)−1V (χk (β) | x) D̃(x)−1θ̃(x)

}
,

which suggests that

V
(
ψ̂k (β)

)
= V

(
θ̃(x)D̃(x)−1χ̂k (β)

)
We can express the Jacobi matrix for this model as:

J = E
{
θ̃(x)′D̃(x)−1θ(x)

}
.

This gives the following expression for the asymptotic variance:

V
(
β̃
)

= E
{
θ̃(x)′D̃(x)−1θ(x)

}−1
E
{
θ̃(x)′D̃(x)−1Ω(x)D̃(x)−1θ̃(x)

}

×E
{
θ̃(x)′D̃(x)−1θ(x)

}−1
.

Next we note that

V
(
β̂
)−1

− V
(
β̃
)−1
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can be written as the variance-covariance of the residual vector of the set of regression where

the dependent variables are Ω̄ (x)−1/2 θ (x) and the regressors are

θ̃ (x)′ D̃ (x)−1 Ω̄ (x)1/2 .

Therefore, This result implies that V
(
β̃
)
− V

(
β̂
)

is a positive semi-definite matrix and

thus the variance in Abadie, Angrist, and Imbens (2002) is smaller than that for the efficient

estimator.

3.2 Efficient propensity score weighting estimator

To summarize, the following multi-step procedure leads to a semiparametric efficient esti-

mator under suitable regularity conditions:

In the first stage, we first use a kernel based or sieve based nonparametric estimator to

obtain estimates P̂1(x), P̂0(x), Q̂(x) of the conditional probabilities P1(x), P0(x) and Q(x).

In step two, using an initial choice of an instrument matrix Ã (x,w2) of dimension dβ×dg,
construct an initial estimate β̄ that equates

1
N

N∑
k=1

{
w2kz −

Q̂(xk)w2k(1− zk)(
1− Q̂ (xk)

) + (1− zk) (1− w2k)

−

(
1− Q̂(xk)

)
zk (1− w2k)

Q̂ (xk)

}
Ã (x,w2) g

(
wk, xk, β̄

)
= 0.

(8)

In step three, β̄ is used to estimate the optimal instrument nonparametrically. For this

purpose we need to estimate

ω̂w2,z

(
x, β̄

)
= V̂

(
g
(
w, x, β̄

)
|w2, z, x

)
and γ̂w2,z

(
x, β̄

)
= Ê

(
g
(
w, x, β̄

)
|w2, z, x

)
for w2 = 0, 1 and z = 0, 1. Then an estimate of

Ω̄ (x) and M (x) can be analytically computed, as

M̂ (x) =

 ∂ϕ(1,x,β̄)
∂β′

∂ϕ(0,x,β̄)
∂β′

′

Ω̂
(
x; β̄

)−1 diag
{

P̂(x)
Q̂(x)

,
1− P̂(x)
1− Q̂(x)

}
.
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Finally, the efficient β̂ is obtained through a similar sample moment condition as the one

that leads to β̄, except that we replace Ã (x,w2) by M̂ (x) ζ (w2, x). The particular form of

ϕ (w2, x, β) is model specific. For example, for quantile treatment effect parameters:

∂ϕ(w2, x, β)
∂β

= f∗∗
(
w2β0 + x′β1|w2, x

)(w2

x

)
.

Section 3.3 formally provides regularity condition for the asymptotic distribution.

3.3 Regularity conditions and asymptotic distribution

In this section we state a set of sufficient regularity conditions for the semiparametric effi-

cient estimator. We will focus mainly on the reweighting estimator described in previous

section 3.2. Similar conditions can be given for the conditional expectation projection es-

timator described in the next section 3.4 and for the unconditional parameters estimators

described in section 4. We follow much of the recent literature and describe regularity

conditions in terms of sieve nonparametric estimators for conditional probabilities and con-

ditional expectations. Most of these conditions are well understood in the recent literature

(e.g. Ai and Chen (2003), Chen, Linton, and Van Keilegom (2003) and Newey (1994)).

Therefore we only highlight the essential elements.

Let {ql (X) , l = 1, 2, ...} denote a sequence of known basis functions that can approxi-

mate any square-measurable function of X arbitrarily well. Also let

qk(n) (X) =
(
q1 (X) , ..., qk(n) (X)

)′ and

Q =
(
qk(n) (X1) , ..., qk(n) (Xn)

)′
for some integer k(n), with k(n) → ∞ and k(n)/n → 0 when n → ∞. A first stage

nonparametric estimator for Q (x) is then defined as

Q̂ (X) =
n∑
j=1

Zjq
k(n) (Xj)

(
Q′Q

)−1
qk(n) (X) .

An estimator of the instrument function M̂ (x) depends on a preliminary parameter estimate

β̃ and nonparametric estimates of the quantities that define Ω̄ (x), which include ω̂kl
(
x, β̃

)
,

14



k, l = 0, 1, γ̂kl
(
x, β̃

)
, k, l = 0, 1, P̂k (x), k = 0, 1, P̂ (x) and the Jacobi matrix term

Ê

[
∂ϕ̂(w2, x, β̃)

∂β
ζ(x,w2)′

∣∣∣∣x
]
,

which can be nonparametrically estimated by

Ê

[
∂ϕ̂(w2, x, β̃)

∂β
ζ(x,w2)′

∣∣∣∣x
]

=
n∑
j=1

Ŵj

(
β̃
)
qk(n) (Xj)

(
Q′Q

)−1
qk(n) (x)

where

Ŵj

(
β̃
)

=
g
(
wj , xj , β̃ + h

)
− g

(
wj , xj , β̃ − h

)
2h

ζ (xj , w2j) .

To state the regularity conditions, we make use of the definitions of the weighted sup norm

metric ||h||∞,ω and the from Chen, Hong, and Tarozzi (2005). Let Q̂0 (x) denote the true

Q (x), and similarly for other estimated quantities. The first set of assumptions concerns

the consistent of the parameter estimate. The assumption that Q0 (x) is bounded away

from 0 and 1 is convenient but strong.

Assumption 2 The following conditions hold:

1. E [E [A (x,w2) g (w1, w2, x, β) | d1 > d0, x, w2]] = 0 if and only if β = β0.

2. Q0() ∈ H = {Q() : 0 < q ≤ Q(x) ≤ q < 1} for some γ > 0;

3. ||Q̂ (·)−Q0 (·) ||∞,ω
p−→ 0, ||Â (·, k)−A0 (·, k) ||∞,ω

p−→ 0, for k = 0, 1;

4. Ea
[
supβ∈B ||g (wi, Xi;β) ||2

(
1 + ||Xi||2

)ω]
<∞;

5. there is a non-increasing function b(·) such that b(δ) → 0 as δ → 0 and

Ea

[
sup

||β−eβ||<δ ||g(wi, Xi;β)− g(wi, Xi, β̃)||2
]
≤ b(δ).

for all small positive value δ.

Theorem 2 Under assumption 2, β̂ − β0 = op (1).
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The next two sets of assumptions pertains to asymptotic normality and efficiency of β̂.

Assumption 3 The following conditions hold:

1. There exist a constant ε ∈ (0, 1] and a small δ0 > 0 such that

Ea

[
sup

||β−eβ||<δ ||m(Zi;β)−m(Zi, β̃)||2
]
≤ const.δε

for any small positive value δ ≤ δ0;

2. The class of nonparametric functions Q (·) and A (·, ·) is managable in the sense of

condition 3.3 of Theorem 3 of Chen, Linton, and Van Keilegom (2003).

3. ||Q̂ (·)−Q0 (·) ||∞,ω = op
(
n−1/4

)
, ||Â (·, k)−A0 (·, k) ||∞,ω = op

(
n−1/4

)
, for k = 0, 1;

4. Ea
[
supβ∈B ||g (wi, Xi;β) ||

(
1 + ||Xi||2

)2ω]
<∞;

5. Ea
[
sup|β−β0|≤δ ||

∂E[g(wi,Xi;β)|w2i,xi]
∂β ||2

(
1 + ||Xi||2

)ω]
<∞;

The next assumption makes sure that the linear approximation of the sample moment

condition (8) between the estimated Q̂ (x) and true Q (x) is asymptotically normal. For

this purpose define

δ0 (x) =− 1
1−Q0 (x)

E (w2A (x,w2) g (w, x, β0) |z = 0, x)

+
1

Q0 (x)
E ((1− w2)A (x,w2) g (w, x, β0) |z = 1, x) .

Also define δk(n) (X) and Qk(n) (x) to be the projections of δ0 (X) and Q0 (X) onto the

linear space spanned by qk(n) (X). For example:

Qk(n) (x) = qk(n) (X)
(
Eqk(n) (X) qk(n) (X)′

)−1
Eqk(n) (X)Q0 (X)′ .

Assumption 4 The following conditions hold:

nE
[
||δ0 (X)− δk(n) (X) ||2

]
· E
[
||Q0 (X)−Qk(n) (x) ||2

]
−→ 0.

E
[
||δk(n) (X)

(
Q0 (X)−Qk(n) (x)

)
||2
]
−→ 0.

Eδ0 (X) qk(n) (X)′
(
(Q′Q/n)−1 − (EQ′Q/n)−1

) n∑
i=1

qk(n) (Xi)
(
Zi −Qk(n) (Xi)

)
/n = op (1)
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Theorem 3 Under assumptions 2 and 3 and 4 the obtained M-estimates are consistent,

asymptotically normal and achieve the variance lower bound. In other words:

√
n
(
β̂ − β

)
d−→ N (0 , V (β)) .

for V (β) given in theorem 1.

