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Abstract

The one-shot monotonic signalling game can be solved under the re�nement D1,
selecting the Riley equilibrium. This paper adapts the re�nement to the repeated
signalling game, selecting a dynamic version of the Riley equilibrium, de�ned iter-
atively, in which types minimally separate in each period.
This model provides an alternative framework for studying reputation, generat-

ing under appropriate limits a modi�ed Stackelberg property: each type above the
lowest takes the action that maximizes Stackelberg payo¤s, subject to separating
from the lowest type. In contrast to the usual approach to reputation there are
no behavioural types. It can be solved under arbitrary discount factors of both
players: if the signaller discounts, the result above holds with the signaller�s Stack-
elberg payo¤s replaced by simply de�ned "discounted Stackelberg" payo¤s. If the
respondent has preferences not only over the actions but also over the type of the
signaller, a di¤erential equation characterizes the limit, combining reputational and
pure type-signalling motives.

1 Introduction

1.1 A signalling model of reputation

The economic idea of reputation is that a patient player by taking a certain action may
cause others to expect him to do the same thing in the future, even if it will be against
his immediate interests. By doing this he has e¤ectively the ability to commit to any

�I am greatly indebted to Wolfgang Pesendorfer for insights, encouragement, criticism, and patience,
to Stephen Morris for advice and detailed comments, and to Dilip Abreu for valuable suggestions. The
paper has bene�tted from discussions with Satoru Takahashi, and feedback from seminar participants
at Princeton, LSE, NYU and Rochester.
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action, receiving (close to) Stackelberg payo¤s1. In the standard model of reputation
([11], [12], [17]) this conclusion requires the possibility of the patient player being a be-
havioural or commitment type. Such a type uses a �xed exogenous strategy, independent
of expectations about the other player�s strategy; in the simplest case this strategy is a
particular action that is always taken. The normal type(s) of the long-run player can
then develop a reputation for one of these actions over time by repeatedly mimicing one
of these behavioural types, if his discount factor is high enough.

The signalling model of reputation proposed here has a di¤erent logic. Here there are
only normal types of the signaller, giving a range of preferences. Instead of pooling with
a behavioural type, each normal type separates from "worse" types. Types are correlated
over time and this separation occurs at every stage. The signaller wants to be seen as a
higher type and this give an incentive to take higher actions than are myopically optimal:
by taking a higher action today, the signaller will be seen as a higher type today, and
so will be expected expected to be a higher type tomorrow, and so expected to take a
higher action tomorrow, leading to more favourable treatment by the other player. This
is the reputational incentive to take higher actions than would be myopically optimal.

Suppose that types are unlikely to change from one period to the next (an assumption)
and that each type�s action does not change much from a given period to the next (a
limit property as the length of the game tends to in�nity). What generates a Stackelberg
property is that by taking an action, the signaller signals that he is the type that preferred
to take this action, and will be expected to be the same type in the following stage, and
so to do (approximately) the same action in the next period. This holds only when the
signaller chooses an action that is taken with positive probability by some type; the set
of these such actions in the limit determines how the Stackelberg result is quali�ed.

Assume that the signaller is patient and that the receiver�s preferences are over actions
only and do not involve the signaller�s type - as in standard reputation models. Taking
the limit as the number of periods from the end of the game tends to in�nity, as types
become dense in some interval, and when type change becomes in�nitely unlikely, we get
the following reputation result: The lowest type takes his myopically optimal action. All
other types take the actions that give them the greatest Stackelberg payo¤, subject to
separating (by the lowest type�s Stackelberg payo¤) from the lowest type2. So low types
take the minimal action that separates them from the lowest type, while high types take
their Stackelberg actions. The limit result is a combination of a separation property, such
as is often seen in signalling models, with a Stackelberg property, often seen in reputation
models.

The signalling model is more tractable than standard reputation models tend to be,
generating a unique, simple and calculable solution under the re�nement. In particular,
the model remains solvable under general discount factors of both players. Standard
reputational models require the reputation-builder to have discount factor 1 or tending

1The Stackelberg payo¤ is the payo¤ in the stage game to a player who can commit to any action,
while the other player best-responds. A Stackelberg action maximizes this payo¤.

2That is to say, they take actions that make the lowest type not want to mimic them.
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to 1, and often myopic play by the other player, or at least a level of patience that
becomes in�nitely less than the reputation-builder�s. In the repeated signalling model,
the respondent�s discount factor has no e¤ect on the solution, and when the signaller has
discount factor other than 1, the result given above only requires Stackelberg payo¤s to
be replaced with simply de�ned "discounted Stackelberg" payo¤s.

The type of the signaller and actions of both players lie in intervals of real numbers,
with monotonicity properties that will be spelled out presently. This is a loss of generality
from the standard reputation model, which can work with very general stage games.
But it is a natural speci�cation for a large class of applied models. Examples include
developing reputations for product quality, with the signaller�s type being �rm quality,
monetary policy of a central bank, with type being toughness on in�ation, and work
incentives, with type being ability. As a model of work incentives it could be seen as
a development of Holmstrom�s model [14]. In that model the worker signals his ability,
but without knowing his own ability - which makes strategies simpler. Fudenberg and
Tirole [13] refer to this type of model as a "signal-jamming" model. A combination of
signal, the signaller�s action, and random noise is observed at each stage. In a particular
speci�cation of incentives, with work and ability being perfect substitutes, and with
normal distributions of noise, there is a Stackelberg result. A repeated signalling model
does the same type of thing with a more standard approach to signalling, and allowing
for more general speci�cations of payo¤s and information.

Mailath and Samuelson ([19], [20]) have also studied reputational issues in terms
of dynamic signalling. In a two-type model they �nd that reputation e¤ects can be
supported with the high type separating from the low type. In common with the repeated
signalling model, the e¤ect is generated by separation from bad type(s) rather than
pooling with a "good" type. The importance of types being changeable over time is also
emphasized. There is no clear relation to Stackelberg actions and payo¤s: their interest
is in qualitatively supporting reputational concerns and also seeing how reputation can
be built up and lost gradually.

1.2 From static to repeated signalling

Signalling games have been a fruitful area in pure and applied work, beginning with
Spence�s model of education and job-market signalling [24]. See Sobel [23] for a survey
of applications. In the canonical monotonic signalling model the signaller has a type,
which is private information, and takes an action in a space embedded in R or Rn. Types
are a subset (�nite or continuum) of some real interval, and higher types have more
of a preference for higher actions, a single-crossing condition. The respondent observes
the action, forms a belief about the type, and replies accordingly, treating higher types
more favourably - a preference given by external considerations. In Spence�s example,
types who �nd education easier are given a higher wage because they are expected to
do better work: this is not modelled but is the reason for the respondent�s preference.
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In the repeated signalling model both players move simultaneously in the stage game3

and as described above, which allows the study of reputation, and there are reputational
reasons for higher types being treated more favourably. Beyond the usual assumptions
of monotonic signalling games there is currently an additive separability assumption:
the signaller�s stage-game payo¤ is separable between the respondent�s action and the
signaller�s type and action. This provides uniqueness of equilibrium in the stage game and
allows simple characterization of the solution and allows discounted Stackelberg payo¤s
to be de�ned simply.4

There are many perfect Bayesian equilibria of the one-shot signalling game, some
separating and some pooling, and the most used equilibrium of the signalling game is
the Riley equilibrium, which is minimally separating. That is to say no two types take
the same action with positive probability, and each type takes his most preferred action
given the requirement of separating from lower types (so that no lower type would want
to mimic him). In a �nitely repeated signalling game, applying this property at every
stage, starting with the last, gives what I call the iterated Riley equilibrium, in which
types separate minimally at each stage. This means that at every stage the current type
of the signaller is revealed. (Type is changeable but correlated over time, following a
Markov process). This equilibrium has a particularly simple form, with the signaller�s
actions depending only on his current type and how many periods he is from the end of
the game, and the respondent responding myopically (regardless of his actual discount
factor) to current expectations of play. To calculate the signaller�s strategy in a given
period, we only need to �nd the minimally separating equilibrium between his current
action and the respondent�s response in the next period. This response depends on the
signaller�s strategy in the next period and it is an inductive calculation.

From a theoretical angle, attempts were made to cut down the number of equilibria
with restrictions on beliefs o¤ the equilibrium path, some beliefs being considered more
reasonable than others. Particularly successful are the set of related re�nements that go
by the name "divinity", including D1, de�ned in Cho, Kreps [5].5 In this paper I consider
a re�nement, labelled D!, which is an extension of divinity to the repeated signalling
game. The spirit of the re�nement D! is this: sub-optimal actions by the signaller are
interpreted as over-con�dence, over-con�dence about the respondent�s response to these
actions. I de�ne the justifying beliefs of an action to be those beliefs about the respon-
dent�s immediate response that would justify the action over the equilibrium action. And
the criterion D! is that if one type has a smaller set of justifying beliefs for a particu-
lar action than another type, then the �rst type is ruled out, assuming that the second
type was given positive probability before the action was observed. Suppose, informally,
that larger belief-mistakes are in�nitely less likely than smaller ones, uniformly across

3Although this has not been formally shown, there will be no change to any results if the respondent
moves �rst.

4Work is in progress to relax this assumption.
5Other criteria less connected to the current work include the intuitive criterion of Cho, Kreps [5],

which provides a unique solution when there are only two types, strategic stability [16], which is de�ned
on �nite action spaces, the weak condition of "undefeated equilibium" (Mailath, Okuno-Fujiwara, and
Postlewaite [18]), and evolutionary stability ([21],[3]).
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types. Then any type requiring a larger belief-mistake (overcon�dence) to justify an ac-
tion than another type must be assigned in�nitely less probability than this other type.
The criterion D! is a weakening of this condition.

Cho, Sobel [6] show that in monotonic signalling games the D1 criterion selects the
Riley equilibrium uniquely (assuming pooling at the highest action is ruled out). A
similar logic is used here to show that D! uniquely selects the iterated Riley equilibrium.
There are two steps. First pooling is eliminated. At any point in the game if two types
pool on the same action, it is shown that by taking a slightly higher action, the signaller
is considered to be at least the higher type, so payo¤s increase discontinuously on raising
the action from this point. Second, separating is shown to be minimal. If a type does
more takes a more costly action than necessary to separate from the preceding type then
changing the action slightly is shown not to a¤ect beliefs, so the original action cannot
be optimal.

When type-change from period to period becomes very unlikely I �nd limit properties
as the number of periods from the end of the game tends to in�nity, calculating a limit
map from types of the signaller to actions. When types become dense in an interval we
get the modi�ed Stackelberg result given above. This happens when the respondent has
preferences over actions of both players, and not over the type of the signaller, so that
signalling incentives derive entirely from reputational concerns. When the respondent has
preferences over actions and the signaller�s type, rewarding both high expected actions
and high types, I �nd that the limit map from types to actions is characterized by a
di¤erential equation. This is the same di¤erential equation as in the Riley equilibrium of
the single-stage game when the signaller moves �rst, so is already a Stackelberg leader,
with a di¤erent starting point. Thus the limit combines commitment and pure type-
signalling motives, commitment motives arising from reputational considerations.

1.3 Contents

Chapter 2 de�nes the model and states its main assumptions. Chapter 3 de�nes perfect-
Bayesian equilibrium and the D! re�nement. I de�ne the iterated Riley solution in
chapter 4, and show how it results uniquely from the D! re�nement in chapter 5. In
chapter 6 limit properties are found as type change becomes very unlikely and as the
number of periods tends to in�nity. Limit properties of the reputation case are derived
and discussed in chapter 7, and limits of the general case in chapter 8. Chapter 9 proposes
further work.
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2 Model

2.1 Actions, types and utilities

There are two players and k periods. In each period both players take actions simul-
taneously; actions are observable. The signaller takes actions from the set A � R,
A = [amin; amax]; the respondent takes actions from R � R, R = [rmin; rmax].

