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1 Introduction

The class of switching regimes models (SRMs) or generalized sample selection models extends the

Roy model of self-selection by allowing a more general decision rule for selecting into different states.

The income maximizing Roy model of self-selection was developed to explain occupational choice

and its consequences for the distribution of earnings when individuals differ in their endowments

of occupation-specific skills. Heckman and Honore (1990) demonstrated that the identification of

the joint distribution of potential outcomes is essential to the empirical content of the Roy model.

By allowing a more general decision/selection rule, SRMs enjoy a much wider scope of applica-

tion than the Roy model, but in any particular application, they are also limited in their ability to

address a wide range of interesting economic questions because of the non-identifiability of the joint

distribution of potential outcomes in SRMs. Even in the ‘textbook’ Gaussian SRM, the correlation

coefficient between the potential outcomes or equivalently the joint distribution of the potential

outcomes is not identifiable. When used to study treatment effect, important distributional as-

pects of the treatment effect other than its mean are not identified in SRMs. This partly explains

why the current literature has focussed on various measures of average treatment effect including

the average treatment effect (ATE), the treatment effect for the treated (TT), the local average

treatment effect (LATE), and the marginal treatment effect (MTE). Heckman, Tobias, and Vytlacil

(2003) derived expressions for these four average treatment effect parameters for a Gaussian copula

SRM and a Student’s t copula SRM with normal outcome errors and non-normal selection errors1.

Heckman and Vytlacil (2005), among other things, showed that in a latent variable framework,

ATE, TT, and LATE can be expressed in terms of MTE.

Recently two approaches have been proposed to deal with the non-identifiability problem of the

joint distribution of potential outcomes in the ‘textbook’ Gaussian SRM and some of its extensions.

By employing the positive semidefiniteness of the covariance matrix of the outcome errors and the

selection error, Vijverberg (1993) showed that in the ‘textbook’ Gaussian SRM, although uniden-

tified, useful bounds can be placed on the correlation coefficient between the potential outcomes.

Koop and Poirier (1997), Poirier (1998), and Poirier and Tobias (2003) demonstrated via Bayesian

approach that these bounds allow learning on the unidentified correlation to take place through the

identified correlation coefficients. Since the joint distribution of the potential outcomes in the ‘text-

book’ Gaussian SRM depends on the unidentified correlation coefficient only (besides the identified

marginal parameters), learning is possible on the joint distribution of the potential outcomes and

on the distribution of the difference between the potential outcomes, see Poirier and Tobias (2003)

for details. In the second approach, restrictions are imposed on the dependence structure between

the potential outcomes such that their joint distribution and the distribution of the treatment effect

1They didn’t use the concept of copulas, but their models can be interpreted this way.
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are identified, see, e.g., Heckman, Smith, and Clements (1997), Biddle, Boden, and Reville (2003),

Carneiro, Hansen, and Heckman (2003), Aakvik, Heckman, and Vytlacil (2003), among others.

The work by Vijverberg (1993), Koop and Poirier (1997), Poirier (1998), and Poirier and Tobias

(2003) provide a useful alternative approach to addressing the non-identifiability problem of the

joint distribution of the potential outcomes in a SRM which may be used to address important

questions in economics where self-selection is present. However, the applicability of this approach

is limited by its dependence on the trivariate normality assumption or more generally on the

assumption that the trivariate distribution of the errors is solely determined by the unidentified

correlation such as those in Li, Poirier, and Tobias (2004). The fact that the joint distribution of

the potential outcomes in a SRM is not identifiable and thus can never be verified empirically calls

for (i) a study of the robustness of this approach to the implied joint distribution of the potential

outcomes and (ii) the development of a general approach to bounding the joint distribution of

the potential outcomes and the distribution of the treatment effect that is robust to distributional

assumptions on the outcome errors and the selection error. The contribution of this paper is to

accomplish both tasks.

The new tool we employ to establish our distribution bounds is the Fréchet-Hoeffding inequality

on copulas. A straightforward application of this inequality allows us to bound the joint distribution

of potential outcomes using the bivariate distributions of each outcome error and the selection error,

where the latter distributions are known to be identified, see Joe (1997) and Lee (2002). Bounds

on the joint distribution for various populations of interest are also developed. To bound the

distribution of the treatment effect, we make use of existing results on sharp bounds on functions of

two random variables including the four simple arithmetic operations, see Williamson and Downs

(1990). For a sum of two random variables, Makarov (1981), Rüschendorf (1982), and Frank,

Nelsen, and Schweizer (1987) establish sharp bounds on its distribution, see also Nelsen (1999).

These results have been used in Fan and Park (2006) to bound the distribution of the treatment

effect and the quantile function of the treatment effect in the context of ideal social experiments

where selection is random. Other applications of the Fréchet-Hoeffding inequality include Heckman,

Smith, and Clements (1997) in which they bound the variance of the treatment effect under the

assumption of random selection; Manski (1997b) in which he established bounds on the mixture of

two potential outcomes when the distribution of each outcome is known; and Fan (2005a) in which

she provided a systematic study on the estimation and inference on the correlation bounds. Fan

(2005b) studied nonparametric estimation and inference on Fréchet-Hoeffding distribution bounds

when random samples are available from each marginal distribution.

In SRMs with trivariate normal or Student’s t errors, existing sharp bounds on the correlation

coefficient between the potential outcomes imply sharp bounds on their joint distribution and the

distribution of the treatment effect. Interestingly, we find that the sharp bounds on the joint
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distribution of potential outcomes in SRMs with trivariate normal or Student’s t errors are robust

to the implied joint distribution of the potential outcomes (normal or Student’s t) in the sense that

these bounds remain valid for any distribution of the trio of errors as long as the implied bivariate

distributions for each outcome error and the selection error are either bivariate normal or Student’s

t. In contrast, the sharp bounds on the treatment effect distribution in SRMs with trivariate normal

or Student’s t errors are not robust to the implied joint distribution of the potential outcomes. We

establish the sharp bounds without relying on any assumption on the joint distribution of the trio

of errors and provide a detailed numerical comparison between sharp bounds on the treatment

effect distribution relying on the trivariate normal or Student’s t distribution with those that do

not specify the non-refutable joint distribution of potential outcomes. Our numerical results show

that bounds relying on the trivariate normal or Student’s t assumption can be misleading.

The sharp bounds on the treatment effect distributions developed in this paper allow us to go

beyond simple average treatment effects. As an example, we demonstrate via both synthetic and

real data how they can be used to investigate the minimum or maximum probability that a person

in a subpopulation would benefit from the treatment by participating in it.

The rest of this paper is organized as follows. In Section 2, we extend existing work on correlation

bounds in SRMs with trivariate normal or Student’s t errors by establishing sharp bounds on the

joint distribution of potential outcomes and on the distribution of the treatment effect for the whole

population and various subpopulations in these models. In Section 3, we first present existing

results on sharp bounds on the difference between two random variables and then use these results

to establish sharp bounds on the joint distribution of potential outcomes and on the distribution

of the treatment effect for the whole population and various subpopulations in SRMs without

restricting the joint distribution of the potential outcomes. In Section 4 we provide a systematic

comparison of the two sets of bounds when the two identified bivariate marginal distributions in

the SRM are respectively normal and Student’s t. Section 5 presents an empirical application of

our bounds to evaluating the effect of literacy on weekly wages of child laborers. The last section

concludes. Some technical proofs are relegated in Appendix A. In the main text, we focus on the

treatment effect distribution corresponding to ATE and TT respectively. Results on the treatment

effect distribution corresponding to LATE and MTE are provided in Appendix B.
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2 Distribution Bounds in SRMs with Trivariate Gaussian and Stu-
dent’s t Errors

Consider the following SRM:

Y1i = X 0
iβ1 + U1i,

Y0i = X 0
iβ0 + U0i,

Di = I{W 0
iγ+ i>0}, i = 1, . . . , n, (1)

where {Xi,Wi} denote individual i’s observed covariates and {U1i, U0i, i} individual i’s unobserved
covariates. Here, Di is the binary variable indicating participation of individual i in the program

or treatment; it takes the value 1 if individual i participates in the program and takes the value

zero if she chooses not to participate in the program, Y1i is the outcome of individual i we observe

if she participates in the program, and Y0i is her outcome if she chooses not to participate in the

program. For individual i, we always observe the covariates {Xi,Wi}, but observe Y1i if Di = 1

and Y0i if Di = 0. The errors or unobserved covariates {U1i, U0i, i} are assumed to be independent
of the observed covariates {Xi,Wi}. We also assume the existence of an exclusion restriction, i.e.,
there exists at least one element of Wi which is not contained in Xi. Parametric SRMs supplement

model (1) by distributional specifications for the errors {U1i, U0i, i}. The textbook Gaussian model
assumes that {U1i, U0i, i} is trivariate normal. Other commonly used distributions include the
trivariate Student’s t and mixtures of normal distributions, see e.g., Li, Poirier, and Tobias (2004).

Since either Y1i or Y0i is observed for any given individual i but never both, the joint distribution

of U1i and U0i is not identified in a SRM even with parametric distributional assumptions on

{U1i, U0i, i} such as normality. For example, consider the Gaussian SRM in which {U1i, U0i, i}
follows a trivariate normal distribution:⎛⎜⎝ U1i

U0i
i

⎞⎟⎠ ∼ N

⎡⎢⎣
⎛⎜⎝ 0
0
0

⎞⎟⎠ ,

⎛⎜⎝ σ21 σ1σ0ρ10 σ1ρ1
σ1σ0ρ10 σ20 σ0ρ0
σ1ρ1 σ0ρ0 1

⎞⎟⎠
⎤⎥⎦ . (2)

Based on the sample information alone, ρ10 is not identified and all the other parameters are

identified. As a result, the marginal distributions of U1i and U0i are identified, but their joint

distribution is not. One member of the Gaussian SRM in which ρ10 is identified is the well-known

Roy model, in which the additional information is provided by the relation between the selection

error and the outcome errors: i = U1i − U0i.

Heckman, Tobias, and Vytlacil (2003) derived expressions for four treatment parameters of

interest for a Gaussian copula model and a Student’s t copula model with normal outcome errors and

non-normal selection errors. They are respectively ATE, TT, LATE, and MTE. Let ∆i = Y1i−Y0i

denote the gain from program participation for individual i. Then the average treatment effect
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conditional2 on Xi,Wi is given by

ATEi ≡ E (∆i|Xi,Wi) = X 0
i(β1 − β0).

The effect of the treatment on the treated is the effect from treatment for those that actually select

into the treatment. In the Gaussian SRM,

TTi ≡ E (∆i|Xi,Wi,Di = 1) = ATEi +E
¡
U1i − U0i| i > −W 0

iγ
¢

= ATEi + (ρ1 σ1 − ρ0 σ0)λ
¡
W 0

iγ
¢
,

where λ (·) is the inverse mills ratio. Since both ATEi and TTi depend on the identified parameters

only, they themselves are identified. Likewise, LATEi and MTEi are also identified, see Appendix

B for their expressions.