Finally, we need to give a set of primitive conditions for condition 3 in assumption 3 regard-

ing the estimation of the instrument function A
(
·, k; β̃

)
, k = 0, 1, where the dependence

of A (·) on the initial estimate β̃ is explicitly noted. Of course, in the first stage initial

estimation of β̃, such assumption is not needed.

Assumption 5 In addition to everything in assumptions 2 and 3 except the second part of

condition 3 of both assumptions, assume the following conditions hold.

1. 0 < p ≤ P0 (x) ≤ p < 1. 0 < p ≤ P1 (x) ≤ p < 1.

2. ||P̂k (·)− P0
k (·) ||∞,ω = op

(
n−1/4

)
, for k = 0, 1.

3. sup|β−β0|≤δn ||ω̂jk (·, β)− ω0
jk (·, β) ||∞,ω = op

(
n−1/4

)
, for j, k = 0, 1.

4. sup|β−β0|≤δn ||γ̂jk (·, β)− γ0
jk (·, β) ||∞,ω = op

(
n−1/4

)
, for j, k = 0, 1.

5. ϕ (β, x, w2) is twice continuously differentiable in β uniformly over x and w2.

6. 1√
nh

+ h2 = o
(
n−1/4

)
.

The last condition, in particular, requires that h → 0 at a rate that is slower than n−1/4

but faster than n−1/8. h2 characterizes the bias of the two sided numerical derivative under

condition 5.

Proposition 1 Assumption 5 implies condition 3 of assumption 3.

The proofs of the theorems and propositions in this section are in the appendix and follow

immediately from the assumptions.
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3.4 Conditional expectation projection estimator

The estimation method described in the previous sections 3.1 and 3.2 is based on a sample

average of the properly reweighted moment conditions, where the weights are related to

the conditional probabilities Q (x), P1 (x) and P0 (x), all of which needs to be estimated

nonparametrically. Borrowing from the terminology from treatment effect estimation under

the unconfoundedness (i.e. strong ignorability) assumption, we will call this the inverse

propensity score weighting estimator. In fact, in the exogenous case when P1 (x) = 1 and

P0 (x) = 0, this is identical to the inverse probability weighting estimator for strongly

ignorable conditional treatment effect models.

There exists an alternative estimator that relies on direct estimation of the conditional

expectation E [g (w, x, β) |w2, x,D1 > D0] for each candidate parameter β instead of on

reweighting the moment conditions using the inverse of Q̂ (x). To describe this estimator,

begin with rewriting the identification condition (5) as

E (g̃ | w2, d1 > d0, x)

= w2
P1(x)−P0(x)E (w2g̃ | z = 1, x)− w2

P1(x)−P0(x)E (w2g̃ | z = 0, x)

+ (1−w2)
P1(x)−P0(x)E ((1− w2) g̃ | z = 0, x)− (1−P1(x))

P1(x)−P0(x)E ((1− w2) g̃ | z = 1, x) .

For a given instrument matrix M (x), this suggests estimating β by equating to zero the

following sample analog:

1
N

N∑
k=1

φk (β) = 1
N

N∑
k=1

{
w2k

P̂1(xk)−P̂0(xk)
Ê (w2kg̃ | z = 1, xk)

− w2k

P̂1(xk)−P̂0(xk)
Ê (w2kg̃ | z = 0, xk) + 1−w2k

P̂1(xk)−P̂0(xk)
Ê ((1− w2k) g̃ |, z = 0, xk)

− 1−w2k

P̂1(xk)−P̂0(xk)
Ê ((1− w2k) g̃ | z = 1, xk)

}
,

where each of the conditional expectation terms above are estimated nonparametrically at

every given parameter value β. For example,

Ê (w2kg̃ | z = 1, xk) =
Ê (w2kzg̃ | xk)

Q̂ (xk)
.
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Both conditional expectations can be estimated using a variety of nonparametric regression

methods such as sieve expansion or kernel smoothing.

It is easy to show that the asymptotic linear influence function corresponding to the

moment condition 1
N

N∑
k=1

φk (β) for a given M (x) including the optimal one coincides with

the semiparametric efficient function. First of all, similar to before, estimating P1 (x) −
P0 (x) has no impact on the asymptotic variance due to the conditional nature of the moment

restrictions. Using the representation theorem of Newey (1994), we can for example expand

the first component as:

1√
N

N∑
k=1

w2k

P̂1(xk)−P̂0(xk)

bE(w2kzk g̃|xk)bQ(xk)

= 1√
N

N∑
k=1

{
P(xk)w2kzk g̃

(P1(xk)−P1(xk))Q(xk) −
P(xk)P1(xk)E(g̃|w2k=1,zk=1,xk)

(P1(xk)−P1(xk))Q(xk) (zk −Q (xk))

+ w2k−P(x)
(P1(x)−P0(x))E (w2kg̃ | zk = 1, xk)

}
+ op(1).

Similar calculations can be applied to the other three terms.

When summing these four components, we note that the last terms in each of the

components cancel out due to the implications of the conditional moment restrictions that

E (w2kg̃ | zk = 1, xk) = E (w2kg̃ | zk = 0, xk)

and

E ((1− w2k) g̃ | zk = 1, xk) = E ((1− w2k) g̃ | zk = 0, xk) .

Therefore, it is easy to check that the sum of the four influence function is identical to the

semiparametric efficient influence function when the instrument is chosen optimally. For the

sake of brevity we omit the regularity conditions for the conditional expectation projection

estimator.

4 Unconditional parameters

Often times researches can be mainly interested in parameters that are defined uncondi-

tionally. For example, under the unconfoundedness assumption where the latent outcome
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is conditionally independent of the treatment status given exogenous covariates, the semi-

parametric efficiency literature has focused on the average treatment effect and the average

treatment effect on the treated, both are defined unconditionally with repect to the exoge-

nous covariates X.

Under the unconfoundedness assumption, one can also specify a model where the average

treatment effect or effect on the treated conditional on each covariate is constant or a known

parametric function of the covariates, similar to what is analyzed in the previous section

and in Abadie, Angrist, and Imbens (2002). However, most of the literature has focused on

analyzing the average treatment effect or effect on the treated without requiring that this

effect is a constant conditional on every value of the exogenous covariate.

When X is not a constant, the conditional model and the unconditional model imply

very different parameters of interest. For example, the semiparametric efficiency bound for

an average treatment effect that is assumed to be constant across all possible covariate X

is tighter than that for the average treatment effect defined unconditionally with respect to

the covariates X. This section investigates efficient estimator for unconditionally defined

treatment effect parameters under the LIV monotonicity assumption

4.1 Semiparametric efficiency of mean treatment effects

This section will restrict attention to mean effect parameters in order to illustrate the

ideas. However, the results are readily extensible to general moment conditions in section

4.3. Specifically, we consider the average treatment effect on compliers (ATEC):

β ≡ β1 − β0 = E (Y1 − Y0|D1 > D0) ,

and the average treatment effect on the treated compliers (ATTC):

γ ≡ γ1 − γ0 = E (Y1 − Y0|w2 = 1, D1 > D0) .

These parameters reduce to the usual notation of average treatment effect (ATE) and the

effect on the treated (ATT) under strong ignorability when P (D1 > D0) = 1. The efficiency

bound for ATEC has been derived by Frolich (2006) although we develop a simplified

derivation. Our results for ATTC are new and are applicable when the propensity score
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Q (x) is unknown, known or parametrically specified. The first theorem considers unknown

propensity scores.

Theorem 4 The semiparametric efficient bound for β is given by the variance of the fol-

lowing efficient influence function:

1
P (D1 > D0)

{
z

Q (x)
(w1 − E (w1|z = 1, x)) + E (w1|z = 1, x)

− 1− z

1−Q (x)
(w1 − E (w1|z = 0, x))− E (w1|z = 0, x)

−
(

z

Q (x)
(w2 − E (w2|z = 1, x)) + E (w2|z = 1, x)

− 1− z

1−Q (x)
(w2 − E (w2|z = 0, x))− E (w2|z = 0, x)

)
β

}
while the semiparametric efficiency bound for γ is given by the variance of the following

efficient influence function:

1
P (w2 = 1, D1 > D0)

{
w1 −

1− z

1−Q (x)
(w1 − E (w1|z = 0, x))− E (w1|z = 0, x)

−
(
w2 −

1− z

1−Q (x)
(w2 − E (w2|z = 0, x))− E (w2|z = 0, x)

)
γ

}
.

Obviously, under strong ignorability when z = w2, P (D1 > D0) = 1, both of these reduce

to the corresponding influence functions derived in Hahn (1998a). In fact the only difference

(other than the factor outside the bracket) is in the coefficient in front of β and γ, which

become 1 and z under strong ignorability.

The literature has also been concerned with the semiparametric efficiency when the so-

called propensity score, in our case Q (x), is either known or parametrically specified. We

will still leave P1 (x) − P0 (x) nonparametrically specified, even though cases when this is

known or parametrically specified can be analyzed too.

From the proof of Theorem 4, it is clear that Q (x) does not even enter the definition of

the moment conditions (13) and (15) that define β. Consequently, any knowledge of Q (x)

will have no impact on the efficiency bound for β.