The respondent has no private information; he has a type in each period (a "period-
type") which determines both players�payo¤ functions in the stage game in that period.
The signaller in each period knows his current and previous period-types. Each period-
type lies in a �nite set T � R, T = f� 0; :::�hg. Let the global type, the vector of
period-types, of the signaller be tk 2 T k; the signaller�s period-type in period i is then
ti. A sub-vector of types tn 2 T n describes period-types in periods 1 to n.

The signaller has the discounted utility function U1 =
P

i �
i
1u1 (ti; ai; ri) from out-

comes O = (T �A�R)k to R, with u1 a continuous function T �A�R! R and with
0 < �1 � 1.

The respondent has utility function U2 =
P

i �
i
2u2 (ti; ai; ri) : O ! R, with u2 a

continuous function T � A�R! R and with 0 < d2.

2.1.1 Assumptions on u2

Assumption 1
R
u2(:; r)d�ta is strictly quasi-concave in r for any probability measure

�ta on T � A.

The above integral is continuous by continuity of u2 and so has a maximum in r
for each probability measure �ta. The quasi-concavity assumption ensures that there
is a unique maximum. Call this maximum r� (�ta), the myopic best response of the
respondent to the belief �ta.

De�nition 1 For any measure �ta on T � A, let r� (�ta) = argmax
R
u2(:; r)d�ta

Assumption 2 Im(r�) � (rmin; rmax)

Assumption 3 Increasing response to types or actions:

u2 is di¤erentiable in the third argument and (@=@r)u2 (t; a; r) is strictly increasing in
(t; a).

Here (t1; a1) < (t2; a2) i¤ t1 � t2 and a1 � a2 with at least one inequality strict.

Assumptions 2 and 3 imply the following fact, which is their only role in this paper:
�xing a map between types and actions, if the distribution of types increases in the sense
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of �rst order stochastic dominance, then the myopic best response of the respondent will
increase.

Fact 1 If � : T ! A is a strictly increasing function, and f : T ! T � A by f(�) =
(� ; �(�)), and if �t < �0t in the sense of �rst order stochastic dominance, then r

� (�ta) <
r� (�0ta), where �ta = �t � f�1 and �0ta = �0t � f�1.

Proof. r� (�ta) maximizes the quasi-concave function of r,
R
u2 (t; a; r) d(�t � f�1)(t; a),

so (@=@r)
R
u2 (t; a; r) d(�t�f�1)(t; a) =

R
(@=@r)u2 (t; a; r) d(�t�f�1)(t; a) = 0 at r� (�ta),

so
R
(@=@r)u2 (t; a; r) d(�

0
t � f�1)(t; a) > 0 at r� (�ta), but = 0 at r� (�ta), so we must have

r� (�ta) < r� (�0ta) by quasi-concavity of
R
u2 (t; a; r) d(�

0
t � f�1)(t; a).

Say that any function br : �(T �A)! R for which the above property holds satis�es
increasing response to types or actions.

2.1.2 Assumptions on u1

Assumption 4 Additive separability: u1(t; a; r) � va(t; a) + vr(r)

Assumption 5 vr is strictly increasing

The �rst monotonicity assumption for the signaller, assumption 5 requires that higher
actions by the respondent are preferred by the signaller. It is equivalent to u1(t; a; :) being
a strictly increasing function for each t; a.

Assumption 6 Single crossing: If a1 < a2 and t1 < t2 then va (t2; a2) � va (t2; a1) >
va (t1; a2)� va (t1; a1)

The second monotonicity assumption, what assumption 6 expresses is that higher
types of the signaller are more disposed to taking higher actions.

It follows from this assumption that if a1 < a2 and t1 < t2 then u1 (t1; a1; r1) �
u1 (t1; a2; r2) implies u1 (t2; a1; r1) < u1 (t2; a2; r2); and this is condition that will be used
in this paper

Assumption 7 va(t; a) is strictly quasi-concave in a for all t.

This is equivalent to u1(t; a; r) being strictly quasi-concave in a for all t and r. This
assumption will be used to give unique solutions to optimization problems by the signaller.
In particular, �xing r, there is a be a unique action for any type which maximizes va(t; a):
this is implied by quasi-concavity and continuity of va. We will call this action a�(t).
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De�nition 2 a�(t) = argmaxa va(t; a)

Assumption 8 Undesirable amin and amax:

For each t 2 T , t > � 0, va(t; a) is not maximized at amin.

For any r1; r2 2 Im(r�), t 2 T , va(t; a�(t)) + vr(r1) > va(t; amax) + vr(r2)

The undesirable amax assumption is that no change in the respondent�s action (within
the myopic best-response set Im(r�)) will compensate for taking the action amax over
a�(t).

It is important to eliminate the possibility of pooling at the highest action because
then my game structure in which types are revealed each period breaks down. Also,
without pooling there will be a simple map from types to actions in a given period,
independent of the current type distribution, while the type-action correspondence for a
pooled equilibrium depends on the type distribution.

The undesirable amin assumption is needed to ensure that the map from types to
actions is always strictly increasing, required to generate the limit reputation result.
If the respondent has a concern for type as well as actions then we do not need this
assumption as the map will be strictly increasing from the penultimate stage back. (It
is possible that a reworking of the limit results will eliminate the need for either of these
alternatives.)

Fact 2 If the above assumptions 4-8 on u1 are satis�ed by u1 = va(t; a)+ vr(r) then they
are satis�ed by uE = va(t; a) + �1vr(r) for 0 < �1 � 1.

2.2 Histories, strategies and beliefs

The histories after the ith period are Hi := (A�R)i. The whole space of histories up to

the last period is the disjoint union H :=
k�1
t
0
Hi.

The respondent observes past play, so his strategy in period i is a function of Hi�1.
His global strategy is a function of the space of histories H. Take this to be a behaviour
strategy, giving a mixed action in �(R) at every history: his stragegy is a function
s2 : H ! �(R) such that s2(:)(�) is a measurable function H ! R for any measurable
� � R. Throughout this paper �(X) for any measure space X denotes the space of
probability measures on X.

The signaller, in addition to observing past play, knows his current and previous

period-types. So de�ne: HTi := (A � R)i � T i+1; HT =
k�1
t
0
HTi. ("Histories with

types".) His strategy is a function s1 : HT ! �(A) satisfying: s1(:)(�) is a measurable
function HT ! R for any measurable � � A.
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Since we are dealing with continuous action spaces for both players the measurability
assumptions above are needed to be able to de�ne the progress of the game given the
strategies. See the section below on the outcome of the game and the corresponding
de�nitions in the appendix to see why this is so.

The respondent at any history hi 2 Hi, i < k, has a belief �(hi) 2 �(T i+1) about
the signaller�s types up to that point.

There is an exogenously given distribution of types in which there is correlation
between types from one period to the next. This process will be assumed to be Markov.
This correlation will give the motive for the signaller to signal a higher type in a given
period: by signalling a higher type he will be thought to be a higher type in the next
period. A special case is when types are constant across periods. But we are particularly
interested in processes which have full support, so that given any type distribution in a
given period, the type distribution in the next period has full support. The equilibrium
re�nement that I will propose solves the game under this assumption.

The regeneration process is described by the function 	 : tiT i ! �(T ). If types
from periods 1 to i are described by ti 2 T i, 	(ti) describes the distribution of types in
period i+ 1.

Assumption 9 Monotonic Markovian type-change:

	(:) is a Markov process, generated by the function  : T ! �T and the initial
distribution 	(()).

 (t) is strictly increasing in t in the sense of �rst-order stochastic dominance.

Assumption 10 Type regeneration: 	(ti) has full support for any ti 2 T i.

2.3 The outcome of the game

De�ne an outcome of the game to be a vector of actions of each player and period-types
of the signaller, i.e. an element of O = (T �A�R)k, describing the entire progress of the
game. Once we have strategies s1, s2 and the type regeneration function 	 we can de�ne
from any point in the game hti the probability distribution of subsequent play and the
probability distribution of outcomes. Call the �rst distribution the continuation of the
game C+ (s1; s2) (hti) 2 �(T i � Ai �Ri) and the second distribution the completion of
the game C (s1; s2) (hti) 2 �

�
T k � Ak �Rk

�
.

Even though these are familiar notions in game theory, more care than usual needs
to be taken since we are dealing with continuous action spaces. Formal de�nitions of C
and C+ are given in the appendix. The measurability conditions on s1 and s2 are needed
here for C and C+ to be de�ned.
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2.4 Perfect-Bayesian Nash equilibrium

We shall be examining perfect-Bayesian Nash equilibria of the game described above.
Although the concept is standard, I give a formal de�nition which respects the particular
construction of this model.

De�nition 3 (s1; s2; �) is a perfect-Bayesian Nash equilibrium if:

1. For each history with types hti, s1 maximizes
R
U1d[C (s1; s2) (hti)]

2. At any history hi, s2 maximizes:R R
U2d[C (s1; s2) (hi; t

i+1)]d[� (hi) (t
i+1)]

3. For any hi 2 Hi, � (hi) satis�es:

3.a) � (hi) respects Bayes�rule where applicable:

If � (hi) gives positive probability to some vector ti+1 2 T i+1 of period-types in the
�rst i + 1 periods, and s1 (hi; ti+1) gives positive probability to action a, then for any r,
�(hi; (a; r)) is the usual Bayesian update of � (hi).

3.b)� (hi) respects 	 between period i and period i+ 1:

� (hi) (fti+1g) = � (hi) (ftig � T ):	(ti) (ti+1)

The integral in 1. is expected utility for the signaller. The integral in 2. is the
expected utility of the respondent given that (hi; ti+1) is reached, integrated over beliefs
about ti+1.

Types with the same period-types up to period i but di¤erent future period-types
behave in the same way up to period i. Condition 3.b) means that even when a zero-
probability event is observed by the signaller, he should not doubt the regeneration
process 	 but given his assessment of the period-types in periods 1 to i his assessment
of future period-types will be consistent with 	.

3 Equilibrium selection

3.1 The re�nement D!

The proposed re�nement is based on this motivation: out of equilibrium actions that are
sub-optimal for all types are considered to be mistakes made by a type in his perception
of the response to those actions.6 The type considered to be making the mistake a is

6It is also possible to de�ne a re�nement based on utility loss, as follows: if a type tn is assigned
positive probability at the beginning of a period and t0n is some other type and if t

0
n would lose more

utility from taking the action a than tn then t0n is assigned probability 0 after a is observed. Propositions
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thought to become over-con�dent about the respondent�s immediate response to a and
that leads him to do a rather that his optimal equilibrium action. The set of beliefs
about responses to a that would cause type t to play a are called the (strictly/weakly)
justifying beliefs of a for t. Larger mistakes are considered in�nitely more improbable
than smaller mistakes, uniformly across types, leading to a type who would have had to
make a large error in his perception being considered in�nitely less likely than a type
who would have had to make a smaller error in order to take action a. The probability
of errors is itself in�nitely small, and no types make errors in equilibrium. This informal
argument supports the following re�nement D!: if the set of weakly justifying beliefs
for type t� is contained in the set of strictly justifying beliefs for type t��, and t�� was
considered possible (assigned probability > 0) before a was observed, then t� is given
posterior probability 0. The condition implies that beliefs have to move further from the
correct equilibrium beliefs for action a to be justi�ed for t� than for t��.

