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Abstract

Most work on achievement peer effects focuses on their shape and variables that transmit
them. But these effects are generated by different mechanisms, with potentially different pol-
icy implications. Also, the endogeneity of unobserved effort may bias the estimation of peer
effects. This paper proposes and estimates a model that explicitly considers the student effort
decision and achievement production in a class. Three mechanisms for peer effects are consid-
ered: a production externality of peer effort, the effect of lagged achievement heterogeneity on
production, and the effect of peer characteristics in the cost of effort. The model is estimated
using data for Chile. Results show a large and positive production externality, and mixed co-
efficients for the other two mechanisms. Counterfactual changes on class composition or the
level of peer characteristics have larger effects on achievement than on effort. Students com-
pensate to some degree the changes in the quality of their peer group through their effort, and
thus policies are predicted to have a smaller effect than when the student effort decision is not
considered.

I Introduction

In recent years, economists have been increasingly interested in studying peer effects, i.e., interde-

pendencies between individual decisions that are taken jointly by members of a group. Peer effects

have been studied for various socio-economic situations: crime, obesity, smoking behavior, sexual

initiation, employment search and several others (see Blume, Brock, Durlauf and Ioannides, 2010;

Durlauf, 2004, for some surveys).
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One area of particular interest is the study of peer effects in cognitive achievement. The grow-

ing literature has provided strong evidence that classmates have an important effect on the deter-

mination of achievement. These studies also recognize the existence of different mechanisms that

can generate these effects (Duflo, Dupas and Kremer, 2011; Hoxby and Weingarth, 2006). But

in practice, little attention has been given to the identification and estimation of said mechanisms

(Blume et al., 2010; Richards, 2012).1

These peer effects estimates are thus a composite of different mechanisms. Still, their study

has given many valuable contributions. Among them, some consensus has been reached regarding

the shape of peer effects, and what variables are most important in the transmission of social

interactions. But the explicit consideration of the underlying mechanisms is important for two

reasons.

On one hand, some context features require attention when studying peer effects. First, the

outcome variable (e.g. test scores, graduation rates or some other measure of achievement) is not

a behavioral variable per se, as in other topics where peer effects have been studied. It depends

both on behavior and predetermined characteristics like ability or socio-economic background.

Second, the behavioral variable, effort, is typically not observed. It may also depend on observable

characteristics of the student and her peers, and this endogeneity may bias the estimation of peer

effects, even providing estimates with the opposite sign of the true relationship (Cooley, 2009).

On the other hand, different mechanisms may potentially have different policy implications.

The composite parameters of peer mechanisms deliver predictions that are only valid under the

current policy regime, and may not be useful to inform the effect of out-of-sample predictions or

alternative policies on achievement. This point is stressed in the experiment by Carrell, Sacerdote

and West (2011). They used randomly allocated groups to estimate composite nonlinear peer

effects, and then used their estimates to create “optimally” sorted peer groups. The design sorted

1 Blume et al. (2010) write: “A final area that warrants far more research is the micro foundations of social
interactions. In the econometrics literature, contextual and endogenous social interactions are defined in terms of
types of variables rather than via particular mechanisms. This can delimit the utility of the models we have, for
example, if the particular mechanisms have different policy implications.” (p. 941)

2



incoming student into groups in a specific way to increase the grades of the lowest ability students.

Contrarily, they observe a negative and significant treatment effect for those students, a positive

and significant effect for middle students, and no effect for high ability students.

This highlights the danger in using composite estimates to perform out-of-sample predictions.

The main problem is not the choice of an appropriate specification (Hurder, 2012), but the need of

a deeper understanding of the endogenous response of the students and the underlying mechanisms

that drive social interactions.

This paper proposes a behavioral model of student effort and achievement, with different mech-

anisms that generate peer effects, and estimates the magnitude and relevance of each peer mecha-

nism. In this sense, the paper contributes to bridge the gap between the theoretical and empirical

literatures, with a fully specified model of student effort and peer interactions that is identified and

estimated.

The model proposed considers explicitly the role of own and peer effort. Students selected

into a class choose their effort to maximize utility, which depends on their current achievement

and the cost of effort. This effort is needed to produce current achievement, which occurs using

a nonlinear value-added function. Both effort and achievement are observed to all members of

the class, but are only observed with error by the econometrician. These features account for four

common problems in the estimation of peer effects: self-selection, identification, measurement

error in regressors, and omitted variables bias.

The model separately identifies three mechanisms for peer effects. First, the production of

achievement depends directly on the average effort made by peers, as a production externality.

Second, observable peer characteristics affect the individual cost of making effort. Third, the

level of heterogeneity of lagged achievement affects the productivity parameters, in particular the

productivity of own effort (Ding and Lehrer, 2007; Hoxby and Weingarth, 2006; Kang, 2007).

The model does not have an analytic solution; however it is possible to prove that the equi-

librium exists and is unique under mild assumptions on the parameters. Uniqueness thus comes
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from the parametric assumptions of the model, and is not general to models of social interactions

(Bisin, Moro and Topa, 2011). Due to the possibility of the Reflection Problem (Manski, 1993),

identification is a key issue for the estimation of peer effects. Although this problem does not

occur in nonlinear models (Brock and Durlauf, 2001b; Durlauf and Ioannides, 2010), other identi-

fication problems may be present, and thus the issue is given detailed attention. The parameters of

the model are identified using information from the measurement equations for effort and achieve-

ment, from the moment conditions given by the production function of achievement, and from the

first order condition of the student problem.

As previously stated, this paper contributes to bridge the gap between theoretical and empirical

studies of peer effects. Several authors have provided models to study general contexts of social

interactions (Bisin et al., 2011; Blume et al., 2010; Brock and Durlauf, 2001a,b; Durlauf and

Ioannides, 2010). However, the two main differences between these papers and the context studied

here (i.e. the unobservability of the behavioral variable and the mixed nature of the outcome

variable) imply that the usual models and estimation techniques for peer effects models need to be

adapted to the context of cognitive achievement.

Other theoretical models of peer effects are specific to cognitive achievement. Lazear (2001)

presents a model of class size determination with peer externalities, but these are given and stu-

dents do not choose how they behave. Cooley (2009) shows how the linear-in-means model of peer

effects is not identified, beyond the Reflection Problem, when several unobserved mechanisms are

included in the model and only one observed variable is used as a proxy. A related literature is

the family of identity models, where students choose their social category and then school effort

to match the ideal of the category (Akerlof and Kranton, 2002; Austen-Smith and Fryer, 2005).

Cicala, Fryer and Spenkuch (2011) develop a Roy model of social interactions in which the pro-

duction of two activities (study or mischief) occur within peer groups, and individuals choose their

sector to maximize “social income”.

A few empirical papers give more emphasis to peer effects mechanisms, but do not estimate

directly the size of the different mechanisms. Cooley (2008) presents a nonparametric model
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of effort choice similar to the one presented here, but the peer mechanisms are not separately

identified. Hoxby and Weingarth (2006) and Duflo et al. (2011) estimate peer effects, and discuss

in detail the theoretical models and mechanisms that could give rise to the patterns they observe.

Unfortunately, they do not estimate the models discussed directly. Lavy and Schlosser (2011)

examine the existence of gender peer effects in different teacher and student variables that may

affect achievement, but they do not estimate explicitly how these variables act as mechanisms on

achievement.

The model proposed can be estimated using a Simulated Maximum Likelihood algorithm

(Laroque and Salanie, 1989). This algorithm is applied to data from Chile’s SIMCE, a standard-

ized test that students take in 4th, 8th or 10th grade, depending on the survey year. The dataset

contains students that gave the test twice: 4th grade in 2005 and 8th grade in 2009. It has several

features that make it attractive to use: it is a large national database, including all students in the

country, from both public and private schools, with detailed information about the students and

their classroom, parents and teachers.

The parameters are precisely estimated, and provide evidence of significant peer effects. The

effect of peer effort on production is positive and relatively large. The peer parameters on the cost

of effort are not always positive: some variables have a positive effect on own effort by decreasing

its cost, but others increase it or have no significant effect. Finally, class heterogeneity has a mixed

impact on productivity: it increases some parameters of the production function but decreases

others. Because the model is nonlinear, the parameter values are not very informative about the

effect of the different variables on student outcomes, and thus marginal effects are calculated. The

model predicts a rich pattern of marginal effects.

Finally, the estimated model is used in counterfactual analysis, this is, out-of-sample predic-

tions of effort and achievement under different policies that affect peer group composition or char-

acteristics. This is particularly useful to analyze policies where isolating the causal effect or ob-

taining an appropriate control group is hard. These counterfactuals help understand in more detail

the strength and patterns of social interactions, as they exogenously change different dimensions
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of the model, one at a time. This sheds some light on the way in which peer effects operate in the

classroom.

The model is used to analyze six different policies. The first counterfactual, providing tutors

to the students, tries to isolate the endogenous effect, by exogenously lowering the cost func-

tion of the students. Counterfactuals 2 to 4 explore the effect of changes in peer characteristics,

by exogenously increasing the number of inputs at home, or analyzing same-gender schools and

tracking programs, this is, changing class composition according to gender or lagged achievement.

Counterfactual 5 analyzes the effect of class size on the magnitude of peer effects. Finally, Coun-

terfactual 6 shows how the model can be used to analyze the cream-skimming effect of school

choice programs, and to separate the effect of student characteristics and class composition from

the productivity of the school.

In general, the results are similar to studies that identify the causal effect of policies using quasi-

experimental or experimental methods. The model proposed is able to separate the mechanisms

that generate those effects.

The results show interesting peer effects. The endogenous effect is positive and significant,

very small on effort but of moderate size on achievement. The contextual peer effect may be

positive or negative depending on the variable considered, and this may generate counterintuitive

effects on achievement. In general, observed contextual variables have small or negative effects;

instead, the peer previous achievement has a moderate to large effect. Some policies have larger

effects on effort than achievement, but others work the opposite way, especially those related to

class composition. However, peer effects on achievement seem to be larger than on effort. Finally,

students compensate to some degree the changes in the characteristics of their peer group through

their effort. This implies that policies are predicted to have a smaller effect than when the student

effort decision is not considered.

The paper proceeds as follows. Section II describes the evidence of nonlinear peer effects in

cognitive achievement. Sections III and IV outline the model of student behavior and show the
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existence and uniqueness of the equilibrium of the student game. Section V describes the dataset

and the variables used in the estimation. Section VI proves the identification of the parameters of

the model. Section VII discusses the results from the estimation. Finally, Section VIII implements

the counterfactual analyses, and Section IX presents the main conclusions and future lines of work.

II Empirical Evidence of Nonlinear Peer Effects

The estimation of peer effects has provided valuable insight into the shape of achievement peer

effects, although these are composite estimates of different mechanisms. The first contribution has

been the specification on the functional form. The baseline model is the linear-in-means specifica-

tion (for example, Carrell, Fullerton and West, 2009; Hanushek, Kain and Rivkin, 2009; Hoxby,

2000b, among many others), but there has been growing evidence that peer effects are nonlinear,

this is, that the size of peer effects depends on own and peer characteristics (Burke and Sass, 2008;

Carrell et al., 2011; Cooley, 2008; Ding and Lehrer, 2007; Gibbons and Telhaj, 2008; Pinto, 2010;

Sacerdote, 2001). This specification also may be theoretically preferrable, both because it has more

interesting consequences for policy interventions, and because the linear model imposes very strict

restrictions on the behavior of students and the production of achievement (Alcalde, 2012).2

The second contribution has been determining what variables are most important in the trans-

mission of social interactions. The relevant variable seems to be peer ability or peer lagged achieve-

ment. Once appropriately controlling for this variable, some studies find that there are no other sig-

nificant contextual variables (Gibbons and Telhaj, 2008; Kang, 2007; Vigdor and Nechyba, 2004;

Zabel, 2008), or that only the gender composition of the class is relevant, with a positive effect of

the proportion of females (Hoxby and Weingarth, 2006; Lavy and Schlosser, 2011).

The largest current discussion refers to the specific shape of these peer effects. There is a

very broad set of specifications used to estimate nonlinear peer effects. This may be related to the

2 Because in a linear model the peer effect is homogeneous, total achievement is invariant to the specific distribution
of students across classes, and thus policy interventions only have distributional consequences and cannot result in
global welfare gains.
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limited attention that has been given to the underlying mechanisms, which may suggest criteria

regarding the functional form to be estimated.

Hurder (2012) notes that the nonlinear models most commonly used are usually extensions of

a linear-in-means model. The simplest nonlinear models are “linear-in-moments”, and include the

mean and standard deviation of peer baseline ability (Burke and Sass, 2008; Vigdor and Nechyba,

2004; Zabel, 2008). Other studies use a “linear-in-shares” specification, where current achievement

depends on the share of peers in a specific segment of the baseline ability distribution (Lavy, Silva

and Weinhardt, 2009; McEwan and Soderberg, 2006), or on interactions between the relative po-

sition of the student and these shares of peers (Burke and Sass, 2008; Carrell et al., 2011; Gibbons

and Telhaj, 2008; Hoxby and Weingarth, 2006; Sacerdote, 2001; Zimmerman, 1999). The more

sophisticated models are semiparametric: partial linear models, where the specification is linear

but the mean peer variable enters nonparametrically (Ding and Lehrer, 2007; Rodriguez, 2010),

single index models (Pinto, 2010) and quantile regressions (Cooley, 2008; Ding and Lehrer, 2007;

Kang, 2007). Froelich and Michaelowa (2011) estimate a nonparametric model for textbooks. Fi-

nally, there is some evidence of peer effects on tracking experiments (Carrell et al., 2011; Duflo

et al., 2011).

These studies find positive peer effects, i.e., having a better peer in terms of lagged achievement

improves own achievement. But Ding and Lehrer (2007) and Pinto (2010) find increasing peer ef-

fects, this is, larger peer effects for students with high lagged achievement. Instead, Burke and

Sass (2008) and Rodriguez (2010) find larger peer effects for students with low lagged achieve-

ment. Lavy et al. (2009) find negative peer effects arising only from bad peers at the very bottom

of the ability distribution. Sacerdote (2001) and Carrell et al. (2011) find U-shaped peer effects:

having a top student benefits low and top students more versus middle students. Finally, Burke

and Sass (2008); Ding and Lehrer (2007); Kang (2007) and Zabel (2008) find a positive effect

of mean peer lagged achievement and a negative effect of the standard deviation of peer lagged

achievement.

As noted above, a few empirical papers give more emphasis to peer effects mechanisms.Hoxby
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and Weingarth (2006) rationalize their evidence on shares specifications with models where there

is a positive effect of mean peer ability but also a positive effect from homogeneity, but they do not

estimate these models directly. The same models rationalize the tracking evidence from Carrell

et al. (2011) and Duflo et al. (2011). Lavy and Schlosser (2011) suggest that the positive peer

effects of girls they find are due mostly to compositional change, namely due to having more girls

in the classroom and not due to improved behavior of peers.