Such knowledge, however, will improve on the efficiency bound for γ, as described in

the following theorem.
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Theorem 5 When the propensity score Q (x;α) is correctly specified up to a finite dimen-

sional parameter α, the semiparametric efficiency bound for γ is the variance of the following

efficient influence function

1
P (w2 = 1, D1 > D0)

{
z (w1 − E (w1|z1 = 1, x)) +Q (x)E (w1|z1 = 1, x)

− 1− z

1−Q (x)
Q (x) [w1 − E (w1|z = 0, x)]−Q (x)E (w1|z = 0, x)

−
{
z (w2 − E (w2|z1 = 1, x)) +Q (x)E (w2|z1 = 1, x)

− 1− z

1−Q (x)
Q (x) [w2 − E (w2|z = 0, x)]−Q (x)E (w2|z = 0, x)

}
γ

+ Proj [(z −Q (x))κ (x) | Sα (z;x)]
}
.

In the above we have used the definition that

κ (x) =E (w1|z = 1, x)− E (w1|z = 0, x)

− (E (w2 = 1|z = 1, x)− E (w2 = 1|z = 0, x)) γ,

and the efficient influence function of the parametric propensity score model:

Sα (z;x) =
z −Q (x)

Q (x) (1−Q (x))
∂Q
∂α

(x, α) .

In the above Proj denotes the linear projection operator:

Proj [(z −Q (x))κ (x) | Sα (z;x)] = Sα (z;x)V ar (Sα (z;x))−1Cov (Sα (z;x) , κ (x)) .

In fact, Theorem 4 can be considered a special case of this influence function when

Proj [(z −Q (x))κ (x) | Sα (z;x)]

is replaced by just (z −Q (x))κ (x). In another special case, the efficient influence function

for a model where the propensity score Q (x) is known is the same as in theorem 5, except

that the last term Proj [(z −Q (x))κ (x) | Sα (z;x)] is replaced by 0.
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4.2 Efficient estimation of unconditional parameters

It is easy to show that an efficient estimator can be derived from the principle of conditional

expectation projection that follows the identification condition. Consider first the case of

the average treatment effect on compliers (ATEC) β = E [Y1 − Y0 | D1 > D0]. Combining

equations for the means of the distributions of treated and non-treated observations for

compliers, we obtain the following unconditional moment equation:

E

{
β (P1(x)− P0(x))− (E [w1 | z = 1, x]− E [w1 | z = 0, x])

}
= 0.

Efficient semiparametric estimator is obtained from the sample analog of this moment equa-

tion and takes the form:

β̂ =

1
N

N∑
k=1

(
Ê [w1k | zk = 1, xk]− Ê [w1k | zk = 0, xk]

)
1
N

N∑
k=1

(
P̂1 (xk)− P̂0 (xk)

) .

Conditional expectations in this expression can be estimated nonparametrically by kernel

or sieve-based mathod. Semiparametric efficiency of this estimator can be established by

the same projection arguments that we used before to establish efficiency of the estimator

for the conditional moment-based model.

Similarly to the ATEC we can estimate the the average treatment effect for the treated

(ATTC) as γ = E [Y1 − Y0 | w2 = 1, D1 > D0]. The ATTC can be written in terms of the

unconditional moment equation:

E

{[
γ (P1(x)− P0(x))− (E [w1 | z = 1, x]− E [w1 | z = 0, x])

]
Q(x)

}
= 0.

By the same principle as the ATEC we express the efficient estimator as an empirical analog:

γ̂ =

1
N

N∑
k=1

Q̂(xk)
(
Ê [w1k | zk = 1, xk]− Ê [w1k | zk = 0, xk]

)
1
N

N∑
k=1

Q̂(xk)
(
P̂1 (xk)− P̂0 (xk)

) .

Using projection argument of Newey (1994) we can easily verify that this estimator achieves

the semiparametric efficiency bound, when each of the conditional expectations and condi-

tional probabilities above are estimated nonparametrically using either kernel of sieve based

methods.

23



If the Q (x) is specified as a parametric function or is a known function, Qα (x), then

the efficient estimator for γ becomes

γ̂ =

1
N

N∑
k=1

Qα̂(xk)
(
Ê [w1k | zk = 1, xk]− Ê [w1k | zk = 0, xk]

)
1
N

N∑
k=1

Q̂α̂(xk)
(
P̂1 (xk)− P̂0 (xk)

) .

where α̂ is the parametric MLE, or the known α0 if Q (x) is fully known.

4.3 General separable unconditional model for compliers

The treatment effect models considered in this section have a straightforward generalization

to the separable conditional moment restrictions expressed in terms of unobservable outcome

variables. Consider a problem where a finite-dimensional parameter β ∈ Rk is given by the

following unconditional moment equation described in terms of unobservable variables Y1

and Y0:

ϕ (β) = E

[
g1 (Y1, x, β)− g0 (Y0, x, β)

∣∣∣∣D1 > D0

]
= 0. (9)

In particular, when g1 (Y1, β) = Y1 − β and g0 (Y0, β) = Y0 + β parameter β defines the

average treatment effect for compliers. On the other hand, g1 (Y1, β) = 1 (Y1 ≤ β1)− τ and

g0 (Y0, β) = 1 (Y0 ≤ β0)+τ define a complier analog of the average quantile treatment effect

parameter proposed in Firpo (2006).

Note that we can represent this moment equation for compliers in terms of distributions

for the entire population. Using the Bayes’s rule we find that this equation is equivalent to:

E

[
(P1(x)− P0(x))

(
Q(x)E [g1 (Y1, x, β) | w2 = 1, D1 > D0, x]

− (1−Q(x))E [g0 (Y0, x, β) | w2 = 0, D1 > D0, x]
)]

= 0,

which can be redefined in terms of only observable variables in the form:

E

[
(P1(x)− P0(x))

(
Q(x)w2

P(x) + (1−Q(x))(1−w2)
1−P(x)

)
×E

[
w2g1 (w1, x, β)− (1− w2) g0 (w1, x, β)

∣∣∣∣w2, x,D1 > D0

] ]
= 0.
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This equation in general defines an over-identified system of moments for β. Using a con-

stant matrix A (which we can then choose optimally) we can transform this vector of

moments to an exactly identified system. The Jacobi matrix J for this system given A

is computed in the standard way. The following theorem describes the structure of the

efficient influence function for this model.

Theorem 6 In the model given by the general moment condition (9) the efficient influence

function, corresponding to finite-dimensional parameter β can be expressed as:

Φ (w, x, z) = −J−1A z−Q(x)
1−Q(x)

{
w2g1 (w1, x, β) + (1− w2) g0 (w1, x, β)

− 1
Q(x)

[
(1−Q(x))E [(1− w2) g0 (w1, x, β) | z = 1, x] +Q(x)E [w2g1 (w1, x, β) | z = 0, x]

]}
= −J−1Aφ (w, x, z) .

The structure of the efficient influence function in this case is similar to that in the ATE

model which we considered earlier in this section. We can further choose the matrix A such

that it minimizes the variance of the efficient influence function. In particular, given that

the Jacobi matrix can be expressed as:

J = A
∂ϕ (β)
∂β′

,

the semiparametric efficiency bound for this model when A is chosen optimally takes the

form:

V (β) =
(
ϕ (β)
∂β

E
[
φ (w, x, z)φ (w, x, z)′

] ϕ (β)
∂β′

)−1

.

An optimally weighted GMM estimator based on the following nonparametrically estimated

moment condition:

1
N

N∑
k=1

(
Ê [g1 (w1k, xk, β) | zk = 1, xk]− Ê [g0 (w1k, xk, β) | zk = 0, xk]

)
1
N

N∑
k=1

(
P̂1 (xk)− P̂0 (xk)

) = 0,

can easily be shown to achieve the efficiency bound derived in the Theorem 6.
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Similarly, it is immediate to develop semiparametric efficiency bounds for a nonlinear

treatment effect parameter for treated compliers, defined as:

ϕ (γ) = E

[
g1 (Y1, x, γ)− g0 (Y0, x, γ)

∣∣∣∣w2 = 1, D1 > D0

]
= 0.

In addition, an optimally weighted GMM estimator based on the following nonparametric

estimated moment condition:

1
N

N∑
k=1

Qα̂(xk)
(
Ê [g1 (w1k, xk, γ) | zk = 1, xk]− Ê [g0 (w1k, xk, γ) | zk = 0, xk]

)
1
N

N∑
k=1

Q̂α̂(xk)
(
P̂1 (xk)− P̂0 (xk)

) = 0,

where Q̂α (xk) can be nonparametrically estimated, parametrically estimated, or the known

propensity, can easily be shown to achieve the required corresponding semiparametric effi-

ciency bound when the propensity score is unknown, parametrically specified, or known.

5 Empirical application

The analyzed dataset contains the observations from the Family Transition Program (FTP)

which was conducted in Escambia County in the state of Florida from the year 1994 to the

year 1999. The subsample under consideration contains the data for 2,815 individuals

applying for welfare in the year 1994 and early 1995.

The FTP program has been launched to analyze it as an alternative to the welfare

program existing at the time, the Aid to Families with Dependent Children (AFDC). The

main differences between the two programs are, first, that FTP had a rigid time limit when

a family can receive cash assistance (up to 24 months within any 72 - months period).

Second, under FTP much more intensive training was offered to the participants aiming at

improvement of job skills as well as job search skills.

