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1 Introduction

In the past twenty years, the term structure literature has developed independently of

the macro-economic literature. While various arbitrage-free models have been shown to

account quite well for yields dynamics � including a¢ ne, quadratic and regime switches

models �these models have largely ignored the microfoundations of the stochastic discount

factor used by the market to price bonds. They have also largely ignored the fact that

the short term nominal interest rate, whose expected future values shape the whole yield

curve, also plays an important macroeconomic role as a monetary policy instrument.

Yet there is a clearly established empirical relationship between monetary policy and

the term structure of interest rates. For example, Mankiw and Miron (1986) points out

that the yield curve used to behave di¤erently � i.e. in a way more consistent with the

so-called expectations hypothesis1 �before the founding of the Fed in 1913. Cochrane

(2008) highlights an even starker structural break in 1933, with the shift from the Gold

standard to an interest rate targeting regime. Contrary to the recent experience, long

bond yields were systematically below short rates before 1933; also, long yields were much

less volatile, and short rates much more volatile, than what is the case in post-WWII data.

The aforementioned stylised facts suggest that the monetary policy should play a

central role in models of the term structure of interest rates, because it a¤ects the structural

relationship betweeen developments in in�ation and economic activity and the behaviour

of the term structure . Conversely, the behaviour of the yield curve can provide useful

information on market perceptions of the monetary policy rule followed by the central

bank, insofar as the latter contributes to shape expected future short rates and term

premia.

Calibrated versions of a new generation of DSGE models have been shown to be ca-

pable of producing roughly realistic implications for some unconditional moments of the

term structure of interest rates, including slope and volatility, provided they are solved

using second-order approximations or higher (see e.g. Hördahl, Tristani and Vestin, 2008;

Ravenna and Seppala, 2007a, 2007b; Rudebusch and Swanson, 2009). In this paper,

we take these models further and explore their ability to match conditional moments of

macroeconomic and term structure data when they are estimated using full information

1"The expectations hypothesis, in the broadest terms, asserts that the slope of the term structure has

something to do with expectations about future interest rates" (Shiller, 1990, p. 644)
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methods.

One problem from this perspective is that models solved to a second-order approxima-

tion can only generate constant risk-premia, while the �nance literature has highlighted

the importance of allowing for time-variation in risk premia to match the conditional fea-

tures of yields �see e.g. Dai and Singleton (2002). In order to allow for time-variation

in risk premia, we assume heteroskedasticity in the model�s structural shocks, i.e. time-

variation in the "amount of risk" faced by bond-holders at any point in time.2 We assume

that heteroskedasiticy takes the speci�c form of regime switching. Moreover, the assump-

tion of regime switching has already been shown to help �t yields in the �nance literature

� see Hamilton (1988), Naik and Lee (1997), Ang and Bekaert (2002a,b), Bansal and

Zhou (2002), Bansal, Tauchen and Zhou (2004), Ang, Bekaert and Wei (2008), Dai, Sin-

gleton and Yang (2008), Bikbov and Chernov (2008) � and is also increasingly used in

macroeconomics following Sims and Zha (2007).

We demonstrate analytically that, when combined with a second order approximation

of the solution, this feature leads to changes in risk premia at the time of switches in

regimes. More speci�cally, regime changes generate variations in the prices of risk, which

are entirely consistent with the microfoundations of the model. While this mechanism does

not explain why risk premia vary, it forces their variation to be consistent with changes in

the volatility of macro variables.

The second novelty of our model is a generalisation of the preferences proposed by

Epstein and Zin (1989) and Weil (1990) to include habit persistence. Epstein-Zin-Weil

preferences are quite standard in the �nance literature �see e.g. Campbell (1999) �and

they have already been successfully used to model yields in a partial equilibrium model

by Piazzesi and Schneider (2006) and, more recently, Bansal and Shaliastovich (2008).

Gallmeyer et al. (2007), Backus, Routledge and Zin (2007) and Rudebusch and Swanson

(2009) have used these preferences in calibrated models. Binsbergen et al. (2008) is

the only other application that we are aware of which estimates a DSGE model with

2The �nance literature, especially in a¢ ne term structure models, emphasises instead time-variations in

risk premia due to changed in the "price of risk". Time variations in the price of risk can be produced within

general equilibrium models if they are solved up to a third order approximation (or higher). This approach

is pursued in Ravenna and Seppala (2007a, b), Rudebusch, Sack and Swanson (2007) and Rudebusch and

Swanson (2007, 2008). However, these papers are purely theoretical: the estimation of DSGE models

solved using third order approximations appears to be infeasible at this point in time.
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Epstein-Zin preferences. However, this paper relies on a benchmark RBC model and is

therefore not suitable to analyse the interaction between monetary policy, in�ation risk

and consumption risk in the determinatino of risk premia.

Our empirical results are based on US data on aggregate consumption, GDP, in�ation,

the short-term interest rate and yields on 3-year and 10-year yields. The sample period

runs from 1966Q1 until 2009Q1.

We �nd considerable support for a speci�cation with regime switches. The residuals

of the model show clear signs of heteroskedasticity, which could not be accounted for in

a model with homoskedastic shocks. The model with regime switching can also �t yields

reasonably well.

More speci�cally, we �nd strong evidence of time variability in expected excess holding

period returns. Prema tend to be higher in the eighties, and display �uctuations which

can be associated with the economic cycle. Volatility in premia is mainly linked to regime

switches in the variance of technology shocks.

Our model is related to a growing literature exploring empirically the term structure

implications of new-Keynesian models. The closest papers to ours is Doh (2006), which

also estimates a quadratic DSGE model of the term structure of interest rates with het-

eroskedastic shocks. However, Doh (2006) allows for additional non-structural parameters

to model the unconditional slope of the yield curve, while our approach is fully theoretically

consistent. Another di¤erence between the two papers is that heteroskedasticity in Doh

(2006) is modelled through ARCH shocks, while it is generated by regime switching in our

case. Andreasen (2008) shows that the estimation of a richer term structure model, which

includes capital accumulation, is feasible to second order. However, the model cannot

generate time-variation in risk premia because shocks are homoskedastic. Bekaert, Cho

and Moreno (2006) and De Graeve, Emiris and Wouters (2007) estimate the loglinearised

reduced form of DSGE models using both macroeconomic and term structure data. As in

Doh (2006), these papers do not impose theoretical restrictions on the unconditional slope

of the yield curve. In addition, they assume at the outset that risk-premia are constant.
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2 The model

We rely on a relatively standard model in the spirit of Woodford (2003). The central

feature is the assumption of nominal rigidities.

We only deviate from the standard model in postulating that households�preferences

can be described by the non-expected utility speci�cation proposed by Epstein and Zin

(1989) and Weil (1990). This speci�cation is quite standard in the consumption-based

asset pricing literature and it has already been employed to analyse the term structure

of interest rate in a partial equilibrium model by Piazzesi and Schneider (2006). Here we

extend this speci�cation to a general equilibrium model in which we also allow for habit

persistence in consumption and a labour-leisure choice �see also Backus, Routledge and

Zin (2004, 2005). Rudebusch and Swanson (2009) also use non-expected utility preferences

in a model similar to ours, but that paper relies on the assumption of homoskedastic shocks.

2.1 Households

We assume that each household i provides N (i) hours of di¤erentiated labor services to

�rms in exchange for a labour income wt (i)Nt (i). Each household owns an equal share

of all �rms j and receives pro�ts
R 1
0 �t (j)dj.