Therefore, despite the success in the contributions made by the literature so far, little attention

has been given to the separate identification and estimation of the possible mechanisms that gen-

erate those estimates. As explained previously, these mechanisms may have potentially different

policy implications. Also, the endogeneity of unobserved effort may bias the estimation of peer

effects. The next section will make explicit these ideas with a model of student effort choice and

achievement production.

III Model Description

The current section presents a model of student effort choice in which peer effects arise. The

education process occurs in two stages, a first stage in which students are assigned to schools, and

a second stage in which effort is chosen and achievement is produced. The model includes three

separate mechanisms of peer effects. Both effort and achievement are observed to all members of

the class, but are only observed with error by the econometrician. These features account for four

common problems in the estimation of peer effects: self-selection, identification, measurement

error in regressors, and omitted variable bias.

The model is as follows. Consider a population of students, indexed by i. In the first stage,

each of them is assigned to a group or class, indexed by g. Each student i in g is characterized

by a vector of observable characteristics Xig of size KX , and a measure of own achievement in

the previous period Aig0, or lagged achievement, unobserved to the econometrician but measured

with error in the data. All of these characteristics are predetermined. Each group g of size mg is
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characterized by an unobserved productivity parameter αg that captures teacher and school quality,

which is fixed across classmates.

Group assignment is not at random. The selection of students to each class follows a common

rule based on unobservables that generates sorting of students, conditional on observable variables.

These students also may have been classmates in the past and shared common factors (Gibbons

and Telhaj, 2008; Hanushek, Kain, Markman and Rivkin, 2003). These two features imply that

lagged achievement is correlated among classmates. In the same way, teachers are matched into

student groups based on unobservable characteristics, conditional on observable variables, gener-

ating correlation between class productivity and lagged achievement of the pupils. Therefore, the

joint probability distribution of lagged achievement and unobserved productivity in a class g is

assumed to follow a normal multivariate distribution of size mg + 1:



αg

A1g0

...

Amg0


∼ N





Ygπt

Z1gπs
...

Zmgπs


,



σ2
t σst . . . σst

σst σ2
s . . . σp

... . . .

σst σp . . . σ2
s




where Yg s a vector of observable school and teacher variables of size KY , and Zig is a partition

of Xig of size KZ ,3 and the variance of lagged achievement depends on the gender of the student,

this is, σ2
s ∈ {σ2

sm, σ
2
sf}.4

In the second stage, once groups are assigned, each student i in group g chooses effort in the

current period eig, which is needed to produce achievement. The utility function for the student is

given by

Uig = Aig1 −
(
c0 +Xigβ + X̄−igδ

) e2ig
2

3 Zig is not necessarily a subset of Xig; this condition is not required for equilibrium characterization or for
identification. Nonetheless, because Xig will determine achievement in the current period, consistency of the model
requires that similar characteristics determine lagged achievement in the previous period. But because individual
characteristics are not observed for the previous period, Zig includes the variables in Xig that are time invariant.

4A standard and related selection correction in the literature is to use individual and school by year fixed effects
(Cooley, 2008; Hanushek et al., 2003; Hoxby, 2000b). The lack of longtudinal data prevents its use here.
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and depends on own achievement in the current periodAig1, and the cost function cig = c0+Xigβ+

X̄−igδ that measures the cost of effort. This cost function depends on individual variables Xig, and

the average of these background characteristics for the peers of i, X̄−ig where the subscript −i

indicates that student i is excluded from the peer group and from this average.

Same as lagged achievement, current achievement and effort are perfectly observed to the mem-

bers of the group, but unobserved to the econometrician. Current achievement Aig1 is produced

with a nonlinear value-added function (Todd and Wolpin, 2003):

Aig1 = Cig(Aig0)
γαg(1 + ēφ−ig)e

ωg

ig

that depends on lagged achievement Aig0, productivity of the class αg, own effort eig and aver-

age peer effort ē−ig. The coefficients Cig and ωg vary with individual and class characteristics

respectively:

Cig = WCigκC

ωg = Wωgκω

where WCig is a vector of individual and class characteristics of size KC , and Wωg is a vector of

school variables of size Kω. The coefficients γ and φ are fixed in the population.5 A variable of

particular interest that is assumed to enter WCig and Wωg is the level of heterogeneity of the class,

measured as the standard deviation of lagged achievement in the group. The model assumes that

the heterogenity of lagged achievement in the class affects the learning productivity of the students,

both in the level of production and in the marginal productivity of own effort (Ding and Lehrer,

2007; Duflo et al., 2011; Hoxby and Weingarth, 2006; Kang, 2007).

Effort eig, and therefore achievement, is determined by the equilibrium of the student game in

the class. Under a few parameter constraints, this equilibrium exists and is unique, as it will be

5The model assumes that education technology is common knowledge, and that the only difference between schools
is the level of inputs.
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shown in the next section.

The model proposed allows for three different mechanisms by which peer effects can affect

student effort. First, the average effort made by peers operates as an externality in production

with parameter φ. Second, observable peer characteristics affect the cost of making effort for the

student, measured through δ. Third, the level of class heterogeneity affects the productivity pa-

rameters Cig and ωg. These three mechanisms will affect the effort decision of the student and

thus the production of achievement. Lagged achievement is predetermined in the model and thus

is it another channel for contextual effects. The model assumes that peer lagged achievement has

a direct effect on own productivity through class heterogeneity, and an indirect effect through the

effort decision of the peers and the endogenous effect. Note there is no direct effect of mean peer

lagged achievement on own effort; these different mechanisms will play a role on the counterfac-

tual analysis.

IV Existence and Uniqueness of Equilibrium

This section proves that, although the model does not have an analytic solution, under mild suffi-

cient parameter conditions the equilibrium of the student game exists and is unique. This implies

that effort eig, and therefore achievement Aig1, are uniquely determined by the equilibrium of the

student game in the class.

The assumptions on the parameters are that the marginal productivities of own effort and of peer

effort are restricted to the [0, 1] interval, and the cost of making effort is always positive. Thus,

uniqueness comes from the parametric assumptions of the model, and is not general to models of

social interactions (Bisin et al., 2011). 6

For simplicity, define the cost function cig and the predetermined variables that enter individual

6It is extremely difficult to find necessary conditions in this model. The equilibrium depends on the characteristics
of the school and of every student in the class, and on the realizations of the unobserved variables, and thus it is
possible that an equilibrium exists even if the constraints on the parameters do not hold.
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achievement Kig:

cig = c0 +Xigβ + X̄−igδ

Kig = Cig(Aig0)
γαg

and thus achievement can be written as:

Aig1 = Kig(1 + ēφ−ig)e
ω
ig

IV.1 Existence of the Effort Best Response Function

The student problem is solved by a unique effort best response function if 0 < ωg ≤ 1, 0 ≤ φ and

cig > 0. If these restrictions hold, then there is a unique optimal level of own effort for each level

of peer effort.

The first order condition of the student problem is:

ωgKig(1 + ēφ−ig)e
ωg−1
ig − cigeig = 0 (1)

The solution to this equation satisfies the second order condition, and thus it is a maximum, if

ωg ≤ 1 and cig > 0.7

To analyze the existence of an equilibrium of this game, it is possible to obtain a more useful

first order condition by re-writing (1) as a function of the class average effort instead of peer effort.

The relation between peer effort ē−ig and average effort ēg is given by:

ē−ig =
1

mg − 1

∑
j 6=i

ejg +
1

mg − 1
eig −

1

mg − 1
eig =

mg

mg − 1
ēg −

1

mg − 1
eig

7 The second order condition of the student problem is given by

ωg(ωg − 1)Kig(1 + ēφ−ig)e
ωg−2
ig − cig < 0

which holds for any value of peer effort ē−ig if ωg ≤ 1 and cig > 0.

13



And therefore the first order condition (1) is equivalent to:

ωgKig

(
1 +

(
mg

mg − 1
ēg −

1

mg − 1
eig

)φ)
e
ωg−1
ig − cigeig = 0 (2)

Unfortunately equation (2) has no analytic solution. The above equation Fi(eig, ēg) = 0 defines

implicitly the effort best response that depends on class average effort. It is possible that this effort

best response is a correspondence, this is, that for the same level of class average effort ēg, student

i finds optimal to choose two or more different levels of own effort. If 0 < ωg ≤ 1 and 0 ≤ φ, this

effort best response is unique for each level of class average effort, and thus defines the implicit

function eig = g̃i(ēg). This can be argued by observing that:

Fi(eig, ēg) = Ai(eig, ēg)−Bi(eig, ēg) = 0

where

Ai(eig, ēg) = ωgKig

(
1 +

(
mg

mg − 1
ēg −

1

mg − 1
eig

)φ)
e
ωg−1
ig

Bi(eig, ēg) = cigeig

Because Bi(eig, ēg) is a linear increasing function of eig, and Ai(eig, ēg) is concave and decreasing

in eig if 0 < ωg ≤ 1 and 0 ≤ φ8, then the solution to Fi(eig, ēg) = 0 is unique for every value of ēg.

Therefore, if 0 < ωg ≤ 1, 0 ≤ φ and cig > 0, the student problem is solved by a unique effort

best response as a function of class average effort, eig = g̃i(ēg).

8 The first derivative of Ai with respect to eig is given by:

∂Ai
∂eig

(eig, ēg) = ωg(ωg − 1)Kig

(
1 +

(
mg

mg − 1
ēg −

1

mg − 1
eig

)φ)
e
ωg−2
ig

−ωg
φ

mg − 1
Kig

(
mg

mg − 1
ēg −

1

mg − 1
eig

)φ−1
e
ωg−1
ig

which is negative for every value of eig and ēg if 0 < ωg ≤ 1 and φ ≥ 0.
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IV.2 Existence of a Game Equilibrium

This section argues that there is at least one equilibrium for the student game if 0 < ωg ≤ 1,

0 ≤ φ < 1 and 0 < cig. These are the same conditions that guaranteed the existence of a best

response function for every student, plus the condition that φ < 1.

As in Bisin et al. (2011), an equilibrium in class g is a vector of effort levels {eig}i∈g such

that the first order condition (2) is satisfied jointly for all i ∈ g, and the equilibrium aggregate ēg

satisfies the natural consistency condition ēg =
∑

i∈g eig. First, it is possible to see that the effort

best response g̃i(ēg) is monotonically increasing. By the Implicit Function Theorem,

g̃′i(ēg) = − ∂Fi(g̃i(ēg), ēg)/∂ēg
∂Fi(g̃i(ēg), ēg)/∂eig

where

∂Fi
∂ēg

(g̃i(ēg), ēg) = ωgKigg̃i(ēg)
ωg−1 φmg

mg − 1

(
mg

mg − 1
ēg −

1

mg − 1
g̃i(ēg)

)φ−1
∂Fi
∂eig

(g̃i(ēg), ēg) = ωg(ωg − 1)Kigg̃i(ēg)
ωg−2

(
1 + (

mg

mg − 1
ēg −

1

mg − 1
g̃i(ēg))

φ

)
−ωgKigg̃i(ēg)

ωg−1 φ

mg − 1

(
mg

mg − 1
ēg −

1

mg − 1
g̃i(ēg)

)φ−1
− cig

If 0 < ωg ≤ 1 and 0 ≤ φ, then

∂F̃i
∂ēg

(g̃i(ēg), ēg) ≥ 0 and
∂F̃i
∂eig

(g̃i(ēg), ēg) < 0

and thus g̃′i(ēg) ≥ 0 for every ēg.

As the effort best responses are increasing, by adding over individuals in the class, it is possible

to obtain the function of average class effort

G̃(ēg) =
1

mg

∑
i∈g

g̃i(ēg)

15



Therefore, an equilibrium of the student game is equivalent to finding the fixed points of the func-

tion G̃, this is, ēg = G̃(ēg). By Brouwer’s Fixed Point Theorem9, a fixed point ēg always exists if

0 < ωg ≤ 1, 0 ≤ φ < 1 and 0 < cig.

This theorem applies if it is possible to bound the domain of the function G̃ to D = [0, êg],

such that G̃(ēg) < ēg for all ēg ≥ êg, or in other words, such that G̃′(ēg) < 110. By definition, this

is equivalent to finding a large êg such that g̃′i(ēg) < 1 for all ēg ≥ êg and all i ∈ g.

First, suppose that ωg = 1. Then, g̃′i(ēg) < 1 is equivalent to

∂Fi
∂ēg

(g̃i(ēg), ēg) < −
∂Fi
∂eig

(g̃i(ēg), ēg) ⇒

Kigφ

(
mg

mg − 1
ēg −

1

mg − 1
g̃i(ēg)

)φ−1
< cig

For a sufficiently large ēg, this inequality holds for every value of Kig and cig if 0 ≤ φ < 1 and

0 < cig.

Second, suppose that ωg ∈ (0, 1). Consider what happens to both derivatives as ēg grows.

Because g̃′i(ēg) ≥ 0, then g̃i(ēg) grows with ēg, and therefore if 0 ≤ φ < 1:

∂Fi
∂ēg

(g̃i(ēg), ēg) → 0

∂Fi
∂eig

(g̃i(ēg), ēg) → −cig

Therefore, g̃′i(ēg) will eventually become less than 1 for some finite value as long as 0 < cig.11

9Every continuous function from a closed ball of an Euclidean space to itself has a fixed point.
10And thus it is possible to discard all points ēg ≥ êg as reasonable average class effort levels.
11For showing that ∂Fi(g̃i(ēg), ēg)/∂eig converges to −cig , it is possible to simplify the first term of the derivative

to
(x− g(x))φ

g(x)2−ωg

Both the numerator and the denominator converge to infinity as x grows. Therefore, using L’Hopital’s rule, it is
possible to write

φ(x− g(x))φ−1(1− g′(x))

(2− ωg)g(x)1−ωgg′(x)

which converges to zero as long as 1−g′(x)
g′(x) doesn’t grow too fast.
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Therefore, if 0 < ωg ≤ 1, 0 ≤ φ < 1 and 0 < cig, by Brouwer’s Fixed Point Theorem an

equilibrium for the student game always exists.

IV.3 Uniqueness of the Game Equilibrium

Social interactions typically give rise to multiple equilibria, because of the externalities induced by

peer behavior on own behavior (Bisin et al., 2011). This is not the case in this particular model of

social interactions, which has a unique equilibrium if 0 < ωg ≤ 1, 0 ≤ φ < 1 and 0 < cig; these

are the same conditions used to prove the existence of an equilibrium. Under them, G̃′′(ēg) < 0

for all ēg, and because G̃ is monotonically increasing, it has at most one fixed point.