The individuals applying for welfare were randomly assigned to either AFDC or FTP

which allows one to compare the relative effect of the rules of the two welfare programs. In

addition to the immediate effect of the program, the collected dataset tracks the individuals

for the next 4 years after the program allowing to compare long-term impacts of welfare

programs on individuals.
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The main sample contains the data for 2,815 heads of single parent households who

applied for welfare and were randomly assigned to one of the welfare options between May

20, 1994 and February 31, 1996. In this sample 1,405 individuals were assigned to FTP

and 1,410 individuals were assigned to AFDC. The data contains three main blocks. The

administrative record data contain the data for individual incomes from three sources in

the state administration. First, the earnings from work from the state’s Unemployment

Insurance system. The second source of incomes are the payments from AFDC. The third

source are Food Stamp payments. In addition, this dataset contains the information about

the background characteristics of individuals and the data from the private opinion survey.

The adult survey data contain the information obtained by MRDC (Manpower Demonstra-

tion Research Corporation). This information was collected in 45-minute interviews with

1,730 individuals from the main data sample which were administered between October

1998. This additional set contains information about characteristics of individual (includ-

ing education, job experience, family and dependents, housing, food security, and living

conditions). The child survey data are based on 1,100 additional interviews with adult

survey participants, who have at least one child between 5 and 12 years old. This survey is

inquiring about the school outcomes, kid’s interaction with other children. The information

contained in the survey includes parenting, father’s involvement. The administrative record

data contain 1132 variables and the survey data contain 849 variables in the adult survey

and 679 variables in the child survey.

One of the surprising outcomes of the program is the relative deterioration of the school

performance of children in the least disadvantaged families. Specifically in the group of

families with the largest earning impacts the school performance of children including grades

and suspension is worse in the FTP sample than in AFDC sample. One of the hypothesis

to explain this is that in this group the parents worked the longest hours and were not

able to monitor their children closely. However, we cannot directly use the data to test this

hypothesis because of selection on unobservable ability: the unobserved ability of parents

should be correlated with both the school performance of children and with the impact

of training on parents. In this case if we use the assignment to a specific program as an

instrument, then we will be able to identify the impact of parents’ training on the children’s

27



school performance on the set of complier who will only be employed because of training.

In particular, we study the influence of the work status of parents on the count indicator

of a child’s achievement which grades the school achievement from 1 to 5. The main

problem in these circumstances is that a simple linear relationship between the indicator of

achievement and the fact that the parent is working is contaminated by the influence of the

unobserved ability. In fact, the parent’s ability, indicating his or her capability of finding

a job should be correlated with the child’s ability, which influences the achievement grade.

For this reason, to obtain the correct measure of dependence of child’s achievement on the

parent’s employment we can use the instruments to correct for the biased caused by the

endogeneity of the employment dummy. One of such instrument can be the participation of

the parent in FTP as compared to AFDC, because the former participation has increased

the probability of employment.

In Table 1 we present the results of such modeling for a subset of individuals who ever

took a job (dropping those who never worked for pay). We regress the child’s achievement

variable on the the dummy indicating that the parent is currently employed, child’s gender,

age dummies for the parent, and the dummy indicating that the parent doe not have a

high school diploma. In columns (1) we report the results of a simple linear regression.

Column (2) reports the results of Poisson regression, and column (3) reports the results

of the negative binomial regression where the achievement of a child is considered as a

count outcome. The coefficient of parent’s employment is quite small in all the models.

In column (4) we report the results of the IV regression where we use instruments for the

employment dummy including the FTP/AFDC dummy and hourly wage of the last taken

job. As one can see, the coefficient indicates now that the parent’s employment leads to

the decline in child’s achievement by almost two points. This suggests that if we do not

take into account the endogeneity of employment dummy, we will understate the influence

of parent’s employment on the child’s achievement at school.

To apply our estimation method we adopt the conditional moment condition implied

by the count structure of the outcome variable (child’s achievement grade). The moment

condition corresponds to the score of the Poisson regression mode with

g (w, x, β) =
[
w1 − exp

(
β0w2 + x′β1

)](w2

x

)
,
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Table 1: Regression outcomes

Model number

Variable (1) (2) (3) (4) (5) (6)

Employment dummy -0.196 -0.049 -0.049 -1.882 -0.1550 -0.1550

(2.56)* (2.54)** (2.54)** (3.88)** (3.02)** (3.02)**

Male dummy -0.235 -0.058 -0.058 -0.31 -0.0126 -0.0126

(3.36)** (3.37)** (3.37)** (3.34)** (4.01)** (4.01)**

Age 25-34 -0.309 -0.076 -0.076 -0.394 -0.0585 -0.0585

(4.13)** (4.14)** (4.14)** (3.97)** (3.11)** (3.11)**

Age 35-44 -0.127 -0.031 -0.031 -0.16 -0.0247 -0.0247

-1.09 -1.08 -1.08 -1.11 -0.94 -0.94

No high school degree -0.139 -0.035 -0.035 0.086 -0.1308 -0.1308

-1.86 (1.86)* (1.86)* -0.72 -0.88 -0.88

Constant 4.87 1.601 1.601 7.202 1.5119 1.5119

(32.83)** (44.21)** (44.21)** (10.58)** (20.21)** (20.21)**

N. obs 918 918 918 887 918 918

R2
0.04

Robust t-statistics in parentheses * significant at 5% level; ** significant at 1% level

and the moment condition:

ϕ (w2, x, β) = E [g (w, x, β) | x,w2, d1 > d0] = 0.

We apply the efficient estimator developed in the previous section to estimate β.

For the negative binomial model the moment condition was formed by:

g (w, x, β) =
[
w1 −

δ−2 + w1

δ−2 + exp (β0w2 + x′β1)
exp

(
β0w2 + x′β1

)](w2

x

)
,

and the moment conditions were written similarly to the case of the Poisson model. The

results of efficient estimation adopted to the moment equations implied by the scores of

Poisson and negative binomial regression models are presented in Column (5) and (6).
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Similarly to the 2SLS case, the coefficients in the count data models with endogeneity

taken into account are significantly larger in the absolute value than in the models which

do not take endogeneity into account. This implies that the endogeneity of job participation

causes and upward bias in the estimate of the influence of parent’s employment on child’s

achievement. One can also see that the values of other coefficients remain the same in the

order of magnitude which indicates robustness of our results.

The marginal effects of variables in the Poisson model are consistent with the estimates

from linear models. Specifically the treatment effect in the model (2) is -.196 with a standard

error of .0773 with is almost identical to the corresponding estimate from the linear model.

In the case with moment condition, taking endogeneity into account, the marginal effect

estimate is is -.538 with a standard error of .177. This is smaller than the 2SLS estimate

but almost 4 times larger than the marginal effect in the model not taking endogeneity of

job participation into account.

6 Conclusion

In this paper we derive the semiparametric efficiency bound for the estimation of a finite-

dimensional parameter defined by generalized moment conditions under the local instrumen-

tal variable assumptions of Imbens and Angrist (1994) and Abadie, Angrist, and Imbens

(2002). These parameters identify the treatment effect on the set of compliers under the

monotonicity assumption. The moment equation characterizes the parametrized moment

of the outcome distribution given a set of covariates and the treatment dummy. The dis-

tributions of covariates, treatment dummy and the binary instrument are not specified in a

parametric form, making the model semiparametric. We also develop multi-step semipara-

metric efficient estimators that achieve the semiparametric efficiency bound.

We apply the suggested estimation procedure to analyze the effect of the parent’s em-

ployment on children’s achievement for single-parent households who applied for state wel-

fare support. We use the data from the Florida Transition Program which was offered as

an alternative to the existing state welfare system. FTP gives the participants more exten-

sive training aimed at job-search skills for participants. A general concern is that both the

achievement of the child and the probability of a parent to find a job are correlated with
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their natural abilities. The abilities of children and parents, on the other hand, can be sig-

nificantly correlated. For this reason, without accounting for the endogeneity, the estimated

treatment effect will be biased toward zero due to the attenuation bias. We use the dummy

for program participation as a natural instrument for selection based on individual abilities.

We find that the linear regression estimate of the treatment effect has a substantial atten-

uation bias as compared to instrument-based methods. In general, parent’s employment

adversely affects child’s achievement. This result suggests that ignoring the selection effect

indeed leads to substantial bias in the estimate of effect of parent’s employment and thus

if we ignore selection, we will have significantly underestimated the negative effect.

In addition, we also construct a similar procedure to compute the semiparametric ef-

ficiency bound when a conditional moment equation is specified for the subset of non-

compliers, for whom selection into the program does not change the treatment status. Both

the structure of the semiparametric efficiency bound and the optimal transformation of the

conditional moment turn out to be significantly simpler than those for the subset of com-

pliers. In the extension, appendix D also derives the semiparametric efficiency bound for

a semiparametric specification of the moment equations. In work in progress, we are de-

veloping efficient estimators when the moment condition is semiparametrically specifically,

which will be applied to empirical analysis.
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A Proof of theorem 1

Consider the parametrization θ for the model with covariates x. Define

f1 (w1|w2, z, x) = f (y1 = w1|w2, z, x)

and f0 (w1|w2, z, x) = f (y0 = w1|w2, z, x). If φθ(x) is the Radon-Nykodym density of x with the

support on X , the likelihood function for the data can be written as:

fθ (w, z, x) =
[
f1

θ (w1 | w2, z, x)
]w2 [

f0
θ (w1 | w2, z, x)

](1−w2) Fw2
θ (x, z) (1−Fθ (x, z))(1−w2)

×Qz
θ(x) (1−Qθ(x))

(1−z)
φθ(x).