3.1.1 Justifying Beliefs

Given a perfect-Bayesian Nash equilibrium (s1; s2; �), de�ne at a history hn the justifying
beliefs of an action a for a player with tn+1 2 T n+1 as follows:

Let u� =
R
U1d[C (s1; s2) (hn; t

n+1)] be the expected utility of the optimal strategy s1
by the signaller.

Given an action a at history hn, the strategy of the respondent in the next period
is described by some function er : R ! �R giving the mixed response after the current
actions (a; r). If s02 is a strategy of the respondent, the corresponding function is the
function which takes r to s02(hn; (a; r)). The reason we describe the respondent�s next-
period strategy as a function is that he could potentially condition his next-period action
on his current action and his current action could be mixed. er(:)(�) will be measurable
for measurable �. Now given such an er : R ! �R, de�ne the strategy s02(er) as follows:
s02(er) = s2 except at (hn; (a; r)) for all r, and s02(er)(hn; (a; r)) = er(r). This strategy by
the respondent is the same as the original one but changed in period n + 1 to respond
to (hn; (a; r)) with er(r) for any r. So it is changed in the next-period response to the
action a by the signaller. Now let �(a) be the set of strategies s01 of the signaller with
s01(hn; t

n+1) = a. Then u(er) = sups012�(a)
R
U1d[C (s

0
1; s

0
2(er)) (hn; tn+1)] is the maximum

utility of the signaller in response to s02, conditional on having to play a at the current
history.

De�nition 4 For each binary relation B2 f>;�;=g, JB (tn+1; hn; a) :=

fer : R! �R with er(:)(�) measurable for measurable �, such that u(er) B (u�)g
Call J> the strictly justifying beliefs, J� the weakly justifying beliefs, and J= the

barely justifying beliefs.

1 and 2 below still hold and the structure of all arguments can remain the same: additivite separability
makes these two re�nements work in a similar way. While this re�nement has the advantage of simplicity,
D! is potentially generalizable to the non-additive case and also does not rely on cardinal utility.
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Note that an action a is optimal if the correct belief about the respondent�s response
given a -the equilibrium strategy - is a barely-justifying belief.

Given hn call the set fa : J> (tn; hn; a) 6= fg for some tng the justi�able actions. These
are the actions that are justi�ed for some type by some possibly erroneous belief about
the respondent�s response. Some actions may not be justi�ed by any belief, and the
respondent�s beliefs when confronted with these actions will not be speci�ed by the D!

criterion below.

3.1.2 De�nition of D!

De�nition 5 A perfect Bayesian equilibrium (s1; s2; �) satis�es D! if:

For any history hn = (hn�1; an; rn) and types tn1 , t
n
2 ,

if � (hn�1) assigns positive probability to tn2 ,

and if J� (tn1 ; hn�1; an) � J< (tn2 ; hn�1; an) 6= ;,

then � (hn) assigns probability 0 to tn1 .

4 The Iterated Riley solution

4.1 The Riley map

Consider the standard one-shot monotonic signalling game in which the signaller moves
�rst. Imagine that the signaller has utility uE(t; a; r) = va(t; a)+�1vr(r), and the respon-
dent response to the signaller�s perceived type is given by a stricly increasing function
r00 : T ! R. The Riley equilibrium of this signalling game is the perfect Bayesian equilib-
rium in which types separate minimally. Separation implies that the lowest type � 0 must
take his myopic optimal action a�(� 0). Each subsequent type takes his myopic optimal
action, subject to separating from lower types. Given the monotonicity assumptions, it
is su¢ cient to require each type to separate from the previous type. De�ne RILEY (r00)
to be this equilibrium, specifying an action for each type. Given any strictly increasing
function r00 : T ! R, RILEY (r00) is de�ned inductively as follows:

De�nition 6 RILEY (r00) : T ! A

RILEY (r00) (� 0) := a�(� 0)

RILEY (r00) (� i) := argmaxa2Bi va (ti; a), where

Bi =
�
a 2 A : uE (� i�1; RILEY (r00) (� i�1) ; r00 (� i�1)) � uE (� i�1; a; r

00 (� i))
	

Assumption 5 ("undesirable amax") guarantees that the set of actions Bi for which a
lower type would not want to pretend to be the current type is non-empty. Existence
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and uniqueness of the argmax above is guaranteed by single crossing and strict quasi-
concavity of uE. (As we saw earlier, uE must satisfy Assumptions 4-8 since u1 = va(t; a)+
vr(r) does.)

Each type�s action is strictly higher than the previous type�s by monotonicity (single
crossing and preference for higher responses). So by single crossing, if each lower type
does not strictly prefer take the subsequent type�s action, then any lower type does not
strictly prefer to take the action of a higher type. This is why in the function RILEY
above it was su¢ cient to require each type to separate himself from the previous type.

It turns out that the repeated signalling game can be solved by repeated use of
the RILEY function. If the signaller after his ith move is thought to be type t, the
respondent�s action in period i + 1 will be a function r00(t) of this t. If we only look at
actions of the signaller in period i and of the respondent in period i + 1 we have utility
for the signaller given by uE; this explains the use of the modi�ed utility function uE in
the de�nition above. Then given the response function r00, the signaller will take Riley
separating equilibrium actions RILEY (r00) in period i.

Note that the Riley equilibrium is de�ned without reference to any distribution of
types of the signaller. This fact is very important for analysis of the repeated game and
generates history-independence for the signaller.

4.2 The Iterated Riley solution

Under assumptions 1-9 we can now de�ne the "Iterated Riley equilibrium", a description
of play of both players on the equilibrium path. Assumption 10 (full support) will be
used later on to justify the Iterated Riley solution uniquely; it is not necessary to de�ne
it. In the Iterated Riley solution the signaller�s strategy is a function only of his current
type and the stage of the game. His action is given by �1 : f0; :::k � 1g ! T ! A.
�1(j)(tk�j) will de�ne the action of type tk�j of the signaller in the (k � j)th period.

Let f(�) : T ! T � A, f(�)(�) = (� ; �(�)), so that if � is a map from period-types
to actions, f(�) gives the type and action pair for any type.

�1 is de�ned inductively as follows:

De�nition 7 �1(0) = a�

Given �1(j), �1(j + 1) := RILEY
�
r00k�j

�
, where r00k�j(�) = r� ( (�) � f(�1(j))�1).

f(�1(j)) represents the map from types to type-action pairs in period k � j. Given
type � was believed to have been the signaller�s type in period k�j�1, the beliefs about
the type in period k � j will be  (�) and the belief about the type-action pair will be
 (�) � f(�1(j))�1. r00k�j(�) will be the myopic optimal action of the respondent in period
k � j, given that the signaller is thought to have been type � in period k � j � 1.
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Assuming that �1(j) is a strictly increasing function, r00k�i is a strictly increasing
function by assumption 3 (increasing responses to types and actions) and assumption 9
(monotonic Markovian type change) and strictly increasing �1(j), allowingRILEY

�
r00k�j

�
to be de�ned, which gives a strictly increasing function �1(j + 1). This justi�es the de�-
nition.

The Iterated Riley solution can now be de�ned in terms of �1:

De�nition 8 s1; s2 are an Iterated Riley equilibrium if for histories on the equilibrium
path:

s1 ((a1; :::ai�1) ; (r1; :::ri�1) ; (t1; :::ti)) = [�1(k � i) (ti)], where [a] is the degenerate
probability measure placing all weight on a.

s2 ((a1; r1) ::: (ai; ri)) = r�( (�1(k � i)�1 (ai)) � f(�1(k � (i+ 1)))�1) for i � 1

s2(()) = r� (	(()) � f(�1(k � 1))�1)

To understand the nature of the Iterated Riley solution, consider �rst these conditions
on s1, and s2 given �1. The signaller�s strategy (on the equilibrium path) is described
very simply by �1: �1(j) gives the map from types to actions in the period k � j. It is
independent of previous play and only dependent on the period and the current period-
type. The respondent�s strategy has a more involved de�nition. In period i + 1, he
looks at the signaller�s last action, ai. Since we are on the equilibrium path this will
be in the image of �1(k � i). Since �1 is strictly increasing it is injective and so only
one type �1(k � i)�1 (ai) will ever take that action. Beliefs about the period-type in the
next period should be7 given by  (�1(k � i)�1 (ai)). Since �1(k � (i+ 1)) gives the map
from types to actions in the current period i + 1, the expected type-action pair will be
 (�1(k� i)�1 (ai))� f(�1(k� (i+1))�1). The respondent�s action is the myopic response
r� to this. In the �rst period, the expected type distribution is 	(()) and the respondent�s
action is then r� (	(()) � f(�1(k � 1))�1).

Now consider the de�nition of �1. In the last period, subject to no signalling motives,
the signaller takes the myopic optimal action given by the function �1(0) = a�. If after
period i = k � j the signaller is believed to have period-i-type � , he can expect the
response r� ( (�) � f(�1(j))�1). There is a minimal separating equilibrium looking only
at actions in the current period and responses in the next, given by the RILEY map
applied to this response function and using utility uE with the response discounted by
the discount factor �1.

It is useful to specify a map F that gives �i+1 in terms of �i. Let the space of strictly
increasing functions from T to A be Inc(T;A).

De�nition 9 F : Inc(T;A)! Inc(T;A),

F (�) := RILEY (r00), where r00(�) = r� ( (�) � f(�)�1).
7I have not speci�ed beliefs in the Iterated Riley solution, and they are mentioned here as an aid to

understand the de�nition.
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Then we have �1(i) = F ia�.

Note that the correspondence between the signaller�s type and his action in the period
j periods from the end is the same across games with a varying number of periods, all
other speci�cations constant.

5 The Iterated Riley equilibrium and the D! condi-
tion

Here I will show the existence and uniqueness of the Iterated Riley equilibrium as a
perfect Bayesian-Nash equilibrium satisfying D!.

5.1 Supportability of the Iterated Riley solution

Proposition 1 Under assumptions 1 to 9, iterated Riley solution is supportable as a
perfect-Bayesian Nash equilibrium satisfying D!.

Proof. See appendix.

Note that the Assumption 10 (full support) is not necessary to support the Iterated
Riley solution as a perfect-Bayesian Nash equilibrium satisfying D!.

A particular Bayesian-Nash equilibrium is de�ned explicitly in the proof which satis-
�es the required properties. It has these properties:

At any point in the game (not only on the equilibrium path but at all histories with
types) the signaller takes an action given by �1. At a history hi in which the signaller
has taken actions (a1; :::ai): respondent�s belief about the signaller�s period-i type is [� j]
if ai = �1(k � i)(� j). The respondent�s belief in any period is a monotonic function of
the previous action, and is always supported on a single type. Beliefs about the period-
type ti are unchanged after period i, on and o¤ the equilibrium path. Beliefs about the
period types after period i at history hi are deduced from the Markov process  . See the
section below on uniqueness for an explanation of why these beliefs satisfy D!. Given
these beliefs, the respondent then acts myopically based on his beliefs about the type
and action he can expect in the current period. This is because the action that he takes
has will have no e¤ect on the future course of the game.

Now suppose that separation is from previous types is always binding. Then beliefs
have a particularly simple form: if ai lies in [�1(k � i)(� j); �1(k � i)(� j+1)) beliefs about
the type are still [� j]: the respondent assumes it is the lower type making a mistake and
taking too high an action rather than a higher type taking too low an action. Below
�1(k � i)(� 0) the type is believed to be [� 0] and above �1(k � i)(�h) the type is believed
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to be [�h].8

There will be other equilibria than the one checked that satisfy D!. But D! does
specify the equilibrium up to responses to unjusti�able actions. The signaller�s strategy
must be given by �1 for a D! equilibrium. The respondent must respond and form beliefs
as above after a justi�able actions; after an (out-of-equilibrium) unjusti�able action he
may form any beliefs and act accordingly.

