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Abstract

In this paper, we develop a practical procedure to construct con�dence intervals (CIs) in

a weakly identi�ed nonlinear regression model. When the coe¢ cient of a nonlinear regressor

is small, modelled here as local to zero, the signal from the respective nonlinear regressor is

weak, resulting in weak identi�cation of the unknown parameters within the nonlinear regression

component. In such cases, standard asymptotic theory can provide a poor approximation to

�nite-sample behavior and failure to address the problem can produce misleading inferences.

This paper seeks to tackle this problem in complementary ways. First, we develop a local limit

theory that provides a uniform approximation to the �nite-sample distribution irrespective of

the strength of identi�cation. Second, standard CIs based on conventional normal or chi-squared

approximations as well as subsampling CIs are shown to be prone to size distortions that can

be severe. Third, a new con�dence interval (CI) is constructed that has good �nite-sample

coverage probability. Simulation results show that when the nonlinear function is a Box-Cox

type transformation, the nominal 95% standard CI and subsampling CI have asymptotic sizes

of 53% and 2.3%, respectively. In contrast, the robust CI has correct asymptotic size and a

�nite-sample coverage probability of 93.4% when sample size is 100.

Keywords: Asymptotic size, con�dence interval, model selection, nonlinear regression,

subsampling, uniform convergence, weak identi�cation.
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1 Introduction

This paper studies inference methods under weak identi�cation. In particular, we consider con-

struction of CIs with good �nite-sample coverage probability in a nonlinear regression model. The

model belongs to a broad class of models in which lack of identi�cation occurs at some point(s)

in the parameter space. When the true parameter is close to the point of non-identi�cation, we

are confronted with weak identi�cation. As in the weak instruments literature, standard asymp-

totic approximations to the �nite-sample distributions of test statistics can be poor under such

weak identi�cation. For example, even though the t statistic has a standard normal distribution

asymptotically, use of critical values from the standard normal distribution can lead to large size

distortions in weakly identi�ed situations. This paper develops a new asymptotic distribution that

provides good approximations to the �nite-sample distribution uniformly over the parameter space.

This new asymptotic distribution is non-standard, but its quantiles can be approximated by simula-

tion. Using proper quantiles of the new asymptotic distribution, we construct a robust CI that has

good �nite-sample coverage probability irrespective of the strength of identi�cation. The procedure

is developed in a nonlinear regression model estimated by least squares (LS). But the idea carries

over to more general weak identi�cation set-ups with other criterion-based estimators.

Economic theory and empirical studies often suggest nonlinear relationships among economic

variables. These relationships are commonly speci�ed in a parametric form involving several non-

linear component functions with unknown transformation parameters and loading coe¢ cients that

measure the importance of each component. The simplest version of the nonlinear regression model

that we consider takes the form

Yi = � � g(Xi; �) + Z
0
i� + Ui for i = 1; :::; n; (1.1)

where the loading coe¢ cient � and the transformation coe¢ cient � are both scalars. Examples of

the nonlinear function g (�; �) include Box-Cox type transformation, logistic/exponential transfor-
mations in smooth transition models, and neural network models of nonlinear responses. When

� = 0; the nonlinear regressor g(Xi; �) does not enter the regression function and the parameter � is

not identi�ed. As a result, asymptotic distributions of test statistics are non-standard when � = 0

and di¤erent from those when � 6= 0: Discontinuities of the asymptotic distributions also occur in
some other models such as those with a unit root, moment inequalities or weak instruments, and

under post-model-selection inference.

Hypothesis testing when a nuisance parameter is not identi�ed under the null is considered in

Davies (1977, 1987), Andrews and Ploberger (1994), and Hansen (1996), among others. While

hypothesis testing only considers non-standard asymptotics under the null � = 0; we need to

consider the asymptotic distributions of the test statistics for � = 0 as well as � 6= 0 in order to

construct a CI with good coverage in both cases.
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The conventional way to construct a CI is to use the standard asymptotic distribution obtained

when � is �xed at a point di¤erent from 0 and the sample size n goes to in�nity. Even if the true

value of � is di¤erent from 0; however, the standard asymptotic distribution does not necessarily

give a good approximation to �nite-sample behavior. The reason is that approximation by the

standard asymptotic theory does not have uniform validity, even for � 6= 0. In other words, there
can be parameter values for which the �nite-sample coverage probability is smaller than the nominal

level, no matter how large the sample size is. The intuition is that when � is close to the point of

non-identi�cation, i.e. � = 0; the �nite-sample behavior of the test statistics is contaminated by the

non-standard asymptotics under non-identi�cation. The extent of this contamination decreases as

the sample size gets larger, but it is always present in �nite samples. As a result, the standard CI is

valid only when � is large enough for the model to be strongly identi�ed. Uniformity issues of this

sort have been discussed recently in the subsampling and bootstrap literature by Andrews (2000),

Andrews and Guggenberger (2007, 2009a, b, c), Mikusheva (2007), and Romano and Shaikh (2006,

2008).

The aim of the paper is to construct CIs with good �nite-sample coverage probability uni-

formly over the parameter space. To this end, we �rst develop a local limit theory that provides

a good approximation to the �nite-sample behavior in any identi�cation scenario. This uniform

approximation is obtained by considering sequences of the loading coe¢ cients � that drift to the

non-identi�cation point � = 0: The asymptotic distribution derived under these drifting sequences

is used to approximate the �nite-sample distribution for any �xed true value of �. More precisely,

the weak identi�cation case is modelled as � being in an n�1=2 neighborhood of zero. Approxi-

mation devices of this kind also are employed in the weak instruments literature, e.g. Staiger and

Stock (1997).

Applying the local limit theory, we provide explicit formulae for the asymptotic sizes of the

standard CI and the subsampling CI based on Andrews and Guggenberger (2009a) (hereafter AG).

The asymptotic size, de�ned as the limit of the smallest �nite-sample coverage probability over the

parameter space, is a good approximation to the �nite-sample size when the sample size is large.

We show that the asymptotic sizes depend on the speci�c nonlinear functional form g (�; �) and can
be simulated from the analytical formulae derived here. Simulation results show that the nominal

level 95% standard CIs for � and � based on asymptotic normality have asymptotic sizes of 52.9%

and 94.5%, respectively, under a Box-Cox transformation, and 73.2% and 63.6%, respectively, under

a logistic transformation. The severe size distortions of the standard method motivate interest in

a new robust CI with correct asymptotic size under weak identi�cation.

Here we introduce the idea of the robust CI. The 1�� quantile of the �nite-sample distribution
depends on the strength of identi�cation. In consequence, the asymptotic distribution of the test

statistic under a suitable drifting sequence �n = n�1=2b depends heavily on a nuisance parameter

b; which indexes the identi�cation strength. The larger is b; the stronger is the identi�cation. In
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the extreme case that b = �1; all parameters are strongly identi�ed and the standard asymptotic
distribution is justi�ed. However, a larger critical value might be required under weak identi�cation

where b 2 R: One way to deal with this problem is to take the supremum of the 1�� quantile over
all b: This least favorable CI has correct asymptotic size, but it can be unnecessarily long when the

model is strongly identi�ed, i.e. b = �1:
The robust CI introduced here improves upon the least favorable CI by using a model-selection

procedure to choose the critical value. The idea is to use the data to determine whether the

model is weakly identi�ed. Under weak identi�cation, the least favorable critical value should be

employed to get correct asymptotic size. Otherwise, the standard critical value is used. We use a t

statistic for � centered at 0 for the purpose of model selection. Speci�cally, we proceed with weak

identi�cation only if the t statistic is smaller than a tuning parameter. The tuning parameter has to

be designed so that the model selection procedure is consistent under weak identi�cation. We show

that the robust CI has correct asymptotic size provided the tuning parameter diverges to in�nity

with the sample size. Suitable choices of the divergence rate are investigated by simulation. This

model-selection procedure is analogous to the generalized moment selection method in Andrews

and Soares (2007).

The paper also develops a sequential procedure to deal with multiple nonlinear regressors under

di¤erent identi�cation scenarios. It is shown that weak identi�cation of any particular nonlinear re-

gressor can have serious negative implications on inference for all the parameters in the model when

standard asymptotics are employed. A new CI that is robust to weak identi�cation is developed to

address this di¢ culty in the multiple regressor context.

The paper also is related to the weak identi�cation issue discussed by Dufour (1997). While

Dufour (1997) provides theoretical results on length of the CI, we propose a practical procedure to

construct a CI with correct asymptotic size. We do so under the assumption that the parameter

space for the potentially nonidenti�ed parameter is bounded. Dufour (1997) also has an extensive

discussion of econometric models with weak identi�cation problems, where methods in the present

paper can be applied after modi�cation and generalization. Another related literature is that

covering the partially identi�ed models, as in Chernozhukov, Hong, and Tamer (2007). However,

the standard LS population criterion function is either uniquely minimized by the true value or by

the entire parameter space, rather than by a subset of it.

The remainder of the paper is organized as follows. Section 2 describes the model and the

estimation methods. To provide basic intuition, Section 3 derives a new local limit theory in a

simple model with one nonlinear regressor. Section 4 provides explicit formulae for the asymptotic

sizes of the standard CI and the subsampling CI. Simulation results with two speci�c nonlinear

functions are reported. Section 5 introduces the robust CI and presents simulation results to

investigate its �nite-sample properties. Section 6 generalizes the local limit theory to a model with

multiple nonlinear regressors as well as linear regressors. In particular, a sequential procedure is
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introduced. Section 7 discusses the standard CI, subsampling CI, and robust CI in the general

set-up. Section 8 concludes and provides future research directions. Proofs are collected in the

Appendix.

2 Model

The general model we consider is

Yi = g(Xi; �)
0� + Z 0i� + Ui for i = 1; :::; n; where

� = (�1; :::; �p)
0 and g (Xi; �) = (g1 (Xi; �1) ; :::; gp (Xi; �p))

0 : (2.1)

In (2:1) ; Xi 2 Rd; Yi; Ui 2 R; �; � 2 Rp; and Zi; � 2 Rq: The function gj (x; �j) 2 R is known and

nonlinear in x for any given �j : Examples of the nonlinear function include

Example 1. Box-Cox function: g (x; �) = (x� � 1) =�;

Example 2. logistic function: g (x; �) = (1 + exp(�(x� �))�1:

We assume the support of Xi is contained in a set X : The parameter spaces for (�0; � 0)0 and
� are B � Rp+q and � = �1 � � � � � �p; respectively, where �j � R for j = 1; :::; p: We assume

B is bounded and contains (�0; � 0)0 with �j arbitrarily close to 0 for any j: We also assume � is

compact. The data and the function g(Xi; �) are assumed to satisfy the following assumptions.

Assumption 1. g (x; �) is twice continuously di¤erentiable with respect to (wrt) �; 8� 2 � and
8x 2 X . We denote the �rst and second order derivatives of gj (Xi; �j) wrt �j by g�j (Xi; �j) and

g��j (Xi; �j) ; respectively, and write g�(Xi; �) = (g�1(Xi; �1); :::; g�p(Xi; �p))
0:

Assumption 2. (a) f(Xi; Zi; Ui) : i = 1; :::; ng are i:i:d:
(b) E(UijXi; Zi) = 0 a.s., E(U2i jXi; Zi) = �2 (Xi; Zi) a.s., and EU4i <1:
(c) 8�; � 2 � with � 6= �; P(g (Xi; �) = kg (Xi; �)) < 1 for all k 2 R:
(d) E sup�2� g

4
j (Xi; �j) + E sup�2� g

4
�j (Xi; �j) + E sup�2� g

2
��j (Xi; �j) <1; 8j � p:

(e) EZiZ 0i is nonsingular and E kZik
4 <1.

Assumption 2(c) is imposed to identify � when � 6= 0: Assumption 2(d) is needed to ensure

uniform convergence used throughout the paper.

We are interested in con�dence sets (CSs) for some sub-vectors of �; �; and �, and construct

them by inverting test statistics based on the LS estimator. When the parameter of interest is a

scalar, the CSs become CIs. We �rst derive the asymptotic distributions of the LS estimators of �;

�; and �: Then these are used to determine the asymptotic distributions of the test statistics. By

de�nition, the LS estimators are obtained by minimizing the sum of squared regression residuals.

This procedure can be viewed in the following way. First, for each given �; we take g (Xi; �) as an

exogenous regressor and estimate � and � by the LS estimator on (2:1) ; yielding estimates b� (�)
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and b� (�) : The concentrated LS sample criterion function is the average of the squared residuals
Qn (�) = n�1

nX
i=1

bU2i (�) ; where bUi (�) = Yi � g (Xi; �)
0 b� (�)� Z 0ib� (�) . (2.2)

The LS estimator of �; denoted by b�n; minimizes Qn (�) over � 2 �:1 This yields
b�n = argmin

�2�
Qn (�) ; b�n = b� (b�n) ; and b�n = b� (b�n) : (2.3)

3 Simple Model and Asymptotic Results

In order to explain the �nite-sample and asymptotic results as clearly as possible, we �rst

analyze a simple model in which there is only one nonlinear regressor, i.e. p = 1; and there are no

linear regressors. The model then becomes

Yi = � � g(Xi; �) + Ui; (3.1)

where � 2 R and � 2 R: This simple model sheds light on how the magnitude of � a¤ects the

�nite-sample and asymptotic properties of the LS estimators, the test statistics, and the LS-based

CIs.

3.1 Asymptotic Size

Let � be a generic notation for any parameter in the model. It can be � or �: We construct

a CI for � by inverting a test statistic Tn (�0) for H0 : � = �0: The nominal level 1 � � CI for �

is CIn = f� : Tn (�) � cn;1�� (�)g ; where cn;1�� (�) is the critical value. The critical value choice
introduced in this paper can depend on the true value of � as well as the sample size n: When

 = (�; �)0 is the true parameter, the coverage probability of a CI is

P (� 2 CIn) = P (Tn (�) � cn;1�� (�)) : (3.2)

This paper focuses on the smallest �nite-sample coverage probability of a CI over the parameter

space, i.e. the �nite-sample size. It is approximated by the asymptotic size de�ned as

AsyCS = lim inf
n!1

inf
2�

P (� 2 CIn) = lim inf
n!1

inf
2�

P (Tn (�) � cn;1�� (�)) ; (3.3)

where � is the parameter space of : Note that in the de�nition of the asymptotic size the operation

inf2� is taken before the operation liminfn!1: Without the uniformity over  2 � before the

1We actually search for the value of � on a set that is slightly larger than the parameter space � to avoid the
problems that occur when the parameter is on the boundary of the parameter space. For details, see Andrews (1999).
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limit operation, only a pointwise result is obtained. A pointwise result does not provide a good

approximation to the �nite-sample size because the contamination on the �nite-sample behavior

by non-identi�cation exists for any given sample size n. Only a uniform result can capture that the

extent of this contamination decreases as sample size gets larger.

A key implication from the de�nition of the asymptotic size is that the true parameter value

 at which the smallest �nite-sample coverage probability attains can vary with the sample size.

Therefore, in order to investigate the asymptotic size we need to derive the asymptotic distributions

of the test statistics Tn (�) under sequences of true parameters n = (�n; �n)
0 ; where the subscript

n denotes that the true value may change with the sample size n. The sequences that we consider

are the ones that determine the asymptotic sizes of the CI based on results in AG. These are also

the sequences under which asymptotic distributions provide good uniform approximations to the

�nite-sample distributions of the test statistics. This is consistent with the fact that the asymptotic

size is de�ned to approximate the �nite-sample size.

Speci�cally, the sequences of parameters we consider are characterized by a localization para-

meter

h = (b; �0)
0 ; where n1=2�n ! b and �n ! �0: (3.4)

The parameter space for h is H = R[�1] ��; where R[�1] = R [ f�1g.
The localization parameter in (3:4) is a general representation that includes various identi�cation

situations. First, weak identi�cation is modelled as b 2 R such that �n converges to 0 at rate n�1=2:
The values of b characterize the speci�c paths of these drifting sequences. These sequences also

correspond to those considered in the weak instruments asymptotics of Staiger and Stock (1997).

Second, hypothesis testing for non-identi�cation, i.e. � = 0; corresponds to b = 0: Third, standard

asymptotics that are based on a �xed parameter � 6= 0 correspond to b = �1: Hence, standard
asymptotics fail to reveal the �nite-sample behavior under weak identi�cation for b 2 R.

3.2 Asymptotic Distributions

We now derive a local limit theory under these drifting sequences to investigate the asymptotic

sizes of the CIs. The procedure roughly goes as follows. To analyze the LS-based test statistics,

we start with the LS sample criterion function, which is the average squared residuals de�ned in

(2:2) : The advantage of working with this concentrated sample criterion function is that b� (�) has a
closed form for any �xed �:We properly re-center and re-scale the sample criterion function Qn (�)

to derive its asymptotic distribution. The limit is denoted by Q (�) ; which may be stochastic.

Invoking the continuous mapping theorem (CMT), the minimizer of Qn (�) ; i.e. b�n; is expected to
converge (in a stochastic sense) to the minimizer of Q (�) : Finally, the limit of b�n is plugged into
the closed form b� (�) to obtain the asymptotic distributions of b�n and the LS-based test statistics.

A key step in derivation of the local limit theory is to obtain di¤erent forms of Q (�) under
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various identi�cation scenarios. In a standard set-up where � is �xed and bounded away from 0;

the sample criterion function Qn (�) converges in probability to a non-random population criterion

function Q (�) uniformly over �: This non-random function Q (�) is uniquely minimized at the true

value of �: However, under weak identi�cation, where �n is in an n
�1=2 neighborhood of 0; the limit

of Qn (�) is random after proper re-centering and re-scaling. Our method is to view Qn (�) as an

empirical process indexed by �; and to show that a centered and scaled version of Qn (�) converges

weakly to a stochastic process Q (�) :

To de�ne the stochastic limit of Qn (�) under weak identi�cation, we let S (�) be a mean

zero Gaussian process with covariance kernel 
 (�; �) = EU2i g (Xi; �) g (Xi; �) : De�ne the func-

tion � (�; �) = Eg (Xi; �) g (Xi; �) : For any given � and �; � (�; �) is the covariance. Let Y =

(Y1; :::; Yn)
0:

Assumption 3a. � (�; �) � " 8� 2 � for some " > 0:

Lemma 3.1 Suppose Assumptions 1, 2, and 3a hold.

(a) When n1=2�n ! b 2 R and �n ! �0; n
�
Qn(�)� n�1Y 0Y

�
) ���1(�; �) (S(�) + �(�; �0)b)2 :

(b) When
��n1=2�n��!1 and �n ! �0; �

�2
n

�
Qn(�)� n�1Y 0Y

�
!p ���1 (�; �) �2 (�; �0)

uniformly over �:

Comments: 1. In Lemma 3.1(a), Qn(�)�n�1Y 0Y converges in probability to 0 at rate n�1: Note
that the centering term n�1Y 0Y does not depend on �: Hence, the asymptotic distribution of b�n
only depends on the non-central chi-square process on the rhs of Lemma 3.1(a).2

2. In Lemma 3.1(b), �n is bounded away from 0 or converges to 0 slower than n�1=2. In the

former case, the model is standard. In the latter case, Qn(�)� n�1Y 0Y !p 0 at rate �2n: This rate

of convergence is slower than that in Lemma 3.1(a). As in part (a), the centering variable does

not depend on �; so the probability limit of b�n only depends on the rhs of Lemma 3.1(b), which
is uniquely minimized at �0 by the Cauchy-Schwarz inequality under Assumption 2(c). The rhs of

Lemma 3.1(a) is related to that of Lemma 3.1(b). As b diverges to plus or minus in�nity, �(�; �0)b

dominates S (�) :

By invoking the CMT, we show below that b�n converges in distribution to the minimizer of the
rhs of Lemma 3.1(a) when �n = O(n�1=2) and converges in probability to �0 when �n is of a larger

order than n�1=2; represented by �n � O(n�1=2). Before applying the CMT, however, conditions

are needed to ensure the argmin functions are continuous here.