By definition,

G̃′′(ēg) =
1

mg

∑
i∈g

g̃′′i (ēg)

From the first order condition (1), it is possible to see that it is never optimal for the student to

choose eig = 0, for any value of ē−ig.12 Then, the first derivative g̃′i(ēg) can be re-written as:

g̃′i(ēg) =
D(ēg)mg

D(ēg) + E(ēg)

where

D(ēg) =
ωgφ

mg − 1
Kig

(
mg

mg − 1
ēg −

1

mg − 1
g̃i(ēg)

)φ−1
E(ēg) = (2− ωg)cigg̃i(ēg)1−ωg

Note from the results above that D(ēg) ≥ 0 and E(ēg) > 0 for all ēg, and thus g̃′i(ēg) ∈ [0,mg).

12Note that eig(ē−ig = 0) =
(
ωKig

cig

)1/(2−ω)
> 0.
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The second derivative of the individual effort best response is given by

g̃′′i (ēg) =
D′(ēg)mg (D(ēg) + E(ēg))−D(ēg)mg (D′(ēg) + E ′(ēg))

(D(ēg) + E(ēg))
2

=
D′(ēg)mgE(ēg)−D(ēg)mgE

′(ēg)

(D(ēg) + E(ēg))
2

and therefore g̃′′i (ēg) < 0 if D′(ēg)E(ēg)−D(ēg)E
′(ēg) < 0, where

D′(ēg) = (φ− 1)D(ēg)

(
mg

mg − 1
ēg −

1

mg − 1
g̃i(ēg)

)−1 [
mg

mg − 1
− 1

mg − 1
g̃′i(ēg)

]
E ′(ēg) = (2− ωg)(1− ωg)cigg̃i(ēg)−ωg g̃′i(ēg)

Note that D′(ēg) < 0 for all ēg, as φ < 1 and g̃′i(ēg) < mg. Additionally, E ′(ēg) ≥ 0 as

ωg ≤ 1 and g̃′i(ēg) ≥ 0. Therefore, g̃′′i (ēg) < 0 for all ēg, and thus G̃′′ < 0, guaranteeing a unique

equilibrium of the game.

V Data

The model is estimated using data from Chile’s SIMCE (Education Quality Measurement Sys-

tem). This is a national standardized test given every year to all students both in public and private

schools, that are in 4th, 8th and/or 10th grade13, and attempts to determine the degree of achieve-

ment related to the core curriculum. The SIMCE database has several features that make it attrac-

tive for estimation. It includes individual tests scores on several topics, at the national level, and

detailed information of the students, their classes, and surveys to the parents and teachers.

The model is estimated using the information from the 2005 - 2009 panel. This is the same

cohort of students who gave the SIMCE test twice, first in 2005 when they were in 4th grade, and

then in 2009 when they were in 8th grade. A unique identifier allows to follow students even if

13 4th and 8th grade correspond to the 4th and last year of Elementary School (Educacion Basica), and 10th grade
corresponds to the 2nd year of High School (Educacion Media).
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they change school in the period. The sample contains full information for 130,853 students and

their parents and teachers in 7,779 classes.

Section III assumed that achievement and effort were unobserved to the econometrician, but

observed with error in the data. The SIMCE survey contains measures of four test scores: Math,

Science, Language and Social Science. Of these, only the first two will be used in estimation, and

thus the model will be estimated using a latent measure of mathematical achievement. There is

a well documented link between mathematics achievement and labor market outcomes (Bishop,

1994; Murnane, Willett and Levy, 1995; NMAP, 2008). Furthermore, there is evidence that school

effects are larger in mathematics than in language (Creemers, 2007; Teddlie and Stringfield, 2007),

and thus it is expected that using math and science as the achievement measures would render

clearer effects. The SIMCE survey also contains discrete measures of effort, self-reported by the

student. Additionally, a continuous measure of effort is required for identification. The percentage

of annual attendance to classes for each student is obtained from administrative data from the

Ministry of Education (MINEDUC).

The variables used in estimation are described below:

• Measures of Individual Achievement: test scores for Math and Science.

• Measures of Individual Effort: 1 continuous and 4 categorical measures of effort.

1. Percentage of annual attendance to classes.

2. I do my homework even if I find it difficult (from 1, disagree, to 5, agree).

3. My notebooks are generally complete (from 1, disagree, to 5, agree).

4. During lectures I take notes of everything they teach us (from 1, disagree, to 5, agree).

5. How many days (Mon-Fri) do you study or do homework after class? (from 1, never,
to 4, every day)

• Vector Xig of size KX = 8: female, parent schooling defined as the maximum between
mother or father schooling, parents have college education, both parents live at home, num-
ber of books at home is 10 to 50, number of books at home is 50 or more, computer at home,
internet at home.

• Vector X̄−ig of size KX = 8: peer averages of the variables in vector Xig.
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• Vector WCig of size KC = 4: constant, female, proportion of peer females, standard devia-
tion of lagged achievement in the class.

• Vector Wωg of size Kω = 6: constant, school is urban, school is public, school is subsidized,
class size, standard deviation of lagged achievement in the class.14

• Vector Yg of size KY = 13: constant, Math teacher gender, Science teacher gender, Math
teacher experience, Science teacher experience, four dummies if any of the previous vari-
ables is missing for the class, school is urban, school is public, school is subsidized, class
size.

• Vector Zig of size KZ = 7: constant, female, parent schooling, parents have college educa-
tion, school is urban, school is public, school is subsidized.

The distribution of the data is described in Table 1 for the test scores and individual and school

variables, and in Table 2 for the discrete measures of effort.

VI Identification

The identification problem is key in the peer effects literature. In particular, it has been exten-

sively discussed for linear models (Lee, 2007; Manski, 1993; Moffitt, 2001) and for binary choice

models (Blume et al., 2010; Brock and Durlauf, 2001a,b; Durlauf and Ioannides, 2010). Although

the Reflection Problem may not exist for nonlinear models (Brock and Durlauf, 2001b; Durlauf

and Ioannides, 2010), these models may exhibit other forms of nonidentifiability (Blume et al.,

2010). This section analyzes in detail the identification of the model proposed in Section III, us-

ing the measurement equations for the latent variables, and the moment restrictions given by the

production function of achievement and the first order condition of the student problem.

As stated in the model description, the achievement and effort levels {Aig0, Aig1, eig} are as-

sumed to be unobserved and measured with error in the data. There areL0 = L1 = 2 measurements

for lagged and current achievement available. Let Tigtl be the lth test score that measures achieve-

ment at time t (t = 0 for lagged achievement and t = 1 for current achievement) for student i
14Since 1982 Chile has a schooling voucher system, where any individual or institution can open a private school

which is publicly funded according to the number of students it receives. I refer to these schools as “subsidized”.
In contrast, “public” schools are publicly funded and owned by the Municipality, and “private” schools are privately
owned and do not receive any public funds.

20



in class g. Additionally, there are L2 = 5 measurements for effort, one is a continuous variable

and four are discrete. Therefore, let Rigl be the lth observed effort measurement for student i in

class g, and let R∗igl be the latent variable that generates the lth observed effort measurement; l = 0

represents the continuous variable, and l = 1, . . . , 4 the discrete variables.

All test scores and discrete effort measures are assumed to have independent and normally

distributed errors. Therefore test scores follow a continuous distribution, and the discrete effort

measures follow an ordered probit. Instead, the continuous measure of effort (annual attendance)

has a very particular distribution. It has a very long tail to the left with very few data, starts

increasing around 83% of attendance, peaks around 95 − 98% of attendance and then decreases

sharply until it gets to 100%. This is, even when the variable could be theoretically censored at 1,

very few individuals have complete attendance, only 7.7% of the sample, and there is no mass at

1. For this reason, the distribution of εi20 will be approximated using a mixture of normals.

The measurement equations are independent across students and given by

Tigtl = ηtl + τtlAigt + εitl , t = 0, 1; l = 1, 2

R∗igl = τ2leig + εi2l , l = 0, . . . , 4

εi20 ∼ MN(µa1, µa2, σ
2
a1, σ

2
a2, wa1, wa2)

Rigl = j iff cl,j−1 ≤ R∗igl ≤ cl,j∀i ∈ g, l = 1, . . . , 4

where {η0, η1} are vectors of constants, and {τ0, τ1, τ2} are vectors of factor loadings, with the

standard normalization that η01 = η11 = 1 and τ01 = τ11 = τ21 = 1. The mixture of normals is

defined by the means of the mixtures, µaj for j = 1, 2, the variances of the mixtures σ2
aj , and the

weightswaj , with the standard normalizations thatwa1+wa2 = 1 andE(εi20) = wa1µa1+wa2µa2 =

0. All other measurement errors have mean 0 and variances given by σ2
0l for lagged test scores, σ2

1l

for current test scores, and σ2
2l for the discrete effort measurements, which need to be normalized

to σ2
2l = 1 for l = 1, . . . , 4.

The list of parameters to identify (84 parameters in total) is given by
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• Utility function: c0, {βk}KX
k=1, {δk}

KX
k=1

• Production function: {κCk}KC
k=1 that generate Cig,γ, φ, {κωk}Kω

k=1 that generate ωg

• Type distribution: {πsk}KZ
k=1, {πtk}

KY
k=1 that generate the means of the types, with πt1 = 1,

and σ2
sm, σ

2
sf , σ

2
t , σst, σp.

• Measurement equations for test scores: η0, η1 with η01 = η11 = 0, τ0, τ1 with τ01 = τ11 = 1,

and σ2
0l, σ

2
1l.

• Measurement equations for effort measures: τ2 with τ21 = 1, {µaj, σ2
aj, waj}2j=1 for atten-

dance, with wa2 = 1 − wa1 and µa2 = wa1µa1/wa2, and the cutoffs {cl,j} for the discrete

measures of effort.

This parameters are identified, as shown below, given the following conditions in the data:

1. The columns in Wωg,WCig, Yg and Zig are linearly independent.

2. Two of the discrete effort measures have at least J ≥ 3 categories.

3. The measurement errors are independent from the latent variables and other errors, and

across classmates.

4. The vector Yg includes a constant, which parameter πt1 is normalized to 1.

5. There is enough variation in observables across classmates, such that the columns in [Xig, X̄−ig]

are linearly independent in the whole sample.

The conditions on the data are very mild, and thus identification comes mainly from the functional

forms of the model.
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VI.1 Test scores: Identification of Measurement Equations and Joint Distribution of Lagged

Achievement

Using the measurement equations for test scores, it is possible to identify the factor loadings and

error distributions. It is possible to use the following moments for test scores at t = 0:

E(T01) = E(A0)

E(T02) = η02 + τ02E(A0)

Cov(T01, T02) = τ02V (A0)

V (T01) = V (A0) + σ2
01

V (T02) = τ 202V (A0) + σ2
02

E(T02|T01 = t) = η02 + τ02E(A0) +
τ02V (A0)

V (A0) + σ2
01

(t− E(A0))

= η02 +
τ02V (A0)

V (A0) + σ2
01

t+
τ02σ

2
01E(A0)

V (A0) + σ2
01

These equations form a system that identifies the mean and variance of lagged achievement,

E(A0), V (A0), the vector of loadings τ02, the vector of constants η02, and the variance of the

measurement errors σ2
01, σ

2
02. The same equations for t = 1 identify η1, τ1, σ2

11, σ
2
12.

The measurement equations also provide the identification of the joint distribution of lagged

achievement in the class. If the columns in Zig are linearly independent, then

E(T01|Z) = E(A0|Z) = Zπs

V (T0|Z2 = 0) = σ2
sm + σ2

01

V (T0|Z2 = 1) = σ2
sf + σ2

01

Cov(Tig01, Tjg01) = Cov(Aig0, Ajg0) = σp

23



VI.2 Effort measures: Identification of Measurement Equations

It is also possible to identify the measurement equations for effort measures, this is, the factor

loadings, the parameters of the mixture of normals and the cutoffs. First, consider the continuous

measure of effort, the percentage of annual attendance. The first raw moment, the mean E(R∗0),

provides the identification of E(e) given the normalization that the mixture has mean zero:

E(R∗0) = E(e) +
2∑
j=1

wajµaj = E(e)

Using the discrete measures for effort, it is possible to identify V (e), τ2 and the cutoffs {cl,j}

for j = 1, J, l = 1, 4. These are 1 + 4 + 4(J − 1) parameters, and therefore require the same

number of equations. Because the measurement errors are normally distributed, the first 4(J − 1)

equations are given by:

Pr(Rl ≤ j) = Φ

(
cl,j − τ2lE(e)√
τ 22lV (e) + 1

)
⇒

cl,j − τ2lE(e) = Φ−1 (Pr(Rl ≤ j))
√
τ 22lV (e) + 1 (3)

This system of equations provides the first 4(J − 1) equations. For the next 5 equations needed,
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consider the conditional probability Pr(Rl = 1|R1 = 1) for l > 1:

Pl,1 = Pr(Rl = 1|R1 = 1) = Φ

(
cl,1 − E(R∗l |R1 = 1)√

V (R∗l |R1 = 1)

)
where

E(R∗l |R1 = 1) = τ2lE(e)− τ2lτ21V (e)√
τ 221V (e) + 1

λ(x1)

V (R∗l |R1 = 1) =
τ 22lτ

2
21V (e)2

τ 221V (e) + 1
(1− x1λ(x1)− λ2(x1)) + τ 22lV (e) + 1

λ(x1) =
φ(x1)

1− Φ(x1)

x1 =
c1,1 − τ21E(e)√
τ 221V (e) + 1

and thus (4)

cl,1 − τ2lE(e) = Φ−1 (Pl,1)
√
V (R∗l |R1 = 1)− τ2lτ21V (e)√

τ 221V (e) + 1
λ(x1)

If J ≥ 3 for at least 2 of the discrete effort measures, it is possible to form a system with 5 equations

like (4). Therefore, the system of nonlinear equations formed by (3) and (4) has 5 + 4(J − 1)

equations and unknowns, and thus it can be solved to identify {τ2, V (e)} and the cutoffs {cl,j}.

Finally, it is necessary to identify the parameters of the mixture of normals. For this, it is

possible to use higher-order raw moments of the attendance variable:15

E((R∗0)
2)− E(e2) =

∑2
j=1wajE(ε2aj) =

2∑
j=1

waj(µ
2
aj + σ2

aj)

E((R∗0)
3)− E(e3) =

∑2
j=1wajE(ε3aj) =

2∑
j=1

waj(µ
3
aj + 3µajσ

2
aj)

E((R∗0)
4)− E(e4) =

∑2
j=1wajE(ε4aj) =

2∑
j=1

waj(µ
4
aj + 6µ2

ajσ
2
aj + 3σ4

aj)

E((R∗0)
5)− E(e5) =

∑2
j=1wajE(ε5aj) =

2∑
j=1

waj(µ
5
aj + 10µ3

ajσ
2
aj + 15µajσ

4
aj)

15The flexibility of the mixture of normals implies that the variable may display non-trivial higher-order moments,
even in the absence of such features within the components themselves.
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The raw moments of R∗0 can be easily obtained from the data, and the raw moments for e come

from similar equations using the other measures of effort. Because each element of the mixture

εaj is a normal variable, it is straightforward to obtain the relation of these raw moments with

{µaj, σaj, waj} shown in the third column above. These form a system of 4 equations, and together

with the two normalizations in the weights waj and the mean µa2, provide the identification of the

parameters of the mixture. This identifies all the measurement equations in the model.