5.2 Uniqueness

Proposition 2 Under Assumptions 1 to 10, in a perfect-Bayesian Nash equilibrium of
the model described in section 1 satisfying D!: The signaller�s strategy depends only on
the period and his type in that period via the function �1 de�ned above, by the equation
s1 ((a1; :::ai�1) ; (r1; :::ri�1) ; (t1; :::ti)) = [�1(k � i) (ti)].

The respondent�s strategy satis�es s2 ((a1; :::ai) ; (r1; :::ri)) = r�( (�1(k � i)�1 (ai)) �
f(�1(k � (i+ 1)))�1) whenever ai 2 Im(�1(k � i)�1).

And s2(()) = r� (	(()) � f(�1(k � 1))�1).

Proof. See Appendix.

Note that this equation for the signaller now holds at every history, not only on
the equilibrium path. The proposition implies an equilibrium satisfying D! must be an
Iterated Riley equilibrium.

Two facts about D1 equilibria should be called to mind to understand how the Iterated
Riley solution is selected by the D! criterion. Firstly as discussed earlier the Riley
equilibrium selected is independent of the initial type distribution. A second and related
fact is that the beliefs of the respondent are categorical and regardless of the initial
distribution assign probability 1 to some type 9. The logic of D1 is strong enough to
outweigh any disparities in the probabilities of initial types: to express this in terms
of the intuitive understanding given above of the divinity criterion, a larger mistake is
in�nitely less likely uniformly across types than a smaller one, so if one type would require
a larger mistake to justify an observed action than another, then the latter is considered
in�nitely more probable, and so the �rst type is given probability 0 regardless of how
much more likely he was than the second type before the action was observed.

This same logic applies for D! in the repeated game. We will have at every stage
a single-stage signalling game and regardless of the history at any particular stage -
regardless of the current type-distribution ascribed to the signaller by the respondent -
there will be the same map from types to action given by the Riley equilibrium. And

8Cho, Sobel [6] claim that beliefs of this form always generate a D1 equilibrium of the single-stage
monotonic signalling game. This is not quite true: it is only true when separation from previous types
is a binding constraint in the Riley equilibrium.

9For all important actions of the signaller: the "justi�able" ones in my terminology.
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while previous action by the signaller will alter the type-distribution expected in a given
period, beliefs by the respondent after the current action will be a function of that action
only and will be categorical in nature, ascribing probability 1 to a particular type.

The game is solved from the last period and the above logic applied at every stage.
Each action by the signaller in period i is paired with the respondent�s action in the
next period. In the last period there is no signalling incentive, and the signaller takes his
myopic optimal action a�. In period i for the signaller and period i+1 for the respondent,
given that the game has been solved for the remainder of the game (periods i+ 1 on for
the signaller and periods i + 2 on for the respondent) and generated the Iterated Riley
solution there, we can analyze the action in period i and response in period i + 1 in
isolation. This game will be monotonic because the respondent rewards the signaller for
signalling a higher type (see the de�nition of the Iterated Riley solution). The analysis
of this restricted game is like the analysis of the one-stage signalling game under D1.
Separation comes from the fact that if two players were to pool in equilibrium, by taking
slightly higher actions each could discontinuously increase the beliefs about him to beliefs
whose support has a minimum of at least the higher type. And minimal separation
comes from the fact that if a type were to take an action in equilibrium that is not his
myopic optimum given that he has to separate, then by moving to this myopic optimum
conditional on separation, he will (at least) maintain beliefs about him, and increase his
current period payo¤.

6 Limit properties of the Iterated Riley equilibrium

First it is useful to note the continuity of the solution with respect to the various primi-
tives de�ning it.

Fact 3 The Iterated Riley solution �1(i) : T ! A, for each i, is continuous as a function
of va, vr, �,  , r�.

To see this, observe that the function RILEY (r00) : T ! A is continuous as a function
of uE and r00. F : Inc(T;A)! Inc(T;A) is then continuous when considered as a function
of va, vr, �,  . a�. So �1(i) = F ia� is continuous as a function of va, vr, �,  , r�.

Now let  0 be the degenerate type regeneration function, with  0(t) = [t]. Note that
the full support assumption was not used in the de�nition of the iterated Riley solution.
We have seen that if we have  tend to the degenerate function  0 in which types remain
the same with probability 1, the iterated Riley solution will tend to the Iterated Riley
solution with  =  0. Let us now consider the properties of the iterated Riley solution
with regeneration function  =  0, as the number of periods from the end i tends to
in�nity, for �xed va, vr, �, r�.

First it is useful to de�ne "discounted Stackelberg" utility. The undiscounted utility
of the signaller with period-type � in any period if he can and does commit to the action
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a and is known to be type � is: va(� ; a) + vr(r
�([(� ; a)])). We can call this Stackelberg

utility. If the discount factor of the signaller is not 1 it will be more useful to consider
the "discounted Stackelberg" utility: vS(�1)(� ; a) := va(� ; a) + �1vr(r

�([(� ; a)])). This is
the utility for type � of the action a taken in the current period and plus the discounted
utility of the best response in the next period to the type-action pair (� ; a).

Given �1 and � , call the maximum value of this the discounted-Stackelberg payo¤
(which exists by continuity of all functions involved), and the unique a that maximizes
the expression (unique by the concavity assumption on v�r(a)) the discounted-Stackelberg
action aS(�1)(�).

Assumption 11 vS(�1)(� ; a) is strictly quasi-concave in a for each � 2 T .

This assumption that discounted Stackelberg utility is strictly quasi-concave is impor-
tant to the limit analysis. It is satis�ed for example when va and vr are strictly concave
and r�([(� ; a)]) is linear in a for each � . In a work incentives example where a is work
and r�([(� ; a)]) is market wage this would be a natural speci�cation.

Proposition 3 �1(i) tends to a limit �1 as i!1.

�1 is characterized as follows:

1. �1(� 0) = a�(� 0)

2. Let h be the highest solution for x of:

va(� j; x) + �1vr(r
�([(� j+1; x)])) = vS(�1) (� j;�1(� j)).

(There are one or two solutions.)

�1(� j+1) = max(h; a
�(� j+1))

Proof. See Appendix

The proof involves inductive application of a dynamical systems argument. I will
explain here some features of the process generating �1. Suppose that for a particular
type � j, �1(i)(� j) tends to a limit �1(� j) as i ! 1. If �1(i)(� j+1) also tends to a limit
�1(� j) it must satisfy �1(� j+1) = max(x; a�(� j+1)), for some x for which va(� j;�1(� j))+
�vr(r

�([(� j;�1(� j))])) = va(� j; x) + �vr(r
�([(� j+1; x)])).

This is because �1(� j+1) is either eventually given by a binding constraint of separation
from the previous type, or by the myopic optimum a�(� j+1). The �rst is the "normal"
case; the second is a failure of signalling to have any e¤ect due to types that are too far
apart.

Now consider the equation in x. The �rst part va(� j;�1(� j))+�vr(r�([(� j;�1(� j))])) is
the converged period-utility of type � j. The second part
va(� j;�1(� j+1)) + �vr(r

�([(� j+1;�1(� j+1))])) is the converged utility of pretending to be
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�1(� j+1). Assuming that the need to separate is a binding constraint, these two must
be equal. But even if we know that �1(i)(� j+1) converges we have not found what it
converges to yet because this equation may have more than one solution: it may have
one or two solutions. The lower solution lies below �1(� j) if the respondent has a direct
preference for rewarding higher types, and so in this case we can rule it out because the
limit map from types to actions must be weakly increasing. But in the reputation case
where the respondent does not care directly about the signaller�s type it is not so easy to
rule out the lower solution. It may be the case that both �1(� j) and some higher action
are solutions to the equation above. For a description of how this is resolved and the
higher solution is chosen, see the section on reputation below.

Note that the convergence is not monotonic: this has been con�rmed by numerical
computation of an example.

7 Reputation

Now make the assumption that the respondent does not care directly about the signaller�s
type, only about his action:

Assumption 12 u2(t; a; r) is a function of a and r only

It follows that r�(�ta) only depends on the probability distribution over actions. De-
�ne v�r(a) := vr(r

�(�t � [a])), which is independent of �t.

Let the highest action that gives the same Stackelberg utility for type � as action a
be aS(�1)(� ; a).

Corrolary 1 �1(i) tends to a limit �1 as i!1.

�1 is characterized as follows:

1. �1(� 0) = a�(� 0)

2. For each j, �1(� j+1) = max(aS(�1)(� j;�1(� j)); a�(� j+1))

This follows simply from proposition 3, noting that r�([(t; x)]) is independent of t and
so that h in proposition 3 is equal to aS(�1)(� j;�1(� j)). In words, if �1(� j) is weakly
above the discounted-Stackelberg action of type � j, then �1(� j+1) = �1(� j), assuming
this is above the myopic-optimal action a�(� j+1). Otherwise �1(� j+1) jumps up above
the discounted-Stackelberg action of type � j to aS(�1)(� j;�1(� j)).

Assume that separation is binding (as I show in the proof of proposition 4, this
will be true if types are close together). Let us continue the discussion of proposition
3 and examine why if �1(� j) is below the discounted-Stackelberg action, �1(� j+1) is
equal to aS(�1)(� j;�1(� j)) and not the lower �1(� j). Both are solutions of the equation
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va(� j;�1(� j)) + �vr(r
�([(:;�1(� j))])) = va(� j;�1(� j+1)) + �vr(r

�([(:;�1(� j+1))])). There
are two facts that combine to give this result. Firstly at every stage �1(i) is strictly
monotonic: there is separation of types. (A separation that does not always occur in the
limit as we have seen.) Secondly �1(� j) is below the Stackelberg action of type � j (this
is the case we are considering): it follows that for type � j small increases in expectations
about his action are more valuable than small increases in his action are painful, and so
in order to be thought to be taking the action �1(� j) + x for small x, type � j would be
willing to increase his action to �1(� j) + y where y � x. This is the logic that generates
type � j+1�s action: what would type � j be willing to do in order to be thought of as taking
type � j+1�s action. So if �1(i)(� j) is close to �1(� j) and �1(i)(� j+1)� �1(i)(� j) is small,
then �1(i+1)(� j+1)� �1(i+1)(� j) must be larger. The �rst di¤erence is the increase in
expected action that type � j will gain in pretending to be type � j+1; the second is the
increase in action that is necessary. This means that �1(i)(� j) can never become close to
�1(i)(� j+1) and is pushed away from �1(� j).

Now we can see what happens when types become dense: the main reputation result
is for this case. Suppose that u1 and u2 are de�ned continuously over an interval T =
[�min; �max] and satisfy the relevant assumptions above. De�ne the function S as follows:

De�nition 10 S : T ! A

S(�1)(�) = max(aS(�1)(�min; a
�(�min)); aS(�1)(�))

I.e. S(�1)(�) gives maximum discounted Stackelberg utility to type � over the set of
actions that give type �min at most the discounted Stackelberg utility of a�(�min). See
the diagram Fig 1. Proposition 4 asserts that as types become dense, the limit map from
actions to types �1will converge to S(�1), apart from the lowest type who must take the
action a�(� 0).

Proposition 4 Given � > 0; we can �nd � > 0 such that for any �nite set T � T with
max� min� (fj� � � j; � 2 T; � 2 Tg) < �, the limit solution �1 satis�es

j�1(�)� S(�1)(�)j < � for min(T ) 6= � 2 T .