The distribution of ∆i, however, depends on ρ10 and hence is not identified: (1) implies that

the individual i’s treatment effect is given by

∆i = ATEi + (U1i − U0i).

As a result, the individual treatment effect ∆i may differ across individuals with the same ATEi

or TTi because of the unobserved heterogeneity (U1i − U0i). This motivates the study of the

distribution of treatment effect ∆i.

In the rest of this section, we first characterize the class of joint distributions of {Y1i, Y0i} and
the distributions of ∆i in the Gaussian SRM consistent with the empirical evidence. Then we

discuss extensions to the SRM with Student’s t errors.

2.1 Sharp Bounds on the Joint Distribution of Potential Outcomes

For notational compactness, we omit the subscript i in the rest of Section 2. Let F Y
10 denote the

joint distribution of potential outcomes Y1, Y0 conditional on X = x. To simplify the notation, we

keep the conditioning on the regressors implicit unless it serves to clarify the exposition otherwise.

In a Gaussian SRM,

FY
10(y1, y0) = Φρ10

µ
y1 − x0β1

σ1
,
y0 − x0β0

σ0

¶
,

where Φρ(·, ·) is the distribution function of a bivariate normal variable with zero means, unit vari-
ances, and correlation coefficient ρ. Vijverberg (1993), Koop and Poirier (1997), Poirier (1998),

and Poirier and Tobias (2003) point out that learning can take place about ρ10 through the re-

striction that the covariance matrix of the errors is positive semi-definite. This restriction places

2We focus on conditional treatment effects, as the unconditional treatment effects can be obtained from averaging
the corresponding conditional treatment effects over observations in the sample.
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bounds on the unidentified correlation between the potential outcomes given what we learn about

the correlation between the outcome and selection errors. Specifically, let

ρL = ρ1 ρ0 −
q
(1− ρ21 )(1− ρ20 ), ρU = ρ1 ρ0 +

q
(1− ρ21 )(1− ρ20 ).

Vijverberg (1993) showed that the positive semi-definiteness of the covariance matrix of the errors

{U1i, U0i, i} implies

ρL ≤ ρ10 ≤ ρU . (3)

Note that ρL and ρU depend on the identified parameters only and hence are themselves iden-

tified. The following lemma follows from simple algebra.

Lemma 2.1 (i) If ρ1 = ρ0 = 0, then ρL = −1 and ρU = 1; (ii) If ρ
2
1 + ρ20 > 1 and ρ1 , ρ0 have

the same sign, then ρL > 0; (iii) If ρ21 + ρ20 > 1 and ρ1 , ρ0 have the opposite sign, then ρU < 0.

Lemma 2.1 (i) implies that the bounds ρL, ρU are informative as long as at least one of the po-

tential outcomes is correlated with the selection error; otherwise, no learning takes place about ρ10.

In addition, Lemma 2.1 (ii) implies that it is possible to identify the sign of ρ10. (3) characterizes

the class of Gaussian SRMs consistent with the sample information; any Gaussian SRM with ρ10

violating (3) is inconsistent with the sample information. It is interesting to observe that the Roy

model with = U1 − U0 is consistent with the sample information, since it is a simple algebra to

show that ρ10 = ρU in the Roy model.

Obviously, bounds on ρ10 place bounds on the joint distribution FY
10(y1, y0). In terms of the

Gaussian copula, we can rewrite the expression for FY
10(y1, y0) as:

FY
10(y1, y0) = CGau

µ
Φ(

y1 − xβ1
σ1

),Φ(
y0 − xβ0

σ0
), ρ10

¶
,

where Φ(·) is the distribution function of a standard normal random variable and CGau denotes

the Gaussian copula defined as

CGau(u, v, ρ) = Φρ
³
Φ−1 (u) ,Φ−1 (v)

´
, (u, v) ∈ [0, 1]2.

Since the Gaussian copula is increasing in concordance in ρ10 (see Joe (1997)), we obtain the

following sharp bounds on the joint distribution of Y1, Y0:

CGau
µ
Φ(

y1 − xβ1
σ1

),Φ(
y0 − xβ0

σ0
), ρL

¶
≤ F Y

10(y1, y0) ≤ CGau
µ
Φ(

y1 − xβ1
σ1

),Φ(
y0 − xβ0

σ0
), ρU

¶
.

(4)

For any fixed x and y1, y0, the bounds above are informative as long as ΦρL

³
y1−xβ1

σ1
, y0−xβ0σ0

´
6= 0, or

ΦρU

³
y1−xβ1

σ1
, y0−xβ0σ0

´
6= 1. (4) characterizes the class of joint distributions FY

10(y1, y0) in Gaussian

SRMs consistent with the empirical evidence. One such distribution is the joint distribution of
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the potential outcomes in the Roy model, which provides the sharp upper bound on the joint

distribution of potential outcomes in all Gaussian SRMs consistent with the sample information.

It is interesting to observe that there are two types of learning on the joint distribution of

potential outcomes: (i) learning through the correlation between the outcome and selection errors or

through learning on ρ10; (ii) learning through the marginal distributions of the potential outcomes.

To understand the second type of learning on FY
10(y1, y0), recall the Fréchet-Hoeffding inequality:

CL(s, t) ≤ C(s, t) ≤ CU (s, t), for all (s, t) ∈ [0, 1]2,

where C(·, ·) is any copula function, CL(s, t) = max(s+ t− 1, 0) is the Fréchet lower bound copula,
and CU (s, t) = min(s, t) is the Fréchet upper bound copula. Now, suppose selection is random so

that ρ1 = 0 and ρ0 = 0. In this case, ρL = −1 and ρU = 1 so no learning takes place on ρ10.

However, since the Gaussian copula equals the Fréchet lower bound copula CL(u, v) when ρ10 = −1
and equals the Fréchet upper bound copula when ρ10 = 1, (4) implies

CL

µ
Φ(

y1 − xβ1
σ1

),Φ(
y0 − xβ0

σ0
)

¶
≤ FY

10(y1, y0) ≤ CU

µ
Φ(

y1 − xβ1
σ1

),Φ(
y0 − xβ0

σ0
)

¶
. (5)

For any fixed x and y1, y0, the above bounds are informative as long as the lower bound is not

zero or the upper bound is not 1. Notice that this is a simple application of the Fréchet-Hoeffding

inequality to the joint distribution FY
10(y1, y0) without taking into account the bounds on the

unidentified correlation coefficient. As a result, in general, the bounds in (4) are sharper than those

in (5). That is, taking into account self-selection tightens the bounds.

2.2 Sharp Bounds on the Distribution of the Treatment Effect

We now consider the distribution of the treatment effect ∆ = Y1 − Y0. Define

γ1 = σ1ρ1 − σ0ρ0 and γ22 = σ21 + σ20 − 2σ1σ0ρ10.

Then γ22 = V ar(∆|X = x) satisfies σ2L ≤ γ22 ≤ σ2U , where

σ2U = σ21 + σ20 − 2ρLσ1σ0, σ2L = σ21 + σ20 − 2ρUσ1σ0.

It is worth pointing out that the treatment effect in the Roy model has the smallest variance in

all Gaussian SRMs consistent with the sample information, since ρ10 = ρU in the Roy model.

Poirier and Tobias (2003) showed that the distributions of ∆ conditional on X = x correspond-

ing to ATE and TT are given by

ATE : F∆(δ) = Φ

µ
δ −ATE

γ2

¶
,

TT : F∆(δ|D = 1) =

R δ
−∞

1
γ2
φ
³
ζ−ATE

γ2

´
Φ

µ
γ1(ζ−ATE)/γ22+w0γ√

1−γ21/γ22

¶
dζ

Φ (w0γ)
,
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where φ (·) denotes the pdf of the standard normal distribution. Note that while the distribution of
∆ corresponding to ATE is normal, the distribution of∆ corresponding to TT is skew-normal unless

selection is random in which case γ1 = 0. When γ1 is positive, the distribution of ∆ corresponding

to TT is right skewed, otherwise it is left skewed. The degree of skewness depends on the value of

w0γ: the smaller w0γ is, the larger the skewness of the distribution of ∆ corresponding to TT .

Since the only non-identified parameter in both distributions is γ2, their lower and upper bounds

are given respectively by their pointwise minimum and maximum over γ2 ∈ [σL, σU ]. For F∆(δ), it
can be shown that FL

∆(δ) ≤ F∆(δ) ≤ FU
∆ (δ), where

FL
∆(δ) =

⎧⎨⎩ Φ
³
δ−ATE

σU

´
if δ ≥ ATE

Φ
³
δ−ATE

σL

´
if δ < ATE

;

FU
∆ (δ) =

⎧⎨⎩ Φ
³
δ−ATE

σL

´
if δ ≥ ATE

Φ
³
δ−ATE

σU

´
if δ < ATE

. (6)

For the distribution of ∆ corresponding to TT, there is no closed-form expression for its bounds.

However, they can be easily computed by numerical optimization algorithms.

Let FR
∆ (δ) denote the distribution of ∆ in the Roy model. Then for all δ,

FR
∆ (δ) = Φ

µ
δ −ATE

σU

¶
.

Since ATE = x0(β1 − β0) in all Gaussian SRMs, (6) implies that to the left of ATE, F∆(δ)

is bounded from above by FR
∆ (δ) and to the right of ATE, F∆(δ) is bounded from below by

FR
∆ (δ). Consequently, the distribution of ∆ in the Roy model is a mean preserving spread of the

distribution of ∆ in all Gaussian SRMs consistent with the sample information and hence second

order stochastically dominates the latter distributions.

THEOREM 2.2 In Gaussian SRMs, FR
∆ second order stochastically dominates any F∆ consistent

with the sample information.

For any fixed x and fixed δ, the bounds on F∆(δ) are informative as long as F
L
∆(δ) 6= 0 or

FU
∆ (δ) 6= 1. In particular, when δ = ATE, FL

∆(δ) = FU
∆ (δ) = 0.5. Hence F∆(ATE) = 0.5,

implying that the value of the distribution of ∆ at the ATE is identified and that the median of

the distribution of the outcome gain is the same as ATE.

We note that the two types of learning for the joint distribution occur here as well. When

selection is random, learning takes place through the marginals and the bounds are given by

FL
∆(δ) =

⎧⎨⎩ Φ
³
δ−ATE
(σ1+σ0)

´
if δ ≥ ATE

Φ
³
δ−ATE
|σ1−σ0|

´
if δ < ATE

;

FU
∆ (δ) =

⎧⎨⎩ Φ
³
δ−ATE
|σ1−σ0|

´
if δ ≥ ATE

Φ
³
δ−ATE
(σ1+σ0)

´
if δ < ATE

.
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In general, (σ1 − σ0)
2 ≤ σ2L ≤ σ2U ≤ (σ1 + σ0)

2. Taking into account self-selection tightens the

bounds. Moreover, the following simple algebra demonstrates that the stronger the self-selection

is, the tighter the bounds. For any δ, the width of the distribution bounds depend on σU and σL.