Lemma 3.2 Under Assumption 2, the sample paths of the non-central chi-square process ���1(�; �)
(S(�) + �(�; �0)b)

2 have unique minima over � 2 � with probability one.
2For �xed �; ��1(�; �) (S(�) + �(�; �0)b)

2 has a non-central chi-square distribution under homoskedasticity, al-
though not under heteroskedasticity. Nevertheless, for simplicity, we call its opposite ���1(�; �)(S(�) +�(�; �0)b)2
a non-central chi-square process throughout the paper.
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The uniqueness of the minimizer in Lemma 3.2 ensures that the argmin function on a compact

support is a continuous function of the sample paths of the chi-square process with probability

one. This property is used to derive the asymptotic distribution of b�n in Lemma 3.3 below. In the
proof of Lemma 3.2, we use arguments analogous to those in Kim and Pollard (1990) regarding the

unique maximizer of a Gaussian process.

Lemma 3.3 Suppose Assumptions 1, 2, and 3a hold.

(a) When n1=2�n ! b 2 R and �n ! �0;

b�n ) �� (h) ; where

�� (h) = argmin
�2�

(�f��1(�; �) (S(�) + �(�; �0)b)2g) and h = (b; �0)0:

(b) When
��n1=2�n��!1 and �n ! �0; b�n � �n !p 0.

The intuition behind Lemma 3.3 is that whether �n can be estimated consistently depends on

the strength of the signal from g (Xi; �n)�n relative to the noise from the errors. The strength of

the signal is proportional to the magnitude of �n: Under weak identi�cation (or non-identi�cation),

i.e. �n = O(n�1=2); b�n converges in distribution to a random variable that minimizes the sample

paths of a non-central chi-square process. The randomness comes from the noise in the errors.

Under strong identi�cation, i.e. �n � O(n�1=2), b�n is consistent because the noise is of a smaller
order compared with the signal.

Next, we derive the asymptotic distributions of the LS estimator b�n under di¤erent identi-
�cation scenarios. When b�n is inconsistent, we can show that n1=2(b� (�) � �n); regarded as an

empirical process indexed by �; converges weakly to a stochastic process. The asymptotic distrib-

ution of n1=2(b�n � �n) can be obtained by plugging the random limit of b�n into the limit process
of n1=2(b� (�)� �n); because both of them are continuous functions of the Gaussian process S (�).

When b�n is consistent, the asymptotic normality of n1=2(b�n��n) can be established using standard
arguments.

To specify the asymptotic distributions, we de�ne

mi (�) = (g (Xi; �) ; g� (Xi; �))
0 ; G (�) = Emi (�)mi (�)

0 ;

V (�) = EU2i mi (�)mi (�)
0 ; and � (�) = G�1 (�)V (�)G�1 (�) : (3.5)

The vector mi (�) equals the vector of partial derivatives of g(Xi; �)� wrt to the parameter vector

(�; �)0 except that the latter has g� (Xi; �)� in place of g� (Xi; �) : The standard asymptotic co-

variance matrix of the LS estimator, which is based on the partial derivative vector, involves � and

becomes singular when the true parameter �n drifts to 0: To avoid the problem of singularity, we
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have to employ an asymptotic covariance matrix based on mi (�) and make the true parameter �n
part of the rate of convergence of the LS estimator of �, as shown in Lemma 3.4(b) below.

Assumption 4a. G (�) � " 8 � 2 � for some " > 0:

Lemma 3.4 Suppose Assumptions 1, 2, 3a, and 4a hold.

(a) When n1=2�n ! b 2 R and �n ! �0;

n1=2
�b�n � �n�) � (�� (h) ; h) ; where � (�; h) = ��1 (�; �) (S (�) + � (�;�0) b)� b:

(b) When
��n1=2�n��!1 and �n ! �0;0@ n1=2

�b�n � �n�
n1=2�n (b�n � �n)

1A) N (0;� (�0)) :

Comments: 1. Under weak identi�cation in Lemma 3.4(a), n1=2(b�n � �n) is not asymptotically

normal. Instead, it is characterized by a Gaussian process �(�; h) indexed by � and a random

variable �� (h) ; de�ned in Lemma 3.3(a). The non-standard asymptotic distribution of n1=2(b�n �
�n) is determined by the �nite localization parameter h:

2. In Lemma 3.4(b), where �n � O(n�1=2); both b�n and b�n have asymptotic normal distri-
butions. However, the convergence rate of b�n depends on �n: Speci�cally, its convergence rate is
n�1=2��1n , which is slower than n

�1=2 if �n converges to 0: The reason is that when �n converges

to 0, the signal-to-noise ratio of the regressor g (Xi; �n)�n also converges to 0: As a result, in order

for b�n to achieve the same level of accuracy as in a standard set-up, more data is required to
compensate for the weak signal.

3. When �n is �xed at a point di¤erent from 0; the model is standard and the LS estimator is

n1=2 consistent. In this case, we can move �n from the normalization of b�n on the lhs of Lemma
3.4(b) to the rhs. With this adjustment, the rhs becomes a standard covariance matrix of the LS

estimator.

Because both � and � are scalars in the simple model, t statistics are employed to construct

the CIs. De�ne

b� (�) = bG�1 (�) bV (�) bG�1 (�) ; where
bG (�) = n�1

nX
i=1

mi (�)mi (�)
0 ; bV (�) = n�1

nX
i=1

bU2i (�)mi (�)mi (�)
0 ; (3.6)

mi (�) is de�ned in (3:5) ; and bUi (�) is de�ned in (2:2) : The t statistics for � and � are
T�;n = n1=2(b�n � �n)=b�� and T�;n = n1=2 (b�n � �n) =b��; (3.7)
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where b�� = b�n (b�n)1=211 and b�� = b�n (b�n)1=222 b��1n : Note that b�� takes into account the fact that the
normalization factor for b�n is n1=2�n in Lemma 3.4(b). Both T�;n and T�;n are equivalent to the
standard de�nitions of the t statistics.

Theorem 3.1 Suppose Assumptions 1, 2, 3a, and 4a hold.

(a) When n1=2�n ! b 2 R and �n ! �0;

T�;n ) T� (�
� (h) ; h) and T�;n ) T� (�

� (h) ; h) ; where

T� (�; h) = � (�; h) (� (�)11)
�1=2 and T� (�; h) = (� (�; h) + b) (� � �0) (� (�)22)

�1=2 :

(b) When
��n1=2�n��!1 and �n ! �0;

T�;n ) N (0; 1) and T�;n ) N (0; 1) :

Comment: Under weak identi�cation in Theorem 3.1(a), the asymptotic distributions of the t

statistics are characterized by the Gaussian processes T� (�; h) and T� (�; h) together with the limit

random variable �� (h) ; all of which are determined by the �nite localization parameter h: With

the analytical formulae derived, proper quantiles of these non-standard asymptotic distributions

can be simulated. In Lemma 3.1(b), where �n � O(n�1=2); both of the t statistics have standard

normal distributions as expected. It is worth repeating our claim that under weak identi�cation

the non-standard asymptotic distribution in part (a) provides a much better approximation to

the �nite-sample behavior than the standard asymptotic distribution in part (b) does. Simulation

results given in Section 5.3 corroborate this.

4 Standard and Subsampling Con�dence Intervals

As in Section 3.1, let � be a generic notation for any parameter in the model and Tn (�) be a test

statistic for �: The nominal level 1�� CI for � is CIn = f� : Tn (�) � cn;1�� (�)g ; where cn;1�� (�)
is the critical value. The standard CI and the subsampling CI are obtained by di¤erent choices of

their critical values. The critical value for a standard CI is the 1 � � quantile of the asymptotic

distribution derived under strong identi�cation. This is the standard normal distribution in a

simple model with t statistics.3 In this case, the standard critical value for a nominal level 1 � �

symmetric two-sided CI is z1��=2; which is the 1��=2 quantile of the standard normal distribution.
We now de�ne the subsampling critical value. The idea of subsampling is to use the empirical

distribution of the subsample statistics to approximate the �nite-sample distribution of the full-

sample statistics. Let ns denote the subsample size when the full-sample size is n: For the asymptotic

3When symmetric two-sided CI is constructed for a scalar parameter, the asymptotic distribution of the test
statistic is jZj ; where Z � N(0; 1):
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results we assume that ns !1 and ns=n! 0 as n!1: The number of subsamples of length ns
is qn = n!= ((n� ns)!ns!) with i:i:d: observations. The subsample statistics used to construct the
subsampling critical values are fTn;ns;j(�) : j = 1; :::; qng; where Tn;ns;j(�) is a subsample statistic
de�ned exactly as Tn (�) but based on the jth subsample of size ns rather than the full sample. The

subsampling critical value cn;ns (1� �) is the 1� � sample quantile of fTn;ns;j(�) : j = 1; :::; qng:

4.1 Explicit Formulae for Asymptotic Sizes

In order to provide explicit formulae for the asymptotic sizes of the standard CI and the sub-

sampling CI, we �rst characterize their critical values with the new local limit theory. Let Jh be the

asymptotic distribution of Tn (�) when h is the localization parameter associated with the drifting

sequence of true parameter de�ned in (3:4) : Analytical formulae of Jh for � being � and � are

given in Theorem 3.1. Let ch (1� �) be the 1 � � quantile of Jh: The standard critical value is

c1 (1� �) ; which is obtained when b = �1 under strong identi�cation.4

Under the localization parameter h; the subsampling critical value is denoted by cl (1� �) :
According to AG, the relationship between l and h is given in the set LH de�ned below. The basic

idea is that, due to the smaller sample size, the sampling distribution of the subsample test statistic

is a¤ected more by the non-identi�cation than that of the full-sample statistic. As a result, the

subsample statistic behaves as if the true value is closer to the non-identi�cation point. Under the

assumption ns=n ! 0; which is required for asymptotic validity of the subsampling method, the

relationship between the subsample and full-sample statistics are characterized by the set

LH =
�
(l; h) 2 H �H : l = (lb; �0) ; h = (b; �0) ; and (i) lb = 0 if jbj <1;

(ii) lb 2 R+;1 if b = +1; and (iii) lb 2 R�;1 if b = �1:
	

(4.1)

where R+;1 = fx 2 R : x � 0g [ f1g and R�;1 = fx 2 R : x � 0g [ f�1g:5

By verifying the high-level assumptions in AG with the non-standard asymptotic distribution

derived in Theorem 3.1, we establish asymptotic sizes of the standard CI and the subsampling CI

for � in the following theorem: Here � can be either � or �:

Theorem 4.1 Suppose Assumptions 1, 2, 3a, and 4a hold. Then,

(a) AsyCS = infh2H Jh(c1(1� �)) for the standard CI and
(b) AsyCS = inf(l;h)2LH Jh(cl(1� �)) for the subsampling CI.

Comments: As is evident in Jh; the asymptotic sizes depend on the speci�c functional form of

g (�; �) : Using these analytical formulae and the asymptotic distributions obtained in Theorem 3.1,

we can simulate the asymptotic sizes of the standard CI and the subsampling CI. Simulation results

4When b = �1; �0 does not a¤ect the limit distribution Jh:
5Note that l and L correspond to g and G in AG.
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for two speci�c nonlinear functions are reported in Table 4.1 on page 15. Moreover, the asymptotic

sizes also depend on the parameter space �; as the inconsistent estimator �� (h) ; de�ned in Lemma

3.3, is involved in Jh:

4.2 Simulations for Standard and Subsampling CIs

Graphs of ch (1� �) as a function of b for �xed �0 are informative regarding the behavior of
the standard CI and the subsampling CI. A CI has asymptotic size greater than or equal to 1� �

only if the probability limit of the critical value is greater than or equal to ch (1� �) : Hence, for
a standard CI to have correct asymptotic size, one needs c1 (1� �) � ch (1� �) ; for all h 2 H:

For example, this occurs if the graph is increasing in b for b � 0 and decreasing in b for b < 0

for each �0: On the other hand, for a subsampling CI to have correct asymptotic size, one needs

cl (1� �) � ch (1� �) ; for all (l; h) 2 LH. This occurs if the graph is decreasing in b for b � 0

and increasing in b for b < 0 for each �0: Other cases where the quantile function ch (1� �) is
non-monotonic in jbj are discussed in AG.

We now investigate the symmetric two-sided CIs for the scalar parameters in the following two

examples. Both of them include intercepts and linear regressors in addition to a nonlinear regressor

to mimic empirical applications with nonlinear regressions. Theoretical results in a general model of

this sort are analogous to those derived in the simple model above. The general model is discussed

in Sections 6 and 7 below.

Example 1� Cont.: The �rst results are based on the model

Yi = �0 + �1Xi + �g (Xi; �) + Ui; where g (Xi; �) = (X
�
i � 1) =�: (4.2)

The distributions of Xi and Ui are Xi � N (6; 0:25) and Ui � N (0; 0:25) ; respectively:6 The

parameter space for � is [1:5; 4] : The quantile functions of the test statistics for the symmetric two-

sided CIs for � and � are presented in Figure 4.1 on the next page. Since these quantile graphs are

symmetric wrt b around 0; we only report the graphs for b � 0:7 For any �xed �0; the graph for �
�rst slopes up and then slopes down, with the maximum above the value 1.96. Hence, these quantile

graphs imply that neither the standard CI nor the subsampling CI for � has correct asymptotic

size. For any �xed �0; the graph for � slopes up and always stays below the value 1.96. These

graphs indicate that the standard CI for � has correct asymptotic size, while the subsampling CI

does not.
6 In the nonlinear regression model, the results are not invariant to the scales of Xi and Ui: The true values of �0

and �1 do not a¤ect the results.
7The asymptotic distributions Jh in Theorem 3.1 are odd functions of b: Hence, asymptotic distributions of the

test statistics for symmetric two-sided CIs have quantiles that are even functions of b: This is not true for one-sided
CIs.
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Figure 4.1: .95 Asymptotic Quantiles of the Test Statistics for Symmetric Two-sided CIs in Example
1 with the Box-Cox Function: (I) CI for � and (II) CI for �:

The asymptotic and �nite-sample sizes of the standard CIs and the subsampling CIs for �1; �;

and � are reported in Table 4.1 on the following page.8 The asymptotic sizes in Theorem 4.1 were

computed by simulation. The nominal 95% standard CIs for �1 and � have asymptotic sizes of

72:6% and 52:9%, respectively, while their counterparts for the subsampling CIs are 17.7% and

2.3%, respectively. The standard CI for � has asymptotic size close to the nominal level, while the

subsampling CI does not. The �nite-sample sizes are close to the asymptotic sizes and consistent

with the quantile graphs in Figure 4.1.

Example 2� Cont.: The smooth transition model considered is of the form

Yi = Z 0i�0 + �1Xi + �g (Xi; �) + Ui; where g (Xi; �) = Xi(1 + exp(�(Xi � �))�1; (4.3)

where Zi is a 3�1 vector of exogenous variables including an intercept. The distributions of Xi and

Ui are Xi � N (6:6; 3:6) and Ui � N (0; 0:09) ; respectively:9 The parameter space for � is [4:6; 8:3] ;

where the lower and upper ends are 15% and 85% quantiles of Xi; respectively. The quantile graphs

of the test statistics for the symmetric two-sided CIs for � and � are presented in Figure 4.2 on

8The results in Tables 4.1 and 5.1 are based on 10,000 simulation repetitions. For example 1, the search over b to
determine the Min is done on the interval [0; 150] with stepsize 0.2 on [0,10], stepsize 1 on [10,50], and stepsize 10 on
[50,150]. The search over �0 to determine the Min is done on the set {1,8, 2, 2,2, 2.6, 3.0, 3.4, 3.8}. For example 2,
the search over b to determine the Min is done on the interval [0,10], with stepsize 0.05 on [0,2.8] and [6.5,7], stepsize
0.01 on [2.8, 6.5], and stepsize 0.2 on [7,10]. These grids are re�ned based on previous simulations with coarse grids.
The search over �0 to determine the Min is done on the set [4.8, 7.8] with step size 0.5 and at the point 8.2.

9The parameter values used in the simulation are designed to mimic those in an empirical application.
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Table 4.1: Asymptotic and Finite-sample Sizes of Nominal
95% Symmetric Two-sided Standard and Subsampling CIs

Example 1. Box-Cox Function
Standard CI Sub CI

n = 100 n = 250 n = 500 Asy Asy
�1 75.1 74.1 72.7 72.6 17.7
� 53.7 53.5 52.5 52.9 2.3
� 94.3 94.4 94.8 94.5 9.1

Example 2. Logistic Smooth Transition Function
�1 72.6 73.6 73.2 74.0 75.7
� 71.8 73.1 72.2 73.2 76.0
� 61.1 62.6 62.6 63.6 90.1

page 16. For any �xed �0; the graphs are non-monotonic with the maximum above the value 1.96.

Hence, these quantile graphs imply that the standard CIs and the subsampling CIs for � and � all

su¤er from size distortions.

The asymptotic and �nite-sample sizes of the standard CIs and subsampling CIs are reported in

Table 4.1. As predicted by the quantile graphs, the nominal 95% standard CIs and subsampling CIs

for �1; �; and � all under-cover. The standard CIs for �1; �; and � have asymptotic sizes of 74:0%,

73:2%, and 63:6%, respectively. Their counterparts for the subsampling CIs are 75.7%, 76.0%, and

90.1%, respectively. Finite-sample simulations con�rm that these are good approximations to the

�nite-sample coverage probabilities.

5 A New Robust Con�dence Interval

When a larger critical value is needed under weak identi�cation than under strong identi�cation

and non-identi�cation, as in the two examples above, both the standard CI and the subsampling

CI under-cover, sometimes severely. This motivates the introduction of a new CI that has correct

asymptotic size. The robust CI introduced here is particularly useful when both the standard CI

and subsampling CI fail. However, it remains valid when either of them has correct asymptotic

size.

5.1 Description of the Robust CI

The idea behind the robust CI is as follows. The �nite-sample distribution of the test statistic

Tn (�) depends on the identi�cation strength of the model, which is characterized by the localization

parameter b: A larger critical value might be required under weak identi�cation than under strong

identi�cation. One way to deal with this problem is to construct a critical value that is large enough

for all identi�cation situations, but this least favorable CI may be too large and not informative
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Figure 4.2: .95 Asymptotic Quantiles of the Test Statistics for Symmetric Two-sided CIs in Example
2 with Logistic Function: (I) CI for � and (II) CI for �.

when the model is strongly identi�ed.