The score of the model associated with the joint density of observed data is specified as

Sθ (w, z, x) = (1− w2)s0θ (w1 | w2, z, x) + w2s
1
θ (w1 | w2, z, x)

+
(1− z)Ṗ0θ(x)

F(z, x) (1−F(z, x))
[w2 −F(z, x)] +

zṖ1θ(x)
F(z, x) (1−F(z, x))

[w2 −F(z, x)]

+
Q̇θ(x)

Q(x) (1−Q(x))
[z −Q(x)] + sθ(x),

where sθ(x) is the score corresponding to φθ (x). The expression for the tangent set of the model

for conditional distribution moments is given by

T =
{
(1− w2)s0θ (w1 | w2, z, x) + w2s

1
θ (w1 | w2, z, x) + z ξ(x, z) [w2 −F(z, x)]

+(1− z) ζ(x, z) [w2 −F(z, x)] + a(x) [z −Q(x)] + t(x)} ,

where Eθ

[
si

θ (w1 | w2, z, x) | w2, z, x
]

= 0 for i = 0, 1, E{t(x)} = 0 and ζ(·), ξ(·) and a(·) are square

- integrable functions.

Now consider the directional derivative of the parameter vector β determined by the conditional

moment equation ϕ (x, w2, β). We assume that the support of x - the set X is non-degenerate. In

this case we can potentially identify a parameter vector β with arbitrarily many dimensions. Our

strategy now will be to define a matrix of instrument functions which will transform the conditional

moment equation to an exactly identified system of unconditional moments. Suppose that A (w2, x)

is an arbitrary continuous vector - function such that A : {0, 1} × X 7→ Rk. Without loss of

generality we can define this vector-function by a vector

ζ(x,w2) =
(

w2

P (x)
,

1− w2

1−P (x)

)′
,
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and a matrix M(x) of dimension dim (β)× 2 such that

A (w2, x) = M(x) ζ (w2, x) ,

and

A (w2, x) = (P1(x)− P0(x))
(
Q(x)w2

P(x)
+

(1−Q(x)) (1− w2)
1−P(x)

)
A (w2, x) .

The instrument functions transfer the model into set of unconditional moment equations in the

form:

E [A (w2, x)ϕ (x, w2, β)] = 0.

This can be rewritten as:

Eθ [Aθ (w2, x)Eθ [g (w, x, β (θ)) |w2, x, d1 > d0]] = 0.

Define the Jacobi matrix:

J = E

[
A (w2, x)

∂ϕ (x, w2, β)
∂β′

]
.

Then we can solve for the directional derivative of the parameter β by solving a k × k system of

equations:

J
∂β (θ)
∂θ

= − ∂

∂θ
Eθ [Aθ (w2, x)Eθ [g (w, x, β) |w2, x, d1 > d0]] . (10)

The right-hand side component of equation (10) can be written as:

E
[
A (w2, x)

∫
g (w, x, β) s∗∗ (w1 | w2, x) f∗∗ (w1 | w2, x) dw1

]
+E

[
A (w2, x) sθ(w2, x)

∫
g (w, x, β) f∗∗ (w1 | w2, x) dw1

]
+E

[
∂Aθ(w2,x)

∂θ

∫
g (w, x, β) f∗∗ (w1 | w2, x) dw1

]
.

(11)

In the above we have used the definition that

s∗∗ (w1 | w2, x) =
∂

∂θ
log fθ

∗∗ (w1 | w2, x) ,

where f∗∗ (w1 | w2, x) takes the form of either 1 of 2 depending on whether w2 = 1 or w2 = 0. Note

that by definition of the function g(w,x, β) the integral:∫
g (w, x) f∗∗ (w1 | w2, x) dw1 = 0,
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and the last two terms of equation (11) can be removed. Using this result the system for the

directional derivative of the parameter vector can be rewritten as:

∂β (θ)
∂θ

= −J−1E

[
A (w2, x)

∫
g (w, x, β) s∗∗ (w1 | w2, x) f∗∗ (w1 | w2, x) dw1

]
Next we introduce the notations:

g̃(w, x, β) = −J−1A(w2, x)g(w, x, β),

ĝ(w, x, β) = (P1(x)− P0(x))
(
Q(x)w2

P(x)
+

(1−Q(x)) (1− w2)
1−P(x)

)
g̃(w, x, β),

and

∆̂ (w2, x, β) = −J−1A(w2, x)∆ (w2, x, β) .

Recall the definition that

∆ (x,w2, β) = {E [g(w1, w2, x, β) | w2, z = w2, x]− E [g(w1, w2, x, β) | w2, z = 1− w2, x]} .

Differentiating equations (1) and (2) and combining notations give rise to the following expression

for the score:

s∗∗ (w1 | w2, x) f∗∗ (w1 | w2, x)

=
w2P1(x) + (1− w2) (1− P0(x))

P1(x)− P0(x)
sθ (w1 | w2, z = w2, x) f (w1 | w2, z = w2, x)

− w2P0(x) + (1− w2) (1− P1(x))
P1(x)− P0(x)

sθ (w1 | w2, z = 1− w2, x) f (w1 | w2, z = 1− w2, x)

+

[
[1− w2 + P1(x) (2w2 − 1)] Ṗ0θ(x)− [1− w2 + P0(x) (2w2 − 1)] Ṗ1θ(x)

(P1(x)− P0(x))
2

]
× (f (w1 | w2, z = w2, x)− f (w1 | w2, z = 1− w2, x)) .

Following Newey (1990b) we look for a set of influence functions Ψ(w, z, x) belonging to the tangent

space T with the properties that

∂β (θ)
∂θ

= EΨ(w, z, x)Sθ (w, z, x) .
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We conjecture and subsequently verify that the efficient influence function takes the form of:

Ψ(w, z, x) =
P(x)w2 z

Q(x) (P1(x)− P0(x))
(ĝ(w, x, β)− E [ĝ(w, x, β) | w2 = 1, z = 1, x])

− P(x)w2 (1− z)
(1−Q(x)) (P1(x)− P0(x))

(ĝ(w, x, β)− E [ĝ(w, x, β) | w2 = 1, z = 0, x])

+
(1−P(x)) (1− w2) (1− z)
(1−Q(x)) (P1(x)− P0(x))

(ĝ(w, x, β)− E [ĝ(w, x, β) | w2 = 0, z = 0, x])

− (1−P(x)) (1− w2) z
Q(x) (P1(x)− P0(x))

(ĝ(w, x, β)− E [ĝ(w, x, β) | w2 = 0, z = 1, x])

+
∆̂(w2 = 1, x)P(x)
(P1(x)− P0(x))

2

[
P1(x)(1− z)

1−Q(x)
− P0(x)z

Q(x)

]
(w2 −F(z, x))

+
∆̂(w2 = 0, x) (1−P(x))

(P1(x)− P0(x))
2

[
(1− P1(x)) (1− z)

1−Q(x)
− (1− P0(x)) z

Q(x)

]
(w2 −F(z, x)) .

The first two lines correspond to the w2s
1
θ (w1|w2, z, x) component of T . The third and fourth lines

correspond to the (1− w2) s0θ (w1|w2, z, x) component of T . The last two lines correspond to the

z ξ(x, z) [w2 −F(z, x)] + (1− z) ζ(x, z) [w2 −F(z, x)]

component of the tangent space T . The last two components of tangent space are null components.

Next we use the identities, implied by the expressions for conditional density (1) and (2):

P1 (x)E [ĝ(w, x, β) | w2 = 1, z = 1, x] = P0 (x)E [ĝ(w, x, β) | w2 = 1, z = 0, x]

(1− P0 (x))E [ĝ(w, x, β) | w2 = 0, z = 0, x] = (1− P1 (x))E [ĝ(w, x, β) | w2 = 0, z = 1, x] .

(12)

In addition, we substitute the expression for the weighing matrix A (w2, x) into obtained expression

for the influence function. This leads us to the final result for the efficient influence function:

Ψ(w, z, x) =
(
w2z −

Q(x)
1−Q(x)

w2 (1− z) + (1− w2) (1− z)− 1−Q(x)
Q(x)

(1− w2) z
)
g̃ (w, x, β)

− (z −Q(x))
Q(x) (1−Q(x))

{
E [w2zg̃ | w2 = 1, z = 1, x]− E [(1− w2) (1− z) g̃ | w0 = 1, z = 0, x]

}
= Ψ1(w, z, x)−Ψ2(w, z, x).
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We can now express the semiparametric efficiency bound as the variance of the efficient influence

function

V
(
β̂
)

= E {ΨΨ′} .

Note that the vector A (w2, x) can be represented as:

A (w2, x) = (P1(x)− P0(x))
(
Q(x)w2

P(x)
+

(1−Q(x)) (1− w2)
1−P(x)

)
M(x)

(
w2

P(x)
1−w2

1−P(x)

)
,

where M(x) is a k × 2 matrix (k is the size of the Euclidean parameter β). Denote

D(x) = diag
{
Q(x)
P(x)

,
1−Q(x)
1−P(x)

}
.

In this case the Jacobi matrix can be written as

J = E

{
(P1(x)− P0(x))M(x)

(
Q(x)w2
P2(x)

(1−Q(x))(1−w2)
(1−P(x))2

)
∂ϕ(w2,x,β)

∂β′

}
= E {(P1(x)− P0(x))M(x)D(x)θ(x)} .

To facilitate the manipulations denote ωw2,z(x) = V (g (w, x, β) | w2, z, x) and

γw2,z(x) = E (g (w, x, β) | w2, z, x) .