Noting that

σ2U − σ2L = 4σ1σ0

q
(1− ρ21 )(1− ρ20 ),

we conclude that the width of the distribution bounds becomes narrower as the correlation between

the selection error and the outcome errors become stronger. In the extreme case where ρ21 = 1 or

ρ20 = 1, the lower and upper bounds coincide and the distribution of ∆ is identified.

Given the bounds on the distribution of ∆, we get immediately quantile bounds:

(FU
∆ )
−1(q) ≤ F−1∆ (q) ≤ (FL

∆)
−1(q),

where

(FL
∆)
−1(q) =

(
ATE + σUΦ

−1(q) if q ≥ 1/2
ATE + σLΦ

−1(q) if q < 1/2
;

(FU
∆ )
−1(q) =

(
ATE + σLΦ

−1(q) if q ≥ 1/2
ATE + σUΦ

−1(q) if q < 1/2
.

2.3 Extensions to Student’s t Errors

The results we obtained for Gaussian SRMs can be easily extended to models with Student’s t errors.

For example, Li, Poirier and Tobias (2004) provides the following expression for the distribution of

the treatment effect under the assumption of trivariate Student’s t errors:

F∆(δ) = T[v]

µ
δ −ATE

γ2

r
v

v − 2

¶
,

where T[v] (·) denotes the distribution function of the Student’s t distribution with v degrees of

freedom. Similar to Gaussian models, one can show that FL
∆(δ) ≤ F∆(δ) ≤ FU

∆ (δ), where

FL
∆(δ) =

⎧⎨⎩ T[v]
³
δ−ATE

σU

q
v

v−2

´
if δ ≥ ATE

T[v]
³
δ−ATE

σL

q
v

v−2

´
if δ < ATE

;

FU
∆ (δ) =

⎧⎨⎩ T[v]
³
δ−ATE

σL

q
v

v−2

´
if δ ≥ ATE

T[v]
³
δ−ATE

σU

q
v

v−2

´
if δ < ATE

.

It is obvious that the qualitative conclusions in Gaussian models carry over to the Student’s t

case. The sharp bounds on the distribution corresponding to TT are given by the minimum and

maximum of F∆(δ|D = 1) over γ2 ∈ [σL, σU ]:

F∆(δ|D = 1) =

R δ
−∞ t[v]

³
ζ−ATE

γ2

q
v

v−2

´
T[v+1]

Ã γ1
γ2
2

(ζ−ATE)+w0γ

Ω

q
v+1
v−1

!
dζ

T[v]
³
w0γ

q
v

v−2

´ ,
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where t[v] (·) denotes the pdf of the Student’s t distribution with v degrees of freedom and

Ω =

vuut"v − 2 + (δ −ATE)2

γ2

#µ
1

v − 1

¶Ã
1− γ21

γ22

!
.

3 Bounds in Semiparametric SRMs

The bounds for Gaussian and Student’s t SRMs established in Section 2 depend crucially on the

parametric distribution assumption, especially the implied joint normal or Student’s t distribution of

the potential outcomes. Given that the assumption of joint normality or Student’s t distribution of

the potential outcomes can never be verified empirically, it is important to investigate the robustness

of these bounds to the corresponding distributional assumptions and to establish bounds that do

not rely on them. This will be accomplished in the current section.

For generality, we adopt Heckman (1990)’s notation and consider the following semiparametric

SRM:

Y1i = g1(X1i,Xci) + U1i,

Y0i = g0(X0i,Xci) + U0i,

Di = I{(Wi,Xci)0γ+ i>0}, i = 1, . . . , n, (7)

where both g1(x1, xc), g0(x0, xc) and the distribution of {U1i, U0i, i} are completely unknown.
Heckman (1990) provided conditions under which the joint distributions of {U1i, i} and {U0i, i},
g1(x1, xc), g0(x0, xc), and γ are identified from the sample information alone. However, the joint

distribution of {U1i, U0i} is not identified.
In this section, we provide sharp bounds on the joint distribution of {U1i, U0i} or {Y1i, Y0i}

and the distribution of ∆i. We assume independence of the errors {U1i, U0i, i} and the regressors
{X1i,X0i,Xci,Wi}. The covariance approach used in Section 2 is not applicable here, as the dis-
tribution of {U1i, U0i, i} is completely unknown. Instead we make use of existing results bounding
the distribution of a difference of two random variables each having a given distribution function.

3.1 Sharp Bounds on the Distribution of a Difference of Two Random Variables

Fréchet-Hoeffding Inequality has been used to establish sharp bounds on functions of random

variables Y1 and Y0 including the four simple arithmetic operations, see Williamson and Downs

(1990). For a sum of two random variables, Makarov (1981), Rüschendorf (1982), and Frank,

Nelsen, and Schweizer (1987) establish sharp bounds on its distribution, see also Nelsen (1999).

Frank, Nelsen, and Schweizer (1987) demonstrate that their proof based on copulas can be extended

to more general functions than the sum. These references except Nelsen (1999) make use of the

left-continuous version of the distribution function. To avoid any confusion, we will assume that

10



the random variables Y1 and Y0 are continuous with distribution functions F1 and F0 respectively.

Given that we are interested in the treatment effect, we will present the relevant results for the

difference of two random variables. More specifically, let ∆ = Y1 − Y0 and F∆(·) denote the
distribution function of ∆. The following lemma presents sharp bounds on F∆(·) when only F1 and
F0 are known.

Lemma 3.1 Let Fmin(δ) = supy1 max(F1(y1)−F0(y1−δ), 0) and Fmax(δ) = 1+infy1 min(F1(y1)−
F0(y1 − δ), 0). Then Fmin(δ) ≤ F∆(δ) ≤ Fmax(δ).

Viewed as an inequality among all possible distribution functions, the sharp bounds Fmin(δ)

and Fmax(δ) cannot be improved, because it is easy to show that if either F1 or F0 is the degenerate

distribution at a finite value, then for all δ, we have Fmin(δ) = F∆(δ) = Fmax(δ). In fact, given

any pair of distribution functions F1 and F0, the inequality: Fmin(δ) ≤ F∆(δ) ≤ Fmax(δ) cannot be

improved, that is, the bounds Fmin(δ) and Fmax(δ) for F∆(δ) are point-wise best-possible, see Frank,

Nelsen, and Schweizer (1987) for a proof of this for a sum of random variables and Williamson

and Downs (1990) for a general operation on two random variables. Unlike the sharp bounds on

the correlation coefficient between Y1, Y0 or the joint distribution of Y1, Y0 which are reached at

the Fréchet-Hoeffding lower and upper bounds for the distribution of Y1, Y0 when Y1 and Y0 are

perfectly negatively dependent or perfectly positive dependent (see Fan (2005a)), the sharp bounds

on the distribution of ∆ are not reached at the Fréchet-Hoeffding lower and upper bounds for the

distribution of Y1, Y0. Frank, Nelsen, and Schweizer (1987) provided explicit expressions for copulas

that reach the bounds on the distribution of ∆.

Explicit expressions for bounds on the distribution of a sum of two random variables are available

for the case where both random variables have the same distribution which includes the uniform, the

normal, the Cauchy, and the exponential families, see Alsina (1981), Frank, Nelsen, and Schweizer

(1987), and Denuit, Genest, and Marceau (1999). Below we provide expressions on Fmin (δ) and

Fmax (δ) when both Y1 and Y0 are normal or Student’s t.

Example 3.1. Let Y1 ∼ N
¡
µ1, σ

2
1

¢
and Y0 ∼ N

¡
µ0, σ

2
0

¢
. Fan and Park (2006) provide the

following expressions for the bounds Fmin (δ) and Fmax (δ):

(i) If σ1 = σ0 = σ, then

Fmin (δ) =

(
0 if δ < µ1 − µ0,

2Φ
³
δ−(µ1−µ0)

2σ

´
− 1 if δ ≥ µ1 − µ0,

(8)

Fmax (δ) =

(
2Φ

³
δ−(µ1−µ0)

2σ

´
if δ < µ1 − µ0,

1 if δ ≥ µ1 − µ0.
(9)

11



(ii) If σ1 6= σ0, then

Fmin (δ) = Φ

µ
σ1s− σ0t

σ21 − σ20

¶
+Φ

µ
σ1t− σ0s

σ21 − σ20

¶
− 1,

Fmax (δ) = Φ

µ
σ1s+ σ0t

σ21 − σ20

¶
− Φ

µ
σ1t+ σ0s

σ21 − σ20

¶
+ 1,

where s = δ − (µ1 − µ0) and t =
³
s2 + 2

¡
σ21 − σ20

¢
ln
³
σ1
σ0

´´ 1
2 .

Example 3.2. For j = 0, 1, we assume
Yj−µj
σj

q
vj

vj−2 ∼ t[vj ], where vj > 2 , so that E (Yj) = µj ,

V ar(Yj) = σ2j and Fj(δ) = T[vj ]
³³

δ−µj
σj

´q
vj

vj−2

´
.

By lemma 3.1, Fmin(δ) = max(F1(x
∗
1)−F0(x

∗
1− δ), 0) and Fmax(δ) = 1+min(F1(x

∗
2)−F0(x

∗
2−

δ), 0), where x∗1 and x∗2 are the maximizer and minimizer of the function [F1(x)− F0(x− δ)] re-

spectively, i.e., x∗1, x
∗
2 satisfy the equation:

1

σ1

r
v1

v1 − 2
t[v1]

µµ
x− µ1
σ1

¶r
v1

v1 − 2

¶
=
1

σ0

r
v0

v0 − 2
t[v0]

µµ
x− µ0 − δ

σ0

¶r
v0

v0 − 2

¶
.

In general, one must solve the above equation and hence evaluate Fmin(δ) and Fmax(δ) numerically.

