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Abstract

This paper develops a theory of market illiquidity driven by adverse selection

in decentralized markets, in which traders care about both the trading price and

how fast they can �nd a counterparty. The model captures two key notions of

illiquidity, market thinness and price undervaluation, and demonstrates how each

arises endogenously. When illiquidity manifests itself as market thinness, sellers

face long delays in �nding a buyer. In certain cases, illiquidity also generates a

price discount. In particular, sellers who are relatively distressed �nancially choose

to transact quickly, but accept a price below the fundamental value. The model

rationalizes limited market participation, it accounts for �re sales, and it explains

how trading volume dries up when dispersion in quality increases. The paper also

provides conditions under which each type of liquidity distortion occurs and there-

fore separately identi�es the e¤ects of adverse selection on trading price as well as

trading volume.
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1 Introduction

Market illiquidity inhibits the e¢ cient allocation of resources. An illiquid market makes

it di¢ cult for �rms to raise capital, for households to sell homes, and for intermediaries to

e¤ectively manage their liabilities. It therefore has been seen as a catalyst for the recent

�nancial crisis. While the notions of market illiquidity, limited market participation,

and �re sales have been widely used, most analyses just assume their existence without

considering their origins. As a result, little is yet known about why each occurs in the �rst

place. In particular, the standard notion that there is always a price at which anything

with positive value can be sold is not enough to explain the limited market participation

of buyers and the infrequent trading observed recently in the market.1 It also remains

unclear whether sellers will choose to unload their assets if they have to do so at an

undervalued price. In other words, when will �re sales actually arise?

To answer these questions in an equilibrium framework, this paper develops a dynamic

model which takes into account both buyers�entry decisions and sellers�trading strategies.

I consider a decentralized trading environment with search frictions and adverse selection,

where sellers have private information about the quality of their assets (de�ned as the

NPV of the cash �ows), and also possibly about their trading motives (i.e., di¤erent needs

for cash or �nancing costs). This paper shows that two possible market liquidity distor-

tions could arise in such a framework: market thinness and price undervaluation. Market

thinness, de�ned as the buyer-seller ratio in the market, is a measure of market partic-

ipation. It determines how fast sellers can unload their assets. A downward-distorted

market thickness then implies that the seller will have di¢ culty in �nding a buyer. Such

an equilibrium outcome rationalizes the limited market participation and implies a low

trading volume. It also explains the claims often heard in the popular media that �-

nancial sectors are clogged with illiquid assets. The model further demonstrates in what

situations sellers need to endure undervalued prices. Since sellers are allowed to hold on

to their assets while awaiting a better price in this dynamic environment, whether a seller

accepts a price below the fundamental value depends on the market outcome. Hence, the

phenomenon of a �re sale, if it arises, is also endogenous.

The setup employs a dynamic competitive search framework with adverse selection.

Uninformed principals (buyers) post prices to attract informed agents (sellers), and sell-

ers direct their search toward their preferred submarket. Such a framework highlights the

fact that traders care about both the trading price and how fast they can �nd a counter-

1The notion of a buyers�strike in connection to the recent crisis has been discussed in Tirole (2010)

and Diamond and Rajan (2009).
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party in decentralized markets.2 The setup is therefore relevant for any asset traded in

decentralized markets and current owners tend to have private information about asset

quality, such as, current residents of the house, the banks who design the mortgage-backed

securities, or the �rms who own corporate assets, etc.3 The market outcomes, i.e., mar-

ket thickness and trading prices, are then determined by buyers�and sellers�equilibrium

trading strategies. Although the presence of market distortions is expected, it is not

clear ex ante whether adverse selection will lead to price undervaluation, a thin market,

or both. One contribution of this framework is the ability to provide conditions under

which each distinct distortion arises. In contrast to the standard lemon problem, which

typically gives predictions on the trading price, the model separately identi�es the e¤ects

of adverse selection on trading price, trading volume, and market segmentation.

The �rst result shows that if sellers have superior information regarding the asset qual-

ity (i.e., there is information asymmetry in the common value), the equilibrium market

thickness will be distorted downward as compared to an environment with complete in-

formation. In this case, there exists a unique equilibrium which is fully separating: asset

prices re�ect their fundamental values while sellers with high-quality assets su¤er a longer

trading delay as a result of lower buyer participation in those submarkets. The intuition

is that holding di¤erent quality assets results in di¤erent waiting preferences. Given that

owning a high-quality asset generates a higher �ow payo¤, a high-type seller is more will-

ing to wait longer in exchange for getting a better price. In equilibrium, the distortion

on the market thickness works as a screening mechanism and an agent�s type is revealed

by the submarket he chooses. The pooling equilibrium with a price distortion, which is

the typical outcome of the standard lemon model, cannot be sustained.4 Furthermore,

I establish a strong link between the equilibrium market thinness and the underlying

uncertainty stemming from adverse selection. I show that the underlying dispersion, or

more precisely, the possible range of underlying asset qualities, plays an important role

in determining the equilibrium market thinness: the broader the range of underlying as-

set qualities, the thinner the market. This result then implies that an increase in the

underlying range of asset qualities, or equivalently, an increase in the severity of adverse

2Such a trading structure has been developed in the literature on the over-the-counter market based

on (Du¢ e et al. (2005)), and the work on monetary theory based on (Kiyotaki and Wright (1993)).
3In particular, the di¢ culty in assessing the fundamental value of asset-backed securities, which there-

fore leads to the adverse selection problem, has been one of the prevailing explanations for the recent

liquidity crisis. For example, Gorton (2008) provides an analysis of the source of the adverse selection

problem in asset-backed securities and mortagage-backed securities.
4This paper uses the equilibrium re�nement developed in the competitive search literature; see, for

example, Guerrieri et al. (2010).
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selection, leads to a drop in the trading volume. Meanwhile, since low-quality assets are

traded more frequently, one will also observe the drop in the aggregate price.

I further consider the environment in which sellers have di¤erent needs for trade,

capturing the idea that some sellers need to unload their asset more quickly if they are

relatively distressed �nancially. More important, such motivation for selling are also

unknown to the market. In other words, I extend the model to accommodate private

information about sellers�private valuation of the assets, as well as the quality of the

assets (the common value). In such an environment, the seller who wants to unload his

asset more quickly can be the type who has a low-quality asset, or the one who simply

has a relatively urgent need for cash. As a result, the types who are willing to wait longer

are not necessarily the ones with more valuable assets. Buyers are therefore not willing to

pay more to the types who are willing to wait longer, which undermines the full screening

mechanism. Hence, I identify conditions under which semi-pooling equilibria exist, which

feature a combination of both price and thickness distortions. In each such equilibrium,

a thick market with a pooling price coexists with thin submarkets with higher prices.

Interestingly, in such an equilibrium I construct, facing the trade-o¤ between a trading

delay and a discounted price, it is optimal for a seller who is more �nancially distressed

to unwind his asset quickly and accept a loss because of the undervaluation price. On

the other hand, a seller who is less �nancially distressed rather waits longer for a higher

price. Thus, �nancial distress leads to �re sales.

The model therefore provides a microfoundation for �re sales. In the well-known

explanation for �re sales developed in Shleifer and Vishny (1992) and Shleifer and Vishny

(2010), �re sales are forced sales of assets in which high-valuation bidders are sidelined

and the price is therefore below value in its best use. In those frameworks, it is assumed

that natural buyers of the assets also experience �nancial distress so that they can not

enter the market. In contrast, in this framework, all potential buyers are unconstrained,

and the entry decisions of potential buyers are endogenous. For an outside observer, the

market features the following behavior: few buyers are willing to o¤er a high price and it

is indeed optimal for distressed sellers to sell their assets quickly even though they must

accept price discounts. Hence, such an equilibrium outcome rationalizes key features of

�re sales without relying on an exogenous assumption about market participation.

The rest of the paper is organized as follows. Section 2 introduces the basic model

and establishes my approach to characterizing equilibria. Section 3 extends the basic

model to allow for general payo¤ functions, resale, and nonmonotonicity in the matching

value. In Section 4, I consider a setup in which sellers�motives for selling are unobserved

by the market. That is, I further allow for asymmetric information in sellers�private

4



values of holding the asset. Section 5 discusses the model�s implications and related

applications. For example, I show why some �nancial securities are more liquid than

others that pay similar cash �ows. Furthermore, applying the method developed to explain

�rms�capital reallocation, my framework provides a microfoundation for the reallocation

pattern documented in Eisfeldt and Rampini (2006) and allows for a richer analysis of

how this market friction responds to varied economic shocks. Finally, Section 6 discusses

e¢ ciency and provides a comparative statics analysis on searching costs and the elasticity

of the matching function.

Related Literature
Theoretically, my work is closest to Guerrieri et al. (2010), who apply the notion

of a competitive search equilibrium to a static environment with adverse selection and

uninformed principals who are allowed to post (exchange) contracts. As discussed in

Guerrieri et al. (2010), this equilibrium concept is similar to the re�ned equilibrium

concept developed in Gale (1992) and Gale (1996). My paper analyzes price posting in a

dynamic trading environment and contributes a di¤erent approach to characterizing the

equilibrium. Furthermore, I investigate the environment where sellers do not only have

private information about the quality of their assets but also about their trading motives.

The paper shows that the degree to which the market can screen agents depends on the

expected asset quality inferred from sellers�waiting preferences. If a sellers�private value

of the asset is also unobserved by the market and the types who are willing to wait longer

are not necessarily the ones with better assets, semi-pooling equilibria arise. Such an

equilibrium rationalizes key features of a �re sale. This result contrasts with Inderst and

Muller (2002), Guerrieri et al. (2010), and Guerrieri and Shimer (2011), where the private

information is on the common value only and therefore the types who are willing to wait

longer are necessarily worth more to buyers. In that case, a full separating equilibrium

is the unique outcome. This is the �rst paper to show that asymmetric information on

both private and common values might lead to semi-pooling equilibria in a competitive

search framework. Di¤erent equilibrium outcomes imply di¤erent market distortions. The

paper therefore contributes to the literature by identifying the condition under which each

distinct distortion arises.

The new characterization method developed in my framework is essential for char-

acterizing the equilibrium. In particular, the constructing algorithm in Guerrieri et al.

(2010) is designed for the case when a fully separating equilibrium is obtained, while my

approach can be applied also to characterizing semi-pooling equilibria. I establish that the

equilibrium can be solved directly as the problem of an imaginary market designer. The

designer speci�es the price and market tightness for each submarket, in order to match
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individually optimizing buyers and sellers. This approach not only simpli�es the equilib-

rium characterization to solving a di¤erential equation but further facilitates extending

the analysis to a more general environment.

The existence of a semi-pooling equilibrium is novel compared to the previous literature

on competitive (direct) search (e.g., Moen (1997), Burdett et al. (2001), Mortensen and

Wright (2002) and Eeckhout and Kircher (2010)). Without asymmetric information on

the common value, it is known that a fully separating equilibrium is always obtained

regardless of whether the information on the private value is complete or asymmetric. This

is because directed search separates agents into di¤erent submarkets according to their

di¤erent waiting preferences (Mortensen and Wright (2002) and Eeckhout and Kircher

(2010)). With adverse selection, this paper shows that whether the information on the

private value is complete or asymmetric is crucial for the equilibrium outcome.

Building on Guerrieri et al. (2010), a contemporaneous work by Guerrieri and Shimer

(2011) also emphasizes the idea that liquidity works as a screening mechanism, where they

obtain a fully separating equilibrium. They construct a model without search, in which

rationing is allowed instead. As shown in the discussion, an economy with rationing can

be understood as a limit case of the matching technology developed in my model. My

framework is designed to handle a more general trading environment in the decentralized

market, which allows for a general payo¤ function, two-sided heterogeneity5, and, more

importantly, heterogeneity in the sellers� private values of the assets. The concept of

illiquidity in Guerrieri and Shimer (2011) shares the same intuition; however, the notion

of �re sale is manifested di¤erently here. In Guerrieri and Shimer (2011), the drop in the

price is essentially driven by a decrease in the resale value due to the thin market. Fire

sales in my model, on the other hand, occur when a relatively distressed seller wants to

sell his asset more quickly; he therefore enters a thick market that includes lower quality

assets, and accepts a price below the fundamental value. This feature arises in a semi-

pooling equilibrium; moreover, the notion of price discount reconnects to the previous

literature on liquidity driven by adverse selection, as in Eisfeldt (2004).

This paper is related to two lines of literature which focus separately on search frictions

and adverse selection in asset markets. The literature focusing on the e¤ect of search

frictions in asset markets includes the Over-the-counter literature put forth by Du¢ e

et al. (2005) and Du¢ e et al. (2007),6 and the monetary search literature7 ( for example,

5The extension with heterogeneous buyers is in the attached supplementary materials.
6Building on their model, the literature studies the e¤ects of liquidity in search models of asset pricing.

See, for example, Weill (2008), Lagos and Rocheteau (2009).
7Williamson and Wright (2008) provides a detailed survey of this line of literature.
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Kiyotaki and Wright (1993), Trejos and Wright (1995)). This paper is also related to

the literature on lemon markets, building on the seminal works of Akerlof (1970). Most

of this literature assumes that trades take place at one price so a pooling equilibrium

and therefore a price discount is obtained, (e.g., Eisfeldt (2004)). Some dynamic models

with adverse selection (e.g., Janssen and Roy (2002) and Daley and Green (2009)), also

emphasize the fact that di¤erent types of sellers have di¤erent waiting preferences and

therefore delay can be used to sort between di¤erent types of sellers. For example, Janssen

and Roy (2002) takes a Walrasian approach and show that every equilibrium involves a

sequence of increasing prices and qualities traded over time.

The above notions of distortions, price discount and trading delay, are both captured

in this framework. However, they are manifested di¤erently. In particular, the trading

delay is generated by a low market participation in this paper, which provides a notion of

market thinness. More importantly, traders are allowed to sort themselves into di¤erent

submarkets in this framework.8 The question of interest here is how di¤erent market

segmentation may arise, which in turn implies di¤erent types of liquidity distortion. As

shown in the baseline model, a fully separating equilibrium is the unique outcome; hence,

adverse selection leads to a trading delay but not to an undervalued price. In that case, the

resulting trading delay is conceptually similar to Janssen and Roy (2002), even though

the setup is di¤erent. In contrast, in a semi-pooling equilibrium, the behavior of the

pooling submarket shares similar features with the standard model of adverse selection,

where the assets are valued at the pooling price and therefore a high-type seller su¤ers

a price discount. Being able to capture these two notions of liquidity distortions as an

outcome of decentralized matching markets is what distinguishes my model from the rest

of the literature. There are other di¤erences regarding the model predictions, which I will

discuss later in the paper. For example, in most works on adverse selection, there exists

at most a single price in the market at each point in time. In my framework, di¤erent

prices coexist at each point in time; hence, the model gives a distinct prediction on price

dispersion.