The robust CI improves upon the least favorable CI by using a model-selection procedure to

choose the critical value. The idea is to use the data to determine whether b is �nite. If b is

�nite, i.e. � is weakly identi�ed (or not identi�ed), the least favorable critical value should be

employed to achieve correct asymptotic size. Otherwise, the standard critical value is used. This

model-selection procedure used to choose the critical value is analogous to the generalized moment

selection method in Andrews and Soares (2007).

The model-selection procedure is designed to choose between M0 : b 2 R and M1 : jbj = 1:
The statistic used for the model selection takes the form

tn =
���n1=2b�n=b����� (5.1)

and tn is used to measure the degree of identi�cation. Let f�n : n � 1g be a sequence of constants
that diverges to in�nity as n ! 1: We call �n the tuning parameter. We select M0 if tn � �n

and select M1 otherwise. Under M0, tn = jn1=2(b�n � �n)=b�� + n1=2�n=b�� j = Op (1) : Hence, we

can consistently select M0 provided the tuning parameter �n diverges to in�nity. Suitable choices

of �n include (lnn)
1=2 and (2 ln lnn)1=2 analogous to BIC and Hannan-Quinn information criteria,

respectively. The �nite-sample behavior of these choices are compared by simulation.
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Following the model-selection procedure, the critical value for the robust CI is de�ned as

bcn (1� �) =
8<: sup

h2H
ch (1� �) ; if tn � �n

c1 (1� �) ; if tn > �n

: (5.2)

Note that if the supremum of ch (1� �) is attained at jbj = 1; the robust CI is equivalent to the
standard CI.

5.2 Construction Algorithm and Asymptotic Size Results

The algorithm to construct a robust CI in the simple model with one nonlinear regressor has

four steps: (1) Estimate the model by the standard LS estimator, yielding b� and its standard errorb��: (2) Use the model-selection procedure to determine whether the model is weakly identi�ed.
The model-selection statistic is de�ned in (5:1) : If tn > �n; the model is considered to be strongly

identi�ed and the standard critical value is used, i.e. z1��=2 for a symmetric two-sided CI. If

tn � �n; we conclude that � is in an n�1=2 neighborhood of 0 and � is weakly identi�ed. In this

case, continue to step 3. (3) Simulate the 1�� quantile of the non-standard asymptotic distribution
derived in Theorem 3.1(a) for a given h: (4) Take the supremum of the critical value obtained in

step 3 over the parameter space of h: This is the critical value for the robust CI de�ned in (5:2) :

Assumption R. �n !1:

Theorem 5.1 Suppose Assumptions 1, 2, 3a, 4a, and R hold. The nominal level 1� � robust CI

satis�es AsyCS = 1� �:

Comment: Theorem 5.1 states that the robust CI has correct asymptotic size provided the tuning

parameter for model selection diverges to in�nity with the sample size.

5.3 Simulations for the Robust CI

In this subsection, we �rst use simulation to demonstrate the �nite-sample performance of the

robust CI and to compare di¤erent choices of the tuning parameter �n. Second, we explain the

good �nite-sample performance of the robust CI by comparing the �nite-sample quantiles of the

test statistics with the asymptotic quantiles simulated from the local limit theory. Finally, di¤erent

types of CIs are compared under various identi�cation scenarios.

5.3.1 Finite-Sample Coverage Probability

The �nite-sample sizes of the nominal 95% symmetric two-sided robust CIs in Example 1 and

Example 2 are reported in Table 5.1 on the following page. We report the robust CIs with the tuning

parameter �n being (lnn)
1=2 and (2 ln lnn)1=2 and label them with Rob1 and Rob2, respectively.
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Table 5.1: Finite-sample Sizes of Nominal 95% Symmetric Two-sided Robust CIs
Example 1. Box-Cox Function

Std n = 100 n = 250 n = 500
Rob1 Rob2 LF Rob1 Rob2 LF Rob1 Rob2 LF

�1 72.6 94.2 94.2 95.9 94.4 94.4 95.7 94.7 94.3 94.9
� 52.9 93.4 92.7 96.4 93.5 92.4 96.0 93.2 92.0 95.1
� 94.5 94.3 94.3 94.6 94.4 94.4 94.7 94.8 94.8 95.1

Example 2. Logistic Smooth Transition Function
�1 73.9 91.4 90.8 94.5 92.4 92.0 94.8 92.0 91.8 94.5
� 73.3 91.9 89.6 94.5 92.8 90.9 94.9 92.5 90.6 94.6
� 63.6 88.7 86.4 92.5 91.4 89.0 93.9 92.5 89.9 94.2
Note: Std is short for standard CI. Its asymptotic size is listed here for comparison.

Rob1 and Rob2 are the robust CIs with �n being (lnn)
1=2 and (2 ln lnn)1=2 ; respectively.

LF is the �least favorable�CI obtained without model selection.

We also report �nite-sample results for a CI whose critical value is given by the least favorable (LF)

asymptotic distribution. The LF CI does not employ the model-selection procedure and always

takes the critical value that the robust CI would choose when the model is weakly identi�ed. With a

critical value large enough for all identi�cation scenarios, the LF CI has slightly larger �nite-sample

sizes than those of the robust CIs. However, the LF CI can be signi�cantly longer than the robust

CI when the model is strongly identi�ed.

In contrast to the standard CI and the subsampling CI, the robust CI has �nite-sample size

close to the nominal level. In Example 1, the robust CI improves the �nite-sample sizes for �1 and

� when n = 100 from 75.1% and 53.7% to 94.2% and 93.4%, respectively. In Example 2, the robust

CI improves the �nite-sample sizes when n = 250 from 73.6%, 73.1%, and 62.6% to 92.4%, 92.8%,

and 91.4%, respectively, for �1; �, and �:
10

The choice of tuning parameter between (lnn)1=2 and (2 ln lnn)1=2 is a trade-o¤ between the

size and length of the CI. As evident in Table 5.1, Rob1 has a larger �nite-sample size than that of

Rob2. Hence, Rob1 is recommended if a good �nite-sample size is the main focus, as is typically

the case. However, Rob2 has a shorter average length than that of Rob1 because of its smaller

tuning parameter. The length comparison is in Table 5.2 on page 20. Therefore, Rob2 might be

chosen if a short length is valued more than a large coverage probability.

5.3.2 Comparison of Asymptotic and Finite-sample Quantile Graphs

The robust CI out-performs the standard CI by a large margin because under weak identi�ca-

tion the local limit theory provides a good uniform approximation to the �nite-sample distribution,

while the standard normal distribution does not. To illustrate this point, �nite-sample and as-

10The comparison is between the standard CI and the robust CI with (lnn)1=2 as the tuning parameter.
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Figure 5.1: .95 Finite-sample and Asymptotic Quantiles of the Test Statistics for the Symmetric
Two-sided CIs for � : (I) Example 1 with the Box-Cox Function and (II) Example 2 with the
Logistic Function.

ymptotic quantiles simulated from the local limit theory in Theorem 3.1 are presented in the same

�gure for comparison. Figure 5.1 on the next page presents quantiles of the test statistics for the

symmetric two-sided CIs for �: Because the true value of � a¤ects the �nite-sample and asymptotic

distributions, we �x �0 at 1:8 in Example 1 and at 4:8 in Example 2.11 The true value of � is

b=n1=2 for the �nite-sample simulations under di¤erent b values.

The �nite-sample quantile, if used as the critical value, will lead to a CI with correct �nite-sample

size. It is clear in Figure 5.1 that quantiles from the local limit theory are closer to the �nite-sample

quantiles than quantiles from the standard asymptotic distribution are. This comparison explains

the improvement of the local-limit-theory-based robust CI upon the standard CI.

5.3.3 Comparison of Di¤erent CIs

Next we compare the lengths and coverage probabilities of the standard and robust CIs under

di¤erent true values of � that correspond to various strengths of identi�cation. The purpose of

this comparison is twofold. First, under weak identi�cation, i.e. small �; the standard CI under-

covers and the robust CI has good �nite-sample coverage probabilities. This conclusion is based on

comparing the �nite-sample sizes of the standard CIs in Table 4.1 and those of the robust CIs in

Table 5.1. In Table 5.2 on the following page, we explicitly provide the values of � to demonstrate

the e¤ect of identi�cation strength. Second, we show that under strong identi�cation the robust

11As shown in Figures 4.1 and 4.2, these are the � values that lead to the largest quantiles in most cases.
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Table 5.2: Finite-sample Length and Coverage Probabilities of Nominal 95%
Symmetric Two-sided CIs for � in Example 2 with the Logistic Function with Sample n = 250

Std Rob1 Rob2 LF
� L CP L CP L CP L CP
0 0.15 91.0 0.58 96.6 0.54 91.0 0.59 100
0.05 0.17 73.3 0.61 96.9 0.53 94.3 0.65 100
0.10 0.20 82.9 0.58 94.4 0.45 93.6 0.77 96.5
0.20 0.23 93.7 0.29 95.9 0.25 95.0 0.87 98.7
0.40 0.23 95.1 0.23 95.1 0.23 95.1 0.89 100
Note: The explanations of Std, Rob1, Rob2, and LF are the same as in Table 5.1.
L denotes the length of the CI.
CP denotes the minimal coverage probability over the parameter space of �.

CI has similar length to that of the standard CI, both of which are much shorter than the LF CI

obtained without model selection.

The CIs reported in Table 5.1 are symmetric two-sided CIs constructed in the smooth transition

model in Example 2, with the true value of � being 4:8. The lengths and coverage probabilities

are both averages over 10,000 simulation repetitions with sample size n = 250: As shown in Table

5.2, the standard CI under-covers severely when � is 0:05 and 0:1; while the BIC-type robust CI

(Rob1) has coverage probabilities of 96:9% and 94:4%, respectively. Not surprisingly, the robust CI

is three and a half times as long as the standard CI when � is 0:05 and almost three times as long

as the latter when � is 0:1. As � gets larger, the robust CI and the standard CI get closer, both

in terms of lengths and coverage probabilities. When � is 0:2 and 0:4; the LF CI is signi�cantly

longer than the robust CI and over-covers severely, manifesting the advantage of the robust CI.

6 General Model and Asymptotic Results

The general model de�ned in (2:1) allows for linear regressors as well as multiple nonlinear

regressors to characterize di¤erent nonlinear relationships. Including more nonlinear regressors

increases �exibility of the parametric nonlinear regression model. However, the asymptotic distrib-

utions of the LS estimators and test statistics are complicated in the general model. The reason is

that the nonlinear regressors may have di¤erent strengths of identi�cation. Assuming all of them

are weakly identi�ed leads to a very large CI that may not be informative. Thus, we aim to develop

a general local limit theory that allows for di¤erent strengths of identi�cation for di¤erent non-

linear regressors. A model selection procedure is applied to determine which nonlinear regressors

involve weak identi�cation. The di¢ culty raised by multiple strengths of identi�cation is solved by

a sequential procedure introduced below.
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6.1 Asymptotic Distributions in a Model with Two Nonlinear Regressors

To understand the manner in which the results generalize from a model with one nonlinear re-

gressor to a model with multiple nonlinear regressors, it helps to introduce the sequential procedure

in a two-regressor model �rst. We do this in the present section. The model we consider here is

Yi = g1 (Xi; �1)�1 + g2 (Xi; �2)�2 + Ui; (6.1)

where �1; �2 2 R; � = (�1; �2)
0 and � = (�1; �2)

0 : By introducing a second nonlinear regressor,

we can examine the e¤ect of �1 on the asymptotic properties of b�2 and b�2: As in the simple one-
regressor model, we consider drifting sequences of true parameters

�
�0n; �

0
n

�0
; where �n = (�1n; �2n)

0

and �n = (�1n; �2n)0: The drifting sequences of true parameters are characterized by the localization

parameter

h = (b; �0)
0 ; where b = (b1; b2)

0 ; �0 = (�10; �20)
0 ; and

n1=2�1n ! b1; n
1=2�2n ! b2; �1n ! �10 ; �2n ! �20: (6.2)

The parameter space for h is H = R[�1]�R[�1]��1��2:Without loss of generality, we assume
that �1n converges to 0 slower than �2n or at the same rate. We further assume that the limit of

�n=�1n exists and call it � 2 R2:
Given results obtained in the last section, we expect that the asymptotic distributions of the

LS estimators depend on the magnitudes of both �1n and �2n relative to n
�1=2: Thus, we need to

consider three cases: (I) Both �1n and �2n are O(n
�1=2): (II) Both �1n and �2n are of larger orders

than O(n�1=2): (III) �1n is of a larger order than O(n
�1=2) and �2n is O(n

�1=2). Intuitively, the

consistency of b�jn depends on the strength of the signal from gj (Xi; �jn)�jn; which is proportional

to �jn; for j = 1 and 2: Hence, b�1n should be consistent as long as �1n is big relative to n�1=2; even
if �2n is small or even 0:

To develop this idea, we start with the concentrated sample criterion function Qn (�1; �2) ob-

tained by concentrating out �1 and �2. In case (I), we show that after proper re-centering and

re-scaling by n; the criterion function, indexed by (�1; �2) ; converges to a two-dimensional stochas-

tic process analogous to the rhs of Lemma 3.1(a). Such a generalization from the one-dimensional

case to the multiple-dimensional case can be carried out because the re-scaling parameter n does

not depend on �1n or �2n: However, in cases (II) and (III), we need to derive results similar to

Lemma 3.1(b), where either �1n or �2n is used as the re-scaling parameter.

To derive asymptotic results in cases (II) and (III), we need to view the minimization of the

sample criterion function Qn (�1; �2) in a sequential way. First, for any given �2; Qn (�1; �2) is

a function of �1. We write the criterion function when �2 is �xed as Qn (�1j�2) and minimize
Qn (�1j�2) over �1 to obtain b�1 (�2) ; which depends on �2: Then we plug b�1 (�2) back into the
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criterion function Qn (�1; �2) and estimate �2 by minimizing Qn (b�1 (�2) ; �2) over �2; yielding b�2:
The LS estimator of (�1; �2) is (b�1 (b�2) ; b�2) : Note that this sequential procedure is equivalent to
minimizing Qn (�) over �:

Before analyzing the criterion function Qn (�1; �2) sequentially, we �rst de�ne some notation

that is useful for partitioned regression. Let g2 (�2) = (g2(X1; �2); :::; g2(Xn; �2))
0: De�ne an or-

thogonal projection and a population projection asM2 (�2) = In�g2 (�2)
�
g2 (�2)

0 g2 (�2)
��1

g2 (�2)

and �2 (�1; �2) =
�
Eg22 (Xi; �2)

��1
Eg2 (Xi; �2) g1 (Xi; �1), respectively. When focusing on �1; we

�rst project out g2 (�2) : The residuals after a population projection are written as eg1;i (�1j�2) =
g1 (Xi;�1)� g2 (Xi; �2) �2 (�1; �2).

To characterize the random limits under weak identi�cation, we let

S (�1; �2; �1) = (S1 (�1) ; S2 (�2) ; S�1 (�1)) (6.3)

be a mean zero three-dimensional Gaussian process indexed by (�1; �2; �1) with covariance kernel


 (�;�) = EU2i s (Xi; �) s(Xi; �)
0; where s (Xi; �) = (g1 (Xi; �1); g2 (Xi; �2) ; g�1 (Xi; �1))

0 : De�ne

the functions

� (�; �) = Eg (Xi; �) g (Xi; �)
0 ; �1 (�1; �1j�2) = Eeg1;i (�1j�2) eg1;i (�1j�2) ;

�2 (�2) = Es (Xi; �10; �2) s (Xi; �10; �2)
0 ; �2s (�2; �2) = Es (Xi; �10; �2) g2 (Xi; �2) : (6.4)

Assumption 3b. �min(� (�; �)) � "; �1 (�1; �1j�2) � "; �2 (�2) � " 8� 2 � for some " > 0:

Lemma 6.1 below establishes asymptotic properties of the concentrated sample criterion function

Qn (�1; �2). It is a generalization of Lemma 3.1. When �2n is of a smaller order than �1n and they

are not both O(n�1=2); we need to analyze Qn(�1; �2) sequentially. Speci�cally, Lemma 6.1(b)

provides the asymptotic distribution of Qn(�1j�2); where �2 is �xed, and Lemma 6.1(c) and (d)
provide the asymptotic distribution of Qn (b�1 (�2) ; �2) ; where b�1 (�2) is the optimal value of b�1 for
a given value of �2: Note that Lemma 6.1(c) and (d) are both sub-cases of Lemma 6.1(b). Lemma

6.1(a) and (e) are the two cases where we can analyze Qn (�) in one step.

Lemma 6.1 Suppose Assumptions 1, 2, and 3b hold.

(a) When n1=2�n ! b 2 R2;
n
�
Qn(�)� n�1Y 0Y

�
) � (S (�) + � (�; �0) b)0��1 (�; �) (S (�) + � (�; �0) b) ;

where S (�) = (S1 (�1) ; S2 (�2))
0 :

(b) When
��n1=2�1n��!1 and �2n = o (�1n) ;

��21n
�
Qn(�1j�2)� n�1Y 0M2 (�2)Y

�
!p ���11 (�1; �1j�2) �21 (�1; �10j�2) uniformly over �1 ��2:

sup�22�2 jb�1 (�2)� �1nj !p 0:

(c) When
��n1=2�1n��!1 and n1=2�2n ! b2 2 R;
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n
�
Qn (b�1 (�2) ; �2)� n�1 (Y � g1 (�1n)�1n)0 (Y � g1 (�1n)�1n)�)

�
�
S (�2) + �2s (�2; �20) b2

�0
��12 (�2)

�
S(�2) + �2s (�2; �20) b2

�
; where S (�2) = S (�10; �2; �10) :

(d) When
��n1=2�1n��!1;

��n1=2�2n��!1; and �2n = o (�1n) ;

��22n
�
Qn (b�1 (�2) ; �2)� n�1 (Y � g1 (�1n)�1n)0 (Y � g1 (�1n)�1n)�!p

� �2s (�2; �20)0��12 (�2) �2s (�2; �20) uniformly over �2:

(e) When
��n1=2�1n��!1;

��n1=2�2n��!1; �1n = O (�2n) and �2n = O (�1n) ;

��21n
�
Qn(�)� n�1Y 0Y

�
) ��0� (�; �0)0��1 (�; �) � (�; �0)�; uniformly over �;

where � = limn!1 (�n=�1n) :

Comments: 1. Lemma 6.1(a) shows that when both �1n and �2n are O
�
n�1=2

�
; we can analyze

Qn (�1; �2) in one step because its rate of convergence is n�1; independent of �1n or �2n: However,

when either of �1n and �2n is of a larger order than O(n
�1=2), we need to analyze Qn (�1; �2)

sequentially in order to get a non-degenerate limit. The non-degenerate limit is necessary for the

purpose of deriving consistency properties of b�1n and b�2n:
2. In Lemma 6.1(b), �1n is of a larger order than �2n: As �2 is �xed, the asymptotic properties

of Qn (�1j�2) depend on the signal strength from g1 (Xi; �1n)�1n, which is determined by the

magnitude of �1n relative to n
�1=2: Because �1n is larger than O(n

�1=2); Qn (�1j�2) has a non-
random limit after re-scaling by ��21n ; as in Lemma 3.1(b). For any �xed �2; this non-random limit

is uniquely minimized at �10 by the Cauchy-Schwarz inequality. As a result, b�1 (�2) is consistent
uniformly over �2: The uniform consistency is obtained under the assumption that �2n = o(�1n):

3. Lemma 6.1(c) and (d) are both sub-cases of Lemma 6.1(b). When plugged into Qn (�1; �2) ;b�1 (�2) becomes the second channel through which �2 enters the criterion function. This second
e¤ect is taken into account by including g1(Xi; �1) and g�1 (Xi; �1) in the vector s (Xi; �) : This

vector is a key element in de�ning the Gaussian processes S (�1; �2; �1) and the function �2s (�2; �2).