But when v1 = v0 ≡ v (say), we are able to get closed-form expressions for Fmin(δ) and Fmax(δ) as

follows:

(i) If σ1 = σ0 = σ, then

Fmin (δ) =

(
0 if δ < µ1 − µ0,

2T[v]
³³

δ−(µ1−µ0)
2σ

´q
v

v−2

´
− 1 if δ ≥ µ1 − µ0,

(10)

Fmax (δ) =

(
2T[v]

³³
δ−(µ1−µ0)

2σ

´q
v

v−2

´
if δ < µ1 − µ0,

1 if δ ≥ µ1 − µ0.
(11)

(ii) If σ1 6= σ0, then

Fmin (δ)

= T[v]

ÃÃ
σ2κ−11 s− σκ0σ

κ−1
1 t

σ2κ1 − σ2κ0

!r
v

v − 2

!
+ T[v]

ÃÃ
σκ1σ

κ−1
0 t− σ

(2κ−1)
0 s

σ2κ1 − σ2κ0

!r
v

v − 2

!
− 1,

Fmax (δ)

= T[v]

ÃÃ
σ2κ−11 s+ σκ0σ

κ−1
1 t

σ2κ1 − σ2κ0

!r
v

v − 2

!
− T[v]

ÃÃ
σκ1σ

κ−1
0 t+ σ

(2κ−1)
0 s

σ2κ1 − σ2κ0

!r
v

v − 2

!
+ 1,

where s = δ − (µ1 − µ0), κ =
v

v+1 , and

t =
³
s2 +

³
σ2κ1 − σ2κ0

´ ³
σ
2(1−κ)
1 − σ

2(1−κ)
0

´
(v − 2)

´ 1
2 .

It is easy to see that in both cases, the expressions for Fmin (δ) and Fmax (δ) reduce to those in

Example 3.1 as v → +∞. For instance, consider the case where σ1 6= σ0. As v → +∞, we have
κ→ 1,

q
v

v−2 → 1, and
³
σ
2(1−κ)
1 − σ

2(1−κ)
0

´
(v − 2)→ 2 log

³
σ1
σ0

´
.
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3.2 Semiparametric SRMs

Let F1 (u1, ) and F0 (u0, ) denote respectively the distribution functions of {U1i, i} and {U0i, i}
in model (7). Since F1 (u1, ) and F0 (u0, ) are identified from the sample information, the joint

distribution of {U1i, U0i, i} belongs to the Frechet class of trivariate distributions for which the
(1,3) and (2,3) bivariate margins are given or fixed, denoted as F(F1 , F0 ). Joe (1997) showed that
for any F10 ∈ F(F1 , F0 ), it must satisfyZ

−∞
CL

h
F1| (u1), F0| (u0)

i
dF ( ) ≤ F10 (u1, u0, ) ≤

Z
−∞

CU

h
F1| (u1), F0| (u0)

i
dF ( ),

(12)

where Fj| (uj) denote the conditional distribution of Uji given i = , j = 1, 0 and F ( ) the

marginal distribution function of i. Inequality (12) follows from the Frechet-Hoeffding inequality

and the expression: F10 (u1, u0, ) =
R
−∞ F10| (u1, u0)dF ( ), where F10| (u1, u0) is the conditional

joint distribution of U1i, U0i given i = .

THEOREM 3.2 In a semiparametric SRM, the following inequalities hold.

(i) ATE: The joint distribution of potential outcomes satisfies

FL
10(y1, y0) ≤ FY

10(y1, y0) ≤ FU
10(y1, y0), (13)

where

FL
10(y1, y0) =

Z ∞
−∞

CL

h
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

i
dF ( ),

FU
10(y1, y0) =

Z ∞
−∞

CU

h
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

i
dF ( ). (14)

(ii) TT: The joint distribution of potential outcomes for the treated satisfies

FL
10(y1, y0|D = 1) ≤ FY

10(y1, y0|D = 1) ≤ FU
10(y1, y0|D = 1),

where

FL
10(y1, y0|D = 1) =

R∞
−(w,xc)0γ CL

³
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

´
dF ( )

1− F (−(w, xc)0γ)
,

FU
10(y1, y0|D = 1) =

R∞
−(w,xc)0γ CU

³
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

´
dF ( )

1− F (−(w, xc)0γ)
.

The result in (i) is presented in Lee (2002). It is an immediate consequence of (12) when =∞.
To prove (ii), we note that

FY
10(y1, y0|D = 1) = P (U1i ≤ y1 − g1(x1, xc), U0i ≤ y0 − g0(x0, xc)| i > −(w,xc)0γ)

=
P (U1i ≤ y1 − g1(x1, xc), U0i ≤ y0 − g0(x0, xc), i > −(w, xc)0γ)

P ( i > −(w, xc)0γ)

=

R∞
−(w,xc)0γ F10| (y1 − g1(x1, xc), y0 − g0(x0, xc))dF ( )

1− F (−(w, xc)0γ)
. (15)
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Now since F10| (y1 − g1(x1, xc), g0(x0, xc)) satisfies the Frechet-Hoeffding inequality, we obtain the

inequality in (ii).

The bounds in Theorem 3.2 are reached when the two potential outcomes are conditionally (on

) perfectly dependent on each other. One example is = Y1 − Y0 in which Y1, Y0 are perfectly

positively dependent conditional on . These bounds take into account the self-selection process

and are tighter than the bounds obtained under random selection. For instance, if selection is

random, i.e., both U1i and U0i are independent of i, then the bounds in Theorem 3.2 (i) become

FLI
10 (y1, y0) = CL [F1(y1 − g1(x1, xc)), F0(y0 − g0(x0, xc))] , (16)

FUI
10 (y1, y0) = CU [F1(y1 − g1(x1, xc)), F0(y0 − g0(x0, xc))] . (17)

In general, FLI
10 (y1, y0) ≤ FL

10(y1, y0) and FUI
10 (y1, y0) ≥ FU

10(y1, y0) implying that the dependence

between the outcome errors and the selection error improves on the bounds on FY
10(y1, y0). But even

when selection is random, learning can take place about F Y
10(y1, y0) through its marginals provided

that FLI
10 (y1, y0) is not zero or F

UI
10 (y1, y0) is not 1.

We now consider bounds on the distribution of ∆ = Y1 − Y0. Note that

ATE ≡ E(∆|X = x) = g1(x1, xc)− g0(x0, xc)

and F∆(δ) = E [P (U1 − U0 ≤ {δ −ATE}| )] . Applying Lemma 3.1 to P (U1−U0 ≤ {δ−ATE}| ),
we obtain the sharp bounds on the distribution of the treatment effect in Theorem 3.3 (i) below.

Other bounds presented in Theorem 3.3 can be obtained in the same way.

THEOREM 3.3 In a semiparametric SRM, the following inequalities hold.

(i) ATE: FL
∆(δ) ≤ F∆(δ) ≤ FU

∆ (δ), where

FL
∆(δ) =

Z +∞

−∞

∙
sup
u
max

n
F1| (u)− F0| (u− {δ −ATE}), 0

o¸
dF ( ),

FU
∆ (δ) =

Z +∞

−∞

h
inf
u
min

n
1− F0| (u− {δ −ATE}) + F1| (u), 1

oi
dF ( ).

(ii) TT: The distribution of ∆ for the treated satisfies

FL
∆(δ|D = 1) ≤ F∆(δ|D = 1) ≤ FU

∆ (δ|D = 1),

where

FL
∆(δ|D = 1) =

R∞
−(w,xc)0γ

∙
sup
u
max

n
F1| (u)− F0| (u− {δ −ATE}), 0

o¸
dF ( )

1− F (−(w, xc)0γ)
,

FU
∆ (δ|D = 1) =

R∞
−(w,xc)0γ

h
inf
u
min

n
1− F0| (u− {δ −ATE}) + F1| (u), 1

oi
dF ( )

1− F (−(w, xc)0γ)
.
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In contrast to sharp bounds on the joint distribution of potential outcomes, the sharp bounds on

the distribution of the treatment effect are not reached at conditional perfect positive or negative

dependence. Again, two types of learning take place here through self-selection and the identified

marginals of FY
10(y1, y0).

When = Y1 − Y0, the potential outcomes are perfectly positively dependent conditional on .

Let FR
∆| and FR

∆ denote respectively the conditional distribution of ∆ on and the unconditional

distribution of ∆ in this case. Fan and Park (2006) shows that FR
∆| second order stochastically

dominates any outcome gain distribution conditional on , F∆| . Taking expectation with respect

to , we obtain the following theorem.

THEOREM 3.4 In a semiparametric SRM, FR
∆ second order stochastically dominates any F∆

consistent with the sample information.

Unlike the average treatment parameters such as ATE and TT, the quantile of ∆ is in general

not identified. By inverting the distribution bounds in Theorem 3.3, we obtain sharp bounds on

the quantile of the treatment effect3 for the whole population and the subpopulation receiving

treatment.

3.3 Some Applications of the Distribution Bounds

By using the distribution bounds established in the previous subsection, we can provide informative

bounds on many interesting effects other than the average treatment effect. Some illustrative

examples are discussed below, see Heckman, Smith, and Clements (1997) for more examples.

1. The proportion of people participating in the program who benefit from it,

P (Y1 > Y0|D = 1) = P (∆ > 0|D = 1) = 1− F∆(0|D = 1).

2. The proportion of the total population that benefits from the program,

P (Y1 > Y0|D = 1)P (D = 1) = {1− F∆(0|D = 1)}P (D = 1).

3. The share of ‘productive’ workers employed in sector 1,

P (D = 1|Y1 > Y0) =
{1− F∆(0|D = 1)}P (D = 1)

1− F∆(0)
.

3Recently,
£
F−11 (q)− F−10 (q)

¤
has been used to study treatment effect heterogeneity and is referred to as the

quantile treatment effect (QTE), see e.g., Heckman, Smith, and Clements (1997), Abadie, Angrist, and Imbens
(2002), Chen, Hong, and Tarozzi (2004), Chernozhukov and Hansen (2005), Firpo (2005), Imbens and Newey (2005),
among others, for more discussion and references on the estimation of QTE. Manski (1997a) referred to QTE as ∆D-
parameters and the quantile of the treatment effect distribution as D∆-parameters. Assuming monotone treatment
response, Manski (1997a) provided sharp bounds on the quantile of the treatment effect distribution.
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4. The distribution of the potential outcome Y1 of an individual with an above average Y0,

P (Y1 ≤ y1|U0 > 0) =
F1 (y1 − g1(x1, xc))− F10 (y1 − g1(x1, xc), 0)

1− F0(0)
.

5. The variance of the treatment effect,

σ21 + σ20 − 2σ1σ0ρU10 ≤ V ar(∆) ≤ σ21 + σ20 − 2σ1σ0ρL10,

where ρU10 (ρ
L
10) is the correlation coefficient of the distribution FU

10 (F
L
10).

6. The variance of the treatment effect for participants (Lee, 2002),

σ2L,D=1 ≤ V ar(∆|D = 1) ≤ σ2U,D=1,

where

σ2U,D=1 = V ar (Y1|D = 1) + V ar (Y0|D = 1)

−2
Z +∞

−∞

Z +∞

−∞

³
FL
10(y1, y0|D = 1)− F1 (y1|D = 1)F0 (y0|D = 1)

´
dy1dy0,

σ2L,D=1 = V ar (Y1|D = 1) + V ar (Y0|D = 1)

−2
Z +∞

−∞

Z +∞

−∞

³
FU
10(y1, y0|D = 1)− F1 (y1|D = 1)F0 (y0|D = 1)

´
dy1dy0.