8Note that the directed search framework is crucial to capture such market segmentation, in contrast

to the framework with random search. The predictions and focus in this model are therefore di¤erent from

the works which consider adverse selection in the random-matching framework (for example, Williamson

and Wright (1994), and recent works by Chiu and Koeppl (2011), Lester and Camargo (2011)).
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2 Baseline Model

Players There is a continuum of sellers and each owns a single asset; the assets vary in

quality indexed by s 2 S which is the sellers�private information. Assume that S =
[sL; sH ] � R+ and G0(s) denotes the measure of sellers with asset quality weakly below
s at t = 0. The other side of the market consists of a large continuum of homogenous

buyers; that is, the measure of buyers is strictly larger than the measure of sellers. The

measure of buyers who decide to enter the market is endogenously determined by the

free-entry condition. This emphasizes the idea that there is a large number of potential

buyers out there; therefore, limited market participation, if it arises, is endogenous.

Payo¤s While holding the asset s, the seller enjoys a �ow payo¤ s but must pay a

holding cost c. A buyer, on the other hand, does not need to pay the holding cost and

therefore simply enjoys the �ow payo¤ of the purchased asset. In order to buy the asset,

the buyer must search for a seller, incurring a �ow search cost, k > 0; for the duration of

his search.

One can think of the holding cost as a simple way to model a seller�s need to "cash"

the asset. As explained in Du¢ e et al. (2007), we could imagine this holding cost to be

a shadow price for ownership due to, for example, (a) low liquidity, that is, a need for

cash; (b) high �nancing cost; (c) adverse correlation of asset returns with endowments; or

(d) a relatively low personal value from using the asset, as in the case of certain durable

consumption goods, e.g., homes. For now, one should think of the holding cost c as an

easy way to generate the gain from trades. As shown in the general model, the main

result holds for a general payo¤.

Setup All agents are risk-neutral, in�nitely lived and discount at the interest rate, r:

Time is continuous. The setup employs a dynamic competitive search framework. Buyers

(uninformed principals) post a trading price p and sellers direct their search toward their

preferred market. All traders have rational expectations about the equilibrium market

tightness ( i.e., the buyer-seller ratio) associated with each market; the market tightness

in each market p is denoted by �(p) and will be endogenously determined in equilibrium.

As is standard, in each market, matching is bilateral and traders are subject to a random

matching function. A seller who enters the market (p; �(p)) matches a buyer with the

Poisson rate m(�(p)): Assuming m(�) is a strictly increasing function of � captures the
idea that relatively more buyers make it easier to sell. On the other side, a buyer in market

(p; �(p)) meets a seller at the rate q(�(p)); where q(�) is a strictly decreasing function of
�. In other words, a higher buyer-seller ratio makes it harder for a buyer to meet a

seller. Trading in pairs further requires that m(�) = � � q(�). For the baseline model, I
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further assume that traders leave the market once the trade takes place. For simplicity, I

assume that the matching function takes the Cobb-Douglas form so that m(�) = �� where

1 > � > 0 throughout this paper. The results, however, are robust to a di¤erent form of

search technology with standard assumptions.9

2.1 Benchmark: Complete Information

I �rst establish the complete information enviorment as the benchmark, which is the

canonical competitive search model put forth by Moen (1997). In such an environment,

buyers simply post a trading price and sellers direct their search toward their preferred

market. Moreover, following the interpretation of Mortensen and Wright (2002), one can

imagine the competitive search equilibrium as if there were a market maker who can

costlessly set up a collection � of submarkets. Each market is characterized by a pair

(�(p); p), which is known ex ante to all participants. Given the posted price and the

market tightness in each market, each trader then chooses to search within his preferred

submarket.

Sellers�and buyers�expected utilities when entering the market (�; p) can be expressed

respectively as follows:

rU s(s; �; p) = s� c+m(�)(p� U s(�; p; s))

rU b(s; �; p) = �k + m(�)
�
(
s

r
� p� U b(�; p; s))

Because of the free entry condition, buyers� entry and exit decisions are instanta-

neously adjusted so that each buyer is indi¤erent between entering the market or not.

Therefore, the market tightness is stationary in each market and so are the traders�util-

ities. Assuming perfect competition among market makers, the market maker�s problem

then reduces to maximizing traders�utilities. With perfect information, one can solve the

equilibrium independently for each asset s. The market maker�s optimization problem for

each asset s is:

V FB(s) = max
p;�

U s(s; �; p) = max
p;�

s� c+ pm(�)
r +m(�)

st : U b(s) =
m(�)( s

r
� p)� �k

r� +m(�)
= 0

9That is, m(�) is twice continuously di¤erentiable and strictly concave.
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One can easily show that �FB solves the following FOC10:

c

k
=
r +m(�)� �m0(�)

m0(�)
(1)

Notice that �FB is an increasing function of the cost ratio, ck . Namely, it is relatively

easier for sellers to meet buyers, and it takes longer for the buyer to �nd the seller when

the holding cost is higher. Also, the �rst best solution is independent of the asset quality.

This is true because the gain from trade is simply the holding cost, which is independent

of the asset quality. The price of each asset is then: pFB(s) = s
r
� k�FB

m(�FB)
, the expected

value of the asset minus the expected searching cost paid by buyers. Note that the �rst-

best allocations can not be implemented in the environment with adverse selection. This

is because that facing the same market tightness �FB, the low-type seller always wants to

pretend to be a higher type so that they can get a higher payment.

2.2 Equilibrium with Adverse Selection

We now turn to an environment with adverse selection, in which sellers have private

information about the asset quality. As in the complete information environment, buy-

ers/sellers choose the price p they would like to o¤er/accept, and all traders have rational

beliefs about the ratio of buyers to sellers �(p) in each market p: The key di¤erence is that

buyers now form rational beliefs about the distribution of sellers�unobserved types in each

market p; which determines the expected asset quality they receive in each market. Note

that, given the expected asset quality in each market, the free-entry condition determines

the measure of active buyers in each market independently of the distributions of sellers

in other markets. As a result, the equilibrium market tightness function �(�) does not
depend on the distributions of sellers in other markets. This property is important as it

simpli�es our analysis by focusing on stationary equilibria where the set of o¤ered prices

P � and the market tightness function �(�) are time invariant even though the aggregate
distribution evolves over time.

I now elaborate on how to construct stationary equilibria in this framework and focus

on such equilibria throughout the paper. Consider the set of time-invariant o¤er prices

and the market tightness function �(�). Each market is then characterized by the pair
(p; �(p)): Clearly, sellers�strategies are stationary when facing the time invariant (p; �(p)):

Sellers�trading decisions then determine the expected asset quality in each submarket.

10The maximization problem can be rewritten as max�2R+ V (s; �), after substituting the free entry

condition. One can show that, given a concave matching function, V (s; �) is a concave function in � and

therefore �FB(s) is a global maximizer of V (s; �):
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It thus pins down the buyers� expected value of buying an asset in each market p :
�J(p) =

R
J(~s)�(~sjp)d~s; where �(sjp) denotes the probability of a type-s seller conditional

on a match in the market p and J(s) denotes the buyers�value of buying the asset from

type-s seller. Given that the sellers�searching decisions are stationary and the matching

is random in each submarket, notice that the composition of sellers� types is therefore

stationary as well as buyers�expected matching value �J(p). Furthermore, the free entry

condition guarantees that, at each point in time, the measure of active buyers generates

the correct ratio �(p) in each submarket such that p = �J(p) � k�(p)
m(�(p))

for all p 2 P �

and therefore the market tightness function �(p) is then stationary. Finally, one still

needs to show that the set of o¤ered prices P � is time invariant. As it will become clear

later, the set of o¤er prices depends on the sellers�equilibrium utilities and the range of

underlying asset quality: both are time invariant in the constructed environment. Hence,

the above discussion suggests a possible stationary equilibrium (p; �(p); �(�jp)), where
traders�strategies are stationary, and both the set of o¤ered prices P � and the market

tightness function �(�) are time invariant.
Note that in a setting of competitive search models with heterogeneous agents, it is

well-known that the type distribution does not play a role, as the standard result in the

literature is a full separation (for example, Moen (1997)).11 In an enviorment with adverse

selection, there are two main di¤erences. First of all, the possibility of (semi-) pooling is

allowed. In this case, the distribution of sellers�types in other submarkets does not play

a role, but the distribution within each market does matter and is governed by �(�jp).
Second, as will become clear, the equilibrium market tightness of each market depends on

the range of the underlying distribution, which is the key consequence of adverse selection.

Nevertheless, as shown above, it is enough to characterize the set of active markets

P �, the equilibrium market tightness function �(�); and the composition �(sjp) in each
market. This property makes our dynamic environment tractable as it eliminates the

role of the aggregate distribution. The following section then characterizes the traders�

decisions in such stationary equilibria, neglecting the role of aggregate distribution. The

aggregate distribution, however, does evolve over time and a¤ect aggregate statics (such

as the aggregate price, the price dispersion, etc). Nevertheless, one can easily back out

the aggregate dynamics afterward.

I de�ne the set of feasible prices as P = [0; J(sH)] since no trade takes place at

prices above J(sH) and below zero (under the assumption that sL � c > 0): A stationary
equilibrium consists of a set of o¤er prices P �, a market tightness function �(�) and traders�
11Shi (2009) further establishes the block recursive property in an environment when on-the-job search

is allowed.
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trading decisions. The buyers�and sellers�expected payo¤s in markets (p; �(p); �(�jp)) can
be expressed as:

rU b(p; �(�jp); �(p)) = �k + m(�(p))
�(p)

(

Z
~s

r
�(~sjp)d~s� p� U b)

rU s(p; �(p); s) = s� c+m(�(p))(p� U s(p; �(p); s)):

In the market (p; �(p); �(�jp)); a buyer pays a �ow searching cost k until he meets a

seller with a Poisson rate m(�(p))
�(p)

: He will then pay price p for the asset, expecting the

asset quality to be
R
~s
r
�(~sjp)d~s. Facing the active markets, which can be characterized

as (p; �(p))p2P � ; sellers direct their search toward their preferred markets and can always

choose the option of no trade, denoted by ?12. The equilibrium expected utilities of seller
s then must satisfy:

V �(s) = max
p2P �[?

U s(p; �(p); s)

We now need to specify the belief o¤ the equilibrium path. Our equilibrium concept

adopts Guerrieri et al. (2010), which ressembles the re�ned Walrasian general-equilibrium

approach developed in Gale (1992).13 The spirit follows the market utility property used

in the competitive search equilibrium literature.14 That is, when a buyer contemplates a

deviation and o¤ers a price p which has not been posted; p =2 P �; he has to take sellers�
equilibrium utilities V �(s) as given and forms a belief about the market tightness and

the types he will attract. First of all, a buyer expects a positive market tightness only if

there is a type of seller who is willing to trade with him. Moreover, he expects to attract

the type s who is most likely to come until it is no longer pro�table for them to do so.

Formally, de�ne:

�(p; s) � inff~� > 0 : U s(p; ~�; s) � V �(s)g
�(p) � inf

s2S
�(p; s) (2)

12To make the choice of no trade consistent with the rest of our notation, let ?p = �P > J(sH) denote

a nonexistent price which is higher than the feasible pirce and the trading probability at ?p is zero,
�(?p) = 0: Hence, a seller achives his outside option s�c

r if ? = argmaxV (p; �(p); s):
13See Guerrieri et al. (2010) for the detailed discussion regarding its relationship with di¤erent re�ne-

ment developed in the previous literature.
14Burdett, Shi and Wright (2001) prove that a competitive search equilibrium is the limit of a two

stage game with �nite numbers of homogeneous buyers and sellers, which can be understood as a micro-

foundation for the market utility property.
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By convention, �(p; s) = 1 when U s(p; ~�; s) � V �(s) has no solution, speci�cally

�(p; s) = 1 for any p < V �(s) . Intuitively, we can think of �(p) as the lowest market

tightness for which the buyer can �nd a seller. Now let T (p) denote the set of types which

are most likely to choose p:

T (p) = arg inf
s2S
f�(p; s)g

Therefore, given �(p); p is optimal for every type s 2 T (p) but not optimal for s =2 T (p):
Hence, the buyer�s assessment about �(sjp) for any posted price p needs to satisfy the
following restriction:

For any price p =2 P � and type s, �(sjp) = 0 if s =2 T (p) (3)

In the case when T (p) is unique, a buyer then expects this deviation will only attract

seller T (p) and therefore �(sjp) = 1 if s = T (p) and �(sjp) = 0 for 8 s =2 T (p). To simplify
the notation, let �p denote the sellers�distribution �(�jp) conditional on the market p:

De�nition 1 A stationary equilibrium consists of a set of o¤er prices P �; a market

tightness function in each market p, �(�) : P ! [0;1]; and the conditional distribution of
sellers in each submarket � : S � P � ! [0; 1]; such that the following conditions hold:

E1 (optimality for sellers): let

V �(s) = maxfs� c
r
;max
p02P �

U s(p0; �(p0); s)g

and for any p 2 P � and s 2 S; �(sjp) > 0 implies p 2 argmaxp02P �[? U s(p0; �(p0); s)
E2 (optimality for buyers): E2(a) Free-entry, for any p 2 P �

0 = U b(p; �(p); �p);

E2(b) optimality of price posting: there does not exist any p0 =2 P � such that U b(p0; �(p0); �p0) >
0, where �(p0) and �(sjp0) satis�es (2) and (3)

As explained earlier, the aggregate distribution of sellers does not play a role. The law

of motion of the stock of sellers in each market is given by the transaction out�ow. On

the other hand, buyers�participation must generate the correct buyer-seller ratio �(p) at

each point time in all the submarkets according to E2: To characterize the equilibrium,

one does not need to track the aggregate distribution; therefore, the role of the traders�

distribution is eliminated in the above de�nition. Nevertheless, one can back out the

traders�distribution over time after solving the equilibrium above as shown in discussion

below.
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2.3 Characterization

I now show that the equilibrium outcome can be characterized as the solution to a mecha-

nism design problem which takes into account both sellers�and buyers�optimality condi-

tions. Intuitively, one can think of a market designer who promises a price and a market

tightness for each market so that sellers truthfully report their type, that is, condition E1

has to hold. Moreover, a feasible mechanism must satisfy the market-clearing condition,

i.e, E2(a). In other words, the market tightness must equal the ratio of the measure of

buyers who are willing to pay p to the measure of type-s sellers who are willing to accept

p. Meanwhile, given that buyers can post the price freely in the decentralized markets,

any price schedule recommended by the market designer has to be optimal for buyers.