VI.3 Identification of Joint Distribution of Latent Variables

Using the information from the previous section, it is possible to identify the joint distribution of

achievement and effort in a class. The nonparametric identification of this joint distribution would

require the availability of two continuous measurements for each latent variable (Cunha, Heckman

and Schennach, 2010). Given the data, at most one continuous measurement is available for the

set of latent variables, and thus the identification of the joint distribution relies on the parametric

assumptions for the distribution of measurement errors.

Once the factor loadings are identified, take one continuous measure for each of the latent

variables (lagged achievement, current achievement and effort) such that the loadings are different

than zero. Then, it is possible to rewrite the measurement equations as

Tigt1
τt1

=
ηt1
τt1

+ Aigt +
εit1
τt1

R∗ig0
τ20

= eig +
εi20
τ20

For every class g define the vector of latent variables of size 3mg

θg = ({Aig0}i∈g, {Aig1}i∈g, {eig}i∈g)
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and the vectors for the measurement, also of size 3mg

Wg =

(
{Tig01 − η01

τ01
}i∈g, {

Tig11 − η11
τ11

}i∈g, {
R∗ig0
τ20
}i∈g

)
(5)

ωg =

(
{εi01
τ01
}i∈g, {

εi11
τ11
}i∈g, {

εi20
τ20
}i∈g

)
(6)

Then, the measurement equation can be written as Wg = θg + ωg. If the measurement errors

are independent from the latent variables, then the probability distribution fWg(W ) is given by the

convolution of the two independent distributions fθg(θ) and fωg(ω):

fWg(W ) = (fθg ∗ fωg) (W ) =

∫ ∞
−∞

fθg(s)fωg(W − s)∂s (7)

The convolution fWg is a weighted average of the function fθg where the weighting is given by fωg.

Using the characteristic functions of fWg from the data and of fωg from the parametric assumptions

on the distribution of errors, it is possible to to obtain the joint distribution of latent variables

in the class, fθg = f({Aig0}i∈g, {Aig1}i∈g, {eig}i∈g). This can always be done, as the required

characteristic functions always exist, and the characteristic function of the normal (and thus, of the

mixture of normals) is always different than zero.

VI.4 Identification of Production Function Parameters

With knowledge of the joint distribution of ({Aig0}i∈g, {Aig1}i∈g, {eig}i∈g) for the whole class, it is

possible to identify the parameters of the production function {κC , γ, φ, κω} and of the unobserved

teacher quality distribution {πt, σ2
t , σst}. These are KC + 2 +Kω +KY + 2 parameters.

Define Ωig = (Aig0, {eig}i∈g,WCig,Wωg, Yg, Zig). The information from the measurement

equations at t = 0 identified the distribution of Aig0 ∼ N(Zigπs, σ
2
s). From the joint distribu-

tion of latent variables, it is possible to compute the conditional distribution p(Aig1|Ωig) and the
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conditional mean function given by:16

E(Aig1|Ωig) = Cig(Aig0)
γE(αg|Aig0, Yg)(1 + ēφ−ig)e

ωg

ig

= (WCigκC)(Aig0)
γ

(
Ygπt +

σst
σ2
s

(Aig0 − Zigπs)
)

(1 + ēφ−ig)e
(Wωgκω)
ig

This function can be evaluated at different values of Ωig at discretion. First, take pairs of values for

{A0
ig0, A

1
ig0} and {ē0−ig, ē1−ig = 1}, for Zig such that Zigπs = Aig0 for both pairs of values, and fixed

values Ω0
ig for all other variables. Then, it is possible to identify the parameters of the production

function that are fixed across classes:

γ =
ln(E(Aig1|Ω0

ig, A
0
ig0, Z

0
ig))− ln(E(Aig1|Ω0

ig, A
1
ig0, Z

1
ig))

ln(A0
ig0)− ln(A1

ig0)

φ =
1

ln(ē0−ig)

(
2

E(Aig1|Ω0
ig, ē

0
−ig)

E(Aig1|Ω0
ig, ē

1
−ig = 1)

− 1

)

Second, to identify πt and σst, note that it is possible to redefine Yig = [Yg,
1
σ2
s
(Aig0 − Zigπs)]

and π̃t = [πt, σst], such that Yigπ̃t = Ygπt + σst/σ
2
s(Aig0 − Zigπs). Then, take KY + 2 values of

Yig, value of eig = 1, and fixed values Ω0
ig for all other variables, and build a system of equations

composed of equations of the form:

E(Aig1|Ω0
ig, eig = 1, Y 0

ig = y)

E(Aig1|Ω0
ig, eig = 1, Y 1

ig = ỹ)
=

yπ̃t
ỹπ̃t(

E(Aig1|Ω0
ig, eig = 1, Y 0

ig = y)

E(Aig1|Ω0
ig, eig = 1, Y 1

ig = ỹ)
ỹ − y

)
π̃t = 1−

E(Aig1|Ω0
ig, eig = 1, Y 0

ig = y)

E(Aig1|Ω0
ig, eig = 1, Y 1

ig = ỹ)

It is possible to build in this way a linear system of KY +1 equations and unknowns. A normaliza-

tion is required: the vector Yg contains a constant with parameter πt1 = 1.17 Then, the system has

a unique solution if the vector Yg is linearly independent. This identifies the values of πt and σst.

16For a bivariate normal distribution, the conditional distribution is given by X2|X1 ∼ N(µ2 + σ12

σ2
1

(X1−µ1), σ2
2−

σ2
12

σ2
1

).
17The assumption is required for identification, otherwise in every equation it would be possible to divide both yπ̃t

and ỹπ̃t by any a ∈ < and maintain the equality with the ratio of moments from the data.
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Third, to identify the parameters of the production function that depend on class and individual

characteristics, take KC + 1 values for WCig, eig = 1, values for Zig consistent with WCig for

those variables that both vectors have in common, Aig0 = Zigπs, and fixed values Ω0
ig for all other

variables. Then it is possible to build a system of KC equations of the form:

E(Aig1|Ω0
ig, A

0
ig0, eig = 1,W 0

Cig, Z
0
ig)

E(Aig1|Ω0
ig, A

1
ig0, eig = 1,W 1

Cig, Z
1
ig)

=
(W 0

CigκC)(Z0
igπs)

γ

(W 1
CigκC)(Z1

igπs)
γ

Because WCig includes a constant, this system of equations can be solved with knowledge of πs

and γ, and has a unique solution if the columns in WCig are linearly independent.

Fourth, to identify the parameters of the marginal productivity of effort, take Kω + 1 values for

Wωg, values for Yg consistent with Wωg for those variables that both vectors have in common, and

fixed values Ω0
ig for all other variables. It is possible to build a system of equations of the form:

E(Aig1|Ω0
ig,W

0
ωg, Y

0
g )

E(Aig1|Ω0
ig,W

1
ωg, Y

1
g )

=
Y 0
g πt + σst

σ2
s

(A0
ig0 − Z0

igπs)

Y 1
g πt + σst

σ2
s

(A0
ig0 − Z0

igπs)
(e0ig)

(W 0
ωg−W 1

ωg)κω

Because Wωg includes a constant, this system of equations can be solved with knowledge of πt,

and has a unique solution if the columns in Wωg are linearly independent.

Finally, it is possible to identify the variance of the unobserved teacher productivity σ2
t using

the conditional variance:

V (Aig1|Ωig) = C2
ig(Aig0)

2γV (αg|Aig0, Yg)(1 + ēφ−ig)
2e

2ωg

ig

= C2
ig(Aig0)

2γ

(
σ2
t −

σ2
st

σ2
s

)
(1 + ēφ−ig)

2e
2ωg

ig
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VI.5 Identification of Utility Parameters

In the last step, the identification of the utility parameters {c0, {βk}Kk=1, {δk}Kk=1} comes from the

effort decision, which is given by the first order condition of the student problem:

0 = ωgCig(Aig0)
γαg(1 + ēφ−ig)e

ωg−1
ig − cigeig

⇒

eig =

(
ωgCig(Aig0)

γαg(1 + ēφ−ig)

c0 +Xigβ + X̄−igδ

)1/(2−ωg)

The utility parameters are identified from the moment conditions:

E

(ωgCig(Aig0)γαg(1 + ēφ−ig)

c0 +Xigβ + X̄−igδ

)1/(2−ωg)

− eig|Xig, X̄−ig

 = 0

given global identification, this is, the above expectation is different from zero for any value of the

parameters different from the true. This holds if the columns in [Xig, X̄−ig] are linearly indepen-

dent. This completes the identification of the model.

VII Estimation and Results

The model is estimated using a Simulated Maximum Likelihood method (Laroque and Salanie,

1989); see Appendix A for details on the specific algorithm used. Table 4 in the Appendix shows

the fit of the model with respect to the true data. The proposed model does a good job at fitting

the distribution of each of the outcome variables, both for the measures of achievement and effort.

The difference between true and simulated moments is negligible.

Table 3 shows the parameter values, the variance and standard deviation of the estimates, and

the confidence intervals. All parameters are precisely estimated and significant at the 95% confi-

dence level, except for four parameters,18 which may be related to the parametric assumptions and
18The parameters that are statistically zero are δ1, the effect of the percentage of females in the class in the cost
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the large sample size.19 In particular, the productivity externality of peer effort φ is relatively large:

the marginal productivity of peer effort is 0.7025, versus the marginal productivity of own effort

ωg, which is around 0.1128 depending on the class characteristics. The effects of peer character-

istics on the cost of effort δ are not always positive: variables like peer parent schooling or if peer

parents live at home have a positive effect on own effort by decreasing the cost of effort, but peer

inputs at home increase it and percentage of peer females has no significant effect on the cost of

effort. It is necessary to note this is not the total effect of these variables in own effort: peer charac-

teristics affect directly the cost of own effort, but they also affect peer effort and thus interact with

the endogenous effect. Finally, the SD of lagged achievement in the class has a mixed impact on

productivity: it increases the constant (κC4=0.0029) but it decreases the marginal productivity of

effort (κω6=-0.0014); the final effect depends on the level of heterogeneity and other characteristics

that affect Cig and ωg.

Because the model is nonlinear, the parameter values are not very informative about the mag-

nitude of the effect of the different variables on student outcomes. For this, it is better to look

at the marginal effects of the variables, in Tables 5 and 6. The marginal effect is defined as the

percentual change in equilibrium achievement and effort due to a unitary increase in the value of

a variable, for every student, keeping all other variables constant. Thus, the marginal effect does

not consider consistency between the variables. For example, the marginal effect of being female

considers changing the value of “female” from 0 to 1 in the whole sample, but the variable “% of

females in the class” is kept at the true values. Table 5 shows this marginal effect for the dummy

variables in the model, and for the variables in the [0, 1] interval, and Table 6 for the continuous

variables in the model (or more precisely, discrete variables with a support larger than [0,1]).

The model predicts a rich pattern of marginal effects. All of them are significant at the 95%

function, κω4, the parameter of whether the school is subsidized in the marginal productivity of effort, πt5, the effect
of Science teacher experience on the mean of class productivity, and mua1, the mean of the first component in the
mixture of normals for attendance.

19Ideally the significance of the model could be stated using a measure of goodness of fit. Unfortunately, these
measures do not control for sample size, and thus it is very easy to reject any model with a sample of the size available
here.
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confidence level, except for the marginal effect of being in a urban school on achievement, and the

marginal effect of class size on effort. The variables that measure the effect of peer characteristics

have marginal effects with the same sign for effort and achievement as the parameter value. The

percentage of peer females and the average peer inputs at home (books, computer, internet) have

negative and small effects on both outcomes (-10 to -20% of a SD of moving from 0 to 100%). As

a reference, an effect of more than 10% of a standard deviation is considered large in the education

literature. The average parent schooling, peers with parents with college and peers with parents

at home have instead positive and moderate effects on both outcomes. Interestingly, peer parent

schooling has a convex effect on outcomes; the marginal effect of increasing peer parent schooling

in one year increases with the number of years considered. The effect on achievement is small, but

the effect on effort is considerably large, and even larger than own parent schooling.

Other variables have the expected effects. Individual variables have positive effects on both

outcomes, except for being female (negative effect on achievement but positive effect on effort),

having parents with college (positive effect on achievement but negative on effort) and having

internet at home (negative effect on both outcomes). The effect of parent schooling is very large

and concave: each year of parent schooling increases achievement by around 5% of a SD. School

variables have a very large effect on achievement and effort: being in a public school decreases

achievement by -84% of a SD and effort by -10.8%, and being in a subsidized school decreases

achievement by -58% of a SD and effort by -5.1%. Class size has a positive, concave and moderate

effect: each extra student in the class increases achievement around 0.7% of a SD. In constrast,

teacher variables have almost negligible but significant effects on achievement and effort, and this

suggests they may not be good measures of teacher quality.

VIII Counterfactuals

One of the advantages of having a behavioral model is that it is possible to do out-of-sample

predictions and counterfactual analysis. This section analyzes the changes in effort and achieve-
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ment predicted for the students under different policies that affect their peer group composition or

characteristics. This is particularly useful to analyze policies where isolating the causal effect or

obtaining an appropriate control group is hard.

These counterfactuals help understand in more detail the strength and pattern of social inter-

actions, as they exogenously change different dimensions of the model, one at a time. This sheds

some light to the manner in which peer effects operate in the classroom. The model is used to ana-

lyze six different policies. The first counterfactual, providing tutors to the students, tries to isolate

the endogenous effect, by exogenously lowering the cost function of the students. Counterfactuals

2 to 4 explore the effect of changes in peer characteristics, by exogenously increasing the number

of inputs at home, or analyzing same-gender schools and tracking programs, this is, changing class

composition according to gender or lagged achievement. Counterfactual 5 analyzes the effect of

class size on the magnitude of peer effects. Finally, Counterfactual 6 shows how the model can be

used to analyze the cream-skimming effect of school choice programs, and to separate the effect

of student characteristics and class composition from the productivity of the school.

In general, the results are similar to studies that identify the causal effect of policies using quasi-

experimental or experimental methods. The model proposed is able to separate the mechanisms

that generate those effects.