Similar techniques used in the previous subsection may help to establish bounds on other para-

meters of interest. For example, the distribution of the potential outcome Y1 of an individual with

an above average Y0 who selects into the program is given by

P (Y1 ≤ y1|D = 1, U0 > 0) =
P (Y1 ≤ y1, ≥ −(w, xc)0γ)−

R∞
−(w,xc)0γ F10| (y1 − g1(x1, xc), 0)dF ( )

P ( ≥ −(w, xc)0γ, U0 > 0)
,

where the probability in the denominator and the first probability in the numerator are identified

from the sample information and the second term in the numerator can be bounded by applying

the Frechet-Hoeffding inequality to F10| (y1 − g1(x1, xc), 0).

4 A Comparison of the two sets of Bounds

The distribution bounds developed in Section 3 depend on the bivariate distributions of {U1i, i}
and {U0i, i} which can be parametric or nonparametric. In this section, we first study these bounds
when {Uji, i}, j = 1, 0, follows either the bivariate normal or bivariate Student’s t distribution and
then compare them with those established in Section 2 for Gaussian or Student’s t models. The

difference between these two sets of bounds is that our bounds are valid for any joint distribution of

the errors {U1i, U0i, i} provided the bivariate marginal distributions corresponding to {U1i, i} and
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{U0i, i} are bivariate normal or bivariate Student’s t, while the bounds in Section 2 depend crucially
on the joint normality or Student’s t distribution for the trio of errors {U1i, U0i, i}. Robustness of
our results to the joint distribution of U1i and U0i is a desirable property, as this joint distribution

is not identifiable from the sample information alone and any distributional assumption imposed

on it can never be verified empirically.

4.1 Bounds on F∆ in Semiparametric SRMs with Bivariate Normal Distribu-
tions

Assume ( i, Uji) follows a bivariate normal distribution:Ã
Uji

i

!
∼ N

"Ã
0
0

!
,

Ã
σ2j σjρj
σjρj 1

!#
.

By making use of the fact that the conditional distribution of Uji given i is normal for j = 0, 1,

we show in Appendix A that the following theorem holds.

THEOREM 4.1 In a SRM with bivariate normal distributions for {Uji, i} for j = 0, 1, we have:

FL
10(y1, y0) =

Z ∞
−∞

max{F1| (y1 − g1(x1, xc)) + F0| (y0 − g0(x0, xc))− 1, 0}dF ( )

= ΦρL

µ
y1 − g1(x1, xc)

σ1
,
y0 − g0(x0, xc)

σ0

¶
, (18)

FU
10(y1, y0) =

Z ∞
−∞

min{F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))}dF ( )

= ΦρU

µ
y1 − g1(x1, xc)

σ1
,
y0 − g0(x0, xc)

σ0

¶
. (19)

We observe immediately that these bounds are the same as the bounds on the joint distribution

of potential outcomes in Gaussian models presented in Section 2. This is interesting, because it

implies that the non-refutable Gaussian assumption on the joint distribution of the potential out-

comes in Gaussian models does not improve on the bounds of this joint distribution. Heuristically,

this is because the conditional copula for {U1i, U0i} given i implied by the trivariate normality as-

sumption in Gaussian models is Gaussian with parameter given by the partial correlation between

U1i and U0i. Since the partial correlation between U1i and U0i ranges from −1 to 1, the conditional
copula for {U1i, U0i} given i interpolates between the lower bound copula to the upper bound

copula, resulting in the same bounds as if the conditional copula for {U1i, U0i} is unrestricted at
all.

The distribution of Uji given i = follows a univariate normal distribution with mean σjρj

and variance σ2j (1− ρ2j ), j = 1, 0. Example 3.1 provides bounds on the distribution of ∆ given ,

i.e., expressions for

sup
u
max

n
F1| (u)− F0| (u− {δ −ATE}), 0

o
17



and

inf
u
min

n
1− F0| (u− {δ −ATE}) + F1| (u), 1

o
in Theorem 3.3. Taking their expectations with respect to leads to the following bounds on F∆(δ).

THEOREM 4.2 In a SRM with bivariate normal distributions for {Uji, i} for j = 0, 1, we have:

(i) If σ1
q
1− ρ21 = σ0

q
1− ρ20 and ρ2j 6= 1, then

FL
∆(δ) = 2

Z
A
Φ

⎛⎝{δ −ATE}− (σ1ρ1 − σ0ρ0 )

2σ1
q
1− ρ21

⎞⎠φ( )d − P (A),

FU
∆ (δ) = 2

Z
AC
Φ

⎛⎝{δ −ATE}− (σ1ρ1 − σ0ρ0 )

2σ1
q
1− ρ21

⎞⎠φ( )d + P (A),

where A = { : {δ −ATE} ≥ (σ1ρ1 − σ0ρ0 ) } and AC is the complement of A.When (σ1ρ1 − σ0ρ0 ) =

0, A is the whole real line if δ ≥ ATE, else A is an empty set;

(ii) If σ1
q
1− ρ21 6= σ0

q
1− ρ20 and ρ2j 6= 1, then

FL
∆(δ) =

Z +∞

−∞
Φ

⎛⎝σ1
q
(1− ρ21 )s− σ0

q
(1− ρ20 )t

σ21(1− ρ21 )− σ20(1− ρ20 )

⎞⎠φ( )d

+

Z +∞

−∞
Φ

⎛⎝σ1
q
(1− ρ21 )t− σ0

q
(1− ρ20 )s

σ21(1− ρ21 )− σ20(1− ρ20 )

⎞⎠φ( )d − 1,

FU
∆ (δ) =

Z +∞

−∞
Φ

⎛⎝σ1
q
(1− ρ21 )s+ σ0

q
(1− ρ20 )t

σ21(1− ρ21 )− σ20(1− ρ20 )

⎞⎠φ( )d

−
Z +∞

−∞
Φ

⎛⎝σ1
q
(1− ρ21 )t+ σ0

q
(1− ρ20 )s

σ21(1− ρ21 )− σ20(1− ρ20 )

⎞⎠φ( )d + 1,

where s = {δ −ATE}− (σ1ρ1 − σ0ρ0 ) and

t =

⎛⎝s2 + 2 hσ21(1− ρ21 )− σ20(1− ρ20 )
i
ln

⎛⎝σ1
q
1− ρ21

σ0
q
1− ρ20

⎞⎠⎞⎠
1
2

.
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In contrast to the sharp bounds on the joint distribution of the potential outcomes in Theorem

4.1, the bounds given above on the distribution of the outcome gain differ from the corresponding

bounds in Gaussian models and are in general wider, because they are valid for any trivariate

distribution with bivariate normal marginals for (U1i, i) and (U0i, i), not necessarily the trivariate

Normal distribution in Gaussian models. On the one hand, imposing the trivariate normality

assumption narrows the width of the bounds, but on the other hand, it may lead to misleading

conclusions if the implied normality assumption for the joint distribution of potential outcomes is

violated. To see the seriousness of this problem, remember in Gaussian models, the value of the

treatment effect distribution at its mean is always identified: F∆(ATE) = 0.5. However, if the joint

distribution of the potential outcomes is unknown, then F∆(ATE) is not identified and the bounds

on F∆(ATE) depend on the parameters of the identified bivariate distributions.

In Figure 1, we plotted the two sets of bounds on F∆(·) in Gaussian models and semiparametric
models with bivariate normal marginals. We fixed ATE = 0, σ21 = 1 and σ

2
0 = 1. For ρ1 = 0.5, we

chose a range of values for ρ0 . We also plotted the bounds when ρ1 = ρ0 = 0. Solid curves are

bounds in Theorem 4.2 assuming bivariate normality (BN) for (Uji, i) only, while dashed curves

are bounds in (6) assuming trivariate normality (TN) for (Uji, U0i, i). Several general conclusions

emerge from Figure 1. First, for any given set of parameter values, the bounds under bivariate

normal marginals are always wider than the bounds under the trivariate normal assumption; Second,

for given δ, the bounds in general become narrower as the dependence between U0i and i as

measured by the magnitude of ρ0 increases except when δ = 0 in Gaussian models in which case

the lower and upper bounds coincide and become 0.5. In the extreme cases where either ρ21 = 1 or

ρ20 = 1, the two sets of bounds coincide and both identify the distribution of ∆. More specifically,

we have

F∆(δ) = FL
∆(δ) = FU

∆ (δ) = Φ

⎛⎝ δ −ATEq
σ21 + σ20 − 2ρ0 σ1σ0

⎞⎠ , if ρ1 = 1, (20)

F∆(δ) = FL
∆(δ) = FU

∆ (δ) = Φ

⎛⎝ δ −ATEq
σ21 + σ20 + 2ρ0 σ1σ0

⎞⎠ , if ρ1 = −1. (21)

To see why, consider ρ1 = 1. Then the conditional distribution of U1i given i = is degenerate at

σ1 . Let Gz(·) denote this degenerate distribution function at z. Then

FL
∆(δ) =

Z +∞

−∞

⎡⎣sup
u
max

⎧⎨⎩Gσ1 (u)− Φ

⎛⎝u− (δ −ATE)− ρ0 σ0

σ0
q
1− ρ20

⎞⎠ , 0

⎫⎬⎭
⎤⎦φ( )d

=

Z +∞

−∞

⎡⎣Φ
⎛⎝δ −ATE − (σ1 − ρ0 σ0)

σ0
q
1− ρ20

⎞⎠⎤⎦φ( )d ,
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FU
∆ (δ) =

Z +∞

−∞

⎡⎣inf
u
min

⎧⎨⎩1− Φ
⎛⎝u− (δ −ATE)− ρ0 σ0

σ0
q
1− ρ20

⎞⎠+Gσ1 (u), 1

⎫⎬⎭
⎤⎦φ( )d

=

Z +∞

−∞

⎡⎣Φ
⎛⎝δ − x(β1 − β0)− (σ1 − ρ0 σ0)

σ0
q
1− ρ20

⎞⎠⎤⎦φ( )d .

Hence F∆(δ) = FL
∆(δ) = FU

∆ (δ). Since

∂F∆(δ)

∂δ
=

Z +∞

−∞

1

σ0
q
1− ρ20

φ

⎛⎝δ −ATE − (σ1 − ρ0 σ0)

σ0
q
1− ρ20

⎞⎠φ( )d

= φ

⎛⎝ δ −ATEq
σ21 + σ20 − 2ρ0 σ1σ0

⎞⎠ ,

we get the result for ρ1 = 1. The result for ρ1 = −1 follows suit. Third, the bounds corresponding
to (ρ1 , ρ0 ) = (0, 0) are wider than the bounds when (ρ1 , ρ0 ) 6= (0, 0), because the former does

not account for the information through self-selection.