Otherwise, buyers will deviate by posting a price other than the ones recommended by

the mechanism designer. This point is captured by condition E2(b):

Overview of the solution: Our approach therefore follows two steps: First, we
characterize the set of feasible mechanisms � 2 A that satisfy E1 and the the free-entry
condition E2(a) (Lemma 1). Second, we use E2(b) to identify a necessary conditions for

the solution to step 1 to be decentralized in equilibrium. This second step enables us

to show that the unique equilibrium allocation rule that is consistent with E2(b) is the

least-cost separating outcome.

To characterize the set of mechanisms that satisfy the sellers�IC constraints, I set up

the problem as a mechanism-design problem (of an imaginary market designer). By the

revelation principle, one can focus direct revelation mechanisms without loss of generality.

A direct mechanism is a pair (�; p) where � : S ! R+ is the market tightness function

and p : S ! R+ is the price function. The mechanism is interpreted as follows. A seller

who reports his type ŝ 2 S will then enter the market with the pair (�(ŝ); p(ŝ)): Denoting
by V (ŝ; s) = V (p(ŝ); �(ŝ); s) the payo¤ that type s obtains when he reports ŝ; we have

that V (ŝ; s) can be expressed as:

rV (ŝ; s) = s� c+m(�(ŝ))(p(ŝ))� V (ŝ; s)):

The sellers� IC condition then requires that s 2 argmaxŝ
s�c+p(ŝ)m(�(ŝ))

r+m(�(ŝ))
. A seller�s

utility can be rearranged as:

V �(s) = maxfs� c
r
;max

ŝ

s� c+ p(ŝ)m(�(ŝ))
r +m(�(ŝ))

g:

Notice that a seller can always choose not to participate and get his autarky utility s�c
r
.

For convenience, we can think of not entering the market as choosing a market where the

matching rate is zero. Since the mechanism has to satisfy the sellers�IR constraint, we set
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�(s) = 0 whenever the IR constraint is binding. The following lemma then characterizes

any mechanism � = fp(�); �(�)g which satis�es E1:

Lemma 1 The pair of functions f�(�); p(�)g satis�es the sellers�optimality condition (E1)
if and only if following conditions are satis�ed:

1

r +m(�(s))
is non-decreasing ; (M)

V �(s) =
u(s) + p(s) �m(�(s))

r +m(�(s))
= V �(sl) +

Z s

sl

Vs(p(~s); �(~s); ~s)d~s ; (ICFOC)

V �(s) � u(s)

r
: (IR)

where u(s) = s� c in the baseline model.
Proof. The proof follows from standard arguments in the mechanism-design literature

(Milgrom and Segal (2002)). See Appendix.

De�ne B(p) � fs 2 Sj p(s) = pg: Buyers�expected asset quality in market p is given
by the conditional expectation E[sjs 2 B(p)]: Given any feasible mechanism, the the

free-entry condition for buyers implies that the following condition must hold:

p =
E[sjs 2 B(p)]

r
� k�(p)

m(�(p))
: (4)

De�nition 2 Let A be the set of feasible mechanisms, such that for 8� = (p�; ��) 2 A; the
pair of functions f��(�); p�(�)g satis�es (M) ; (ICFOC), (IR) and the free entry condition
(4) :

Hence, Lemma 1 and the free-entry condition de�ne the set of feasible mechanisms A.

Now let V �(s;�) denote the expected payo¤ to a type-s seller under mechanism �. Each

mechanism � 2 A is then composed of a price schedule p�(�) and market tightness ��(�):
This set includes all possible pooling equilibria as well as separating ones. Nevertheless,

not all of these mechanism can be sustained as a decentralized outcome. A decentralized

equilibrium has to satisfy the buyers�optimality condition. Hence, � � (p�; ��) is an

equilibrium only if there is no pro�table deviation for buyers to open a new market

p0;where the o¤-equilibrium belief is speci�ed by (2) and (3), as discussed earlier. When

a buyer considers opening a new market p0 =2 range of P�, he expects to attract only the
type who is most likely to come, T (p0); as de�ned by (3). To facilitate the analysis, we

�rst prove the following lemma which identi�es the type who is mostly likely to come to

this new market.
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Lemma 2 Given any mechanism � 2 A; for any price p0 =2range of p�; the unique type
who will come to this market p0 is given by

T (p0) = s+ [ s�

where s� = inffs 2 Sjp0 < p�(s)g and s+ = supfs 2 Sjp0 > pa(s)g:

Proof. Notice that p�(�) is nondecreasing for 8� 2 A given (M). Therefore, T (p0) is

uniquely de�ned.15 That is, the type who is most likely to come is unique. For any

p0 =2 range of p�; by de�nition, �(p0; s) � inff~� > 0 : U s(p; ~�; s) � V �(s;�)g: Therefore,
for any p0 > V (s;�);which is the relevant case,16 the market tightness �(p0; s) solves:

G(p0; ~�; s) � U s(p0; ~�; s)� V �(s;�) = 0;

d�(p0; s)

ds
= �(dG=ds

dG=d�
) / 1

r +m(��(s))
� 1

r +m(�(p0; s))

=

�
< 0 if p0 > p�(s); (* �(p0; s) < ��(s))
> 0 if p0 < p�(s); (* �(p0; s) > ��(s))

�
:

Recall that, when posting a new price p0; a buyer should expect the lowest market tight-

ness, �(p0) = infsf�(p0; s)g; and the type most likely to come, T (p0) = arg inff�(p0; s)g:
The above result then implies that T (p0) = s+ [ s�:
With this condition, we can then show that there is no pooling in such environment

and in fact, this is true for a more general payo¤ function, as long as the buyers��ow

payo¤, denoted by h(s); is increasing in s:

Claim 1 (Full Separation) When the buyers� value h(s) is strictly increasing, there exists
no submarket where seller types are pooled.

Proof. See Appendix.
Intuitively, a buyer can post a new price p0 which is only slightly higher that the

original pooling price. In that case, he only pays a little bit more but gets the best type

in the original pooling for sure (as implied from lemma 2), which therefore generates a

15The only exception is when some types of sellers are out of the market. In this case, there then exists

a marginal type s� such that �(s) = 0 for 8s > s�: For any s > s� and p0 > u(s)
r ; type-s will come to the

market even when �(p0; s)! 0. Hence, T (p0) is then a set of these types of sellers. Nevertheless, such an

exception is not relevant for the equilibrium result, as it will become clear later that a buyer will deviate

even when he expects the worst type within this set.
16In the case where p0 < V �(s;�); �(p0; s) = 1 as Us(p0; �; s) � V (s;�) has no solution. In words, if

the deviating price is lower than a type�s equilibrium utility, obviously, this type will not come to this

market.
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pro�table deviation. This result allows us to focus on a fully separating equilibrium. In

each market, (�; p; s);the price schedule then has to satisfy:

p(s) =
s

r
� k�(s)

m(�(s))
(5)

Substituting this payment schedule into (ICFOC) :

V �(s) =
s� c+ ( s

r
� k��(s)

m(��(s)))m(�
�(s))

r +m(��(s))
= V �(sl) +

Z s

sl

Vs(p
�(~s); ��(~s); ~s)d~s ;

Take the derivative with respect to s on both side, one can then get the following

di¤erential equation for ��(s) :

[c� k(r +m(�)� �m
0(�)

m0(�)
)]
d�

ds
= � �

�r
(r +m(�)) (6)

Therefore, in order to satisfy the incentive compatibility constraints and free-entry

condition, the market tightness function ��(�) has to satisfy the above di¤erential equation,
subject to the monotonic condition (M). Left hand side of (6) is monotonically decreasing

in � and reaches zero at �FB: Therefore, for any initial condition �0(sL) > �FB; the

solution will be increasing in s and violate the monotonicity of the condition. (6) is

a separable nonlinear �rst-order di¤erential equation with a family solution form: s =

C+
R

1
f(�)
d�, where f(�) =

� �
�r
(r+m(�))

[c+ k
�
((��1)�� r�

m(�)
)]
:One can understand the qualitative properties

of the solutions through a simple phase diagram: for any � 2 (0; �FB); f(�) < 0 and

f 0(�) > 0; furthermore, lim�!0 f(�) = 0. Hence, with any initial condition �0 < �FB;

the solution �(s; �0) will be strictly decreasing. With the following claim, we further pin

down the initial condition and therefore achieve the unique candidate of the equilibrium

market tightness.17

Claim 2 In any fully separating equilibrium, the lowest type achieves his �rst-best utility
and

�(sL) = �
FB(sL) (7)

Proof. See Appendix for detail.
The intuition is clear: a downward distorted market tightness is to preventing a lower-

type from mimicking a higher-type. Therefore, it should be clear that there is no reason

to distort � for the lowest type.

17One can see that standard condition of the uniqueness does not hold at �0(sL) = �
FB . In fact, there

will be two solutions. However, the other solution increases with s and therefore violates the monotonic

condition.
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The solution of (6) with the initial condition �FB , denoted by �(s; �FB); is illustrated

in Fig 1 below:

sL sH

The First Best

w/ Adverse Selection

Fig 1: Equilibrium market tightness ��(s)

Given ��(s) = �(s; �FB); the equilibrium price is also determined by (5) : The mech-

anism can be summarized as follows. Because of asymmetric information, sellers face a

lower meeting rate, ��(s) < �FB; for all s; but will get a higher payment p�(s) = s
r
� k��

m(��) >

pFB(s): In each market, there are fewer buyers, who meet a seller with a relatively high

meeting rate but pay a higher price. Sellers�equilibrium utilities are lower than in the

�rst best benchmark due to the liquidity distortion: V �(s) < V FB(s) for 8s > sL:
One can easily verify that the IR constraint holds for all sellers since there is no

cost for entering the market and the trading price is higher than the outside option:

p�(s) > pFB(s) > s�c
r
: Furthermore, buyers do not �nd it pro�table to open markets

other than those that are already open. The argument is the following. First, note that

the price function is continuous. Denote by (pL; pH) the lower bound and the upper-

bound, respectively, of the support of the function p(s) constructed as above. From

Lemma 2, if buyers post a price p0 > pH ; they will attract only the highest type. The

corresponding (p0; �0) has to provide the highest type the same utility; however, such a

pair (p0; �0) involves more distortion. As a result, a buyer�s utility is lower due to the

additional distortion. Such a deviation is therefore not pro�table. Similarly, if posting

p
0
< pL, a buyer will attract the lowest type with a pair of (p0; �0): Conditional on giving

the lowest type his �rst best utility, any pair of (p0; �0) other than (pFB; �FB) implies a

negative utility of a buyer. The above argument thus con�rms that no pro�table deviation

exists for buyers. Hence, we have the following proposition:

Proposition 1 The unique solution to the mechanism design problem subject to condition
E1 and E2 is given by the market tightness function �� : S ! R+; and the price function
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p� : S ! R+, where �
�(s) is the unique solution to (6) with the initial condition �(sL) =

�FB(sL); and where p�(s) is given by (5).

Corollary 1 The unique decentralized equilibrium outcome is characterized by:

1) a set of o¤ered prices (active submarkets) P � = fp 2 R+jp = p�(s) for s 2 Sg;
where the price function p�(�) is as given in Proposition 1;
2) the market tightness for each submarket �� : P � ! R+ : ��(p) � �(p��1(p)); where

p��1 : P � ! S denotes the inverse of p�; 18

3) the share of type s in each submarket: �(sjp) = Ifp�(s) = pg;

3 Generalization

3.1 General Payo¤

The goal of this section is to allow for a more general traders�payo¤ function. As before,

there is a mass of heterogenous sellers. Each seller has one asset and the asset quality is

indexed by s 2 S that is sellers�private information. The �ow payo¤ of the asset s to the
seller is now given by u(s), where u is a continuously di¤erentiable function, u : S ! R+:

The indices s are ordered so that u(s) is increasing in s, i.e., u0(s) > 0: On the other side

of the market, there is a large mass of buyers. The �ow payo¤ of an asset s is given by

h(s) and h is a strictly positive function. I make the following assumptions about the

traders�preferences and will discuss how these assumptions can be relaxed in Section 3.3.

Assumption 1: h(s) is (1a) a continuously di¤erentiable function and (1b) strictly
increasing in s; hs(s) > 0:

Assumption 2: g(s) = h(s)� u(s) > 0 for 8s 2 S:
Monotonicity in the buyers�value (1b) is an important assumption for our basic result.

In particular, it is crucial for Claim 1 which establishes that there is no pooling submarket,

and there is a unique fully separating equilibrium. As in the baseline model, one can think

of s as representing the quality of the asset. Higher quality gives both sellers and buyers

a higher payo¤. In Section 3.3, I consider an environment where this assumption does

not hold and show how the equilibrium outcome may behave di¤erently. The second

assumption simply guarantees that there are gains from trade for all s. The baseline

model is nested as h(s) = s and u(s) = s� c, where c > 0:
Given these two assumptions, it is straightforward to see that all our previous results

hold. The only di¤erence is that the equilibrium market tightness ��(s) now needs to

18Note that the price function p is strictly increasing and therefore invertible.
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solve a more general di¤erential equation, given by

[(h(s)� u(s)� k(r +m(�)� �m
0(�)

m0(�)
)]
d�

ds
= �(r +m(�)) � �

�

hs(s)

r
(8)

and the corresponding price schedule now satis�es

p(s) =
h(s)

r
� k��(s)

m(��(s))
(9)

Claim 2 also remains intact and therefore the initial condition is given by ��(sL) =

�FB(sL); where the �rst best market tightness �
FB(s) now solves:

h(s)� u(s)
k

=
r +m(�)� �m0(�)

m0(�)
(10)

Claim 3 The �rst best solution f�FB(s); pFB(s)g is not implementable when hs > 0;

Claim 4 The equilibrium market tightness ��(s) is downward distorted compared to the

�rst best, that is,

��(s) < �FB(s) for 8s > sL

Proof. See Appendix.
From (8), one can see d�

�(s)
ds

< 0 given that ��(s) < �FB(s) and hs(s) > 0: Furthermore,

one can see that the slope of h(s) determines the slope of ��(s): the faster buyers�value

increases with the asset in quality s, the larger the distortion. As in the baseline model,

the equilibrium can be summarized by Corollary 1. The transaction out�ow for each type-

s asset is then determined by the matching rate ��(s); with the law of motion dgt(s)
dt

=

�m(�(s))gt(s); where gt(s) is the size of sellers with asset-s at time t: On the other hand,
the measure of active buyers in each market is endogenously determined by the ratio

��(s); that is, �tB(s) = ��(s) � gt(s). Hence, as discussed earlier, one can back out the
aggregate distribution of traders from the stationary value of the market tightness ��(s).