The results show interesting peer effects. The endogenous effect is positive and significant,

very small on effort but of moderate size on achievement. The contextual peer effect may be

positive or negative depending on the variable considered, and this may generate counterintuitive

effects on achievement. In general, observed contextual variables have small or negative effects;

instead, the peer previous achievement has a moderate to large effect. Some policies have larger

effects on effort than achievement, but others work the opposite way, especially those related to

class composition. However, peer effects on achievement seem to be larger than on effort. Finally,

students compensate to some degree the changes in the characteristics of their peer group through

their effort. This implies that policies are predicted to have a smaller effect than when the student

effort decision is not considered.
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VIII.1 A Policy that Decreases the Cost of Effort

Suppose the social planner wants to increase the achievement of students in the lower third of

the lagged achievement distribution (“worst” students), by providing each student with a tutor,

who is able to lower the cost of making effort for that student, cig, in 10%. Similar policies are

evaluated by Banerjee, Cole, Duflo and Linden (2007); Cabezas, Cuesta and Gallego (2011) and

Rothman and Henderson (2011), where tutors are usually assigned to poor students or students

lagging behind, but they do not analyze if any peer effects appear in those policies.

This counterfactual stresses the role of the endogenous effect in the determination of effort and

achievement. Peer characteristics are kept fixed, but the exogenous shift in the cost of effort has a

direct effect on own effort and an indirect effect through the effort decision of the peers.

The tutors are assigned directly to the worst students; the results are shown in column (1) of

Table 7. Math test scores increase significantly by 10.4% of a SD and effort increases by 6.55%

on average for treated students. This corresponds to 5.3 score points; as a comparison, it is close

to giving their parents 2 extra years of education.20 Additionally, the model predicts interesting

spillovers to the peers due to a positive endogenous effect: the other students in the class increase

effort by 0.35% and test scores by 3.75% of a SD.

It is possible to explore the strength of the endogenous effect using two modifications of the

policy. The first alternative is to pick the classes where these worst students are present, and

provide the tutors to everybody in that class. This involves more than doubling the number of

tutors. The results are shown in column (2) of Table 7. Mean math test scores increase significantly

by 15.3% of a SD on average, and mean effort by 7% on average. For the worst students, this

increase corresponds to 7.49 score points, which is larger than giving their parents 2 extra years of

education.

From the perspective of the worst students, the variation between the two scenarios is that

20With 1 extra year of parental education, the scores of these students increase 2.7 points; with 2 extra years, 6.14
points, and with 3 extra years, 9.8 points.
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their peers are also benefited from the policy now. The difference in outcomes then is due to the

endogenous effect. Effort is 0.4% larger and achievement 4.3% of a SD larger when their peers

also get tutors versus when they do not.

A second alternative is to keep the number of tutors fixed, but instead of allocating the tutor to

the worst student directly, assign him to the smartest student in the class, in terms of mean lagged

achievement. From the perspective of the worst students, the policy compares receiving no tutor at

all, and only the smartest students in the class receiving one. The results are shown in column (3)

of Table 7. The benefited students increase their effort and achievement similarly to what the worst

students did in column (1). But now the endogenous effect to the worst students is larger: they

increase effort significantly by 0.67% and achievement by 6.44% of a SD. Math test scores for the

worst students increase 3.27 score points in average, which corresponds to giving their parents 1

extra year of education.

The results from this exercise are smaller to what is found in true data, which means that in

practice tutors may decrease the cost of effort by more than a 10%. Banerjee et al. (2007) find an

effect for all children in treatment schools of 14%SD in the first year and 28%SD in the second

year. Cabezas et al. (2011) find a treatment effect in a reading test of between 15%SD and 20%SD.

In conclusion, this counterfactual shows a positive and significant endogenous effect, which is

very small on effort but of moderate size in achievement. This indicates that the endogenous peer

effect has an externality effect that is not being internalized by the students.

VIII.2 A Policy that Provides Home Inputs

Suppose the social planner wants to increase now the achievement of students in the lower third

of the education distribution, called “underprivileged”, and measured by those students whose

parents have 11 years of schooling or less. The social planner will provide home inputs to these

students: books at home, computer at home or computer with internet at home. This policy stresses

the role of contextual effects; the shift on individual inputs has a direct effect on own cost of
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effort and an indirect effect through peer cost of effort. This will further influence own effort and

achievement through the endogenous effect. Therefore, this policy will add one additional channel

to the previous policy.

The results show that these policies exhibit negative contextual peer effects, conditional on

lagged achievement and other observable variables. This negative indirect effect counteracts the

direct effect of the inputs, thus not changing or decreasing (sometimes largely) the achievement

of the students intended to benefit. The results are similar to studies that identify the causal effect

of policies using quasi-experimental or experimental methods. Here the model is able to separate

what are the mechanisms that generate those effects.

VIII.2.1 Providing Books at Home

The first policy is to increase the number of books at home. Underprivileged students who do not

have books at home receive 10, and those who have 10 receive 50 or more. The first column of

Table 8 shows the results, which are all significant at the 95% level. Math test scores decrease

-0.76% of a SD for the underprivileged students, a significant but negligible effect: it corresponds

to -0.39 points, much less than taking 1 year of parent schooling which decreases test scores in

-1.1 points. This counterintuitive result can be explained by a positive direct effect, a negative

contextual effect and a positive endogenous effect. In fact, the underprivileged students decrease

their cost of effort by -0.88% and increase their effort by 0.33% (positive direct effect), but their

peers increase their cost of effort by 1.1% (negative contextual effect) and decrease effort by -0.6%.

The direct effect of own effort on achievement is smaller than the endogenous effect.

As before, it is possible to explore the strength of the contextual effect using two modifications

of the policy. First, one may give books to everybody in the class. The results are shown in column

(2) of Table 8. Test scores decrease -1.59% of a SD for the underprivileged students, and mean

effort -0.65%, a small but significant effect. It corresponds to -0.79 score points, less than taking 1

year of parent scholing from those students.
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The difference in outcomes between the two scenarios is due to the contextual effect of peers

having more books. The cost of effort is 1.8% larger when their peers also get books versus when

they do not. This makes effort -1% lower and achievement -0.8% of a SD lower, similar to the

contextual effect peers faced in column (1).

The second alternative is to give the books instead to the smartest student in the class, in terms

of mean lagged achievement. The results are shown in column (3) of Table 8. Math test score

decreases -0.73% of a SD for the underprivileged students. Their cost of effort increases 1.6%

(negative contextual effect), and their effort decreases -0.9% for the underprivileged students. Thus

the size of the contextual effect is similar when underprivileged students receive the books or not.

In conclusion, the effects of this policy are significant but negligible. This is consistent with

the evidence by Glewwe, Kremer and Moulin (2009), who find no effect of providing textbooks

on test scores. On the contrary, Froelich and Michaelowa (2011) find a large effect of textbooks

when the number of books is small. But both papers note that the results depend on the production

of achievement that is being considered. In the model here, even if the marginal effects of having

more books at home are large (as Evans, Kelley, Sikora and Treiman, 2010, also find), the positive

effects of own books cancels out with the negative effect of having peers with more books, and

thus the policy does not have a relevant effect on achievement, conditional on lagged achievement.

VIII.2.2 Providing Computer at Home

The second policy is to increase the number of computers at home. The literature of the effects of

computer access and use on achievement presents mixed results (Bussière and Gluszynski, 2004).

Papers that are more successful at isolating the causal effect of computers find negative or zero

effects on test scores (Angrist and Lavy, 2002; Fairlie and Robinson, 2012; Malamud and Pop-

Eleches, 2011; Vigdor and Ladd, 2010).

Underprivileged students who do not have a computer at home receive one for free; the results

are shown in column (1) of Table 9. Math test scores decrease -3.75% of a SD for the underprivi-
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leged students, which corresponds to -1.9 score points, larger than taking 1 year of parent schooling

from those students. The decomposition shows that underprivileged students increase their cost of

effort by 2.4% and decrease their effort by -1.6%. The results show a negative contextual effect:

their classmates increase their cost of effort by 1.2% and decrease effort by -0.7% and achievement

-0.3% of a SD.

If the computers are assigned to everybody in the class (column (2) of Table 9), Math test

scores decrease -5.6% of a SD for the underprivileged students, or -2.8 score points, which is

equal to taking more than 2 years of education from their parents. Effort decreases -2.6% for the

underprivileged students. The contextual effect of peers having more computers is small but not

negligible. The cost of effort is 1.5% larger when their peers also get computers versus when

they do not. This makes effort -1% lower and achievement -1.88% of a SD lower, larger to the

contextual effect peers faced in column (1).

Again, another alternative is to give the computers instead to the smart students in the class. The

results are shown in column (3) of Table 9. Math test scores decrease -3.28% for the smart students,

which corresponds to -1.09 points, similar to taking 1 year of schooling from the parents. The

contextual effect is slightly larger when the underprivileged students do not receive the computers.

Their cost of effort increases 1.8% and their effort decreases -1.14%. The proportion of computers

in the class has a slightly larger effect than the proportion of books on both effort and achievement.

VIII.2.3 Providing Computer and Internet at Home

Finally, the third policy is to increase the number of computers with internet at home. Vigdor

and Ladd (2010) find that the introduction of home computer and high-speed internet access is

associated with modest but statistically significant negative impacts on student math and reading

test scores.

The model forces the students with internet at home to also have a computer, so the effect of

the policy will be a composition of the two effects. Underprivileged students who do not have a
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computer at home receive a computer with internet connection for free, and those who do have a

computer but do not have internet connection receive one. Now, the negative effects are significant

and very large.

Column (1) of Table 10 shows that Math test scores decrease -7.96% of a SD for the underpriv-

ileged students, which corresponds to -4 score points, and is rather large; it is equivalent to taking

3 years of education from the parents. Their cost of effort increases 6.3% and their effort decreases

-3.88%. The contextual effect on peers is the largest of all the input policies: effort decreases

-1.4% and achievement decreases -3.48% of a SD for their classmates.

When the computers with internet are ssigned to everybody in the class (column (2) of Table

10), Math test scores decrease -12.41% of a SD for the underprivileged students, or -6.3 score

points, and equivalent to taking more than 3 years of education from the parents. Their cost of effort

increases 9.66% and effort decreases -5.79%. This represents a substantial negative contextual

effect. The cost of effort is 3.1% larger when their peers also get computers with internet versus

when they do not. This makes effort -2% lower and achievement -4.45% of a SD lower, larger than

the contextual effect peers had in column (1).

Again, another alternative is to give the computers instead to the smart students in the class.

In this case, (column (3) of Table 10), Math test scores decrease -4.84% of a SD for the under-

privileged, which corresponds to -2.46 points, similar to taking 2 year of education from their

parents.The contextual effect is similar when the underprivileged students do not receive the com-

puters. Their cost of effort increases 3.4% for the underprivileged, and effort decreases -2.2%,

again larger than the contextual effect peers had in column (1). This is consistent with Vigdor and

Ladd (2010), who find larger negative effects for students with lower socioeconomic background.

VIII.3 Same-Gender Schools

This counterfactual analyzes the effect of the gender composition of the class. This peer variable

has received a lot of attention in the literature, and some authors argue it is the only contextual vari-
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able to have significant effects on achievement conditional on previous peer achievement (Hoxby,

2000b; Hoxby and Weingarth, 2006; Lavy and Schlosser, 2011).

There is a relatively large discussion on the effect of same-gender schools versus coeduca-

tional schools on outcomes (Park, Behrman and Choi, 2012; Sullivan, 2009). Even controlling

adequately for selection of students into each type of school, some studies find single-sex school-

ing is associated with higher average scores for both genders (Park et al., 2012), and others find

no significant effect (Jackson, 2012). Graham, Imbens and Ridder (2010) find that making classes

slightly more segregated by sex would have a positive effect on girls and have a negative effect on

boys of approximately the same size.

To abstract from variation in school and teacher characteristics, it is possible to evaluate the

policy using simulated data: 120,000 students in 6,000 classes of size mg = 20 in 3,000 schools.

Half of the students in each school belong to each gender. Individual characteristics are simulated

according to the mean and standard deviation of characteristics in the true data, and school and

teacher characteristics are set to the mean values of the true data. Students are first randomly

asigned to each class, and then separated according to their gender, and compared.

Table 11 shows the results. The model predicts that moving to a same-gender class significantly

increases Math test score 3.25% of a SD for females and decreases -2.13% of a SD for males. This

corresponds to 1.65 and -1.08 score points respectively. On average, mean test scores increase

significantly 0.55% of a SD. This is a modest effect: it is equivalent to half of the effect of keeping

the classes mixed but giving 1 year of parent schooling to females and taking 1 year of schooling

from males. The results are almost the same with smaller class sizes (size 10).

The results of this counterfactual show the mechanisms that affect effort and achievement.

Table 3 reports that having more females in the class significantly productivity (the variable also

increases the cost of effort but the parameter is not significant at the 95% level), so having more

peer females should decrease achievement for females. In fact, the cost of effort decreases -0.139%

for males and increases 0.157% for females, and both are significant. Nonetheless, mean effort
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increases nonsignificantly for males and 1.051% for females.

Having more peer females increases effort for females in the same-gender class because the

new classmates make more effort than boys, and thus increase achievement through the endoge-

nous effect. The results are opposite to those of Lavy and Schlosser (2011), who find that a higher

proportion of females increases test scores, but not because of a change in individual behavior,

but due to compositional effect on the level of disruption and violence, relationships and teacher’s

fatigue.

VIII.4 Tracking Inside the School

This section analyzes the most important of the contextual effects in the literature: the previous

achievement or ability of the classmates, by focusing on the tracking of students inside a school.

As other counterfactuals, the estimation of the effect of tracking on student outcomes is com-

plicated by the difficulty of setting an appropriate control group. The usual finding that tracking

has a negative effect on low ability classes, and a positive effect on high-ability classes may be due

to a selectivity bias problem (Betts and Shkolnik, 2000a,b; Figlio and Page, 2002). Other studies

find insignificant effects(Betts and Shkolnik, 2000a; Figlio and Page, 2002). Instead, the scarce

experimental evidence indicates that it may benefit all students. Duflo et al. (2011) find that all

students benefited from tracking, and those near the median of the baseline test distribution bene-

fited similarly whether assigned to the lower or upper section. In contrast, Garlick (2012) finds for

college roommates that tracking reduces grades, driven by very large negative effects on the lower

tail of the distribution and insignificant effects on the upper tail.

There is a related literature on input allocations (Bhattacharya, 2009; Graham, Imbens and

Ridder, 2009; Graham et al., 2010), where a large number of inputs have to be allocated simul-

taneously. They nonparametrically estimate the expected outcomes for different allocation rules,

using discrete types (Bhattacharya, 2009; Graham et al., 2010), or continuous types (Graham et al.,

2009). Two dimensions of the problem are different to the one studied here. First, they assume
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that the average response to group composition remains unchanged across reallocations, opposite

to the findings by Carrell et al. (2011). Second, the inputs allocated differ only in one dimension,

where the students in the model differ in multiple dimensions that affect achievement of the group.