To see how these bounds change with the variance parameters. In Figure 2, we plotted the

bounds on F∆(δ) against σ0 at δ = 0, 1, 4 when σ
2
1 = 1, ρ1 = 0.5 and ρ0 = 0.5. One interesting fact

we observe is that the distribution bounds under both trivariate normality and bivariate normality

become wider to some point and then narrower as σ0 goes to ∞.

4.2 Bounds on F∆ in Semiparametric SRMs with Bivariate Student’s t Distri-
butions

Suppose {Uji, i} follows a bivariate Student’s t distribution:(r
v

v − 2
Uji

σj
,

r
v

v − 2 i

)
˜ t[v] (•, •, ρj ) , j = 1, 0.

Then using Example 3.2, we can show:

THEOREM 4.3 In the generalized sample selection model with bivariate Student’s t distributions

for {Uji, i} for j = 0, 1, we have:

FL
10(y1, y0) =

Z ∞
−∞

max{F1| (y1 − g1(x1, xc)) + F0| (y0 − g0(x0, xc))− 1, 0}dF ( )

= T[v]

µr
v

v − 2
(y1 − g1(x1, xc))

σ1
,

r
v

v − 2
(y0 − g0(x0, xc))

σ0
, ρL

¶
, (22)

FU
10(y1, y0) =

Z ∞
−∞

min{F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))}dF ( )

= T[v]

µr
v

v − 2
(y1 − g1(x1, xc))

σ1
,

r
v

v − 2
(y0 − g0(x0, xc))

σ0
, ρU

¶
. (23)
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To derive bounds on the distribution of ∆ in this case, we make use of the fact that Uji| i =
follows the univariate Student’s t distribution with degrees of freedom v + 1, mean σjρj , and

variance σ2j (1− ρ2j )
³
(v−2)+ 2

v−1

´
, j = 1, 0, see Mardia (1970). Example 3.2 provides bounds on the

distribution of ∆ given , i.e., expressions for

sup
u
max

n
F1| (u)− F0| (u− {δ −ATE}), 0

o
and

inf
u
min

n
1− F0| (u− {δ −ATE}) + F1| (u), 1

o
in Theorem 3.3. Taking their expectations with respect to leads to the bounds on F∆(δ).

THEOREM 4.4 In a SRM with bivariate Student’s t distributions for {Uji, i} for j = 0, 1, we
have:

(i) Suppose σ1
q
1− ρ21 = σ0

q
1− ρ20 ≡ σ and ρ2j 6= 1. Let σ = σ

r³
(v−2)+ 2

v−1

´
. Then

FL
∆(δ) = 2

Z
A
T[v+1]

⎛⎝µδ −ATE − (σ1ρ1 − σ0ρ0 )

2σ

¶s
v + 1

v − 1

⎞⎠ t[v]( )d − P (A),

FU
∆ (δ) = 2

Z
AC

T[v+1]

⎛⎝µδ −ATE − (σ1ρ1 − σ0ρ0 )

2σ

¶s
v + 1

v − 1

⎞⎠ t[v]( )d + P (A),

where A = { : {δ −ATE} ≥ (σ1ρ1 − σ0ρ0 ) } and AC is the complement of A.

(ii) Suppose σ1
q
1− ρ21 6= σ0

q
1− ρ20 and ρ2j 6= 1. Let σ1 = σ1

r¡
1− ρ21

¢ ³ (v−2)+ 2

v−1

´
and σ0 =

σ0

r¡
1− ρ20

¢ ³ (v−2)+ 2

v−1

´
. Then

FL
∆(δ) =

Z +∞

−∞
T[v+1]

⎛⎝Ãσ2κ−11 s− σκ−10 σκ−11 t

σ2κ1 − σ2κ0

!s
v + 1

v − 1

⎞⎠ t[v]( )d

+

Z +∞

−∞
T[v+1]

⎛⎝Ãσκ1σκ−10 t− σ2κ−10 s

σ2κ1 − σ2κ0

!s
v + 1

v − 1

⎞⎠ t[v]( )d − 1,

FU
∆ (δ) =

Z +∞

−∞
T[v+1]

⎛⎝Ãσ2κ−11 s+ σκ0σ
κ−1
1 t

σ2κ1 − σ2κ0

!s
v + 1

v − 1

⎞⎠ t[v]( )d

−
Z +∞

−∞
T[v+1]

⎛⎝Ãσκ1σκ−10 t+ σ2κ−10 s

σ2κ1 − σ2κ0

!s
v + 1

v − 1

⎞⎠ t[v]( )d + 1,
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where

s = {(δ −ATE)− (σ1ρ1 − σ0ρ0 ) }, κ =
v + 1

v + 2
,

and

t =
³
s2 +

³
σ2κ1 − σ2κ0

´ ³³
σ
2(1−κ)
1 − σ

2(1−κ)
0

´
(v − 1)

´´ 1
2 .

We evaluated these bounds for the same set of parameters used in the normal case for v = 4, see

Figure 3. The same general qualitative conclusions hold as in the normal case. Comparing Figures

1 and 3, we observe that the degree of freedom parameter has little effect on the bounds at the

ATE, but it has large effect on the bounds away from ATE. This is due to the fact that Student’s

t distribution has fatter tails than the normal distribution.

4.3 Bounds on F∆(·|D = 1) and the Propensity Score

In a SRM, the propensity score is given by

P (D = 1|W,Xc) = P ( > − (W,Xc)
0 γ) = 1− F (− (W,Xc)

0 γ).

Hence the smaller the value of (W,Xc)
0 γ, the less likely the individual with the value of (W,Xc)

0 γ

will participate in the program or the smaller the propensity score. Since there is a one-to-one

relation between the propensity score and (W,Xc)
0 γ, we can group individuals in the population

via their propensity score. For a given value of the propensity score, Theorem 3.3 (ii) provides sharp

bounds on the distribution of ∆ for participants with the given propensity score in semiparametric

SRMs. Figure 4 depicts the distribution bounds for ∆ for participants with (W,Xc)
0 γ = −1.28 or

propensity score 0.1. Figures 4(a) and 4(b) are based on the normal assumption, while Figures 4(c)

and 4(d) are based on the Student’s t assumption with degree of freedom 4. We observe that the

distribution bounds in Student’s t case are generally wider than those in normal case. Moreover,

plots with different values of the propensity score and/or the degree of freedom in the Student’s t

case reveal that the degree of skewness of each bound increases as the propensity score decreases

and the bounds get tighter as the degree of freedom increases.

One important and potentially useful application of the distribution bounds established in

Theorem 3.3 (ii) is to predict or bound the probability that an individual with a given propensity

score will benefit from participating in the program. Note that

FL
∆(0|D = 1) ≤ P (∆ ≤ 0|D = 1) ≤ FU

∆ (0|D = 1).

Hence 1−FL
∆ (0|D = 1) is the maximum probability that an individual with a given propensity score

will benefit from participating in the program and 1 − FU
∆ (0|D = 1) is the minimum probability

that an individual with a given propensity score will benefit from participating in the program. To
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see how these probabilities change with respect to the propensity score, we plotted them against

the propensity score in SRMs with bivariate normal distributions in Figures 5(b)-10(b). The

expressions4 for FL
∆(δ|D = 1) and FU

∆ (δ|D = 1) are derived by using Theorem 3.3 (ii) and a similar

argument to Theorem 4.2. Using these expressions, one can show5 that the bounds FL
∆(δ|D = 1)

and FU
∆ (δ|D = 1) approach either 0 or 1 as the propensity score approaches zero. As a result, the

bounds are informative for individuals with low propensity score and once they participate, with

high probability, they either get hurt or benefit from the treatment.

In a SRM with bivariate normal distributions, TT is given by

TT = ATE + (ρ1 σ1 − ρ0 σ0)λ
³
(W,Xc)

0 γ
´
,

where λ (·) is the inverse mills ratio. For a given value of (W,Xc)
0 γ or a given value of the propensity

score, TT measures the average treatment effect for the subpopulation of participants with the given

propensity score. It is composed of two terms: the first term is the average treatment effect for

the population with covariates X1,X0,Xc,W and the second term is the effect due to selection on

unobservables. Figures 5(a)-10(a) plotted TT and the second term in TT due to unobservables

against the propensity score. Also plotted in each graph are the bounds on the median of the

distribution F∆(·|D = 1).

In Figures 5 and 6, ATE is zero. In Figure 5, (ρ1 , ρ0 ) = (0.5,−0.5) and TT is non-negative for
all values of the propensity score. However, when the propensity score is greater than 0.54, there is a

positive probability that an individual with the given propensity score will get hurt by participating

in the program. This probability increases as the value of the propensity score increases. And for

all values of the propensity score, there is always a positive probability that an individual with

the given propensity score will benefit from participating in the program and this probability

decreases as the value of the propensity score increases. Consequently, people with low propensity

score would benefit from the program with high probability once they participate. In Figure 6,

(ρ1 , ρ0 ) = (−0.5, 0.5) and TT is non-positive for all values of the propensity score. However, when
the propensity score is less than 0.54, there is a positive probability that an individual with the

given propensity score will benefit from participating in the program and this probability increases

as the value of the propensity score increases. In addition, for all values of the propensity score,

there is always a positive probability that an individual with the given propensity score will get

hurt from participating in the program and this probability decreases as the value of the propensity

score increases. The seemingly reversal roles of the two probabilities in Figures 5 and 6 are due to

the reversal of the correlation values. Consider Figure 5 with (ρ1 , ρ0 ) = (0.5,−0.5). Heuristically,
for small values of the propensity score, individuals participating in the program tend to have large

selection errors . Given the positive correlation between Y1 and , Y1 would tend to be large

4They are tedious and hence not provided here, but they are available upon request.
5The proofs are elementary, but tedious. They are available upon request.
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for those participants. By the same token, the negative correlation between Y0 and imply small

Y0. As a result, ∆ tend to be large for participants with small propensity score. Figures 5 and 6

demonstrate clearly that average treatment effect parameters such as ATE and TT do not provide

a complete picture of the effects of treatment when there is selection on unobserved variables, and

the distribution bounds we established in this paper provide useful information that are missed by

ATE and TT .

Figures 7 and 8 further support the conclusions we drew from Figures 5 and 6. They are similar

to Figures 5 and 6 except that ATE = −0.5 in Figure 7 and ATE = 0.5 in Figure 8. In both

figures, TT is positive for some values of the propensity score and negative for other values of the

propensity score. The patterns of
h
1− FL

∆(0|D = 1)
i
and

h
1− FU

∆ (0|D = 1)
i
as functions of the

propensity score remain the same as in Figures 5 and 6. It is interesting to observe from Figures 7

and 8 that even when the ATE for the whole population is negative (−0.5) or positive (0.5), some
subpopulations (those with the propensity score greater or less than 0.73) will in general benefit

or get hurt from the program if they join the program. The proportion of people in each subgroup

who will benefit or get hurt from being in the program will also change with the level of ATE.