Because of the uniform consistency of b�1 (�2), minimization of Qn (b�1 (�2) ; �2) over �2 is analogous
to a problem with the nonlinear regressor g2 (Xi; �2) alone. Lemma 6.1(c) and (d) are comparable

to Lemma 3.1(a) and (b), respectively.

4. In Lemma 6.1(e), we analyze the criterion function in one step as in Lemma 6.1(a). The

same rate of convergence guarantees that all elements of � are �nite and di¤erent from 0:

The next lemma provides asymptotic limits of the LS estimator b�n. They are obtained by
minimizing the concentrated sample criterion functions and their limits in Lemma 6.1.

Lemma 6.2 Suppose Assumptions 1, 2, and 3b hold.

(a) When n1=2�n ! b 2 R2; b�n ) �� (h) ; where

�� (h) = argmin
�2�

(�fS (�) + � (�; �0) b0��1 (�; �)S (�) + � (�; �0) bg):

(b) When
��n1=2�1n��!1; b�1n � �1n !p 0:
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(c) When
��n1=2�1n��!1 and n1=2�2n ! b2 2 R; b�2n ) ��2 (h) ; where

��2 (h) = argmin
�22�2

(�f
�
S (�2) + �2s (�2; �20) b2

�0
��12 (�2)

�
S (�2) + �2s (�2; �20) b2

�
g):

(d) When
��n1=2�1n��!1 and

��n1=2�2n��!1; b�2n � �2n !p 0:

Comments: 1. Assumptions on uniqueness of �� (h) and ��2 (h) are presented in the next subsec-

tion in a general set-up.

2. When both �1n and �2n are O(n�1=2), neither �1n nor �2n can be estimated consistently.

Both of their LS estimators converge to random variables, whose asymptotic limits jointly minimize

the sample paths of a non-central chi-square process.

3. The consistency of b�1n only depends on the magnitude of �1n. It is not a¤ected by the
magnitude of �2n or whether b�2n is consistent. This is consistent with the intuition obtained

from the simple model, in which we show that b�1n is consistent provided the the signal from
g1 (Xi; �1n)�1n is stronger than the noise from the errors.

4. Lemma 6.2 (c) and (d) are sub-cases of Lemma 6.2 (b). Lemma 6.2(d) corresponds to both

Lemma 6.1(d) and (e). Although the criterion function has di¤erent asymptotic distributions in

these two cases, the LS estimator b�2n is consistent as long as �2n is larger than O(n�1=2).
Lemma 6.2 provides conditions for consistency of b�n and its random limits in the absence of

consistency. Lemma 6.3 below derives the asymptotic distributions of the LS estimators b�n andb�n when they are consistent. The asymptotic covariance matrices G (�) ; V (�) ; and � (�) are the
same as in the simple case, with the adjustment that mi (�) = (g (Xi; �)

0 ; g� (Xi; �)
0)0:

Assumption 4b. �min (G (�)) � " 8 � 2 � for some " > 0:

Lemma 6.3 Suppose Assumptions 1, 2, 3b, and 4b hold.

(a) When n1=2�n ! b 2 R2;

n1=2
�b�n � �n�) � (�� (h) ; h) ; where � (�; h) = ��1 (�; �) (S (�) + � (�; �0) b)� b:

(b) When
��n1=2�1n��!1 and n1=2�2n ! b2 2 R;0BB@

n1=2
�b�1n � �1n�

n1=2
�b�2n � �2n�

n1=2�1n (b�1n � �1n)
1CCA) �2 (�

�
2 (h) ; h) ; where

�2 (�2) = ��12 (�2)
�
S (�2) + �2s (�2; �20) b2

�
� �2b2 and �2 = (0; 1; 0)0 :
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(c) When
��n1=2�1n��!1 and

��n1=2�2n��!1;

0BB@
n1=2

�b�n � �n�
n1=2�1n (b�1n � �1n)
n1=2�2n (b�2n � �2n)

1CCA) N (0;� (�0)) :

Comments: 1. When b is �nite, the limit of n1=2(b�n � �n) is non-standard and is characterized
by the Gaussian process � (�; h) and the random variable �� (h) : This is the same as Lemma 3.4

generalized to a vector case.

2. In Lemma 6.3(b), for �xed �2; (b�1 (�2) ; b�2 (�2) ; b�1 (�2))0 has an asymptotic normal distrib-
ution whose variance depends on �2: Due to the inconsistency of b�2n, the asymptotic distribution of
(b�1n; b�2n; b�1n)0 is characterized by the three-dimensional Gaussian process �2 (�2) and the random
variable ��2 (h) ; both of which are continuous functions of the Gaussian process S (�2) : A special

case is when g2 (Xi; �2) is uncorrelated with g1 (Xi; �1) and g�1 (Xi; �1) for any �1 and �2: In this

situation, asymptotic distributions of b�1n (�2) and b�1n (�2) do not depend on �2: Therefore, b�1n
and b�1n have asymptotic normal distributions despite the non-standard behaviors of b�2n and b�2n:

3. Finally, if both b1 and b2 are in�nite, as in Lemma 6.3(c), all parameters can be estimated

consistently and have asymptotic normal distributions. As shown in the simple model, the rate

of convergence of b�jn depends on �jn; for j = 1 and 2: The general rule is that the faster �jn
converges to 0 the slower is the convergence rate of b�jn:

With two nonlinear regressors in the model, we �nd that b�1n is always consistent but b�1n is
consistent if and only if �1n is larger than O(n�1=2): The asymptotic distribution of (b�1n; b�1n)
depends on the convergence rates of both �1n and �2n: Analogous results apply to b�2n and b�2n:

Lemmas 6.1 and 6.3 indicate whether we can analyze b�1n and b�2n together when deriving their
asymptotic properties. First, when both �1n and �2n are O

�
n�1=2

�
; we can always put �1 and �2

together and generalize the asymptotic results obtained in the single-regressor model to the multi-

regressor model. Second, when only �2n is O
�
n�1=2

�
, the sequential procedure is needed becauseb�1n is consistent but b�2n is inconsistent. Finally, if both �1n and �2n are larger than O �n�1=2� ; we

need the sequential procedure for consistency results if �1n and �2n have di¤erent orders. However,

we can analyze their asymptotic distributions together because both b�1n and b�2n have asymptotic
normal distributions. The convergence rate of b�jn is proportional to �jn for j = 1 and 2: These

general rules will guide us in determining asymptotic results in a general model with an arbitrary

number of nonlinear regressors in addition to some linear regressors. For simplicity, we leave the

asymptotic distributions of the test statistics as special cases of the general results given in the

next subsection.
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6.2 Asymptotic Distributions in the General Model

We consider the general model including multiple nonlinear regressors as well as linear regressors

in the present section. The general model, discussed in (2:1) already, takes the form

Yi = g(Xi; �)
0� + Z 0i� + Ui for i = 1; :::; n; (6.5)

where g (Xi; �) and � are both p�1 dimensional vectors. As in the simple model, we consider the as-
ymptotic distributions of the LS estimators and test statistics along drifting sequences (�0n; �

0
n; �n)

0

characterized by the localization parameter

h =
�
b0; �00

�0
; where n1=2�n ! b and �n ! �0. (6.6)

The parameter space for h is H = Rp[�1] � �; where R
p
[�1] = f(x1; :::; xp) : xj 2 R [ f�1g for

j = 1; :::; pg: The �nite-sample and asymptotic distributions of the test statistics are invariant to
�n: Let �j;n denote the j

th element of �n:Without loss of generality, we also assume that the order

of �j;n is larger than or equal to that of �j0;n 8j < j0. In other words, �j0;n = O(�j;n) 8j < j0:

Results obtained in the two-regressor model indicate that asymptotic properties of the LS

estimators depend on the magnitude of �n: Thus, we �rst group the coe¢ cients �j;n; for j = 1; :::; p;

based on their orders: The grouping rule is summarized as follows. (1) All �j;n that are O(n
�1=2)

are put in the last group. (2) If �j;n � O(n�1=2); the following rule applies: 8k < k0; parameters

in group k converge to 0 slower than those in group k0 and parameters in the same group converge

to 0 at the same rate. Hence, if �j;n is bounded away from 0; it is put in the �rst group.

Let �k;n be the pk dimensional sub-vector of �n that represents the k
th group. Suppose

�j;n 2 �k;n; �j0;n 2 �k0;n and k < k0: According to the grouping rule, �j0;n = o(�j;n). Suppose

there are K groups in total and pk elements in each group for k = 1; :::;K; then
PK

k=1 pk = p

and �n =
�
�01;n; :::; �

0
K;n

�0
: Here is an example to illustrate the grouping rule. Suppose �n =

(1; n�1=4; n�1=3; 2n�1=3; n�1=2; n�1): The above grouping rule gives �1;n = 1; �2;n = n�1=4; �3;n =

(n�1=3; 2n�1=3); and �4;n = (n
�1=2; n�1):

Note that the group index k for �j;n is a property associated with the drifting sequence f�j;n :
n = 1; 2; :::g and therefore does not change with sample size n: Hence, we suppress the subscript n
unless it is used to denote the true values with sample size n: Let �k = (�k1 ; :::; �kpk )

0; where k1 to

kpk are the indexes of the elements of � that belong to the k
th group. The parameters, parameter

spaces, regressors, and their derivatives associated with group k are written as

 k = (�k1 ; :::; �kpk )
0; 	k = �k1 � � � � ��kpk ;

fk ( k) = [gk1 (�k1) ; � � � ; gkpk (�kpk )]; f k ( k) = [g�k1 (�k1) ; � � � ; g�kpk (�kpk )]; where

gj (�j) = (gj (X1; �j) ; :::; gj (Xn; �j))
0 and g�j(�j) = (g�j(X1; �j); :::; g�j(Xn; �j))

0: (6.7)
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Employing the group set-up, we use �;  ; and f (�) to replace �; �; and g (�) ; respectively. Let
�k;n and  k;n be the true values of �k and  k when the sample size is n; and  k;0 be the limit of

 k;n as n goes to in�nity. We assume that the limit of �k;n=�k1;n exists and call it �k 2 Rpk ; where
�k1;n is the �rst element of �k;n: The localization parameter h de�ned in (6:6) is equivalent to

h =
�
b0; �00

�0
; where b =

�
b01; :::; b

0
K

�0
; �0 =

�
 01;0; :::;  

0
K;0

�0
;

n1=2�k;n ! bk and  k;n !  k;0; for k = 1; :::;K: (6.8)

Note that according to the grouping rule, bk 2 f�1g for k < K and bK 2 RpK [ f�1g: After
grouping, the model is written in matrix notation as

Y = Z� + f1 ( 1) �1 + :::+ fK ( K) �K + U: (6.9)

As in the two-regressor model, minimization of the concentrated sample criterion functionQn (�)

de�ned in (2:2) can be viewed in a sequential way. De�ne  k� = ( 01; :::;  
0
(k�1))

0 and  k+ =

( 0(k+1); :::;  
0
K)

0: Then � = ( 0k� ;  
0
k; 

0
k+)

0: Let  k�;n and  k+;n be the true values of  k� and  k+

when the sample size is n; and  k�;0 and  k+;0 be the limits of  k�;n and  k+;n: For �xed  k+ ; the

sample criterion function Qn (�) is indexed by ( 0k� ;  
0
k)
0 and now is written as Qn( k� ;  kj k+).

Whenever  1� and  K+ are involved, they are omitted.

For k = 1; let b 1 � 1+� = argmin 12	1 Qn( 1j 1+): For k = 2; we plug b 1 ( 1+) into
Qn( 1;  2j 2+) and get b 2 ( 2+) = argmin 22	2 Qn(

b 1 ( 2;  2+) ;  2j 2+); where b 1 ( 2;  2+)
is a second channel for  2 to enter the criterion function: Now the LS estimator of  1 given

 2+ becomes b 1 ( 2+) = b 1(b 2 ( 2+) ;  2+): Continuing the above procedure sequentially, we
get b k ( k+) = argmin k2	k Qn(

b k� ( k;  k+) ;  k; j k+), for k = 2 to k � 1; and �nally b K =

argmin K2	K Qn(
b K� ( K) ;  K): The last step is to plug b K back into b k ( k+) for k = K � 1

and sequentially obtain b (K�1) = b (K�1)(b K); :::; b 1 = b 1(b 2; :::; b K): Note that this sequential
procedure is equivalent to minimizing Qn (�) over �: For notational simplicity, Qn ( K) stands for

Qn(b K� ( K) ;  K) hereafter.

Analogous to  k� and  k+ ; we de�ne �k� = (�
0; �01; :::; �

0
(k�1))

0 and �k+ = (�
0
(k+1); :::; �

0
K)

0: Note

that we put � in �k� in order to analyze � in the �rst step during the above sequential procedure.

To analyze the criterion function sequentially, we also de�ne

fk� ( k�) = [Z; f1 ( 1) ; � � � ; f(k�1)( (k�1))]; fk+ ( k+) = [f(k+1)( (k+1)); � � � ; fK ( K)]; (6.10)

f k� ( k�) = [f 1 ( 1) ; � � � ; f (k�1)( (k�1))]; sk ( k� ;  k) = [fk� ( k�) ; fk ( k) ; f k� ( k�)]:

The linear regressor Z is put in fk� ( k�) ; corresponding to � in �k� :

When focusing on  k; we �x  k+ and project out fk+ ( k+) usingMk+ ( k+) ; whereMk+ ( k+) =

M (fk+ ( k+)) and the function M (X) = In � X (X 0X)�1X is an orthogonal projection matrix
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for any X. Let the subscript i stands for the ith row of a matrix written as a column vector. The

corresponding population projection coe¢ cient and the projection residual are

�k+ ( k� ;  k;  k+) =
�
Efk+;i ( k+) fk+;i ( k+)

0��1Efk+;i ( k+) sk;i ( k� ;  kj k+) andesk ( k� ;  kj k+) = sk ( k� ;  k)� fk+ ( k+) �k+ ( k� ;  k;  k+) : (6.11)

De�ne the functions

�k ( kj k+) = Eesk;i � k�;0;  kj k+� esk;i � k�;0;  kj k+�0 and
�ks

�
 k;  kj k+

�
= Eesk;i � k�;0;  kj k+� fk;i � k�0 : (6.12)

Let S ( K� ;  K ;  K�) be a (q + 2p� pK) dimensional Gaussian process indexed by ( K� ;  K ;  K�)

with covariance kernel



�
 K� ;  K ;  K� ; K� ;  K ;  K�

�
= EU2i sK;i ( K� ;  K) sK;i

�
 K� ;  K

�0
: (6.13)

For notational simplicity, we write S ( K) = S
�
 K�;0;  K ;  K�;0

�
:

Assumption 3c. �min(�k ( kj k+)) � " 8  k 2 	k and  k+ 2 	k+ for k = 1; :::;K; where 	k+ is
the parameter space for  k+ :

Lemma 6.4 Suppose Assumptions 1, 2, and 3c hold.

(a) For k = 1; :::;K � 1;

��2k1;n(Qn(
b k� ( k;  k+) ;  kj k+)� n�1(Y � fk� � k�;n� �k�;n)0Mk+ ( k+) (Y � fk�

�
 k�;n

�
�k�;n))

!p ��0k�ks
�
 k;  k;0j k+

�0
��1k ( kj k+) �ks

�
 k;  k;0j k+

�
�k;

uniformly over 	k�	k+ ; where �k1;n is the �rst element of �k;n; b k� ( k;  k+) is the LS estimator
of  k� given ( k;  k+), �k = limn!1

�
�k;n=�k1;n

�
2 Rpk :

(b) For k = 1; :::;K � 1;
sup

 k+2	k+

���b k ( k+)�  k;n���!p 0:

(c) When
n1=2�K;n!1; the results in (a) and (b) also apply to k = K; with  K+ omitted.

(d) When n1=2�K;n ! bK 2 RpK ;

n
�
Qn( K)� n�1

�
Y � fK�

�
 K�;n

�
�K
�0 �

Y � fK�
�
 K�;n

�
�K
��

) �
�
S ( K) + �Ks

�
 K ;  K;0

�
bK
�0
��1K ( K)

�
S ( K) + �Ks

�
 K ;  K;0

�
bK
�
:

Comments: 1. This is a generalization of Lemmas 3.1 and 6.1. The concentrated sample criterion

function Qn(b k� ( k;  k+ ; ) ;  kj k+) is de�ned by �xing  k+ and taking b k� at the optimal value
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given  k and  k+ : When �k is larger than O(n
�1=2); this sample criterion function has a non-

random limit after suitable re-centering and re-scaling, as in Lemma 3.1(b). The convergence rates

are di¤erent across groups, but they are all slower than n�1: Because �k is �nite and bounded away

from 0; the rhs of Lemma 6.4(a) is uniquely minimized at  k;0 according to a vector Cauchy-Schwarz

inequality. This leads to uniform consistency of b k ( k+) over 	k+ :
2. If �K;n is O(n

�1=2); the signal from fK
�
 K;n

�
�K;n is not stronger than the noise from

the errors. In consequence, Qn ( K) converges to a non-central chi-square process after suitable

re-centering and re-scaling, as in Lemma 3.1(a), Lemma 6.1(a), and Lemma 6.1(c).

Let Q ( K) denote the chi-square process on the rhs of Lemma 6.4(d). Assumption U below

ensures that the argmin function of Q( K) is continuous. This assumption is veri�ed in the simple

model by Lemma 3.2.

Assumption U. The sample paths of the non-central chi-square process Q ( K) have unique

minima over  K 2 	K with probability one.

Lemma 6.5 Suppose Assumptions 1, 2, 3c, and U hold.

(a) When n1=2�K;n ! bK 2 RpK ;

b k;n �  k;n !p 0 8k � K � 1; b K;n )  �K (h) ;b�n = (b 01;n; :::; b 0K;n)0 ) �� (h) ; where

 �K (h) = argmin
 K2	K

Q ( K) and �
� (h) = ( 01;0; :::;  

0
(K�1);0;  

�
K (h)

0)0.

(b) When
n1=2�Kn!1; b k;n �  k;n !p 0 8 k � K and b�n � �n !p 0.

The LS estimator b k;n, for k < K; is always consistent because �k is larger than O(n�1=2)

8 k < K: The consistency of b K;n depends on whether there exist any O(n�1=2) elements in

�n. If there is no O(n
�1=2) element in �n; then b K;n is consistent. Otherwise, b K;n converges

in distribution to a random variable that minimizes the sample paths of a non-central chi-square

process, as in Lemma 3.3(a) and Lemma 6.2(a).