Because tracking may generate optimal changes in the behavior of teachers, schools and par-

ents, this counterfactual should be considered only a partial evaluation of a true tracking policy,

dealing only with changes in effort made by the students.

As in the previous counterfactual, 120,000 students in 6,000 classes of size mg = 20 in 3,000

schools are simulated. Individual characteristics are simulated according to the mean and standard

deviation of characteristics in the true data, and school and teacher characteristics are set to the

mean values. Students are first randomly assigned to each class, and then tracked according to

their mean lagged achievement, and compared.

The results are reported in Table 12 in the Appendix. Mean math test scores increase signifi-

cantly 8.53% of a SD for the top students, and decreases non-significantly -3.7% of a SD for the

worst students. These correspond to 4.34 and -1.88 score points respectively. These are moderate

to large changes; they are equivalent to keeping the class composition constant, but substracting

less than 1 years of parental schooling to the students with lower lagged achievement, and giving 2

years of parental schooling to the students with higher lagged achievement. The mean math score

for the whole school increases significantly 2.41% of a SD, or 1.22 points.

This change in math test score can be decomposed in the following way. The cost of ef-

fort increases 4.48% for the worst students and decreases -4.22% for the top students, due to the

contextual effect. This generates a non-significant decrease in mean effort for the worst students

(-0.646%) and a significant increase in mean effort for the top students (4.93%). It is interesting

to note the differences of the effort response. For the top students, the effect of the decrease in the

cost of effort is amplified by the endogenous effect of having peers that make more effort. The

worst students compensate for the negative contextual and endogenous effect, and effort does not

change statistically. The results are similar when the class size is fixed to 10, and when tracking is
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done with the true data, with all students in schools with two or more classes.

This analysis is useful even as a partial evaluation. There is a moderate and positive peer effect

for students in the higher track, and no significant peer effects for students in the lower track. In

the same direction, the results in Zimmer (2003) suggest that, controlling for the peer level, the

school and teacher response after tracking has no effect on high-ability students, and has a positive

effect on low and average ability students. These results taken together can rationalize the effects

in Duflo et al. (2011).

With this counterfactual, it is also possible to simulate the effects found in the experiment by

Carrell et al. (2011). Instead of tracking their students, they put the middle students together in

a class, and the top and worst students together in a second class. They find that middle students

increase their score in 0.067, and worst and top students decrease their score in -0.054 and -0.004

grade points respectively. It is possible to perform the same analysis with the simulated data; see

Table 13 for the results. The direction of the result is the same as in Carrell et al. (2011): the middle

students improve their score, and worst and top students decrease. The magnitude of the effects is

very small, and not significant. This provides an external validation for the model.

VIII.5 Changes in Class Size

The model also has interesting predictions regarding changes in class size. A larger class size de-

creases the marginal productivity of effort ωg,which corresponds to the congestion effect outlined

by Lazear (2001). Also, a larger class size increases teacher and school productivity αg. This

occurs because the number of teacher hired per student is one of the main determinants of the cost

of education (Krueger, 2003). Additionally, in Chile school funding is closely related to its size,21

thus a larger class size may further increase the productivity of the school.

The final result will depend on which effect is larger. Konstantopoulos (2008) and Krueger and

Whitmore (2001) find negative effects of class size on achievement, consistent with the first effect

21 In the public and subsidized sector, the value of the voucher is per student per day attended, and in the private
sector, a tuition is charged by the school to every student.
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being larger than the second one. Hoxby (2000a) and Duflo, Dupas and Kremer (2009) find no

significant effect of class size, consistent with both effects being of equal size.

This section analyses the effect on effort and achievement of changes in class size. Again, a

sample of 120,000 students in 3,000 schools is simulated, using the mean and standard deviation

of student characteristics in the original sample. All teacher and school characteristics are the same

and equal to the sample mean. In each school, the 40 students are randomly assigned to classes of

equal size, of 5, 10, 20 or 40 students.

The analysis is performed from a “short-run” and a “long-run” perspective. In the “short-

run” perspective, teacher productivity is not allowed to vary with class size, and thus class size

only affects the productivity of effort. In the “long-run” perspective, class size also affects the

productivity of the teacher. This separates between the two effects outlined above.

The results for the “short-run” perspective are shown in Table 14. Decreases in class size

have a positive and significant effect on both mean achievement and effort. Take the 5 worst

students of each school in terms of lagged achievement. Their math test score increases 4.1% of

a SD when decreasing class size from 40 to 20 students, 6% of a SD when decreasing class size

to 10, and 6.7% of a SD when decreasing class size to 5. The results are larger for the 5 top

students of each school: 5, 7.7 and 10.1% of a SD respectively. These results are consistent with

by Konstantopoulos (2008) who finds that class size reductions have a positive effect in all students

but increases the achievement gap. Effort also increases as class size decreases, and the size of the

effect is almost the same for top and worst students.

The results for the “long-run” perspective are shown in Table 15. Decreases in class size have

a negative and significant effect on mean achievement and a very small, significant and positive

effect on mean effort. Take the 5 worst students of each school in terms of lagged achievement.

Their math test score decreases -12.5% of a SD when decreasing class size from 40 to 20 students,

-18.9% of a SD when decreasing class size to 10, and -22.408% of a SD when increasing class size

to 5. For the 5 top students of each school, the results are again larger.
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All these analyses assumed that the different classes in the school have the same number of

students. Nonetheless, Lazear (2001) suggests in his model that bad students should go in small

classes and good students in large classes to maximize school output. This rule can be tested; the

results depend on the horizon considered.

Table 16 shows the predicted test score when there are only two classes in a school of 40, and

the worst students of the school in terms of lagged achievement are tracked together in a class of 5

up to 35 students. Panel (a) shows the “short-run” effect, when teacher productivity is fixed across

classes of different size. School output has a significant inverted-U shape: average test score is

maximized when classes are of the same size. The effect is a result of the interaction of changes in

the productivity of effort and a tracking component. If we look at the 5 top and 5 worst students in

each school, the effect of class size is monotone. For every group, Math test score is larger when

they have less peers - each group is in a smaller class - but moving from one class size to the next

not always has significant results.

Panel (b) of Table 16 shows the “long-run” effect, when teacher productivity varies with class

size. The result is completely opposite, and in line to the idea suggested by Lazear (2001). School

output has a significant U shape: average test score is maximized when classes are of very different

size. If we look at the 5 top and 5 worst students in each school, the effect of class size is again

monotone, but now for each group Math test score is larger when they have more peers.

In conclusion, the model predicts strong effects of class size, and the effects are positive of

negative depending if changes in teacher productivity are allowed or not. The estimated effects of

class size on teacher productivity are so strong, that counteract the negative effect of class size on

the productivity of effort, and also the effect of tracking students.

VIII.6 Magnet Schools

The proposed model can also be applied to the analysis of Magnet, Selective or Exam schools.

Several papers argue that their positive effects observed in the data are due to composition effects:
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the selection of good students and the interaction of peer effects explains most of the increase in test

scores (Valenzuela and Allende, 2012). The main problem of these studies is the determination of

an appropriate control group. Pischke and Manning (2006) show that controlling for baseline test

scores or even using instrumental variables is not enough to eliminate selection effects. Most quasi-

experimental and experimental studies find small effects of exam school offers (Abdulkadiroglu,

Angrist and Pathak, 2011; Clark, 2007; Cullen and Jacob, 2007). A problem with this method is

that students that do not get into a specific exam school tend to get into other good school, thus the

method is only comparing between specific selective schools. Ballou, Goldring and Liu (2006) use

acceptance in a lottery as an instrument to predict school attendance, and find a positive magnet

school effect.

To illustrate the use of the model, this section focuses on a program implemented in Chile

during 2011, the “Bicentenario” Schools (MINEDUC, 2011). The program selected 60 publicly

funded schools in the country, and gave them resources to help improve their results.22 The schools

commit to be in the top 10% of the SIMCE distribution23 and in the top 5% of the PSU distribu-

tion24 for each cohort.

There are three types of schools in the policy: new schools (18, or 30% of the total), restruc-

tured schools (40, or 67%, must make changes and implement a new educational project), and

expanded schools (2, or 3%, have good results but must increase number of students). All schools

must provide positions for at least 80 new students.

The model proposed can be used to analyze the policy from two perspectives. The first part

focuses on the predicted effect of cream-skimming the best students in a district, without improving

the efficiency of the school. This effect is cited in most studies that analyze Selective Schools, but

there has been no attempt to estimate it, besides the work of Altonji, Huang and Taber (2010). The

22 The program gives financial resources to upgrade educational projects, infrastructure and equipment, provides
pedagogical and methodological support, and monitors the learning of the students with frequent evaluations.

23The SIMCE (Education Quality Measurement System) is a national test taken by all schools either in 4th grade,
8th grade or 10th grade, and measures the degree of achievement related to the core curriculum.

24The PSU (University Selection Test) is the national college entrance test and, together with the school grades, is
the sole determinant of college acceptance in most universities in the country.
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second analysis deals with the implementation of the policy, and shows how the proposed model

can be used to separate the effect of observable class composition, including selection and peer

effects, to those of school productivity. Given the implementation date, a complete evaluation of

the policy is premature, and will be left for future work.

VIII.6.1 Effect of Skimming in a District

It is usually assumed that Magnet Schools attract some or all of the best students in an area,

generating a positive effect for these students, because of the positive peer interactions that they

experiment, but also a negative effect for the students left behind in the schools of origin, because

they are deprived of the influence of their strongest peers.

This effect is largely cited, but there has been virtually no attempt to quantify it. Even if

higher achieving schools cream-skim advantaged students (Bifulco, Ladd and Ross, 2009), this

is not enough to compute the effect on those left behind. Altonji et al. (2010) use a model with

contextual effects to generate a formula that calculates the cream-skimming effect. This effect is

increasing in the degree of heterogeneity within schools, the school choice takeup rate of strong

students relative to weak students, and the importance of peers. The effect is small of any of the

channels is small, and thus they find a negative but small cream-skimming effect of a voucher

program.

This section uses a counterfactual policy to ilustrate the size of the effects on the students

that move and those left behind when the behavior of the student is accounted for. For a given

district or geographic area, a school will be selected at random from the top of the distribution of

predicted math test score in that district, and named a “Magnet School”. 25 Then, new students

will be selected at random from the top of the distribution of lagged achievement in the district,

conditional on observed test scores, and moved to this Magnet School. Math test scores will be

predicted before and after the policy using observable variables for three types of students: new
25The true selection mechanism was based on the quality of the educational project proposed, the quality of the

school administration, the strategy to attract vulnerable students, geographical location, the availability of some tech-
nical or financial support network in order to improve their processes, and the funding solicited by the school.
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students that move to the Magnet School, old students that were in the Magnet School before the

policy and remain there, and students left behind in the schools of origin.

This analysis only focuses on the peer effect of cream-skimming students, and there is no

change in the productivity or the resources of the school (which is not the case with the true

policy).

The effect of skimming will depend largely on the size of the district. Two districts are selected:

Lebu, a small district with 6 schools and data for 62 students in 8th grade 2009, and Puente Alto,

a very large district with 104 schools and data for 4,063 students in 8th grade 2009. The Magnet

School and the elegible students in each district are selected at random from the top 30% of the

distribution in the small district, and from the top 10% of the distribution in the large district (over

248.72 and 279.25 SIMCE points respectively). The selected Magnet Schools have data on 10

students and 66 students each; assume they will open the same number of slots for new students.

Two situations are considered: restructured schools, where new students mix with the old ones, and

new schools, where they do not mix and the reference group is composed only of new students.

There are differences regarding the peer environment that the new students originally had. In

the small district, only 2 of the 10 students came from a top school,26 and so 80% of students are

moving from an environment with worse achieving peers to better achieving peers. In the large

district, 21 of the 66 students came from a top school, and so only 68% of the students are moving

to an environment with better peers. Also, 38 come from top 20% schools.

Also, given dispersion in school quality, the origin of these new students is not random. There

is some clustering in the school of origin, which may create negative peer effects for the old

classmates. But the clustering changes with the size of the district. In the small district, half of the

new students come from a single school (5 out of a school of 17, in other words 29% of the 8th

grade students of that school move out). In the large district, the larger concentration are 7 new

students out of 154.
26 This is, a school that also was in the top 30% of the distribution of the district
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One should then expect both the positive and negative effects of the skimming policy to be

different in districts of different size. This is consistent with the factors outlined by Altonji et al.

(2010) that affect the formula for the cream-skimming effect.

Table 17 shows the results. They are not significant, due to the small sample size, but the point

estimates are still interesting. As expected, they depend dramatically on the size of the district. In

the small district, the new students in the Magnet School have moderate sized effects, and there is

a very small positive effect for the students left behind in the old school. When the Magnet School

is New, this is, the new students do not mix with the old ones, the new students gain 12.84%

of a SD; when the school is Restructured, the new students gain 15.36% of a SD, and the old

students lose -5.3% of a SD. The students left behind have a positive effect of 1.62% of a SD. This

counterintuitive effect occurs because there is a substantial decrease in the cost of effort for the

students left behind, and this contextual effect increases effort for those students.

These results are equivalent to keeping the class composition constant, and give between 1 and

2 years of parental schooling to the new students, take between 0 and 1 year from the old students

in the magnet schools, and give 0 years to the students left behind27.

In the large district, results are completely different. The new students have a negligible in-

crease in math scores, and the students left behind have a small and negative effect. When the

Magnet School is New, the new students gain 1.31% of a SD; when the school is Restructured, the

new students gain 0.047% of a SD, and the old students in the magnet school gain 0.959% of a

SD. The students left behind have a negative effect of -1.67% of a SD. The total effects therefore

are negligible.

This analysis of a skimming policy suggests that it may be better to assign Magnet Schools to

small rather than large districts. This is not the design that has been followed in the case of Chile:

of the 60 Magnet Schools, only 18 of them are located in districts with less than 1,000 students in

8th grade, and 10 are located in districts with more than 4,000 students.

27They get a small positive effect from the increased peer parental schooling.
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VIII.6.2 Effect of the Implementation of the Magnet School Policy

The evaluation of selective schools policies is difficulted by the need of an appropriate control

group. This can be overcame using the model to separate the effects of class composition from

those of school productivity. This is illustrated using the Magnet School policy implemented in

Chile.28 Of the 60 magnet schools, 14 have students in the 8th grade 2009 SIMCE sample, and 20

in the 2011 SIMCE sample.29

The effect of the class composition (including selection based on observables and peer effects)

and school productivity can be separated in the following way. For each of these schools, it is

possible to compute the observed test score (“In Sample Score”), and predict using the model the

test score that the school should obtain given the class composition, the peer effects, and other ob-

servable characteristics (“Predicted Score”). Also, it is possible to compute the school productivity

parameter αg given the observable school and teacher characteristics (“In Sample Productivity”).