In Figures 9 and 10, we increased ρ1 to 0.95. Comparing these figures with Figures 5-8, we see

clearly that the distribution bounds get tighter as ρ1 (ρ0 ) gets larger. When the magnitudes of

ρ1 , ρ0 are the same, the bounds are more informative when ρ1 and ρ0 have different signs than

when they have the same sign.

Summarizing Figures 5-10, we conclude that the unobserved selection error has a large effect on

those with low propensity score. That is, those who are less likely to participate in the program will

most likely be affected by the program once they participate in the program. Whether they gain or

lose from participating in the program once they participate depends on the sign of (ρ1 σ1 − ρ0 σ0).

5 An Empirical Application

The effect of literacy on the wages of child labourers has been studied in Poirier and Tobias (2003)

and Smith (2005) using SRMs. In terms of our notation, D = 1 if the child is literate; D = 0 if the

child is illiterate. The logarithm of current weekly wage earnings was then modelled for the literate

group (Y1) and for the illiterate group (Y0). Poirier and Tobias (2003) analyzed a portion of the

survey data from the database collected by New Jersey Bureau of Statistics of Labor and Industrials

in 1903. Using the Normal SRM, they find a positive but insignificant ATE. Smith (2005) uses

the same data source with more observations by including female child labourers, resulting in 873

observations in total. The covariates used in Smith (2005) are described as follows: Labour market

experience (experience) is current age less age at which work was begun; Literacy S is the self-

reported ability to read, write and do math; Years of education (Dedu) and its square (Dedu2) are

measured as deviations about the sample mean (5.61 years) to get rid of the collinearity. The data
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sample statistics are presented in the following table.

Table 1: Sample Data Statistics
Name Mean Std dev Min Max

Weekly Wage($) 4.68 1.63 1.57 17.50

Literacy (Yes= 1, No= 0) 0.795 0.405 0 1

Sex (Female= 1, Male= 0) 0.48 0.500 0 1

Age (years) 15.50 1.16 12 19

Education (years) 5.61 1.98 0.25 8

Age Began work (years) 13.04 0.88 10 16

Experience (years) 2.45 1.01 0 7

In addition to the Normal SRM, Smith (2005) also estimated several other models constructed

using the copula approach, see Smith (2003, 2005) for a detailed introduction to copula-based sam-

ple selection models or SRMs. To summarize it briefly, each pair of errors {Uji, i} in a copula-based
SRM is assumed to follow a bivariate distribution of the form: Cj(Fj(u, αj), F ( , α), θj), j = 1, 0,

where Cj(u, v, θj): 0 ≤ u, v ≤ 1, is a copula function with parameter θj and Fj(u,αj), F ( , α) are

univariate distribution functions with {F ( , α) : α ∈ A} being any family of parametric distribu-
tion functions with zero mean and variance 1 and {Fj(u, αj) : αj ∈ Aj} any family of parametric
distribution functions with zero mean and variance σ2j , j = 1, 0. By Sklar’s theorem, F ( , α) and

Fj(u, αj) are respectively the distribution functions of i and Uji.

In Smith (2005), the marginal distributions F ( , α) and Fj(u, αj) are chosen to be normal, the

same as those in Poirier and Tobias (2003), but the copula function is selected from several copula

families including the Gaussian copulas for both {U1i, i} and {U0i, i} and various combinations
of copulas in the Archimedean family. Using the maximum likelihood estimation and AIC, Smith

(2005) finds that among the models considered, the model that fits the data best is the Gumbel-

Clayton model in which the copula of {U1i, i} is the Gumbel copula and the copula of {U0i, i} is
the Clayton copula:

C1(u, v, θ1) = exp

µ
−
h
{− log u}θ1 + {− log v}θ1

i1/θ1¶
, 1 ≤ θ1 <∞,

C0(u, v, θ0) =
³
u−θ0 + v−θ0 − 1

´−1/θ0
, 0 ≤ θ0 <∞.

The maximum likelihood estimation results with t-statistics in the parentheses appear in the fol-

lowing table.

As reported in Smith (2005), the Gumbel-Clayton model leads to a significant negative estimate

for ATE. We now extend Smith’s study by going beyond ATE to provide bounds on the distribu-

tion of the treatment effect for different subpopulations. The ATE conditional on the propensity

score varies with the covariates, thus we use the ATE for the whole population, the maximum and

minimum ATE among the sample covariates to construct the distribution bounds for each subpop-

ulation. We plot TT for different subgroups corresponding to different values of the propensity
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Table 2: ML Estimation Results
Selection 1 Sex DEdu DEdu2

0.887 (12.23) 0.063 (0.71) −0.080 (−4.13) −0.032 (−3.81)
Y1 1 Sex Experience σ1

1.086 (38.08) −0.010 (−0.46) 0.138 (14.60) 0.314 (31.24)

Y0 1 Sex Experience σ0
1.373 (25.66) 0.071 (1.93) 0.154 (9.75) 0.322 (11.02)

Copula Parameters Gumbel: θ1 Clayton: θ0
5.239 (7.68) 2.736 (5.50)

score and the bounds on the probability that a person in the subgroup benefits from being literate,

see Figures 11-13. Focusing on the sample propensity score range ([0.65, 0.84]), the three graphs

do not show much difference. The choice of the conditional ATE only causes around 5 percent

difference in the upper bound and 1 percent difference in the lower bound on the proportion who

benefit from being literate. All three graphs show that in the relevant range for the propensity

score, the average effect of being literate on weekly wages is negative. Figure 11 reveals that for

subpopulations with the propensity score greater than 0.6, a large proportion (over 70%) in the

subpopulation get hurt from being literate. However, there is a positive proportion who benefit

from being literate. Subpopulations with low propensity score (e.g., less than 0.05) on average

benefit from being literate and at least 45% of the subgroups surely benefit from being literate.

Based on estimates of the model parameters, we computed estimates of ρ1 and ρ0 . They are

respectively 0.9503 and 0.7561, resulting in an estimate 0.5149 for ρL and an estimate 0.9222 for

ρU . We know that these bounds are not sharp. The sharp bounds are given by the correlation

coefficients of FL
10 and F

U
10 respectively, see Theorem 3.1 and are estimated to be 0.5404 and 0.8795.

Both sets of bounds strongly suggest that the weekly wage earnings of an individual in two states

are positively related.

6 Conclusion

In this paper we have established sharp bounds on distributions of the treatment effect in SRMs

where the identified distributions can take any parametric form or even be nonparametric. The

means of these distributions correspond to various average treatment effects that have received most

attention in the literature. While our results can be seen as extensions of similar results already

established for the Gaussian SRM, they are established using a completely different approach; the

existing approach based on the positive semidefiniteness of the covariance matrix does not work in

general. Moreover, our sharp bounds do not depend on any parametric specification of either the

outcome or the selection equations or any parametric specification of the bivariate distributions, as

long as they are identified.
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As a first step, this paper has focused on identification. Estimation of the distribution bounds

developed in Section 3 is straightforward in view of the identification results in Heckman (1990)

and existing work on estimation of parametric/semiparametric sample selection models. Heckman

(1990) provides a review of various nonparametric/semiparametric methods for estimating g1(x1, xc)

and g0(x0, xc) without specifying the bivariate margins for (U1i, i) and (U0i, i), see also Ai (1997),

Andrews and Schafgans (1998), Schafgans and Zinde-Walsh (2002), Das, Newey, and Vella (2003),

Chen (2006), and Chen and Zhou (2006). Gallant and Nychka (1987) provide estimators of the

unknown marginal distributions F1 and F0 .

Given the bounds established in Section 3, statistical inference on the distribution of the treat-

ment effect falls in a currently active research area: inference on partially identified parameters, see

e.g., Imbens and Manski (2004), Chernozhukov, V., H. Hong and E. Tamer (2004), and Romano

and Shaikh (2006). A complete treatment of this important issue for SRMs is beyond the scope of

this paper and left for future research.
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Appendix A: Technical Proofs

Proof of Corollary 4.1 (18): Let uj = yj − x0βj for j = 1, 0. Note that

FL
10(u1, u0) =

Z ∞
−∞

max{F1| (u1| ) + F0| (u0| )− 1, 0}dF ( )

=

Z ∞
−∞

max

⎧⎨⎩Φ(u1 − ρ1 σ1

σ1
q
1− ρ21

),Φ(−u0 − ρ0 σ0

σ0
q
1− ρ20

)

⎫⎬⎭ dΦ( ) + Φ(
u0
σ0
)− 1.

Let a∗ = a(u1, u0) satisfy

u1 − ρ1 σ1a
∗

σ1
q
1− ρ21

= −u0 − ρ0 σ0a
∗

σ0
q
1− ρ20

.

Then

a∗ =

q
1− ρ21 ū0 +

q
1− ρ20 ū1q

1− ρ2L

, (A.1)

where ū1 =
u1
σ1
and ū0 =

u0
σ0
, and

FL
10(u1, u0)

=

Z a∗

−∞
Φ(

u1 − ρ1 σ1

σ1
q
1− ρ21

)dΦ( ) +

Z ∞
a∗
Φ(−u0 − ρ0 σ0

σ0
q
1− ρ20

)dΦ( ) + Φ(
u0
σ0
)− 1.

Hence,

∂FL
10(u1, u0)

∂u1
=

∂a∗

∂u1
Φ(

u1 − ρ1 σ1a
∗

σ1
q
1− ρ21

)φ(a∗) +
Z a∗

−∞

1

σ1
q
1− ρ21

φ(
u1 − ρ1 σ1

σ1
q
1− ρ21

)φ( )d

−∂a
∗

∂u1
Φ(−u0 − ρ0 σ0a

∗

σ0
q
1− ρ20

)φ(a∗)

=
1

σ1
q
1− ρ21

Z a∗

−∞
φ(

u1 − ρ1 σ1

σ1
q
1− ρ21

)φ( )d

and

∂2FL
10(u1, u0)

∂u1∂u0
=

1

σ1
q
1− ρ21

∂a∗

∂u0
φ(

u1 − ρ1σ1a
∗

σ1
q
1− ρ21

)φ(a∗). (A.2)

It follows from (A.1) that

∂a∗

∂u0
=

q
1− ρ21

ρ0 σ0
q
1− ρ21 + ρ1 σ0

q
1− ρ20

.