As in Erceg, Henderson and Levin (2000), an employment agency combines households�

labor hours in the same proportions as �rms would choose. The agency�s demand for each

household�s labour is therefore equal to the sum of �rms�demands. The labor index Lt

has the Dixit-Stiglitz form Lt =

�R 1
0 Nt (i)

�w;t�1
�w;t di

� �w;t
�w;t�1

where �w;t > 1 is subject to

exogenous shocks. At time t, the employment minimizes the cost of producing a given

amount of the aggregate labor index, taking each household�s wage rate wt (i) as given and

then sells units of the labor index to the production sector at the aggregate wage index

wt =
hR 1
0 w (i)

1��w;t di
i 1
1��w;t . The employment agency�s demand for the labor hours of

household i is given by

Nt (i) = Lt

�
wt (i)

wt

���w;t
(1)

Each household i maximizes its intertemporal utility with respect to consumption, the

wage rate and holdings of contingent claims, subject to its labor demand function (1) and

the budget constraint

PtCt (i) + EtQt;t+1Wt+1 (i) �Wt (i) + wt (i)Nt (i) +

Z 1

0
�t (j) dj (2)

5



where Ct is a consumption index satisfying

Ct =

�Z 1

0
Ct (z)

��1
� dz

� �
��1

(3)

Wt denotes the beginning-of-period value of a complete portfolio of state contingent assets,

Qt;t+1 is their price, wt (i) is the nominal wage rate and �t (j) are the pro�ts received from

investment in �rm j. The price level Pt is de�ned as the minimal cost of buying one unit

of Ct, hence equal to

Pt =

�Z 1

0
p (z)1�� dz

� 1
1��

: (4)

Equation (2) states that each household can only consume or hold assets for amounts

that must be less than or equal to its salary, the pro�ts received from holding equity in

all the existing �rms and the revenues from holding a portfolio of state-contingent assets.

Households�preferences are described by the Kreps and Porteus (1978) speci�cation

proposed by Epstein and Zin (1989). In that paper, utility is de�ned recursively through

the aggregator U such that

U
h
Ct;
�
EtV

1�
t+1

�i
=

�
(1� �)C1� t + �

�
EtV

1�
t+1

� 1� 
1�
� 1

1� 

,  ;  6= 1 (5)

where �;  and  are positive constants. Using a speci�cation equivalent to that in equation

(5), Weil (1990) shows that � is, under certainty, the subjective discount factor, but time

preference is in general endogenous under uncertainty. The parameter  is the relative

risk aversion coe¢ cient for timeless gambles. The parameter 1= measures the elasticity

of intertemporal of substitution for deterministic consumption paths.

The distinguishing feature of the Epstein-Zin-Weil preferences, compared to the stan-

dard expected utility speci�cation, is that the coe¢ cient of relative risk aversion can di¤er

from the reciprocal of the intertemporal elasticity of substitution. In addition, Kreps and

Porteus (1978) show that, again contrary to the expected utility speci�cation, the timing

of uncertainty is relevant in their class of preferences. The speci�cation in equation (5)

displays preferences for an early resolution of uncertainty when the aggregator is convex

in its second argument, i.e. when  >  . Any source of risk will be re�ected in asset

prices not only if it makes consumption more volatile, but also if it a¤ects the temporal

distribution of consumption volatility.

We generalise the utility function in equation (5) by allowing for habit formation and a

labour-leisure choice. More speci�cally, time-t utility will not only depend on consumption
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Ct but it will more generally be given by

ut = (Ct � hCt�1) � v (Nt)

where v (Nt) captures the disutility of labour supply and the h parameter represents the

force of habits in the model: the higher h, the less utility is generated by a given amount

of current consumption.3 For h = 0, our preferences collapse to a special case of the

class of preferences de�ned in Uhlig (2007). In our numerical analysis, we will adopt for

the disutility of labour the formulation suggested by Trabandt and Uhligh (2009). This

is given by v (Nt) =

�
1� � (1�  )N

1+ 1
�

t

�  
1� 

and it has the advantage of implying a

constant Frisch elasticity equal to � in the h = 0 case.

With our more general preferences speci�cation,  and  are no-longer related one-

to-one to risk aversion and to the (inverse of the) elasticity of intertemporal substitution

of consumption, respectively. Swanson (2009) discusses the appropriate measures of risk

aversion in a dynamic setting with consumption and leaisure entering the utility function.

In the rest of this paper, we simply refer to  and  as utility parameters.

Each households i maximises

U [Ct (i) ; Nt (i) ;EtVt+1] =

�
(1� �) [(Ct (i)� hCt�1 (i)) � v (Nt (i))]

1� + �
�
EtV

1�
t+1

� 1� 
1�
� 1

1� 

subject to

PtCt (i) + EtQt;t+1Wt+1 (i) �Wt (i) + wt (i)Nt (i) +

Z 1

0
�t (j) dj

and

Nt (i) = Lt

�
wt (i)

wt

���w;t
where the choice variables are wt (i) and Ct (i).

To Bellman equation for this problem (abstracting from the i subscript to simplify the

notation) is

J (Wt; Ct�1) = max

�
(1� �) [(Ct � htCt�1) v (Nt)]

1� + �
�
EtJ

1� (Wt+1; Ct)
� 1� 
1�

� 1
1� 

��t
�
PtCt + EtQt;t+1Wt+1 �Wt � wtNt �

Z 1

0
�t (i) di+ Tt

�
(6)

3Guariglia and Rossi (2002) also use expected utility preferences combined with habit formation to study

precautionary savings in UK consumption. Koskievic (1999) studies an intertemporal consumption-leisure

model with non-expected utility.
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The appendix shows that the �rst order conditions can be written as

ewt = ��w;t v0 (Nt)

v (Nt)

[(Ct � hCt�1) v (Nt)]
1� e�t (7)

Qt;t+1 = �
e�t+1e�t 1

�t+1

0B@
h
EtJ

1�
t+1

i 1
1�

Jt+1

1CA
� 

(8)

e�t = (Ct � hCt�1)� [v (Nt)]
1� ��hEt (Ct+1 � hCt)� [v (Nt+1)]

1� 

0B@
h
EtJ

1�
t+1

i 1
1�

Jt+1

1CA
� 

(9)

where e�t � �tPt (1� �)�1 J� t and ewt is the real wage ewt � wt=Pt and �w;t � �w;t= (�w;t � 1).
The gross interest rate, It, equals the conditional expectation of the stochastic discount

factor, i.e.

I�1t = EtQt;t+1 (10)

Note that we will focus on a symmetric equilibrium in which nominal wage rates are

all allowed to change optimally at each point in time, so that individual nominal wages

will equal the average wt.

Equations (8)-(9) highlight how our model nests the standard power utility case, in

which  =  and the maximum value function Jt disappears from the �rst order conditions.

The same equations also demonstrate that the parameter  only a¤ects the dynamics of

higher order approximations. To �rst order, the term
h
EtJ

1�
t+1

i � 
1�

=J� t+1 in equations

(9) and (10) cancels out in expectation.

2.2 Firms

We assume a continuum of monopolistically competitive �rms (indexed on the unit interval

by j), each of which produces a di¤erentiated good. Demand arises from households�

consumption and from government purchases Gt, which is an aggregate of di¤erentiated

goods of the same form as households�consumption. It follows that total demand for the

output of �rm i takes the form Yt (j) =
�
Pt(i)
Pt

���
Yt. Yt is an index of aggregate demand

which satis�es Yt = Ct +Gt.

Firms have the production function

Yt (j) = AtL
�
t (j)
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where Lt is the labour index Lt de�ned above.