Note that the expression for the variance has three components. The first component corresponds
to the variance of the first component Ψ1(w, x, z):

V (Ψ1(w, x, z)) =

J−1 E


M(x)D(x)

0BB@
P1(x)ω11(x)

Q(x) +
P0(x)ω10(x)

(1−Q(x)) +
P1(x)P(x)

P0(x)Q(x)(1−Q(x)) γ2
11(x) 0

0 (1−P0(x))ω00(x)
(1−Q(x)) +

(1−P1(x))ω01(x)
Q(x) +

(1−P0(x))(1−P(x))
(1−P1(x))Q(x)(1−Q(x)) γ2

00(x)

1CCA D(x)M(x)′
ff

J−1′.

The second component can be re-arranged using the Jacobi matrix and instrument matrix M(x):

Ψ2 (w, x, z) = J−1M(x)

[
P1(x)Q(x)

P(x) γ11(x)

− (1−P0(x))(1−Q(x))
1−P(x) γ00(x)

]
z−Q(x)

Q(x)(1−Q(x)) .

The corresponding variance is:

V (Ψ2 (w, x, z))

= J−1E

{
M(x)D(x)

Q(x)(1−Q(x))

(
P2

1 (x)γ2
11(x) −P1(x)(1−P0(x))γ11(x)γ00(x)

−P1(x)(1−P0(x))γ11(x)γ00(x) (1−P0(x))2γ2
00(x)

)
D(x)M(x)′

}
J−1′.
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The third component is the covariance between the first two elements:

cov (Ψ1 (w, x, z) , Ψ2 (w, x, z)) = −V (Ψ2 (w, x, z)) .

The variance of the efficient influence function can then be written as:

V
(
β̂
)

= J−1E
{
M(x)D(x)Ω(x)D(x)M(x)′

}
J−1′ = E {(P1(x)− P0(x))M(x)D(x)θ(x)}−1

×E
{
M(x)D(x)Ω(x)D(x)M(x)′

}
E {(P1(x)− P0(x))M(x)D(x)θ(x)}−1′

,

where Ω(x) is a 2× 2 matrix constructed from conditional variances and conditional expectations of

the moment function. The components of Ω(x) can be expressed in the following way:

Ω11(x) =
(
P1(x)ω11(x)

Q(x) + P0(x)ω10(x)

1−Q(x) + γ2
11(x)P1(x)P(x)

P0(x)Q(x)(1−Q(x))

[
1− P1(x)P0(x)

P(x)

])
,

Ω22(x) =
(

(1−P1(x))ω01(x)
Q(x) + (1−P0(x))ω00(x)

1−Q(x) + γ2
00(x)(1−P0(x))(1−P(x))
Q(x)(1−Q(x))(1−P1(x))

[
1− (1−P0(x))(1−P1(x))

1−P(x)

])
,

and

Ω21(x) = Ω12(x) =
(
P1(x)(1−P0(x))
Q(x)(1−Q(x)) γ11(x)γ00(x)

)
.

By standard GMM-type arguments we find that the minimum variance is achieved when M(x) =

(P1(x)− P0(x)) θ(x)′Ω(x)−1D(x)−1 and the semiparametric efficiency bound is

V
(
β̂
)

= E
{

(P1(x)− P0(x))
2
θ(x)′Ω(x)−1θ(x)

}−1

.

B Proof of theorems 2 and 3

The proof of theorem 2 is self-evident. In particular, assumption 2.2, 2.3, 2.4 combined to insure that

uniformly, the estimated Q̂ (x) and Â (x,w2) can be replaced by their true quantities. Assumption

2.5 insures that a law of large numbers uniform over β applies to 1
N

∑N
k=1 ψk (β,Q0, A0).

Before verifying the regularity conditions of theorem 3 we discuss the intuition of the asymptotic

distribution. It is not difficult to see that estimating M̂ (x) has no impact on the asymptotic variance,

because for example, for all x,

E

[
∂ψk (β,Q (x) ,M (x))

∂M (x)

∣∣∣∣x] = 0.

Following the argument of Newey (1994)), the following asymptotic representation holds:

1√
N

N∑
k=1

ψ̂k (β) =
1√
N

N∑
k=1

M(xk)
{
χk (β) + E

[
∂χk (β)
∂Q

∣∣∣∣xk

]
(zk −Q(xk))

}
+ op (1) .
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Next we will show that the asymptotic variance of this moment function when M (x) is chosen

optimally equals the semiparametric efficiency bound. Let us use the notations Ψ1 (w, x, z) and

Ψ2 (w, x, z) corresponding to the two components of the efficient influence function in the proof of

Theorem 1. In this case the first component of this expression corresponds to:

M(x)χ (β) = J Ψ1 (w, x, z) ,

for (in the above we omitted the subscript k in M (xk) and χk (β))

J = E

[
A (w2, x)

∂ϕ (x, w2, β)
∂β′

]
.

The second component corresponds to the sampling uncertainty due to the error in estimation of

probability Q(x). To compute it note that

M(x)E
[

∂χ(β)
∂Q

∣∣x] (z −Q(x)) = M(x)(z−Q(x))
Q(x)(1−Q(x))

[
−P1(x)Q(x)

P(x) γ11(x)

(1−P0(x))(1−Q(x))
1−P(x) γ00(x)

]
= −J Ψ2 (w, x, z) .

This means in particular that:

ψ̂ (β) = J [Ψ1 (w, x, z)−Ψ2 (w, x, z)] = J Ψ(w, x, z) ,

so that the influence function is a scaled efficient influence function. Therefore, the variance of this

estimator can be represented as

V
(
β̂
)

= J−1V (J Ψ(w, x, z))J−1 = V (Ψ (w, x, z)) .

Thus, the estimator achieves the semiparametric efficiency bound.

Assumptions 3.1, 3.2 and 2.2, 2.3 and 2.4 combined to insure stochastic equicontinuity, i.e,

conditions (3.2) and (3.3) in Theorem 3 of Chen, Linton, and Van Keilegom (2003) (CLK).

Assumption 3.5 is used to justify (2.3).ii of Theorem 2 of CLK. Assumptions 3.3, 3.4 are used

to justify (2.3).i and (2.4) of Theorem 2 of CLK.

Assumption 4 basically ensures that

E
[
δ0 (X)

(
Q̂ (X)−Q0 (X)

)]
=

1√
n

n∑
i=1

δ0 (Xi) (Zi −Q0 (Xi)) + op (1) .

It summarizes the key elements in (A.7) to (A.10) in proving Theorem 6.1 of Newey (1994).

C Proof of theorems in section 4

The proofs of theorems 4, 5, 6 depend exclusively only on the following lemma, whose proof can be

found in, for example, Robins and Rotnitzky (1995) and Hahn (1998b).
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Lemma 1 For a categorial variable Z and a constant a on the support of Z, the semiparamet-

ric efficiency variance for estimating E (E (W |Z = a,X)) is given by the variance of the following

influence function, for Qa (X) = P (Z = a|X)

1 (Z = a)
Qa (X)

(W − E (W |Z = a,X)) + E (W |Z = a,X) .

The rest of the proofs basically amounts to rewrite the parameters of interets in collections of

components that take the form of E (E (W |Z = a,X)).

C.1 Proof of theorem 4

Part 1:(ATE on compliers) We discuss β1 and β0 in turn. Note first that due to independence

between y1 and w2 conditional on x and D1 > D0,

β1 =E [E (y1|w2 = 1, x,D1 > D0) |D1 > D0] = E [E (w1|w2 = 1, x,D1 > D0) |D1 > D0]

=E [(P1 (x)− P0 (x))E (w1|w2 = 1, x,D1 > D0)]
1

P (D1 > D0)
.

So that β1 is defined by the moment condition:

E [(P1 (x)− P0 (x))E (w1|w2 = 1, x,D1 > D0)]− E [(P1 (x)− P0 (x))]β1 = 0.

It suffices to project this equation onto the tangent set. Recall the identification condition:

E (w1 | w2 = 1, d1 > d0, x)

=
P1(x)

P1(x)− P0(x)
E (w1 | w2 = 1, z = 1, x)− P0(x)

P1(x)− P0(x)
E (w1 | w2 = 1, z = 0, x) .

The moment condition that defines β1 is then rewritten as

EP1(x)E (w1 | w2 = 1, z = 1, x)− EP0(x)E (w1 | w2 = 1, z = 0, x)

−E [(P1 (x)− P0 (x))]β1 = 0.
(13)

Or equivalently,

EE (w2w1 | z = 1, x)− EE (w2w1 | z = 0, x)

− (EE (w2 | z = 1, x)− EE (w2 | z = 0, x))β1 = 0.
(14)

Similarly calculations can be applied to β0, consider

β0 =E [E (y0|w2 = 0, x,D1 > D0) |D1 > D0] = E [E (w1|w2 = 0, x,D1 > D0) |D1 > D0]

=E [(P1 (x)− P0 (x))E (w1|w2 = 0, x,D1 > D0)]
1

P (D1 > D0)
.
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This translates into the moment condition:

E [(P1 (x)− P0 (x))E (w1|w2 = 0, x,D1 > D0)]− E [(P1 (x)− P0 (x))]β0 = 0.

Recall the related identification condition:

E (w1 | w2 = 0, d1 > d0, x)

=
(1− P0(x))
P1(x)− P0(x)

E (w1 | w2 = 0, z = 0, x)− (1− P1(x))
P1(x)− P0(x)

E (w1 | w2 = 0, z = 1, x) .