Tedious, but straightforward algebra shows:⎛⎝u1 − ρ1 σ1a
∗

σ1
q
1− ρ21

⎞⎠2 + a∗2 =
ū21¡

1− ρ2L
¢ − 2ρLū1ū0¡

1− ρ2L
¢ + ū20¡

1− ρ2L
¢ .
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Consequently,

∂2FL
10(u1, u0)

∂u1∂u0

=
1

2πσ1σ0

∙
ρ0
q
1− ρ21 + ρ1

q
1− ρ20

¸ expÃ− ū21 − 2ρLū1ū0 + ū20
2
¡
1− ρ2L

¢ !

= φρL(
u1
σ1

,
u0
σ0
).

Proof of Corollary 4.1 (19): It is similar to the proof of (18). We only provide a sketch.

Note that

FU
10(u1, u0) =

Z ∞
−∞

min{Φ(u1 − ρ1 σ1

σ1
q
1− ρ21

),Φ(
u0 − ρ0 σ0

σ0
q
1− ρ20

)}dΦ( ).

Let a∗ = a(u1, u0) satisfy

u1 − ρ1 σ1a
∗

σ1
q
1− ρ21

=
u0 − ρ0 σ0a

∗

σ0
q
1− ρ20

.

Then

a∗ =

q
1− ρ21 ū0 −

q
1− ρ20 ū1q

1− ρ2U

.

Without loss of generality, we assume ρ1√
1−ρ21

≤ ρ0√
1−ρ20

. Then

FU
10(u1, u0) =

Z a∗

−∞
Φ(

u1 − ρ1 σ1

σ1
q
1− ρ21

)dΦ( ) +

Z ∞
a∗
Φ(

u0 − ρ0 σ0

σ0
q
1− ρ20

)dΦ( ).

It follows that

∂2FU
10(u1, u0)

∂u1∂u0
=

1

σ1
q
1− ρ21

∂a∗

∂u0
φ(

u1 − ρ1 σ1a
∗

σ1
q
1− ρ21

)φ(a∗).

The result follows from

∂a∗

∂u0
=

q
1− ρ21

ρ0 σ0
q
1− ρ21 − ρ1 σ0

q
1− ρ20

,

and ⎛⎝u1 − ρ1 σ1a
∗

σ1
q
1− ρ21

⎞⎠2 + a∗2 =
ū21 − 2ρU ū1ū0 + ū20

1− ρ2U
.

2
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Appendix B: Distribution Bounds Corresponding to LATE and
MTE

Sharp bounds on the distribution of the treatment effect corresponding to LATE and MTE in

SRMs can be established using the methods in Sections 2 and 3 for Gaussian SRM and semipara-

metric SRMs respectively. For example, for the Gaussian SRM, Poirier and Tobias (2003) provided

the distribution of ∆ conditional on X = x corresponding to LATE and MTE:

LATE : F
∆|x,− eW 0γ≤ ≤−W 0γ

(δ)

=

R δ
−∞

1
γ2
φ
³
ζ−x0(β1−β0)

γ2

´⎡⎣Φ
⎛⎝ γ1

γ2
2

(ζ−x0(β1−β0))+ eW 0γ
√
1−γ21/γ22

⎞⎠−ΦÃ γ1
γ2
2

(ζ−x0(β1−β0))+W 0γ
√
1−γ21/γ22

!⎤⎦ dζ
Φ
³fW 0γ

´
− Φ (W 0γ)

,

MTE: F∆|x, =−W 0γ(δ) =

Z δ

−∞

1

γ2
q
1− γ21/γ

2
2

φ

⎛⎝ζ − x0(β1 − β0) + γ1W
0γ

γ2
q
1− γ21/γ

2
2

⎞⎠ dζ.

Taking the minimum and maximum of the above expressions results in sharp bounds on F
∆|x,− eW 0γ≤ ≤−W 0γ

(δ)

and F∆|x, =−W 0γ(δ) respectively.

In general SRMs, we have

THEOREM B.1

(i) LATE: The joint distribution of potential outcomes corresponding to LATE satisfies

FL
10(y1, y0|− (fWi, eXci)

0γ ≤ i ≤ −(Wi,Xci)
0γ) ≤

FY
10(y1, y0|− (fWi, eXci)

0γ ≤ i ≤ −(Wi,Xci)
0γ) ≤

FU
10(y1, y0|− (fWi, eXci)

0γ ≤ i ≤ −(Wi,Xci)
0γ),

where

FL
10(y1, y0|− (fWi, eXci)

0γ ≤ i ≤ −(Wi,Xci)
0γ)

=

R−(Wi,Xci)
0γ

−( eWi, eXci)0γ
CL

³
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

´
dF ( )

F (−(Wi,Xci)0γ)− F (−(fWi, eXci)0γ)
,

FU
10(y1, y0|− (fWi, eXci)

0γ ≤ i ≤ −(Wi,Xci)
0γ)

=

R−(Wi,Xci)0γ

−( eWi, eXci)0γ
CU

³
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

´
dF ( )

F (−(Wi,Xci)0γ)− F (−(fWi, eXci)0γ)
.

(ii) MTE: The joint distribution of potential outcomes corresponding to MTE satisfies

FL
10(y1, y0| i = −(Wi,Xci)

0γ) ≤ F Y
10(y1, y0| i = −(Wi,Xci)

0γ)

≤ FU
10(y1, y0| i = −(Wi,Xci)

0γ),
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where

FL
10(y1, y0| i = −(Wi,Xci)

0γ)

= CL

³
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

´
,

FU
10(y1, y0| i = −(Wi,Xci)

0γ)

= CU

³
F1| (y1 − g1(x1, xc)), F0| (y0 − g0(x0, xc))

´
.

(iii) LATE: The distribution of ∆ associated with the LATE satisfies

FL
∆(δ|− fW 0

iγ ≤ i ≤ −W 0
iγ) ≤ F∆(δ|− fW 0

iγ ≤ i ≤ −W 0
iγ) ≤ FU

∆ (δ|− fW 0
iγ ≤ i ≤ −W 0

iγ),

where

FL
∆(δ|− fW 0

iγ ≤ i ≤ −W 0
iγ)

=

R−W 0
iγ

− eW 0
iγ

∙
sup
u
max

n
F1| (u)− F0| (u− {δ − [g1(x1, xc)− g0(x0, xc)]}), 0

o¸
dF ( )

F (−W 0
iγ)− F (−fW 0

iγ)
,

FU
∆ (δ|− fW 0

iγ ≤ i ≤ −W 0
iγ)

=

R−W 0
iγ

− eW 0
iγ

h
inf
u
min

n
1− F0| (u− {δ − [g1(x1, xc)− g0(x0, xc)]}) + F1| (u), 1

oi
dF ( )

F (−W 0
iγ)− F (−fW 0

iγ)
.

(iv) MTE: The distribution of ∆ associated with the MTE satisfies

FL
∆(δ| i = −W 0

iγ) ≤ F∆(δ| i = −W 0
iγ) ≤ FU

∆ (δ| i = −W 0
iγ),

where

FL
∆(δ| i = −W 0

iγ)

= sup
u
max

n
F1| (u)− F0| (u− {δ − [g1(x1, xc)− g0(x0, xc)]}), 0

o
,

FU
∆ (δ| i = −W 0

iγ)

= inf
u
min

n
1− F0| (u− {δ − [g1(x1, xc)− g0(x0, xc)]}) + F1| (u), 1

o
.
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Figure 1: Sharp bounds on the distribution of the treatment effect, σ1 = σ0 = 1. Dashed curves
are bounds under the trivariate normality assumption for (U1i, U0i, i) and solid curves are bounds
assuming bivariate normality for (Uji, i), j = 1, 0.
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Figure 2: Sharp bounds on the distribution of the treatment effect at a given δ – σ1 = 1, ρ1ε = 0.5,
and ρ0ε = 0.5. Dashed curves are bounds under the trivariate normality assumption for (U1i, U0i, i)
and solid curves are bounds assuming bivariate normality for (Uji, i), j = 1, 0.
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Figure 3: Sharp bounds on the distribution of the treatment effect, σ1 = σ0 = 1. Dashed curves are
bounds assuming (U1i, U0i, i) follows trivariate Student’s t distribution with 4 degrees of freedom
and solid curves are bounds assuming (Uji, i) follows bivariate Student’s t distribution with 4
degrees of freedom.
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Figure 4: Sharp bounds on the distribution of the treatment effect for the treated – ATE = 0,
σ1 = σ0 = 1, and the Propensity Score = 0.1. In (a) and (c), ρ1ε = 0.5 and ρ0ε = −0.5, while in
(b) and (d), ρ1ε = ρ0ε = 0.5.
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Figure 5: Treatment effect for the treated for subpopulations and the probability that a person
in a subpopulation benefits from the treatment, where ATE = 0, ρ1ε = 0.5, ρ0ε = −0.5, and
σ1 = σ0 = 1.
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Figure 6: Treatment effect for the treated for subpopulations and the probability that a person
in a subpopulation benefits from the treatment, where ATE = 0, ρ1ε = −0.5, ρ0ε = 0.5, and
σ1 = σ0 = 1.
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Figure 7: Treatment effect for the treated for subpopulations and the probability that a person
in a subpopulation benefits from the treatment, where ATE = −0.5, ρ1ε = 0.5, ρ0ε = −0.5, and
σ1 = σ0 = 1.
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Figure 8: Treatment effect for the treated for subpopulations and the probability that a person
in a subpopulation benefits from the treatment, where ATE = 0.5, ρ1ε = −0.5, ρ0ε = 0.5, and
σ1 = σ0 = 1.
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Figure 9: Treatment effect for the treated for subpopulations and the probability that a person
in a subpopulation benefits from the treatment, where ATE = 0, ρ1ε = 0.95, ρ0ε = −0.5, and
σ1 = σ0 = 1.
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Figure 10: Treatment effect for the treated for subpopulations and the probability that a person
in a subpopulation benefits from the treatment, where ATE = 0, ρ1ε = 0.95, ρ0ε = 0.5, and
σ1 = σ0 = 1.
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Figure 11: Treatment effect for the treated for subpopulations and the probability that a child
laborer in a subpopulation benefits from being literate, where ATE =Conditional Mean, ρ1ε =
0.9503 (θ1 = 5.239), ρ0ε = 0.7561 (θ0 = 2.736), σ1 = 0.314, σ0 = 0.322.
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Figure 12: Treatment effect for the treated for subpopulations and the probability that a child
laborer in a subpopulation benefits from being literate, where ATE =Maximum possible ATE
(−0.2870), ρ1ε = 0.9503 (θ1 = 5.239), ρ0ε = 0.7561 (θ0 = 2.736), σ1 = 0.314, σ0 = 0.322.
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Figure 13: Treatment effect for the treated and the probability that a child laborer in a sub-
population benefits from being literate, where ATE =Minimum possible ATE (−0.4480), ρ1ε =
0.9503 (θ1 = 5.239), ρ0ε = 0.7561 (θ0 = 2.736), σ1 = 0.314, σ0 = 0.322.
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