In the presence of the linear regressors, the covariance matrices G (�) ; V (�) ; and � (�) are the

same as in the simple model, with the adjustment that mi (�) =
�
Z 0i; g (Xi; �)

0 ; g� (Xi; �)
0�0 :

Assumption 4c. �min (G (�)) � " 8� 2 � for some " > 0:

Lemma 6.6 Suppose Assumptions 1, 2, 3c, 4c, and U hold.
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(a) When n1=2�K;n ! bK 2 RpK ;0BBB@
n1=2

�b�K�;n � �K�;n

�
n1=2

�b�K;n � �K;n�
n1=2D

�
�K�;n

� �b K�;n �  K;n
�
1CCCA) � ( �K (h) ; h) ; where

� ( K ; h) = �
�1
K ( K)

�
S ( K) + �Ks

�
 K ;  K;0

�
bK
�
� �KbK ;

D
�
�K�;n

�
= diag

n
�01;n; :::; �

0
(K�1);n

o
and �K =

�
0pK�(q+p�pK); IpK ; 0pK�(p�pK)

�0
:

(b) When
n1=2�K;n!1;

0BB@
n1=2

�b�n � �n�
n1=2

�b�n � �n�
n1=2D (�n) (b�n � �n)

1CCA) N (0;� (�0)) ; where D (�n) = diag
�
�0n
	
:

Comments: 1. This is a generalization of Lemma 6.3. In Lemma 6.3(b), where �2n isO(n�1=2) but

�1n is not, �1 and �2 play the roles of �K� and �K , respectively. When  K cannot be consistently

estimated, as in Lemma 6.6(a), the asymptotic distribution involves the Gaussian process � ( K ; h)

and the random variable  �K (h) : Note that � is included in �K� by de�nition.

2. In Lemma 6.6(b), all parameters can be consistently estimated and have asymptotic normal

distributions. The convergence rate of b�j;n depends on �j;n; as in Lemma 6.3(b). Note that � (�0)
is not the standard asymptotic covariance matrix of the LS estimator. It does not contain �n

to avoid the problem of singularity when some components of �n converge to 0: When D (�n) is

nonsingular as n goes to in�nity, we can move D (�n) to the rhs of Lemma 6.6(b) and obtain the

standard asymptotic covariance matrix for the LS estimator.

6.3 Test Statistics in the General Model

To construct valid CSs in the general model, we �rst derive the asymptotic distributions of

various LS-based test statistics. We start with the loading coe¢ cients � =
�
� 0; �0

�0
; where � is

the coe¢ cient of the linear regressors and � is the coe¢ cient of the nonlinear regressors: We are

interested in CSs for some vector-valued linear combination of � given by R�; where R is a r�(p+ q)
selector matrix of rank r: Let Wn (�R) be a test statistic for H0 : R� = �R with sample size n: The

nominal level 1� � con�dence set (CS) for R� is f�R :Wn (�R) < cn;1��(�R)g ; where cn;1��(�R)
is the critical value.

We use the Wald statistic of the form

Wn

�
�R;n

�
= n

�
Rb�n � �R;n�0 �Rb�� (b�n)R0��1 �Rb�n � �R;n� ; (6.14)
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where �R;n is the true value with sample size n, b�� (�) = R�b�n (�)R0� and R� = �Ip+q; 0(p+q)�p� :
The selector matrix R� is used to select the variance of b�n out of b�n (b�n) ; which contains the
variance of b�n as well: The matrix b�� (b�n) used inWn (�R) is equivalent to the standard covariance

matrix even though b�n (b�n) is not. The reason is that R� does not select the non-standard part ofb�n (b�n). When the rank of R is 1; we can also use the t statistic for R�. The t statistic takes the

form

T�;n
�
�R;n

�
=
n1=2

�
Rb�n � �R;n��

Rb�� (b�n)R0�1=2 : (6.15)

To characterize the asymptotic distributions of Wn

�
�R;n

�
and T�;n

�
�R;n

�
; we let �� ( K ; h) be

a (p+ q) dimensional sub-vector of � ( K ; h) that corresponds to �. It is de�ned as

�� ( K ; h) =
�
Ip+q;0(p+q)�(p�pK)

�
� ( K ; h) ; (6.16)

where � ( K ; h) is the (q+2p� pK) dimensional Gaussian process de�ned in Lemma 6.6(a). Anal-
ogous to b�� (�) ; we de�ne �� ( K) = R�� ( K)R

0
�; where � ( K) = �

�
 K�;0;  K

�
:

Theorem 6.1 Suppose Assumptions 1, 2, 3c, 4c, and U hold.

(a) When n1=2�K;n ! bK 2 RpK ;

Wn

�
�R;n

�
) W ( �K (h) ; h) ; T�;n

�
�R;n

�
) T� ( 

�
K (h) ; h) ; where

W ( K ; h) = �� ( K ; h)
0R0

�
R�� ( K)R

0��1R�� ( K ; h) and
T� ( K ; h) = R�� ( K ; h)

�
R�� ( K)R

0��1=2 :
(b) When

n1=2�K;n!1;

Wn

�
�R;n

�
) �r and T�;n

�
�R;n

�
) N (0; 1) :

Comment: The Wald statistic Wn

�
�R;n

�
has a chi-square distribution in the standard case. In

a non-standard situation, i.e. bK 2 RPK ; its asymptotic distribution involves a chi-square process
and a random variable �� (h). The asymptotic distribution of T�;n(�R;n) is a generalization of that

of T�;n (�n) in Theorem 3.1. The non-standard asymptotic distributions all depend on the �nite

localization parameter h:

The next step is to derive asymptotic distributions of the test statistics for �. Di¤erent from

� and �; � cannot always be estimated consistently. Even in the presence of consistency, the rate

of convergence is not always n�1=2: Due to these non-standard features, we consider CSs for �j;n

for j = 1; :::; p; individually. In this case, CSs become CIs. Let Rj be a row vector used to select

the jth element out of a column vector. For notational simplicity, we adjust Rj to adapt to the
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dimension of the vector to be selected. The t statistic for �j takes the form

T�j ;n (�j;n) = n1=2 (b�j;n � �j;n) =b��;j ; (6.17)

where b��;j = (Rj b�� (b�n)R0j)b��1j;n and b�� (�) = R�b�n (�)R0�: The selector matrixR� = �0p�(p+q); Ip�
is used to select the variance of b� out of b�n (b�n) and Rj is used to select �j from the � vector:

Analogous to b�� (�) ; we de�ne �� ( K) = R�� ( K)R
0
�: Note that T�j ;n (�j;n) is equivalent to the

standard LS-based t statistic, although b�j;n is written separately from the rest of the covariance

matrix.

Let �� ( K ; h) and �� ( K ; h) be sub-vectors of � ( K ; h) that correspond to � and �, respec-

tively. They are de�ned as

�� ( K ; h) =
�
0(p�pK)�(p+q);Ip�pK

�
� ( K ; h) and

�� ( K ; h) =
�
0p�q; Ip;0p�(p�pK)

�
� ( K ; h) + bK : (6.18)

The Gaussian process �� ( K ; h) is needed to determine the asymptotic distribution of b��;j ; which
depends on b�j;n: Note that we add bK to �� ( K ; h) because b�j;n is not centered in the de�nition
of b��;j . Let  K;0 be the limit of  K;n as n!1.

Theorem 6.2 Suppose Assumptions 1, 2, 3c, 4c, and U hold.

(a) When n1=2�K;n ! bK 2 RpK ;

T�j ;n (�j;n) ) T�j ( 
�
K (h) ; h) ; where

T�j ( K ; h) = Rj�� ( K ; h)
�
Rj�� ( K)R

0
j

��1=2 for j � p� pK ; and

T�j ( K ; h) = Rj�� ( K ; h)Rj�(p�pK)
�
 K �  K;0

� �
Rj�� ( K)R

0
j

��1=2 for j > p� pK :

(b) When
n1=2�K;n!1;

T�j ;n (�j;n)) N (0; 1) 8j = 1; :::; p:

Comment: When n1=2�K;n ! bK 2 RpK ; the asymptotic distributions are non-standard due

to the inconsistency of b K;n: Depending on whether �j belongs to  K ; we have two di¤erent
types of non-standard asymptotic distributions for T�j ;n (�j;n). When �j does not belong to  K ;

which means
��n1=2�j;n�� ! 1 and b�j;n is consistent, T�j ;n (�j;n) has an asymptotic distribution

analogous to that of T�;n
�
�R;n

�
in Theorem 6.1. On the other hand, when �j belongs to  K ;b�j;n is inconsistent. In this case, T�j ;n (�j;n) has an asymptotic distribution analogous to that of

T�;n (�n) in Theorem 3.1(a). In the de�nition of T�j ( K ; h) for j > p � pK ; the �rst Rj selects

the limit of b�j;n from �� ( K ; h), the second Rj corresponds to that in the de�nition of b��;j ; and
Rj�(p�pK) selects b�j;n � �j;0 from  K �  K;0:
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The non-standard asymptotic distributions derived in Theorems 6.1 and 6.2 provide good ap-

proximations to the �nite-sample distributions of the test statistics under weak identi�cation. Al-

lowing the number of elements of bK to vary from 0 to p; the local limit theory covers all identi�ca-

tion scenarios. For a given localization parameter h; quantiles can be simulated from the analytical

formulae in these theorems.

7 General Con�dence Set

Applying the local limit theory derived in the last section, this section generalizes results on the

standard CI, subsampling CI, and robust CI in Sections 4 and 5 to the general model with multiple

nonlinear regressors and linear regressors.

We are interested in constructing a CS for some sub-vector of � = (�0; � 0)0 denoted by R� and

for �j : The asymptotic size of the CS is de�ned in (3:3) by replacing CI with CS: We �rst analyze

the asymptotic sizes of the standard CS and the subsampling CS. Then we construct a robust CS

with correct asymptotic size in the general model.

7.1 Standard Con�dence Set and Subsampling Con�dence Set

The critical value for a standard CS is obtained by assuming all parameters are strongly iden-

ti�ed. The test statistic used for R� is the Wald statistic Wn

�
�R;n

�
. The standard critical value

for a nominal level 1�� CS is �r (1� �) ; which is the 1�� quantile of the chi-square distribution
with r degree of freedom. The t statistics T�;n

�
�R;n

�
and T�j ;n (�j;n) are used to construct CSs for

R� with r = 1 and for �j ; respectively: When a t statistic is used, the standard critical value is a

quantile from the standard normal distribution.12 Using the general notation de�ned in Section 4,

the standard critical value is c1 (1� �) :
The subsampling critical values are the same as discussed in Section 4. With multiple nonlinear

regressors, the set LH de�ned in (4:1) is modi�ed to

LH = f(l; h) 2 H �H : l = (lb; �0) ; h = (b; �0) ; and for j = 1; :::; p;

(i) lb;j = 0 if jbj j <1; (ii) lb;j 2 R+;1 if bj = +1; and (iii) lb;j 2 R�;1 if bj = �1g ; (7.1)

where b = (b1; :::; bp)
0 and lb = (lb;1; :::; lb;p)0: The idea of this adjustment is that the subsampling

localization parameter lb;j is closer to 0 than the full-sample localization parameter bj ; but is not

related to bj0 for any j0 6= j:

Theorem 7.1 Suppose Assumptions 1, 2, 3c, 4c, and U hold. Then,

(a) AsyCS = infh2H Jh(c1(1� �)) for the standard CS and
12When a symmetric two-sided CI is constructed, the asymptotic distribution of the test statistic is the absolute

value of a random variable with standard normal distribution.
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(b) AsyCS = inf(l;h)2LH Jh(cl(1� �)) for the subsampling CS.

As in the simple model, the asymptotic sizes of the standard CS and subsampling CS can be

simulated with these explicit formulae. The non-standard asymptotic distributions Jh are provided

in Theorems 6.1 and 6.2 for R� and �j ; respectively.

7.2 General Robust Con�dence Set

Following the idea of the robust CI in Section 5, we choose the critical value for the robust

CS in a general model by a model-selection procedure. The model-selection procedure provides

two advantages to the general robust CS. First, it reduces the volume of the CS relative to the

least favorable CS when some nonlinear regressors are strongly identi�ed. Second, it reduces the

optimization dimensions in the critical value simulation. The dimension reduction is made clear

below in the description of the critical value for the robust CS.

The model-selection procedure is used to determine whether �j is close to 0; modelled as �j =

O(n�1=2): Speci�cally, we choose between M0;j : bj is �nite and M1;j : jbj = 1, for j = 1; :::; p;

where bj is the limit of n1=2�j;n as n goes to in�nity.
13 The statistic used for selecting between

M0;j and M1;j takes the form

tn;j =
���n1=2b�n;j=b��;j��� : (7.2)

Model M0;j is selected if tn;j � �n and M1;j is selected otherwise. The statistic tn;j is Op (1) if

and only if bj 2 R: Hence, we can consistently select M0;j provided that the tuning parameter �n

diverges to in�nity.

We now de�ne the critical value for the robust CS. Let b� =
�
b�1; :::; b

�
p

�0
; where b�j =1 if M1;j

is chosen, i.e. tn;j > �n.14 The critical value for the robust CS is

bcn (1� �) = sup
h�2H

ch� (1� �) ; where h� = (b�0; �0)0: (7.3)

Note that if the model-selection procedure suggests jbj j =1 8 j = 1; :::; p, bcn (1� �) is equivalent
to the standard critical value c1 (1� �). When p = 1; the de�nition of bcn (1� �) is equivalent
to that in (5:2) : By applying the model-selection procedure, we use the data to determine which

nonlinear regressors are weakly identi�ed. On the one hand, the critical value we choose is large

enough to cover the weak identi�cation suggested by the data. On the other hand, the critical

value is not unnecessarily large by setting b�j equal to 1 when the data suggests that �j is large

and �j is strongly identi�ed.

13 In this section, we use the scalar bj to denote the limit of n1=2�j;n for j = 1; :::; p: This is di¤erent from, but
closely related to, the vector bk; for k = 1; :::;K; de�ned in (3:4) : In (3:4), bk is the limit of n1=2�k; which is a group of
�j with the same rate of convergence. Here we recycle the notation bj to re�ect that it is the localization parameter
corresponding to �j :
14Setting b�j =1 and �1 leads to the same result because both correspond to strong identi�cation. Hence, we do

not distinguish them here.
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The algorithm to construct a robust CS in the general model has four steps: (1) Estimate the

general model (2:1) by the LS estimator, yielding b�j and its standard error b��;j ; for j = 1; :::; p: (2)
Use the model-selection procedure to determine the weak-identi�cation group. The statistics for

model selection are constructed according to (7:2) : If tn;j � �n; �j is in a n
�1=2 neighborhood of 0

and �j is taken to be weakly identi�ed. Hence, �j 2 �K and �j 2  K according to the grouping

rule described in Section 6.2. Otherwise, �j and  j are not in the weak-identi�cation group. (3)

Simulate the 1� � quantile of the non-standard asymptotic distributions derived in Theorems 6.1
and 6.2 for given bK and �0: In this step, one uses the knowledge of �K and  K obtained from the

model-selection procedure. (4) Take the supremum of the critical value ch� (1� �) obtained in step
3 over h� 2 H; as de�ned in (7:3) : This is the critical value for the robust CS.

The following theorem states that the robust CS constructed above has corrected asymptotic

size provided the tuning parameter �n for the model-selection procedure diverges to in�nity with

the sample size.

Theorem 7.2 Suppose Assumptions 1, 2, 3c, 4c, U, and R hold. The nominal level 1� � robust

CS satis�es AsyCS = 1� �:

8 Conclusion

This paper develops a robust inference method under weak identi�cation, focussing on con-

structing CIs in a nonlinear regression model. Under general conditions, we show that the new

robust CI has correct asymptotic size while the standard CI and the subsampling CI are prone to

severe size distortions. We develop a local limit theory under sequences of parameters that drift to

the non-identi�cation point(s). We start with the asymptotic distribution of the sample criterion

function and develop consistency, rates of convergence, and inference results for LS estimators and

LS-based test statistics. Under weak identi�cation, non-standard asymptotic distributions based

on the local limit theory provide good uniform approximations to the �nite-sample distributions of

the test statistics. Thus, the robust CI based on the local limit theory has �nite-sample coverage

probability close to the nominal level, as demonstrated by simulation results. We use a model se-

lection procedure to shorten the robust CI under strong identi�cation and to simplify critical value

simulation in a general model with multiple nonlinear regressors. A sequential procedure is used

to deal with multiple strengths of identi�cation in the general model. Although the paper focuses

on LS-based CIs in a nonlinear regression model, the empirical process method used to analyze the

sample criterion function and test statistics can be applied to other criterion-based estimators in a

general weak identi�cation set-up. This is work in progress by Andrews and Cheng.

There are several directions for further work. First, we are interested in a Bonferonni CI that

will reduce the non-similarity of the robust CI while keeping the correct asymptotic size. Second,

instead of making a sharp switch between the standard critical value and the least favorable critical
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value based on the model selection result, we can use a weighted average of them. Some practical

averaging methods were proposed in Andrews and Soares (2007) and Andrews and Jia (2008) in a

model with moment inequalities. Optimal weights can be developed based on Hansen (2007) using

model averaging methods. Third, we can construct the generalized method of moments (GMM)

CIs to deal with endogeneity. We can further relax the smoothness assumption to allow kinks in

the nonlinear functions. Fourth, the methods developed here can be generalized to a time series

set-up and applied to nonlinear time-series models, such as the widely used smooth transition

autoregressive model and the threshold model.
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Appendix

A Proofs for the Simple Model with One Nonlinear Regressor

The following Lemma provides uniform convergence results that are used in the sequel.

Lemma A.1 Suppose Assumptions 1 and 2 hold.
(a) n�1

Pn
i=1mi (�)mi (�)

0 !p Emi (�)mi (�)
0 uniformly over ���:

(b) When n1=2�n ! b 2 R; n�1
Pn

i=1 bui (�)2mi (�)mi (�)
0 !p V (�) uniformly over � andb�n (�)!p � (�) uniformly over �:

In part (a), (b), and (c), the rhs are all uniformly continuous in the parameters.

Let Sn (�) = n�1=2
Pn

i=1 Uimi (�). Next lemma shows weak convergence of the empirical process
Sn (�). The weak convergence result is used in derivation of asymptotic theory on the sample
criterion function. Note that Sn (�) = n�1=2

Pn
i=1 Uig (Xi; �) is a sub-vector of Sn (�) : Hence,

weak convergence of Sn (�) implies that of Sn (�).

Lemma A.2 Suppose Assumptions 1 and 2 hold. Then, Sn (�) ) S (�) ; where S (�) is a mean
zero Gaussian process with covariance kernel 
 (�; �) = E�2 (Xi)mi (�)mi (�)

0 :

Lemma A.3 below provides asymptotic results on the LS estimator of � when � is �xed. This
result is used in the Proof of Lemma 3.1.

Lemma A.3 Suppose Assumptions 1, 2, and 3c hold.
(a) When n1=2�n ! b 2 R; n1=2b�(�)) ��1 (�; �) (S (�) + � (�; �0) b) :
(b) When

��n1=2�n��!1; b�(�)=�n = ��1 (�; �) � (�; �0) :
Proof of Lemma A.3.