Once aggregate demand is realised, the �rm demands the labour necessary to satisfy

it Lt (j) = (Yt (j) =At)
1
� so that the total nominal cost function will be given by

TCt (j) = wt

�
Yt (j)

At

� 1
�

As a result, real marginal costs will be

mct (j) =
1

�

ewt
At

�
Yt (j)

At

� 1��
�

where nominal costs are de�ated using the aggregate price level.

As in Rotemberg (1982), we assume the �rms face quadratic costs in adjusting their

prices. This assumption is also adopted, for example, by Schmitt-Grohé and Uribe (2004)

and Ireland (1997). It is well-known to yield �rst-order in�ation dynamics equivalent

to those arising from the assumption of Calvo pricing.4 From our viewpoint, it has the

advantage of greater computational simplicity, as it allows us to avoid having to include

an additional state variable in the model, i.e. the cross-sectional dispersion of prices across

�rms.

The speci�c assumption we adopt is that �rm j faces a quadratic cost when changing

its prices in period t, compared to period t� 1. Consistently with what is typically done

in the Calvo literature, we modify the original Rotemberg (1982) formulation for partial

indexation of prices to lagged in�ation. More speci�cally, we assume that

�

2

 
P jt

P jt�1
� (��t )

1����t�1

!2
Yt

where ��t is the in�ation objective.

Firms maximise their real pro�ts

max
P jt

Et

1X
s=t

Qt;s

24P js Y j
s

�
P js
�

Ps
�
TCs

�
Y j
s

�
P js
��

Ps
� �

2

 
P js

P js�1
� (��s)

1����s�1

!2
Ys

35
subject to

Yt (j) =

�
Pt (j)

Pt

���
Yt

and to

Yt (j) = AtL
�
t (j)

4The two pricing models, however, have in general di¤erent welfare implications � see Lombardo and

Vestin (2008).
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Focusing on a symmetric equilibrium in which all �rms adjust their price at the same

time, the �rst order condition for price setting can be written as

(� � 1)Yt+�
�
�t � (��t )

1����t�1

�
Yt�t =

�

�
ewt� Yt

At

� 1
�

+EtQt;t+1�
�
�t+1 �

�
��t+1

�1��
��t

�
Yt+1�t+1

2.3 Monetary policy

We close the model with the simple Taylor-type policy rule

It =

�
��

�

�1��I ��t
��

� 
�
�
Yt
Y

� Y
I
�I
t�1e

�t+1 (11)

where Yt is aggregate output, �� is the in�ation target and �t+1 is a policy shock.

2.4 Market clearing

Market clearing in the goods market requires

Yt = Ct +Gt

In the labour market, labour demand will have to equal labour supply. In addition, the

total demand for hours worked in the economy must equal the sum of the hours worked

by all individuals. Taking into account that at any point in time the nominal wage rate

is identical across all labor markets because all wages are allowed to change optimally,

individual wages will equal the average wt. As a result, all households will chose to supply

the same amount of labour and labour market equilibrium will require that

Lt =

�
Yt
At

� 1
�

2.5 Exogenous shocks

In macroeconomic applications, exogenous shocks are almost always assumed to be (log-

)normal, partly because models are typically log-linearised and researchers are mainly

interested in characterising conditional means. However, Hamilton (2008) argues that a

correct modelling of conditional variances is always necessary, for example because infer-

ence on conditional means can be inappropriately in�uenced by outliers and high-variance

episodes. The need for an appropriate treatment of heteroskedasticity becomes even more

compelling when models are solved nonlinearly, because conditional variances have a direct

impact on conditional means.

10



In this paper, we assume that variances are subject to stochastic regime switches for

shocks other than the in�ation target. More speci�cally, we assume a deterministic trend

in technology growth

At = ZtBt

Bt = Bt�1�

Zt = Z
�z
t�1e

"zt ; "zt+1 � N
�
0; �z;sz;t

�
where � is the long run productivity growth rate. We specify the exogenous government

spending process in deviation from trend, so that

Gt
Bt
=

�
gY

B

�1��g �Gt�1
Bt�1

��g
e"
g
t "Gt+1 � N

�
0; �G;sG;t

�
where the long run level g is speci�ed in percent of output, so that g � G=Y . Finally, for

monetary policy and mark-up shocks we assume

�t+1 = e"
�
t+1 ; "�t+1~N

�
0; ��;s�;t

�
�w;t+1 = �

1���
w

�
�w;t

���
e"
�
t+1 ; "�t+1 � N (0; ��)

Technology and monetary policy shocks have regime-switching variances, namely

�z;sz;t = �z;Lsz;t + �z;H (1� sz;t)

��;s�;t = ��;Ls�;t + ��;H (1� s�;t)

and the variables sz;t and s�;t can assume the discrete values 0 and 1. For each variable

sj;t (j = z; �), the probabilities of remaining in states 0 and 1 are constant and equal to

pj;0 and pj;1, respectively.5

We assume regime switches in these particular variances for the following reasons. The

literature on the "Great moderation" (see e.g. McDonnell and Perez-Quiros, 2000) has

emphasised the reduction in the volatility of real aggregate variables starting in the second

half of the 1980s. We conjecture that this phenomenon could be captured by a reduction

in the volatility of technology shocks in our structural setting. The heteroskedasticity

in policy shocks aims to capture the large increase in interest rate volatility in the early

1980s, the time of the so-called "monetarist experiment" of the Federal Reserve.6

5 In previous versions of the paper we have allowed for regime-switching also in the variance of govern-

ment spending and mark-up shocks. These additional dimensions of regime switching receive little support

from the data.
6A similar assumption in made in Schorfeide (2005).
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2.6 Solution method

To solve the model, we exploit the recursive nature of bonds in equilibrium. We �rst

solve for all macroeconomic variables and then construct the prices of bonds of various

maturities.

2.6.1 Solving the macroeconomic system

We approximate the system around a deterministic steady state in which all variables are

detrended. Detrend variables are denoted by a tilde and de�ned as a ratio to Bt (with the

exception is e�t, which is detrended by B� t ). For example, detrended output is eYt � Yt=Bt.
In the solution, we expand variables around their natural logarithms, which are denoted by

lower-case letters. The logarithm of a variable in deviation from its non-stochastic steady

state is denoted by a hat. For example, approximate (detrended) output is denoted by beyt.
For the solution, we collect all predetermined variables (including both lagged en-

dogenous predetermined variables and exogenous states) in a vector xt and all the non-

predetermined variables in a vector yt (note that yt is di¤erent from output yt).

The macroeconomic system can thus be written in compact form as

yt = g (xt; e�; st) (12)

xt+1 = h (xt; e�; st) + e�� (st)ut+1 (13)

st+1 = �0 + �1st + �t+1 (14)

for matrix functions g (�), h (�), and � (�), a vector st including the state variables that

index the discrete regimes, and a vector of innovations ut. In the above system, e� is
a perturbation parameter. Following Hamilton (1994), we can write the law of mo-

tion of the discrete processes st in the form implied in equation (14) for a vector �0

and a matrix �1. The law of motion of state sz;t, for example, is written as sz;t+1 =

(1� pz;0) + (�1 + pz;1 + pz;0) sz;t + �z;t+1, where �z;t+1 is an innovation with mean zero

and heteroskedastic variance.