Proof. See appendix

My result is that as the number of periods from the end tends to in�nity the given limit
holds. The model studied is �nitely repeated and over games with di¤erent numbers of
periods but the same speci�cations otherwise play is determined by the number of periods
from the end. An implication is that for any levels of patience, as the number of periods
k !1, play in period p converges to the limit found. If the number of periods is large,
reputation will take a long time to die out.10

10"Reputation e¤ects" actually are strong up to the penultimate period. However the given limit
properties are only realized further back in the game.
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Figure 1: the limit map S(�1)

7.1 Discussion

7.1.1 A modi�ed Stackelberg property

The reputation result above combines a separation property for low types with a (dis-
counted) Stackelberg property and logic. The separation property is that types above
the lowest type must separate from the lowest type making him unwilling to move from
his myopic optimal action a�(�min) and pretend to be a high type, where this willing-
ness is evaluated with (discounted) Stackelberg utility. And types whose (discounted)
Stackelberg actions lie above this point take these actions. One can think of the actions
that are in Im(�) - actions that are taken in the limit - as the actions that the signaller
can commit to: by taking an action that is in (or more exactly close to something in)
this set far from the end of the game, he we be expected to take (close to) the same
action in the next period. Thought of in this way the reputation result is that the limit
� exists and Im(�) becomes dense in [aS(�1)(�min; a�(�min); aS(�1)(�h)] but has a gap in
(a�(�min); aS(�1)(�min; a

�(�min)) and these actions no-one can commit to. This results in
the lower types pooling at aS(�1)(�min; a�(�min)).

This result is distinguished from standard reputation models in that these models
will just generate a Stackelberg property for the normal type or types: the actions that a
normal type can e¤ectively commit to are those actions which get played by behavioural
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types and these tend to be assumed to include the Stackelberg action of the normal type.

Depending on the context both parts of the curve S(�1)may be interesting, or only one
of the two, pooling or Stackelberg. If we think, following a line of thought that is found in
the standard reputation literature, that some of our types are "normal" (probable) and
others improbable, and that we can imagine a type that is so low that he would rather
take his myopically optimal action than commit to a Stackelberg action of a normal type,
and we give this low type some positive bur low probability, then our "normal" types
will take their Stackelberg actions.

In the lower part of the curve S(�1), types pool at a point determined by separation
from the lowest type. This action is higher than the actions that they would like to
commit to. But by taking an action even slightly lower than this action, they pay a
heavy cost: they are considered to be the lowest type. If they take at least the action
� = aS(�1)(�min; a

�(�min)), they will be expected to take at least this action in the next
period, while if they take an action less than � they will be expected to do a�(�min)
in the next period. This is a discontinuity that makes taking at least the action � very
important. It is appropriate to call � a reputational standard, a mark that it is important
to reach in order to prevent one�s reputation from being destroyed altogether - at least
for the next period which is as long as reputations last in this model.

This reputational standard, a novel consequence of the repeated signalling model,
can potentially be used to explain various situations in which there is a standard of
behaviour that can be thought of as a standard necessary to live up to in order maintain
a reputation. For example obedience to some social (legal or moral) or business norms
can be understood as a requirement for establishing that one is not a bad (criminal
or untrustworthy or undependable) type. The point is that these norms are often not
continuous but discrete: either one complies with them or one does not.

Let me o¤er some potential examples in more detail. High actions by the signaller
could represent good behaviour by and the respondent could be society; low actions
of society could be imprisonment for protection of society, high actions the ability to
participate fully in society. Low types are criminal; high types are upstanding citizens.
The lowest type will commit crimes; higher types follow the "norm" of the society, which is
the particular standard of behaviour, determined endogenously � by the need to separate
from the most criminal type. Many people will follow this norm and do no more than
this: they follow it because they do not want to be considered the criminal type. And
there may be high types that do more both out of natural inclination and the rewards of
being thought of as especially trustworthy and good to deal with.11 Business norms may
be thought of in the same way, with the low type being the laziest or least trustworthy.

11In contracts, Socrates, justice is of use. - Plato, The Republic

It may be more realistic to assume that in addition to treating a person favourably for being expected
to behave well, society will be well disposed to a person who is thought to be "good". The repeated
signalling model can still deal with this situation. We can still use the same mathematical de�nition of
the reputational standard and it will still be the action necessary to avoid being thought of as the worst
type. However there will no longer be pooling at this action in the limit.
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Relatively lazy types may for example prefer to work shorter hours than 9 to 5, and
would be willing to take cuts in pay to do this, but they do not because the reputation
cost of not coming up to the �xed standard is steep.

7.1.2 Technical comparison to other models of reputation

The repeated signalling model is fully calculable at all histories of the game. While this
is true of some standard reputation models ([17]) it is rare and usually even the actions of
the reputation-builder in equilibrium are often not fully speci�ed: limit results tend to be
in the form of lower bounds on payo¤s of the normal type rather than convergence of his
behaviour. By contrast the modi�ed Stackelberg property above speci�es the signaller�s
action in the limit.

The calculability of the model extends to arbitrary discount rates of both players.
The respondent�s discount factor has no e¤ect on the course of the game. The signaller�s
discount factor does and the reputation results are given in terms of �1. A simple modi�-
cation of Stackelberg payo¤s into "discounted Stackelberg payo¤s" is all that is required.
This generality is very unusual in the reputation literature, which invariably requires that
the patience of the reputation-builder goes to 1. Stackelberg results obtain when the re-
spondent is short-lived ([11]) and there exist limit results in the case when the uninformed
player�s patience tends to 1 but when the informed player�s becomes at the same time
in�nitely more patient than the uninformed ([10]): (�2; (1� �1)=(1� �2))! (1; 0). The
special case of strictly con�icting interests ([7]) is an exception, as is the reputational
bargaining model of Abreu, Gul [1], in which both discount factors tending to 1 with
di¤erences in patience tending to a limit. In general, however, reputation results require
the informed player to become in�nitely patient and in�nitely more patient than the
uninformed player. When the opponent is long lived with a �xed discount factor player
may be able to establish reputations for complex strategies under certain conditions and
do better than the static Stackelberg payo¤ ([8]). This does happen in the repeated
signalling model because reputation is established along one dimension only.

Standard reputational models are often completely general in the stage games studied,
while the repeated signalling model analyzes only a class of games in which stage game
payo¤s are monotonic and additively separable. But within the class I de�ne the model
can be completely solved and the question of what happens for any levels of patience
of both players addressed, questions which are not addressed in the standard literature.
I �nd that a reputation can be established against a patient player, even by a player
that is less patient. And I �nd that a "discounted Stackelberg" result applies when the
informed player is not patient (subject to separation from the lost type). The discounted
Stackelberg action is a novelty and just as easy to calculate as the Stackelberg action
and can easily be applied to situations in which players are thought of as impatient. One
implication of the discounted Stackelberg result for high types is that a small reduction
in the discount factor from 1 has a second order e¤ect on (limit) payo¤s of the informed
player.
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The way in which reputation is established is quite di¤erent in the repeated signalling
model from the standard approach to reputation. Reputation is a one-period property
of the repeated signalling model, with the expectation of the respondent being based on
the previous action of the signaller, and the signaller can gain or lose it immediately at
any time. This happens because it is easier, given the full support assumption, for a
type to change than to make a (larger) mistake. For a discussion of signalling without
type regeneration, in which this logic does not apply, see section 9.1. The property that
reputation can be gained or lost at any point is shared with reputational models with
imperfect observability but with much more sudden gains and losses. Without imperfect
observability, in standard reputation models, either reputation is lost immediately if at
all (revelation of the normal type) or the play from any point in the game tree may be
very unknown.

The nature of the types I consider to be an advantage of the repeated signalling model.
The commitment types of reputation models are often considered to be an unsatisfactory
element, out of place in a theory based on strategy and rationality. On the other hand it
has been argued12 as a genericity assumption they make models involving them at small
levels more reasonable than purely "rational" models without. My view is that including
behavioural types at small levels is an unobjectionable and valid method, but that the
order of the limits involved in reputational models restricts how small the probabilities
of behavioural types can be to be e¤ective. The results are found in general under a limit
as the informed player becomes in�nitely patient for a given probability of behavioural
types. If this probability is very small, the required patience may be very large indeed.
If we look at the set of discount factors which result in payo¤s a certain distance from
the Stackelberg (assuming a model that gives a Stackelberg result) as a function of the
probability p of behavioural types, we only know that this set contains (�(p); 1) for some
�(p), and this could tend to the empty set as p ! 0. For any speci�ed situation with a
given high level of patience we will need the probability of behavioural types to be high
enough to justify applying a reputation result to expect actions that are near Stackelberg.

The workings of the equilibrium di¤er from those in reputational models in that the
normal type in reputational models pools with commitment types while in the repeated
signalling model "normal types" separate from each other in each period.

Mailath and Samuelson [20] they have a model of reputation in which the lowest type�s
action is �xed and the higher type establishes a reputation by separating himself from
the lower type. They �nd that the higher type will take higher actions than he would
otherwise, which may be higher or lower than the Stackelberg action. This holds true in
this model with two types: here the lowest type�s action is e¤ectively �xed, although he
is not a behavioural type, and the higher type separates and may take an action that is
more or less than the Stackelberg action depending on the distance between the types.
But the most interesting results in the repeated signalling model come from having a
large number of types. While with two types separation from the lowest type determines
the answer: with more types this model gives both the logic of separation from the lowest

12This argument is made I believe by Fudenberg; I will give a reference and exact quotation when I
have located the article.
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type (for low types) and Stackelberg actions (for high types).

8 The general case

Suppose now that u2(t; a; r) depends on all three arguments so that r�([t; a]) is a function
of both t and a. Consider for example the work-incentives model above. The observable
productivity a of the worker (signaller) could be measured by the market (respondent)
as quantity of writing, or some other other easy and imperfect measure. Suppose that t
is the ability of the worker, with more able workers being better able to produce more
writing. It is a reasonable assumption that a worker who produces a given amount of
writing has a value to the market that is an increasing function of his ability. The wage
r�([t; a]) paid will then be strictly increasing in both t and a.

Assumption 13 r�([(� ; a)]) is continuously di¤erentiable in (� ; a) with both partial deriv-
atives strictly positive. vr(r) and r�[(� ; a)] are continuously di¤erentiable. va(� ; a) is
di¤erentiable with respect to a, with derivative continuous in (� ; a).

De�nition 11 G : T ! A

G(�1)(�min) := aS(�1)(�min; a
�(�min))

G(�1)
0(�):[ �

�a
va(� ; a) + �1

�
�a
(vr � r�)([(� ; a)])] + �1 ��� (vr � r

�)([(� ; a)])

The limit will now be given by G instead of S. G(�1) is di¤erentiable and lies above
the discounted Stackelberg curve aS(�1).

Proposition 5 Given � > 0; we can �nd � > 0 such that for any �nite set T � T with
max� min� (fj� � � j; � 2 T; � 2 Tg) < �, the limit solution �1 satis�es

j�1(�)�G(�1)(�)j < � for min(T ) 6= � 2 T .

Proof. See Appendix

Consider the one-stage signalling game with the same speci�cations with the signaller
moving �rst and utility given by uE. In the reputation case we get the discounted
Stackelberg action as the solution since the signaller is a Stackelberg leader and type-
inference has no signi�cance. In the general case the solution is given by H, say, where H
satis�es the di¤erential equationH 0(�):[ �

�a
va(� ; a)+

�
�a
(vr�r�)([(� ; a)])]+ �

��
(vr�r�)([(� ; a)])

with initial condition H(�min) = aS(�1)(�). The di¤erential equation is the same as
the di¤erential equation in the limit above but the initial condition is the discounted
Stackelberg action of the lowest type rather than the higher aS(�1)(�min; a�(�min)).