The relevant moment condition for β0 is then rewritten as

E (1− P0(x))E (w1 | w2 = 0, z = 0, x)− (1− P1(x))E (w1 | w2 = 0, z = 1, x)

−E [(P1 (x)− P0 (x))]β0 = 0.
(15)

Or equivalently,

EE ((1− w2)w1 | z = 0, x)− EE ((1− w2)w1 | z = 1, x)

− (EE (w2 | z = 1, x)− EE (w2 | z = 0, x))β0 = 0.
(16)

Combining (14) and (16), β = β1 − β0 is defined through

EE (w1 | z = 1, x)− EE (w1 | z = 0, x)

− (EE (w2 | z = 1, x)− EE (w2 | z = 0, x))β0 = 0.
(17)

Invoking Lemma 1 immediately produces the efficient influence function for β1 − β0:

1
P (D1 > D0)

{
z

Q (x)
(w1 − E (w1|z = 1, x)) + E (w1|z = 1, x)

− 1− z

1−Q (x)
(w1 − E (w1|z = 0, x))− E (w1|z = 0, x)

−
(

z

Q (x)
(w2 − E (w2|z = 1, x)) + E (w2|z = 1, x)

− 1− z

1−Q (x)
(w2 − E (w2|z = 0, x))− E (w2|z = 0, x)

)
(β1 − β0)

}
.

Part 2:(ATT on compliers) We also discuss γ1 and γ0 in turn. Consider first

γ1 =E (y1|w2 = 1, D1 > D0) = E (w1|w2 = 1, D1 > D0)

=
∫
E (w1|w2 = 1, D1 > D0, x) f (x|w2 = 1, D1 > D0) dx
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Note that the above conditional density can be written as:

f (x|w2 = 1, D1 > D0) dx =
f (x,w2 = 1, D1 > D0)
P (w2 = 1, D1 > D0)

=
f (x)Q (x) (P1 (x)− P0 (x))
EQ (x) (P1 (x)− P0 (x))

.

So that γ1 is defined by the moment condition:

EE (w1|w2 = 1, D1 > D0, x)Q (x) (P1 (x)− P0 (x))

− (EQ (x) (P1 (x)− P0 (x))) γ1 = 0.

Using the identification result that

E (w1 | w2 = 1, d1 > d0, x)

=
P1(x)

P1(x)− P0(x)
E (w1 | w2 = 1, z = 1, x)− P0(x)

P1(x)− P0(x)
E (w1 | w2 = 1, z = 0, x) .

The moment condition that defines γ1 can be rewritten as

EQ (x)P1 (x)E (w1|w2 = 1, z = 1, x)− EQ (x)P0 (x)E (w1|w2 = 1, z = 0, x)

− EQ (x) (P1 (x)− P0 (x)) γ1 = 0.

This can be equivalently written as:

EE (w1w2|x)− EE (w1w2|z = 0, x)

− (EE (w2|x)− EE (w2|z = 0, x)) γ1 = 0.

Now consider the analogous derivation for γ0.

γ0 =E [y0|w2 = 1, D1 > D0] =
∫
E [y0|w2 = 1, D1 > D0, x] f (x|w2 = 1, D1 > D0) dx

=
EQ (x) (P1 (x)− P0 (x))E [w1|w2 = 0, D1 > D0, x]

EQ (x) (P1 (x)− P0 (x))

So that γ0 is defined by the moment condition:

EQ (x) (P1 (x)− P0 (x))E [w1|w2 = 0, D1 > D0, x]

− EQ (x) (P1 (x)− P0 (x)) γ0 = 0.

Using again the identification condition that

E (w1 | w2 = 0, d1 > d0, x)

=
(1− P0(x))
P1(x)− P0(x)

E (w1 | w2 = 0, z = 0, x)− (1− P1(x))
P1(x)− P0(x)

E (w1 | w2 = 0, z = 1, x) .

42



The moment condition for γ0 can be manipulated to be:

EE (w1 (1− w2) |z = 0, x)− EE (w1 (1− w2) |x)

− (EE (w2|x)− EE (w2|z = 0, x)) γ0 = 0.

The moment condition for γ = γ1 − γ0 therefore combines those of γ1 and γ0:

EE (w1|x)− EE (w1|z = 0, x)

− (EE (w2|x)− EE (w2|z = 0, x)) γ1 = 0.

Hence the efficient influence function for γ is given through lemma 1 by

1
P (w2 = 1, D1 > D0)

{
w1 −

1− z

1−Q (x)
(w1 − E (w1|z = 0, x))− E (w1|z = 0, x)

−
(
w2 −

1− z

1−Q (x)
(w2 − E (w2|z = 0, x))− E (w2|z = 0, x)

)
(γ1 − γ0)

}
.

C.2 Proof of theorem 5

Recall that the moment condition that defines γ is given by

EQ (x)P1 (x)E (w1|w2 = 1, z = 1, x)

− EQ (x)P0 (x)E (w1|w2 = 1, z = 0, x)

−EQ (x) (1− P0 (x))E (w1 | w2 = 0, z = 0, x)

+ EQ (x) (1− P1 (x))E (w1 | w2 = 0, z = 1, x)

− EQ (x) (P1 (x)− P0 (x)) γ = 0.

which can be rewritten as

h (Q (x)) ≡EQ (x)E (w1|z = 1, x)− EQ (x)E (w1|z = 0, x)

− EQ (x) (E (w2 = 1|z = 1, x)− E (w2 = 1|z = 0, x)) γ.

When Q (x) is known, the efficient projection into the tangent space obviously follows immediately

from Lemma 1:

z (w1 − E (w1|z1 = 1, x)) +Q (x)E (w1|z1 = 1, x)

− 1− z

1−Q (x)
Q (x) [w1 − E (w1|z = 0, x)]−Q (x)E (w1|z = 0, x)

−
{
z (w2 − E (w2|z1 = 1, x)) +Q (x)E (w2|z1 = 1, x)

− 1− z

1−Q (x)
Q (x) [w2 − E (w2|z = 0, x)]−Q (x)E (w2|z = 0, x)

}
γ.
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When Q (x) is known up to a finite dimensional parameter α, in addition to above, there is an

extra term for the efficient influence function due to the parametric Cramer-Rao lower bound for

the estimation of α̂− α, as in

h (Qα̂ (x))− h (Q (x)) .

It is easy to see using the parametric Delta method that this additional term is given by

Proj [(z −Q (x))κ (x) | Sα (z;x)]

= E

(
κ (x)

∂Q
∂α

(x, α)
)[

ESα (z;x)Sα (z;x)′
]−1

Sα (z;x) .

C.3 Proof of theorem 6

Denote g (w, xβ) = w2g1 (w1, x, β)− (1− w2) g0 (w1, x, β) and introduce the weighting matrix

A (w2, x) = (P1(x)− P0(x))
(
Q(x)w2

P(x)
+

(1−Q(x)) (1− w2)
1−P(x)

)
A,

and a moment function g̃ = Ag (w, x, β). Also define

g (w, x, β) = g (w, x, β)− E [g (w, x, β) | w2, x,D1 > D0] .

Given that the conditional equation (9) is valid, we have:

E

{
A (w2, x)E

{
g (w, x, β)

∣∣∣∣w2, x,D1 > D0

}}
= 0.

As a result we can express the directional derivative of the Euclidean parameter in the same way as

before

J
∂β (θ)
∂θ

= − ∂

∂θ
Eθ [Aθ (w2, x)Eθ [g (w, x, β) |w2, x,D1 > D0]] .

Note that the difference between this formula and the formula for the conditional moment equation
is that the weighting function A (w2, x) depends on the parametrization path. The derivative of the
right-hand side will contain three components:

E
ˆ
A (w2, x)

R
g (w, x, β) s∗∗ (w1 | w2, x) f∗∗ (w1 | w2, x) dw1

˜
+E

ˆ
A (w2, x) sθ(w2, x)

R
g (w, x, β) f∗∗ (w1 | w2, x) dw1

˜
+ E

h
∂Aθ(w2,x)

∂θ

R
g (w, x, β) f∗∗ (w1 | w2, x) dw1

i
.
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The first and the second components will have the same structure as in the conditional moment

equation case. The first component multiplied by the Jacobi matrix can be written as:

−J−1Φ1 (w, x, z) = (z−Q(x))(w2+Q(x)−1)
Q(x)(1−Q(x)) A (w2) g (w, x, β)− z−Q(x)

Q(x)(1−Q(x))

×A (w2)
[
E [w2zg | w2 = 1, z = 1, x]− E [(1− w2) (1− z) g | w2 = 0, z = 0, x]

]
− z−Q(x)

Q(x)(1−Q(x))A (w2)

×
[

(w2 − P1(x))E [w2g | w2 = 1, x,D1 > D0] + (w2 − P0(x))E [(1− w2) g | w2 = 0, x,D1 > D0]
]
.

To derive the second component of the influence function, note that it should solve:

E [Φ2 (w, x, z)Sθ (w, x, z)] = E
[
A (w2, x) sθ(w2, x)

∫
g (w, x, β) f∗∗ (w1 | w2, x) dw1

]
+E

[
∂Aθ(w2,x)

∂θ

∫
g (w, x, β) f∗∗ (w1 | w2, x) dw1

]
.