We seek a second-order approximation to the functions g (xt; e�; st) and h (xt; e�; st)
around the non-stochastic steady state, namely the point where xt = x and e� = 0. Due to
the presence of the discrete regimes in the system, both the steady state and the coe¢ cients

of the second order approximation could potentially depend on st. Since the discrete states

only a¤ect the variance of the shocks, however, they disappear when e� = 0 so that the
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non-stochastic steady state is not regime-dependent. In a companion paper (Amisano and

Tristani, 2009b), we show that the second order approximation to the solution can be

written as

g (xt; e�; st) = Fbxt + 1
2

�
Iny 
 bx0t�Ebxt + ky;ste�2

and

h (xt; e�; st) = P bxt + 1
2

�
Inx 
 bx0t�Gbxt + kx;ste�2

where F , E, P and G are constant variances and only the vectors ky;st and kx;st are regime

dependent. As a result, regime switching plays no role to a �rst order approximation. It

only a¤ects the means of endogenous variables.

2.6.2 Pricing bonds

Once the solution of the macroeconomic model is available, bond yields can be solved for

analytically.

Note that the stochastic discount factor can be rewritten in terms of detrended vari-

ables as

Qt;t+1 = �
ee�t+1ee�t

1

�t+1

0B@
h
Et eJ1�t+1

i 1
1�

eJt+1
1CA
� 

This expression can be written more simply as

Qt;t+1 = �

 !
� t+1
 !
� t

1
 !
� t+1

(15)

for

 !
� t � �t eJ� t

h
Et eJ1�t+1

i �
1�

 !
� t � ee�t hEt eJ1�t+1

i �
1�

Since these relationships are all loglinear, the law of motion for
 !
� t and

 !
� t can

immediately be derived from those of �t, e�t, eJt and Dt � EtJ1�t+1 . It follows thatc !
� t = F�bxt + 1

2
bx0tE�bxt + k�;ste�2c !� t = F�bxt + 1
2
bx0tE�bxt + k�;ste�2

where F� and F� are row vectors, and E� and E� are matrices. We can now compute

bond prices using the method in Hördahl, Tristani and Vestin (2008). The appendix shows

13



that, in log-deviation from its deterministic steady state, the approximate price of a bond

of maturity n, bbt;n, can be written as
bbt;n = FBnbxt + 12bx0tEBnbxt + kBn;ste�2 (16)

where FBn , EBn and kBn;st are de�ned through a recursion. Note that kBn;st changes

depending on the realisation of the discrete states, but matrices FBn and EBn are state-

independent.

3 Some properties of the model

3.1 The stochastic discount factor

The appendix shows that, to a second order approximation, the stochastic discount factor

in equation (8) can be written as

bqt;t+1 = �
be�t+1 � b�t+1
� ( �  )

�bjt+1 � Etbejt+1�� 12 ( �  ) ( � 1)Vart hbejt+1i (17)

When: (a)  = 1; (b) temporary utility depends on consumption only and �be�t+1 =
��bct+1, equation (17) boils down to

bqt;t+1 = ��bct+1 � b�t+1 � ( � 1)�bjt+1 � Et hbjt+1i�� 1
2
( � 1)2 vart

hbjt+1i
which corresponds to the case considered by Piazzesi and Schneider (2006).

In the expected utility case, only the risk of unpredictable changes in future consumer

prices, in future detrended marginal utility, or in technology growth matter for the investor.

With Epstein-Zin preferences, the whole temporal distribution of future risks to de-

trended marginal utility and technology growth becomes relevant. In our case, similarly to

Uhlig (2007), detrended marginal utility is a¤ected both by future detrended consumption

growth and by future levels of labour supply.

Following Restoy and Weil (2010) and Piazzesi and Schneider (2006), we can solve

out the value function as an in�nite sum of future expected utility. The appendix derives

this representation. In general, the value function will be a¤ected by expected future

productivity growth and the discounted future growth rates of consumption and of labour

supply. The expected future change in consumption growth also matters because of habit

formation.

14



To have some intuition for the implications of the model in terms of bond pricing, we

can derive the short-term interest rate as bit = �Etbqt;t+1 � 1
2Vartbqt;t+1. We obtain

bit = brt + Etb�t+1 � 1
2
Vartb�t+1 +Covt �b�t+1; b�t+1�� ( �  ) Covt [b�t+1;	t+1] (18)

where b�t+1 � �be�t is the change in the marginal utility of consumption,
	t+1 � Et+1

1X
i=0

�
��1� 

�i
� !u t+1+i

denotes expected discounted future changes in utility �i.e. the sum of expected discounted

future consumption growth and expected future changes in the disutility of labour �andbrt is the real interest rate
brt = �Etb�t+1� 12Vartb�t+1+( �  ) Covt �b�t+1;	t+1�+ 12 ( � 1) ( �  )Vart	t+1 (19)
According to expression (18), the nominal interest rate includes three components in

excess of the real rate and expected in�ation. The �rst component is the variance of

in�ation, which is a Jensen�s inequality term. The second component, the covariance

between in�ation and the marginal utility of consumption at date t + 1, is a standard

in�ation risk premium term. The return on a nominal 1-period bond will be higher if

in�ation at t + 1 tends to be high when the marginal utility at t + 1 is also high. Note

that this term will be larger under habit persistence, which tends to boost the sensitivity

of marginal utility to changes in consumption. The last term in equation (18), which

is proportional to the covariance between in�ation at t + 1 and expected future changes

in utility, is also an in�ation risk premium and it can be understood along the lines

suggested by Restoy and Weil (2010). When the covariance is negative, in�ation at t+ 1

tends to be high, and the real return on nominal bonds tends to be low, in case of bad

news about expected future utility. Nominal bonds are therefore risky, and require a

premium given by the term Covt
�b�t+1;	t+1�. At the same time, the bad news about

the future induces households to increase their savings, so as to smooth consumption over

time. From this viewpoint, nominal bonds are desirable assets and command a discount

� Covt
�b�t+1;	t+1�. With expected utility preferences, these e¤ects cancel out and news

about future utility growth become irrelevant for asset pricing.

The real interest rate in equation (19) also includes three additional components com-

pared to the linearised case. The �rst one, the variance of the marginal utility of con-

sumption, is a standard precautionary savings motive. The larger the volatility of future
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marginal utility growth, the higher the incentive to hold precautionary savings and the

lower the return on real bonds. Epstein-Zin-Weil utility with  = 1 �the case analysed

in Piazzesi and Schneider (2006) �introduces a second source of risk premia, namely the

covariance term in equation (19). The real interest rate includes a premium when bad

news about future utility growth over the inde�nite future tend to be associated with high

marginal utility at t + 1. The premium is higher if agents are unwilling to adjust their

level of utility across states ( is high) and lower the more averse they are to adjust utility

across time. Finally, a third source of risk premium arises under Epstein-Zin-Weil utility

in the  6= 1 case, namely a premium related to the variance in revisions of expected

future utility.

3.2 Regime switching and the variability of risk premia

The state-dependence of bbt;n in equation (16) implies that bond risk premia will also
become state-dependent. In order to show this, it is useful to derive expected excess

holding period returns, i.e. the expected return from holding a n-period bond for 1 period

in excess of the return on a 1-period bond. To a second order approximation, the expected

excess holding period return on an n-period bond can be written as

dhprt;n �bit = Covt hc !� t+1;bbt+1;n�1i� Covt ��c !� t+1;bbt+1;n�1�
This expression can be evaluated using the model solution to obtain

dhprt;n �bit = e�2FBn�1�t�0t �F 0� � F 0�� (20)

where �t � � (st) and �t�0t is the conditional variance-covariance matrix depending on

vector st.