The standard one-stage signalling game can be thought of as combining commitment
and pure type-signalling - commitment trivially because the respondent observes the
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signaller�s action before moving and "pure" type-signalling because given an known action
the signaller would still want to be thought as being a higher type. The limit of the
repeated signalling game with simultaneous moves also combines commitment and pure
type-signalling. The two solutions satisfy the same di¤erential equation but the initial
condition (describing types close to the lowest) is higher in the repeated signalling game
because the lowest type takes his myopic optimal rather than his discounted Stackelberg
action. Thus apart from the lowest type there is more costly signalling in the repeated
game with simultaneous actions than in the one-stage game with the signaller moving
�rst.

9 Further work and extensions

9.1 The �xed type case

If there is no type-regeneration what will happen in the repeated signalling game? The
Iterated Riley solution can be de�ned in this case, but is no longer selected uniquely
by the equilibrium re�nement Dw. Moreover in an Iterated Riley solution for many
histories (o¤ the equilibrium path) the respondent will believe that the signaller�s type
has changed. If we were to require that the respondent�s beliefs always assign probability
0 to type-change, then the Iterated Riley solution is ruled out. (Here the di¤erence is the
di¤erence between having a type space T n with types staying the same with probability
1 and having a type space T . The space of Bayesian Nash equilibria is di¤erent because
the restrictions on beliefs after probability zero events are di¤erent.)

The criterion Dw will be weak because it relies on full support at a given stage for
its strength: if a type has probability zero before period i and but has a larger set of
justifying beliefs for a given action than any other type, Dw does not specify what beliefs
will be after that action is observed. Another criterion would do better. One possibility
that I have partly analyzed is measuring for a given type and history the error at each
period of the types actions, combining these errors into a real-valued total error via some
norm, and specifying that the respondent�s beliefs about the signaller�s type after a given
history have support in the set of types with the least total error. I �nd that if there is a
"reasonable" solution in the sense that higher actions generate higher beliefs about the
type and a continuity property holds, then all signalling must happen in the �rst period:
that is to say, on the equilibrium path, myopic actions are taken except in the �rst period.
Equilibrium play is then independent of the norm and measure of error above. However
the existence and necessity of such an equilibrium have however not yet been shown.

Kaya [15] has a model of repeated signalling in which the signaller has a �xed type.
Rather than using any re�nement she calculates the "least cost" separating equilibrium,
the separating equilibrium where it exists that is most preferred by all types. Kaya �nds
that when types are ranked in the convexity of their payo¤ functions, there will be such
an equilibrium, and in this equilibrium signalling will be either spread out or all in the
�rst period depending on the direction of the convexity ranking. The signaller moves
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�rst in the stage game and so the model does not study reputational issues.

9.2 Multi-dimensional A

If the action set A of the signaller is a product of intervals in Rn rather than R, it will
be necessary to �nd an assumption on va that gives a (uniquely) de�nable and strictly
increasing function RILEY (r00) for any strictly increasing r00 : T ! R. If this can be
found then propositions 1 and 2 go through with no changes. It will then be interesting
to see what the limit properties are. Preliminary work indicatest that if the methods can
be extended to Rn there will be a curve T ! A and the current Stackelberg result will
apply when restricted to this curve, but that the curve will be de�ned by a di¤erential
equation unrelated to any commitment property. In the one dimensional case it is the
necessity of separating from the previous type at every stage that determines the solution
and gives the reputation property. In more dimensions there will be a whole range of
actions at any stage that just separate from the previous type; the exact speci�cation of
the subsequent type�s utility on this set, which will give his Riley action, then becomes
signi�cant.

9.3 Two-way uncertainty, non-additive utility

Additive utility is a reasonable speci�cation for some situations but not others. Current
analysis indicates that what is needed is an assumption that gives a unique equilibrium
at each point in time in the actions of both players. When a good assumption is found
the game is solveable by backward induction as before, with monotonicity and single
crossing being preserved at each stage. The history-independence property will no longer
hold.

Two way uncertainty in the repeated signalling model will require the action of each
player to be both dependent on his type and to be a reward for a higher expected type
or action of the other player. With additive separability for both players the model
will involve two-way type-signalling only. A potential model is reciprocation, with types
representing something like good-will and both players being made more generous by
their own and the other player�s revealed good will. Current work studies such a model,
although outside of a limited informational setting it turns out there are di¢ cult problems
with preserving monotonicity as the game is solved backwards.

Two-way uncertainty without the additivity assumption would open up a large class of
models, with the potential to study reputational incentives on both sides. Very interesting
two-way reputational models in have been studied in the context of bargaining ([1], [2]).
Applications of two-way signalling models include oligopoly and work incentives in teams.
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9.4 A compact set of types

Ramey[22] solves the one-stage signalling game using D1 with any compact set of types
in R, generalizing Cho, Sobel [6]. The repeated signalling can be de�ned and extended
in the same way and propositions 1 and 2 (existence and uniqueness) will hold. It will
involve a more complex notation and an adapted version of the Riley equilibrium. The
arguments for the limit results will need a new approach, but it is possible that something
in the spirit of the current inductive proof will work. The bene�t of compact continuum
of types is that the limit should be exactly the function S and we should not need to take
a limit as types become dense. And a continuum of types will often be a more natural
speci�cation of a given repeated signalling situation, with a continuum being a natural
way to model types with more or less of a certain predisposition, and a continuum of
potential types being part of the limit reputation result (u1 and u2 being de�ned on the
real interval T of types). It is unlikely that this generalization will add new insights into
repeated signalling and reputation.

10 Appendix

De�nition 12 PHT!H : HT ! H projects from histories with types to histories in the
natural way.

PHT!tT
j
: HT ! tT j projects from histories with types to vectors of types in the

natural way.

P T
i

j : T i ! T for i � j projects to the jth period-type.

De�nition 13 The completion of the game C (s1; s2) : HT ! �
�
Ak �Rk � T k

�
, given

strategies of each player, is de�ned as follows:

1. Let C (s1; s2) (hti)[
�
� �

�
Ak�j �Rk�j � T k�(j+1)

��
over measurable

sets � of (Aj �Rj � T j+1) be denoted �j(�).

�j for j 2 fi; :::k � 1g is de�ned inductively by:

a. �i([(a1; :::ai) ; (r1; :::ri) ; (t1; :::ti+1)]) = 1. I.e. the existing history happens with
probability 1 in the completion.

b. If �; �;  are measurable in A;R; T respectively,

�j+1[��(����)] =
R
htj2� s1 (htj) (�):s2

�
PHT!Hhtj

�
(�):	

�
PHT!tT

j
htj

�
()d�j (htj).

This de�nes a probability measure �j+1 given �j.

2. Then over measurable sets � of
�
Ak�1 �Rk�1 � T k

�
, and for �; � are measurable

in A;R,

C (s1; s2) (hti)[�����] =
R
htk�12� s1 (htk�1) (�):s2

�
P (HT!H)htk�1

�
(�)d�k�1 (htk�1).
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This de�nes the probability measure C (s1; s2) (hti).

The integrals above exist by the measurability assumptions on s1 and s2. They de�ne
measures on the appropriate product spaces.13 1. de�nes �j inductively from j = i to
j = k � 1. 2 de�nes the probability measure C (s1; s2) (hti) given �k�1.

De�nition 14 The continuation play C+ (s1; s2) of the game, given strategies of each
player, is de�ned as follows:

C+ (s1; s2) : HT ! t�(Ai �Ri � T i), with C+ (s1; s2) (htj) 2 �
�
Ak�j; Rk�j; T k�j

�
C+ (s1; s2) (hti) := C (s1; s2) (hti) �P�1, where P projects (A�R� T )k onto the last

k � i coordinates (A�R� T )k�i.

Proof. Proof of Proposition 1: Supportability of the iterated Riley solution
as a perfect Bayesian equilibrium satisfying D!

De�ne s1; s2; � as follows:

For any hti = ((a1; :::ai) ; (r1; :::ri) ; (t1; :::ti+1)), hi = ((a1; :::ai) ; (r1; :::ri)):

s1(hti) = [�1(k � (i+ 1)) (ti+1)].

De�ne r00i (�) := r�( (�) � f(�1(k � (i+ 1)))�1).

De�ne ri(� ; a) := inffr : uE(� ; a; r) � uE(� ; �1(k�(i+1)) (�) ; r00i (�))g. (The in�mum
is taken over the set R so that inf(;) = rmax.). ri(� ; a) will be the minimum response in
the next period that would justify action a for type � .

For j � i, let �j(hi) = [sup(argmin� rj(� ; aj))]. This de�nes beliefs over the type in
the �rst i periods. Beliefs about the full k-period type are generated from these beliefs
by  .

Note that ri(� ; �1(k�(i+1))(�)) = r00i (�) trivially, while by the de�nition of the Riley
equilibrium, ri(�

0; �1(k�(i+1)) (�)) � r00i (�) with strict inequality for �
0 > � : any higher

type would strictly lose on moving to the action of a lower type. So if aj = �1(k� j) (�)
then �j(hi) = [� ].

Let s2(hi) = r00i (�i(hi)), player 2�s myopic best response response to the action ai in
period n given above beliefs.

Now I will show that (s1; s2; �) is a perfect Bayesian equilibrium. It follows that it is
an Iterated Riley equilibrium and so the proposition is proved.

13For uniqueness of the de�ned measure, note that we have de�ned the measure on all product sets,
which are a �-system generating the product �-algebra. For existence, we have de�ned a measure on
product sets. Extend additively to a measure on the class of �nite disjoint unions of product sets
(uniquely). Applying the monotone convergence theorem, this measure is countably additive on this
class, which is a ring of sets generating the product �-algebra, and so extends to a measure on the
product �-algebra by Caratheodory�s extension theorem.
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Claim 1 (s1; s2; �) is a perfect Bayesian equilibrium

Optimality of s1

Let brj+1(ai) be player 2�s action in period j + 1 in response to player 1�s action aj in
period j: brj(a) := r00j (sup(argmin� rj(� ; a))).

Player 1�s utility at history hti given player 2�s strategy above, when he takes strategy
s01 is

K1+�
i+1[vr(bri+1(ai)))]+�i+11 [va(ti+1; ai+1)+�ivr(bri+2(ai+1))]+:::+�k�11 [va(tk�1; ak�1)+

�ivr(brk(ak�1))]+�k1[va(tk; ak)], integrated overC(s01; s2)(hti), whereK is a constant (utility
up to period i) independent of s01.

This expression equalsK2+�
i+1
1 [va(ti+1; ai+1)+�1vr(bri+2(ai+1))]+:::+�k�11 [va(tk�1; ak�1)+

�1vr(brk(ak�1))] + �k1[va(tk; ak)], where K2 = K1 + �i+1[vr(bri+1(ai)))] is independent of s01.
I will show that aj = �1(k � j)(�) maximizes [va(� ; aj) + �1vr(brj+1(aj))] for any

� . It follows from this that player 1�s strategy maximizes each component [va(tj; aj) +
�1vr(brj+1(aj))] of the expression above since it puts probability 1 on aj = �1(k � j)(tj).
And so it maximizes expected utility of player 1 after any history with types hti.

By construction of �1(k � j), brj+1 as the Riley equilibrium with utility va + �1vr,
aj = �1(k � j)(tj) maximizes [va(tj; aj) + �1vr(brj+1(aj))] over Im(�1(k � j)). (As shown
above, brj+1(�1(k�j)(�)) = r00j (�).) It needs to be shown that aj = �1(k�j)(tj)maximizes
the expression over all A.