Note that:

E [A (w2, x) sθ(x,w2)E [g | w2, x,D1 > D0]] = E [sθ(x)E [A (w2, x) g (w, x, β) | w2, x,D1 > D0]]

+E
[
(E [A (w2, x) g | w2 = 1, x,D1 > D0]− E [A (w2, x) g | w2 = 0, x,D1 > D0]) Ṗθ(x)

]
= E

[
A(P1(x)− P0(x))

(
Q(x)E [g | w2 = 1, x,D1 > D0]

+ (1−Q(x))E [g | w2 = 0, x,D1 > D0]
)
sθ(x)

]
+E

[
A (w2) (P1(x)− P0(x))

{
Q(x)E[g|w2=1,x,D1>D0]

P(x) − (1−Q(x))E[g|w2=0,x,D1>D0]
1−P(x)

}
Ṗθ(x)

]
.

Next we can express the directional derivative:

∂Aθ(w2,x)
∂θ = A (w2, x)

Ṗ1θ(x)−Ṗ0θ(x)
P1(x)−P0(x) +A (P1(x)−P0(x))(w2−P(x))Q̇(x)

P(x)(1−P(x))

+A (P1(x)− P0(x)) Ṗ(x)
[
−Q(x)w2

P2(x) + (1−Q(x))(1−w2)

(1−P(x))2

]
.

Consider expression:

E
[

∂Aθ(w2,x)
∂θ

∫
g (w, x, β) f∗∗ (w1 | w2, x) dw1

]
= E

[
A

(
Q(x)E [g | w2 = 1, x,D1 > D0] + (1−Q(x))E [g | w2 = 0, x,D1 > D0]

)
×
(
Ṗ1θ(x)− Ṗ0θ(x)

)]
+E

[
A (P1(x)− P0(x)) (E [g | w2 = 1, x,D1 > D0]− E [g | w2 = 0, x,D1 > D0]) Q̇(x)

]
+E

[
A (P1(x)− P0(x))

{
−Q(x)E[g|w2=1,x,D1>D0]

P(x) + (1−Q(x))E[g|w2=0,x,D1>D0]
1−P(x)

}
Ṗθ(x)

]
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Finally, we can write the expression for the second component of the directional derivative of the

parameter vector as:

E [Φ2 (w, x, z)Sθ (w, x, z)]

= −J−1E

[
A

(
Q(x)E [g | w2 = 1, x,D1 > D0] + (1−Q(x))E [g | w2 = 0, x,D1 > D0]

)
×
(
(P1(x)− P0(x)) sθ(x) + Ṗ1θ(x)− Ṗ0θ(x)

)]
+E

[
A (P1(x)− P0(x)) (E [g | w2 = 1, x,D1 > D0]− E [g | w2 = 0, x,D1 > D0]) Q̇(x)

]
.

This means that the second component of the efficient influence function takes the form:

−J Φ2 (w, x, z, ) = A(P1(x)− P0(x))
(
Q(x)E [g | w2 = 1, x,D1 > D0]

+ (1−Q(x))E [g | w2 = 0, x,D1 > D0]
)[

1 + z−Q(x)
Q(x)(1−Q(x))

w2−F(z,x)
P1(x)−P0(x)

]
+A (P1(x)− P0(x)) (E [g | w2 = 1, x,D1 > D0]− E [g | w2 = 0, x,D1 > D0]) (z −Q(x)) .

Combining two components of the efficiency bound, we obtain for g̃ = −J−1Ag (w, x, β):

Φ (w, x, z) =
{
w2z − Q(x)w2(1−z)

1−Q(x) + (1− w2) (1− z)− (1−Q(x))(1−w2)z
Q(x)

}
g̃ (w, x, β)

+ z−Q(x)
Q(x)(1−Q(x))

[
(1− P1(x)) (1−Q(x))E [g̃ | w2 = 0, z = 1, x]− P0(x)Q(x)E [g̃ | w2 = 1, z = 0, x]

]
.

D Efficiency bound under semiparametric restrictions

Consider the semiparametric conditional moment equation:

ϕ (x,w2, µ(x), β) = E [g (w, x, µ(x), β) | w2, x, d1 > d0] = 0, (18)

where g (·) is a known function g : R×{0, 1}×X ×R×B 7→ R, and µ(·) is some unknown function of

x (which needs to be estimated along with β). The presence of additional semiparametric component

in the model expectedly increases the efficiency bound. However, the presence of this component

does not change the general structure of the efficiency bound and the structure of the optimal

instrument. The intuition for this result is that the efficiency bound is, in general, determined by

the projection of the parametric part of the score of the model on the tangent set of the model.

Thus an extra semiparametric component of the moment equation will not change the parametric

score, but it will change its projection. In the following theorem we establish the structure of the

semiparametric efficiency bound and the optimal instrument for model (18).
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Theorem 7 Under Assumption 1 the semiparametric efficiency bound for a finite-dimensional pa-

rameter β characterizing the treatment effect for the subsample of compliers with P (D1 > D0) = 1

can be expressed as:

V (β) = E

(
E

[
∂ϕ(w2, x, β)

∂β
ζ̃(x,w2)′

∣∣∣∣x] Ω̃(x)−1E

[
ζ̃(x,w2)

∂ϕ(w2, x, β
′)

∂β

∣∣∣∣x])−1

.

In this theorem we use notations:

ζ̃ (w2, x) = ζ (w2, x)−
{
∂ϕ

∂µ

}−1

E

[
ζ (w2, x)

∂ϕ

∂µ

∣∣∣∣x] ,
Ω̃(x) = E

[
Ψ(w, x, z) Ψ (w, x, z)′

]
,

and

Ψ(w, z, x) =
(
w2z − Q(x)

1−Q(x)w2 (1− z) + (1− w2) (1− z)− 1−Q(x)
Q(x) (1− w2) z

)
ζ̃ (w2, x) g (w, x, β)

− (z −Q(x))
Q(x) (1−Q(x))

{
E
[
w2zζ̃ (w2, x) g | w2 = 1, z = 1, x

]
−E

[
(1− w2) (1− z) ζ̃ (w2, x) g | w0 = 1, z = 0, x

]}
.

Proof:

In the following we will use the result for the efficiency bound obtained for the case ϕ (x, w2, β).

Let us consider a specific parametric path θ for the model and differentiate the conditional moment

equation with respect to this parametric path.

∂ϕ

∂β′
β̇ +

∂ϕ

∂µ
µ̇(x) +

∫
g (w, x, µ(x), β) s∗∗ (w1 | w2, x) f∗∗ (w1 | w2, x) dw1 = 0.

This allows us to express the (scalar) directional derivative µ̇ in terms of the directional derivative

of the finite-dimensional parameter of interest and the integral over g(·). Then consider a trans-

formation of the conditional moment equation into the system of unconditional moments. This

transformation will have the same structure as in case of only one finite-dimensional parameter. In

fact, if we impose the restriction that µ(x) ∈ L2
(
Rk
)
, then the function g (·) will still belong to L2

as a function of x and w2 for each β. Differentiating the set of unconditional moments along the

parametrization path we evaluate the relevant gradients at θ = 0 which leads to:

Jβ̇ + E
[
A (w2, x)

∂ϕ(w2,x,µ(x),β)
∂µ µ̇(x)

]
+E

[
A (w2, x)

∫
g (w, x, µ(x), β) s∗∗ (w1 | w2, x) f∗∗ (w1 | w2, x) dw1

]
= 0.

(19)
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Now denote λ(x) = E
[
A (w2, x) ∂ϕ

∂µ | x
]

then (19) can be rewritten as:

Jβ̇ + E [λ(x)µ̇(x)] + E

[
A (w2, x)

∫
g (w, x, µ(x), β) s∗∗ (w1 | w2, x) f∗∗ (w1 | w2, x) dw1

]
= 0.

Then we can substitute the expression for µ̇(x) obtained from the directional derivative of the

conditional moment which transforms the expression (19) into:

E

[(
A(w2, x)−

{
∂ϕ
∂µ

}−1

λ(x)
)

∂ϕ
∂β′

]
β̇

+E
[(
A(w2, x)−

{
∂ϕ
∂µ

}−1

λ(x)
)∫

g (w, x, µ(x), β) s∗∗ (w1 | w2, x) f∗∗ (w1 | w2, x) dw1

]
= 0.

All further manipulations are identical to the completely parametric case and are based on finding

the efficient influence function, which by Newey’s argument can be found from the representation:

β̇ = E [ΨSθ] .

The structure of the efficient influence function will be the same as for the fully parametric case.

Semiparametric efficiency bound and the optimal instrument, however, will be different. In particular

denote

ζ̃ (w2, x) = ζ (w2, x)−
{
∂ϕ

∂µ

}−1

E

[
ζ (w2, x)

∂ϕ

∂µ

∣∣∣∣x] .
Then the semiparametric efficiency bound is obtained from the semiparametric efficiency bound for

the model only parametrized by β by substituting ζ̃ (w2, x) for ζ (w2, x). It will have the form:

V (β) = E

(
E

[
∂ϕ(w2, x, β)

∂β
ζ̃(x,w2)′

∣∣∣∣x] Ω̃(x)−1E

[
ζ̃(x,w2)

∂ϕ(w2, x, β
′)

∂β

∣∣∣∣x])−1

.

The matrix Ω(x) can be obtained from the similar matrix for the parametric moment condition by

substituting ζ (w2, x) with ζ̃ (w2, x). It can then be expressed as:

Ω̃(x) = E
[
Ψ(w, x, z) Ψ (w, x, z)′

]
,

with efficient influence function Ψ(·) which structure does not change. Note that the semiparametric

efficiency bound for the parameter in the conditional moment equation ϕ (w2, x, µ(x), β) = 0 will be

above that for the conditional moment equation ϕ (w2, x, 0, β) = 0.

48