Equation (20) demonstrates that excess holding period returns change when there

is a switch in any of the discrete state variables. Since the conditional variance of

the price of a bond of maturity n can be written, to a second order approximation,

as Et
hbbt+1;n�1bb0t+1;n�1i = e�2FBn�1�t�0tF 0Bn�1 , it follows that we can de�ne the (micro-

founded) price of risk for unit of volatility, or the "market prices of risk" !t, as

!t � e��0t �F 0� � F 0�� (21)

Since F� and F� are vectors of constants, all terms in equation (21) would be constant

in a world with heteroskedastic shocks, in which �t would also be constant. They becomes

16



time-varying in our model due to the possibility of regime switches, because the variance-

covariance matrix �t�0t is regime-dependent.

In the empirical �nance literature, the market prices of risk are often postulated exoge-

nously using slightly di¤erent speci�cations. For example, Naik and Lee (1997), Bansal

and Zhou (2002) and Ang, Bekaert and Wei (2008) assume that the market prices of risk

are regime dependent, but the risk of a regime-change is not priced. On the contrary,

regime-switching risk is priced in Dai, Singleton and Yang (2008).

In our model, prices of risk are only associated with variables with continuous sup-

port. These prices change across regimes. If, for example, technological risk were not

diversi�able, then the price of risk associated with technology shocks would be higher in a

high-variance regime for technology shocks (and lower in a low-variance regime). This is

the regime-dependence of market prices of risk which is present in all the aforementioned

�nance models. In our set-up, however, the prices of risk are additionally derived from the

model�s microfoundation, rather than allowed to vary as a¢ ne functions of the continuous

state variables of the model.

The risk of regime-switches is not priced because the possibility of changes in regime

does not have any impact on the F� and F� vectors. Regime switching risk would only be

priced if it a¤ected some structural parameters. For example, one could thing of allowing

for changes in the parameters of the (11) as in Bikbov and Chernov (2008). We leave this

extension to future research.

4 Empirical results

4.1 Estimation methodology

The system of equations (12) and (13) can be re-written as

yot+1 = cj +C1xt+1 +C2vech(xt+1x
0
t+1) +Dvt+1 (22)

xt+1 = ai +A1xt +A2vech(xtx
0
t) +Biwt+1 (23)

st v Markov switching (24)

where the vector yot includes all observable variables, and vt+1 and wt+1 are measurement

and structural shocks, respectively. In this representation, the regime switching variables

a¤ect the system by changing the intercepts ai and cj , and the loadings of the structural
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innovations Bi(we indicate here with i the value of the discrete state variables at t and

with j the value of the discrete state variables at t+ 1).

If a linear approximation were used, we would then have a linear state space model

with Markov switching (see Kim, 1994, Kim and Nelson, 1999, and Schorfheide, 2005).

Focusing on the case in which the number of continuous shocks (measurement and

structural) is equal to the number of observables, and there are no unobserved predeter-

mined variables, the continuous latent variables could be obtained via inversion of the

observation equation (22). The system could then be written as a Markov Switching

VAR in the observable variables and the likelihood could be obtained using the Kitagawa-

Hamilton �lter i.e. by integrating out the discrete latent variables.

In the quadratic case, however, the likelihood cannot in general be obtained in closed

form. One possible approach to compute the likelihood is to rely on Sequential Monte

Carlo techniques (henceforth SMC, see Amisano and Tristani, 2010a, for an application

of these techniques in a DSGE setting with homoskedastic shocks). The convergence of

these methods, however, can be very slow in a case, such as the one of our model, in which

both nonlinearities and non-Gaussianity of the shocks characterise the economy.

In the special case mentioned above, i.e. when when the number of continuous shocks

is equal to the number of observables and there are no unobserved predetermined vari-

ables, we can use exactly the same approach used in the linear case, i.e. doing �ltering

with respect to the continuous latent variables by inversion, and �ltering out the discrete

variables by integrating over their discrete domain. See Amisano and Tristani (2010b),

for further details. The problem of �ltering the continuous latent variables through an

inversion of the quadratic observation equation (22) is that the inversion is not unique. At

each point in time, multiple values of the latent variables are consistent with the observa-

tion vector yot . In a scalar case and in the absence of measurement errors, for example, we

would obtain the two solutions x(1);(2)t = 1=2
�
�C1 �

p
C21 � 4C2 (cj � yot )

�
=C2. In the

more general case of our model, we are going to use six series in the estimation process.

As a result, at each point in time we will have up to 16 solutions for each of the latent

variables.7

7Given that four structural shocks enter the model, we are going to assume that two series are observed

with measurement error. The inversion for the measurement error is unique, because the measurement

error enters the model linearly.
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Rather than choosing arbitrarily a particular solution at each point in time, we compute

the likelihood taking all (real) solutions into account. We simply exploit the property that,

while equally likely based on the sole observation vector yot , the di¤erent solutions for xt

have di¤erent probability (or likelihood) conditional on xt�1. In a homoskedastic model,

the �ltered values of our latent variables in t would simply be a weighted average of all xt

solutions, with weights given by their conditional probabilities. In our model with regime

switching, solutions for xt must be found for each of the regimes in st, and then weighed

by the probability of each regime.

Provided all solutions of the observation equation are found, this procedure produces

the exact likelihood of the quadratic system (22)-(23). To �nd all solutions, we rely

on homotopy continuation methods � see e.g. Judd (1998) and Morgan (1987). More

speci�cally, we rely on the PHCpack solver described in Verschelde (1999) and its Matlab

interface PHClab presented in Guan and Verschelde (2008). We discard all complex so-

lutions (which tend to be the majority) and compute the likelihood using the real ones.

If no real solutions are available at any point in time for a certain value of the parameter

vector, we impute to the likelihood a large negative value.

In the results presented in this paper, we use another viable route to estimation, which

can be applied to any context, irrespective of the number of shocks and of the presence or

absence of unobservable predetermined variables. Our proposed estimation routine works

as follows.

Using the extended Kalman �lter framework, at each point in time we linearise state
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and measurement equations around the conditional mean of the continuous state variables

yot+1 = ecij;t+1 + eC1;t+1xt+1 +Dvt+1 (25)

xt+1 = eait + eA1;txt +Biwt+1 (26)

ecjt+1 = cj +C2

h
vech(x

(i)
t+1jtx

(i)0
t+1jt)��i;t+1x

(i)
t+1jt

i
eC1;t+1 = C1 +C2�i;t+1;x

(i)
t+1jt = E(x

(i)
t+1jyot ; st = i;�)

�i;t+1 =

"
@vech

�
xt+1x

0
t+1

�
@xt+1

#
xt+1=x

(i)
t+1jteait = ai +A2

h
vech(x

(i)
tjtx

(i)0
tjt )��i;tx

(i)
tjt

i
eA1;t = A1 +A2�i;t;x

(i)
tjt = E(x

(i)
t jyot ; st = i;�)

�i;t =

�
@vech (xtx

0
t)

@xt

�
xt=x

(i)
tjt

Using this locally linearised state space representation, it is possible to use the algorithm

by Kim (1994) and fully detailed in Kim and Nelson (1999, page 105) to compute an

approximated likelihood function which we call ep��jyo
T

�
. The likelihood is then combined

with the prior and sampled using a tuned Metropolis-Hastings algorithm.

It is important to keep in mind that this approach introduces two entwined sources of

approximation error in the computation of the likelihood; �rst, the state space is locally

linearised at each point in time; secondly Kim (1994)�s algorithm relies on the use of

a mixture of a �nite number of components to approximate conditional distributions of

continuous state variables. We believe that these two sources of approximation have

negligible e¤ect on our results for two reasons. First of all, the quadratic terms A2 and

C2 are quite small for reasonable values of the parameters, while intercept terms of the

state and measurement equations are relevantly di¤erent across the domain of the discrete

states. This is going to make the approximation error deriving from the linearisation (25)

and (26) very small.