Suppose that for type �m, action a = � gives a higher value of va(�m; a)+�1vr(brj+1(a))
than a = �1(k� j)(�m). Then this is also true for any type with a lower value of ri(� ; a).
So take without loss of generality �m = sup(argmin� rj(� ; �)). Then bri(�) = r00i (�m)
given beliefs of player 2 speci�ed above.

We know that �1(k� j) � a�. If �1(k� j)(�m) � � then a�(�m) � �1(k� j)(�m) � �
and by quasi-concavity of va we must have decreasing va above a�(�m). So va(�1(k �
j)(�m)) � va(�). The actions �1(k � j)(�m) and � both generate the same response by
player 2 and so the former gives a (weakly) higher value of va(�m; :)+ �1vr(brj+1(:)). This
contradicts our assumption, so we must have � < �1(k � j)(�m).

Now suppose that � < �1(k� j)(� k�1) < �1(k� j)(� k). Since � k prefers �1(k� j)(� k)
and the corresponding response to �1(k � j)(� k�1), and the single crossing condition
holds between � and �1(k� j)(� k�1), we must have rj(� k�1; �) < rj(� k; �) contradicting
�m = sup(argmin� rj(� ; �)). So � k is the minimal type such that � < �1(k � j)(� k).

We can rule out that �1(k � j)(� k) = a�(� k) because if this were so moving below
a�(� k) to � and being thought of as the same type will hurt type � k:

So �1(k � j)(� k) > a�(� k), which implies by construction of the Riley equilibrium
that type � k�1 must exist (that � k 6= � 0) and that �1(k� j)(� k) is optimal for type � k�1
(indi¤erence between own action and the next type�s).
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So by single crossing, comparing �1(k � j)(� k) with �, we must have rj(� k�1; �) <
rj(� k; �), which again contradicts the de�nition of � k.

So s1 must be optimal.

Optimality of s2

It is su¢ cient for each action in the support of player 2�s strategy at any history to
be optimal given the rest of player 2�s strategy.

It is clear that player 2�s action at any history does not a¤ect any subsequent play
either of player 1 or of player 2.

Therefore the myopic best response is optimal.

Consistency of beliefs

1. Bayesian updating: If tk = (t1; :::tk) and �(hi)(tk) > 0, then we must have beliefs
assign probability 1 to type t1; :::ti and which are generated by  afterwards. If some type
the action ai+1 in period i+1 with positive probability then �1(k� i�1)(ti+1) = ai+1 for
a unique ti+1. On observing ai+1, player 2 assigns probability 1 to t1; :::ti+1 and beliefs
about future types are generated by  . This is the Bayesian update on the information
that the current period-type is ti+1.

2. � (hi) respects 	 after period i: by de�nition.

Therefore (s1; s2; �) is a perfect Bayesian equilibrium:

Claim 2 (s1; s2; �) satis�es D!.

Suppose not. Then for some history hn = ((a1; :::an) ; (r1; :::rn)), with history hn�1 =
((a1; :::an�1) ; (r1; :::rn�1)) in the previous period, and for some tn� = (t

�
1; :::t

�
n) and t

n
�� =

(t��1 ; :::t
��
n ) in T

n, J� (tn� ; hn�1; an) � J< (tn��; hn�1; an) 6= ; and � (hn) assigns non-zero
probability to tn� .

Consider the justifying beliefs for the action an for type tn = (t1; :::tn) 2 ftn� ; tn��g at
history hn�1.

Let u�(tn) =
R
U1d[C (s1; s2) (hn�1; t

n)] be expected equilibrium utility for player 1 of
type tn at the beginning of period n.

Given er : R! �R (satisfying the measurability requirement), let s02(er) = s2 except at
(hn�1; (an; r)) for all r with s02(er)(hn�1; (an; r)) � er(r). Let �(an) be the set of strategies s01
of player 1 with s01(hn�1; t

n) = an. Then let u(tn)(er) = sups012�(an) R U1d[C (s01; s02(er)) (hn�1; tn)],
the maximum utility of player 1 in response to s02 conditional on having to play a at the
current history.

Let s01 = s1 except at (hn�1; tn) where s01(hn�1; t
n) = an.

Now since s02(er) = s2 from period n + 1 on, and player 2�s action in period n a¤ects
player 1�s utility additively, s01 is optimal within �(an) against s

0
2(er).

31



Then C (s1; s2) (hn�1; tn) and C (s01; s
0
2(er)) (hn�1; tn) di¤er only in the period n actions

by player 1, which are �1(k � n)(tn) and an respectively, and the period n+ 1 responses
by player 2, which are r00(tn) and er(s2(hn�1)) respectively.
So u(tn)(er) � u�(tn) = [�n1va(tn; an) + �n+11 vr(er(s2(h)))] � [�n1va(tn; s1 (hn�1; tn)) +

�n+11 vr(s2(hn�1; s1(hn�1; t
n); s2(hn�1)))], regarding s1 (hn�1; tn) and s2(hn�1) as elements

of A and R since they are degenerate probability measures.

Take er� 2 J= (tn��; hn�1; an), which is possible since J< (tn��; hn�1; an) 6= ;.
[va(t

��
n ; an)+�1vr(er�(s2(hn�1)))] = [va(t��n ; s1 (hn�1; t��n ))+�1vr(s2(hn�1; s1(hn�1; t��n ); s2(hn�1)))],

extending vr here to expected utility over probability measures.

So [va(t��n ; an) + �1vr(er�(s2(hn�1)))] = [va(t��n ; �1(k � (i+ 1)) (t��n )) + �1vr(r00i (t��n ))]
So uE(t��n ; an; er�(s2(hn�1))) = uE(t��n ; �1(k � (i+ 1)) (t��n ) ; r00i (t��n )).

Let �r 2 R s.t. vr(�r) = vr(er�(s2(hn�1))). �r exists uniquely by continuity and
monotonicity of vr.

Then uE(t��n ; an; �r) = uE(t��n ; �1(k � (i+ 1)) (t��n ) ; r00i (t��n )) so ri(t��n ; an) = �r.

Since � (hn) assigns non-zero probability to tn� , J
� (tn� ; hn�1; an) � J< (tn��; hn�1; an)

by assumption and so ri(t
�
n; an) � ri(t

��
n ; an).

So ri(t
�
n; an) � �r and

uE(t�n; an; �r) � uE(t�n; �1(k � (i+ 1)) (t�n) ; r00i (t�n))

uE(t�n; an; er�(s2(hn�1))) � uE(t�n; �1(k � (i+ 1)) (t�n) ; r00i (t�n))

So er� 2 J� (tn� ; hn�1; an).
So er� is in J� (tn� ; hn�1; an) but not in J< (tn��; hn�1; an), contradicting our assumption.
QED

Proof. Proof of proposition 2 (Uniqueness)

The inductive step, proposition P (i), is de�ned as follow:

For all histories htj 2 HT j for j � i, i.e. from the (i + 1)th period on, player 1�s
strategy is described by �1(j), and this strategy is optimal against s2 even if player 2�s
strategy is altered from the equilibrium one in the (i+ 1)th period only.

It is trivial that in the last period player 1�s strategy is described by a�. So P (1) is
true.

Assume P (i).

Then for j � i, player 2�s action at history hj 2 Hj in period j + 1 when player 1�s

action in period j
�
P
Hj!A
j hj

�
is in the image of �j(k � j) is as in section II.2.ii.
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This is because player 2 at the beginning of period j gave a positive probability to all
of player 1�s possible types in that period:

If the sub-history of hj at the beginning of period j is hj�1
�
= PHj!Hj�1hj

�
, 2�s beliefs

after observing hj�1 about the type of player 1 in period j�1 are � = � (hj�1)
�
P T

k

j�1

�
�1.

By the de�nition of perfect-Bayesian Nash equilibrium, � (hj�1) respects  after pe-
riod j � 1, so:

The beliefs about player 1�s j-type after observing hj�1 are � (hj�1)
�
P T

k

j

�
�1 =R

 (t)(:)d�, which has full support over T since  (t) does for each t.

Since only one type takes each action in Im (�j) (by P (i)), player 2 observing such
an action a in period j assigns probability 1 to the appropriate type (�j) �1(a) (as being
player 1�s j-type), and forms beliefs � as in section 4.2 about player 1�s type and action
in period j + 1.

Since by the assumption P (i) player 2�s actions have no e¤ect on player 1�s future
actions, player 2 acts myopically in each period after i, and so in period j + 1 takes the
myopic best response r�(�) to player 1�s expected type-action pair �.

Now consider a history hti�1, with type � 1 at period i. Suppose that at history with
types hti�1 we replaced equilibrium strategy for player 1 by a 2 A, and at history with
types hti� (a; r; t) for any r; t replaced equilibrium strategy for 1 by �(r; t) for 2 by r̂(r).
Assume � is optimal. Then r̂ is a justifying belief for type � 1 at history ti�1 if the utility
is now at least as great as it was before.

We can take � to be the strategy �i(i) because we know this is optimal by P (i). Now
the strategy of player 1 after period i is �xed, and player 2�s actions after period i+1 as
a function of player 1�s type are �xed, independent of a and r̂.

Player 1 would then get a continuation utility as a function of a and r̂ given by
va (� 1; a) + s2 (hi�1) [vr] + � (r̂(s2 (hi�1)) [vr]) + const1 = va (� 1; a) + � (r̂(s2 (hi�1)) [vr]) +
const2.

So the utility just depends on the direct utility of a via va (� 1; a) and the expectation
of the reward in the next period r̂(s2 (hi�1)) [vr] via the value of the reward vr.

We now have the level of simplicity of the two-period signalling game where player 1
moves �rst and player 2 responds.

No pooling:

Suppose at history hi�1 action �a is in the support of two types with period� i types
� and � 0, with � < � 0, where � 0 is maximal. Observing �a, player 2 forms beliefs � about
player 1�s i-period type that are strictly less than [� 0], resulting in a response �r in the
next period. The action �a is weakly justi�ed for types � , � 0 by the belief r̂0(r) = [�r] in
period i + 1. Consider player 2�s best response r00 to the belief [� 0] about 1�s period� i
type. Let r̂00(r) = [r00] in period i + 1. Since r00 > r0, r̂00 strictly justi�es �a for types � ,
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� 0, so for small � 2 Rn, r̂00 strictly justi�es a00 = �a+ � for types � , � 0. We will 2�s actual
strategy in period i+1 as a response to a00 is going to be at least r̂00.

Suppose r̂000 weakly justi�es a00 for type � . Let r̂000(s2 (hi�1)) [vr] be V 000 and r̂0(s2 (hi�1)) [vr]
be V 0.

Then va(� ; a00) + �V 000 � va (� ; �a) + �V 0. Then by single-crossing va(� 0; a00) + �V 000 >
va (�

0; �a) + �V 0 since a00 > �a and � 0 > � . So r̂000 strictly justi�es a00 for type � 0.

So type � is assigned probability 0 by player 2 after observing a00, by criterion D!;
since any belief that would weakly justify his taking action a00 would strictly justify type
� 0.

Also note that if r̂ weakly justi�es action a00 for any type �� < � 0 then it must strictly
justify action a00 for type � 0, because type ��s utility in equilibrium is at least his utility
on taking action �a. So any type �� < � 0 is also assigned 0 probability. So player 2�s
belief is supported on ft 2 T : t � �g, so strictly justi�es type � 0, so the action �a could
not have been optimal for type � 0.