Furthermore, because the only equilibrium is fully separating, the distribution of sellers�

types does not have any impact on the equilibrium price and market tightness. This in

turn means that, as long as the support of the distribution remains �xed, the equilibrium

price and the market tightness (p(s); �(s)) for each market remains the same even if in

each period there is an in�ow of sellers.
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3.2 Resale

The basic model assumes that once a buyer buys the asset, he keeps it forever. If a

buyer is �nancially constrained in the future, he may have motives to sell the asset in

exchange for cash and will then re-enter the market as a seller. Clearly, taking this into

account, the buyer�s expected pro�t will then depend on the resale value. This section

extends the model to allow for resale to capture the possibility that preferences for asset

ownership may change over time and to examine the impact of such a preference shock

on the equilibrium price and market tightness. The �ow value of owning the asset drops

from h(s) to u(s) when the owner is hit by a preference shock which arrives at the Poisson

arrival rate �: In our basic model, this simply means that the owner now needs to pay the

holding cost and hence he naturally becomes a seller in the market. In other words, such

a shock can also be interpreted as a liquidity shock, which re�ects the fact that owners

become �nancially constrained. In the case of installed capital market, one can interpret

this shock as a �rm speci�c negative technology shock that forces the �rm to disinvest.

Given the market is designed in an incentive-compatible way, the owner of the asset s

then enters the market (p(s); �(s)) as a seller. The contingent value of ownership can then

be rewritten as:

rJ(s) = h(s) + �(V �(s)� J(s))

where V �(s) is the equilibrium expected value of a type-s seller. All methods developed

in the baseline model remain valid. The only key di¤erence is that the value of holding

the asset is now a function of the equilibrium resale value V �(s) and hence must be

determined in equilibrium. Nevertheless, one can see that Assumption 1 still holds given

that h(s) + �V �(s) strictly increases with s:19 As discussed above, this means that the

equilibrium is unique and fully separating. Our previous approach can be applied directly

with the modi�ed free entry condition:

p(s) = J(s)� k�

m(�)
=
h(s) + �V �(s)

r + �
� k�(s)

m(�(s))
(11)

The only di¤erence is that we now have a di¤erent di¤erential equation and, of course,

a di¤erent �rst best solution, i.e, a di¤erent initial condition. The di¤erential equation

can be derived by substituting the above price schedule into (ICFOC) and di¤erentiating

with respect to s on both sides, which yields:

19This is true because V �(s) is necessarily increasing in s : for any s0 > s; V �(s0) � Us(s0; p�(s); ��(s)) >
Us(s; p(s); �(s)) = V �(s):
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[(h(s)� u(s)� k(r + � +m(�)� �m
0(�)

m0(�)
)]
d�

ds
= �(r + � +m(�)

r + �
) � �
�
(hs(s) +

�us(s)

r +m(�)
)

(12)

One can easily check that the basic version (equation (8)) simply corresponds to the

case where � = 0 in (12) : Furthermore, (12) can be derived from (8) by setting the e¤ective

discount rate to ~r = r+ � and the equilibrium buyers�values ~h(s) = h(s)+ �V �(s), where
~hs(s) then corresponds to hs(s) +

�us(s)
r+m(��(s)) as shown in the RHS of (12) : The initial

condition is then given by the �rst best solution �FB� (s) for such an environment, which

is de�ned as follows:

V FB� (s) = max
�

r + �

r
(
u(s)

r + �
+
m(�)(h(s)�u(s)

r+�
)� k�

r + � +m(�)
)

�FB� (s) = argmaxV FB� (s)

Notice that the �rst best solution �FB� (s) continues to solve the analog of condition

(10) but with the e¤ective discount rate ~r = r + �. Interestingly, note that �FB� (s) is

decreasing in �: The intuition is that fewer buyers want to enter the market when they

are likely to sell the asset again soon. This is because the trading surplus is decreasing

in �: As a result, the equilibrium market tightness is lower due to less entries. Given

the solution (p��(s); �
�
� (s)); one can solve for the steady state in such an environment. In

particular, for any type of asset, the steady state ratio of the holders to the sellers is

pinned down by m(��(s))
�

: That is, due to the downward distortion of ��(s); the better the

asset, the larger the portion of the asset held in the "wrong" hands.

Remark: As before, adverse selection causes market tightness to be distorted down-
ward compared to the �rst best outcome. In addition, the possibility of resale introduces

an additional distortion by placing downward pressure on asset prices. In particular,

according to (11), price decreases due to a lower equilibrium resale value.

3.3 Nonmonotonicity in the Matching Value

The previous analysis shows that there are no equilibria where partial pooling occurs in

some of the submarkets. It is important to note that this result relies on the assumption

that the buyers�valuations are increasing in the sellers�types hs(�) > 0: The intuition

is that if a buyer strictly prefers a higher type s, he can post a price which is slightly

higher than the original pooling price and will attract the highest type for sure. Such

a deviation is pro�table; hence, pooling cannot exist. If this assumption is violated, a

pooling equilibrium can then be sustained. Furthermore, as shown in Lemma 1, any IC
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allocation ��(s) has to satisfy the monotonicity condition (M). As one can observe from

(8) ; the assumption hs(�) > 0 is crucial to guarantee that the solution ��(s) is decreasing so
that condition (M) is satis�ed. If this condition fails, the allocation is no longer incentive-

compatible. That is, a fully separating equilibrium can not be sustained.20 The reason

is that the screening mechanism is a combination of a downward-distorted liquidity and

an upward-rising price scheme. To generate such a schedule, the market designer must

make sure that buyers are willing to pay the price, given the expected value. However,

buyers�willingness decreases if the types who are willing to wait longer have assets that

are worth less.

To elaborate more on why a fully separating equilibrium can not be sustained, consider

that buyers�value function h(�) is strictly increasing in s up to ŝ; i.e., hs(�) > 0 for 8s 2
[sL; ŝ] and let s+ = ŝ+" such that h(s+) < h(ŝ): As discussed before, in order to separate

all types below ŝ; �(ŝ) has to be distorted downward and the pair fp(ŝ); �(ŝ)g has to
satisfy buyers�free entry condition: p(ŝ) = h(ŝ)

r
� k�(ŝ)

m(�(ŝ))
: The utility of type-ŝ seller V (ŝ)

in market fp(ŝ); �(ŝ)g is represented by the blue line in the �gure below and buyers�free
entry condition is represented by the dash blue line.

Fig Traders�indi¤erence Curves in p� � space

In order to prevent s+ from going to the market (p(ŝ); �(ŝ)); the IC condition requires

V (s+; p(s+); �(s+)) � V (s+; p(ŝ); �(ŝ)) and �(s+) � �(ŝ): However, as illustrated in the

above �gure, for any point fp(s+); �(s+)g satisfying the above conditions, which is in the
area of shaded region, buyers�payo¤ is negative given that h(s+) < h(ŝ): Hence, the full

20Notice that, di¤erent from the standard mechanism problems, the set of feasible mechanisms A is

solved subject to the free-entry condition. A fully separating allocation therefore has to solve (8) : If the

solution ��(s) to (8) does not satisfy (M); a fully separating scheme is no longer in the set of feasible

mechanisms A:
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separation can no longer be sustained when the types who are willing to wait longer are

not necessarily those with better assets.21

This situation could arise when, for example, the holding cost is an arbitrary function

of s. More interestingly, as will be shown in section 4, this situation is relevant when

sellers�motives for selling are also unobserved by the market. The goal of this section is

to establish how the previous analysis can be adjusted to accommodate for more general

and abstract settings in which the monotonicity condition, by assumption, is violated

exogenously. In Section 4, I apply the results from this section to an environment where

such non-monotonicity arises endogenously from the fact that sellers�motives for selling

are their own private information.

Since both Lemma 1 and 2 remain intact regardless of the assumption about h(�); one
can apply both lemmas to construct semi-pooling equilibria. In particular, any mechanism

� = (p�; ��) that promises the same price and market tightness to a subset of sellers

S 0 = [s1; s2] � S (i.e., semi-pooling) has to satisfy Lemma 1 and the free entry condition,
which describes the set of feasible mechanisms A. Hence, a semi-pooling equilibrium can

be found by picking a mechanism � 2 A such that buyers, expecting to attract the type
which are most likely to come (as implied by Lemma 2), will not deviate by posting any

price p0 =2 range of p�: In the following section, I use this logic to establish two approaches
to constructing the semi-pooling equilibrium. Notice that, depending on the distribution,

the equilibrium is generally not unique. The condition for its existence is identi�ed below

for each construction.

3.3.1 Pooling Types

Recall that any feasible mechanism is the one where the allocation satis�es Lemma 1 and

where the buyers�free-entry condition holds. For any pooling on the sellers�side, there

must be a corresponding expected value of the buyers over such a set of sellers. With

this observation, the pooling equilibrium can then be found by reconstructing the buyers�

valuations. In particular, if we can �atten the buyer�s valuations over s (by bunching

certain types together on the sellers� sides) in a way such that the buyers� valuation

function is (weakly) monotonic in s, as shown in Fig 2a, one can then apply the previous

analysis. However, although �attening h(�) directly is convenient to work with, but it
21Note that the above argument applies to the case when h(�) has a local maximum so that �(ŝ) is

distorted downward. If, on the other hand, the function h(�) has only one local minimum ŝ and monoton-
ically increase in s after ŝ, it is possible to construct a full separating equilibrium with a combination of

upward distortion (up to ŝ) and a downward distorted �(s) afterward. Such a special case, however, is

excluded in the analysis since it is not relevant for the environment I consider in Section 4.
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does not necessarily guarantee a nonincreasing function ��(s): Therefore, the su¢ cient

condition for which ��(s) is non-increasing is also identi�ed below.

Fig 2a: Reconstructing h(~s) by

bunching types

Fig 2b: Equilibrium with upward

distorted market tightness

Formally, consider a continuously di¤erentiable function h(s) and assume that h(sL) <

h(sH) and the function has a �nite number of interior peaks on [sL; sH ]: Consider �rst

a function with a single interior peak ŝ0 and a single interior trough ŝ1: As shown in

the Fig 2a, the inverse image of the interval [h(ŝ1); h(ŝ0); ] is composed of two intervals,

[s0; ŝ0] and [ŝ1; s1]; over which h(�) is increasing, and one interval, [ŝ0; ŝ1] over which h(�)
is decreasing. Let �0(h) and �1(h) denote the inverse functions of h over the intervals

[s0; ŝ0] and [ŝ1; s1]: Let ĥ 2 [h(ŝ1); h(ŝ0)] solve:

H(h) � h�
Z �1(h)

�0(h)

h(~s)
dG(~s)

G(�1(h))�G(�0(h))
= 0

Given ĥ22; a non-decreasing function ~h(�) can then be reconstructed as follows: let
~h(s) = ĥ for s 2 [�0(ĥ); �1(ĥ)] and ~h(s) = h(s) otherwise: Now suppose that there are two
interior peaks. If one could independently design di¤erent bunching levels where ĥ1 � ĥ2,
a non-decreasing function ~h(�) can be constructed in a similar way. If treating the two
bunching regions separately yields ĥ1 > ĥ2; we must then merge the two into a single

bunching level. as long as a non-decreasing function ~h(�) can be obtained, the solution
can be found as follows:

Step 1: For the �rst interval, [sL; �0(ĥ)]; let �
�(s) solve (8) with the initial condition

��(sL) = �
FB(sL): That is, given that ~h(s) is strictly increasing over such an interval by

construction, the market tightness function can be obtained as before.

22 ĥ might not be unique. It�s existence is guaranteed by h(s1) > h(sL):
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Step 2: At the pooling interval, set ��(s) = ��(�0(ĥ)) for 8s 2 [�0(ĥ); �1(ĥ)]: This
means that the allocation is the same among this set of sellers. The free entry condi-

tion is satis�ed automatically since the expected value of such set of sellers equals ĥ by

construction and ��(s) equal ��(�0(ĥ)):

Step 3: In the last region, where ~h(s) is strictly increasing again, let ��(s) solve (8)

and set ��(�1(ĥ)) = ��(�0(ĥ)): To ensure that the such solution is non-increasing, the

initial condition for �(�1(ĥ)) has to satisfy the following condition:

��(s0) < �
FB(�1(ĥ))

This condition can be understood from (8) ; for the solution to be non-increasing, the

initial condition must guarantee LHS of (8) is non-negative. In general, this condition

then depends on the underlying h(s) and underlying parameters. When this condition

holds, our characterization method can be extended to an environment with such non-

monotonicity. Note that although the function ~h(�) is not di¤erentiable at the kinks,
i.e., at the boundary points �0(ĥ) and �1(ĥ); the left and the right limit exists; hence,

the di¤erential equation (8) still applies. In other words, the previous method applies to

any monotonically increasing h(�), even when h(�) has kinks. As a result, if the function
~h(s) can be reconstructed as above, the equilibrium can then be characterized by the

constructed ��(s) and the corresponding price, p�(s) =
~h(s)
r
� k��(s)

m(��(s)) : Such a construction

then characterizes a semi-pooling equilibrium.