(a) Given �; the LS estimator of � is

b�(�) = �g (X;�)0 g (X;�)��1 �g (X;�)0 Y �
= (g (X;�)0 g (X;�))�1

�
g (X;�)0 U + g (X;�)0 g (X;�n)�n

�
: (A.1)

Applying Lemma A.1 and Lemma A.2, we have

n1=2b�(�) = (n�1g (X;�)0 g (X;�))�1
�
n�1=2g (X;�)0 U + g (X;�)0 g (X;�n)n

1=2�n

�
) ��1 (�; �) (S (�) + � (�; �0) b) : (A.2)

(b) When �n converges to 0 slower than n
�1=2 (or is bounded away from 0);

b�(�)=�n = (n�1g (X;�)0 g (X;�))�1
��
n�1=2g (X;�)0 U

�
=
�
n1=2�n

�
+ n�1g (X;�)0 g (X;�n)

�
! p �

�1 (�; �) � (�; �0) : (A.3)

uniformly over �: The convergence in probability holds by Lemma A.1, Lemma A.2, and
��n1=2�n��!

1.

Proof of Lemma 3.1.
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(a) Given �; the LS residual is bU (�) = Y � g (X;�) b� (�). The concentrated sample criterion
function is

Qn(�) = n�1 bU (�)0 bU (�) = n�1
�
Y � g (X;�) b� (�)�0 �Y � g (X;�) b� (�)�

= n�1Y 0Y �
�
n�1g (X;�)0 g (X;�)

� b�2 (�) : (A.4)

When n1=2�n ! b 2 R; we have

n
�
Qn(�)� n�1Y 0Y

�
= �

�
n�1g (X;�)0 g (X;�)

� �
n1=2b� (�)�2

) ���1 (�; �) (S (�) + � (�; �0) b)2 ; (A.5)

where the weak convergence holds by Lemma A.3(a).
(b) When

��n1=2�n��!1; (A:4) gives

��2n
�
Qn(�)� n�1Y 0Y

�
=
�
n�1g (X;�)0 g (X;�)

� �b� (�) =�n�2 !p ���1 (�; �) �2 (�; �0) (A.6)

uniformly over �: The uniform convergence in probability holds by Lemma A.3(b). �

Proof of Lemma 3.2.
De�ne the Gaussian process Z (�) = ��1=2 (�) (S (�) + � (�; �0) b). A sample path of the

chi-square process Z (�)2 can only achieve its supremum where Z (�) achieves its supremum or
in�mum. Hence, we just need to show that with probability one, no sample path of Z (�) achieves
its supremum or in�mum at two distinct points, and no sample has supremum and in�mum with
the same absolute value. According to Kim and Pollard (1990) (hereafter KP), if

V ar
�
��1=2 (�1)S (�1)� ��1=2 (�2)S (�2)

�
6= 0; 8�1 6= �2; (A.7)

no sample path of Z (�) can achieve its supremum at two distinct points of � with probability one:
Applying this result, we know that under the same condition, no sample path of Z (�) achieves
its in�mum at two distinct points of � with probability one: It only remains to show that with
probability one, no sample path of Z (�) has supremum equal to the opposite value of its in�mum.
To this end, we also need

V ar
�
��1=2 (�1)S (�1) + �

�1=2 (�2)S (�2)
�
6= 0; 8�1 6= �2: (A.8)

We �rst show that (A:7) and (A:8) are implied by Assumption 2(c). Suppose (A:7) is not satis-
�ed, so that V ar

�
��1=2 (�1)S (�1)� ��1=2 (�2)S (�2)

�
= 0; for some �1 6= �2:Then Corr(S (�1) ;

S (�2)) = 1; which implies that g (Xi; �1) = kg (Xi; �2) a.s. for some k > 0: This contradicts
Assumption 2(c). We can show (A:8) analogously.

Next we show that under (A:8) ; no sample path of Z (�) has supremum equal to the oppo-
site value of its in�mum. The argument is analogous to that in Lemma 2.6 of KP. For each pair
of distinct points �0 and �1; instead of taking supremum of Z (�) over neighborhoods N0 of �0
and N1 of �1 as in KP, we take supremum of Z (�) over N0 and supremum of �Z (�) over N1:
Using the notations in KP, the covariance of Z (�0) and �Z (�1) is �H (�0; �1) : Under (A:8) ;
�H (�0; �1) cannot be equal to both H (�0; �0) and H (�1; �1) : Suppose H (�0; �0) > �H (�0; �1) ;
we get h (�0) = 1 > �h (�1) ; where h (�) is de�ned to be H (�1; �0) =H (�0; �0) as in KP. The rest
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of the proof is the same as that in KP, but we change �1 and �1 (s) to �1 = sup�2N0 (�h (�))
and �1 (s) = sup�2N1 (�Y (�)� h (�) s) : This leads to the desired result Pfsup�2N0 Z (�) =
sup�2N1 (�Z (�))g = 0: �

Proof of Lemma 3.3.
(a) When n1=2�n ! b 2 R; we have shown the weak convergence of Qn (�) in Lemma 3.1(a). Letb�n minimize n(Qn(�)� n�1Pn

i=1 Y
0Y ) up to op (1) : By Lemma 3.2, ��(h) uniquely minimizes the

rhs of Lemma 3.1(a), whose sample paths are continuous with probability one and the parameter
space � is compact. We appeal to Theorem 3.2.2 (the argmax CMT) of van de Vaart and Wellner
(1996, p.286) and get b�n ) ��(h).

(b) By Cauchy-Schwarz inequality, �10 = argmin�2� (���1 (�; �) �2 (�; �0)) under Assump-
tion 2. Hence, b�n � �n = (b�n � �0)� (�n � �0) = op (1) : �

Proof of Lemma 3.4.
(a) De�ne empirical process �n (�) = n1=2(b� (�)��n) and use Q (�) to denote the rhs of Lemma

3.1(a) without the negative sign. By Lemma A.3 and Lemma 3.1,�
�n (�)

n (Qn (�)� n�1Y 0Y )

�
)
�
� (�)

�Q (�)

�
; (A.9)

where the joint weak convergence holds because both � (�) and Q (�) are continuous functions of
S (�) : Let �� = argmax�2� Q (�) : Since � (��) is continuous wrt the process (� (�) ;�Q (�))0 ; we
have �n (b�n)) � (��) by the CMT. Hence, n1=2(b� (�)� �n)) � (��) : Note that all the stochastic
processes here depend on the localization parameter h: We omit h for notational simplicity.

(b) Next, we derive the asymptotic distribution in Lemma 3.4(b). Consistency of b�n is obtained
in Lemma 3.3(b). The next is to show that b�n is also consistent. For any �xed �; jb� (�) � �nj =
j�nj jb�(�)=�n�1j: Plugging in the consistent estimator b�n and applying (A:3) ; we have jb�n��nj =
jb� (b�n)� �nj !p 0:

Let � = (�; �)0 :15 Assume the LS estimator b�n = (b�n; b�n)0 satis�es @Qn(b�n)=@� = op
�
n�1=2

�
:

Mean value expansions of @Qn(b�n)=@� about �n yields
op(n

�1=2) =
@Qn(b�n)
@�

=
@Qn (�n)

@�
+
@2Qn (�

�
n)

@�@�0

�b�n � �n� ; (A.10)

where ��n lies between b�n and �n (and, hence, satis�es ��n � �n !p 0): De�ne a weighting matrix
D (�) = Diag f1; �g and Dn = Diag f1; �ng : Equation (A:10) implies

n1=2Dn

�b�n � �n� = �1
2
D�1
n

@2Qn (�
�
n)

@�@�0
D�1
n

��1�
�1
2
D�1
n n1=2

@Qn (�n)

@�

�
+ op (1) : (A.11)

15Note that � is used for a di¤erent purpose in the defnition of Tn (�) in Section 4.1 and Section 7. In Tn (�) , �
represents the parameter of interest in general.
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The �rst and second order derivatives take the form

@Qn (�)

@�
= �2D (�)

 
n�1

nX
i=1

Ui (�)mi (�)

!
and

@Qn (�)

@�@�0
= �2

 
n�1

nX
i=1

Ui (�)m�� (Xi; �)

!
+ 2D (�)

 
n�1

nX
i=1

m (Xi; �)m (Xi; �)
0
!
D (�) ; where

Ui (�) = Yi � g (Xi; �)� and m�� (Xi; �) =

�
0 g� (Xi; �)

g� (Xi; �) g�� (Xi; �)�

�
: (A.12)

By Lemma A.1, the �rst order derivative in (A:11) is

�1
2
D�1
n n1=2

@Qn (�n)

@�
= n�1=2

nX
i=1

Uimi (�n) + op (1)) N (0; V (�0)) : (A.13)

The second order derivative in (A:11) is

1

2
D�1
n

@2Qn (�
�
n)

@�@�0
D�1
n = n�1

nX
i=1

mi (�
�
n)mi (�

�
n)
0 �

D�1
n

 
n�1

nX
i=1

Ui (�
�
n)m�� (Xi; �

�
n)

!
D�1
n + op (1)!p G (�0) ; (A.14)

where the convergence in probability holds by Lemma A.1. It remains to show that

D�1
n

 
n�1

nX
i=1

Ui (�
�
n)m�� (Xi; �

�
n)

!
D�1
n = op (1) : (A.15)

Note that

n�1
nX
i=1

Ui (�
�
n) g� (Xi; �

�
n) =�n = n�1

nX
i=1

(Ui + g (Xi; �n)�n � g (Xi; �
�
n)�

�
n)g� (Xi; �

�
n) =�n

=

 
n�1=2

nX
i=1

Uig� (Xi; �
�
n)

!
=
�
n1=2�n

�
+ n�1

nX
i=1

g (Xi; �n) g� (Xi; �
�
n)

�n�1
nX
i=1

g (Xi; �
�
n) g� (Xi; �

�
n) (�

�
n=�n)!p 0; (A.16)

where the convergence in probability holds by weak convergence of Sn (�) ; uniform convergence of
n�1

Pn
i=1 g (Xi; �) g� (Xi; �) ; and ��n=�n = 1 + op (1) obtained from b�n=�n = 1 + op (1) based on

Lemma A.3(b). Finally, we can show that n�1
Pn

i=1 Ui (�
�
n) g� (Xi; �

�
n)�

�
n=�

2
n = op (1) in the same

way as in (A:16) :
Plugging (A:13) and (A:14) into (A:11) ; we get the desired result: �

Proof of Theorem 3.1.
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(a) When n1=2�n ! b 2 R; we have

n1=2
�b�n (�)� �n��b�n (�)11�1=2 ) T� (�; h) and

n1=2b� (�) (� � �n)�b�n (�)22�1=2 ) T� (�; h) ; (A.17)

using uniform convergence of b�n (�) to � (�) together with Lemma A.3(a). Applying the same
argument as in the proof of Lemma 3.4, we plug b�n into the empirical processes on the lhs of
(A:17) and plug �� into the Gaussian processes on the rhs. This lead to T�;n ) T� (�

� (h) ; h) and
T�;n ) T� (�

� (h) ; h) :
(b) When

��n1=2�n��!1; the results in part (b) are directly implied by Theorem 3.4(b). �

Next we prove Lemma A.1 and Lemma A.2 stated at the beginning of this subsection.

Proof of Lemma A.1.
To prove the uniform convergence and uniform continuity results in part (a) and (b), we in-

voke Theorem 4 and Lemma 4(a) of Andrews (1992), which state that when fXi : i � 1g are
identically distributed, sup�2& jn�1

Pn
i=1 q (Xi; �) � Eq (Xi; �) j !p 0 and Eq (Xi; �) is continuous

in � uniformly over & if (i) & is compact, (ii) q (Xi; �) is continuous in � 8� 2 &, 8Xi 2 X , (iii)
E sup�2& kq(Xi; �)k <1, and (iv) n�1

Pn
i=1 q (Xi; �)!p Eq (Xi; �) pointwise for all � 2 &: Condi-

tion (i) is always satis�ed because the parameter space is a compact Euclidean space. Now we shall
verify conditions (ii), (iii), and (iv) in di¤erent contexts with various functional forms of q (Xi; �) :

In part (a), the uniform convergence is applied to q (Xi; �; �) = mi (�)mi (�)
0. Conditions (ii)

and (iii) are satis�ed by Assumptions 2. Condition (iv) is satis�ed by the WLLN and condition
(iii) with i:i:d: data.

To prove part (b), note that bUi (�) = Ui + g (Xi; �n)�n � g (Xi; �) b� (�) ; where �n and b� (�)
are both op (1) uniformly over �: Then

n�1
nX
i=1

bUi (�)2mi (�)mi (�)
0 = n�1

nX
i=1

U2i mi (�)mi (�)
0 +

2n�1
nX
i=1

Ui

�
g (Xi; �n)�n � g (Xi; �) b� (�)�mi (�)mi (�)

0 +

n�1
nX
i=1

�
g (Xi; �n)�n � g (Xi; �) b� (�)�2mi (�)mi (�)

0 !p V (�) (A.18)

uniformly over �; because the second term and the third term on the rhs of the equality are both
op (1) uniformly over �. In the last step of (A:18) ; we use the same argument as in parts (a) by
setting q (Xi; �) = U2i mi (�)mi (�)

0 : The uniform convergence and continuity of G (�) and V (�)
together with Assumption 4a lead to uniform convergence and continuity of � (�) over �: �

Proof of Lemma A.2. To show weak convergence of the empirical process Sn (�) ; we use the
proposition in Andrews (1994, p.2251). Because the parameter space � is compact, it is remaining
to show that Sn (�) is stochastic equicontinuous and the �nite dimensional convergence holds. First,
we show the stochastic equicontinuity of Sn (�) : To this end, we appeal to example 3 of Andrews
(1994), which states that a su¢ cient condition for the stochastic equicontinuity of Sn (�) is that
g (X;�) is di¤erentiable wrt � and

E sup
�2�

kUig� (Xi; �)k <1 and E sup
�2�

kUig�� (Xi; �)k <1: (A.19)
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This su¢ cient condition is satis�ed because EU2i <1; E sup�2� g2�j (Xi; �j) <1; and E sup�2�
g2��j (Xi; �j) < 1 for j = 1 and 2 by Assumption 2. Because Uimi (�) is i:i:d: for any given
�; the multivariate CLT establishes the �nite dimensional convergence with the covariance kernel

 (�; �) = E

�
mi (�)mi (�)�

2 (Xi)
�
: �

B Proofs for the General Model
with Multiple Nonlinear Regressors

Results in a two-regressor model discussed in Section 6.1 are special cases of those in Section
6.2. In this subsection, we �rst prove the general results in Section 6.2 and then discuss the
corresponding results in Section 6.1 as special cases. Proofs of Lemmas 6.1, 6.2, and 6.3 follow
those of Lemmas 6.4, 6.5, and B.1, respectively.

Lemma B.1 Suppose Assumptions 1 and 2 hold.
(a) n�1

Pn
i=1mi (�)mi (�)

0 !p Emi (�)mi (�) uniformly over ���:
(b) n�1sk ( k� ;  k)

0Mk+ ( k+) sk( k� ;  k)!p �k( k� ;  k;  kj k+) uniformly over ( k� ;  k;
 k;  k+) 2 	k��	k�	k�	k+ ; where �k( k� ;  k;  kj k+) = Eesk;i ( k� ;  kj k+) esk;i( k� ;  kj k+)0.

(c) When n1=2�K;n ! bK 2 RPK ; n�1
Pn

i=1
bUi ( K)2mi ( K)mi ( K)

0 !p V ( K�;0;  K) uni-

formly over 	K and b�n(b K ( K) ;  K) !p � ( K) uniformly over 	K ; where bUi ( K) is the ith
row of bU ( K) = Y � Zb� ( K) � fK�(b K� ( K))

b�K� ( K) � fK ( K)
b�K ( K) and mi ( K) =

mi(b K� ( K) ;  K):
In part (a), (b), and (c), the rhs are all uniformly continuous in the parameters.

Comment: Note that �k( k�;0;  k;  kj k+) = �k( k;  kj k+): Hence, when b k�;n( kj k+) is
plugged into the lhs of part (b) and converges to  k�;0 uniformly over 	k � 	k+ ; the asymptotic
limit in part (b) becomes �k( k;  kj k+):

The next Lemma is a generalization of Lemma A.2. Let Sn (�) = n�1=2
Pn

i=1 Uimi (�) :

Lemma B.2 Suppose Assumption 1 and 2 holds. Then Sn (�) ) S (�) ; where S (�) is a mean
zero Gaussian process with covariance kernel 
 (�; �) = EU2i mi (�)mi (�)

0 :

Comment: Note that Sn (�) = n�1=2sK ( K� ;  K)
0 U is a sub-vector of Sn (�) : Thus, weak

convergence of Sn (�) implies weak convergence of Sn (�).

Lemma B.3 Suppose Assumptions 1, 2, 3c, and 4c hold.
(a) For k = 1; :::;K; when

��n1=2�k��!1;

��1k1;n

0B@
b�k� ( kj k+)� �k�;nb�k ( kj k+)

D
�
�k�;n

� �b k� ( kj k+)�  k�;n�
1CA!p �

�1
k ( kj k+) �ks

�
 k;  k;0j k+

�
�k

uniformly over 	k �	k+ ; where �k = limn!1
�
�k;n=�k1;n

�
:

(b) When
n1=2�Kn! bK 2 RpK ;

n1=2

0B@
b�K� ( K)� �K�;nb�K ( K)

D
�
�K�;n

� �b K� ( K)�  K;n
�
1CA) ��1K ( K)

�
S ( K) + �Ks

�
 K ;  K;0

�
bK
�
:
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Comment: 1. A sequential procedure from k = 1 to K is employed in the proofs of Lemma B.3
and Lemma 6.4: Speci�cally, we �rst prove Lemma B.3(a) for k = 1; which is then used to show
Lemma 6.4(a) for k = 1: Lemma 6.4(a) for k = 1 can in turn be used in the proof of B.3(a) for
k = 2; and so on.

2. Lemma A.3 is a special case of Lemma B.3 when k = 1; p1 = 1: The special case of Lemma
B.3 with two nonlinear regressors is presented in Corollary B.1 below.

Corollary B.1 Suppose Assumptions 1, 2, 3c, and 4c hold.
(a) When n1=2�n ! b 2 R2; n1=2b�(�)) ��1 (�; �) (S (�) + � (�; �0) b) :
(b) When

��n1=2�1n�� ! 1 and �2n = o (�1n) ; �
�1
1n
b�1(�1j�2) !p �

�1
1 (�1j�2) �1 (�1; �10j�2) ;

uniformly over �1 ��2:
(c) When

��n1=2�1n��!1 and n1=2�2n ! b2 2 R;

n1=2

0@ b�1 (�2)� �1nb�2 (�2)
�1n (b�1 (�2)� �1n)

1A) ��12 (�2)
�
S (�2) + �2s(�2; �20)b2

�
:

(d) When
��n1=2�1n��!1;

��n1=2�2n��!1; and �2n = o (�1n) ;

��12n

0@ b�1 (�2)� �1nb�2 (�2)
�1n (b�1 (�2)� �1n)

1A!p �
�1
2 (�2) �2s (�2; �20)

uniformly over �2:
(e) When

��n1=2�1n��!1;
��n1=2�2n��!1; �2n = O (�1n) ; and �1n = O (�2n) ;

��11n
b�(�)) ��1 (�; �) � (�; �0)�:

Comment: Part (a) is an application of Lemma B.3(b) with K = 1, where K is the number of
groups we de�ned in Section 6.2: Part (b) is an application of Lemma B.3(a) on �1 when K = 2:
Both (c) and (d) are sub-cases of (b). Part (c) is an application of Lemma B.3(b) on �2 and part
(d) is an application of Lemma B.3(a) on �2: Finally, part (e) corresponds to the case K = 1 but
� is larger than O(n�1=2): It is an application of Lemma B.3(a).