Finally, for every school it is possible to estimate what should be the value of αg so that the model,

given the observed student composition, predicts the same average test score observed in the sam-

ple (“Predicted Productivity”).

The Predicted Score considers the whole effect that class composition, possible selection and

peer effects have on the equilibrium effort and achievement of the students, conditional on observ-

able variables. Therefore, if a school has Predicted Score similar to the In Sample Score, it means

that the school is as productive as the non-magnet schools, given its observable characteristics, and

that all the change in test score after the implementation of the policy can be explained due to class

composition. On the other hand, if a school has a Predicted Score lower than the In Sample Score,

it means that the school is doing better than what is predicted using the class composition and the

characteristics of the students, and thus the school is more productive than the non-magnet schools.

28A complete evaluation of the policy is premature, and will be left for future work. The model proposed and
estimation methodology require some adjustments for a full evaluation. For example, the model only specifies the
mean of the distribution of lagged achievement as a function of observable variables. It may be posible to condition
the distribution of lagged achievement on observed lagged test scores to predict Aig0, to gain more predictive power
at the top of the distribution, where these students may belong.

29Of the 60 schools, 21 of them only have students in high school, and 15 of them are new.
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The results can be found on Table 18. In 2009, previous to the implementation of the policy,

8 of the 14 schools in the data are more productive that what is apparent from their observable

characteristics (57% of the schools selected later), 4 of them slightly more productive and 4 of

them substantially more productive.30 In 2011, after the implementation of the policy, 13 of the

20 schools are more productive than apparent from their observable characteristics. This is, a 65%

of the observable magnet schools have test scores that are larger that what can be predicted given

their class composition and observable characteristics. Of these 20 schools, 11 are old (with data

observed for 2009) and 9 are new (no data for 2009). Of the old schools, 7 (63%) saw an increase

in their Predicted Productivity from 2009 to 2011. Between them, two schools stand out due to

their large productivity increase: the Purén school increased its Predicted Productivity from 0.9548

to 1.1776 (24.4% increase) and the Aisén school increased its Predicted Productivity from 1.0497

to 1.1094 (5.6% increase). Of the new schools, 7 (77.9%) are largely more productive that what is

apparent. For example, the Villarrica school obtained a math score of 332.2 in the sample, when

its class composition predicts a score of 228.9 (below the national average), this is the score is

45% larger than predicted. This implies that the Predicted Productivity is 1.277 instead of 1.03, or

24% larger. Similar cases can be seen in the Puente Alto school and San Antonio school, with test

scores 32.2% and 29.3% larger that what is predicted given their class composition, and Predicted

Productivity 19% and 20% larger respectively.

The previous analysis assumed, as in the model, that the students in the magnet schools have

the same distribution of lagged achievement than the population. In other words, they are drawn at

random from the population, conditional on observed variables. This assumption may be subject

to special critique in the case of Magnet Schools; it is plausible to think that the skimming of

students implies that these students are better than average, or that their distribution of lagged

achievement conditional on observables is not the same as the rest of the students. It is possible to

repeat the previous analysis, but assuming that for these students lagged achievement conditional

30For example, the school that will become Magnet School of Puerto Montt has Predicted Productivity of 1.118
instead of In Sample Productivity of 1.042, or a 7.2% more productive
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on observables is drawn from the top 10% of the distribution.31 This also is an extreme assumption,

particularly in the case of the Restructured schools that have kept their previous students, but it is

useful to set a lower bound on the productivity of the Magnet Schools. Most naturally, the true

situation is in between the two analyses.

The results are shown in Table 19. Now for 2009, previous to the implementation of the policy,

in this extreme case only 1 of the 14 schools in the data is more productive that what is apparent

from their observable characteristics (7%). After the implementation of the policy, in 2011, only 1

of the 20 schools is more productive than apparent (5%). This is, this extremely successful school

has test scores that are larger that what can be predicted even if their students are drawn from

the top 10% of the distribution of lagged test score given the class composition and observable

characteristics. This is a new school, the Villarrica school, who obtained a math score of 332.2 in

the sample, and if their students belonged to the top 10% conditional on observables they would

get 316.6 points. The San Antonio school, also new, obtained a math score of 327.4 in the sample,

and if their students belonged to the top 10% conditional on observables they would get 335.9

points. Even if this school is not more productive than apparent in this extreme case, it gets fairly

close. For the 11 old schools in the data, even if none of the old schools is more productive than

apparent in this extreme case, 5 (45.5%) saw an increase in their Predicted Productivity from 2009

to 2011 even if their students are highly selective. Between them, the Purén school stands out; the

model predicts an increase in its productivity of 17% even if its students are highly selective in the

two years.

To the best of my knowledge, there are no other educational policies in the period that may be

affecting the results. To make sure that the results are not spurious due to a trend in the educational

system, it is possible to perform two simple analysis. First, I run two regressions, using average

Math test scores for the schools in 2009 and 2011 against a dummy that takes value 1 if the school is

a Magnet School. The coefficient for the 2009 regression is 4.09 but non significant, indicating that

31To operationalize this, the mean lagged achievement is calculated from observables as in the model, but the shock
to lagged achievement in each simulation is sampled from a normal truncated from below, so that only values from the
top 10% of the distribution are sampled.
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the Magnet Schools are not selected at random from the population32 The coefficient for the 2011

regression is 19.87 and statistically significant; this is, the relationship between the schools that

would become Magnet Schools and their test scores changed substantially after the implementation

of the policy. The second analysis performs an analysis of variance analysis (ANOVA) for the

difference between 2011 and 2009 scores for the two groups (Magnet and non-Magnet Schools).

This test rejects the hypothesis of equality of means between the groups. In case there was a trend

in the system, the increase in test scores is larger for these selected schools.

These results indicate that the implementation of the policy may have been sucessfull until

now. The magnet schools show very good results in terms of productivity between 2009 and 2011,

given the observable characteristics of their students. A more comprehensive evaluation will be

left for future work.

IX Conclusion

The growing literature on achievement peer effects has provided strong evidence that classmates

have an important effect on the determination of achievement. These studies also have recognized

the existence of various different mechanism that can generate these effects, but in practice little

attention has been given to the identification and estimation of said mechanisms.

The explicit consideration of the underlying mechanisms of peer effects is important because

they may have potentially different policy implications, and because the endogeneity of unobserved

effort may bias the estimation of peer effects. For this reason, this paper proposes and estimates a

behavioral model that explicitly considers the student effort decision and achievement production

in a class. The model proposed considers explicitly the role of own and peer effort, and identifies

three mechanisms for peer effects: a production externality of peer effort, the effect of lagged

achievement heterogeneity on production, and the effect of peer characteristics in the cost of effort.

In this sense, this paper represents a contribution to bridge the gap between the theoretical and the

32In 2009 the policy has not been announced yet.

53



empirical literatures.

The estimation of the model using data for Chile results in precisely estimated parameters that

provide evidence of significant peer effects. In particular, the effect of peer effort on production is

positive and relatively large. The peer parameters on the cost of effort are not always positive: some

variables have a positive effect on own effort by decreasing the cost of effort, but others increase it

or have no significant effect on the cost of effort. Finally, class heterogeneity has a mixed impact

on productivity: it increases some parameters of the production function but decreases others.

The counterfactual analysis performed on six different policies help understand in more detail

the strength and patterns of social interactions, as they exogenously change different dimensions of

the model, one at a time. the results are similar to studies that identify the causal effect of policies

using quasi-experimental or experimental methods, and show interesting peer effects. The endoge-

nous effect is positive and significant, very small on effort but of moderate size on achievement.

The contextual peer effect may be positive or negative depending on the variable considered, and

this may generate counterintuitive effects on achievement. In general, observed contextual vari-

ables have small or negative effects; instead, the peer previous achievement has a moderate to large

effect. Some policies have larger effects on effort than achievement, but others work the opposite

way, especially those related to class composition. However, peer effects on achievement seem to

be larger than on effort. Finally, students compensate to some degree the changes in the charac-

teristics of their peer group through their effort. This implies that policies are predicted to have a

smaller effect than when the student effort decision is not considered.

Some aspects of the model necessary for counterfactual analysis require more attention. First,

it would be desirable to include the effort decision of teachers or the input selection decision of

parents in the model. Both agents may respond to changes in peer composition and this may

change the predictions of the model. Second, it is necessary to evaluate the possibility of making

the production function of achievement more flexible, but keeping identification. This would allow

to evaluate which predictions of the model are robust to its specification, and which depend on the

complementarity of inputs implicit in the production function. Finally, it is possible to extend the

54



model to evaluate the policy of Bicentenario or magnet schools. All of these aspects are beyond

the extend of this paper, and are left for future work.
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Appendix

A Estimation Algorithm

The model is estimated using a Simulated Maximum Likelihood algorithm. The achievement and
effort of each student is influenced by the characteristics and behavior of his whole group or class,
therefore this is the relevant unit of observation. The algorithm used for estimation is:

1. For each class g, perform a Monte Carlo simulation. For each simulation draw d, sample
shocks for ({Adig0}i∈g, αdg) for the whole class.

2. Compute optimal effort edig for every i ∈ g. Use a Newton algorithm to solve the nonlin-
ear system of equations given by the students FOC, and find the game equilibrium given
({Adig0}i∈g, αdg). Then, compute optimal achievement Adig1 using the production function.

3. Using the measurement equations, compute the likelihood of test scores and effort condi-
tional on each draw d for each student i ∈ g:

• For lagged test scores, the likelihood is given by:

pd(Tig0) = φ(Tig0; η0 + τ0A
d
ig0,Σε0)

• For current test scores, the likelihood is given by:

pd(Tig1) = φ(Tig1; η1 + τ1A
d
ig1,Σε1)

• The likelihood of the effort measures is given by a mixture of normals for the continu-
ous measure, and an ordered probit for the discrete measures:

pd(Rig) = pd(Rig0)
4∏
l=1

L∏
j=1

pd(Rigl = j)1{Rigl=j}

pd(Rig0) =
2∑
j=1

wajφ(Rig0; e
d
ig + µaj, σ

2
aj)

pd(Rigl = j) = Φ
(
cl,j − τ2ledig

)
− Φ

(
cl,j−1 − τ2ledig

)
∀l = 1, . . . , 4

• The likelihood of observing the measures for each student is thus given by:

pdig = pd(Tig0)p
d(Tig1)p

d(Rig)

4. Finally, the objective function is given by:

Λ =
G∏
g=1

∫ ∏
i∈g

(pdig|{Adig0}i∈g, αdg)dF ({Adig0}i∈g, αdg)

This function is maximized using numerical methods, finishing the estimation algorithm.
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Table 1:
Distribution of Test Scores and Individual and Class Characteristics

Individual Characteristics
N=130853

Variable Mean Std. Dev. Min Max
current math 267.15 51.36 134.35 402.42
current cience 266.16 50.58 133.59 402.74
lagged math 260.06 51.48 90.83 363.62
lagged science 269.16 49.42 108.58 363.69
attendance 0.9398 0.0512 0.6 1
female 0.5262 0.4993 0 1
parents scholing 12.021 2.94 1 20
parents have college 0.3613 0.4804 0 1
parents live at home 0.5852 0.4927 0 1
books at home 10-50 0.4806 0.4996 0 1
books at home 50-more 0.2671 0.4424 0 1
computer at home 0.6932 0.4611 0 1
internet at home 0.4842 0.4998 0 1

Teacher and Class Characteristics
N=7779

Variable Mean Std. Dev. Min Max
math teacher female 0.4899 0.4999 0 1
science teacher female 0.6116 0.4874 0 1
math teacher experience 16.0062 13.5998 0 62
science teacher experience 15.0878 13.3415 0 66
missing math teacher female 0.1426 0.3496 0 1
missing science teacher female 0.1498 0.3569 0 1
missing math teacher experience 0.1545 0.3615 0 1
missing science teacher experience 0.1625 0.3689 0 1
school is urban 0.8275 0.3779 0 1
school is public 0.501 0.5 0 1
school is subsidized 0.416 0.4929 0 1
class size 16.8213 8.5812 2 41
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Table 2:
Distribution of Discrete Effort Measures

Category
Complet. Complet.
Disagree Disagree Indiff Agree Agree

Measure 1 2 3 4 5
1 Does homework 2.66% 7.15% 22.94% 38.09% 29.16%
2 Notebooks complete 5.16% 12.8% 17.41% 31.53% 33.1%
3 Takes notes 7.85% 13.97% 31.25% 30.44% 16.48%

Category
Never 1 or 2 days 3 or 4 days Every day

Measure 1 2 3 4
4 How many days studies 14.31% 57.37% 20.67% 7.65%
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Table 4:
Model Fit: Mean and Standard Deviation of Measures

Mean St. Dev.
True Simulated True Simulated

Current Math 267.15 266.14 51.362 50.933
Current Science 266.16 265.22 50.583 50.411
Attendance 0.9398 0.9392 0.0512 0.0567
Effort1 3.8394 3.8434 1.0103 1.0093
Effort2 3.746 3.744 1.1905 1.1894
Effort3 3.3372 3.3353 1.1418 1.1415
Effort4 2.2167 2.2098 0.7804 0.7784

Table 5:
Marginal Effect for Discrete Variables

Unit change in value of variable
On Achievement On Effort

female -7.774%SD** 5.372%**
(0.9141) (0.2582)

parents have college 3.986%SD** -0.392%**
(0.2225) (0.0448)

parents live at home 9.12%SD** 4.018%**
(0.6616) (0.1223)

books at home 10-50 5.16%SD** 2.27%**
(0.3736) (0.068)

books at home 50-more 10.785%SD** 4.76%**
(0.7931) (0.1548)

computer at home 0.922%SD** 0.398%**
(0.0676) (0.0126)

internet at home -3.216%SD** -1.376%**
(0.2361) (0.043)

% of females (0 to 100%) -4.911%SD** -0.5%**
(0.2476) (0.0068)

% of parents have college (0 to 100%) 26.141%SD** 11.799%**
(2.1859) (0.578)

% of parents live at home (0 to 100%) 16.516%SD** 7.4%**
(1.2197) (0.2472)

% of books at home 10-50 (0 to 100%) -15.717%SD** -6.513%**
(1.186) (0.224)

% of books at home 50-more (0 to 100%) -7.349%SD** -3.061%**
(0.5595) (0.1137)

% of computer at home (0 to 100%) -20.666%SD** -8.393%**
(1.5658) (0.287)

(table continues...)
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Unit change in value of variable
On Achievement On Effort

% of internet at home (0 to 100%) -10.982%SD** -4.615%**
(0.8244) (0.162)

Math teacher female 0.783%SD** 0.075%**
(0.037) (0.0004)