In addition, it is possible to fully correct for the approximation error by aptly using

importance sampling. Let us in fact de�ne a MCMC sample of parameters drawn from

their approximated joint posterior distribution as

�(m); i = 1; 2; :::M (27)

each of these points is associated with an approximate posterior density which is propor-
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tional to ep��(m)jyo
T

�
_ p(�(m))� ep�yo

T
j�(m)

�
where ep: Typically M, the number of recorded draws will be much smaller than those used
to run the MCMC chain, since the correlation of the resulting draws is quite high and

"thinning "(i.e. recording only for instance every 10th draw) is often used.

Now let us now call the likelihood computation as obtained by using an e¢ cient SMC

procedure as p
�
�(m)jyo

T

�
:

It is evident that we can correct for the approximation, induced by using ep�yo
T
j�(m)

�
instead of p

�
�(m)jyo

T

�
; by computing importance weights as

w
�
�(m)

�
_
p(�(m))� p

�
yo
T
j�(m)

�
p(�(m))� ep�yo

T
j�(m)

� = p
�
yo
T
j�(m)

�
ep�yo

T
j�(m)

� (28)

and reweighting the MCMC output accordingly.

We do not have yet performed this reweighting on our results, which are reported

as they are generated using the approximate likelihood ep�yo
T
j�(m)

�
. Preliminary exper-

iments allow us to cautiously anticipate that the reweighting should not have relevant

consequences on our results.

Note that this approach based on the extended Kalman Filter linearisation is compu-

tationally much faster and more reliable than using sequential Monte Carlo. In order to

use SMC e¤ectively to explore the posterior distribution, these algorithms should be used

with a very high number of particles and for all the draws of the posterior distribution,

even those far on the tails of the posterior distribution where the reliability of likelihood

computations based on sequential Monte Carlo is very low. With our algorithm we in-

stead use sequential Monte Carlo only for the subset of accepted draws remaining after

"thinning " the chain.

4.2 Data and prior distributions

We estimate the model on quarterly US data over the sample period from 1966Q1 to

2009Q1. Our estimation sample starts in 1966, because this is often argued to be the date

after which a Taylor rule provides a reasonable characterisation of Federal Reserve policy.8

8According to Fuhrer (1996), "since 1966, understanding the behaviour of the short rate has been

equivalent to understanding the behaviour of the Fed, which has since that time essentially set the federal
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Concerning the macro data, we use measures of consumption, output and in�ation. We

use both GDP per capita and consumption to impose some discipline on our estimates of

the government spending shock. Given that we abstract from investment, consumption in

our model captures all interest-sensitive components of private expenditure. As argued by

Giannoni and Woodford (2005), assuming habit persistence for the whole level of private

expenditure is a reasonable assumption, given that models with capital typically need

adjustment costs that imply inertia in the rate of investment spending. We therefore

use total real personal consumption per-capita in the information set. Finally, in�ation is

measured by the consumption de�ator (all macro variables are from the FRED database

of the St. Louis Fed).

In addition, we use the 3-month nominal interest rate and yields on 3-year and 10-year

zero-coupon bonds (from the Federal Reserve Board).

Prior and posterior distributions for our model are presented in Table 1.

Concerning regime switching processes, we assume beta priors for transition probabil-

ities. The distributions imply that persistences in each state are symmetric and have high

means. In the prior, we assume that the standard deviations of the structural shocks are

identical in the various states.

For the price adjustment cost, in�ation indexation and the utility parameters we use

priors broadly in line with other macro studies. The main exception is , where we are

much more agnostic and use a �at prior between 1 and 21. For the policy rule, we use

relatively loose priors centred around parameter values estimated from quarterly data over

a pre-sample period running from 1953 to 1965.

The priors for the standard deviation and persistence of shocks, as well as for the long

run growth rate of technology and for the long run in�ation target, are centred on values

which allow us to roughly match unconditional data moments in the pre-sample period,

given the other parameter.

Funds rate at a target level, in response to movements in in�ation and real activity". Goodfriend (1991)

argues that even under the period of o¢ cial reserves targeting, the Federal Reserve had in mind an implicit

target for the Funds rate.
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4.3 Posterior distributions and goodness of �t

The posterior distributions of macro parameters in Table 1 are roughly consistent with

other estimates based solely on macro data. The  parameter is larger than  , but it

does not reach very high levels. Our model generates a slope in the term structure of

interest rates through a combination of moderate risk-aversion and occasional bursts in

the variance of of shocks, especially technology shocks

The standard deviation of measurement errors on 10-year yields is around 25 basis

points, thus not exceedingly higher than in more �exible term structure models estimated

using only yields data.

Concerning regime-switching parameters, the posterior mode of the transition prob-

abilities suggests that all states are very persistent. The di¤erence between estimated

variances in the two regimes is marked for both technology and policy shocks.

Figures 1 and 2 show the implications of our parameter estimates for the population

means, variances and cross-correlations of our observable variables. By and large, sample

moments are within the posterior distribution of their population counterparts. In a few

cases, however, sample moments are very much at the tail of the distribution of theoretical

moments.

4.4 Regime switches and risk premia

Figure 3 displays 1-step-ahead forecasts and realised variables. This �gure shows that

the model can track yields data relatively well. In comparison, the �t is less good for

in�ation. One-step-ahead forecast errors are larger for the rates of growth of consumption

and output.

Figure 3 also illustrates the clear heteroskedasticity in the residuals. In the early

eighties, for example, there are clear increases in the variance of yields forecast errors.

Our assumption of regime-switching in the variance of shocks helps the model to capture

these patterns in the data.

Figures 4 and 5 display �ltered and smoothed estimates of the discrete states together

with the o¢ cial NBER recession dates. In the �gure, 1 denotes the low-variance state, 0

the high-variance state.

The regime associated with the policy shock hovers between the high and low variance

regimes over the seventies; stays in the high variance regime in 1980 and remains there
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until 1983; it then drifts back to the low-variance regime until the beginning of the Great

recession.

The variance of productivity growth shocks moves between high and low-variance

regimes for most of the sample. On average, it tends to stay closer tothe high-variance

regime over the eighties and nineties.

The technology and monetary policy states can be composed to de�ne 4 possible com-

binations of regimes. This is done to construct Figures 6, which displays expected excess

holding period returns as de�ned in equation (20), with con�dence sets.

Excess returns are increasing in the maturity of bonds and �uctuate around 120 basis

points at the 10-year maturity. The notable features emerging from Figure 6 is that

regime-switching can induce a non-negligible amount of variability in expected excess

holding period returns over time. This is a desirable feature to explain observed deviations

of the data from features consistent with the expectations hypothesis (see e.g. Dai and

Singleton, 2002). Variability is especially high at the time of the monetarist experiment

in the early 1980s. This is also encouraging, because deviations of yields from values

consistent with the expectations hypothesis are known to be particularly marked during

the Volcker tenure. For example, Rudebusch and Wu (2006) note that the performance of

the expectations hypothesis improves after 1988 and until 2002.

5 Conclusions

We have estimated the second order approximation of a macro-yield curve model with

Epstein-Zin-Weil preferences, in which the variance of structural shocks is subject to

changes of regime.

Our empirical results support the regime switching speci�cation. Di¤erent regimes can

�t the heteroskedasticity of economic variables. Estimated regimes also bear an intuitively

appealing structural interpretation. Finally, changes in regimes generate nonnegligible

changes in risk premia.