Proof of Lemma B.3.
(a) In the proof of Lemma B.3, we start with k = 1 and establish the results sequentially for

k = 2; :::;K.
When k = 1;  1+ is �xed. We estimate %1 =

�
� 0; �01

�0 by partitioned regression for given  1;
yielding

b%1( 1j 1+) = �s1 ( 1)0M1+ ( 1+) s1 ( 1)
��1 �

s1 ( 1)
0M1+ ( 1+)Y

�
=
�
n�1s1 ( 1)

0M1+ ( 1+) s1 ( 1)
��1 �

n�1s1 ( 1)
0M1+ ( 1+)U+

n�1s1 ( 1)
0M1+ ( 1+)

�
s1 ( 1n) %1n + f1+

�
 1+;n

�
�1+;n

��
; (B.1)

where s1 ( 1) = [Z; f1 ( 1)] by de�nition in (6:10) : Let e%1n = (� 0n; 00p1)0: Subtracting both sides of
(B:1) by %1n and dividing both sides by �11;n; which is the �rst element of �1;n; we get

��111;n (b%1( 1j 1+)� e%1n) = ��11 ( 1j 1+) �1s ( 1;  10j 1+)�1; (B.2)
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uniformly over 	1 �	1+ ; where �1 = limn!1 ��111;n�1n 2 R
p1 : In (B:2) ; the convergence in prob-

ability holds by Lemma B.1, Lemma B.2, jn1=2�11;nj ! 1; and �1+;n = o
�
�11;n

�
: With (B:2) ;

Lemma 6.4(a), (b) for k = 1 can be established. For details, see proof of Lemma 6.4. Lemma 6.4(b)
provides uniform consistency of b 1 ( 1+) over 	1+ :

For notational simplicity, we write b%k(b k� ( k+) ; b k ( k+) j k+) as b%k ( k+). Plugging b 1 ( 1+)
into the lhs of (B:2) and subtracting both sides by (00q; �

0
1n)

0; we have

��111;n (b%1( 1j 1+)� %1n)!p 0: (B.3)

Hence, b%1 ( 1+) is uniformly consistent over 	1+ :
We have established Lemma B.3(a) for k = 1 already: The proof will be complete if the argument

can be extended from k � 1 to k; 8 k = 2; :::;K: Next, we prove Lemma B.3(a) for k; assuming
that we have got the result for k � 1: Let %k =

�
� 0; �01; :::; �

0
k

�0
: Suppose the step for k � 1 provides

uniform consistency of b%(k�1)( (k�1)+) and b (k�1)( (k�1)+) over 	(k�1)+ : Note that we have done
so for k = 2 by showing uniform consistency of b%1 ( 1+) and b 1 ( 1+) :

We �rst need to show uniform consistency of b%k ( kj k+) uniformly over 	k �	k+ before ana-
lyzing the concentrated sample criterion function. Note that b%k ( kj k+) = (b%(k�1) ( k;  k+)0 ;b�k ( kj k+)0)0: To show the uniform consistency of b%k ( kj k+) ; we only need to show it forb�k ( kj k+) ; as the consistency of b%(k�1)( k;  k+) is already established in the step for k� 1: Note
that b�k ( kj k+) is the LS estimator of �k when  k and  k+ are �xed and  k� is b k� ( k;  k+) :
To use partitioned regression for b�k ( kj k+), de�ne

M�k ( k;  k+) =M
�
f�k

�b k� ( k;  k+) ;  k+�� ; where
M (X) = In �X

�
X 0X

��1
X 0 and f�k ( k� ;  k+) = [fk� ( k�) ; fk+ ( k+)]: (B.4)

By partitioned regression,

b�k ( kj k+) = �fk ( k)0M�k ( k;  k+) fk ( k)
��1 �

fk ( k)
0M�k ( k;  k+)Y

�
=
�
n�1fk ( k)

0M�k ( k;  k+) fk ( k)
��1 � [n�1fk ( k)0M�k ( k;  k+) fk

�
 k;n

�
�k +

n�1fk ( k)
0M�k ( k;  k+)

�
fk�

�
 k�;n

�
�k�;n + fk+

�
 k+;n

�
�k+;n

�
+

n�1(fk ( k)
0M�k ( k;  k+)U ] (B.5)

Now we analyze the four terms in the rhs of (B:5) using Lemma B.1 and Lemma B.2: The �rst
term is Op (1) by expanding M�k ( k;  k+) and applying Lemma B.1(a). The second term is
op (1) because �k is op (1) : The third term is op (1) by uniform convergence of b k� ( k;  k+) ;
di¤erentiability of fk� ( k) wrt to  k, the moment condition the �rst order derivative, and the fact
that M�k ( k;  k+) is orthogonal to fk�(b k� ( k;  k+)) and fk+( k+;n): Finally, the last term is
op (1) by expanding M�k ( k;  k+) and applying Lemma B.2: Because �k;n is op (1) for k > 1; we

have jb�k ( kj k+)� �k;nj = op (1) uniformly over �k��k+ :This leads to consistency of b%k ( kj k+)
uniformly over 	k �	k+ : The result also implies uniform consistency of b%k ( k+) over 	k+ ; which
can be used for the step of k + 1:

The next is to derive the asymptotic distributions. By de�nition,

�k = (%k;  k�) =
�
�0k� ; �

0
k;  

0
k�
�0
: (B.6)
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Note that � is included in �k� already. For �xed  k+ ; let b�k ( kj k+) be the LS estimator of �k as
a function of  k:We have shown the uniform consistency of b�k ( kj k+) over 	k �	k+ by proving
this property for both b%k ( kj k+) and b k�( kj k+): Suppose the LS estimator satis�es

@Qn(b�k ( kj k+) ;  kj k+)=@�k = op(n
�1=2) (B.7)

uniformly over 	k �	k+ ; where

Qn (�k;  kj k+) = n�1U (�k;  kj k+)0 U (�k;  kj k+) and
U (�k;  kj k+) = Mk+ ( k+) (Y � fk� ( k�) �k� � fk ( k) �k) : (B.8)

Mean expansion of @Qn(b�k ( kj k+) ;  kj k+)=@�k about �k;n = (�0k�;n; 0;  0k�;n)0 yields
op

�
n�1=2

�
=
@Qn(b�k ( kj k+) ;  kj k+)

@�k

=
@Qn (�k;n;  kj k+)

@�k
+
@2Qn

�
��k;n ( kj k+) ;  kj k+

�
@�k@�

0
k

�b�k ( kj k+)� �k;n� ; (B.9)

where ��k;n ( kj k+) lies between b�k ( kj k+) and �k;n (and, hence, satis�es b�k ( kj k+)��k;n !p 0
uniformly over �k � �k+): Note that in the de�nition of �k;n, �k is �xed at 0 instead of �k;n: This
is just for simplicity of the result. Using �k:n as the center will lead to a more complicated, but
equivalent, expression of the result.

De�ne weighting matrices D (�k�) = Diagf�q+nk ; �0k�g and Dk = Diagf�q+nk ; �0k�;ng; where
�q+nk is a q + nk dimensional row vector of 1 and nk =

Pk
i=1 pi. The �rst and second order

derivatives take the form

@Qn (�k;  kj k+)
@�k

= �2D (�k�)n�1sk ( k� ;  k)0 U (�k;  kj k+) and

@Qn (�k; ;  kj k+)
@�k@�

0
k

= 2D (�k�)
�
n�1sk ( k� ;  k)

0Mk+ ( k+) sk ( k� ;  k)
�
D (�k�)�

2

 
n�1

nX
i=1

U (�k;  kj k+)m��;ki ( k�)

!
; where

m��;ki ( k�) =

 
0 f k� ;i ( k�)

0

f k� ;i ( k�) D (�k�) diag
n
f  k� ;i ( k�)

o ! : (B.10)

Note that

U (�k;n;  kj k+) =Mk+ (�k+)
�
U + fk

�
 k;n

�
�k;n + fk+

�
 k+;n

�
�k+;n

�
: (B.11)

When
��n1=2�k;n��!1; by (B:9) ; we have

Dk

�b�k ( kj k+)� �k;n���1k1;n =
 
1

2
D�1
k

@2Qn
�
��k;n ( kj k+) ;  kj k+

�
@�k@�

0
k

D�1
k

!�1
��

�1
2
D�1
k

@Qn (�k;n;  kj k+)
@�k

��1k1;n

�
+ op (1) : (B.12)
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In (B:12) ; the part with �rst order derivative is

�1
2
D�1
k

@Qn (�k;n;  kj k+)
@�k

��1k1;n = n�1
nX
i=1

Ui (�k;n;  kj k+) sk;i
�
 k�;n;  k

�
��1k1;n

= n�1=2sk
�
 k�;n;  k

�0
Mk+ (�k+)U=

�
n1=2�k1;n

�
+�

n�1sk
�
 k�;n;  k

�0
Mk+ (�k+) fk

�
 k;n

��
�k;n�

�1
k1;n

+�
n�1sk

�
 k�;n;  k

�0
Mk+ (�k+) fk

�
 k;n

��
�k+;n�

�1
k1;n

+ op (1)!p �ks
�
 k;  k;0j k+

�
�k; (B.13)

where the �rst and third terms in the second step are both op (1) uniformly over �k � �k+ . The
second order derivative is

1

2
D�1
k

@Qn
�
��k;n ( kj k+) ;  kj k+

�
@�k@�

0
k

D�1
k !p �k ( kj k+) ; (B.14)

where the convergence holds by Lemma B.1 and

D�1
k

 
n�1

nX
i=1

U (�k;  kj k+)m��;ki ( k�)

!
D�1
k = op (1) (B.15)

uniformly over �k+ : The result of (B:15) can be shown term by term using the same argument as
in (A:15) : As such,

��1k1;nDk

�b�k ( kj k+)� �k;n�!p �
�1
k ( kj k+) �ks

�
 k;  k;0j k+

�
�k (B.16)

uniformly over �k ��k+ :
It remains to show the uniform consistency of b k ( k+) uniformly over �k+ : Using Lemma

B.3(a) for k; we get Lemma 6.4(a) for k; as shown in the proof of Lemma 6.4 below. This lemma
gives uniform consistency of b k ( k+) :

Therefore, we have proved Lemma 6.4(a) for k = 1 and shown that the results hold for k as
long as they hold for k � 1: This completes the proof of part(a).

(b) The lhs of Lemma B.3(b) is an empirical process indexed by  K : We denote this empirical
process by �n ( K) : Equation (B:9) implies

�n ( K) = n1=2DK

�b�K ( K)� �K;n� =
 
1

2
D�1
K

@2Qn
�
��K;n ( K) ;  K

�
@�K@�

0
K

D�1
K

!�1
��

�1
2
D�1
K n1=2

@Qn (�K;n;  K)

@�K

�
+ op (1) : (B.17)

By Lemma B.1 and Lemma B.2, we have

�1
2
D�1
K n1=2

@Qn (�K;n;  K)

@�K
= n�1=2sK (�Kn;  K)

0 Ui (�Kn;  K) + op (1)

= n�1=2sK (�Kn;  K)
0 Ui + n

�1sK (�Kn;  K)
0 fK

�
 K;n

� �
n1=2�K;n

�
+ op (1)

) S ( K) + �Ks
�
 K ;  K;0

�
bK : (B.18)
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Now we turn to the second order derivative

1

2
D�1
K

@2Qn
�
��K;n ( K) ;  K

�
@�K@�

0
K

D�1
K

= n�1sK
�
��K;n ( K) ;  K

�0
sK
�
��K;n ( K) ;  K

�
+ op (1)!p �K ( K) ; (B.19)

where the convergence in probability holds by Lemma B.1 and the op (1) term is obtained in the
same way as in (A:15):

Plugging (B:18) and (B:19) into (B:17) ; we get

�n ( K)) ��1K ( K)
�
S ( K) + �Ks

�
 K ;  K;0

�
bK
�
: (B.20)

�

Proof of Lemma 6.4.
For �xed  k+ ; the LS residual as a function of  k takes the form

bU ( kj k+) = U
�b�k ( k;  k+) ;  kj k+� ; where (B.21)

U (�k;  kj k+) is de�ned in (B:8) : Plugging in the general model with true value and use row by
row Taylor expansion of fk�(b k� ( k;  k+))b�k� ( kj k+) around (�0k�;n;  0k�;n)0; we have

bU ( kj k+) =Mk+ ( k+)
�
Y � fk�

�
 k�;n

�
�k�;n

�
�Mk+ ( k+) sk

�
 k�;n;  k

�
�

Dk

�b�k;n ( kj k+)� �k;n�+ o�Wk

�b�k;n ( kj k+)� �k;n�� ; (B.22)

where the smaller order term is uniformly over Xi 2 X : The concentrated sample criterion is

Qn ( kj k+) = n�1 bU ( kj k+)0 bU ( kj k+)
= n�1

�
Y � fk�

�
 k�;n

�
�k�;n

�0
Mk+ ( k+)

�
Y � fk�

�
 k�;n

�
�k�;n

�
(B.23)

�2n�1
�
Y � fk�

�
 k�;n

�
�k�;n

�0
Mk+ ( k+)Fk

�
 k�;n;  k

� �
Dk

�b�k;n ( kj k+)� �k;n��
+
�
Dk

�b�k;n ( kj k+)� �k;n��0 �n�1sk � k�;n;  k�0Mk+ ( k+) sk
�
 k�;n;  k

��
��

Dn

�b�k;n ( kj k+)� �k;n��+ o�Dk

�b�k;n ( kj k+)� �k;n�� : (B.24)

(a) When
n1=2�k;n!1;

��1k1;nDk

�b�k;n ( kj k+)� �k;n�!p �
�1
k ( kj k+) �ks

�
 k;  k;0j k+

�
�k; and

n�1
�
Y � fk�

�
 k�;n

�
�k�;n

�0
Mk+ ( k+) sk

�
 k�;n;  k

�
��1k1;n

= n�1
�
U + fk

�
 k;n

�
�k;n + fk+

�
 k+;n

�
�k+;n

�0 �
Mk+ ( k+) sk

�
 k�;n;  k

�
��1k1;n !p (�ks ( k;  k0j k+)�k)

0 : (B.25)

Re-centering and rescaling Qn ( kj k+) according to (B:24) we get

��2k1;n

�
Qn ( kj k+)� n�1

�
Y � fk�

�
 k�;n

�
�k�;n

�0
Mk+ ( k+)

�
Y � fk�

�
 k�;n

�
�k�;n

��
!p ��0k�ks

�
 k;  k;0j k+

�0
��1k ( kj k+) �ks

�
 k;  k;0j k+

�
�k; (B.26)
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where the weak convergence is obtained by (B:25) and the smaller order term is controlled by
Lemma B.3(a).

The rhs of (B:26) is uniquely minimized by  k;0 by a vector Cauchy-Schwarz inequality under
Assumption 2. Henceb k ( k+)�  k;n � b k ( k+)�  k;0+  k;n �  k;0 = op (1) (B.27)

uniformly over �k+ ; where the �rst term after the inequality is op (1) by minimizing both sides of
(B:26) and invoking the CMT.

(b) When n1=2�K;n ! bK 2 RpK ;

n�1=2
�
Y � fK�

�
 K�;n

�
�K�;n

�0
sK
�
 K�;n;  K

�
= n�1=2

�
U + fK

�
 K;n

�
�K;n

�0
sK
�
 K�;n;  K

�
= n�1=2U 0sK

�
 K�;n;  K

�
+
�
n1=2�K;n

�0
n�1fK

�
 k;n

�0
sK
�
 K�;n;  K

�
)
�
S ( K) + �Ks

�
 K ;  K;0

�
bK
�0
: (B.28)

Using (B:24) ; (B:28) ; and Lemma B.3(b), we have

n
�
Qn ( K)� n�1

�
Y � fK�

�
 K�;n

�
�K�;n

�0 �
Y � fK�

�
 K�;n

�
�K�;n

��
= �2n�1=2

�
Y � fK�

�
 K�;n

�
�K�;n

�0 �
n1=2DK

�b�K;n ( K)� �K;n��
+
�
n1=2DK

�b�K;n ( K)� �K;n��0 ��
n�1sK

�
 K�;n;  K

�0
sK
�
 K�;n;  K

��
�
�
n1=2DK

�b�K;n ( K)� �K;n��
) �

�
S ( K) + �Ks

�
 K ;  K;0

�
bK
�0
��1K ( K)

�
S ( K) + �Ks

�
 K ;  K;0

�
bK
�
: (B.29)

�

Proof of Lemma 6.1.
Lemma 6.1 is a special case of Lemma 6.4 with p = 2: Lemma 6.1(a) is a special case of Lemma

6.4(b) with K = 1 and uses Corollary B.1(a) in its proof. Lemma 6.1(b) is a special case of Lemma
6.4(a) on �1 when K = 2: It uses Corollary B.1(b) in its proof. Both Lemma 6.1(c) and (d) are
results on Qn (�2) whenK = 2; with (c) being a special case of Lemma 6.4(b) and (d) corresponding
to Lemma 6.4(a). They use Corollary B.1 (c) and (d), respectively, in their proofs. Finally, Lemma
6.1(e) is a special case of Lemma 6.4(a) with K = 1 and it uses Lemma 6.1(e) in the proof. �

Proof of Lemma 6.5.
The consistency of b k;n for k = 1; :::;K � 1; and the consistency of b K;n in Lemma 6.5 are

directly obtained by b k ( k+)�  k;n = op (1) uniformly over �k+ ; (B.30)

from Lemma 6.4 and a vector Cauchy-Schwarz inequality as in Tripathi (1999). Applying CMT,
we have Lemma 6.5(a) by minimizing both sides of Lemma 6.4(c) and applying the CMT. �

Proof of Lemma 6.2.
The proof follows the same idea as that of Lemma 6.5 by applying the CMT. �

Proof of Lemma 6.6.
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The proof is analogous to that of Theorem 3.4. Part(a) is based on Lemma B.3(b). We re-centerb�K;n at the true value �K;n and plug b K;n and  �K into each side of Lemma B.3(b). We get the

desired result by using the same argument as in Theorem 3.4. In part (b), the consistency of b�n
and b�n are established using (B:5) at the step k = K and the consistency of b�n has been shown
in Lemma 6.5. With consistency at hand, we can derive the asymptotic normal distribution as we
did in Theorem 3.4(b) with direct vector generalization of each term. �

Proof of Lemma 6.3.
Both Theorem 6.3(a) and (b) are special cases of Theorem 6.6(a), corresponding to the cases

K = 1 and K = 2; respectively. Theorem 6.3(c) corresponds to Theorem 6.6(b), where all the
loading coe¢ cient converge to 0 slower than n�1=2 or are bounded away from 0: �

Proof of Theorem 6.1.
(a) Let Wn ( K) and T�;n ( K) be empirical processes indexed by  K : They are de�ned as

Wn ( K) = n1=2 (b�n ( K)� �n)0R0 �Rb�� ( K)R0��1Rn1=2 (b�n ( K)� �n) and
T�;n ( K) =

n1=2R (b�n ( K)� �n)�
Rb�� ( K)R0�1=2 : (B.31)

Because n1=2(b�n ( K) � �n) ) �� ( K ; h) by Lemma B.3 and b�� ( K) uniformly converges to
�� ( K) by Lemma B.1, we have

Wn ( K))W ( K ; h) and T�;n ( K)) T� ( K ; h) : (B.32)

We get the desired results by replacing �Rn with R�n; plugging
b K;n to the empirical processes

Wn ( K) and T�;n ( K), and plugging  
�
K (h) to their limits in (B:32) : The plug-in method is valid

because  �K (h) ; W ( K ; h) ; and T� ( K ; h) are all continuous functions of S ( K) : The justi�cation
of this method is discussed in Lemma 6.6(b).