3.3.2 Equilibrium with upward distorted market tightness

We now focus on a particular type of semi-pooling equilibrium, which has distinct features

from the previous analysis. In particular, upward distortion in the market tightness arises

in such an equilibrium, which implies sellers can quickly unwind their assets (faster than

the �rst best benchmark). Consider the function h(s);which is strictly increasing in s

after some point ŝ1 2 [sL; sH ] and let �1(h) denote the inverse function of h mapping to
s � ŝ1: De�ne q(ĥ) �

R �1(ĥ)
sL

h(~s) dG(~s)

G(�1(ĥ))
and h� solves q(h) = h: If q(h) = h admits a

solution h�; then any ĥ 2 (h(ŝ1); h�) =) q(ĥ) > ĥ; since h(s) is strictly increasing after ŝ1
(as shown in Fig 2b). A semi-pooling equilibrium, denoted by ĥ; can then be constructed

as follows:

1) Pool all types below the marginal types which is given by s� = �1(ĥ);

2) Set the marginal type s� indi¤erent between trading in the pooling market (pq; �q)

and his own market with the �rst best outcome (pFB(s�); �FB(s�));

3) Separate markets for each type above the marginal type with downward distorted

market tightness, which solves (8) as before.
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De�ne the pair of functions (�q(s; ĥ); pq(s; ĥ)) which solves the following equations for

any q(ĥ) > h(s):

�q(s; ĥ) = max
�
f�jV (s; p; �) = V FB(s) and p =

q(ĥ)

r
� k�

m(�)
g

pq(s; ĥ) =
q(ĥ)

r
� k�p
m(�p)

That is, the pair (�q(s; ĥ); pq(s; ĥ)) gives a type-s seller his �rst-best utility. Note

that, by construction, �q(s; ĥ) > �FB(s) and pq(s; ĥ) < pFB(s): A construction for an

equilibrium with upward distorted market tightness is formally described in the following

proposition:

Proposition 2 If there exists ĥ satisfying

q(ĥ) > h(s�) (H1)

V �(sL; �q(s
�; ĥ); pq(s

�; ĥ)) � V FB(sL) (H2)

where the marginal type is given by s� = �1(ĥ); then a semi-pooling equilibrium ĥ with

upward distorted market tightness exists. Such an equilibrium is characterized by the

following equilibrium market tightness function and the price function:

��(s) =

(
�q(s

�; ĥ) 8s 2 [sL; �1(ĥ)]
�(s; �0(s

�)) 8s � �1(ĥ) = s�

)

p�(s) =

(
pq(s

�; ĥ) 8s 2 [sL; �1(ĥ)]
h(s)
r
� k�(s)

m(�(s))
8s � �1(ĥ) = s�

)

where �(s; �0(s�)) denotes the solution of (8) with the initial condition �0(s�) =

�FB(s�):

Being able to separate the marginal type s� from the pooling market is crucial to

construct such an equilibrium. In particular, the market tightness �q in the pooling

market is upward-distorted, �q > �
FB(s�) so that the monotonic condition (M) is satis�ed.

Intuitively, since the incentive constraint always binds with the type with the poor quality

asset, the distortion is expected to occur for the types with better quality assets. Notice

that in this case, by construction, according to (H1) ; the average asset quality in such

pooling market q(ĥ) � E[h(s)jsL < s < �1(ĥ)] is higher than the value of the marginal
type h(s�); therefore, the market tightness for the pooling market (better quality assets
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on average) is then upward-distorted23 so that the marginal type (with relatively worse

quality assets h(s�)) will not mimic a higher type. That is, the marginal type is indi¤erent

between entering the pooling market, in which he sells faster but with a lower price, and

entering his own market (pFB(s�); �FB(s�)): Evidently, due to the single crossing property,

types below the marginal type are strictly better o¤going to the pooling market. It is also

straightforward to show that such a scheme is incentive compatible for all types above the

marginal type, given that hs(s) > 0 for 8s > s� and therefore our previous result follows
immediately.

The above argument shows that such a scheme is feasible, that is � 2 A:What is left to
show is that buyers do not �nd it pro�table to post any price p0 =2 range P�: In particular,
notice that there is a jump up in the equilibrium price at s� from pq to pFB(s�): However,

applying Lemma 2, a buyer will not bene�t from raising the price (p0 = pq + ") to attract

�1(ĥ) = s
�; nor by lowering the price (p0 = pq � ") to attract sL as he obviously can not

do better given V �(s�) = V FB(s�) and (H2) : V (sL; �q; pq) � V FB(sL):
24 Furthermore,

for the same reason as before, any price p0 = p(sH) + " is not pro�table as it attracts

sH while resulting in more distortion. As a result, the scheme in the above proposition

satis�es both E1 and E2; therefore, it can be decentralized as a competitive equilibrium

outcome.

4 Obscure Motives for Selling

In our baseline model, market liquidity essentially acts as a screening mechanism. Since

holding an asset of di¤erent quality results in di¤erent liquidity preferences, an agent�s

type is revealed by his choice of which market to trade in. The crucial assumption for this

result is that agents�liquidity positions (i.e., the holding costs in the baseline model) are

observed. I now analyze the environment in which sellers�exact liquidity positions are

not known by the market. For example, as pointed out by Tirole (2010), this situation is

relevant when there are di¢ culties involved in discovering banks�liquidity positions. Any

incentive-compatible mechanism must then accommodate this e¤ect. Otherwise, sellers

would bene�t from appearing fragile in order to get a better price. In order to understand

23See Appendix for details.
24In the pooling market, the lowest type gets subsidies from the high type and therefore can achieve

higher utility than his �rst best. Furthermore, V (sL; pFB(s�); �
FB(s�)) > V FB(sL) is su¢ cient to guaran-

tee V (sL; pq; �
q) > V (sL; p

FB(s�); �FB(s�)) as implied by the single crossing property and �q > �FB(s�).
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how market liquidity might be a¤ected not only by adverse selection but also by sellers�

motives perceived by the market, this section considers an extension where the sellers�

holding cost is not known to the market. In other words, there are two dimensions in

sellers�types: the asset quality (the common value component) and the liquidity position

(the private value component). The goal of this section is to understand how market

thickness and equilibrium prices are a¤ected by the combination of these two components.

I �rst show how this setup can be nested into our general model and then discuss how

the equilibrium might behavior di¤erently because of the unobserved trading motives.

The setup is similar to our basic model but with the extension that a seller�s type

now has two components: zi = (si; ci) 2 Z � S � C: As before, the support of si is
the real interval S � [sL; sH ] � R+, but the support of ci is some arbitrary set C which
can assume discrete or continuous values. A seller�s payo¤ for holding an asset is then

governed by both the cash �ow s and his liquidity position c: De�ne type x as x =

s � c 2 X � fx 2 Rj x = s � c; s 2 S and c 2 Cg; representing the seller�s value
for holding an asset. Intuitively, the mechanism discriminates only on the basis of the

sellers�payo¤s for owning an asset. Two agents with the same type x must obtain the

same utility, irrespective of any other unobservable characteristics that might di¤erentiate

the two agents in terms of their attractiveness to buyers. Therefore, this setup can be

reconducted to our general model with the following two reinterpretations. First, x is now

the relevant seller�s type.25 The utility of seller x, when reporting his type to be x̂, thus

entering the market (�(x̂); p(x̂)); is then given by

rV (x̂; x) =
x+m(�(x̂)) � p(x̂)
r +m(�(x̂))

:

Second, since buyers care only about the asset quality (i.e., the common value com-

ponent of the seller�s type), a buyer�s expected value for buying the asset from type x is

given by h(x) = E[sjs� c = x];where h : X ! R+:With the above interpretation, we can

the apply our previous analysis. Obviously, what matters is the property of the function

h(�): If h(�) is monotonically increasing, the sellers�private information about their liq-
uidity positions essentially generates some noise, but the equilibrium continues to exhibit

full separation with respect to type x. For a simple illustration, suppose ci is distributed

uniformly over the interval [cL; cH ] and si is distributed uniformly over [sL; sH ]; one can

then show that h(�) is increasing over the interval [sL� cH ; sH � cL]. Hence, ��(x) can be
25The IC condition requires that V (x; s) = V (x; s0) and imposes that the allocation �(x; s) varies

with s only over a countable set of x: In this particular setup, any mechanism in which the allocation

is conditional on s besides x necessarily reduces traders�utilities as it leads to more distortions on the

sellers�sides.
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obtained from the unique solution to the di¤erential equation (8) with initial condition

�FB(xL); and the corresponding price is given by p(x) =
h(x)
r
� k��(x)

m(�(x))
: The interesting

case is when the function h(�) is not monotonically increasing, which is what we consider
below.

4.1 An Example of Non-monotonicity

In this section, we consider a simple example in which the type who is willing to wait

longer (a higher x) does not necessarily have a better asset (a violation of assumption

A1). Consider the simple case in which there are two possible liquidity positions for

sellers C � fcH ; cLg, where cH > cL > 0; and let � denote the probability that the seller
who owns the asset s has liquidity position cH (a higher holding cost). For simplicity,

assume that c and s are independent distributedand s is uniformly distributed over the

interval [sL; sH ]: The value of h(�) can then be understood as in the left �gure below.
Observe that the buyers�value function h(�) is not strictly increasing in x. In particular,
the expected value of the asset drops in the overlapping region, since the asset could be

either a low-quality one owned by a seller with a low holding cost or a high-quality one

owned by a seller with a high holding cost. Observe that this drop in the expected value

happens whenever c is discrete, regardless of the underlying distribution of s:Notice that

the set X is the domain of both functions h(�) and ~G(�). I start with the case in which
sH � sL > cH � cL so that both h(�) and ~G(�) have full support. As it will become clear,
a �re sale equilibrium always exists when sH � sL < cH � cL. Therefore similar results

obtain when this opposite assumption is made.

Fig 3a: Buyers�value: h : X ! R+ Fig 3b: Constructing a Fire Sale EQ
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4.2 Endogenous Fire Sale

According to the previous discussion, multiple semi-pooling equilibria can exist since h(�)
does not satisfy assumption A1. In particular, we are interested in the equilibrium in

which upward-distorted market tightness occurs, as established in section 3.3.2. Such an

equilibrium exhibits the following distinct features: certain types of sellers sell their assets

more quickly at a price below the fundamental value. I refer to this situation as a �re sale

of the assets.

In the above example, since h(�) is strictly increasing in x after x1 � sH � cH ; then, in
light of Proposition 2, the semi-pooling equilibrium ĥ can be found when there exists an

h� which solves q(h) = h. I now provide an example that satis�es this condition.26 Such

pooling scheme ĥ 2 (h(x1); h�) is illustrated in Figure 3b. The corresponding characteri-
zation for the equilibrium prices and the market tightness are demonstrated in Figure 4a

and 4b.
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Fig 4: Equilibrim Price p(x) and market tightness �(x)

The above �gures shows the equilibrium price and market tightness (p : X ! R+

and � : X ! R+; respectively) in each submarket, with respect to the relevant type x:

The �at schedule then represents the pooling submarket. As stated in proposition 2, the

pair (�q; pq) corresponding to in the pooling market has to solve simultaneously (a) the

free-entry condition and (b) V (x�; �q; pq) = V FB(x�), subject to �q � �FB(x�): In this

equilibrium, sellers entering the pooling market can unwind their assets quickly at the

26In this simple case with only two values for c; one can show that given � � Pr(c = cH); there exists
�4(�) > 0 such that a �re sale equilibrium always exists when cH � cL > �4(�): For any ĥ 2 (h(x1); h�];
such an equilibrium exists. On the other hand, as shown in Section 3.3.1, other types of semi-pooling

equilibria may arise if h(�) can be reconstructed in a way that is weakly increasing.
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pooling price pq =
q(ĥ)
r
� k�p

m(�p)
; which is buyers�expected value from purchasing an asset

in this pooling market, q(ĥ)
r
; minus the buyers�expected searching cost.

In the canonical model of �re sales, the undervalued price arises because the natural

buyers of the assets experience �nancial distress at the same time as the sellers (see

Shleifer and Vishny (1992) and the recent survey by Shleifer and Vishny (2010)). Hence,

sellers who have an urgent need for cash will prefer to sell their asset quickly to the low-

valuation buyers. The equilibrium outcome in our framework, instead, generates such

patterns without relying on an exogenous assumption about market participation. In

fact, all potential buyers are unconstrained in our framework and the number of buyers

willing to o¤er a certain price is endogenously determined in equilibrium. For an outside

observer, the market features the following behavior: (a) few buyers enter the markets

for relatively high prices; (b) sellers with a high holding cost choose to sell their assets

fast at an undervalued price, by pooling with worse quality assets.

The model can therefore explain why sellers who become relatively �nancially con-

strained may su¤er a large drop in their selling price. Note that such an outcome exists

only in an environment with adverse selection. Recall that in the �rst-best benchmark,

the trading price is always equate to pFB(s) = s
r
� k�FB(s;c)

m(�FB(s;c)
, where �FB(s; c) denotes the

�rst-best market tightness, given the holding cost c: For any continuous in the holding

cost c: In contract, with asymmetric information, the price may be discontinues in the

holding cost. To be more speci�c, consider a seller (s; cL) such that s � cL > x�: This is
a seller with a relatively good-quality asset who trades at a price p�(x) = x+cL

r
� k��(x)

m(�(x)
:

Now suppose this seller becomes �nancially constrained, i.e., his holding cost increases

to cH > cL: This seller will then prefer to sell fast in a pooling market at the price

pq =
q(ĥ)
r
� k�p

m(�p)
: Hence, the price drops and the resulting price di¤erence is larger than

the change in the holding cost. In other words, an increase in the holding cost leads to a

�re sale.

Remark 1) There are two ways to understand why our result is di¤erent from Guerri-
eri et al. (2010), where the least-cost separating equilibrium is the unique outcome. There

are two main assumptions in Guerrieri et al. (2010): monotonicity and sorting. If sellers

are ranked by their value for holding the asset x as in the above analysis, sellers can be

sorted into di¤erent market; however, in such case the buyers�monotonicity condition is

not satis�ed, given that the buyers�utility is not monotone in x: In particular, in the asset

market example given by Guerrieri et al. (2010), the private information is interpreted

as the asset quality (the common value components) and the monotonicity condition is

assumed to be satis�ed. Hence, as in the baseline model, the types who are willing to

wait longer are necessarily the ones with better assets. In that case, the monotonicity
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condition necessarily holds and therefore the equilibrium exhibits full separation. How-

ever, as demonstrated in this section, this condition does not necessarily hold when there

is asymmetric information on the private value components.