Minimal separation

If a current-type t(i)�s strategy involved taking an action that did not maximize
uE (t(i); a; r00(t(i))) subject to separating from lower types then he could change his action
to the action that does maximize this subject to separating from lower types and still
being perceived as at least type t(i), so can raise utility. (Expand)

The result then follows for period i, and by induction for all periods.

Proof. Proof of proposition 3 (Convergence of �1(i))

The proof is by induction on the type number, applying dynamical systems arguments
for each type assuming the previous type�s action converges.

�1(i)(� 0) = a�(� 0) is constant, so tends to the limit a�(� 0).

Suppose �1(i)(� j) tends to a limit � as i!1.

� is de�ned by:

1. �1(0) = a�

2. �1(i)(� 0) = a�(� 0)

3. Given �1(i+ 1)(� j), �1(i)(� j), �1(i)(� j+1), let h be the solution above a�(� j) of:

va(� j; �1(i+1)(� j))+�vr(r
�([(� j; �1(i)(� j))])) = va(� j; h)+�vr(r

�([(� j+1; �1(i)(� j+1))]))

Then �1(i+ 1)(� j+1) = max(fh; a�(� j+1)g).

Write the sequence �1(0)(� j); �1(1)(� j); ::: as x0; x1; :::. xj ! �.

Write the sequence �1(0)(� j+1); �1(1)(� j+1); ::: as y0; y1; :::.
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LetA(x) := va(� j; x) andBi(x) := va(� j; xi+1)+�vr(r
�([(� j; xi)]))��vr(r�([(� j+1; x)])).

A is de�ned on [a�(� j); amax] and is strictly decreasing and continuous on this set.

Then yi+1 = max(A�1Bi(yi); a�(� j+1)).

De�ne B1(x) := va(� j;�) + �vr(r
�([(� j;�)]))� �vr(r

�([(� j+1; x)])).

An eventual lower bound on the sequence yi+1.

Consider the function Fi = A�1Bi. (So that yi+1 = max(Fi(yi); a�(� j+1)).)

Given � and i 2 f0; 1; :::g, consider the set Si(�) = fx : Fi(x) � x + �g = fx :
Bi(x) � A(x+ �)g.

Si(�) = fx : va(� j; xi+1) + �vr(r
�([(� j; xi)])) � �vr(r

�([(� j+1; x)])) + va(� j; x+ �)g.

Since vr(r�([(� j+1; x)])) is concave by assumption and va(� j; x + �) is concave in x,
Si(�) is convex, i.e. an interval.14

De�ne S1(�) similarly in terms of B1 and we get S1(�) convex too.

(S1(�) = fx : va(� j;�) + �vr(r
�([(� j;�)])) � �vr(r

�([(� j+1; x)])) + va(� j; x+ �)g.)

So we have that for i 2 f0; 1; :::g [ f1g, Fi(x)� x is quasi-concave. We can see also
that since va(� j; x+�) is strictly quasi-concave, Fi(x)�x must be strictly quasi-concave.

Let �i be the value of x that maximizes Fi(x)� x. It follows from quasi-concavity of
Fi(x)� x that for x � y � �i, Fi(y)� Fi(x) � y � x.

Now consider S1(0). S1(0) contains �.

Let l1 = inf(S1(0)) 2 [�1;�] and h1 = sup(S1(0)) 2 [�;1).

Suppose that l1 < h1. I will show that in this case yi+1 is bounded away from l1
eventually.

De�ne li; hi similarly when Si(0) 6= fg.

Take n large enough so that for m � n :

1a. Sm(0) 6= fg

1b. kFm � F1k < �. (Uniform metric here as above.)

1c. j�m � �1j < �

Where � is chosen such that:

2a. 2� < �1 � l1.

2b. F1(�1 � �)� �1 > 0.

14These assumptions have been weakened in the main text and there is one point at which this proof
needs minor adjustments, to be added shortly.
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By condition 2b, if x � �1� �; F1(x) > �1 and so by condition 1b, Fi(x) > �1� �.
So max(Fm(x); a�(� j+1)) > �1 � �. This implies that if sequence yi ever leaves the set
(�1; �1 � �), it never returns.

Suppose the sequence yi remains inside (�1; �1 � �) for ever. Otherwise yi has
eventual lower bound �1 � �.

yi > xi is a general property of the iterated Riley solution.

We had earlier Fm(ym)� Fm(xm) � ym � xm for xm � ym � �m.

ym+1 � xm+1 = max(Fm(ym); a
�(� j+1)) � xm+1 � Fm(ym) � Fm(xm) � ym � xm for

xm � ym � �m.

The �rst inequality holds because max(Fm(ym); a�(� j+1)) � Fm(ym) and Fm(xm) �
xm+1.

�1 � � < �m for m � n.

So for m � n, ym � xm � � := yn � xn > 0

Since xm ! �, ym is eventually bounded below by � + �=2 > l1.

Conclusion 1 If l1 < h1; ym is bounded below eventually by a lower bound b strictly
above l1.

Now we can show that ym !M = max(h1; a
�(� j+1))

Case 1 Suppose l1 < h1.

Let Gi(x) := max(Fi(x); a�(� j+1)) for i 2 f0; 1; :::g [ f1g.

F1 on the set [b; amax] has F1 > x belowM and F1 < x aboveM and no other �xed
points.

M is a global attractor and so the sequence de�ned by ym+1 = Gm(ym) converges to
M since Gm ! G1 and ym remains in (b; amax).

Case 2 Now suppose l1 = h1

Then l1 = h1 = � since � 2 S1(0).

Let M = max(h1; a
�(� j+1)) = max(�; a

�(� j+1)) as before.

On [�; amax] G has only one �xed point M , and above this G(x) < x.

Take � > 0. Let infx2[M+�;amax](x�G(x)) = �.

Choose n such that for m � n, kGm �G1k < �.
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When ym �M + �, ym+1 = Gm(ym) � Gm(M + �) < G(M + �) + � �M + �

So if ym reaches the set (�1;M + �], it stays there.

And above this set, ym decreases by at least � each time. So ym remains in the set
(�1;M + �] eventually.

We also know that ym > xm ! �, and ym � a�(� j+1), so ym > �� � eventually .

And ym > a�(� j+1) always. So ym > M � � eventually.

Since � is arbitrary, ym converges to M .

QED

Proof. Proof of Proposition 4

� and � as in the statement.

On T , aS(�1)(�) > a�(�). Since both aS and a� are continuous and T compact, we
can take �1 such that aS(�1)(�) > a�(� 0) for j� 0 � � j < �1.

Take � � �1.

Claim 3 �(�) > a�(�) for � 2 T = f� 0; :::�ng; � > � 0.

By corollary (N), for j > 0, �1(� j) � aS(�1)(� j�1;�1(� j�1)) � aS(�1)(� j�1).

So �1(� j) � aS(�1)(� j�1) > a�(� j) since j� j � � j�1j < � � �1. This proves the claim.

So we know �1(� 0) = a�(� 0), and for each j, �1(� j+1) = aS(�1)(� j;�1(� j)).

aS(�1)(� j;�1(� j)) = �1(� j) when �1(� j) � aS(�1)(� j). So on f� j : aS(�1)(� j) �
aS(�1)(� 0; a

�(� 0))g, �1(� j) = aS(�1)(� 0; a
�(� 0)). Let the last such � j be ��.

Take �2 < �=2 such that for aS(�1)(�)��2 � x � aS(�1)(�), aS(�1)(� ; x) < aS(�1)(�)+
�=2. This is possible because as aS(�1)(� ; aS(�1)(�)��2) as a function of � is continuous,
is increasing in �2 and converges pointwise to aS(�1)(�) as �2 ! 0, so converges uniformly
to aS(�1)(�) as �2 ! 0.

Now take �2 such that for j� 0� � j < �2, jaS(�1)(� 0)� aS(�1)(�)j < �2. This is possible
because aS(�1) is continuous and so uniformly continuous on T .

Suppose that aS(�1)(� j)� �2 � �1(� j) < aS(�1)(� j) + �=2. Assume that � < �1; �2;.

If �1(� j) � aS(�1)(� j), �1(� j+1) = aS(�1)(� j;�1(� j)) = �1(� j), so aS(�1)(� j+1)��2 �
aS(�1)(� j) � �1(� j) = �1(� j+1) < aS(�1)(� j) + �=2 < aS(�1)(� j+1) + �=2.

If�1(� j) < aS(�1)(� j) and aS(�1)(� j+1)��2 < aS(�1)(� j) < �1(� j+1) = aS(�1)(� j;�1(� j)) <
aS(�1)(� j) + �=2 < aS(�1)(� j+1) + �=2.

So aS(�1)(� j+1)� �2 � �1(� j+1) < aS(�1)(� j+1) + �=2.

Let S 0(�) = max(aS(�1)(� 0; a�(� 0)); aS(�1)(�)).
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It follows that j�1(� j)� S 0(� j)j < �=2 for j > 0.

Take �3 � �1; �2 small enough so that jaS(�1)(� ; a�(�))� aS(�1)(�min; a�(�min))j < �=2
for j� � �minj < �3. Then jS 0 � Sj < �=2.

So for � < �3, j�1(� j)� S(� j)j < �. QED

Proof. Proof of Proposition 5 (sketch)

1. The di¤erential equation is solvable and has a solution that lies strictly above the
discounted Stackelberg curve. Let the di¤erence be at least �.

Note that above � above the discounted Stackelberg curve �
�a
vS(�1) is bounded above

away from 0: �
�a
vS(�1)(� ; a) � k < 0 for a � aS(�1)(�) + �.

2. Consider the process starting at �1(� 0) = aS(�1)(�min; a
�(�min)) and generated by:

va(� j;�1(� j+1)) + �1vr(r
�([(� j+1;�1(� j+1))])) = vS(�1) (� j;�1(� j)).

This is equivalent to:

[vS(� j;�1(� j+1))�vS(�1) (� j;�1(� j))]+�1[vr(r�([(� j+1;�1(� j+1))]))�vr(r�([(� j;�1(� j+1))]))] =
0

3. Using the intermediate value theorem, write this as: (�1(� j+1)��1(� j)) ��avS(� j; �)+
�1(� j+1 � � j)

�
��
[vr(r

�([(�;�1(� j+1))]))], where � 2 [�1(� j);�1(� j+1)] and � 2 [� j; � j+1].

It follows that �1 above � 0 has uniform Lipschitz constant K =
max( �

��
(vr(r�([:])))

k
,

assuming it remains � above the discounted Stackelberg curve:

4. Rewrite the equation above as:

�1(�j+1)��1(�j)
�j+1��j = �1

�
��
[vr(r�([(�;�1(�j+1))]))]

�
�a
vS(�j ;�)

2 Conv[�1
�
��
[vr(r�([(�;a)]))]
�
�a
vS(�;�)

]

5. Now consider the solution to the di¤erential equation G:

G1(�j+1)�G1(�j)
�j+1��j 2 Conv[�1

�
��
[vr(r�([(�;a)]))]
�
�a
vS(�;�)

], where this is taken over (� ; a) 2 [� j; � j+1] �
[�1(� j);�1(� j+1)].

6. The range of this convex hull tends to zero uniformly as the distance between types
tends to zero. Take any � > 0, then choose �2 > 0 such that when all types are within
�2 of each other, the convex hull above has range at most � <

�
2(�max��min) .

Therefore (�1(� j)��1(� 0))� (G(� j+1)�G(� 0)) � 2�(� j� � 0), as long as �1 remains
above � above the discounted Stackelberg curve:

7.Combining 3 and 6, the solution remains above � above the discounted Stackelberg
curve:

8. �1(� 1) is arbitrarily close to aS(�1)(�min; a�(�min)) for �2 small enough, which is
arbitrarily close to G1(� 1).
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The result follows.
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