The inclusion of yields data in the estimation set does not alter the basic functioning

of the macro-model. Most parameters are estimated to be close to the values obtained

in other studies, in which solely macro data enter the econometrician�s information set.

The main exception is the interest rate smoothing coe¢ cient in the monetary policy rule,
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which is found to be much higher than in studies which do not look at yields data. A high

value of this coe¢ cient helps to generate persistence in the short rate, hence to transmit

movements in the policy rate to long-term yields.

25



Appendix

A The household problem

Using the de�nitions U1;t � @U
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we can write the �rst order conditions for the optimum as
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plus the envelope conditions

JW;t = �t

JC;t = �hU1;tv (Nt)

where we also de�ned Jt � J (Wt; Ct�1), JC;t � @J (Wt; Ct�1) =@Ct�1.

Note that the two derivatives U1;t and U2;t can be rewritten as
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Moreover, at the optimum, the maximum value function will obey the recursion
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Using these equations, we can rewrite the FOCs in the text as
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where

e�t � [v (Nt)]
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and ewt � wt=Pt.
Note that in the absence of labour-leisure choice (v (Nt) = 1 for all t), we would obtain
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If habits were also set to zero, we would go back to the standard Epstein-Zin-Weil case
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�
Ct+1
Ct

�� 0B@
h
EtJ

1�
t+1

i 1
1�

Jt+1

1CA
� 

e�t = C� t

Finally, when  =  

ewt = �v0 (Nt)

v (Nt)

�w;t
�w;t � 1

[(Ct � hCt�1) v (Nt)]
1� e�t

Qt;t+1 =
�

�t+1

e�t+1e�te�t = [v (Nt)]
1� (Ct � hCt�1)� � �hEt [v (Nt+1)]

1� (Ct+1 � hCt)� 

B The approximate SDF and short rate

Equation (6) in Piazzesi and Schneider (2006) derives the stochastic discount factor for a

model with non-expected utility, exogenous labour supply, exogenous consumption process

and  = 1. A similar expression can be derived in our model. In this appendix, we also

allow for a stochastic trend in technology growth, so that

At = ZtBt

Bt = Bt�1�t

�t = �
1����

��
t�1e

"�t

Zt = Z
�z
t�1e

"zt
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In order to approximate the model around a deterministic steady state, we �rst detrend

all variables by the growing level of technology. More speci�cally, for the stochcastic

discount factor we obtain

Qt;t+1 = �
1

�t+1

ee�t+1ee�t
1

�t+1

0B@
h
Et�

1�
t+1

eJ1�t+1

i 1
1�

eJt+1
1CA
� 

where �t is the rate of growth of technology,
ee�t = e�t=B� t and eJt = Jt=B

� 
t where

ee�t = [v (Nt)]
1� 

 eCt � h eCt�1
�t

!� 
��hEt [v (Nt+1)]

1� ��t+1

 eCt+1 � h eCt
�t+1

!� �Et � eJt+1�t+1�1�� � 1�

eJ� t+1

Note that using the de�nition Dt � Et�1�t+1
eJ1�t+1 the stochastic discount factor can be

rewritten as

Qt;t+1 = �
1

�t+1

ee�t+1ee�t
1

�t+1

0@D 1
1�
teJt+1

1A� 

or in deviation from the steady state

bqt;t+1 = �
be�t+1 �  Et�t+1 �  �b�t+1 � Etb�t+1�� b�t+1 � ( �  )�bejt+1 � Etbejt+1�
�1
2
( �  ) ( � 1)

�
Vart

hbejt+1i+Vart hb�2t+1i+ 2Covt hb�t+1bejt+1i� (30)

When  = 1 this expression boils down to

bqt;t+1 = �
be�t+1 � Et�t+1 �  �b�t+1 � Etb�t+1�� b�t+1
� ( � 1)

�bejt+1 � Etbejt+1�� 12 ( � 1)2Vart hbejt+1i
�1
2
( � 1)2Vart

hb�2t+1i� ( � 1)2Covt hb�t+1bejt+1i
which corresponds to the case considered by Piazzesi and Schneider (2006) when there

is no growth and temporary utility depends on consumption only so that ee�t = eC�1t and

�
be�t+1 = ��bct+1.
We now wish to rewrite eJt in terms of its consumption and labour determinants. Using

the de�nitions Dt � Et�1�t+1
eJ1�t+1 ,

 !c t � eCt � h eCt�1=�t (for the consumpion surplus) andeut �  !c t [v (Nt)], we can simplify the notation and write

eJ1� t = (1� �) eu1� t + �D
1� 
1�
t
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and ee�t = v (Nt) eu� t � �hEtv (Nt+1) eu� t+1��t+1D
� 
1�
teJ� t+1

Note that eut can be approximated as
beut = c !c t +

v0N

v
blt + 1

2

�
1 +

v00N

v0
� v0N

v

�
v0N

v
bl2t

Using these de�nitions, the value function can be expanded to second order asbejt � beut = ��1� Et
hbejt+1 + b�t+1 � beut+1 +�beut+1i+ 1� 2 ��1� Vart

hbejt+1 + b�t+1i
+
1

2
(1�  )

�
1� ��1� 

�
��1� 

�
Et

hbejt+1 + b�t+1 � beut+1 +�beut+1i�2 (31)

To solve equation (31) forward, note that second order terms can be evaluated using

the �rst order approximationbejt � beut = ��1� Et
hbejt+1 + b�t+1 � beut+1 +�beut+1i

Hence

Vart

hbejt+1 + b�t+1i = Vart
" 1X
i=0

�
��1� 

�i
Et+1

hb�t+1+i +�beut+1+ii
#

and �
Et

hbejt+1 + b�t+1 � beut+1 +�beut+1i�2 =
 1X
i=0

�
��1� 

�i
Et

hb�t+1+i +�beut+1+ii
!2

First order terms imply

Et

hbejt+1 + b�t+1 � beut+1 +�beut+1i
=

1� 
2

Et

1X
j=1

�
��1� 

�j
Vart+jEt+1+j

" 1X
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�
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+
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2
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� 1X
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�
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Et
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+
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�
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�j
Et

hb�t+1+j +�beut+1+ji
Putting everything togetherbejt � beut =

1X
j=0

�
��1� 

�j+1
Et

hb�t+1+j +�beut+1+ji

+
1� 
2
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j=0
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+
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Et
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Et+j

hb�t+1+j+i +�beut+1+j+ii
!235

29



where

�beut+1 = �c !c t+1 +
v0N

v
�blt+1 + 1

2

�
1 +

v00N

v0
� v0N

v

�
v0N

v

�bl2t+1 � bl2t�
and

�c !c t+1 �
1

�� h

�
��bect+1 � h�bect + h�b�t+1��12 h�

(�� h)2

��
�bect+1 + b�t+1�2 � ��bect + b�t�2�

To use this expressions in the stochastic discount factor of equation (30), note that

variances and convariances can be evaluated using the �rst order approximation

bejt = beut + 1X
j=0

�
��1� 

�j+1
Et

hb�t+1+j +�beut+1+ji
which yields

Vart

hbejt+1i = Vart

hb�t+1i+Vart
24 1X
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35
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and

Covt

hb�t+1bejt+1i = �Vart hb�t+1i+Covt
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��1� 

�j
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35

Finally

bejt+1 � Etbejt+1 = � (Et+1 � Et)b�t+1 + 1X
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The second order approximation of the stochastic discount factor is therefore

bqt;t+1 = �
be�t+1 �  b�t+1 � b�t+1 � ( �  ) 1X
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Note that we could de�ne