Science teacher female 0.836%SD** 0.08%**
(0.0395) (0.0005)

school is urban 1.104%SD -5.723%**
(1.4839) (0.39)

school is public -84.725%SD** -10.851%**
(4.9263) (0.4228)

school is subsidized -58.05%SD** -5.107%**
(3.2976) (0.2755)

Standard errors are in parenthesis below.
** These results are significant at a 95% confidence level.
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Table 7:
Counterfactual 1: Decrease the cost of effort cig for worst students

Lower cig in 10%
Tutor assigned to Worst student Every student Smart student
Number of benefits 37000 82372 37000
SIMCE points for worst 5.298 7.493 3.281
Equivalence in Schooling Close to More than More than

2 years 2 years 1 year

Change in Mean Math score, Percentage of Standard Deviation
For the classes: 6.74%SD** 15.37%SD** 6.71%SD**

(1.784) (1.035) (1.794)
For benefited students: 10.4%SD** 15.37%SD** 10.61%SD**

(2.068) (1.035) (2.004)
For worst students: 10.4%SD** 14.71%SD** 6.44%SD**

(2.068) (0.934) (0.457)
For the rest of their class: 3.75%SD** 15.91%SD** 1.59%SD**

(0.313) (1.048) (0.149)

Percentual Change in Mean cost of effort
For the classes: -4.309% -10% -4.535%

(-) (-) (-)
For benefited students: -10% -10% -10%

(-) (-) (-)
For worst students: -10% -10% 0%

(-) (-) (-)
For the rest of their class: 0% -10% 0%

(-) (-) (-)

Percentual Change in Mean effort
For the classes: 3.14%** 7.011%** 3.114%**

(0.875) (0.043) (0.883)
For benefited students: 6.55%** 7.011%** 6.547%**

(0.225) (0.043) (0.229)
For worst students: 6.55%** 7.01%** 0.671%**

(0.225) (0.042) (0.026)
For the rest of their class: 0.357%** 7.012%** 0.151%**

(0.023) (0.045) (0.01)
Standard errors are in parenthesis below.
** These results are significant at a 95% confidence level.
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Table 8:
Counterfactual 2.1: Public Provision of Home Inputs, Books

Increase Number of Books
Tutor assigned to Worst student Every student Smart student
Number of benefits 37006 108269 37006
SIMCE points for worst -0.392 -0.799 -0.376
Equivalence in Schooling Less than Less than Less than

-1 year -1 year -1 year

Change in Mean Math score, Percentage of Standard Deviation
For the classes: -0.62%SD** -1.47%SD** -0.53%SD**

(0.06) (0.146) (0.051)
For benefited students: -0.77%SD** -1.47%SD** -0.71%SD**

(0.083) (0.146) (0.079)
For worst students: -0.77%SD** -1.57%SD** -0.74%SD**

(0.083) (0.156) (0.065)
For the rest of their class: -0.54%SD** -1.41%SD** -0.31%SD**

(0.049) (0.141) (0.028)

Percentual Change in Mean cost of effort
For the classes: 0.443%** 0.982%** 0.352%**

(0.03) (0.075) (0.03)
For benefited students: -0.879%** 0.982%** -0.799%**

(0.058) (0.075) (0.055)
For worst students: -0.879%** 0.941%** 1.687%**

(0.058) (0.081) (0.057)
For the rest of their class: 1.101%** 1.003%** 0.643%**

(0.035) (0.072) (0.038)

Percentual Change in Mean effort
For the classes: -0.281%** -0.653%** -0.243%**

(0.02) (0.049) (0.019)
For benefited students: 0.338%** -0.653%** 0.298%**

(0.035) (0.049) (0.033)
For worst students: 0.338%** -0.655%** -0.924%**

(0.035) (0.053) (0.032)
For the rest of their class: -0.6%** -0.652%** -0.35%**

(0.02) (0.047) (0.021)
Standard errors are in parenthesis below.
** These results are significant at a 95% confidence level.
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Table 9:
Counterfactual 2.2: Public Provision of Home Inputs, Computer

Increase Number of Computers
Tutor assigned to Worst student Every student Smart student
Number of benefits 37006 108269 37006
SIMCE points for worst -1.914 -2.873 -1.095
Equivalence in Schooling More than More than

-1 year -2 years -1 year

Change in Mean Math score, Percentage of Standard Deviation
For the classes: -2.34%SD** -4.31%SD** -1.87%SD**

(0.177) (0.325) (0.137)
For benefited students: -3.76%SD** -4.31%SD** -3.29%SD**

(0.289) (0.325) (0.243)
For worst students: -3.76%SD** -5.64%SD** -2.15%SD**

(0.289) (0.432) (0.161)
For the rest of their class: -1.6%SD** -3.63%SD** -0.68%SD**

(0.12) (0.27) (0.047)

Percentual Change in Mean cost of effort
For the classes: 1.645%** 3.05%** 1.307%**

(0.055) (0.101) (0.045)
For benefited students: 2.468%** 3.05%** 2.067%**

(0.086) (0.101) (0.075)
For worst students: 2.468%** 4.095%** 1.829%**

(0.086) (0.139) (0.061)
For the rest of their class: 1.235%** 2.529%** 0.525%**

(0.04) (0.083) (0.027)

Percentual Change in Mean effort
For the classes: -1.063%** -1.937%** -0.854%**

(0.037) (0.067) (0.03)
For benefited students: -1.636%** -1.937%** -1.398%**

(0.059) (0.067) (0.05)
For worst students: -1.636%** -2.605%** -1.146%**

(0.059) (0.091) (0.04)
For the rest of their class: -0.768%** -1.594%** -0.329%**

(0.026) (0.054) (0.016)
Standard errors are in parenthesis below.
** These results are significant at a 95% confidence level.
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Table 10:
Counterfactual 2.3: Public Provision of Home Inputs, Internet

Increase Number of Computer+Internet
Tutor assigned to Worst student Every student Smart student
Number of benefits 37006 108269 37006
SIMCE points for worst -4.056 -6.323 -2.468
Equivalence in Schooling More than

-3 years -3 years -2 years

Change in Mean Math score, Percentage of Standard Deviation
For the classes: -5.01%SD** -10.16%SD** -4.23%SD**

(0.363) (0.726) (0.287)
For benefited students: -7.96%SD** -10.16%SD** -7.25%SD**

(0.584) (0.726) (0.502)
For worst students: -7.96%SD** -12.42%SD** -4.84%SD**

(0.584) (0.9) (0.339)
For the rest of their class: -3.48%SD** -8.98%SD** -1.7%SD**

(0.249) (0.634) (0.121)

Percentual Change in Mean cost of effort
For the classes: 3.625%** 7.448%** 3.054%**

(0.094) (0.192) (0.092)
For benefited students: 6.356%** 7.448%** 5.488%**

(0.166) (0.192) (0.165)
For worst students: 6.356%** 9.667%** 3.461%**

(0.166) (0.253) (0.096)
For the rest of their class: 2.264%** 6.343%** 1.08%**

(0.059) (0.162) (0.065)

Percentual Change in Mean effort
For the classes: -2.269%** -4.521%** -1.921%**

(0.062) (0.119) (0.056)
For benefited students: -3.883%** -4.521%** -3.421%**

(0.105) (0.119) (0.096)
For worst students: -3.883%** -5.797%** -2.204%**

(0.105) (0.153) (0.061)
For the rest of their class: -1.439%** -3.865%** -0.696%**

(0.039) (0.101) (0.039)
Standard errors are in parenthesis below.
** These results are significant at a 95% confidence level.
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Table 11:
Counterfactual 3: Same gender classes

% Change
Class Size 20 10
Mean Math score - Percentual Change of SD
For all students 0.558%SD** 0.501%SD**

(0.082) (0.078)
For males -2.133%SD** -2.267%SD**

(0.48) (0.456)
For females 3.249%SD** 3.107%SD**

(0.559) (0.54)

Mean Cost of Effort - Percentual Change
For all students 0% 0%

(-) (-)
For males -0.139%** -0.197%**

(0.007) (0.009)
For females 0.157%** 0.122%**

(0.009) (0.008)

Mean Effort - Percentual Change
For all students 0.62%** 0.577%**

(0.073) (0.074)
For males 0.171% 0.183%

(0.3) (0.277)
For females 1.051%** 1.014%**

(0.317) (0.296)
Standard errors are in parenthesis below.
** These results are significant at a 95% confidence level.
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Table 12:
Counterfactual 4: Tracking inside the school

% Change
Class Size 20 10
Mean Math score - Percentual Change of SD
For all students 2.412%SD** 3.029%SD**

(0.417) (0.465)
For worst students -3.706%SD -1.978%SD**

(3.242) (0.388)
For best students 8.531%SD** 11.628%SD**

(3.833) (1.656)

Mean Cost of Effort - Percentual Change
For all students 0% 0%

(-) (-)
For worst students 4.489%** 4.425%**

(1.93) (0.295)
For best students -4.217%** -6.441%**

(1.909) (0.804)

Mean Effort - Percentual Change
For all students 2.139%** 2.796%**

(0.269) (0.369)
For worst students -0.646% 0.162%

(1.391) (0.447)
For best students 4.932%** 7.065%**

(1.518) (0.706)
Standard errors are in parenthesis below.
** These results are significant at a 95% confidence level.
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Table 13:
Counterfactual 4: Replicating the CSW 2011 experiment

% Change
Mean Math score - % Change of SD
For middle students 0.432%SD

(0.643)
For worst students -0.273%SD

(0.682)
For best students -0.767%SD

(0.737)
Mean Cost of Effort - % Change
For middle students 1.191%

(-)
For worst students -1.515%**

(0.393)
For best students -1.108%**

(0.335)
Mean Effort - % Change
For middle students 1.528%**

(0.389)
For worst students -1.514%**

(0.37)
For best students -1.741%**

(0.352)
Standard errors are in parenthesis below.
** These results are significant at
a 95% confidence level.
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Table 14:
Counterfactual 5: Variations in Class Size - Short Run

Effect of Class Size Variation
with respect to Class Size=40

Class size 5 10 20

Mean Math score - Percentual Change of SD
For all students 9.004%SD** 7.188%SD** 4.725%SD**

(0.654) (0.498) (0.306)
For 5 worst students 6.771%SD** 6.042%SD** 4.166%SD**

(0.601) (0.468) (0.29)
For 5 best students 10.111%SD** 7.708%SD** 5.001%SD**

(0.695) (0.509) (0.311)

Mean Cost of Effort - Percentual Change
For all students 0% 0% 0%

(-) (-) (-)
For 5 worst students 0.039%** 0.017%** 0.016%**

(0.002) (0.001) (0.001)
For 5 best students 0.022%** 0.014%** -0.013%**

(0.005) (0.001) (0.001)

Mean Effort - Percentual Change
For all students 4.57%** 3.38%** 2.104%**

(0.377) (0.239) (0.131)
For 5 worst students 3.621%** 2.991%** 1.975%**

(0.492) (0.29) (0.149)
For 5 best students 3.664%** 2.965%** 1.974%**

(0.456) (0.27) (0.143)
“Short run” means that teacher productivity IS fixed as class size changes.
Standard errors are in parenthesis below.
** These results are significant at a 95% confidence level.
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Table 15:
Counterfactual 5: Variations in Class Size - Long Run

Effect of Class Size Variation
with respect to Class Size=40

Class size 5 10 20

Mean Math score - Percentual Change of SD
For all students -22.267%SD** -19.522%SD** -13.064%SD**

(1.122) (0.979) (0.655)
For 5 worst students -22.408%SD** -18.982%SD** -12.502%SD**

(1.266) (1.049) (0.678)
For 5 best students -23.11%SD** -20.622%SD** -14.048%SD**

(1.131) (0.993) (0.664)

Mean Cost of Effort - Percentual Change
For all students 0% 0% 0%

(-) (-) (-)
For 5 worst students 0.039%** 0.017%** 0.016%**

(0.002) (0.001) (0.001)
For 5 best students 0.022%** 0.014%** -0.013%**

(0.005) (0.001) (0.001)

Mean Effort - Percentual Change
For all students 1.417%** 0.713%** 0.355%**

(0.388) (0.253) (0.144)
For 5 worst students 0.504% 0.335% 0.224%

(0.497) (0.306) (0.163)
For 5 best students 0.537% 0.31% 0.214%

(0.461) (0.282) (0.156)
“Long run” means that teacher productivity is NOT fixed as class size changes.
Standard errors are in parenthesis below.
** These results are significant at a 95% confidence level.
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Table 16:
Counterfactual 5: Replicating the Lazear 2001 Conclusion

Mean Math Test Score - Short Run
All students Worst 5 students Best 5 students

Class size = 5 255.936 243.049 270.271
Class size = 10 256.901** 241.817** 271.709**
Class size = 15 257.529** 240.701** 273.592**
Class size = 20 257.807** 240.035 275.801
Class size = 25 257.682** 239.967 277.804**
Class size = 30 257.097** 240.233 278.952
Class size = 35 256.067** 240.294 279.849

Mean Math Test Score - Long Run
All students Worst 5 students Best 5 students

Class size = 5 261.003 236.707 277.317
Class size = 10 259.208** 237.629** 276.409**
Class size = 15 258.131** 238.644 275.918
Class size = 20 257.773** 240.083 275.711
Class size = 25 258.091** 242.123** 275.157
Class size = 30 259.188** 244.502** 273.958
Class size = 35 260.981** 246.667** 272.375**
“Short run” means that teacher productivity IS fixed as class size changes.
“Long run” means that teacher productivity is NOT fixed as class size changes.
** These means are statistically different from the mean
for the previous class size at a 95% confidence level.
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Table 17:
Counterfactual 6.1: Effect of Skimming in a District with Magnet School (MS)

Small District: Lebu Large District: Puente Alto
Number of Schools 6 104
Students with Data 62 4,063

School Type Restructured New Restructured New
Mean Math score - Percentual Change of SD
Old students in MS -5.39%SD 0.96%SD

(1076.2) (191.5)
New students in MS 15.37%SD 12.84%SD 0.05%SD 1.32%SD

(504.2) (140.2) (234.6) (64.3)
Students left behind 1.62%SD 1.62%SD -1.67%SD -1.67%SD

(27.8) (27.8) (6.6) (6.6)

Cost of effort
Old students in MS 3.251% -1.047%

(648.9) (209.7)
New students in MS 3.821% 6.834% -3.357% -4.345%

(593.4) (80.6) (185.5) (38.4)
Students left behind -1.775% -1.775% 0.311% 0.311%

(21.1) (21.1) (2.7) (2.7)

Mean effort
Old students in MS -2.787% 0.729%

(557.1) (145.6)
New students in MS 8.346% 8.322% 1.157% 2.16%

(55.4) (55.9) (190.8) (32.7)
Students left behind 1.432% 1.432% -0.149% -0.149%

(13.4) (13.4) (2.1) (2.1)
Standard errors are in parenthesis below.
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