On the other hand, if sellers are ranked by the quality of their asset s, then the

monotonicity condition holds but the sorting condition does not in our trading environ-

ment (with limited contract space). That is, the only way to screen agents is through

their waiting preference, and there is no way of separating agents with better asset quality

but a high holding cost from those with a low-quality asset but a low holding cost, given

that the net value of holding the asset, and hence the seller�s waiting preference is the

same. Note that, however, even though all types can be separated, the monotonicity con-

dition still plays an important role. For example, consider si 2 fsL; sHg and ci 2 fcL; cHg
and thus there are four values of x. In this case, di¤erent sellers can therefore be sorted

into di¤erent market. However, a semi-pooling equilibrium is obtained if and only if the

monotonicity condition is not satis�ed.

Remark 2) Notice that, in an environment where traders� liquidity positions are

unobserved and where resale is allowed, the screening mechanism discussed in the previous

section breaks down even if the original sellers are all homogeneous. The reason is that

buyers can renter the market as sellers with a low holding cost. In this case, a full pooling

equilibrium might arise, which will then share similar features with the standard lemon

problem.

5 Implications/ Application

5.1 The Dispersion of Asset Quality

As shown in the previous analysis, in any separating equilibrium, the market tightness for

each s depends only on the support of the distribution G(s) but not on the speci�c shape

of the distribution. The e¤ect of a variation in the support of G(�) on the equilibrium
market tightness for each s is summarized in the following proposition.

Proposition 3 In any separating equilibrium, given any submarket with asset quality s;
the resulting equilibrium market tightness ��(s) increases with the quality of the worst

asset in the whole market sL: Formally, let �
�(s; sL) be the solution of (6) satisfying the

initial condition ��(sL) = �
FB(sL): For any s0L < sL; we have that

�(s; s0L) < �(s; sL) for 8s
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Proof. Let ��(sL; s0L) be the equilibrium liquidity of market sL when the worst asset

quality is s0L: Given that �
�(sL; s

0
L) < �FB(sL) = ��(sL; sL); the result follows from the

Comparison Theorem.

It is important to note that this e¤ect only exists in an environment with adverse

selection: With complete information, market liquidity is independent of the support

G(�): In contrast, with adverse selection, the market thickness for each asset s is pinned
down by the quality of the lowest asset in the market sL as speci�ed by the di¤erential

equation (8) : This condition guarantees that (a) sellers have incentives to sort themselves

into di¤erent markets and (b) buyers are indi¤erent when it comes to choosing which

market to join.

This result has implications for the e¤ect of transparency on market tightness. To see

this, suppose that there are two di¤erent asset markets i 2 fa; bg for each asset. The
buyers�payo¤ for each market is given by

di = yi + �is

where (yi ; �i) are publicly observed and s is the sellers�private information, where

s 2 [sL; sH ] with some distribution G(s): Since (yi ; �i) are publicly observed, we can

imagine there are two separate markets for each asset, and buyers can choose which one

to go. Each market is now characterized by (pi; �i); where i 2 fa; bg: We can then use
similar methods as in the baseline model to solve for pi(s;�i) and �i(s;�i). Clearly, a

higher �i has a similar e¤ect as a higher dispersion. It can be easily shown that the more

transparent an asset is, the more liquid it is. That is, for any �b < �a; �
�(s;�b) > �

�(s;�a)

8s:
This result further sheds light on the patterns in cross market liquidity. One important

question which has been asked in the literature is why assets paying similar cash �ow can

have signi�cant di¤erences in their liquidity. We can answer this question using the

comparative static exercise above. That is, consider two di¤erent asset (yi; �i); i 2 fa; bg;
such that E[da] = E[db]: Loosely speaking, higher uncertainty about underlying asset

quality has a determinantal e¤ect on the overall liquidity of the market, even when the

expected value remains unchanged. This implies that assets paying identical cash �ows

on average can di¤er signi�cantly in their liquidity, transaction cost, and price, which are

all determined endogenously in equilibrium and can be understood as follows:

pi(s) =
di
r|{z}

present
value

� k�i(s;�i)

m(�i(s;�i))| {z }
transaction

cost

+
�

r
(
c+ k�i(s;�i)

r + � +m(�i;�i)
)| {z }

resale
value
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Two assets paying the same cash �ow E[di]may thus have a di¤erent liquidity �i(s;�i).

The model therefore predicts di¤erent trading patterns (i.e. trading volume, the aggregate

prices, and price dispersion) in these two markets.

5.2 Policy Implication: Buyback

This section focuses on the e¤ect of a buyback policy, consisting in cleaning up the market

from toxic assets thus improving its liquidity. The idea of cleaning up a toxic asset in the

market is not new. In particular, Tirole (2011) shows that government intervention needs

to take into account traders�participation constraints and that the government always

ends up overpaying for the worst assets. The intuition is the same in this framework.

In particular, traders� alternative to joining the government program is trading in an

over-the-counter market. Hence, though we do know that cleaning up toxic assets would

improve market liquidity, what is important is to understand what price has to be paid

in order to clean the market. Suppose that the government o¤ers a price pg to whomever

shows up in the discount windows. Anticipating that traders�utilities would increase in

the future after government intervention, the original price and market tightness is then

no longer incentive-compatible for sellers. This is because a seller can now choose to

hold onto the asset and claim to be a higher type in the future. Therefore, to solve for

the equilibrium, a mechanism designer needs to take into account the fact that sellers

participate in the scheme only if they get at least as much as what they can obtain in the

decentralized market.

In equilibrium, the set of types who join the government�s intervention program, 
g,

and the set of types who stay in the decentralized market, 
d; are disjoint and satisfy


g [ 
d � S: Sellers�payo¤s can be expressed as:

V (s) = maxfs� c
r
;max

p0
U s(p0; �(p0); s); pgg

The condition for the marginal type s� who participates in the government�s scheme

is then given by

V (s�) = pg

That is, the marginal type has to be indi¤erent between trading in the OTC market and

obtaining the transfer from the government right away. Let (p�; ��) denote the price and
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the market tightness that the marginal type will face if he goes to the market. Obviously,

Ug(s) = pg > max
p0
U(p0; �(p0); 
d) for 8s < s�

Ug(s) = pg < max
p0
U(p0; �(p0); 
d) for 8s > s�

Also, from the previous discussion, we know how to solve the equilibrium outcome

p(�); �(�); given 
d: The key task is to pin down the marginal type, which is characterized
as follows:

Proposition 4 A competitive search equilibrium in the presence of a government buyback
policy with price pg; is characterized by a threshold s� which solves

V (s�) = V FB(s�) = pg

and a pair of functions (p�(s; 
d); �
� (s; 
d)) for s > s� that jointly satisfy (5) ; (6),(7) ;

such that all sellers with asset quality s < s� participate in the government�s program;

while all sellers with asset quality s > s� trade in the decentralized market with market

tightness �� (s; 
d) at a price p�(s; 
d):

The red line in the �gure below represents traders�utilities under the buyback policy

pg:Given any price o¤ered by the government, the marginal types s has to solve V FB(s�) =

pg; represented by the intersection of pg and the blue line, which in turn is represented by

V FB(s): The black line represents sellers�utilities without intervention.

Fig 5: Sellers�utilities with Buyback Policy Pg
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5.3 Reallocation and Macroeconomic Performance

As factor reallocation is crucial to aggregate performance, there is a strong link between

how an economy performs and how well factors markets function. This section shows how

the model delivers implications for the reallocation of �rms�corporate assets. As docu-

mented in the empirical literature, changes in the ownership of �rms�corporate assets�

for example, product lines, plants, machines, and other business units� a¤ect produc-

tivity. More precisely, capital typically �ows from less to more productive �rms, and

this results in an increase in productivity. Furthermore, as suggested by the empirical

�ndings, market thinness generates frictions that are a large impediment to the e¢ cient

reallocation of capital, even within a well-de�ned asset class, in which capital is moder-

ately specialized. This model then provides a possible explanation as to why the market

for used capitals is relatively thin. Severe trading delays would result in resource mis-

match and have a negative impact on aggregate performance. This paper then elucidates

the underlying source of market frictions and its link to economic �uctuation

To illustrate our result, suppose that there are two possible technologies j 2 fH;Lg:
More productive �rms which will play the role of buyers, produce according to the pro-

duction function h(s) = aHs; while less productive �rms, in the role of sellers, produce

according to the production function u(s) = aLs; with aH > aL: Firms who are initially

more productive receive a negative shock at the rate � and become less productive. Let

bt(s) represent the measure of capital s owned by highly productive �rms and gt(s) denote

the measure of capital s in the hands of less productive �rms. Aggregate production can

then be de�ned as follows:

�At =

Z
faLsgt(s) + aHsbt(s)gds (13)

Both aggregate production and the cross-sectional distribution of active �rms are en-

dogenously determined in equilibrium. Interestingly and probably counter-intuitively, at

the macro level, Eisfeldt and Rampini (2006) documented that capital reallocation is

procyclical while the cross-sectional dispersion of productivity is countercyclical. Based

on this �nding, they then suggested that the reallocation friction is countercyclical and

indicates that it is important to have a good foundation for such countercyclicality. Con-

trary to most macro models assuming exogenous adjustment costs, one advantage of our

framework is allows for a richer analysis of how this market friction responds to various

economic shocks and a better understanding of its aggregate implications.

First of all, consider the e¤ect of a shock to the underlying dispersion of capital qual-

ity. From the previous analysis, it is clear that an increase in dispersion would increase

37



market frictions. Hence, the resulting resource mismatch would generate a drop in TFP

and further increase the cross-sectional dispersion of productivity. It therefore provides

an explanation for the coexistence of the countercyclical dispersion and procyclical reallo-

cation, as documented in the empirical literature. It is de�nitely an interesting extension

to endogenize the underlying dispersion and worth further exploration.

In line with the growing literature on uncertainty (e.g., Bloom (2009)), the model

can also be used to examine the e¤ects of a shock a¤ecting the probability that �rms�

productivity drops. Intuitively, a higher �; that is a higher level of instability of business

condition would decrease investors�willingness to enter. Hence, the market liquidity also

decreases in �, resulting in worse aggregate performance and a higher level of dispersion

across �rms. The story here, however, is di¤erent from Bloom (2009). Bloom (2009) shows

that in the presence of capital adjustment costs, higher uncertainty (measured as a shock

to the second moment) expands �rms�inactive regions because it increases the real-option

value of waiting. This in turn slows down the reallocations from low to high productivity

�rms. By endogenizing the adjustment cost, one reason for the di¤erence from my result

is that Bloom (2009) assumes exogenous adjustment costs. In my framework, �rms who

receive a negative shock will want to exit but have a hard time �nding an investor who

is willing to buy their capital. This idea also explains why few �rms exit in bad time, as

documented in Lee and Mukoyama (2008).27

6 Discussion

6.1 Discussion on E¢ ciency

Does the decentralized equilibrium outcome in our baseline model also solve the central-

ized planner�s problem? The answer can be seen from our solution method. As explained

above, among the set of feasible mechanisms A de�ned by Lemma 1, the decentralized

outcome is the one satisfying the buyers�optimality constraint, E2: That is, given that

buyers have the freedom to post new prices in a decentralized market, condition E2 is an

27It is important to note, however, that an increase in the downward uncertainty, also results in a higher

demand for reallocation. Hence, the net e¤ect on capital reallocation is ambiguous. As emphasized by

Bachmann and Bayer (2009), a large countercyclical second moment shock would be incompatible with

procyclical investment dispersion. However, the shock to the downward uncertainty considered here is

di¤erent from the second moment shock. It is important to understand that it has two opposing e¤ects

and that its net e¤ect will depend on parameters values. As a full calibration is beyond the scope of this

paper, the main purpose of this exercise is to understand how uncertainty a¤ects market frictions, as it

can generate signi�cant �uctuations in an environment with adverse selection.
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additional constraint that is absent in the planner�s problem. This implies that a social

planner can always do (weakly) better than the market. In fact, in our baseline model, a

fully pooling equilibrium always yields �rst best welfare as long as it is sustainable. The

reason is that the �rst best level of market tightness is independent of asset quality. A

pooling equilibrium, simply subsidizing some sellers at the expense of others, therefore

does not induce any distortion as long as the participation constraint of the highest types

is satis�ed.

The above discussion then leads to the following question: Is the fully separating

equilibrium outcome Pareto e¢ cient? Or, is it Pareto dominated by the outcome of a

(partial) equilibrium? The answer depends on the asset distribution, as re�ected in the

baseline model. First of all, recall that the outcome of separating equilibrium depends

only on the range of the distribution of asset value. On the other hand, traders�utilities

in any kind of pooling equilibrium will obviously depend on the shape of the distribution.

In particular, from a high-type seller�s viewpoint, the lower the mean, the more distortion

on the price. Hence, given the range of the asset distribution, whether a high-type seller is

better o¤ in the separating equilibrium or in a pooling equilibrium depends on the shape

of the distribution. This point then explains why the competitive search equilibrium is

Pareto ine¢ cient for some parameter values, as shown in Guerrieri et al. (2010). The

important lesson is that the equilibrium outcome of a fully separating equilibrium is not

necessarily constrained Pareto e¢ cient. The main reason is that (partial) pooling cannot

be sustained even when it is desirable. The resulting distortions in market tightness can

be rather costly.

6.2 Asymmetric information on Trading Motives

As shown in Section 4, a (semi) pooling equilibrium can be sustained when the private

value of holding an asset is also sellers� private information. According to the above

discussion, asymmetric information on the sellers�trading motives can therefore increase

welfare when the pooling outcome is desirable. For example, in the model with �re sales,

only the types with low holding cost and relatively good asset qualities are separated

while the rest are pooled. Sellers�utilities in such an equilibrium are shown in Figure 6

below and corresponding to the red line.

Now compare with the environment where sellers� holding cost is observable. The

outcome can then be solved as in the baseline model with di¤erent holding cost. The

utility of type-s seller with holding cost c is then denoted by V �(s; c); which is represented

by the black line. First of all, all sellers with low holding cost are better o¤ without the
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disclosure of the holding cost: the ones with relatively high-quality assets (s�cL > x�) are
better o¤ as the underlying range e¤ectively decreases. (Notice that equilibrium outcome

for this subset can be solved as if the worst asset is cL+ x� instead of sL). The ones with

relatively low-quality asset (s � cL < x�) are also better o¤ compared to benchmark as
they e¤ectively receive subsidies from sellers with better assets. For the same reason, the

types with worse assets and a high holding cost are also better o¤. Hence, the only one

who might su¤er when the holding cost is unobserved is the type with good assets but a

high holding cost.