 !
� t � v (Nt)� �hEtv (Nt+1)

eu� t+1eu� t ��t+1
D

� 
1�
teJ� t+1

to write ee�t � eu� t  !� t

such that c !
� t =
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v
blt + 1

2

�
1 +

v00N
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We could also de�ne a "growth adjusted utility" � !u t � �beut + b�t to �nally write
bqt;t+1 = �
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To a second order approximation, the short rate is given by

bit = �Etbqt;t+1 � 1
2
Vartbqt;t+1
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From the SDF we obtain

bit = �Et�
c !
� t+1 + Et �

 !u t+1 + Etb�t+1 � 1
2
Vart

�
�
c !
� t+1 �  � !u t+1 � b�t+1�

+
1

2
( �  ) ( � 1)Vart

"
Et+1

1X
i=0

�
��1� 

�i
� !u t+1+i

#

+( �  ) Covt

"�
�
c !
� t+1 �  � !u t+1 � b�t+1� ;Et+1 1X

i=0

�
��1� 

�i
� !u t+1+i

#

C Solution for bond prices

Recall that

xt+1 = Pbxt + 1
2

�
Inx 
 bx0t�Gbxt + kx;ste�2 + e��tut+1

st+1 = �0 + �1st + �t+1c !
� t = F�bxt + 1

2

�
Iny 
 bx0t�E�bxt + k�;ste�2c !� t = F�bxt + 1

2

�
Iny 
 bx0t�E�bxt + k�;ste�2

where P is a nx�nx matrix, G is a n2x�nx matrix, kx;s is an nx�1 vector (whose elements

are state dependent), �t � � (st) is a nx � nu matrix, F� and F� are 1 � nx vectors, E�
and E� are nx � nx matrices, and �nally k�;s and k�;s are (state dependent) scalars.

C.1 1-period bonds

To derive the price of 1-period bonds, note �rst that a second order approximation to the

stochastic discount factor is

bqt;t+1 = (F� � F�) bxt+1 + 1
2
bx0t+1 (E� � E�) bxt+1 � F�bxt � 12bx0tE�bxt � k�;se�2

or

bqt;t+1 = ((F� � F�)P � F�) bxt + 1
2
(F� � F�)

�
Inx 
 bx0t�Gbxt

+
1

2
bx0tP 0 (E� � E�)Pbxt � 12bx0tE�bxt

+e�2 (F� � F�) kx;s � k�;se�2
+e� (F� � F�) �tut+1 + 1

2
e�bx0tP 0 (E� � E�) �tut+1

+
1

2
e�u0t+1�0t (E� � E�)Pbxt + 12e�2u0t+1�0t (E� � E�) �tut+1
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To second order, the price of a 1-period bond is

bbt;1 = �it = Et [bqt+1] + 1
2

�
Et
�bq2t+1�� (Et [bqt+1])2�

for which we need

Et
�bq2t+1�� (Et [bqt+1])2 = e�2 (F� � F�) �t�0t (F� � F�)0

and

Et [bqt;t+1] = (F� � F�)Pbxt + 1
2
(F� � F�)
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 bx0t�Gbxt + e�2 (F� � F�) kx;s

+
1

2
bx0tP 0 (E� � E�)Pbxt + 12e�2Et �u0t+1�0t (E� � E�) �tut+1�

�F�bxt � 1
2
bx0tE�bxt � k�;se�2

Now note that, for any matrix A and vector x,

E
�
x0Ax

�
= E

�
vec
�
x0Ax

��
= E

�
x0 
 x0

�
vec (A)

=
�
vec
�
E
�
xx0
���0

vec (A)

where the vec operator transforms a matrix into a vector by stacking its columns. It

follows that

Et
�
u0t+1�t

0 (E� � E�) �tut+1
�
= (vec (I)) vec

�
�0t (E� � E�) �t

�
= tr

�
�t
0 (E� � E�) �t

�
where tr represents the trace, i.e. the sum of the diagonal elements of a matrix.

Hence,

bbt;1 = ((F� � F�)P � F�) bxt + e�2 ((F� � F�) kx;s � k�;s)
+
1

2
e�2tr ��0t (E� � E�)t�+ 12e�2 (F� � F�) �t�0t (F� � F�)0

+
1

2
bx0t �P 0 (E� � E�)P � E�� bxt + 12 (F� � F�) �Inx 
 bx0t�Gbxt
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Finally, note that

(F� � F�)
�
Inx 
 bx0t�Gbxt = (F� � F�)

0BBB@
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...
. . .

...
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1CCCAGbxt
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�bx0t (F�;1 � F�;1)G1 + bx0t (F�;2 � F�;2)G2 + � � �+ bx0t (F�;nx � F�;nx)Gnx

� bxt
= bx0t

24 nxX
j=1

(F�;j � F�;j)Gj

35 bxt
where F�;i and F�;i denote the i-th elements of vectors F� and F�, respectively, and Gi

denotes the i-th nx � nx matrix which are vertically stacked to make up G. We can

therefore rewrite the 1-period bond as

bbt;1 = FB;1bxt + 1
2
bx0tEB;1bxt + kB;1;se�2

where

FB1 � (F� � F�)P � F�

kB1;s � (F� � F�) kx;s � k�;s + tr
�
�0t (E� � E�) �t

�
+ (F� � F�) �t�0t (F� � F�)

0

EB1 � P 0 (E� � E�)P � E� +
nxX
j=1

(F�;j � F�;j)Gj

Note also that, by construction, bbt;1 = �bit, so FB1 = �Fi, EB1 = �Ei and kB1;s =
�ki;s. Note that this de�nition also allows us to rewrite bqt;t+1 as
bqt;t+1 = FB;1bxt + 1

2
bx0tEB1bxt + e�2 ((F� � F�) kx;s � k�;s)

+e� (F� � F�) �tut+1 + e�bx0tP 0 (E� � E�) �tut+1 + 12e�2u0t+1�0t (E� � E�) �tut+1
C.2 2-period bonds

2-period bond prices can be written as (up to a second order approximation)

bbt;2 = bbt;1 + Et hbbt+1;1i+ 1
2
Vart

hbbt+1;1i+Covt hbqt+1;bbt+1;1i
Based on 1-period prices, we can derive

Et

hbbt+1;1i = FB1Pbxt + 12FB1 �Inx 
 bx0t�Gbxt + 12bx0tP 0EB1Pbxt
+FB1kx;se�2 + e�2kB1;s + 12e�2tr ��0tEB1�t�
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and

Et

hbbt+1;1bb0t+1;1i� Et hbb0t+1;1iEt hbbt+1;1i = e�2FB1�0t�0tF 0B1
Et
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It follows that bbt;2 = FB2bxt + 12bx0tEB2bxt + kB2;se�2
where

FB2 = FB1 (I + P )

EB2 = EB1 + P
0EB1P +

nxX
j=1

FB1;jGj

kB2;s = kB1;s + FB1kx;s + tr
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�
+ FB1�t�

0
tF
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B1 + 2FB1�t�

0
t (F� � F�)

0

C.3 n-period bonds

Using the same procedure, we �nd that n-period bond prices can be written as

bbt;n = FBnbxt + 12bx0tEBnbxt + kBn;se�2
where for n > 1

FBn = FB1 + FBn�1P

EBn = EB1 + P
0EBn�1P +

nxX
j=1

FBn�1;jGj

kBn;s = kB1;s + kBn�1;s + FBn�1kx;s + tr
�
�0tEBn�1�t

�
+FBn�1�t�

0
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0
Bn�1 + 2FBn�1�t�

0
t (F� � F�)

0
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