(b) The chi-square and standard normal distributions are directly implied by Lemma 6.6(b). �

Proof of Theorem 6.2.
(a) Let T�j ;n ( K) be an empirical process indexed by  K : For j � p� pK ;

T�j ;n ( K) =
n1=2b�j;n ( K) (b�j;n ( K)� �j;n)�

Rj b�� ( K)R0j�1=2
=
n1=2

�b�j;n ( K)� �j;n� (b�j;n ( K)� �j;n)�
Rj b�� ( K)R0j�1=2 +

n1=2�j;n (b�j;n ( K)� �j;n)�
Rj b�� ( K)R0j�1=2 ) T�j ( K ; h) ;(B.33)

where the �rst term in the second inequality is op (1) by Lemma B.3.
For j > n� pK ;

T�j ;n ( K) =
n1=2b�j;n ( K) (�j � �j;n)�

Rj b�� ( K)R0j�1=2 ) T�j ( K ; h) (B.34)

49



by Lemma B.3. Note that the de�nitions of T�j ( K ; h) are di¤erent for j � n�pK and j > n�pK :
Finally, we plug b K;n into T�j ;n ( K) and plug  �K (h) into T�j ( K ; h) : The plug-in method is valid
because both  �K (h) and T�j ( K ; h) are continuous functions of S ( K) :

(b) Part (b) is directly implied by Lemma 6.6(b). �

Proof of Lemma B.1.
(a) Part (a) can be proved in the same way as Lemma A.1(a).
(b) Replacing the sample projection matrix with the population projection matrix, we have

Mk+ ( k+)Fk ( k� ;  k) = esk ( k� ;  kj k+)� fk+ ( k+) � ( k� ;  k;  k+) ; where
� ( k� ;  k;  k+) =

�
fk+ ( k+)

0 fk+ ( k+)
��1

(fk+ ( k+) sk ( k�) ;  k)� �k+ ( k� ;  k;  k+) :(B.35)

Using (B:35) ; we have

n�1sk ( k� ;  k)
0Mk+ ( k+) sk

�
 k� ;  k

�
!p �k

�
 k� ;  k;  kj k+

�
; (B.36)

because the rows of esk ( k� ;  k) are iid by construction and �( k� ;  k;  k+) is op (1) uniformly
over �k� ��k ��k+ :

(c) Part (c) can be proved in the same way as Lemma A.1(b) by replacing g (Xi; �n)�n �
g (Xi; �) b� (�) with

��i = Z 0i

�
�n � b� ( K)�+ �fK�

�
 K�;n

�
�K�;n � fK�(b K� ( K))

b�K� ( K)
�
+

fK ( K)
�
�K;n � b�K ( K)� ; (B.37)

where the second term can be further simpli�ed by Taylor expansion as in (B:24) : The rest of the
proof is the same as in Lemma A.1(b). �

Proof of Lemma B.2: The proof follows that of Lemma A.2. �

C Proofs for Asymptotic Sizes and Robust CIs

Theorem 4.1 and Theorem 5.1 are special cases of Theorem 7.1 and Theorem 7.2, respectively,
when p = 1: Hence, we only prove the general case in this section.

We �rst prove that the asymptotic distributions of the test statistics are all continuous 8h 2 H:
The continuity property is used in the derivation of the asymptotic sizes of the CIs, as indicated in
Corollary 3 of AG.

Lemma C.1 Suppose Assumptions 1, 2, 3c, 4c, and U hold. For any h 2 H; W ( �K (h) ; h) ;
T� ( 

�
K (h) ; h) ; and T�;j ( 

�
K (h) ; h) are all continuous distributions.

Proof of Theorem C.1.
For notational simplicity, we omit h in this proof. For any x 2 Rr;

P (W ( �K) � x) = E (1 (W ( �K) � x)) = E (E (W (�) � x) j �K = �))

=

Z
�K

Z x

�1
w (�; s) dsd�� =

Z x

�1

�Z
�K

w (�; s) d��

�
ds; (C.1)

50



where w (�; s) is the normal density at s when  K is �xed at �; and �� is the measure of  
�
K : The

�rst equality holds by de�nition, the second equality holds by law of iterated expectation, the third
equality holds because W ( K) is a r dimensional continuously distributed random variable for any
�x  K ; and the the last equality is from Fubini�s Theorem. We conclude W ( �K) is a continuous
distribution because it is absolute continuous wrt the Lebesgue measure as shown in (C:1) : Analo-
gously, we can show T� ( 

�
K (h) ; h) ; and T�;j ( 

�
K (h) ; h) are both continuous distributions for any

given h: �

Proof of Theorem 7.1.
This is an application of Corollary 3 of AG. The key assumption, Assumption B in AG, is

veri�ed by Theorem 6.1 and Theorem 6.2. The other assumptions can be veri�ed as in AG, p.
20-21. Theorem 4.1 is a special case of Theorem 7.1 when p = 1: �

Theorem 5.1 is a special case of Theorem 7.2 when p = 1: The asymptotic distribution of the
test statistic Wn

�
�R;n

�
; T�;n

�
�R;n

�
; and T�j ;n (�j;n) are given in Theorem 6.1 and Theorem 6.2.

We denote the test statistic in general by Tn (�n) and call its asymptotic distribution Jh; with the
1� � quantile ch (1� �) :

Parameter � =
�
�1; :::; �p

�0 is de�ned below in Lemma C.2. Let �� = ���1; :::; ��p�0 ; where ��j =
1 if �j 6= 0: Given �; de�ne

c�� (1� �) = sup
h�2H

ch� (1� �) ; where h� = (��0; �00)0:16 (C.2)

Lemma C.2 Suppose Assumptions 1, 2, 3c, 4c, U, and R hold. Let h = (b0; �00)
0 and fn;h =�

�0n; �
0
n; �

0
n

�0
: n � 1g be a sequence of points in its parameter space that satis�es

(i) n1=2�n ! b for some b 2 Rp[�1];
(ii) ��1n n1=2�j;n ! �j for some �j 2 R[�1]; and
(iii) �n ! �0 for some �0 2 �: Then,
(a) bcn (1� �) � c�n for all n for a sequence of random variables fc�n : n � 1g that satis�es
c�n !p c�� (1� �) under fn;h : n � 1g:
(b) lim infn!1 Pn;h (Tn (�n;h) � bcn (1� �)) � 1� �:
Proof of Lemma C.2.

Let e� = (e�1; :::;e�p); where e�j = 1 if �j 6= 0 or 'j;n > 1; where 'j;n = ��1n tj;n: Given �; de�ne

c�n = supeh2Hceh (1� �) ; where eh = (e�0; �0)0: (C.3)

When comparing c�n and c�� (1� �) ; we only need to consider those dimensions with �j = 0;
because e�j = ��j = 1 when �j 6= 0: Note that

c�n = c�� (1� �) ; when 'j;n � 1 for all j = 1; :::; p' such that �j = 0: (C.4)

Then bcn (1� �) � c�n by construction because the probability that e�j = 1 is greater than that
of b�j = 1: By making restrictions such as e�j = 1; we take supremum over a smaller parameter
space.

Next, we need to show c�n !p c�� (1� �) : Under
�
n;h : n � 1

	
; we have

16Parameter � and critical value c�� (1� �) here correspond to � and c�� (1� �) in Section 12.3 of AS, respectively.
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'j;n = ��1n

�����n1=2b�j;nb��j ;n
����� = ��1n

������
n1=2

�b�j;n � �j;n�b��j ;n +
n1=2�j;nb��j ;n

������ � op (1) +

�����n1=2�j;n�nb��j ;n
����� !p

����� �j��j
����� ;
(C.5)

where ��j is the limit of b��j ;n: Using results in Section 6.2,
�� =

�
Rq+j�� (e�)R0q+j�1=2 ; where e� = � �� (h) ; if n1=2�K ! bK 2 RpK

�0; if
n1=2�K!1: (C.6)

and Rq+j is a row vector with the (q + j)th element being one and the rest being 0. Hence,

P (jc�n � c�� (1� �)j � ") >

p'Y
i=1

P
�
'j;n � 1

�
! 1 for any " > 0; (C.7)

because 'j;n !p 0 when �j = 0:
(b) We �rst compare c�� (1� �) and ch (1� �) : To this end, we need to check whether the

restriction that h = (��0; h02)
0 imposed on c�� (1� �) is satis�ed by the true localization parameter.

If this is true, taking supremum over a space include the true parameter leads to c�� (1� �) �
ch (1� �) :

The only restriction on �� is that when �j 6= 0; ��j =1: By de�nition of �j and the assumption
that �n ! 1; we know h1;j = 1: As such the condition on ��j is satis�ed by the true parameter,
which implied that c�� (1� �) � ch (1� �) :

Because Tn (�n)) Jh under fng ; we now have

lim inf
n!1

Pn;h (Tn (�n) � bcn (1� �)) � lim infn!1
Pn;h (Tn (�n) � c�n) � Jh (c�� (1� �)�) (C.8)

where Jh (x�) denotes the limit from the left of Jh at x; the �rst inequality holds because bcn (1� �) �
c�n and the second inequality holds by part (a) of the Lemma and Tn (�n)) Jh: Since Jh is contin-
uous by Lemma C.1; we have

Jh (c�� (1� �)�) = Jh (c�� (1� �)) � 1� �; (C.9)

where the inequality holds by c�� (1� �) � ch (1� �) : �

Lemma C.3 Suppose Assumptions 1, 2, 3c, 4c, U, and R hold. The 1�� quantile ofW ( �K (h) ; h) ;
T� ( 

�
K (h) ; h) ; and T�;j ( 

�
K (h) ; h) are all continuous wrt h; where h = (b

0; �0)
0 :

The proof of Lemma C.3 is at the end of the section. The continuity property in Lemma C.3 is
useful in the proof of Lemma C.4 below.

The next Lemma is analogous to Lemma 3 of Andrews and Soares (2007). Here we need to �nd
the sequence of true parameters

�
�n = (�

�0
n ; �

�0
n ; �

�0
n )
0 : n � 1

	
under which the asymptotic coverage

probability of the robust CI is exactly 1��; which shows that the robust CI is not asymptotically
conservative.

Let
h = argmax

h2H
ch (1� �) ; (C.10)
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where h = (b
0
; �00)

0 and b = (b1; :::; bp)0: Note that we have shown the continuity of ch (1� �) wrt h
and the parameter space of bj includes 1: Hence, the maximum can be attained at h:

Let ��n = (�
�
1;n; :::; �

�
p;n)

0: For j = 1; :::; p; the sequence we need is

��j;n =

�
n�1=2bj ; if bj 2 R
��j 6= 0; if bj =1

; ��n = �0; and ��n = �0 2 Rq: (C.11)

Lemma C.4 When the true distribution is determined by �n for all n; we have
limn!1 P�n (Tn (�

�
n) � bcn (1� �)) = 1� �:

Proof of Lemma C.4.
By construction, ch (1� �) is the 1 � � quantile of the asymptotic distribution Jh under 

�
n:

Let bc� (1� �) be the robust critical value under �n: To get the desired result, we need to showbc� (1� �) ! ch (1� �) : When bj = 1; the model-selection procedure on bj does not a¤ect the
maximization of ch (1� �) over bj : With either testing result, bc� (1� �) and ch (1� �) are both
attained at bj = 1: Therefore, we only need to consider bj 2 R and check whether the model
selection narrow the optimization space for bc� (1� �). By de�nition,

bc� (1� �) = ch (1� �) if 'j;n � 1 for all j = 1; :::; p: (C.12)

When bj = 0; �j = 0 by the de�nition. In this case, 'j;n !p 0; so that 'j;n � 1 with probability 1.
Thus,

P
���bc� (1� �)� ch (1� �)�� � "

�
>

pY
i=1

P
�
'j;n � 1

�
! 1; (C.13)

for any " > 0: Then

lim
n!1

P�n (Tn (�
�
n) � bc� (1� �)) = Jh

�
ch (1� �)

�
= 1� �; (C.14)

where the �rst equality holds by Lemma 3 of AG1 and the second equality holds by Lemma C.1.
�

Proof of Theorem 5.1.
The proof is the same as that of Theorem 1 in AS by replacing Lemma 2 and Lemma 3 in AS

with Lemma C.2 and Lemma C.4, respectively. �

Proof of Lemma C.3.
We write Jh = T ( �K (h) ; h) ; where T ( K ; h) is a stochastic process indexed by  K :
Let S� ( K) be a continuous sample path of the Gaussian process S ( K) : LetQ (S ( K) ;  K ; h)

denote the non-central chi-square process on the rhs of Lemma 6.5(a). We use sup norm to measure
the distance between two continuous functions. The sample path of Q (S ( K) ;  K ; h) ; denoted
by Q (S� ( K) ;  K ; h) ; is continuous in h. Because Q (S

� ( K) ;  K ; h) has unique minimizer with
probability one,  �K (h) is continuous wrt h; a.s. [S

� ( K)]:
Next, let hn be a sequence converges to h0: Conditional on S� ( K) ;

jT ( �K (hn) ; hn)� T ( �K (h0) ; h0)j
� jT ( �K (hn) ; hn)� T ( �K (hn) ; h0)j+ jT ( �K (hn) ; h0)� T ( �K (h0) ; h0)j ; (C.15)

by triangle inequality. In (C:15) ; the �rst term on the rhs converges to 0 because T ( K ; h) is
continuous wrt h under sup norm, and the second term on the rhs converges to 0 because the
sample path is continuous and  �K (hn)!  �K (h0) :
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Using (C:15) ; we have

T ( �K (hn) ; hn) ! T ( �K (h0) ; h0) a.s. [S
�] ;

1 (T ( �K (hn) ; hn) � x) ! 1 (T ( �K (h0) ; h0) � x) a.s. [S�] ,

P (T ( �K (hn) ; hn) � x) ! P (T ( �K (h0) ; h0) � x) :

chn (1� �) ! ch0 (1� �) (C.16)

The fourth convergence result of (C:16) holds by the third result and Lemma C.1. The third
convergence result of (C:16) holds by the second result and the bounded convergence theorem. The
second convergence result of (C:16) follows from the �rst result and Lemma C.1. �

Reference

Andrews, D. W. K. (1992): �Generic Uniform Convergence,�Econometric Theory, 8, 241-257.

� � (1994): �Empirical Process Method in Econometrics,�Handbook of Econometrics, Vol. IV.
Edited by R. F. Engel and D. L. McFadden. Ch. 37, 2248-2294.

� � (1999): �Estimation When a Parameter Is on a Boundary,�Econometrica, 67, 1341-1384.

� � (2000): �Inconsistency of the Bootstrap When a Parameter Is on the Boundary of the
Parameter Space,�Econometrica, 68, 399-405.

Andrews, D. W. K. and P. Guggenberger (2007): �Applications of Subsampling, Hybrid, and
Size-Correction Methods,�Cowles Foundation Discussion Paper No. 1608, Yale University.

� � (2009a): �Asymptotic Size and a Problem with Subsampling and with the m out of n
Bootstrap,�forthcoming in Econometric Theory.

� � (2009b): �Hybrid and Size-Corrected Subsampling Methods,�forthcoming in Econometrica.

� � (2009c): �Validity of Subsampling and �Plug-in Asymptotic�Inference for Parameters De�ned
by Moment Inequalities,�forthcoming in Econometric Theory.

Andrews, D. W. K. and P. Jia (2008): �Inference for Parameters De�ned by Moment Inequalities:
A Recommended Moment Selection Procedure,� Cowles Foundation Discussion Paper No.
1676, Yale University.

Andrews, D. W. K. and W. Ploberger (1994): �Optimal Tests when a Nuisance Parameter Is
Present Only under the Alternative,�Econometrica, 62, 1383-1414

Andrews, D. W. K. and G. Soares (2007): �Inference for Parameters De�ned by Moment Inequal-
ities using Generalized Moment Selection,�Cowles Foundation Discussion Paper No. 1631,
Yale University.

Chernozhukov V., H. Hong, and E. Tamer (2007): �Estimation and Con�dence Regions for Para-
meter Sets in Econometric Models,�Econometrica, 75, 1243-1284.

54



Davies, R. B. (1977): �Hypothesis Testing when a Nuisance Parameter is Present Only under the
Alternative,�Biometrika, 64, 247-254.

� � (1987): �Hypothesis Testing when a Nuisance Parameter is Present Only under the Alter-
native,�Biometrika, 74, 33-43.

Dufour, J.-M. (1997): �Some Impossibility Theorems in Econometrics with Applications to Struc-
tural and Dynamic Models,�Econometrica, 65, 1365�1387.

Hansen, B. E. (1996): �Inference When a Nuisance Parameter Is Not Identi�ed under the Null
Hypothesis,�Econometrica, 64, 413-430.

� � (2007): �Least Squares Model Averaging,�Econometrica, 75, 1175-1189.

Kim, J. and D. Pollard (1990): �Cube Root Asymptotics,�Annals of Statistics, 18, 191-219.

Mikusheva, A. (2007): �Uniform Inference in Autoregressive Models,�Econometrica, 75, 1411-
1452.

Romano, J. P. and A. M. Shaikh (2006): �Inference for the Identi�ed Set in Partially Identi�ed
Econometric Models,�Technical Report 2006�10, Department of Statistics, Stanford Univer-
sity.

� � (2008): �Inference for Identi�able Parameters in Partially Identi�ed Econometric Models,�
Journal of Statistical Planning and Inference, 138, 2786-2807.

Staiger, D. and J. H. Stock (1997): �Instrumental Variables Regression with Weak Instruments,�
Econometrica, 65, 557-586.

Tripathi, G. (1999): �A Matrix Extension of the Cauchy-Schwarz Inequality,�Economics Letters,
63, 1-3.

van der Vaart, A. W. and J. A. Wellner (1996): Weak Convergence and Empirical Processes. New
York: Springer.

55


	Abstract
	Introduction
	Model
	Simple Model and Asymptotic Results
	Asymptotic Size
	Asymptotic Distributions

	Standard and Subsampling Confidence Intervals
	Explicit Formulae for Asymptotic Sizes
	Simulations for Standard and Subsampling CIs

	A New Robust Confidence Interval
	Description of the Robust CI
	Construction Algorithm and Asymptotic Size Results
	Simulations for the Robust CI

	General Model and Asymptotic Results
	Asymptotic Distributions in a Model with Two Nonlinear Regressors
	Asymptotic Distributions in the General Model
	Test Statistics in the General Model

	General Confidence Set
	Standard Confidence Set and Subsampling Confidence Set
	General Robust Confidence Set

	Conclusion