Nevertheless, as discussed earlier, depending on the asset distribution, the high-type

seller in such a pool can be better o¤ than the separated equilibrium. If that is the

case, counterintuitively, all types of sellers achieve higher equilibrium utilities when the

holding cost is unobserved. Whether the high-type seller is better o¤ or not depends again

on whether a price discount (pooling) or distorted market tightness is more costly.

Fig 6: Sellers�Utilities

6.3 On the Searching Cost and the Elasticity of Matching func-
tion

In this section, we are interested how the degree of the distortion on market liquidity

corresponds to the change in the searching cost k and the parameter �; which controls

the concavity of the matching function m(�) = �� and 0 < � < 1: Since, from sellers�view

point, what matters is really the the arrival rate of a buyer, given by m(�) � m(�(s)),

both � and � do not play direct roles when solving sellers� IC constraint, as shown in
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(ICFOC) : However, these two parameters control buyers�marginal rate of substitution

of m and p: dp(s)
dm
jUb=0 = �k(1��)

m
: Due to the nature of the matching, the equilibrium

function p(�) and m(�) are solved subject to buyers�free-entry condition and, therefore,
through this channel, � and � have impacts on the resulting distortion of m:

The level of the �rst best liquidity is a function of k and �; according to equation (1).

However, the real interest is to see how the degree of distortion relative to the �rst best

changes. To this end, I de�ne d(s; �; k) � 1 � m�(s;�;k)
mFB(�;k)

; which represents the percentage

decrease of the market liquidity as a result of adverse selection. Note that, in our basic

model, mFB(�; k) is independent of type.

As shown in the proposition below, the degree of the liquidity distortion decreases

with k and increases with �: The formal proof is in the appendix while the intuition is

the following: A higher search cost k ( or a lower �) means a buyer is more willing to pay

for a higher price in exchange for a lower m: Hence, facing the schedule fp(�);m(�)g; if
buyers with a low k are indi¤erent among all submarkets, buyers with a higher k will be

strictly better o¤ in the market with lower m. Hence, the decrease in the distortion has

to be lower in the economy with a higher k:

Proposition 5 The degree of the liquidity distortion d(s; �; k) � 1 � m�(s;�;k)
mFB(�;k)

decreases

with the searching cost k and increases with �:

Same intuition holds for the parameter �: Notice that in the model of rationing, as in

Guerrieri and Shimer (2011), buyers match with probability one as they are on the short

side of the market. That is, e¤ectively, buyers do not care about the market tightness as

there is no congestion e¤ect on the buyers�side (the short side of the of the market). One

can therefore understand the result in Guerrieri and Shimer (2011) as the limit economy

in our model when �! 1: As implied by the above proposition, the degree of the resulting

distortion is expected to be larger in Guerrieri and Shimer (2011).

7 Conclusion

Using a competitive search framework, this paper analyzes how asymmetric information

on the common value, as well as the private value, leads to limited market participation

or an undervalued price. It provides an explicit and exact meaning for di¤erent notions of

liquidity�trading price and market thickness�and therefore captures the idea that sellers

care about the selling price as well as how fast they can unload the asset in the decentral-

ized market. Contrary to the standard lemon model, in which trade is usually assumed
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to take place at one price, in my framework trade is allowed to take place at di¤erent

prices, and the possible set of prices o¤ered and their corresponding market thickness are

jointly determined. In equilibrium, market thickness works as a screening device since

owning assets of di¤erent quality generates di¤erent waiting preferences. How much the

market can screen the agents depends on the matching between sellers�waiting prefer-

ences and buyers�willingness to pay. If the types willing to wait longer are necessarily the

ones with better assets (i.e. only the information on the common value is asymmetric),

then a unique full-separating equilibrium is obtained. In that case, the market thickness

of the submarkets with better-quality assets, is downward-distorted so that sellers with

low-quality assets will not mimic ones with high-quality assets. Market illiquidity arises

endogenously as an equilibrium outcome and manifests as market thinness. It therefore

predicts a sharp decrease in trading volume and a drop in the aggregate trading price

when information quality worsens.

On the other hand, if a sellers�private value of the asset is also unobserved by the

market and, depending on the underlying distribution, the types who are willing to wait

longer are not necessarily the ones with better assets, then the full screening cannot be

sustained. Instead, a set of semi-pooling equilibria arise. In particular, we are interested

in the equilibrium which depicts the phenomenon of a �re sale: as an equilibrium outcome,

buyers who o¤er a relatively high price are sidelined ; sellers who are in relatively urgent

need for cash unload their assets more quickly at an undervalued price since they end

up pooling with the low-quality assets. In this pooling submarket, sellers with high-

quality assets will then su¤er a price discount in line with the standard lemon model.

Compared to the previous literature, the main contribution of this work is to show how

di¤erent market distortions on price and market thickness arise in di¤erent informational

settings. It therefore separately identi�es the e¤ects of adverse selection on trading price,

trading volume, and market segmentation, and further sheds light on the limited market

participation of buyers and the infrequent trading observed in the recent asset markets.

8 Appendix

8.1 Supplemental material on Heterogeneous Buyers

8.1.1 Theoretical extension with heterogeneous buyers

The setup is now chosen to allow for heterogenous buyers in the market so that it can

be easily applied to trading environments with two-sided heterogeneity. Many decen-
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tralized markets have this feature. Understanding the trading pattern is crucial since it

determines the allocation and therefore welfare. For example, in the factor market, the

resource allocation determines aggregate productivity. Di¤erent companies might have

di¤erent technology to utilize the assets (machine or capital). Productivity of the assets

is determined by assets allocation, which is mainly governed by both the pattern of trade

and the equilibrium liquidity. With this generalization, the model further sheds light on

the sorting pattern. We show that, supermodularity in the matching value is enough

to guarantee positive sorting, which is a distinct feature compared to the environment

without adverse selection.

Consider that there are two types of buyers, bi 2 fbh; blg and buyers�type are observ-
able. For simplicity, we assume that the measure of each type is larger than the one of

sellers and the outside option of buyer bi is given by �(bi)28: The �ow payo¤ of an asset

owned by buyer bi and bought from seller s is given by h(bj; s), where h shares the assump-

tion as our basic model. The indices s and bi that are ordered such that they increase the

utility of sellers: h(bh; s) > h(bl; s):For example, h(bi; s) represents the payo¤produced by

the �rm with technology bi and asset quality s:The simple functional form widely used for

a macroeconomic model with heterogenous �rms is usually given by h(bj; s) = bjs; which

can be seen as the productivity. Furthermore, we assume that there is complementarity

in the matching function.

Assumption 3: hs(bh; s)� hs(bl; s) > 0
Obviously, if �(bh) < �(bl); sellers then always obtain higher value if trading with the

higher type buyer and one can easily show that, facing resulting (p; �); lower type buyer

will not enter the market. In that case, the environment can be trivially solved just like

as with homogenous buyers. The following analysis focus on the relevant environment in

which both type of buyers are active in the market when there is no adverse selection.

One can establish the benchmark similar as before. It is well known that the equilibrium

outcome can be thought of as a competitive market maker who promises traders the price,

the market tightness, as well as the trading pattern. The equilibrium will then consist of

a price function pFB(s), a market tightness function �FB(s);trading pattern jFB(s) and

the corresponding sellers�utility function V FB(s); which solve following the optimization

problem:

V FB(s) = max
j;p;�

fu(s) +m(�)p
r +m(�)

: Ub(p; �; �; b
j) = �(bj)g

28This assumption is made to simplify the analysis. One can interpret this as a partial equilibrium

where we take the level of buyers�utilites as given.
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The algebra detail is left in the appendix. In words, given buyer type bi, one can solve

the optimization problem as before. Similarly, the �rst best market tightness should be

a function of the ratio of the gain from trade over the searching cost, which are type

dependent and is denoted as R(j; s) � g(j;s)
k+r�(bj)

. Let the function V FB(s; bj) represent

seller�s utilities if traded with type bj under perfect information. The �rst best utilities

V FB(s) can be seen as a upper envelope of V FB(s; bh) and V FB(s; bl): That is, V FB(s) =

maxjfV FB(j; s)g: As it will become clear later, the interesting case is when there exists a
marginal type sFB 2 S who is indi¤erent to trading with high type and low type buyers
and for a seller with assets s < sFB; he will only trade with a lower type buyer and vice

versa for sellers with assets s > sFB29: The following section therefore focuses on such an

environment and discusses how other cases can be solved accordingly.

As sellers do not care about buyers�types, sellers�expected value in each market is

the same as before. On the other hand, type-j buyers�expected payo¤ can be expressed

as follows:

rU b(p; �; �(p); bj) = �k + m(�(p))
�(p)

(

Z
h(bj; ~s)

r
�(~sjp)d~s� p� Ub)

De�nition 3 An equilibrium consists of a set of o¤ered price P �, a market tightness

function in each market p, �(�) : P ! [0;1]; the conditional distribution of sellers in
each submarket � : S � P � ! [0; 1] and the trading pattern j� : P ! fh; lg; such that the
following conditions hold:

E1 (optimality for sellers): let

V �(s) = maxfs� c
r
;max
p02P �

U s(p0; �(p0); s)g

and for any p 2 P � and s 2 S; �(sjp) > 0 implies p 2 argmaxp02P �[? U s(p0; �(p0); s)
E2 (optimality for buyers and free-entry): for any p 2 P � and j 2 fh; lg

Ub(p; �p; �(p); b
j) � �j

with equality if p 2 P � and j = j�(p); and there does not exist any p0 2 P such that
Ub(p

0; �(p0); �p0 ; b
j) > �j, where �(p0) and �(sjp0) satis�es (2) and (3)

29It is clear that R(h; sFB) < R(l; sFB), given �h > �l: Therefore, �(h; sFB) < �(l; sFB) and

p(h; sFB) < p(l; sFB): Namely, there will be two separating markets for the asset sFB : These two markets

are di¤erent from the trading price and the liquidity, between which the seller sFB is indiscriminate.

High type buyers will pay more for the good with shorter waiting time in one market and, vice versa for

the low type buyers in the other market.
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Clearly, IC constraints for sellers are the same as before, that is, Proposition 1 still

holds. The only di¤erence is that we need to make sure the buyers�optimality condition

will hold for both types. In particular, facing the price and market tightness recommended

by the market maker, a buyer will bene�t neither from going to the markets which belong

to the other buyers, nor from opening a market which has not been open. The mecha-

nism can be interpreted as follows: given (p(s); �(s));a seller reports his type ŝ optimally;

meanwhile, j�(s) denotes the sorting pattern recommended by the market maker, who

recommends buyers j�(s) post the price p(s), that is, entering the market (p(s); �(s)):

The sets of types who trade with the lower type buyer, 
L = fs : j�(s) = lg, and of
those who trade with the high type, 
H = fs : j�(s) = hg; are disjointed and satisfy

L [ 
H � S. Then, de�ne s� as the marginal type j�(s�) = fl; hg: Obviously, some
lessons learned from the basic model are still applied: there is no submarket involving

pooling under assumption 1b) and, hence, we can focus on the full separation on the

sellers�sides. From buyers�view points, each market can therefore be characterized as

a pair of (p; �; s). Given (p; �; s);buyers will choose to go to the preferred markets and

expect to trade with seller s:

Moreover, once we identify the set of sellers who trade with buyers j, 
 j, the market

tightness can be solved as in the case in which there is only one type of buyer j: Given


j; the solution of �(s; j) needs to the following di¤erential equation, which is similar to

(8) but taking into account that buyers�heterogeneity

[(h(bj; s)�u(s)�r�(bj))+ k + r�(b
j)

�
((��1)�� r�

m(�)
)]
d�

ds
= �(r+m(�))� �

�

hs(b
j; s)

r
(14)

As before, the corresponding price schedule p(j; s) is then pinned down with the free

entry condition:

p(s; j) =
h(aj; s)

r
� (k + r�

j)�(s; j)

m(�(s; j))
� �j (15)

Notice that solutions can be easily characterized once we have the initial condition for

�(s; j): Therefore, the key remaining task is essentially �nding out the set 
j, that is, the

marginal type s� and identifying the initial condition f�0L; �0Hg, which gives �(sL; j) = �0L
and �(s�; j) = �0H : For notation convenience, let p

j(s); �j(s) denote the price and the

market tightness in the market with buyer type j. In equilibrium, it must be the case

that the buyer j will not enter the market where j�(s) 6= j: Hence, following constraints
must be satis�ed:

Ub(p
h; �h; s; bl) < �l for j�(s) = h

Ub(p
l; �l; s; bh) < �h for j�(s) = l
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To facilitate the analysis, de�ne ~�(s) to solve the following:

�l = Ub(p
h; �; s; bl)

= Ub(p
h; �; s; bh)� q(�)

r + q(�)
(
h(bh; s)� h

�
bl; s

�
r

)

= �h � q(�)

r + q(�)
(
h(bh; s)� h

�
bl; s

�
r

) (16)

where q(�) = m(�)
�
: Given that h(bh; s)� h

�
bl; s

�
increases with s, ~�(s) increases with

s: This function then plays an important role in determining buyers�incentive constraint.

Entering the high-type buyers�markets, the di¤erence in utilities gain is characterized by

the second term, q(�)
r+q(�)

(
h(bh;s)�h(bl;s)

r
); which captures low types�disadvantage. The impact

of this disadvantage is higher when the expected waiting time for buyers is shorter, that

is, for the higher q(�) and hence the lower �: As a result, for any � < ~�(s); the low

type will not mimic high type to enter the market. Similarly, when a high-type buyer

contemplates entering a low-type market, he will only enter when � < ~�(s) so that his

advantage is high enough to compensate30. Hence, we can conclude the following claim:

Claim 5 In equilibrium, the market (p; �; s) attracts high-type buyers but not low-type
buyers if � < ~�(s); similarly, the market (p; �; s) attracts low-type buyers but not high-type

buyers if � > ~�(s):

Denote the function �FBj (s); V FBj (s) as the market tightness and sellers�utility, re-

spectively, when trading with buyer j with complete information. We next prove that the

equilibrium can be characterized by following proposition.

Proposition 6 The unique solution to the mechanism is a market tightness function

� : S ! R+; a price schedule P : S ! R+ , a marginal type s�; a pair of initial condition

f�0L ; �0Hg; where:

��(s) =

�
�(s; l; �0L); for s � s�
�(s; h; �0H); for s � s�

�
; p�(s) =

�
p(s; l); for s � s�
p(s; h); for s � s�

�
V �(s) = V FBL (sL) +

Z s

sL

u0(~s)

r +m(��(~s))
d~s

where �(s; j; �0j) is the solution to (8) with the initial condition: �(sL; l) = �
0
L; �(s

�; h) =

�0H ; and corresponding p(j; s) is de�ned in (15).

30One can show that the utility of a high-type buyer entering a low-type market is:Ub(pl; �; s; ah) =

�l + q(�)
r+q(�)

h(ah;s)�h(al;s)
r ;which is bigger that �h i¤ � < ~�(s):
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a) The initial condition �0l :

�0l = �
FB
l (sL)

b) The marginal types:

s� =

�
sA; if ~�(sA) � �FBH (s)

sB; if ~�(sA) < �FBH (s)

�
where (sA; sB) is the unique31 solution to the following equation:

sA : V (l; s) = V FBL (sL) +

Z s

sL

u0(~s)

r +m(��(~s; l; �0L))
d~s = V FBH (s)

sB : ~�(s) = �(s; l; �0L)

c) The initial conditions �0H :

�0H =

�
�FBH (s�); if s� = sA

~�(s�); if s� = sB

�
See omitted proof in the next section. As explained earlier, once we can separate the

buyers from di¤erent markets, we can apply the method for homogenous buyers separately.

Therefore, the equilibrium solution is expected to be a combination of two. However, it

has to be combined in a particular way so that traders�optimality conditions hold. In

appendix, we prove that the constructed solution above is the unique solution.

8.1.2 On Sorting Behavior

Shi (2001) and Eeckhout and Kircher (2010) have shown that the complementarity in

production is not enough to guarantee positive assortative matching (PAM) in an envi-

ronment with complete information. The intuition is that, given that the social surplus

increases with types, it could be optimal to match high-type seller with a low-type buyer

by promising him a tight market, that is, a higher utilization. The above intuition still

holds in our framework with complete information. However, with adverse selection, we

prove that the supermodularity of the matching value necessarily induces PAM in the

equilibrium.

Proposition 7 In the competitive search equilibrium with adverse selection, the equilib-

rium trading pattern j�(s) satis�es PAM, that is, for s0 > s; j�(s) = h =) j�(s0) = h

under the assumption hs(a
h; s)� hs(al; s) > 0;

31Observe that (sA; sB) is unique (and all smaller than sFB). Notice that, V (l; s); V FBH (s); ~�(s); �FBH (s)

are all well de�ned and monotonically increases in s and �(s; l; �0L) is strictly decreasing in s:Given that
~�(sL) � �FBL (sL) under the assumption V FBL (sL) > V

FB
H (sL:) =) sB always exists and is unique.
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Proof. Suppose Not. There exists s0 > s such that j�(s) = h and j�(s) = l: According to
Claim 1, the equilibrium market tightness must satisfy: ��(s) � ~�(s) and ��(s0) � ~�(s0):
Moreover, from the monotonic condition, (M), ��(s) � ��(s0): The above relation then

implies ~�(s) � ~�(s0): This is a contradiction to the fact that ~�(s) is strictly increasing

with s under the assumption hs(ah; s) � hs(al; s) > 0: (Recall ~�(s) solves �l = �h �
q(�)
r+q(�)

(
h(ah;s)�h(al;s)

r
))

To understand this result, recall that the reason as to why a higher type can be better

o¤ when trading a low-type buyer is that he can be compensated by a higher utilization.

That is, given that a lower type buyer is more willing to wait, it could be optimal for a

high type seller to choose to trade with a lower type buyer, enjoying a lower gain from

trade but a tighter market compared to trading with a high type buyer. Hence, contingent

on negative assortative matching (NAM), a high type seller must be compensated with a

higher market tightness compared to low type sellers. This situation, however, can not be

sustained in an environment with adverse selection, as it violates the monotonic condition.

Namely, it is not incentive compatible for the sellers. Notice that in an environment with

complete information, a high type seller prefer to trader faster as his gain from trade is

higher. Nevertheless, with adverse selection, when all sellers are facing the same market

price schedule and market tightness, a high type seller becomes the one who is more

patient in the sense that he will prefer the combination of a higher price and a lower

market tightness as contrary to a low type seller. This implies that it would be optimal

to match a high type seller with a buyer who is more willing to o¤er a higher price and

less willing to wait. Obviously, a high type buyer is more willing to do this. Hence, a

lower type buyer no longer has his advantage to trade with a high type seller as in the

case with complete information.

Our solution developed earlier starts with the environment with PAM and V FB(l; sL) >

V FB(h; sL): However, according to the above Proposition, one should expect that those

conditions can be relaxed. First of all, suppose V FB(h; sL) > V FB(l; sL), so it is clear

that j�(sL) = h from Lemma 3 and, clearly, from the above Proposition, j�(s) = h

for 8s 2 S: Hence, we can simply solve the model as if there are only high-type buy-
ers in the market, regardless of positive or negative assortative matching under com-

plete information. Suppose that we are now in the environment with NAM, that is, for

s0 > s; V FB(l; s)�V FB(h; s) > 0 =) V FB(l; s0)�V FB(h; s0) > 0 and V (l; sL) > V (h; sL);
implying that only low type buyers are active in the case with complete information.

Although we do not provide the formal solution for this case, our conjecture tells us that

the solution should take similar pattern as the developed method. And, depending on

the range of S; it could be the case that j�(s) = h for some s0 > s: The above argument
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shows that adverse selection essentially makes a higher type buyer more likely to stay the

market compared to the case with complete information. Notice that this phenomenon

can be understood for our main results as well, given that the marginal type decreases in

the case of adverse selection, that is, s� < sFB: Hence, more sellers end up trading with

high-type buyers with adverse selection.

This result might seem at �rst counter-intutive but, in fact, it is simply the �ip side

of market illiquidity. Adverse selection creates a downward distortion of market liquidity,

that is, a low ratio of buyers over sellers in the market. This distortion makes it hard

for a seller to �nd a buyer; on the other hand, it also makes it easier for a buyer to �nd

a seller, shortening a buyer�s wait time and expected search cost. Given that high-type

buyers like to secure trade with high probability and they are willing to pay for this, the

environment e¤ectively makes a high type buyer more competitive, compared to low-type

buyers.

8.2 Omitted Proof

(A) Proof of Lemma 1:
Proof. Let V (�; s) denote V (p(�); �; s):Observe that V (�; s) satis�es following properties:
that 1) V2(�; s) exists; 2) has an integrable bound:sups2S jV2(�; s)j � M

r
for all s, where

M = u0(sL) for; 3) V (�; �) is absolutely continuos (as a function of s) for all �;4) ��(s) is
nonempty. Following the mechanism literature, (see Milgrom and Segal (2002)), let

V �(s) = max
ŝ
V (�(ŝ); s) = max

u(s) + p(�(ŝ))m(�(ŝ))

r +m(�(ŝ))

then any selection �(s) from ��(s) 2 argmax�0 V (�0; s);

V �(s) = V �(sl) +

Z s

sl

Vs(�
�(~s); ~s)d~s

Namely, (ICFOC) is the necessary condition for any IC contract. To prove the

su¢ ciency, de�ne function: x = q(�) = 1
r+m(�)

and q�1(x) = �: Also, since � > 0,

0 < x 6 1
r
: One can then easily see V (x; s) satis�es the strict single crossing di¤erence

property under the assumption u0(s) > 0. For any x0 > x and s0 > s:

V (x0; s0)� V (x0; s) + V (x; s)� V (x; s0) = x0(u(s0)� u(s))� x(u(s0)� u(s)) > 0

Therefore, V (x0; s0)� V (x; s0) > V (x0; s)� V (x; s): Given that V (x; s) satis�es SSCD
condition, then any non-decreasing x(s) combined with (ICFOC) are also su¢ cient con-

ditions for the achievable outcome. Hence, x(s) = 1
r+m(��(s)) has to solve subject to the
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non-decreasing constraint. Namely, the market tightness function ��(�) has to be non-
increasing.

B) Proof of Claim 1: No pooling
Proof. Suppose Not: There exists a subset of sellers s 2 S 0 = [s1; s2] � S are in the

same market (pp; �p):From the free entry condition,

pp =
E[sjs 2 S 0]

r
� k�p
m(�p)

and denote V �(s2) = V (pp; �p; s2) as the utilities of the highest type seller in the

market. Note that Given E[sjs2S0]
r

< s2
r
; free entry condition implies V �(s2) < V FB(s2):

First of all, consider the case that there is a separated market (p 2; �2) for s2 and s2 is

indi¤erent between going to the this market and the pooling market. That is, de�ne the

pair (p2; �2) solves: �
p2 =

s2
r
� k(�2)

m(�2)

V (p2; �2; s2) = V �(s2)

�
Given that E[sjs2S0]

r
< s2

r
; there exists p0 = pp + " such that p0 =2range P� and pp <

p0 < p2;where �
0 solve V (p0; �0; s2) = V �(s2) and �2 < �0 < �FB:Namely, if a buyer

deviates to posting p0 , only the highest type in the original semi-pooling market will

come. Since buyers attract s2 and only need to provide V �(s2) < V FB(s2); Ub(p0; �
0; s2) >

Ub(p2; �2; s2) > 0: Contradiction. This result can be easily generalized to the environment

when the other market also involves pooling, i.e, p02 =
E[sjs2<s<s0h]

r
� k(�02)

m(�
0
2)
: Note that, given

�02 > �p and
E[sjs2<s<s0h]

r
> s2

r
> E[sjs2S0]

r
=) p02 > p2 > pp:Hence, for the same reason,

there exists a pro�table deviation p0 = pp + " for buyers. Lastly, suppose that there are

no other markets open for all s > s2: Evidently, posting p0 = pP + " is also pro�table,

given that all the possible types who will come to this market are all weakly better than

s2;i,e, T (p0) = [s2; s0], where s0 solves p0 =
u(s0):
r
.

C) Proof of Claim 2: the lowest type always receives his �rst best utility
in a separated equilibrium
Proof. Suppose not, pick any initial condition �00 2 (0; �FB(sL)) and denote its corre-
sponding market tightness as �0(s; �00) and price schedule p

0(s): One can easily show that

there exists ~p = p0(sL) � " and, from Lemma 1, T (~p) = sL: That is, a buyer can open a

new market with lower price and expect the lowest type to come. Due to the violation of

the tangent condition at (p0(sL); �
0(sL)) when �

0(sL) 6= �FB(sL) and V 0(sL) < V FB(sL);
buyers�utility can be improved, U(~p; �(~p); sL) > �

L: Contradiction.

D) Proof of Claim 3 and 4: From the FOC of the �rst best solution, one can

solve d�FB(s)
ds

= h0(s)�u0(s)
k( 1��

�
)(1+���)

� f2(�; s): Observe from the di¤erential equation, d�
�(s)
ds

=
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f(�; s) ! � / at f(�FB(s); s) given hs > 0. Hence, we know that ��(s) � �FB(s) for

some s1 > sL: Suppose now ��(s) > �FB(s) for some s; which implies that these two

function must cross at some point (ŝ; �FB(ŝ)) and the slope of the crossing point must be

the case that f2(�
FB(ŝ); ŝ) < f(�FB(ŝ); ŝ) = � /. Contradiction.

E) Proof of Proposition 5 on the degree of distortion:
Proof. Let 4(s; �; k) = m�(s;�;k)

mFB(s;�;k)
and rewrite (6) respect to m :

dm(s)

ds
=

�hs(s) �m(r +m)=r
[g(s)� k

�
(m1=�(1� �) + rm(1��)=�)

= F (m; �; k)

d4 (s; �; k)
ds

=
1

mFB(�; k)

dm�(s; �; k)

ds

= F (4 �mFB(�; k); �; k)

Given (a) dF (4�mFB(�;k);�;k)
dk

= @F
@k
+ @F

@mFB
dmFB

dk
> 0 and (b) the initial condition

4(sL; �; k0) = 4(sL; �; k) = 1; by the comparison theorm, 4(s; �; k0) > 4(s; �; k) for
8s > sL: Hence, the distortion 1� m�(s;�;k)

mFB(�;k)
decreases with k: Similarly, dF (4�m

FB(�;k);�;k)
d�

=
@F
@�
+ @F

@mFB
dmFB

d�
< 0 and therefore 1� m�(s;�;k)

mFB(�;k)
increases with �

F) Note on the non-monotonicity and upward distortion market tightness:
I now introduce following notations. Let ~V (s; �; ~h) = u(s)+m(�)(h

r
)�k�

r+m(�)
: Given any

r~h > u(s); one can show that ~V is strictly increasing in � at the interval [0; �FB(s; ~h)]

and decreasing in [�FB(s; ~h);1]; where �FB(s; ~h) solves r~h�u(s)
k

= r+m(�)��m0(�)
m0(�) : De�ne

�d(s; ~h; ~V ) and �U(s; ~h; ~V ) the inverse functions of ~V (s; ~h; �) over the intervals [0; �FB(s; ~h)]
and [�FB(s; ~h);1]: Furthermore, one can see that �d(s; ~h; ~V ) < �U(s; ~h; ~V ):
Suppose that there is downward distortion ��(s) = �d(s; h(s); V ) < �FB(s) for the type

s while there exists s+ > s such that h(s+) < h(s): Consider a separated market for s

and s+:For s+ be indi¤erent between these two markets, the only possible di¤erent values

for market tightness are given by �d(s; h(s+); V ) or �U(s; h(s+); V ). However, �d(s; ~h; V )

is decreasing in ~h and therefore ��(s) < �d(s+; h(s+); V ) and ��(s) < �U(s; ~h; ~V ):Both of

them are contractions to the monotonic condition in Lemma 1. On the other hand, if

��(s) = �U(s; h(s); V ); one can set �d(s; h(s+); V ) without violating the monotonic condi-

tion. This then explains, in Proposition 2, it is necessary to set �p = max�f�jV (s�; p�;�) =
V FB(s�) and p� =

~h
r
� k�p

m(�p)
g: That is, �p = �U(s�; ~h; V FB(s�)):
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